From 0f9cce363171eae7b3329b9e94b91825ac14cd1d Mon Sep 17 00:00:00 2001 From: JIahui-01 <52976459+JIahui-01@users.noreply.github.com> Date: Tue, 25 Apr 2023 00:19:56 -0500 Subject: [PATCH 1/7] Add files via upload --- Notebooks/02_data_wrangling.ipynb | 2785 ++++++++++++++++++++++++++--- 1 file changed, 2516 insertions(+), 269 deletions(-) diff --git a/Notebooks/02_data_wrangling.ipynb b/Notebooks/02_data_wrangling.ipynb index a52eb6c24..1cd389c10 100644 --- a/Notebooks/02_data_wrangling.ipynb +++ b/Notebooks/02_data_wrangling.ipynb @@ -120,15 +120,15 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "#Code task 1#\n", "#Import pandas, matplotlib.pyplot, and seaborn in the correct lines below\n", - "import ___ as pd\n", - "import ___ as plt\n", - "import ___ as sns\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", "import os\n", "\n", "from library.sb_utils import save_file\n" @@ -162,7 +162,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -179,13 +179,54 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 330 entries, 0 to 329\n", + "Data columns (total 27 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Name 330 non-null object \n", + " 1 Region 330 non-null object \n", + " 2 state 330 non-null object \n", + " 3 summit_elev 330 non-null int64 \n", + " 4 vertical_drop 330 non-null int64 \n", + " 5 base_elev 330 non-null int64 \n", + " 6 trams 330 non-null int64 \n", + " 7 fastEight 164 non-null float64\n", + " 8 fastSixes 330 non-null int64 \n", + " 9 fastQuads 330 non-null int64 \n", + " 10 quad 330 non-null int64 \n", + " 11 triple 330 non-null int64 \n", + " 12 double 330 non-null int64 \n", + " 13 surface 330 non-null int64 \n", + " 14 total_chairs 330 non-null int64 \n", + " 15 Runs 326 non-null float64\n", + " 16 TerrainParks 279 non-null float64\n", + " 17 LongestRun_mi 325 non-null float64\n", + " 18 SkiableTerrain_ac 327 non-null float64\n", + " 19 Snow Making_ac 284 non-null float64\n", + " 20 daysOpenLastYear 279 non-null float64\n", + " 21 yearsOpen 329 non-null float64\n", + " 22 averageSnowfall 316 non-null float64\n", + " 23 AdultWeekday 276 non-null float64\n", + " 24 AdultWeekend 279 non-null float64\n", + " 25 projectedDaysOpen 283 non-null float64\n", + " 26 NightSkiing_ac 187 non-null float64\n", + "dtypes: float64(13), int64(11), object(3)\n", + "memory usage: 69.7+ KB\n" + ] + } + ], "source": [ "#Code task 2#\n", "#Call the info method on ski_data to see a summary of the data\n", - "ski_data.___" + "ski_data.info()" ] }, { @@ -204,15 +245,229 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameRegionstatesummit_elevvertical_dropbase_elevtramsfastEightfastSixesfastQuads...LongestRun_miSkiableTerrain_acSnow Making_acdaysOpenLastYearyearsOpenaverageSnowfallAdultWeekdayAdultWeekendprojectedDaysOpenNightSkiing_ac
0Alyeska ResortAlaskaAlaska3939250025010.002...1.01610.0113.0150.060.0669.065.085.0150.0550.0
1Eaglecrest Ski AreaAlaskaAlaska26001540120000.000...2.0640.060.045.044.0350.047.053.090.0NaN
2Hilltop Ski AreaAlaskaAlaska2090294179600.000...1.030.030.0150.036.069.030.034.0152.030.0
3Arizona SnowbowlArizonaArizona115002300920000.010...2.0777.0104.0122.081.0260.089.089.0122.0NaN
4Sunrise Park ResortArizonaArizona11100180092000NaN01...1.2800.080.0115.049.0250.074.078.0104.080.0
\n", + "

5 rows × 27 columns

\n", + "
" + ], + "text/plain": [ + " Name Region state summit_elev vertical_drop \\\n", + "0 Alyeska Resort Alaska Alaska 3939 2500 \n", + "1 Eaglecrest Ski Area Alaska Alaska 2600 1540 \n", + "2 Hilltop Ski Area Alaska Alaska 2090 294 \n", + "3 Arizona Snowbowl Arizona Arizona 11500 2300 \n", + "4 Sunrise Park Resort Arizona Arizona 11100 1800 \n", + "\n", + " base_elev trams fastEight fastSixes fastQuads ... LongestRun_mi \\\n", + "0 250 1 0.0 0 2 ... 1.0 \n", + "1 1200 0 0.0 0 0 ... 2.0 \n", + "2 1796 0 0.0 0 0 ... 1.0 \n", + "3 9200 0 0.0 1 0 ... 2.0 \n", + "4 9200 0 NaN 0 1 ... 1.2 \n", + "\n", + " SkiableTerrain_ac Snow Making_ac daysOpenLastYear yearsOpen \\\n", + "0 1610.0 113.0 150.0 60.0 \n", + "1 640.0 60.0 45.0 44.0 \n", + "2 30.0 30.0 150.0 36.0 \n", + "3 777.0 104.0 122.0 81.0 \n", + "4 800.0 80.0 115.0 49.0 \n", + "\n", + " averageSnowfall AdultWeekday AdultWeekend projectedDaysOpen \\\n", + "0 669.0 65.0 85.0 150.0 \n", + "1 350.0 47.0 53.0 90.0 \n", + "2 69.0 30.0 34.0 152.0 \n", + "3 260.0 89.0 89.0 122.0 \n", + "4 250.0 74.0 78.0 104.0 \n", + "\n", + " NightSkiing_ac \n", + "0 550.0 \n", + "1 NaN \n", + "2 30.0 \n", + "3 NaN \n", + "4 80.0 \n", + "\n", + "[5 rows x 27 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 3#\n", "#Call the head method on ski_data to print the first several rows of the data\n", - "ski_data.___" + "ski_data.head()" ] }, { @@ -245,15 +500,188 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
151
NameBig Mountain Resort
RegionMontana
stateMontana
summit_elev6817
vertical_drop2353
base_elev4464
trams0
fastEight0.0
fastSixes0
fastQuads3
quad2
triple6
double0
surface3
total_chairs14
Runs105.0
TerrainParks4.0
LongestRun_mi3.3
SkiableTerrain_ac3000.0
Snow Making_ac600.0
daysOpenLastYear123.0
yearsOpen72.0
averageSnowfall333.0
AdultWeekday81.0
AdultWeekend81.0
projectedDaysOpen123.0
NightSkiing_ac600.0
\n", + "
" + ], + "text/plain": [ + " 151\n", + "Name Big Mountain Resort\n", + "Region Montana\n", + "state Montana\n", + "summit_elev 6817\n", + "vertical_drop 2353\n", + "base_elev 4464\n", + "trams 0\n", + "fastEight 0.0\n", + "fastSixes 0\n", + "fastQuads 3\n", + "quad 2\n", + "triple 6\n", + "double 0\n", + "surface 3\n", + "total_chairs 14\n", + "Runs 105.0\n", + "TerrainParks 4.0\n", + "LongestRun_mi 3.3\n", + "SkiableTerrain_ac 3000.0\n", + "Snow Making_ac 600.0\n", + "daysOpenLastYear 123.0\n", + "yearsOpen 72.0\n", + "averageSnowfall 333.0\n", + "AdultWeekday 81.0\n", + "AdultWeekend 81.0\n", + "projectedDaysOpen 123.0\n", + "NightSkiing_ac 600.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 4#\n", "#Filter the ski_data dataframe to display just the row for our resort with the name 'Big Mountain Resort'\n", "#Hint: you will find that the transpose of the row will give a nicer output. DataFrame's do have a\n", "#transpose method, but you can access this conveniently with the `T` property.\n", - "ski_data[ski_data.Name == ___].___" + "ski_data[ski_data.Name == \"Big Mountain Resort\"].T" ] }, { @@ -279,18 +707,221 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 47, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
count%
Name00.000000
total_chairs00.000000
double00.000000
triple00.000000
quad00.000000
fastQuads00.000000
fastSixes00.000000
surface00.000000
trams00.000000
base_elev00.000000
vertical_drop00.000000
summit_elev00.000000
state00.000000
Region00.000000
yearsOpen10.303030
SkiableTerrain_ac30.909091
Runs41.212121
LongestRun_mi51.515152
averageSnowfall144.242424
Snow Making_ac4613.939394
projectedDaysOpen4714.242424
TerrainParks5115.454545
daysOpenLastYear5115.454545
AdultWeekend5115.454545
AdultWeekday5416.363636
NightSkiing_ac14343.333333
fastEight16650.303030
\n", + "
" + ], + "text/plain": [ + " count %\n", + "Name 0 0.000000\n", + "total_chairs 0 0.000000\n", + "double 0 0.000000\n", + "triple 0 0.000000\n", + "quad 0 0.000000\n", + "fastQuads 0 0.000000\n", + "fastSixes 0 0.000000\n", + "surface 0 0.000000\n", + "trams 0 0.000000\n", + "base_elev 0 0.000000\n", + "vertical_drop 0 0.000000\n", + "summit_elev 0 0.000000\n", + "state 0 0.000000\n", + "Region 0 0.000000\n", + "yearsOpen 1 0.303030\n", + "SkiableTerrain_ac 3 0.909091\n", + "Runs 4 1.212121\n", + "LongestRun_mi 5 1.515152\n", + "averageSnowfall 14 4.242424\n", + "Snow Making_ac 46 13.939394\n", + "projectedDaysOpen 47 14.242424\n", + "TerrainParks 51 15.454545\n", + "daysOpenLastYear 51 15.454545\n", + "AdultWeekend 51 15.454545\n", + "AdultWeekday 54 16.363636\n", + "NightSkiing_ac 143 43.333333\n", + "fastEight 166 50.303030" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 5#\n", "#Count (using `.sum()`) the number of missing values (`.isnull()`) in each column of \n", "#ski_data as well as the percentages (using `.mean()` instead of `.sum()`).\n", "#Order them (increasing or decreasing) using sort_values\n", "#Call `pd.concat` to present these in a single table (DataFrame) with the helpful column names 'count' and '%'\n", - "missing = ___([ski_data.___.___, 100 * ski_data.___.___], axis=1)\n", - "missing.columns=[___, ___]\n", - "missing.___(by=___)" + "missing = pd.concat([ski_data.isnull().sum(), 100 * ski_data.isnull().mean()], axis=1)\n", + "missing.columns=['count','%']\n", + "missing.sort_values(by='count')\n", + "#missing.columns=[___, ___]\n", + "#missing.___(by=___)" ] }, { @@ -316,13 +947,133 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 48, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameRegionstate
0Alyeska ResortAlaskaAlaska
1Eaglecrest Ski AreaAlaskaAlaska
2Hilltop Ski AreaAlaskaAlaska
3Arizona SnowbowlArizonaArizona
4Sunrise Park ResortArizonaArizona
............
325Meadowlark Ski LodgeWyomingWyoming
326Sleeping Giant Ski ResortWyomingWyoming
327Snow King ResortWyomingWyoming
328Snowy Range Ski & Recreation AreaWyomingWyoming
329White Pine Ski AreaWyomingWyoming
\n", + "

330 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " Name Region state\n", + "0 Alyeska Resort Alaska Alaska\n", + "1 Eaglecrest Ski Area Alaska Alaska\n", + "2 Hilltop Ski Area Alaska Alaska\n", + "3 Arizona Snowbowl Arizona Arizona\n", + "4 Sunrise Park Resort Arizona Arizona\n", + ".. ... ... ...\n", + "325 Meadowlark Ski Lodge Wyoming Wyoming\n", + "326 Sleeping Giant Ski Resort Wyoming Wyoming\n", + "327 Snow King Resort Wyoming Wyoming\n", + "328 Snowy Range Ski & Recreation Area Wyoming Wyoming\n", + "329 White Pine Ski Area Wyoming Wyoming\n", + "\n", + "[330 rows x 3 columns]" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 6#\n", "#Use ski_data's `select_dtypes` method to select columns of dtype 'object'\n", - "ski_data.___(___)" + "ski_data.select_dtypes(include='object')" ] }, { @@ -344,13 +1095,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 52, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Crystal Mountain 2\n", + "Alyeska Resort 1\n", + "Brandywine 1\n", + "Boston Mills 1\n", + "Alpine Valley 1\n", + "Name: Name, dtype: int64" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 7#\n", "#Use pandas' Series method `value_counts` to find any duplicated resort names\n", - "ski_data['Name'].___.head()" + "ski_data['Name'].value_counts().head()" ] }, { @@ -369,31 +1136,72 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 53, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Alyeska Resort, Alaska 1\n", + "Snow Trails, Ohio 1\n", + "Brandywine, Ohio 1\n", + "Boston Mills, Ohio 1\n", + "Alpine Valley, Ohio 1\n", + "dtype: int64" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 8#\n", "#Concatenate the string columns 'Name' and 'Region' and count the values again (as above)\n", - "(ski_data[___] + ', ' + ski_data[___]).___.head()" + "(ski_data['Name'] + ', ' + ski_data['Region']).value_counts().head()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 55, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Alyeska Resort, Alaska 1\n", + "Snow Trails, Ohio 1\n", + "Brandywine, Ohio 1\n", + "Boston Mills, Ohio 1\n", + "Alpine Valley, Ohio 1\n", + "dtype: int64" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 9#\n", "#Concatenate 'Name' and 'state' and count the values again (as above)\n", - "(ski_data[___] + ', ' + ski_data[___]).___.head()" + "(ski_data['Name'] + ', ' + ski_data['state']).value_counts().head()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 56, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (2636742558.py, line 1)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m Input \u001b[0;32mIn [56]\u001b[0;36m\u001b[0m\n\u001b[0;31m **NB** because you know `value_counts()` sorts descending, you can use the `head()` method and know the rest of the counts must be 1.\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ], "source": [ "**NB** because you know `value_counts()` sorts descending, you can use the `head()` method and know the rest of the counts must be 1." ] @@ -407,7 +1215,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 57, "metadata": {}, "outputs": [ { @@ -532,7 +1340,7 @@ "[2 rows x 27 columns]" ] }, - "execution_count": 11, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -571,13 +1379,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "297" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 10#\n", "#Calculate the number of times Region does not equal state\n", - "(ski_data.Region ___ ski_data.state).___" + "(ski_data.Region == ski_data.state).sum()" ] }, { @@ -589,7 +1408,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 62, "metadata": {}, "outputs": [ { @@ -604,39 +1423,39 @@ "New Hampshire 16\n", "Vermont 15\n", "Minnesota 14\n", - "Montana 12\n", "Idaho 12\n", + "Montana 12\n", "Massachusetts 11\n", "Washington 10\n", - "Maine 9\n", "New Mexico 9\n", + "Maine 9\n", "Wyoming 8\n", "Utah 7\n", - "Oregon 6\n", "Salt Lake City 6\n", "North Carolina 6\n", + "Oregon 6\n", "Connecticut 5\n", "Ohio 5\n", - "West Virginia 4\n", "Virginia 4\n", - "Mt. Hood 4\n", + "West Virginia 4\n", "Illinois 4\n", + "Mt. Hood 4\n", "Alaska 3\n", "Iowa 3\n", - "Missouri 2\n", + "South Dakota 2\n", "Arizona 2\n", + "Nevada 2\n", + "Missouri 2\n", "Indiana 2\n", - "South Dakota 2\n", "New Jersey 2\n", - "Nevada 2\n", "Rhode Island 1\n", - "Maryland 1\n", "Tennessee 1\n", + "Maryland 1\n", "Northern California 1\n", "Name: Region, dtype: int64" ] }, - "execution_count": 13, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -654,15 +1473,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 72, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "state Region \n", + "California Sierra Nevada 20\n", + " Northern California 1\n", + "Nevada Sierra Nevada 2\n", + "Oregon Mt. Hood 4\n", + "Utah Salt Lake City 6\n", + "Name: Region, dtype: int64" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 11#\n", "#Filter the ski_data dataframe for rows where 'Region' and 'state' are different,\n", "#group that by 'state' and perform `value_counts` on the 'Region'\n", - "(ski_data[ski_data.___ ___ ski_data.___]\n", - " .groupby(___)[___]\n", + "(ski_data[ski_data.Region != ski_data.state]\n", + " .groupby(\"state\")['Region']\n", " .value_counts())" ] }, @@ -682,14 +1518,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 75, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Region 38\n", + "state 35\n", + "dtype: int64" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 12#\n", "#Select the 'Region' and 'state' columns from ski_data and use the `nunique` method to calculate\n", "#the number of unique values in each\n", - "ski_data[[___, ___]].___" + "ski_data[['Region', 'state']].nunique()" ] }, { @@ -715,27 +1564,40 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 76, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAHwCAYAAAAy11lrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACmHElEQVR4nOzdeZhdRZ3/8ffHgGyBoMIoIBB1QGQN0qCsBgZxQxHBAURlUREdzA8UHEZmMOq4siMoAwwEkE1WkV2BsG8dCAkgbhBHFpFFImGJED6/P6ouubnc3tLd6e7k83qefnJvnTp16jYP93Sdqvp+ZZuIiIiIiIi+eN1QdyAiIiIiIkaeDCQiIiIiIqLPMpCIiIiIiIg+y0AiIiIiIiL6LAOJiIiIiIjoswwkIiIiIiKizzKQiFjISFpN0ixJo4a6LxEREbHwykAiYghJmiHphfqH/18kTZI0uj9t2v4/26NtzxmofkZExMgmaaKkn/Wh/nhJDw9mn2Lky0AiYuh91PZoYBywIfAfQ9udiIiIiJ5lIBExTNj+C3AVZUCBpPdKukXSM5LukTS+UVfS2yTdIOlZSb+WdHzjSZOksZIsabH6fmVJl0h6WtIfJH2hqZ2Jkn4u6fTa1n2SOhbgx46IiAEm6d8lPVK/138r6SPAN4Bd6gz4PbXeXpJ+U+s9KOmLtXwZ4Apg5Vp/Vr2XvE7SwZL+KOmpev9449B90hhqGUhEDBOS3gp8CPiDpFWAy4D/Bt4IHAhcIGnFWv0s4A7gTcBE4DPdNH028DCwMrAz8D1J/9J0/GPAOcDywCXAcQPziSIiYkGT9E5gP2Bj28sCHwAeAL4HnFuXvm5Qq/8V2B5YDtgLOErSu20/R7kfPVrrj7b9KDAB+DjwPso95W/A8Qvu08Vwk4FExNC7WNKzwJ8pX+rfBD4NXG77ctuv2P4V0Al8WNJqwMbAobb/YfsmygDgNSStCmwB/LvtF21PBU5m3oHHTfU6c4AzgA1e21JERIwQc4AlgLUlLW57hu0/tqto+zLbf3RxPXA1sGU3bX8ROMT2w7ZnUx5k7dyYAY9FTwYSEUPv4/Wp0XhgLWAFYHXgk3VZ0zOSnqEMCFaiPAV62vbzTW38uYu2G3WfbSr7E7BK0/u/NL1+HlgyN4WIiJHJ9h+A/Sl/5P9V0jmSVm5XV9KHJN1Wl74+A3yYcg/qyurARU33pd9QBi5vHrhPECNJBhIRw0R9GjQJOJwyMDjD9vJNP8vY/gHwGPBGSUs3nb5qF80+Wusu21S2GvDIwH+CiIgYDmyfZXsLyh/+Bn5Y/32VpCWACyj3nDfbXh64HFCjmTZN/xn4UMu9aUnbuacsojKQiBhejgbeD9wEfFTSBySNkrRkDcX3Vtt/oixzmijp9ZI2BT7arjHbfwZuAb5f21gf+Bxw5gL5NBERsUBJeqekbepA4UXgBcqswePAWEmNv/1eT1kC9QTwsqQPAds1NfU48CZJY5rKTgC+K2n1eq0VJe0wuJ8ohrMMJCKGEdtPAKdTpqV3oETZeILyFOgg5v4/uzuwKfAUZUP2ucDsLprdDRhLmZ24CPhm3XMRERELnyWAHwBPUpau/hPlXnJePf6UpLvqktcJwM8pm6Y/RdN+O9sPUIJ1PFiXMq0MHFPrXF339t0GvGeBfKoYlmS3m7mKiJFE0rnAA7a/OdR9iYiIiEVDZiQiRiBJG0t6R43p/UHK7MXFQ9ytiIiIWIQkMkvEyPQW4EJKHomHgS/ZvntouxQRERGLkixtioiIiIiIPsvSpoiIiIiI6LMMJCIiIiIios+yR2IEWmGFFTx27Nih7kZEjABTpkx50vaKQ92PGF5yH4mI3uruPpKBxAg0duxYOjs7h7obETECSPrTUPchhp/cRyKit7q7j/S4tEmSJR3R9P5ASRP72IHxkjZrej9J0s59aWN+SfqspHsl3SfpfkkH9lB/YqOOpG9L2ra+3rK2MVXSUgPQr5Mlrd3fdiIiYvDVe+EZTe8Xk/SEpEsHqP3xA9jWnpKOG4i2IiK605sZidnAJyR93/aTfb2ApMWA8cAs4Ja+nt+mPVGiTb3Si7ofomQI3s72o5KWBD7T22vZPrTp7e7A4bZP7WU/R9me003bn+9tP1pNf2QmYw++rMvjM37wkfltOiIi2nsOWFfSUrZfAN4PPNKXBiQtZvvlQeldH+U+EhEDoTebrV8GTgQOaD0gaXVJ10iaVv9drZZPknSkpOuAc4F9gQPq0/wt6+lbSbpF0oPNsxOSDpJ0Z23zW7VsrKTfSPoJcBewZX1/Up0luLqLWYL/AA60/SiA7Rdtn1Tb/EK9zj2SLpC0dJvPN0nSzpI+D/wrcKikM1UcVmc6pkvapdYfL+k6SWcB0+v7yZLOl/RA49xad7Kkjvr6p5I662f5Vi/+m0RExIJ3BdD4C3s34OzGAUmb1Hva3fXfd9byPSWdJ+mXwNWSzpC0Q9N5Z0r6WPNFemjrQklXSvq9pB81nbOXpN9Juh7YfNB+AxERTXobtel4YHdJY1rKjwNOt70+cCZwbNOxNYFtbe8EnAAcZXuc7Rvr8ZWALYDtgR8ASNoOWAPYBBgHbCRpq1r/nfVaGwJ/qvWOt70O8AywU5t+rwtM6eIzXWh7Y9sbAL8BPtfVh7d9MnAJcJDt3YFP1P5tAGwLHCZppVp9E+AQ241lSxtSZkXWBt5O+y/4Q2x3AOsD75O0fld9iYiIIXMOsGud3V4fuL3p2APAVvUedSjwvaZjmwJ72N4GOBnYC6DeUzcDLm+5TndtjQN2AdYDdpG0ar3/fItyf3k/5X4TETHoerXZ2vbfJZ0OTABeaDq0KeWPaoAzgB81HTuvu6U9wMV1edL9kt5cy7arP40MvaMpA4b/A/5k+7am8x+yPbW+ngKM7c1nabKupP8Glq/XuaoP524BnF0/3+P1CdDGwN+BO2w/1FT3DtsPA0iaWvt5U0t7/yppH8p/j5UoN4FpzRXq8X0ARi2XACwREQua7WmSxlJmI1r/+B8DnCZpDcDA4k3HfmX76drG9ZKOl/RPlPvnBbZfrpPVvWnrGtszASTdD6wOrABMtv1ELT+X8jBvHrmPRMRA60seiaMpT+2X6aZOc5rs53pob3bTazX9+/06czHO9j/b/t8u2ms+fw7tB0X3ARt1cf1JwH6216M8yVmyh/42UzfH+tRPSW8DDgT+pc7sXNauL7ZPtN1hu2PU0q0TQxERsYBcAhxO07Km6jvAdbbXBT7KvN/jrfeFMyj77vYC2u27666tru4pzffftnIfiYiB1uuBRH2a8nPmXQJ0C7Brfb07r33S3vAssGwvLnMVsLek0QCSVqlPbebX94EfSXpLbW8JSRPqsWWBxyQtXvveFzdQppRHSVoR2Aq4Yz77uBzlJjOzzsx8aD7biYiIwXcK8G3b01vKxzB38/WePbQxibLkFdv3tTnel7agLLEaL+lN9Z72yV6cExHRb33NI3EEsF/T+wnAKZIOAp6grvts45fA+XWD2Ve6atz21ZLeBdxap3lnAZ+mPHXpM9uX1z/Of103OZtyEwD4L8qX75+A6fRuoNNwEWVZ1z21za/b/oukteajj/dIupsye/IgcHNP56y3yhg6E1EjImKBq0tVj2lz6EeU5UhfBa7toY3HJf0GuLiLKr1uq7b3mEpY9luBxyhBSUZ1d07uIxExEGT3OBsaw0xHR4eTSCgiekPSlBrMIYaJGiVwOvDuxn6HBS33kYjore7uI33ZIxERERH9oJLk9AHgx0M1iIiIGCh9XdoUERER88n2r4HVhrofEREDYZGYkZBkSWc0vV9M0hOSLh2g9scPYFt7SjpuINqKiIiIiBgsi8qMxHOUvBFL2X6BkrDnkR7OmYekxWy/PCi966Ppj8xk7MGXdXl8RjbQRURERMQgW1QGEgBXAB8BzqckEzob2BJA0iaUPBlLURLu7WX7t5L2rOcsCSwj6RHgfNu/qOedCZxLSURHL9r6GLA08A7gIttfr+fsBfwHJdrG75g3TnhERMwHSXMom5oXAx4CPmP7GUnjgQNtbz+f7fbp/JrE7tKaF6KrOrNsj56f/vT1WpAHUhExMBaJpU3VOcCukpYE1qeEfm14ANjK9obAocD3mo5tCuxhexvgZGqIW0ljgM14bXbT7toaB+wCrEfJQ7GqpJUoCfE2p8yUrN3/jxoREcALNbnpusDTwL8NdYciIhYmi8xAwvY0YCxlNqL1j/8xwHmS7gWOAtZpOvarmowP29cD/1yT5O0GXNBmuVN3bV1je6btF4H7gdWB9wCTbT9h+x+UGY7XkLSPpE5JnXOeT6CPiIg+uhVYpen9aEnnS3pA0pk11xCS/kXS3ZKmSzpF0hK1/IO17k3AJxqNSFqm1ruznrdDd52QtI6kOyRNlTRN0hotx0dLukbSXbUPO9TysZJ+I+kkSfdJulrSUvXYRpLukXQrGSxFxAK0yAwkqkuAwynLmpp9B7iuPrX6KGUpU8NzLXXPoGTC3gs4tc01umurecnSHOYuLesxmYftE2132O4YtfSYnqpHREQlaRTwL5R7QMOGlOzSawNvBzavM9aTgF1sr0f5jv5SLT+J8p2+JfCWpnYOAa61vTGwNXCYpGW66c6+wDG2xwEdwMMtx18EdrT97treEY1BDrAGcLztdYBngJ1q+anABNub9vjLiIgYQIvaQOIU4Nu2p7eUj2Hu5us9e2hjEuXmg+372hzvS1tQlliNl/QmSYsDn+zFORER0bOlJE0FngLeCPyq6dgdth+2/QowlTJj/U7gIdu/q3VOA7YC1qrlv3fJ4vqzpna2Aw6u15lMeXjUXXjXW4FvSPp3YPUaAKSZgO9Jmgb8mjKL8uZ67CHbU+vrKcDYusx2+TpjDuVhV1uZ2Y6IgbYobbbG9sPAMW0O/Qg4TdJXgWt7aONxSb8BLu6iSq/bqu09Jmki5ebyGHAXMKq7c9ZbZQyd2QgXEdGTF2yPq39sX0pZ9nNsPdZuhlh0rauZYwE72f5tbzpk+yxJt1MCeVwl6fO2m+8VuwMrAhvZfknSDObObLf2eal6/R5nteu1TwROBFhipTV6dU5ERHcWiYFEu0gYtidTnh5h+1ZgzabD/1XLJ1FmIF4laWnK9PKry6Pmp63maB+2T6X9MqmIiOgn2zMlTQB+Iemn3VR9gPKU/59t/wH4DHB9LX+bpHfY/iNlj1zDVcBXJH3FtiVtaPvuri4g6e3Ag7aPra/XZ96HTmOAv9ZBxNaUvXTdfbZnJM2UtIXtmygDkYiIBWKRGEgMFEnbUpZHHWk788IRESOE7bsl3QPsCvy5izov1nDc50laDLgTOMH2bEn7AJdJehK4CWiEV/0OJeT3tLqXYQbQXVjYXYBPS3oJ+Avw7ZbjZwK/lNRJWXL1QC8+3l7AKZKepwxsepSZ7YgYCCrLPWMk6ejocGdn51B3IyJGAElTbHcMdT9ieMl9JCJ6q7v7yKK22ToiIiIiIgbAQrO0SdKbgGvq27dQNqI9Ud9vUnM0RERERETEAFhoBhK2n6JkjqZGQZpl+/Ch7NNgmf7ITMYefFmXx2dk3WtEREREDLKFemlTzfZ5vaQpkq6StFItnyzphzW76O8kbVnL95R0oaQrJf1e0o+a2tpO0q012+h5kkbX8h9Iur9mKD28ln1S0r010+gNtWyUpMNq9tNpkr7Y1PZBTeXfWpC/o4iIKGo+n6n15y+SHml6//qh7l9ExHCz0MxItCHgx8AOtp+QtAvwXWDvenwx25tI+jDwTWDbWj6OkvF0NvBbST8GXgD+E9jW9nM1kdBXJR0H7AisVcP+LV/bOBT4gO1Hmso+B8y0vbGkJYCbJV1NCSW7BrBJ7fMlkrayfcNg/FIiIqK9zGzPlZntiOiNhXlGYglKeL5f1Yyj/wm8ten4hfXfKZSMpg3X2J5p+0XgfkoM7/cCa1P++J8K7FHL/w68CJws6RPA87WNm4FJkr7A3ORy2wGfreffDryJMoDYrv7cTUlGt1Ytn0cykkZELHiZ2Y6I6NrCPiNxn+1NuzjeyBDayGjaWt58TMCvbDcnISoXkTYB/oUSm3w/YBvb+0p6DyVz6VRJ42obX7F9Vcv5HwC+b/t/uvswyUgaEbHAZWY7IqIbC/NAYjawoqRNbd8qaXFgTdv3zUdbtwHHq2Y7Vclu/VbgUWBp25dLug34A4BK9tPbgdslfRRYlZIk6EuSrq0ZS9cEHqnl35F0pu1ZklYBXrL91646k0RCERELRPPMNpQZ5seajnc7sw0gqTGzvTxzZ7YBXg/cyrwz25cBl9Y2GjPbP2+6znbA+pJ2ru/H8NqZbYDRtXyegYRKUr19AEYtt2Jffg8REW0tzAOJV4CdgWMljaF81qOBPg8k6pOoPYGz61MgKE+WngV+IWlJylOgA+qxwyStUcuuAe4BplFuNHep3EWeAD5u+2pJ7wJurTeXWcCngS4HEhERsUBkZjsiohsL5UDC9sSmt1u1OT6+6fWT1CdJticBk5qObd/0+lpg4zaX26RN+59o1y3gG/Wntf4xwDFtzomIiKGz0M5sR0QMhIVyIBERETEAFtqZ7SyRjYiBIDuzmyNNR0eHOzs7h7obETECSJpiu2Oo+xHDS+4jEdFb3d1HhnX4V0lzVBIB3Svpl43IFZLGS7q0h9O7a7dP50saK+neHurMmt/+9PVaERERERFDbbgvbXrB9jgASacB/0YJvbdISyKhiIiIiBhqw3pGosWtwCpN70dLOl/SA5LOrOtFkfQvku6WNF3SKY21qJI+WOveBLy6GVrSMrXenfW8HbrrhKR1VBIQTa2Jf9ZoOT5a0jUqCYemN9qrMw2/kXSSpPskXS1pqXpsI5WkQ7dSBksREREREcPaiBhISBpFCY13SVPxhsD+lLjcbwc2r5vVJgG72F6PMuPypVp+EvBRYEvgLU3tHAJca3tjYGvKBrdluunOvsAxdaakA3i45fiLwI62313bO6IxyKHE9T7e9jrAM8BOtfxUYEI3IQYjIiIiIoaV4b60aSlJUylRKqYAv2o6dofthwGa6jwLPGT7d7VOYznU5Fr++1r/Z9SkPJQkPh+TdGB9vySwGvCbLvp0K3CIpLcCFzbabCLge5K2okT8WAV4cz32kO2p9fUUYGyNBLK87etr+RnAh1ovmkRCERG9I+kQ4FOUHA6vAF+soVT72s544B+2b6nvJwGX2j6/h/PmANOBxYGXKfeio22/0sO1DmwOO97DNfYHTrT9fG/qt+ppiWxPsoQ2ImD4z0g09kisTskC2rzsp6uEP13pKjyVgJ1sj6s/q9nuahCB7bOAjwEvAFdJ2qalyu7AisBGte+PUwYn3fW5x9BZtk+03WG7Y9TSY3qqHhGxSJK0KbA98G7b6wPbAn+ez+bGA5vNx3kv1PvJOsD7gQ8D35zPPnRlf2DpAW4zIqJPhvtAAgDbM4EJwIE1IVBXHqA85f/n+v4zwPW1/G2S3lHLmzOLXgV8pWmPxYbd9UXS24EHbR9LWWq1fkuVMcBfa7KgrSmDoO4+2zPATElb1KLdu6sfERHdWgl40vZsKElHbT8K3e6hmyFphfq6Q9JkSWMpS1kPqHvitqztbyXpFkkPStq5p87UpHD7APupGCvpxrqP7i5JrxmoSNq49vPt7fosaQKwMnCdpOvqOT+V1Fn34H2rn7/DiIheGe5Lm15l+25J9wC70sXTJdsvStoLOE/SYsCdwAm2Z9elQZdJehK4CVi3nvYdSoKhaXUwMYPyNKsruwCflvQS8Bfg2y3HzwR+KakTmEoZxPRkL+AUSc9TBjbdSiKhiIguXQ0cKul3wK+Bc21f37SH7l9s/07S6cCXKN//r2F7hqQTgFm2DweQ9DnKQGULYC3Kw6RulznVth6U9DrgnyhJ4t5f71drAGdT9ttRr7EZ8GNgh1r3+tY+2z5a0leBrW0/WU89xPbTdU/hNZLWtz2tuR9ZIhsRA21YDyRsj255/9Gmt5Obyvdren0NZSN2a1tXUr74W8tfAL7YQz9mUAcetr8PfL+rvtYv9a42Ta/bVP/wptdTgA2a6k3srj8REdGe7VmSNqIE1tgaOFfSwcDdtN9Dd3QfL3Fx3etwv6Q391h7rsbS28WB4ySNoyxxXbOpzruAE4HtbD8qaYM+9Plf60BhMcpgZ21KJuxX2T6xts8SK62RbLQR0W/DeiARERHRV7bnUB42TZY0HdiDMkPclZeZu9R3yW7qwbx73brblze3UlkSO4cyw/BNyt65Deo1X2yq+li9/obAo31o/23AgcDGtv9WN4X39DkiIvptROyRiIiI6A1J72zJ7zMO+BNd76GDsqR1o/p6p6ZznwWW7Wd/VgROAI6zbco+usfqrMZngFFN1Z8BPkKJ/De+hz4392054DnKfrs30ybyX0TEYMiMRERELExGAz+WtDxlpuEPwD5d7aGr53wL+F9J3wCaw8T+EjhfJbHoV/rQh0bo8kb41zOAI+uxnwAXSPokcB1lAPAq249L+ihwBbA3ZQ9duz6fCFwh6THbW0u6G7gPeBC4uacOZq9dRAwElQckI5ckA0fa/lp9fyAw2vbEAWp/LCVu+Lo91V1QOjo63NnZOdTdiIgRQNIU2x0914xFSe4jEdFb3d1HFoYZidnAJyR9vyl6xZCRNKquzx00SSQUEREREUNtYdgj8TJliveA1gOSVpR0gaQ768/mtXy6pOVrTO+nJH22lp8haduuLiRplKTDalvTJH2xlo+XdJ2ks4DpkpaRdJmkeyTdK2mXWm8jSddLmiLpKkkrSXqHpLuarrGGpCkD+huKiIiIiBhgC8NAAuB4YHdJrSmfjwGOsr0xZQPdybX8ZmBzYB3KetJGoqH3Ard1c53PATNrexsDX6jRMgA2ocTxXhv4IPCo7Q3qkqgrVRLp/RjY2fZGwCnAd23/kbJBblxtZy9KrPN5SNqnJhvqnPP8zJ5/IxERERERg2ihGEjY/jtwOiX7dbNtKfG6p1ISBy0naVngRmCr+vNTYD1JqwBP257VzaW2Az5b27sdeBPQiA5yh+2H6uvpwLaSfihpy5qZ+52UPBK/quf/J/DWWv9kYK+aSGgX4Kw2n/FE2x22O0Yt3TpeioiIBU2SJZ3R9H4xSU9IurS+/1jNYbGg+7VvY6Y9ImIwLQx7JBqOBu4CTm0qex2waU069ypJN1CS+qwGHALsCOxMGWB0R8BXbM+TfbqG6Xs18kbNQLoR8GHg+5KuBi4C7rPdLlndBZTY4tcCU2w/1UM/IiJi6D0HrCtpqXqfeT/wSOOg7UsoD7EWGEmL2T6hp3rZaxcRA2GhGUjYflrSzynLj06pxVcD+wGHAUgaZ3uq7T9LWgF4ve0HJd1ESeazX7u2m1wFfEnStbZfkrQmTTeNBkkrU2Y3fiZpFrAn8ANgRUmb2r61LnVa0/Z9NSzhVZTZkc/19FkTti8iYti4gpL74XxgN+Bs6nJZSXsCHbb3q+Fev0lJTDfT9laS1qE8/Ho95cHXTrZ/L+mrlNCvACfbPro1gmBzhEJJk4FbKEt2L6kz77NsHz74Hz8iFmULxdKmJkcAKzS9nwB01I3R9wP7Nh27HfhdfX0jsApwU5s2F2NuJtOTgfuBuyTdC/wP7Qdj6wF31CVMhwD/bfsflFmPH0q6h5JldbOmc84ETBn8RETEyHAOsKukJYH1mTcPRbNDgQ/Y3gD4WC3bFzjG9jigA3i4zmbvBbyHsm/vC5I27EU/lrf9PttHzP9HiYjomxE/I2F7dNPrx4Glm94/Sdlz0O68zzS9voWuB1XrAH+s9V4BvlF/mk2uP432rqLMXrRecyplX0Y7WwCnDHbo2IiIGDi2p9XZgt2Ay7upejMwqc6cX1jLbgUOkfRW4MI6G7EFcJHt5wAkXUiZ4ehpidS5PfVV0j7APgCjlluxp+oRET0a8QOJwSTp28AOlKVJg3mdi4B3ANsM5nUiImJQXAIcDoynBOF4Ddv7SnoPZRnU1LrU9ixJt9eyqyR9nrIXr52XmfeB15Itx5+jB7ZPpIRLZ4mV1hjZ2WgjYlhY2JY2DSjbh9YQrncP8nV2tL3+cEioFxERfXYK8G3b07uqIOkdtm+3fSjwJLCqpLcDD9o+ljIYWR+4Afi4pKUlLUMJBnIj8DjwT5LeJGkJYPtB/kwRET3KjEQlaVbzMqle1B8PHGh7e0kfA9a2/YPB6l9ERAxPth+m5C3qzmGS1qDMOFwD3AMcDHxa0kvAXyiDkaclTQLuqOed3HiYVWfJbwceAh7oT58TtCMiBoLszG5C/wYSg9apLiyx0hpeaY+j5/v8hO2LWHRImmK7Y6j7EcNLR0eHOzs7h7obETECdHcfydKmFpLGS5os6XxJD0g6U5LqsQ/WspuATzSds6ek4+rrj0q6XdLdkn4t6c21fKKkU2rbD0qa0HT+xZKmSLqvboaLiIiIiBjWMpBob0Ngf2Bt4O3A5jW030nARykRNN7Sxbk3Ae+1vSElLODXm46tBXwA2AT4Zs0lAbC37Y0o4f8mSGq7WS8iIiIiYrjIHon27qhrXqm5IMYCs4CHbP++lv+MGkavxVuBcyWtREky9FDTsctszwZmS/or8GbgYcrgYcdaZ1VgDWCe7NYJ2xcRERERw0lmJNqb3fR6DnMHXL3ZUPJj4Djb6wFfZN4Qfa9pt+612BbYtCYqupvXhvXD9om2O2x3jFp6TG8/R0RERETEoMiMRO89ALythvD7IyX5UDtjgEfq6z160e4Y4G+2n5e0FiWTaUREjEB1dvlC4F2220ZWknSL7c0WbM/mNf2RmYw9+LL5Pj9BOyICMpDoNdsv1uVFl0l6krIXYt02VScC50l6BLgNeFsPTV8J7CtpGvDbek63ErYvImLY2o1yf9iVcj94laRRtucM9SAiImKgJPzrCJSwfRHRWwn/uuBIGk15ILQ1cInttery1W8CjwHjbK/dCDde80J8rJ6+InC17b0kfRXYu5afbPtoSWOBKyiDlM0oM9872H5B0hcoe+heD/wB+Izt57vra8KIR0RvJfxrRETE4Ps4cKXt3wFPS3p3Ld8EOMT22s2VbR9qexzwPkqAjeMkbQTsBbyHstT1C5I2rKesARxvex3gGWCnWn6h7Y3rPrvfAJ9r1zlJ+0jqlNQ55/mZA/KBI2LRloFERETEwNiNEvab+m9jL90dth9qd0LNU3QmcJTtKcAWwEW2n7M9i7LfYsta/SHbU+vrKZSIggDrSrpR0nRgd2CddtdK0I6IGGjZIxEREdFPNf/PNpQ/6g2MokT6uxx4rptTJwIP2z610VQ3dVsj/y1VX08CPm77Hkl7AuP72P2IiPmyyA4k6hf9z2x/pr5fjLKG9Xbb20v6GLC27R8s4H7tCzxv+/Su6iTaRkTEsLMzcLrtLzYKJF1PmWFoS9L2wPuZ9w//G4BJkn5AGVTsCHymh2svCzxWk5zuztzIgV1K0I6IGAiL7ECC8oRoXUlL2X6B8mX+6pev7UuASxZkhyQtZvuEBXnNiIgYELsBrQ+eLgC+BPyxi3O+BqwM3FFWOHGJ7UMlTQLuqHVOtn133Wzdlf8Cbgf+BEynDCwiIgbdojyQgBIB4yPA+ZSbwNnUtah1erjD9n6SPkmJujEHmGl7K0nrAKdSomS8DtjJ9u+7ibZxqe11a9sHAqNtT5Q0GbgF2By4RNKywCzbhw/+x4+IiIFge3ybsmOBY9uUj67/bt1FW0cCR7aUzaAp5HjzPcL2T4Gfzl/PIyLm36K+2focYFdJSwLrU57otHMo8IEaEaMRqm9f4JgacaMDeLiHaBvdWd72+2wf0VWFRNuIiIiIiOFkkR5I2J5GiXqxG2VDXFdupqxZ/QJlAx3ArcA3JP07sHpdHtVdtI3unNuLvibaRkREREQMG4v0QKK6BDicsqypLdv7Av8JrApMlfQm22dRZideAK6StA1dR9t4mXl/10u2HO8uokdERERExLCzqO+RADiFsu9hes1A+hqS3mH7duB2SR8FVpU0BnjQ9rGS3k5ZGtVVtI3HgX+q4QFnAdsDV85vhxNtIyJi4NQofkfa/lp9/+o+tgFqfyxN++QiIhYWi/xAwvbDwDE9VDtM0hqUwcE1wD3AwcCnJb0E/AX4tu2n20XbAJD0bcoejIeABwb8g0RExPyaDXxC0vdtPznUnZE0yvacwbxGwohHxEBYZAcSjagZLWWTgcn19SRKkh9sf6JNE9+vP61tvCbaRi3vKnrH+Jb3E3vqe0REDKiXgROBA4BDmg9IWhE4AVitFu1v++aaRXpLYCbwJHCA7dMlnQGcZvvX7S4kaRQlTOx4YAngeNv/U2fEv0nJZzRO0sbAz4G3Uvbmfcf2uTWox5HA6HrdPYGlgfNsv7teYw3gHNsb9fP3EhHRreyRiIiIgOOB3euy1WbHAEfZ3hjYCTi5lt9MCdu9DvAgcwNrvBe4rZvrfI6ynHZjYGNKdL+31WObAIfYXhv4IPCo7Q3qkqgra8K5HwM710HCKcB3bf8RmClpXG1nL+qDsIiIwbTIzkhEREQ02P67pNOBCZQgGg3bAmvXhHEAy9V8PzcCW1GSwP0U2EfSKsDTNWpfV7YD1pe0c30/BlgD+Adwh+2Havl04HBJP6Tsr7hR0rqUXBK/qv0ZRZnBgDLA2avmMtqFMiiZh6R9gH0ARi23Yi9+KxER3cuMBGWjnaQjmt4fKGniIF9zhqQVBvMaERHRJ0dTZgyWaSp7HbCp7XH1ZxXbz1KCa2xZfyYDTwA7UwYY3RHwlab23mb76nrs1Qh+tn8HbEQZUHxf0qH13Puazl3P9nb1lAuAD1GCeUyx/VTrhRNGPCIGWmYkimG10a4n2SQXETHwasCMn1MGE6fU4quB/YDDACSNsz3V9p/rw6DX235Q0k3AgbVud64CviTpWtsvSVoTeKS1kqSVKbMbP5M0i7IX4gfAipI2tX1rXeq0pu37bL8o6SrK7Mjn+vmriIjolQwkij5ttKMko3sQGGf7mVrvD5T1sptQck68HngK2N324zX069nAipSoTmq6xsWUHBVLUrJlnzgInzEiInp2BPMOBiYAx0uaRrln3gDsW4/dztwkpTdSAnDc1KbNxSgPrKAsQRoL3KWyPukJ4ONtzlmPEjHwFeAl4Eu2/1GXRB1b93IsRplFua+ecybwCcrgp1sJIx4RAyEDibmOB6ZJ+lFLeWOj3U2SVgOusv0uSb+g5Ik4VdJ7gBl1wHAT8F7blvR54OvA1yjROG6y/W1JH6GuU632rk/ClgLulHRBu2npiIgYeM1R/Gw/TomC1Hj/JGXPQbvzPtP0+ha6Xi68DvDHWu8V4Bv1p9nk+tNo7yrK7EXrNadS9ma0swVwymCHjo2IaMhAopqPjXbnAocCpwK71vdQQvWdK2klyqxEY+PcVpQnRdi+TNLfmq4xQdKO9fWqlI138wwkskkuImLkqTmEdqAsTRrM61wEvAPYZjCvExHRLJut53U0vd9odyvwz3Xp08eBC2v9HwPH2V4P+CJluVKDWy9YY4dvW6+xAXB3yznlxGySi4gYcWwfWkO43j3I19nR9vojYZ9fRCw8MpBoYvtpSgKg5o1qjY12QNloV+sauIiSGOg3TUuRxjB349weTe3cAOxe2/gQ8Iam+n+z/byktSgxyCMiIiIihrUsbXqtvmy0Oxe4k3mnrCcC50l6hJKUqJFo6FvA2ZLuAq4H/q+WXwnsW9v/Ld0nMgKySS4iYjiSNKt5v0Uv6o8HDrS9vaSPAWvb/sFg9S8iYqCpPFiPkaSjo8OdnZ1D3Y2IGAEkTbHdMdT9WBT0ZyAxaJ3qwhIrreGV9jh6vs9PGPGIRUd395EsbYqIiBhAksZLmizpfEkPSDqzhnpF0gdr2U3UABy1fE9Jx9XXH5V0u6S7Jf1a0ptr+URJp9S2H5Q0oen8iyVNkXRfDc4RETHoMpCIiIgYeBtS8g6tDbwd2FzSksBJwEcpGbHf0sW5jTDiGwLnUMKIN6wFfICSs+ibNSkdlDDiGwEdlEiAbxrYjxMR8VoZSDSRtKMk103PXdW5ZUH2KSIiRqQ7bD9c80ZMpSShWwt4yPbva8COn3Vx7luBqyRNBw6i5KFouMz27Bqd6a/Am2v5BEn3UPbZNcKIz0PSPpI6JXXOeX5m/z9hRCzystl6XrtRngTtStk0/SpJo2zPsb3ZUHSs2fRHZjL24Mvm+/ysbY2IGHSzm17PYe79tjcbE38MHGn7krqPYmJ37baEEX9e0mS6CCMOnAhlj0Qv+hER0a3MSFSSRgObU0K/7lrLxku6TtJZwPRaNqv++21JU+vPI5JOreVflXRv/dm/lo2V9BtJJ9X1q1fXLNZI+oKkOyXdI+kCSUu/pnMREbEweAB4m6R31Pe7dVGvqzDiXUkY8YgYEpmRmOvjwJW2fyfpaUnvruWbAOvafqi5su1DgUMljQFuBI6TtBGwF/AeQMDtkq4H/kaZZt7N9hck/RzYiTKtfaHtkwAk/TdlIPPjQf6sERGxgNl+sW6EvkzSk5QZ8HXbVJ1I+zDiXUkY8YgYEhlIzLUbJbM1lM1tuwGXUda5PtTuhBqF40zgKNtTJP0/4CLbz9XjF1I21F1CWRc7tZ46hbJeFmDdOoBYHhgNXNXFtfYB9gEYtdyK8/sZIyJikDRCv9qeDExuKt+v6fWVlL0SredOAibV178AftGmzsSW982DkA/Nf88jIuZPBhJAjW6xDeWPegOjKOtYLwee6+bUicDDtk9tNNVN3dZ1rUvV15OAj9u+R9KewPh2J2dta0REREQMJ9kjUewMnG57ddtjba8KPARs0dUJkrYH3k/JfN1wA/BxSUtLWgbYkbLsqTvLAo/VEH679+dDREREREQsKJmRKHYDftBSdgHwJeCPXZzzNWBl4I6aZ+gS24dKmgTcUeucbPtuSWO7ufZ/AbcDf6Js6F62p85mbWtEREREDDWVUNYxknR0dLizs3OouxERI4CkKbY7hrofMbzkPhIRvdXdfSQzEhEREUNI0qzGRu0Fpb/5iLqTXEURi47skYiIiIiIiD7LQCIiImIYUHFYTWg6XdIutfwnkj5WX18k6ZT6+nM1fDiSLpY0pSY93WfoPkVELEqG3UBC0iH1i3BazRr9nvlsZ7ykzZreT5K0cy/Om1Ove1/NNv1VSd3+nuq1Lu1D3/ZPBuuIiGjxCWAcsAGwLXCYpJUoEQG3rHVWAdaur7dgbmTAvW1vBHQAE2pY84iIQTWs9khI2hTYHni37dmSVgBeP5/NjQdmAbf08bwXbI+r/fkn4CxgDPDN+exHO/tTslo/Pz8n93dta9avRkQMS1sAZ9ueAzwu6XpgY8pgYX9JawP3A2+oA4xNmRuCfIKkHevrVYE1gKeaG09i04gYaMNtRmIl4EnbswFsP2n7UQBJ/yLp7jrde4qkJWr5jDrgQFKHpMk13Oq+wAF1dqHxJGcrSbdIerA3sxO2/0r50t2vTjmPlXSjpLvqz2at50jauPbz7e36LGkCJWzsdZKuq+f8VFJnnQX5Vj9/hxERMTK1TWpq+xHgDcAHKbMTNwL/Csyy/ayk8ZQZjE1tbwDcDSzZpp0TbXfY7hi19JjB+QQRsUgZbgOJq4FVJf2urgl9H4CkJSkZoHexvR5lJuVLXTViewZwAnCU7XG2G1O/K1Ge+GzPa/NGdNXWg5Tf0z8BfwXeb/vdwC7Asc1168DiBGAH4NF2fbZ9bD22te2t66mH1LBa6wPvk7R+b/oWERELlRuAXSSNkrQisBVz8xLdSpnNbgwkDmTusqYxwN9sPy9pLeC9C7TXEbHIGlZLm2zPkrQRZS3o1sC5kg6mPF15yPbvatXTgH8Dju7jJS62/Qpwv6Q39+G8xlOixYHjJI0D5gBrNtV5F3AisJ3tRyVt0Ic+/2udcl6MMthZG5g2TwcyJR0RsbC7iLJc6R7AwNdt/6Ueu5Fyf/mDpD8Bb2TuQOJKYF9J04DfArf1dKEkNo2IgTCsBhIAdW3oZGCypOnAHsDUbk55mbkzK6+Zym0xu+l12ynkVpLeThk0/JWyT+Jxyka41wEvNlV9rF5/Q8qMQ2/bfxvlydLGtv9WM2O3nZKmDFRYYqU1kkUwImIh0cgh4ZIh9qD601rnf4H/ra9fApZpOjYb+NAC6WxERJNhtbRJ0jslrdFUNA74E/AAMFbSP9fyzwDX19czgI3q652azn0WWLaf/VmRslTpuPoFPwZ4rM5qfAYY1VT9GeAjwPfqetXu+tzct+WA54CZdZYkN4OIiIiIGPaG24zEaODHkpanzDT8AdjH9ouS9gLOk7QYcCflD3yAbwH/K+kbwO1Nbf0SOF/SDsBX+tCHpSRNpSxjehk4AziyHvsJcIGkTwLXUQYAr7L9uKSPAlcAewNd9flE4ApJj9neWtLdwH3Ag8DNPXUwU9IRERERMdRUHrTHSNLR0eHOzs6h7kZEjACSptRgDhGvyn0kInqru/vIsFraFBERsTCRtKMk12hK1DDi985nW7MGtncREf0z3JY2RURELEx2A24CdgUmDm1X5upvYtPuJOlpxKIjMxL9lCdEERHRjqTRwObA5ygDidbjbZOcSlpJ0g01oeq9TUlVG+etIOlWSR/pTaLUiIjBkhmJEWgwnyRBniZFRAyQjwNX2v6dpKclvRt4uul4I8npizVi4dlAB/Ap4Crb35U0Cli6cUKN7ncJ8J+2fyVp6S7aiIgYdJmRGCAqDqtPj6ZL2qWW/0TSx+rriySdUl9/TtJ/19cXS5oi6b6aeC4iIka+3YBz6utz6vtmiwMn1ZxJ51GSkUKJ8reXpInAerafbap/DSVR3a96aOM1JO0jqVNS55znZ/bvk0VEkBmJgfQJSt6LDYAVgDsl3QDcQMnUfQmwCiVzNcAWzL3B7G37aUlL1fMusP3Ugux8REQMHElvArYB1pVkSt4hU8KINxxAmySntm+QtBUlN9EZkg6zfTolJPkU4APMzUvUto12ktg0IgZaZiQGzhbA2bbn2H6c8iW/MXAjsKWktYH7gcclrQRsCtxSz50g6R7gNmBVYI3WxvMkKSJiRNkZON326rbH2l4VeAh4a1OdtklOJa0O/NX2SZRs1u+u9U3JUbSWpIO7ayMiYkHIjMTAUbtC249IegPwQcrsxBuBfwVm2X62ZsHeFtjU9vOSJgNLtmknT5IiIkaO3YAftJRdAHyj6X1XSU7HAwdJegmYBXy2cYLtOZJ2BX4p6e/dtNGtJDaNiIGQgcTAuQH4oqTTKIOFrYCD6rFbgf0p09xvAs6vP1CeJv2tDiLWAt67IDsdEREDz/b4NmXHAsc2vf89sH5Tlf+o5acBp7U5f3T99x+U5U0Nr2kjImJByEBi4FxEWa50D2X6+eu2/1KP3QhsZ/sPkv5EGWjcWI9dCewraRrwW8rypm7lSVJEREREDLUMJPqp6QmRKTMQB7Wp87+Uda7YfglYpunYbOBDC6SzEREREREDJJutIyIiIiKizzKQiIiIiIiIPsvSpoiIiH6o0fa+b/uqprL9gQnAibZbozd119bKwLG2d+6h3uXAp2w/Mz99nv7ITMYefNn8nNpvM7LHL2KhkRmJHkjaUZJrRCUkjZV073y2NWtgexcREcPA2cCuLWW7Anu0G0RI6vIhnu1HexpE1Hofnt9BRETEQMmMRM92A26i3BQmDm1XisF+kpSnRRERfXI+8N+SlrA9W9JYYGXgnyXtYns/SZOAp4ENgbsk/QQ4k5JA7grgq7ZH13Mvtb2upD2BjwFLA+8ALrL9dQBJM4AO209KupiSzHRJ4JiadygiYtBlRqIbkkYDmwOf47VPmxqzEzdKuqv+bFbLV5J0g6Spku6VtGXLeStIulXSR7pqIyIiRgbbTwF3UBKPQrlfnEsJBd5sTWBb218DjqH80b8x8Gg3zY8DdgHWA3aRtGqbOnvb3gjoACZIelO7hiTtI6lTUuec52f27sNFRHQjA4nufRy40vbvgKclvbvl+F+B99t+N+WLvpFo6FPAVbbHARsAUxsnSHozcBlwqO3LumkjIiJGjublTbvW963Osz2nvt4UOK++Pqubdq+xPdP2i8D9wOpt6kyQdA8lD9GqwBrtGrJ9ou0O2x2jlh7T/aeJiOiFLG3q3m7A0fX1OfX98U3HFweOkzQOmEN52gRwJ3CKpMWBi21Pbap/DfBvtq/voY15SNoH2Adg1HIr9vNjRUTEALsYOLI+cFrK9l2S1m+p89x8tDu76fUcWu7bksYD2wKb2n6+bvxecj6uExHRZxlIdKFODW8DrCvJlHWsBn7SVO0A4HHKrMPrgBcBbN8gaSvgI8AZkg6zfTrwMjAF+ABwfXdttKprXk8EWGKlNVqnyyMiYgjZnlX/iD+F9rMRrW4DdqIsgXrN0tk+GAP8rQ4i1gLe25uT1ltlDJ3ZDxcR/ZSBRNd2Bk63/cVGgaTrgbc21RkDPGz7FUl7UAYbSFodeMT2SZKWAd4NnE4ZiOwNnCfp4BrNo20b3ckNICJiWDobuJDeDQz2B34m6WuU5a7zu2nhSmBfSdOA31IGKBERC0QGEl3bDWgN23cB8I2m9z8BLpD0SeA65k5bjwcOkvQSMAv4bOME23Mk7Qr8UtLfu2kjIiJGENsXAWp6PwmYVF/v2VL9EeC9tl3vCZ213gxg3dbz6/vtm16PbWrrQwP0ESIi+kR2VsmMNB0dHe7s7BzqbkTECCBpiu2Ooe5HzKtG8zuOMvB4hhJ56Q8L6vq5j0REb3V3H8mMRERExAJm+0bK3riIiBEr4V8jIiIiIqLPFqmBhCRLOqPp/WKSnpB0aX0/vjcJ4WoSuXtbyiZKOnAA+viatiMiYmSSNKv+++p3e73XNO47H5N08Hy2vbKk8weutxERfbOoLW16jhLOdSnbLwDvp2x4axhP2Rx9yxD0rdemPzKTsQdfNiTXnpFoURERA8b2JcAl83nuo5QIg32W+0hEDIRFakaiuoKS3wFKZKazoTwtAvYFDpA0tW6Emy+Sxkm6TdI0SRdJekMP5RtJukfSrcC/9eOzRUTECCJpT0nH1deTJB0r6RZJD0rauZZL0mGS7pU0XdIutbx5lmMdSXfU+9c0SW2zW0dEDKRFcSBxDrCrpCWB9YHb4dWQeycAR9keVzfCdecd9Qt7qqSplEFIw+nAv9teH5gOfLOH8lOBCbY37feni4iIkWwlYAtge+aGIP8EMI6yOXtb4DBJK7Wcty9wjO1xQAfw8ILobEQs2ha5gYTtacBYymzE5f1o6o91wDGufnGfACBpDLC87Ubm6tOArfpQfgZtSNpHUqekzjnPz2/eooiIGOYutv2K7fuBN9eyLYCzbc+x/ThwPbBxy3m3At+Q9O/A6nX57jxyH4mIgbbIDSSqS4DDqcuahpgoGa+7ZftE2x22O0YtPWYBdCsiIobA7KbXavm3S7bPAj4GvABcJWmbNnVyH4mIAbWoDiROAb5te3pL+bPAsv1p2PZM4G9Neyw+A1zfTfkzwExJW9Ty3ftz/YiIWOjcAOwiaZSkFYGtgDuaK0h6O/Cg7WMpD8vWX/DdjIhFzaIWtQkA2w8Dx7Q59EvgfEk7AF8B3gB02D60j5fYAzhB0tLAg8BePZTvBZwi6Xngqp4aX2+VMXQm6kVExKLiImBT4B7KDPbXbf+lBglp2AX4tKSXgL8A3+6uwdxHImIgyO5xVU0MMx0dHe7s7BzqbkTECCBpiu2Ooe5HDC+5j0REb3V3H1lUlzZFREREREQ/ZCARERERERF9loFERERERET0WQYS3ZA0q/7bnD10vKRL6+uPSTp4PtteWdL5A9fbiIiIiIgFZ5GM2jRQbF9CCbM3P+c+Cuw8P+dOf2QmYw++bH5O7bcZifIREcOcpKOAP9k+ur6/Cviz7c/X90cAj9g+sg9tjgf+YfuWlvKxwE3AarZfaSqfCuxTf46sCeZ6e619gedtn95NnQ7gs7Yn9LbdZrmPRMRAyIxEP0jaU9Jx9fUkScdKukXSg5J2ruWSdJikeyVNl7RLLW+e5VhH0h2SpkqaJmmNoftUEREj3i3AZgCSXgesAKzTdHwz4OY+tjm+0WYz2zOAPwONHEFIWgtY1vYdtj/fbhAhaVRXF7J9QneDiFqnc34HERERAyUDiYG1ErAFsD3wg1r2CWAcsAGwLXCYpJVaztsXOMb2OKADeLi1YUn7SOqU1Dnn+ZmD0/uIiIXDzcz9o38d4F7gWUlvkLQE8C7gbkkbSbpe0hRJVzW+myVNkHR/fbBzTp112Bc4oD7w2bLlemcDuza937WWIWlynT1A0ixJ35Z0O7CppM9J+l2tc1LTg6mJkg5sOv+H9WHT7xrXbllmu0l9iHV3/fedA/vrjIhoL0ubBtbFdWr7fklvrmVbAGfbngM8Lul6YGNgWtN5twKHSHorcKHt37c2bPtE4ESAJVZaI8k/IiK6YPtRSS9LWo0yoLgVWIWS1G0m5fvXwI+BHWw/UWeLvwvsDRwMvM32bEnL235G0gnALNuHt7nkzykDk6/YfpmSHO6TbeotA9xr+1BJKwM/A94NPAtcS0k4185itjeR9GHgm5SHUs0eALay/bKkbYHvATu1NiKpsdSKUcut2MWlIiJ6LwOJgTW76bVa/u2S7bPqE6qPAFdJ+rztawejgxERi4jGrMRmwJGUgcRmlIHELcA7gXWBX0kCGAU8Vs+dBpwp6WLg4p4uVLNM3wf8i6THgZds39um6hzggvp6E+B6208DSDoPWLOLS1xY/50CjG1zfAxwWl0Wa2DxLvqZB1IRMaAykBh8NwBflHQa8EZgK+AgYMlGBUlvBx60fWx9vT7l6VRb660yhs5sVouI6E5jn8R6lKVNfwa+BvwdOIXykOc+25u2OfcjlO/qjwH/JWmdNnVaNZY3PV5ft/NinZ2GXjxkatJ4SDWH9vft7wDX2d6xLsOa3Ie2IyLmWwYSg+8iynT6PZQnRV+vT6/GNtXZBfi0pJeAvwDfXuC9jIhYuNxMGTg8WP94f1rS8pQ9E1+gDChWlLSp7VslLU6ZEfgNsKrt6yTdBHwKGE1ZfrRcN9e7gLKk6Hlgm1707w7gKElvqG3vBEzv+8cEyozEI/X1nr05IQ+kImIgZCDRDduj678zKFPg2J5MfdpjexIwqb7es4tzTZmBOKjleHOb3we+PxifISJiETWdEq3prJay0bafBKjR9Y6VNIZyPzwa+B3ws1om4Ki6R+KXwPmSdgC+YvvG5ovVOrcBb7b9UE+ds/2IpO8BtwOPAvdTll3Njx9RljZ9lW5msyMiBprK37kxknR0dLizs3OouxERI4CkKbY7hrof8VqSRtueJWkxyuz1KbYvWhDXzn0kInqru/tIwr9GREQMjYk1cd29wEP0YmN3RMRwMiwHEpKOkrR/0/urJJ3c9P6IOoXblzbHS3pNMqGaGO7hmrSouXxqjc19sqS1+3itfSV9toc6HZKO7Uu7ERGx8LB9oO1xtteyPcFZIhARI8xw3SNxCyUG99FNWUmbN7ltBuzfxzbHA7Nq26+yPUNSIyvp9TBvVlLKhrjXkDSqKfrGPGyf0FNnbHcC8zWvPP2RmYw9+LL5ObXfZmRzXkREREQwTGckSFbSZCWNiBhBJFnSEU3vD5Q0cZCvOUPSCoN5jYiI7gzLGYlkJW2flTQiIoat2cAnJH2/ERVqOMvMdkQMhGE5kKiSlbSJpH2AfQBGLbdiTx8pIiIWrJcpWaMPAA5pPiBpReAEYLVatD/lAdmDwDjbz9R6fwA2p9xf/hN4PfAUsLvtxyW9iTJbviJl2a2arnExsCol2ekxNYt1RMSgGq5Lm+C1WUlvo8xIbEYZZDSyko6rP+vZ3q6e+xHgeGAjYEoNrdeTxvKmV5c1tTHYWUnXBT5KU9brBtsn2u6w3TFq6TF9uHRERCwgxwO71xwUzY6h5KPYmDLbfLLtV4BfADsCSHoPMMP248BNwHttbwicA3y9tvNN4KZafglzByYAe9veCOgAJtRBR0TEoBrOA4mbge2Bp23PqU/+l6cMJm4FfkvNSgogaXFJ69TN2avavo7y5bs8c7OSLtvN9S4APkxZ1nROL/p3B/C+um9jMfq3FKnPWUkjImJ4sf134HRgQsuhbYHjaqjXS4DlJC0LnEu550B5iHVuff1W4CpJ0ynJTNep5VtRltRi+zLgb03XmCDpHspDt1WBNVr7J2kfSZ2SOuc8P7+57yIi5hrOS5uSlbQL660yhs6sMY2IGI6OBu4CTm0qex2wqe0XmitKuhX457r06ePAf9dDPwaOtH2JpPHAxKbTXhMittbZtl7jeUmT6WJmm7L8iiVWWiOhZiOi34btQKIuIVqupWzPlvdTKU9oWm3Rpr3fAev3cM0d2pSNb3o9uuXwWbZPbMpKenWtN7GL85+k7pGwPRmYXF/fyrz7K/6ru35GRMTwZPtpST8HPgecUouvBvYDDgOQNM72VNuWdBFlH+BvbD9V6zfPUu/R1PwNwO7Af0v6EPCGpvp/q4OItYD3DtLHi4iYx7AdSIwQE2uUpSUpN4qLh7Y7ERExDBxBGTg0TACOlzSNct+9gRKSHMpypjuZd1nrROA8SY9Qliq9rZZ/Czhb0l2UvEf/V8uvBPat7f+2ntOtzGxHxEDIQKIfbB841H2IiIih1zxjXTdML930/knm7oVoPa+TluAdtn9B2YjdWvcpYLumogOaXn9ovjoeEdEPw3mzdUREREREDFOL/IxE3ZT2fdtXNZXtT5mKPtH2D/rQ1srAsbZ37qHe5cCnGrHD+yqJhCIiIiJiqC3yAwnm5o+4qqlsV2CP1shOAJIWq9mvX8P2o0C3g4ha78Pz2deIiIiIiGEhS5vgfGB7SUsASBoLrEwJyXdcLZsk6UhJ1wE/lPQOSbdJulPStyXNapwr6d76ek9JF0q6UtLvJf2ocUFJMyStUF9fLGmKpPtq9uqIiBhEkt4i6RxJf5R0v6TLJa3Z85mD1p/9JS3d9P5yScvPRztjJX1qQDsXEdGNRX5GwvZTku4APkjZ3NZICtQaY3tNYFvbcyRdChxj+2xJ+9K1ccCGlMzWv5X0Y9t/bqmzdw0XuBRwp6QLmkIAvqoOMvYBGLXcin3/oBERgSRRwnWfZnvXWjYOeDMlD9FQ2J+SaO556Nes9VjgU8ybf6mtoVwi25MsoY0YOTIjUTSWN1H/PbtNnfNqbgso2bXPq6+7+8K+xvZM2y9SEtat3qZOj9lIoSQSst1hu2PU0mO6/zQREdGVrYGXbJ/QKKg5iW6SdJikeyVNl7QLlGRvkiZLOl/SA5LOrIORxuzytyTdVc9Zq5YvI+mUOmt9d02EiqRRkg6vdadJ+oqkCZRZ8OvqrHfrrPVna917JJ1RyybVhKzU97Pqyx8AW0qaKqk5olNExKBY5GckqouBIyW9G1jK9l2SWpPXPTcf7c5uej2Hlt93b7ORRkTEgFkXmNKm/BOUWeQNgBUoM8Q31GMbAusAjwI3A5sDN9VjT9p+t6QvAwcCnwcOAa61vXddonSHpF8Dn6XkhNjQ9suS3lhnpL8KbF3DxL5K0jq1rc1tPynpjT18toOBA21v39tfRkREf2QgAdieVf+IP4X2sxGtbgN2oiyB2rWHut2Zr2ykSSQUETHgtgDOrjPPj0u6HtgY+Dtwh+2HASRNpSwhagwkLqz/TqEMRqDkeviYpEauoSWB1SgPjk5oBOyw/XQPfdoGOL8xwOhF/W5liWxEDLQsbZrrbMqTqHN6UXd/4Kt1b8VKwMz5vOaVwGI1G+l36EU20oiI6Jf7gI3alKtNWUN3s8uz25QL2Mn2uPqzmu3f1PLW/Xfd6ar+y9T7d11m9freNJYlshEx0DKQqGxfZFu2H6jvJ9ner77e0/b5TdUfAd5rexPgt0BnrTfD9rqt59f329ueXF+Ptf2k7dm2P2R7fduftD2+USciIgbFtcASkr7QKJC0MfA3YJe6j2FFYCvgjvm8xlXAV5r2UmxYy68G9pW0WC1vLFV6Fli2TTvXAP8q6U0t9WcwdzC0A7B4D+1ERAyKLG2aPxsBx9WbxDPA3kPbnYiI6A3blrQjcLSkg4EXKX+Y7w+MBu6hzAJ83fZfGhuo++g7wNHAtHqfmAFsD5xMiQA4TdJLwEnAccCJwBWSHrO9dVNf75P0XeB6SXOAu4E963m/qLPi1zB3D9804OUawGOS7aO66mCWyEbEQJDdl1nWGA46Ojrc2dk51N2IiBFA0hTbHUPdjxhech+JiN7q7j6SpU0DQNJbJf2iJp77o6RjJL1eJSndcV2cM18JhyIiIiIihoMsbeqnOm19IfBT2ztIGkWZpv4uZVNfW/1IOJREQhEREREx5DIj0X/bAC/aPhWghg48gLJvYmlgZUlX1tmKHzVOakk49NWaBOleSfsv+I8QEREREdE3mZHov3VoSW5k+++S/o/y+x1HSWY0G/itpB/b/nOjrqSNgL2A91BC/d0u6Xrbdy+g/kdERERE9FkGEv3XVZzvRvk1tmcCSLofWB34c1O9LYCLbD9X61wIbEmJzjG3sSQSiohYaEl6K3A8sDZltcClwEHAp4CO5nDiTedcDnzK9jN9vV6WyEbEQMjSpv67D5hnJ7uk5YBVKQmKuktkBN0nQXpVEglFRCycmvbaXWx7DUqI2NGUvXZdsv3h+RlEREQMlAwk+u8aYGlJnwWom62PACYBz/fi/BuAj0taWtIywI7AjYPU14iIGH6y1y4iRqQsbeqnpuRGP5H0X5TB2eXAN4DdenH+XZImMTeD6sk97Y9IIqGIiIVK9tpFxIiUgcQAqF/oH21zaFL9adTbvun12KbXRwJHDloHIyJiOMteu4gYkbK0KSIiYmhlr11EjEgZSERERAyt7LWLiBFpxC1tkvQW4GhgY8pTmhnA/rZ/N0T92R840fbz9f18heOTNBbYzPZZA93HiIgYvrLXLiJGKtntlmUOTzVE3i3AabZPqGXjgGVtD8nTF0kzKDG+n+xnO+OBA5v3UXRliZXW8Ep7HN2fyw2axP+OGF4kTbHd0XPNWJR0dHS4s7NzqLsRESNAd/eRkba0aWvgpcYgAsD2VOAmSYfVsHfTJe0C5Y9zSZMlnS/pAUln1sFII2zetyTdVc9Zq5YvI+kUSXdKulvSDrV8lKTDa91pkr4iaQKwMnCdpOua2m2E4/tsrXuPpDNq2SRJOzf6L2lWffkDYEtJUyUdMKi/xYiIiIiIfhppS5vWpSVEXvUJSni8DYAVgDsl3VCPbUgJrfcocDOwOXBTPfak7XdL+jJwIPB54BDgWtt7S1oeuEPSr4HPAm8DNrT9sqQ32n5a0leBrVtnJCStU9va3PaTkt7Yw2c7mF7OSEREREREDLWRNiPRlS2As23Psf04cD1lDwXAHbYftv0KMBUY23TehfXfKU3l2wEHS5oKTAaWBFYDtgVOsP0ygO2ne+jTNsD5jQFGL+p3S9I+kjoldc55fmZ/moqIiIiI6LeRNpC4D9ioTXl3oe+6C5s3u025gJ1sj6s/q9n+DV3H+e5KV/Vfpv7e6zKr1/emsYTti4h4LUmWdETT+wMlTexjG+Mlbdb0fp4lqN2c9xZJ50j6o6T7JV0uac0+fYD27Y6VdG993SHp2P62GRExGEba0qZrge9J+oLtkwAkbQz8DdhF0mnAG4GtgIOAtebjGlcBX5H0lRpJY8Ma/eJqYF9Jk5uXNgHPAssCrZutrwEuknSU7aea6s+gDIZ+DuwALF7rN9qJiIjemw18QtL35yfohaTFgPHALEowj96eJ+AiSvCPXWvZOODNQI9RBOv5qrPlXbLdCQz4rujpj8xk7MGXDXSzC0SCekQMHyNqINEUIu9oSQcDL1LDvwKjgXsoswBft/2XxgbqPvoOJbzstPpFPwPYHjgZWLOWvwScBBwHnAhcIekx21s39fU+Sd8Frpc0h5JhdM963i8k3UEZbDxXT5kGvCzpHmCS7aO66mDC9kVEvOplyvfwAZR9aa+StDpwCrAi8ASwl+3/q6FSn6bsoXuasndujqRPA1+pp29V98C9hXJPOb/lul0F/0DSaOAXwBsoD4v+0/YvapjvK4DrgE0puR/2Az5EuXf9t+1zWz7DeOr+uTrTshrw9vrv0baPrfUupiSwWxI4xvaJvf0FRkTMrxEV/jWKhO2LiN5a2MO/1sh3K1MexmwAfAEYbXuipF9S9qqdJmlv4GO2P14HEisAO9ieU/9An2X78NrmJGAZYBfKzPYltv+55boTgLfZfk2UvTrLsbTtv9cofrcBawCrAw9ScgbdJmknYF/gg7U/dwLvAZYALrW9bpuBxHaUQcyywG+Bt9h+qSkAyFK1nffZfqqr39twDiPek8xIRCxY3d1HRtoeiYiIiHnY/jtwOjCh5dCmQCPJ5xmUwBwN59me002zF9t+xfb9lOVKfSHKMtxpwK+BVZra+JPt2+rr7gKFdOUy27PrMq6/NrU7oc5o30aZmVjjNZ1K0I6IGGAZSERExMLgaOBzlJmErjRPwT/XZa2iOVBHu4AeXQX/ANidspxqI9vjgMcpS45ar9tdoJDe9GsOsFidtdgW2NT2BpSltEu2npigHREx0DKQiIiIEa8Gs/g5ZTDRcAuwa329O3NzCLWan2AX1wJLSPpCo0DSxpLeB4wB/lqXHG1NWdLUzg2UQCGjJK1ICRRyRx/7Qb3e32w/X/cGvnc+2oiI6LMRtdl6sEl6K3A8sDZlkHUpcJDtfwxpxyIiojeOAPZrej8BOEXSQdTN1l2c90vgfEk7MHezdbd6CP5xH/BLSZ2U/EUPdNHMRZTlV62BQsb2pg9NrqREFZxG2TdxWw/1E7QjIgZENltXNULT7cBPbZ8qaRQlEsjTtg9qqrdYIyndUMkmuYjorYV9s3XMnwTtiIjeymbr3tkGeNH2qQB1E94BwN6SvizpvBoB5GpJy0g6RdKdku6uT7GQtLSkn0uaJulcSbdL6qjHdpM0XdK9kn7YuKikWZK+K+keSbdJ6uumvoiIiIiIBS4DibnWAaY0F9RIIP9HWQK2KbCH7W0oscqvtb0xJQzfYZKWAb5MWae6PiUfxUYAklYGfkgZrIwDNpb08XqZZYDb6ga5GyihCyMiIiIihrUMJOYS80b0aC3/Vd3MByWO98GSpgKTKdExVqOE8jsHwPa9lLjmUML5Tbb9RF0WdSZlUx3APyh7MaAMZMa27VzC9kVERETEMJLN1nPdB+zUXCBpOUo87jm8NmTfTrZ/21K/q1B+3YX4e8lzN6rMoYv/JjVL6YlQ9kh0015ERERExKDLQGKua4AfSPqs7dPrZusjgEnA8y11rwK+IukrNXLHhrbvpoQW/FfgOklrA+vV+rcDx9QMp38DdgN+PL8dTbSNiIgFR9JRlERyR9f3VwF/tv35+v4I4BHbRw7CtU8GjqyJ8QbM9EdmMvbgywayyREhAT8iBlaWNlV1VmBH4JOSfg/8jhLO7xttqn8HWByYJune+h7gJ8CKNQTfv1OWNs20/RjwH8B1lDB/d9n+xWB+noiIGDC3AJsBSHodsAJlX13DZsDNg3Fh258f6EFERMRAyYxEE9t/Bj7a5tCk+tOo9wLwxTb1XgQ+bftFSe+gzHL8qZ5zFnBWm2uObnp9PnD+/H+CiIgYBDcDR9XX6wD3AitJegNlxvpdlHwSX7I9FUDSzcCXgIeBU4C317r72J4maSLwNmAlYE3gq5REch8CHgE+WhPaTQYOtN0paRZwDLA98AKwg+3H6/3mTGAUcAXw1eZ7S0TEYMmMxMBaGrhJ0j2URENfSjK7iIiRzfajwMuSVqPMPtxKWbK6KdBBmX0+AdgTQNKawBK2pwHfAu6u0fy+AZze1PQ7gI8AOwA/A66zvR5lkNBuDU5XUf6OAY6pkQQf7epzJGhHRAy0DCQGkO1nbXfY3sD2+ravGOo+RUTEgLiZMohoDCRubXp/C3AesL2kxYG9mTuLvQVwBoDta4E3SRpTj11h+yVgOmU24cpaPp32Efy6ivK3ab0+tJn5brB9Yr1HdYxaekxX1SIiem1IBxKSXDepNd4fWKd7+9LGeEmbNb2fJGnnXpz3FknnSPqjpPslXV6fIvWLpLF13wSSOiQd2982IyJiyDX2SaxHWdp0G+UP+M2Am20/D/yKMrvwr8z9g75d1L5G5L3ZALZfYd4Ifq/Qfulxr6L8RUQsKEP9JTQb+ISk79t+sq8nS1oMGA/MonzJ9/Y8UZYenWZ711o2DngzZZN1b85X/fLvku1OoLO3/eqtkRxtIxEzImKEuhn4GvCg7TnA05KWp+yZaCwxOhn4JXBjU96hG4Ddge9IGg88afvvXUcLny+3UcKXnwvs2psTEv0vIgbCUC9tepmSG+GA1gOSVpd0jaRp9d/VavkkSUdKuo7ypbkvcICkqZK2rKdvJekWSQ92MTuxNeXJzgmNAttTbd8oaXS93l2SpkvaoV53rKTfSPoJcBewqqTDJN1b6+3S5jOMl3RpfT1R0imSJtd+TWiqd7GkKZLuk7TP/P0qIyJiEE2nRGu6raVsZuNBmO0pwN+BU5vqTAQ6ajS/HwB7DELf9ge+KukOyubtbICIiAViqGckAI6nhFH9UUv5ccDptk+TtDdwLPDxemxNYFvbc+pSqFm2DweQ9DnKF+kWwFrAJbw2EtK6lPWl7bwI7FifGK0A3CbpknrsncBetr8saSdgHLAB5eZyp6Qbevisa1EGMcsCv5X007o+dm/bT0taqrZzge2nemgrIiIWkDoLsVxL2Z7N7yWtTHlAd3VTnacpy51a25vY8n50u2O2x3dRpznK3yPAe2teo10ZhJnwiIh2hnpGAtt/p0SxmNByaFPmrjE9gzIwaDivfql35WLbr9TY22/uY5cEfK8+Pfo1sEpTG3+y3XgatQVwtu05th8Hrgc27qHty2zPrk+v/trU7oQa6ek2SibtNV7TqUTbiIgYtiR9lhLJ6ZCelr0Ogo2AqfW+9WXKEqyIiEE3HGYkAI6mLBc6tZs6bnr9XA/tzW563W4h6n1AVxuydwdWBDaqMbxnAEu2ue78LHBt7tccYLG6ZnZbYFPbz9eY4Uu2nmj7RMoyMJZYaQ23Ho+IiKFj+3TmDe26IK99I2V2PCJigRryGQl4der358DnmopvYe6msd2Bm7o4/VnKUqG+uBZYQlJjgxySNpb0PmAM8Nc6iNgaWL2LNm4AdpE0StKKwFbAHX3sB/V6f6uDiLUoCYkiIiIiIoa14TIjAXAEsF/T+wnAKZIOAp4A9urivF8C59dN0V/pzYXqOtIdKZlID6bsi5hB2bB2H/BLSZ3AVOCBLpq5iLL86h7KbMnXbf9F0tje9KHJlcC+dUr6t8y7ka+tRNuIiBhZJBn4me3P1PeLAY8Bt9vevpvzOoDP2m5d/hsRMeQ0NyR1jBQdHR3u7MxeuojomaQptjuGuh+LOkmzgN8Dm9l+QdKHgO8DD3c3kBgsS6y0hlfa4+gFfdlhLyHKI16ru/vIsFjaFBERsQi4Amj8pbobcHbjgKRNatjyu+u/76zlvQ0j/mlJd9RQ6P8jadQC/FwRsYjKQCIiImLBOAfYVdKSwPqUKE8NDwBb2d4QOBT4XhdtrAV8ANgE+KakxSW9C9gF2Nz2OEowj90H5yNERMw1nPZIRERELLRsT6v76HYDLm85PAY4TdIalH13i3fRzGW2ZwOzJTXCiP8LJQTsnTVj9lKUEOPzqAlP9wEYtdyK/f48ERHDakZC0iE1u/O0Oj37nh7qT2pkrpa0v6Slu6g3uW5Y600fXp1Gnh+SPluzXd8n6X5JB9byb0vatqe+RkTEQu0S4HCaljVV3wGus70u8FHahAGvXhNGnBKO/DTb4+rPO1sT3kEJI267w3bHqKXH9PdzREQMnxkJSZsC2wPvtj27ZpV+fR+a2B/4GfD8IHSvV+rmuf2B7Ww/WqevPwNg+9CmqvvTj75Of2QmYw++rH+dHSLZyBYRi7hTgJm2p9c8Qg1jKBmqAfbsY5vXAL+QdJTtv0p6I7Cs7T/1t7MREd0ZNgMJYCXgyTplS83+DICkQylPaJai5Jf4opvCTdUNZysD10l60vbWPV2sTi+fASxTi/azfUtLnY0pSeB2At4AHAmMBp4E9rT9WEuz/wEcaPvR+hleBE6qbU0CLq39fLWvlAHFurYPqPW+ALzL9ld7+gwRETGy2H4YOKbNoR9RljZ9lZLrqC9t3i/pP4GrJb0OeAn4N6DLgUTCiEfEQBhOS5uuBlaV9DtJP6nJ4RqOs71xnfJdijJz8SrbxwKPAlv3ZhBR/RV4v+13UzapHdt8UNJmwAnADsCfgR8DO9veiPJE6btt2lwXmNLdRdv09RzgY5Ia62H3ovsM3xERMcLYHt2mbHIj9KvtW22vaXtz2/9le2ybOhNtH950/rq2Z9TX59ZlTevb3sh2jzmJIiL6a9jMSNieJWkjYEtga+BcSQfbngRsLenrwNLAG6lJ4/p5ycWB4ySNo6wzXbPp2LsoMxGNJUrrUgYJv6ob2UZREgn1m+3nJF0LbC/pN8Ditqe31ssmuYiIiIgYTobNQALA9hxgMjBZ0nRgD0nnAD8BOmz/WdJEut6E1hcHAI8DG1BmZl5sOvZYvcaGlNkDAffZ3rSHNu+jRM7o07Q0cDLwDUr4v7azEbZPpAxuWGKlNZJFMCIiIiKG1LAZSNTkO6/Y/n0tGkdZ39kYNDwpaTSwM3B+myaeBZal7F/ojTGUjKKvSNqDMsvQ8AzwOcp60+co+zJWlLSp7VvrMqQ1bd/X0ub3gR9J2t72XyQtQdnPcWxLvXn6avt2SasC76bEFu9W1rZGRERExFAbTnskRlM2mt0vaRqwNjDR9jOUDcvTgYuBO7s4/0TgCknXdXH8MkkP15/zKLMce0i6jbKs6bnmyrYfp2zwPp4yM7Ez8ENJ9wBTgc1aL2D78lr/15Luo+yXaDdYa9fXnwM32/5bF/2PiIh+kmRJRzS9P7DOdA9U+2PrNb7TVLaCpJckHTefbb4aPjwiYjhRU/CjGEI1d8VRtq/pqW5HR4c7OzsXQK8iYqSTNMV2r/LoLAokvUhZvrqx7Sdrrp/R7fIuzGf7YynhWP9es1Qj6UvAF4GbbO83ENfpryVWWsMr7XH0UHdj2EmI8ojX6u4+MpxmJBZJkpaX9Dvghd4MIiIiol9epswKH9B6QNKKki6QdGf92byWT6/f1ZL0lKTP1vIzupgpeAH4TVMi1F0os849XecXTW1/UdKZ9XVz8tWNJd0i6R5Jd0haVtKSkk6t/bxbUm+jF0ZE9Muw2SOxqKpLt9bsqV5ERAyY44Fpkn7UUn4MZWb4JkmrAVdRovjdDGxO2bf3ICW64OnAe4EvdXGNc4BdJf2FEhnwUUoOoe6usw9ws6SHgK/V9l8l6fXAucAutu+UtBxl0PL/AGyvJ2ktyv6+NWsuo4iIQZOBRD/VaexLa46LRtlEYBZlM/XVjQR13bQxmZLILuuVIiIGme2/SzodmED5Q7xhW2DtGuYbYDlJywI3AltRBhI/BfaRtArwtO1ZXVzmSuA7lOiA57Yca3sd24+rJGC9DtjR9tMt570TeMz2nY3PASBpC0quI2w/IOlPlAdU05pPThjxiBhoGUgMrj2BeylPogbM9EdmMvbgywayyWEj61MjYgE5GriLeUNuvw7Y1Hbz4AJJN1AyRa8GHALsSAnAcWNXjdv+h6QplJmFdSjBO7q9TrUe8BRzZy/m6QrQbmOj2pS161PCiEfEgMoeicHVAZwpaaqkpSQdWtfD3ivpRDU9jgI+Wde7/k7SlkPV4YiIRUF92v9zSqjvhquBVzdD14Sl2P4zsAKwhu0HgZuAA+lmIFEdAfy77adaytteR9ImwIcokQIPlPS2lvMeAFaWtHGtv6ykxYAbgN1r2ZqUAc9ve+hbRES/ZUZicHXStGRJ0nG2v11fnwFsz9wM3YvZ3kTSh4FvUqa+IyJi8BxB0x/0lKVOx9cQ5I0/0Petx25nbr6hGyl5g27qrvGaa6g131Db60j6f5RQ53vZflTS14BTJG3T1N4/JO0C/FjSUpRlWdtSwpmfoJLI9WVgT9uzu+tb8hFFxEDIQKL/upoeble+taSvA0sDb6TcYBoDiQvrv1OAsa0nZm1rRET/2R7d9Ppxyvdx4/2TlAhL7c77TNPrW+hiRt/2DGDdNuWTgEk9XGeDpvqXAJfUt3s2ld9Jyybs1joREQtKljb131PAG1rK3khLhm1JS1KeGu1sez3Kk6clm6o0nh7Noc0Az/aJtjtsd4xaesxA9T0iIiIiYr5kINFPNWLHY5L+BUDSG4EPUqa8nwWWrVUbg4YnJY2mbNSLiIiIiBiRsrRpYHyWst71iPr+W7b/KGkSZd3qC8CmlFmI6cAM4M75vVjWtkZERETEUMtAYgDYvh94TSZR2xcAFzQV/Wf9aa03vun1k7TZIxERERERMZxkaVNERMQAkfRWSb+Q9HtJf5R0TM1IHRGx0MmMRERExACouYEuBH5qewdJoygJ4L4LHNRUbzHbLw9RN4GFO7HpYErS1Ih5ZUYiIiJiYGwDvGj7VADbc4ADgL0lfVnSeZJ+CVwtaRlJp9QkpXdL2gFA0tKSfi5pmqRzJd0uqaMe203S9JrU9IeNi0qaJem7ku6RdJukNy/4jx4Ri6KFfiAh6ShJ+ze9v0rSyU3vj5D01UG69smS1h6MtiMiYthZh5IL6FW2/w78H2UFwKbAHra3AQ4BrrW9MWWP3WGSlgG+DPzN9vrAd4CNACStDPyQMlgZB2ws6eP1MssAt9negJJE7wuD+BkjIl61KCxtugX4JHC0pNcBKwDLNR3fDNh/MC5s+/OD0e6iOiWdKeWIGOZE+2SkjfJf2X66lm0HfEzSgfX9ksBqwBbAMQC2763ZrwE2BibbfgJA0pnAVsDFwD+AS2u9KcD723YuiU0jYoAt9DMSwM2UwQKUp0X3As9KeoOkJYB3UQYZ4xonSLpZ0vqS3ijp4jrFfJuk9evxiZJOk3S1pBmSPiHpR3XK+UpJi9d6k5umpNtOPUt6R31/p6RvS5q1wH4zERExkO4DOpoLJC0HrEpJNvpc8yFgJ9vj6s9qtn9Ty9vpqhzgJduNAUzbpKaQxKYRMfAW+oGE7UeBlyWtRhlQ3ArcTpli7gCmAScAewJIWhNYwvY04FvA3XWK+RvA6U1NvwP4CLAD8DPgupqx+oVa3qqrqedjgGPq9PajXX0OSftI6pTUOef5mX3+PURExKC7Blha0mcB6mbrI4BJwPMtda8CvlI3aCNpw1p+E/CvtWxtYL1afjvwPkkr1HZ3A64fvI8SEdGzRWFpE8ydldgMOBJYpb6eSVn6dB7wX5IOAvamfOlDmWLeCcD2tZLeJKnxGOcK2y9Jmg6MAq6s5dNpnweiq6nnTYGP19dnAYe3+wC2T6RE/2CJldZoN3UeERFDyLYl7Qj8RNJ/UR7WXU55ELVbS/XvAEcD0+pgYgawPfAT4LS6pOluysOumbYfk/QfwHWU2YnLbf9ifvuaxKYRMRAWlYHELZSBw3qUpU1/Br4G/B04xfbzkn5FmV34V+ZOTbebSm78ET8bwPYrkpqnlV+h/e+1V1PPERExctn+M/DRNocmMfchFbZfAL7Ypt6LwKdtvyjpHZRZjj/Vc86iPHBqveboptfnA+fP/yeIiOi9ReWP2ZspA4cHazi+pyUtT9kz0VhidDLwS+DGps1wNwC7A9+RNB540vbf60z0QLmNMutxLrBrb07Ik6SIiIXW0sB1da+dgC/Z/scQ9ykioq1FZSAxnRKt6ayWstG2nwSwPUXS34FTm+pMBE6tU8zPA3sMQt/2B34m6WvAZZTlVhERsQiy/SwtG7YjIoarRWIgUWchlmsp27P5fY3R/Trg6qY6T1OWO7W2N7Hl/eh2x2yP76JO89TzI8B769raXYHO3n6uiIiIiIihstBHbeqNGmHjduAQ268s4MtvBEytsx5fpizBioiIQTLQiUprSPADuzh2Sz/6OV7SZj3XjIgYGovEjERPbJ/OvKFdF+S1bwQ2GIprR0QsohZYolLb/RkIjAdmUfo7oBbVxKb9lcSoEfPKjEQvSLKkM5reLybpCUmX9nBeh6RjB7+HERHRB71JVPqBmij0XkknNuV7mCDp/pqo9JymNteuSUgflDShUdhIMlpnFyZLOl/SA5LObGrzw7XsJknHSrpU0lhgX+AASVMlbSlpdUnX1GtfU/MjIWlSPe+Wev2dB/fXFxFRZEaid54D1pW0VA3Z937K3oZu2e5kEPY85ElSe3lSFBG9YftRSa2JSleh5PWZScndcJztbwPUB0nbUyL7HQy8zfbsGv2vYS1ga2BZ4LeSfmr7pZZLb0gZuDxKGcxsLqkT+B9gK9sPSTq79nGGpBOAWbYPr/34JXC67dMk7Q0cy9w8RCtRch+tBVxCQsBGxAKQGYneu4K5Gat3A85uHJC0SX0SdHf99521fHxj1qKuoT2liydWn5Z0R33q9D81a2lERAye5kSlt9afxvtbgK0l3V6Tjm5DGQBAGWScKenTwMtN7V1me3aNBPhX4M1trnmH7YfrXryplOSla1FCkz9U65zd5ryGTZkbffAMysCh4WLbr9i+v4trI2kfSZ2SOuc8nwCBEdF/GUj03jnArpKWBNanbM5ueIDyNGlD4FDge120sRbwAWAT4JuSFpf0LmAXYHPb4yjJ6nYfnI8QERFVa6LS2yh/qG9GGWT8BNjZ9nrAScCS9byPAMdTAmVMkdSY2Z/d1HZXSUfb1elPYiI3vW5uu22btk+03WG7Y9TSY/px2YiIIgOJXrI9jfL0aDfg8pbDY4DzJN0LHMXcJ1et2j2x+hfKDelOSVPr+7e3npgnSRERA+pmynKlp23PqeG+l6cMJm6tdZ6UNBrYGaBuzF7V9nXA12v90fTPA8Db654IKA+WGp6lLJVquIW5iUt3B27q57UjIvoleyT65hLgcEokjTc1lX8HuM72jvVmMLmL87t6GnWa7f/o7sK2TwROBFhipTXcXd2IiOhRt4lKJZ1U388A7qzHR1ESiI6hfHcfZfuZumd6vth+QdKXgSslPQnc0XT4l8D5knYAvgJMAE6RdBDwBLDX/F53vVXG0Jl9ZRHRTxlI9M0pwEzb0yWNbyofw9zN13v2sc1rgF9IOsr2XyW9EVjW9p/629mIiGivp0Sltv8T+M82p27RWtAmSem6Ta9H138n0/SQyfZ+TadcZ3utGsXpeGqQDtu/oyylbbZNm+vv2fK+v7MkERG9koFEH9h+GDimzaEfAafVBEbX9rHN+yX9J3B1nTZ/Cfg3oMuBRJ4kRUQsVL4gaQ/g9cDdlChOERHDnuyskhlpOjo63Nk54FFlI2IhJGmK7Y6h7kcML7mPRERvdXcfyWbriIiIiIjoswwkIiIiIiKiz7JHIiIiRhxJBn5m+zP1/WLAY8Dttrcfgv6MBw4crGvXLNqfsv2T+n4ssJnts7o7ryvTH5nJ2IMvG7gOBjOydzEWQSNuIFFvHkfa/lp9fyAlXN/EAWp/LPAQ8N+2/6uWrUC5Qf1PS6SN3rb5beAG278eiD7mBtBevsQjFinPAetKWsr2C8D7mRs9b2G0PPBlSqI8KHmNPsW84WsjIhaokbi0aTbwifrH/WB5kJKoqOGTwH3z25jtQwdqEBEREa+6gpJpGkqy0LMbByRtIukWSXfXf99Zy9eRdIekqZKmSVpD0jKSLpN0j6R7Je1S6x4q6c5admINz4qkf5b061r/LknvqJcdLel8SQ9IOrOp/ozGPUtSh6TJ9fX7aj+m1n4uW8sPqtedJulbte0fAO+odQ+r77es7w9o97kG7bceEVGNxIHEy5TEbAe0HpC0oqQL6hfwnZI2r+XTJS2v4ilJn63lZ0jats01XgB+I6mxQ30X4Oe9uM4vmtr+oqQz6+tJkhqZUTeuN7V76pf+spKWlHRq7efdkrYeqF9WRMRC7BxgV0lLUvIt3N507AFgK9sbAocC36vl+wLH2B4HdAAPAx8EHrW9Qc0BcWWte5ztjWvZUsx9wHQmcLztDYDNKDPWABsC+wNrA28HNu+h/wcC/1b7siXwgqTtgDWATYBxwEaStgIOBv5oe5ztg+r7G+v7o7r4XPOQtI+kTkmdc56f2UPXIiJ6NuKWNlXHA9Mk/ail/BhKptGbJK0GXAW8C7iZ8oX+J8psw5bA6cB7gS91cY3GDeovlCzUjwIr93CdfYCbJT0EfK22/ypJrwfOBXaxfaek5SiDlv8HYHs9SWtRckqsafvFpnP3qe0zarkVe/+biohYSNmeVpej7gZc3nJ4DCW/zxqAgcVr+a3AIZLeClxo+/eSpgOHS/ohcKntG2vdrSV9HVgaeCNwX51NWMX2RbUPLwLUyYc7ar4hJE2lLD+6qZuPcDNwZH3odKHth+tAYjtKPgmA0ZSBxf/18Ot4zedqrWD7RMqDOJZYaY3Efo+IfhuJMxLY/jtlIDCh5dC2wHH1C/wSYLk6VXwjsFX9+SmwnqRVgKdtz+riMldS1tzuRvnjv8fr2H6c8uTrOuBrtp9uOe+dwGO272x8DtsvUzKlnlHLHqAMeNZs+cwn2u6w3TFq6THd/n4iIhYhlwCH07SsqfoOJWP0usBHgSUB6ubkj1Ee4lwlaZuaQXojYDrw/bqkaUnKfoSdba8HnFTbUDd9md30eg5zH9a9zNz77ZKNCrZ/AHyeMttxW32QJOD7daZhnO1/tv2/Pf0S2n2uns6JiOivETmQqI4GPgcs01T2OmDTpi/gVWw/C9xAmYXYEpgMPAHsTBlgtGX7H8AUyszCBS2Hu7oOwHrAU8ydvWgmypOxduUREdF3pwDftj29pXwMczdf79kolPR24EHbx1IGIetLWhl43vbPKIOSdzP3D/4nJY2m3DMaD7IelvTx2t4SkpbuoY8zKAMVgJ2a+vIO29Nt/xDoBNaizHDvXa+JpFUk/RPwLLBsU5vzvG/3uXroU0REv43UpU3YflrSzymDiVNq8dXAfsBhAJLG2Z5q+891o9vrbT8o6SbK2tSeIjAdAVxv+6k6bd3Q9jqSNgE+RFkne72kq20/1HTeA8DKkjauS5uWpTw9ugHYHbhW0prAasBvu+rUequMoTMRiiIiqEuJjmlz6EeUpU1fBa5tKt8F+LSkl4C/AN8GNgYOk/QK8BLwJdvPSDqJMksxA7izqY3PAP+jEpHvJUpAju58C/hfSd9g3n0c+9c9cXOA+4ErbM+W9C7g1nrfmQV82vYfJd0s6V7KJvNvAC9LugeYRBn4tH6uLuU+EhEDQfbIWiYpaZbtxpOaN1NCtf7I9sQ6WDiesl9hMUrI1X1r3TOAUbY/JWkzyrrVFW0/1dL+WMoa2XVbyvcEOmzv1+46lH0OdwB72b5L0scoG8K3AU6tbZ4vaWPgx5Sp7Bcoy6ReBk6gPLF6Gfiq7eu6+h10dHS4s7NzPn57EbGokTTFdkfPNWNRkvtIRPRWd/eRETeQiNwAIqL3MpCIdnIfiYje6u4+MpL3SERERERExBDJQCIiIiIiIvpsxA0kJB0laf+m91dJOrnp/RF1c11v25so6cAujt3Sj36Or3sxIiJiISLJdd9d4/1ikp6QdOl8tre8pC8PXA8jIhaMkRi16RZKhIyjJb0OWAFYrun4ZpTMov1muz8DgfGUaBvzPRjpyvRHZjL24MsGutmF3oxEKImIgfEcsK6kpWy/QMk59EgP53RneeDLlLwVC0TuIwte7kGxMBpxMxKUTKCNP/DXAe4FnpX0BklLUCIpfUDSnZLulXSiagw9SRMk3S9pmqRzmtpcW9JkSQ9KejXJnaRZ9d/x9fj5kh6QdGZTmx+uZTdJOlbSpTXy077AAZKmStpS0uqSrqnXvkYlIzaSJtXzbqnX33lwf30RETEArgAafxnuRlNCPElvlHRx/b6/TdL6tXyipFPa3G9+ALyj3i8OkzS63ifukjRd0g71/LGSfiPpJEn3Sbpa0lL12Bfqfe8eSReo59wWERH9NuIGErYfpcTOXo0yoLiVEpd7U6ADmAYcZ3vjGsJ1KWD7evrBwIa216f8od+wFvABYBPgm5IWb3PpDSkzHWsDbwc2V8l8+j/Ah2xvAaxY+ziDEs71qJqw7kbgOOD0eu0zgWOb2l6Jkt16e8oNJSIihrdzgF3rfWB95s0P8S3g7vp9/w3g9KZj7e43BwN/rPeLg4AXgR1tvxvYGjii8fAKWAM43vY6wDPMTXB3Yb3vbQD8hpJjKSJiUI24gUTVmJVoDCRubXp/C7C1pNslTafkcVinnjcNOFPSpyn5Ghousz3b9pPAX4E3t7nmHbYftv0KMBUYS7khPNiUdO7sNuc1bAqcVV+fQRk4NFxs+xXb93dxbSTtI6lTUuec52d2c5mIiBhstqdR7gO7AZe3HN6C8j2P7WuBN0kaU4/15n4j4HuSpgG/BlZpqveQ7an19ZTaByhLrW6s973dmXvfm9to7iMRMcBG6kDiFsqgYT3K0qbbKH+ob0YZZPwE2Nn2esBJlIyfUKahj6ckfpsiqbFHZHZT23Nov3ekXR21qddbzQk8mttu26btE2132O4YtfSYdlUiImLBugQ4nNc+RGr3Pd74zu/N/WZ3ygz3RrbHAY8z9z7W1fmTgP3qfe9bTfXndiD3kYgYYCN1IHEzZRnQ07bn2H6aslltU8rsBMCTkkYDOwPUjdmr1ozRX6/1R/ezHw8Ab697IgB2aTr2LLBs0/tbgF3r690pmbUjImLkOgX4tu3pLeU3UL7nkTQeeNL237tpp/V+MQb4q+2XJG0NrN6LviwLPFaXSu3eu+5HRPTPSIzaBDCdEq3prJay0baflHRSfT8DuLMeHwX8rE4vi7J/4Zm5y077zvYLNWTflZKeBO5oOvxL4Py6Se4rwATgFEkHAU8Ae83vdddbZQydif4QETGkbD8MHNPm0ETg1Lo06Xlgjx7aeUrSzZLupWzi/iHwS0mdlKW0D/SiO/9F2afxJ8r9b9nuKuc+EhEDQbZ7rhVdkjTa9qy6Ee544Pe2jxrMa3Z0dLizs3MwLxERCwlJU2x3DHU/YnjJfSQiequ7+8hIXdo0nHxB0lTgPsp09P8MbXciIiIiIgbfSF3aNGzU2YdBnYGIiIiIiBhuhmRGQpIlndH0fjFJT0i6dIj6M34wry1p+bqXovF+rKRPDdb1IiIiIiIG21DNSDxHiXm9lO0XgPcDjwxRXxaE5YEvU8LSQon7/Snm3Szea9MfmcnYgy8bkI5FMSObDiMiIiL6ZCiXNl1ByetwPiWhz9nAlgCSNgGOpmSlfgHYy/ZvJa0DnAq8njKbshPwKPBz4K2UyEzfsX2upEOBj9Y2bgG+aNuS/pmSdXpFSgzuT9b+jJZ0PrAuJcnPp2v9GUBHjQbVARxue7yk9zE3WoeBrWw/W6My/SuwBHCR7W9SslW/o+6l+FX9nO+q708Drm79XLZ/PwC/44iIGEYkzbL9mtDjkiYBl9o+v5tzJwMH2u73Luk8kFrw8sAqFkZDudn6HGBXSUsC61PC1jU8QPnDfEPgUOB7tXxf4JiaoKcDeBj4IPCo7Q1srwtcWeseZ3vjWrYUJe8EwJnA8bY3oCSwe6yWbwjsD6wNvB3YvIf+Hwj8W+3LlsALkrYD1gA2AcYBG0naCjgY+KPtcbYPqu9vrO+P6uJzRUREREQMW0M2kLA9jbLEZzfg8pbDY4Dzakzto4B1avmtwDck/Tuwel0WNR3YVtIPJW1pe2atu7Wk2yVNB7YB1pG0LLCK7YtqH160/Xytf4fth22/QonbPbaHj3AzcKSkCcDytl8Gtqs/dwN3/f/27jzMrqpO9/j3NSAQA0GF1ohoFEFaBgMWXkXA0GK3diuIDQ00rcSrICrS6FUuT6uIOIACguBABxsDqIDIIIiKNhCZhwqEBBBQIV6mRhANRAQhvPePtQ7ZKU5NSaXOqar38zz11NlrT+scyFm19lrr9wM2pXQsBtPufS1H0n6SeiX1Ln1s8bOvEBERY4aKr0u6VdKFwN809h0q6XpJN0uareUTHu0u6TpJd0hqjeKvKek7khZKurEmsYuIWOU6Hf71fOBoyrSmps8Dl9bRhHcCawLY/j6wM2W600WS/s72HcDrKB2KI+oX8JqU9Qi72d4COKleY6Dsc080Xi9l2bSvp1j2Oa3ZOsD2kcAHKKMd10jatF7/iDrSMMP2q2z/12AfQrv31eaY2bZ7bPdMmjx1sEtGRER32xV4NbAFsC9lhLylvxF1gNVsv54ygv7ZWvYRgNre7QWcUtvB5eSBVESMtE53JE4GDre9sE/5VJYtvp7VKpT0SuBO28dTOiFbSnoJ8Jjt71I6JVuz7A/+hyRNAXYDsP0IcI+kd9XrrSFp8iB1XETpqEBZk9Gqy0a2F9r+MtBLGX24CPjf9Z5I2kDS3wCPsnyW0eW2272vQeoUERFj2w7A6baX2r4PuKSx71kj6o1959Tf81g2cr4dcBqA7dso2a036XvDPJCKiJHW0TwStu9h2YLlpq9Qnqh8nOW/XPcA/k3Sk8D/AIcD2wBHSXoaeBL4kO0/STqJMkqxCLi+cY33AP8p6fB6/O4M7HPAf0n6D5Zfx3FQHT5eCtwK/NT2E5L+Fri6jkQvoSza/q2kK+tUrZ8C/wE8JekmYA6l49P3ffVriw2m0ptFWxERY537FjRG1Hts3y3pMBqj4SwbPW+OnA802h4RscrIftb3WHS5np4e9/audNCOiJgAJM2z3dPpekTRitok6d3AB4F/pKyPuJUyxem/gdspow2TgGuAH9o+rBm1SdJ6QK/t6fWh22a23y9pE0p0wE1sP9H3/i1pRyJiqAZqR5LZOiIiYvSdS5m2tBC4A/glwCAj6v35JnBinQr1FDBroE5ERMRISUciIiJilLRySLhMBzign2M+DXy6TfnMxuuHqGskbD9OYz1hRMRo6fRi64iIiIiIGIMmXEdCkiWd1theTdKDkn68gtdbV9KHR66GERERERHdbyJObfozsLmktWrit7eyLNTsilgX+DBljuqoWHjvYqYfcuFo3S6ARYmSFREREbGcCTciUf0UaP1luBeNhHiSXiDpPEkLJF0jactafpikkyXNlXRnzWgNcCSwkaT5ko6SNEXSxZJuqFlGd6nnT5f0K0knSbpF0s8lrVX37VuzmN4k6ewh5LaIiIhxoLYNN/cpO0zSJyTNqrmSBrvGXEmJzBURo24ijkgAnAEcWqczbUlJjLd93fc54Ebb76oZpk8FZtR9mwI7UpLJ3S7pW8AhwOa2Z0CZKgXsavuRGp7vGknn1/M3Bvayva+kH1AS3H0XOMf2SfX8LwDvB05YZe8+IiLGglnAzcB9I33hjGx3n4x8x1g0IUckbC+gRLvYC/hJn93NDKGXAC+U1EoBeqHtJ2q0jN8DL2pzeQFfkrSAEg98g8Zxd9meX183s5JuLunyGrpvb5bPYlouKu0nqVdS79LHFg/zHUdExBjUA3yvjnivJenQOnp9s6TZqplPq90lXSfpDknb93fBiIiRNCE7EtX5wNE0pjVV7TKEtrL2NeNyN7OKNu0NrA+8ro5SPMCyrKT9nT8HOMD2FpQRkWYW01IBe7btHts9kyZP7bs7IiLGn15gb9sz6pq+r9vexvbmwFrAOxrHrmb79cBBwGdHv6oRMRFN1KlNUKYzLba9UNLMRvlllM7A52v5Q3WaUn/XeZQy1allKvB7209K2hF4+RDqsjZwv6TV670HXPy9xQZT6c0QaETEeOBhlO8o6WBgMvAC4BbggrrvnPq7Odq9HEn7AfsBTFpn/RWsbkTEMhO2I2H7HuBrbXYdBnynTk16DNhnkOv8QdKVdbHcT4EvAxdI6gXmA7cNoTqfAa4FfkfJZrr2wIdHRMQ48Qfg+X3KXgDc1SyQtCYlOmCP7bslHcbyo9etEe/+RsuxPRuYDbDGtI3768BERAzZhOtItLKK9imbC8ytrx8GdmlzzGF9tjdvvP7XPoe/sZ/bN885uvH6W8C3Bqt7RESML7aXSLpf0ltsXyzpBcDbKA+6dmPZg6VWp+EhSVPqvh+Ofo0jIpaZcB2JiIiILvNe4BuSjqnbn7P9W0lzgBMl/YXygOokyqj1IuD6lblhpshGxEhIRyIiIqKDbN9KCS3et/xs4OxG0afrT9/jZjZeP0Q/ayQiIkbaRI7atEIkLemnfI6k3QY5N0mDIiIiImJcyIjEGJREQqMviYIiIiIilpcRiRWk4uuSbpV0IfA3jX3DShokaU1J35G0UNKNNWxsRERERETXSkdixe0KvBrYAtgX2Laxb7hJgz4CUBPS7QWcUkP9RUTEKJNkSac1tleT9KCkH9ftnSUd0rkagqSZkrYd/MiIiFUnU5tW3A7A6baXAvdJuqSxb7hJg7YDTgCwfZuk3wGbAAtaF0wioYiIUfNnYHNJa9WM0m+lkSjU9vnA+Z2qXDUTWAJctSInZ4rs2JLptdGtMiKxcp6V0KeRNGi3OsJwEoMnDeo3bfYzN7Jn2+6x3TNp8tSVq3VERAzmp0Drr7e9gNNbOyTNkvT1+nqOpOMlXSXpzlbQjTpiMFfSDyXdJul7rWmukl4n6ZeS5km6SNK0Wn5gnS67QNIZtewFks6rZddI2lLSdGB/4GOS5kvaXtI7JV1bp8f+t6QXjdYHFRETVzoSK+4yYE9Jk2oj0FrX0C5p0FCutTeApE2AlwG3j3B9IyJi6M6gfMevCWwJXDvAsdMoI8vvAI5slG9Fmcb6GuCVwJskrU4Zgd7N9uuAk4Ev1uMPAbayvSWlowDwOeDGWvYfwKm2FwEnAsfanmH7cuAK4A22t6p1P3gl3ntExJBkatOKOxf4O0pyoDuAXwLY/pOk4SYN+iYl6dBC4Clglu0n+js4iYQiIlYt2wvqk/+9gJ8Mcvh5tp8Gbu0zEnCd7XsAJM2nTGf9E7A58Is6QDEJuL8evwD4nqTzgPNq2XbAP9c6XSLphZLaDUu/FDizPth6LnBX3wMyRTYiRlo6EsNke0r9beCAfo4ZVtIg248Ds0a8shERsTLOB46mrEd44QDHNR/8qJ/y1nRWAbfYfmOb6/wTZf3dzsBnJG1G+6mvz5pWSxnl+Krt8yXNBA571kn2bGA2wBrTNm53jYiIYcnUpoiIiPZOBg63vXAEr3k7sL6kNwJIWl3SZpKeA2xo+1LKtKR1gSksP/V1JvCQ7UeAR4G1G9edyrIF4fuMYH0jIvqVEYmIiIg26rSkr43wNf9aF2QfX6corQYcR5ki+91aJsr6hz9JOgz4jqQFwGMs6yRcAPxQ0i7ARykjEGdJuhe4BnjFQPXIFNmIGAkqM3RiLOnp6XFvb2+nqxERY4CkebZ7Ol2P6C5pRyJiqAZqR8bd1KYkEoqIiIiIWPXG49SmJBKKrpNkQhERETHejLsRiSqJhCIiIiIiVqHx2pFIIqGIiIiIiFVoXHYkbC+g5GgYciIh27cCz0okVJMMza/XezXLEgnNp+SKeGk9vpVI6N8oSeWgdFBOq3W6BBgokdBFNSHdJ4HN+h4gaT9JvZJ6lz62eJC3FBERq0odsf6HPmUHSfpmp+rUqMPkTtYhIiaW8bhGoiWJhCIiYlU4HdgTuKhRtiflQdCAJE2yvXQV1esg4LuUMLEDylq78SXr8KJTxnNH4mRgse2F9Y/zkfBMIiHbV9epTpsAv6ImEpJ0BfCvLJ9I6PPNREKSHgXWaVx3WImEEv87IqKjfgh8QdIatp+oa99eAkyWdDWwBvBb4H22l0haRGmT/h74uqQjge8DOwKrA/sBRwCvAo6yfWJdl/cV4O2UB1BfsH1m42HTQ5QR8nnAv1FySbwEuFTSQ7Z3XOWfQkRMeONyahOUREK2RzyRELAb8GVJN1GmPG0LTKIkEloI3EhNJET5su+piYSOZPlEQru2FluzLJHQ5ZTGISIiupTtPwDXAW+rRXsCFwOfAnayvTXQC3y8cdrjtrezfUbdvruObl8OzKG0LW8ADq/73w3MAF4L7AQc1QruQZs1fLaPB+4DdkwnIiJGy7gbkbA9pU3ZXGBufT2H8qWN7Vntzm0eX7cPaLyeT5nC1Nd2be77MLBLm/I7KIvAm37U5poREdGdWtObflR/nwO8E7iyBvl7LnB14/gz+5zfCkO+EJhi+1HgUUmPS1qX0qacXqdBPSDpl8A2wCPUNXwAdb3edErQjgFJ2o8y+sGkddYf3ruNiGhj3HUkIiIiRsF5wFclbQ2sRRmN/oXtvfo5/s99tlvr8J5m+TV5T7NsTV5/2q3hG1TW2kXESBu3U5siIiJWFdtLKCPXJ1NGJ66hhAl/FYCkyZI2WYlbXAbsIWmSpPUpI+HXDXLOo8DaK3HPiIhhmXAjEpLmAkfYvqhRdhCwie0Pd7BeBwGzbQ8abSMiIrrC6ZQpTXvaflDSLOB0SWvU/Z8G7ljBa58LvBG4ibLY+mDb/yNp0wHOmQ38VNL9g62TSNCOiBgJsifW6KakD1KSv72vUXYN8MmaHG6gc1dZ2L4a1aPH9qCLrdeYtrGn7XPcqqhGdEDC9sWqJGme7Z5O1yO6S09Pj3t7eztdjYgYAwZqRybi1KYfAu9oPTHqG7ZP0g2SzpI0pe5fJOnQGtZ197r9pXpsr6StJV0k6beS9q/nSNJRkm6WtFDSHrV8Zk1k9ENJt0n6Xj32QJaF7bu0A59JRERERMSwTLiORML2RURERESsvAnXkahaYfuov++i/GF/ZQ2ltw/w8sbxA4Xtu9b2o7YfBJ4Vts/2A0ArbB/UsH22n6bkoZg+lApL2q+OgPQufWzxkN9oRERERMSqMOEWW1fnkbB9ERHRhqRjgd/ZPq5uX0QZif5A3T4GWAz81faRHajfS4Djbe822veOiGiakB0J20tq9KZm2L5vSHqV7d9Imgy8tCaOWxGXAR+UdArwAkrYvk8CA0XbaIXtS2briIjOugrYHThO0nOA9YB1Gvu3BQ6yfW0nKmf7PsqU2hW28N7FTD/kwhGqUXS7BPWIVWVCdiSqhO2LiIh2rgSOra83A24Gpkl6PvAY8LfAayW9x/YBknYHPksZZV5sewdJk4AvA/9AaQdOsn2CpLcAR1Pa3+uBD9l+okbuO4WSHXt1YHfbt0l6M/C1WhdTHky9EPix7c1r27UzMBnYCDjX9sGr7JOJiGiYsB0J2+fSmIJk+xKWrWNoHje9v23bcyiLrdsd+8n60zx3LiWBUWv7gMbrE4AThvMeIiJi5Nm+T9JTkl5GGX24GtiA8oBoMbAA+GvjlEOBf7B9b10nB7Af8ApgK9tPSXqBpDUpbcZbbN8h6VTgQ8Bx9ZyHbG8t6cPAJ4AP1N8fsX1ljSb4eJsqz6AE8ngCuF3SCbbvHonPIiJiIBN1sXVERMRArqR0Ilodiasb21e1OXaOpH2BSbVsJ+BE208B2H4YeDVwV2Pa7CmUEYaWc+rveSwLxHElZU3fgcC6rev1cbHtxbYfB25l+WAhz0jQjogYaelIREREPNtVlE7DFpSpTddQRiS2pfxx/wzb+1Omw24IzJf0QsqId9/AGAMF4oBlwTieCcRRF3N/gBIY5Jp+psgOKYiH7dm2e2z3TJo8dZCqREQMLh2JiIiIZ7sSeAfwcA3l/TCwLqUzcXXzQEkb2b7W9qGUgBkbAj8H9pe0Wj3mBcBtwHRJr6qnvocSHrxf9doLbX+ZkuNooLV2ERGjalTWSEgy8FXb/6dufwKYYvuwEbr+dOrCs0bZYcAS20ePxD2GUZd+7yvpKtvbjmZ9IiJihSykRGv6fp+yKbYfkpYbXDhK0saUEYeLKYE2bgY2ARZIepKy2Prrkt4HnFU7GNcDJw5Sj4Mk7UgZabgV+CkwbeBTBpegHRExEmSv+pQEkh4H7ge2qV/AE7Ij0c/xk2wvHc491pi2saftc9wK1C7GooTti5UhaZ7tnk7XI7pLT0+Pe3t7O12NiBgDBmpHRmtq01OU8KYf67tD0vqSzpZ0ff15Uy1fKGldFX+Q9N5afpqknYZzc0n71mvfVO81uZbPkfQtSZdKulPSmyWdLOlXkuY0zl8i6RhJN0i6WNL6tfxASbdKWiDpjMYtXyNpbr3mgc3r1N8z6z2/DyyUNEnSUbWOCyR9cDjvLyIiIiJitI3mGolvAHtL6rvC62vAsba3Af4Z+HYtvxJ4EyWG953A9rX8DZRFb31tJGl+6wfYv7HvHNvb2H4t8Cvg/Y19zwf+jtLJuYASO3wzYAtJM+oxzwNusL01ZT7rZ2v5IZTQflv2ud+mlNjhrwc+K2n1NvV9PfAp26+p9VlcP4NtgH0lvaJ5cKJtREREREQ3GbU8ErYfqTGzDwT+0ti1E+UJfmt7HUlrA5dTwuL9DvgWsJ+kDSgL35a0ucVvbc9obdQpRi2bS/oCZaHcFOCixr4LbFvSQuAB2wvr+bdQwu/NB54GzqzHf5dlIfoWAN+TdB5wXuOaF9p+AnhC0u+BFwH39Knvdbbvqq//HthSUitT6VRgY6C1H9uzKaM6rDFt41U/Hy0iIiIiYgCjnZDuOOAG4DuNsucAb7Td7Fwg6TLgI8DLgE8BuwK7UToYwzUHeJftm2oW0JmNfa2weU+zfAi9p+n/82n9If9PlM7OzsBnJG3W55rQfyi+PzdeC/io7YvaHBcRERER0XVGtSNh+2FJP6BM5Tm5Fv8cOAA4CkDSDNvzbd8taT3gubbvlHQFJcPnAe2uPYi1gfvrFKO9gXuHef5zKJ2YM4B/Ba6Q9BxgQ9uX1rr9K2W0Y0VcBHxI0iW2n5S0CXCv7T+3OzjRNiJiIknkv2f2jVjkv4X3Lmb6IReOxKViDEjQjlhVOpFH4hhKSL2WA4Geusj4VpZfa3At0MoAejmwAXDFCtzzM/Vav6DE8R6uPwObSZpHWU9xOCV76XfrlKgbKes8/rQC14ayLuRW4AZJNwP/yeiPFkVEdKsngHfXh0sTVrtOhKRJ7Y6NiBgNoxL+dayTtMT2io42jLiE7YuIoRoP4V9rxLsvUkYhPtUckahR9E6kTIMFOMj2lfUhz/bAYkqSuI/ZPlXSacAptv+7cf3pDDAiIWlfYD/gucBvgPfYfqxG9/sLJcDGy4H3AftQktZda3tWo/7/CewI/BHY0/aDNarf/pTIhrfa3rPe92XAK+vv42wf37qO7SmSZlKCftwPzKBk3z6SMm13DeAbtv9zoM80YcQnloxIxMrohvCvERERKyOR/5Y3rMh/kOh/ETHyMn1mCLppNCIiYiJK5L+Vi/wHif4XESNvXI5ISDpW0kGN7YskfbuxfYykQyUd0qH6vUTSDztx74iIMew4ytP35zXKWpH/ZtSfDWw/ClxGGYXYHpgLPMjKRf47wPYWwOeANRv7Vjby3zeA1wHzJLWOX9HIf63P4BW2fz7wW4qIWHnjdUTiKmB34LgaXWk9YJ3G/m0p82iv7UTlbN9HadBWSKJtTCyZ2xpRJPJfv4YV+S8iYqSM147ElZR5qlDmqt4MTJP0fOAx4G+B10p6j+0DJO1OmbO6lDLPdIcaCePLlHmqBk6yfYKktwBHUz6764EP2X5C0iLgFOCdwOrA7rZvk/Rmyhxe6nV2AF5IXdhX81rsDEwGNgLOtX3wKvtkIiLGtmNYvjNwIPANSQso38uXsWy9wbWUCHtQRiKOYOUi//0OWEjpWAxHM/LfYmAPlkX+m0oZUTjW9p8aU7SG49uUaVQ3qFzgQeBdA52QMOIRMRLGbdSm+of9DsDbKV/SGwBXU77Ej6A8zeqpHYmFwNts3ytp3fpl/iHK3Ns9bD8l6QWUTsivgbfYvqPO173B9nH1fsfUzsaHga1tf0DSBcCRNYrIFOBx4KUs35E4FNiKMpx9O7Cd7bv7e2+JtjGxZEQiVsZ4iNo01nVb5D9I9L+IGLqJGrXpSsoUpm0pHYirG9tXtTl2Tg3x13p6tRNwou2noAypA68G7rLdym1xCqWz0tJaQDeP8nSode2v1jB/67au18fFthfbfpyST+LlfQ9ItI2IiIiI6CbjuSNxFaXTsAVlatM1lNje21L+uH+G7f2BTwMbAvMlvZAyitF3uGawMefWArlnFsfZPhL4ALAWcI2kTQc4b7lz+9Rxtu0e2z2TJveNfhgREd2q20YjIiJGynjuSFwJvIMS6m9pHVFYl9KZuLp5oKSNbF9r+1BK4qINKQv49m9F0ahTm24Dpkt6VT31PZSY4P2q115o+8tALyU+eERERETEmDZeF1tDWRC3HvD9PmVTbD/UZ0HbUZI2pow4XAzcRBnF2ARYIOlJymLrr0t6H3BW7WBcT8moOpCDJO1IGWm4FfgpMG1l3lgWyUVEDEzSUsp3/mqUJHL72H6sQ3WZRV2TN4LXfAlwvO0VjgAYEbGyxu1i6/Esi+QiYqgm6mLr5gJnSd8D5tn+aofqMosR7kisrATtiJGSgCDj30RdbB0REQEl9OurJD1P0smSrpd0o6RdoPyhL+kcST+T9GtJX2mdKGmJpC9KuknSNZJeVMt3l3RzLb+sll0uaUbj3CslbdnYnippUc0hgaTJku6WtLqkfWu9bpJ0tqTJ9Zg5ko6XdJWkO1vZqyVNl3Rz4/Xlkm6oP9uu6g80IgLSkYiIiHGsTkN9O2Wa06eAS2xvA+xImdbaypI9g5LfYQtgD0kb1vLnAdfYfi0lR8W+tfxQ4B9q+c617NvArHrfTYA1bC9o1cX2YsrU2TfXoncCF9l+EjjH9jb1er+iJN1rmQZsR1n3d2Sbt/l74K22t67v4fghf0ARESshHYmIiBiP1pI0nxLk4v8B/wX8PXBILZ8LrAm8rB7fXxjuvwI/rq/7hvbuGzb8LOAdNQP2/wbmtKnXmZQ/9gH2rNsAm9dRhYWU7NmbNc45z/bTtm8FXtTmmqsDJ9VzzwJe0+4DSRjxiBhpXbvYOgvl+rfw3sVMP+TCkapKTGCZ2xrj2F9sz2gW1KzP/2z79j7l/4v+w3A/6WWLCZuhvfev5/0TJWz4DNt/kPQLYBfgX4B2c4rPB46okQBfB1xSy+cA77J9U21zZjbOadatXRjyjwEPAK+lPCB8vM0x2J4NzIayRqLdMRERw9HNIxJ/sT3D9uaUJ0L7d7pCI8n2fYm2ERExqi4CPlo7FEjaakUv1E/YcCjTm44Hrq9hx5djewlwHfA14Me2l9ZdawP319GMvYdZnanA/bafpoQlnzTI8RERI6JrRyT6uBzYss5lPYEyh3U14DDbP6pPb3YGJgMbAefaPhjKQjnKF/Y7gL8Au9h+QNLuwGcpT5gW295B0uXAR23Pr+deCXyoVQlJUynzW19p++m6GO524JWUebH7Ac8FfgO8x/ZjkuYAj1CeTL0YONj2DyVNpzQim9fXp1Hm4gIcYLtv9u2IiFg5nweOo4T1FrCI0jasiHZhw7E9T9IjwHcGOPdMyhSkmY2yzwDXAr+jjMavPYy6fBM4u7ZrlwJ/HuyEhBGPiJHQteFfW6H76kK5s4GfUZ743Gr7u5LWpTzV2QrYnbLwbSvKEPDtwHa275ZkYGfbF9RIHI/Y/kKdS/o22/dKWtf2nyTtA2xl+6C6UO77tnuaU5sk/Qg4zvalkvagLHD7gKQX2v5DrfsXgAdsn1A7Es+jzIndFDjf9qv6dCQmA0/bfrw2TKf3DbMlaT9KR4VJ66z/upd+aKA2KmJoMrVp/Juo4V87pU5bnQtsWkcIulLCiEfEUI3V8K9ZKNdge7btHts9kyZPbXOJiIjoJEnvpYwqfKqbOxERESOlm6c2ZaFcRESMGbZPBU7tdD0iIkZLN3ck2mktlPuobUvayvaNK3Kh1kI54FpJ76RMm/oDZaHcBcDl/S2UkzSUhXL3DqM6U4F76rqLfRhkoVzmtkZEREREp421jkQWykVEREREdIGuXWzdKWNhoVwWyUXEUGWx9cqT9GLKQ6xtKFNVFwEH2b6jn+NbwUKWyxck6XTK+rnv2D52JevUA7zX9oErcv4a0zb2tH2OW5kqRIyIBP3ofgO1I2NtRGKVqgvlvgh8vFs7ERERMXrq6Pe5wCm296xlMyiBM9p2JFps3we0OhEvBra1/fKBzulz79VsP9XPtXspwUgiIjqmm6M2jTrbp9re0PZZna5LRER0hR0pQTtObBXUXEM3SrpY0g2SFkrape+JkqZLurlu/hz4G0nzJW0vaYakayQtkHSupOfXc+ZK+pKkXwL/Xre/LOk6SXdI2r4eN1PSj+vr10u6StKN9ferV+1HEhFRTLiOhKQXSzpD0m8l3SrpJzVnRLtjm43ASNfjMEmfWBXXjoiIEbM5JXR4X48Du9remtLZOKaVMbsfOwO/tT3D9uWU6E7/1/aWlHV1n20cu67tN9s+pm6vZvv1wEF9jmu5DdjB9laUnEpfalcBSftJ6pXUu/SxxQNUNSJiaCbU1KaVGaIe4vX7HYYeSQvvXcz0Qy5c1beJWGmZ+xrjmIAvSdoBeBrYgNKW/M+gJ0pTKZ2FX9aiUygBPFrO7HPKOfV3MxdS01TglBpAxJTcRM9iezYwG8oaicHqGRExmIk2ItHfEPUVko6SdHMdot6j74mS1pT0nbr/Rkk71vJZks6SdAHwc0lT+hvulvQpSbdL+m/g1Y3ytkPcERHRcbdQcgb1tTewPvC6mvPoAUqS1JHQN3JfKxdRM0dS0+eBS21vDrxzBOsRETGgCTUiQf9D1O8GZlASwq0HXC/psj7HfATA9haSNqV0GlpTot4IbGn7YUmrUYa7H5G0HnCNpPOBrSmZsLeifO43NOpyKvBR27+UdDhl6PqgkXjDERGxUi6hjDzsa/skAEnbAC8Hfm/7yfpgaciLqG0vlvRHSdvXaU7vAX452HkDmMqy3EWzhnJC8hFFxEiYaCMS/dkOON32UtsPUL7Qt2lzzGkAtm+j5ItodSR+0Uhe1xruXgD8N8uGu7cHzrX9mO1HKBmy+xvi3qFvBTO3NSJi9LnESN8VeGtdW3cLcBjwE6BHUi9ldOK2YV56H0o+owWUB1mHr0Q1vwIcIelKBkloGhExkibaiMQt1FB8fQy0QG4oxzSHoZvD3U9KWsSyYeYVnpOaua0REZ1Rw7j+S5tdb+zn+Cn19yLKSPhyr+v2fOANbc6d2d+27YeoayRsz6XkPML21Sx7sAUlQWpExCo30UYkLgHWkLRvq6AOUf8R2EPSJEnrU0YErutz7mWUTgJ1StPLgNvb3GMq7Ye7LwN2lbSWpLUp81ixvRj4YyukHys/xB0RERERscpNqBEJ25a0K3CcpEMo4fsWUdYjTAFuoowaHGz7fyRNb5z+TeBESQuBp4BZtp9oE+3ve8AFdbh7PnW42/YNks6sZb8DLm+cs0+99mTgTuB9A72PzG2NiIiIiE5Tmf4ZY0lPT497e5PQNCIGJ2me7Z5O1yO6S9qRiBiqgdqRiTa1KSIiYoUlqWlExDITampTRETEihovSU0hiU1jbEhS0+7XFSMSNVHbLTUh23xJ/6uWf1vSa0bh/rMkPS1py0bZzX3WSIz0PWdK+vGqun5ERIy4JDWNiGjo+IiEpDcC7wC2rouX1wOeC2D7A8O81iTbS/vbHsQ9wKeAZzUA3SZPkmKsyNOkGGeS1DQioqEbRiSmAQ/ZfgJKnOwasxtJcyX11Nd/L+nq+pTmLElTavkiSYdKugLYvc32vpKul3STpLNrZKR2fgxsJunVfXe0u7ekt0v6QeOYmfWJEpK+VZPH3SLpc41j3ibptlq3dzfKXy/pqvqU6qp2dYiIiK7V9UlN67FJbBoRI6obOhI/BzaUdIekb0p6c98D6lOZTwM72d4a6AU+3jjkcdvb2T6jzfY5trex/VrgV8D7+6nH05TsoP8xxHv/AniDpOfVQ/cAzqyvP1VXt28JvFnSlpLWBE6i5I/YHnhx4za3ATvY3go4FPhS/x9XRER0yC3A69qUr6qkpjOABxiBpKZQEpva7rHdM2ny1JW5VEQE0AUdCdtLKF/M+wEPAmdKmtXnsDcArwGulDSfknfh5Y39Z/Y5vrm9uaTLVfI/7A1sNkB1vk/pHLxisHvXBXE/A95Zh6L/CfhRPedfJN0A3Fjv9xpgU+Au2792ibn73cY9pgJn1egex7arY54kRUR0XJKaRkQ0dHyNBEBdxzAXmFv/4N8HmNM4RJSh3736ucSfB9ieA7zL9k21gzJzgHo8JekY4P8O8d5nUua9Pgxcb/vR2gn5BLCN7T9KmsPgT5M+D1xqe9e6wHtum7rNBmYDrDFt4yT/iIgYZeMlqSkksWlEjIyOdyTqeoCnbf+6Fs2gfEk2XQN8Q9KrbP+mflm+1PZQwu2tDdwvaXXK06B7Bzl+DnBwPW+we88F/gvYl2WjIOtQOjKLJb0IeHs97jbgFZI2sv1boNkxmdqo16whvKeIiOiAuobvX9rs+mT9aR67iLJAG9uP0+b73fYcGg/ObD9EWXzd7t5fBL7Ypnw+ZfQ8ImJUdbwjQXmKc4KkdSlPaX5Dmeb0DNsP1tGE0yWtUYs/zdDidn8GuJbSOVnIsg5CW7b/Kul44GuD3dv2UpUQrrMoT4SoIx83UubS3glcWcsfl7QfcKGkh4ArqA0MZW3GKZI+Thk6H1CeJEVEREREp6lM14+xpKenx729vZ2uRkSMAZLm1eAPEc9IOxIRQzVQO9LxxdYRERERETH2pCMRERExBJIs6bTG9mqSHqxTXJG0c12E3d/502t0vnb7Dpe008jXOiJi1emGNRIRERFjwZ8pIcXXsv0X4K00AnjYPp+aKG64bB86MlUcmoX3Lmb6IReO5i0jolo0jta5TpgRiTxJioiIEfBTSt4gKNH3Tm/tkDRL0tfr6xdJOlfSTfVn23rYJEknSbpF0s8lrVWPnyNpt/r6HyXdJukKScc32qnXS7pK0o3196sb9z1H0s8k/VrSV0bno4iIiW4ijUjkSVJEjIjx9DQphu0M4ND6x/2WwMnA9m2OOx74Zc0PNIkSofD5wMbAXrb3lfQD4J9pJCiVtCbwn8AOtu+SdHrjmrfV8qfqw6sv1fOhhE7fCngCuF3SCbbvHrF3HRHRxoQZkajyJCkiIlaY7QXAdEob8pMBDv074Fv1nKU1AzXAXTXvA8C8eq2mTYE7bd9Vt5sdianAWXV0/Fhgs8a+i20vrvkqbmVZRuxnSNpPUq+k3qWPLe67OyJi2CZaR+IMYM/6xGdLSn6JdlpPkl4LbE3JCQHlSdI3bG8G/IllT4KA5Z4kvd32dsD6jd2tJ0lbAYdSniS1zAD2ALYA9pC04Yq+wYiIWOXOB45m+T/yh+qJxuulPHtmwLNSXTd8HrjU9ubAO4E1h3FdbM+23WO7Z9LkqcOrdUREGxOqI5EnSRERMQJOBg63vXCAYy4GPgQgaZKkdYZ47duAV0qaXrf3aOybyrIpubOGXNuIiFVkIq2RaGk9SZoJvHCY5/Z94rNWn/1DeZK0a20g5g5w3bZPkoDZAGtM2zhZBCMiOsT2PcDXBjns34HZkt5P+V7/EHD/EK79F0kfBn4m6SHgusburwCnSPo4cMkKVb7aYoOp9GatT0SspInYkTgZWGx7oaSZ/RzTepJ0XF0k97whXvuZJ0m2F7GKniSlAYiIGH22p7Qpm0t9MGR7DjCnvn4A2KXNZTZvnHt04/WsxjGX2t5UkoBvAL31mKuBTRrHfabvfev2O4b8piIiVsKEmtoE5UmS7aE8SdpR0kLKFKbNBjm+de2/AK0nSVcADwCteUhfAY6QdCUwaYUqHxERE8G+kuZT1udNpay9i4joOrIzS2YkSZpie0njSdKvbR87kvfo6elxb2/vSF4yIsYpSfNs93S6HtFd0o5ExFAN1I5MuBGJUZAnSREREREx7k3ENRKrVB19GNERiIiIiIiIbjNhOhKSDHzV9v+p258Aptg+bASuvSYwH9i9FQ5Q0sHAK23vP4TzDwOWNBfeRUREdxlP7cjCexcz/ZALV7zCETEmLRrhYD0TpiNBCbH6bklH2H5oJC9s+3FJBwHflLQD8BLgg8Cg85IlDfu/QRqAiIlrpBuBGJZx045ERIyEibRG4ilKHoaP9d0haX1JZ0u6vv68qZYvlLSuij9Iem8tP03STs1r2P4ZJUb4eylTmw4D1pF0saQF9ffL6vlzJH1V0qXAl/vUZV9JP5XUN0dFRER0VtqRiIiGidSRgBJFaW9JU/uUfw041vY2wD8D367lVwJvooR/vRPYvpa/AbimzfUPAr4IrG/7NODrwKm2twS+BxzfOHYTYKfWEDmApAOAdwLvqqFkIyKiu6QdiYioJtRwqO1HJJ0KHAg0v2B3Al5TIrYC5QnQ2sDlwA7A74BvAftJ2gB42PaSNte/T9IlwI9r0RuBd9fXp1FySbScZXtpY/s9wD2UL/8n+15b0n7AfgCT1ll/6G86IiJGTNqRiIhlJtqIBMBxwPtZPlv1c4A32p5Rfzaw/ShwGeXp0faUzKUPArtRGob+PF1/2mkm7fhzn303A9OBl7Y90Z5tu8d2z6TJfR+ERUTEKDqOtCMREROvI2H7YeAHlEag5efAAa0NSTPqsXcD6wEb274TuAL4BAM3AE1XAXvW13vX8/tzI2Vh3fmSXjLE60dExChLOxIRUUyoqU0Nx9D4wqcMUX9D0gLKZ3IZ0Aq3dy0wqb6+HDiCgb/Imw4ETpb0ScpTqPcNdLDtK2o4wQslvbW/qCBbbDCV3kRuiYjopLQjETHhyfbgR0VX6enpcW9vb6erERFjgKR5tgcNIRoTS9qRiBiqgdqRCTe1KSIiIiIiVl5GJMYgSY8Ct3e6Hv1YDxjRRE0jqFvr1q31gtRtRXRbvV5uOyF6YjlpR1ZYt9atW+sF3Vu3bq0XdF/d+m1HJuoaibHu9m6dqiCpN3Ubnm6tF6RuK6Jb6xXRR9qRFdCtdevWekH31q1b6wXdXbe+MrUpIiIiIiKGLR2JiIiIiIgYtnQkxqbZna7AAFK34evWekHqtiK6tV4RTd38/2nqNnzdWi/o3rp1a72gu+u2nCy2joiIiIiIYcuIREREREREDFs6EmOMpLdJul3SbyQd0un6NElaJGmhpPmSOpbpSNLJkn4v6eZG2Qsk/ULSr+vv53dR3Q6TdG/93OZL+scO1GtDSZdK+pWkWyT9ey3v+Oc2QN264XNbU9J1km6qdftcLe/45xbRn25tR7qlDal1STsy/HqlHRl+vcZ8G5KpTWOIpEnAHcBbgXuA64G9bN/a0YpVkhYBPbY7GvtY0g7AEuBU25vXsq8AD9s+sjacz7f9f7ukbocBS2wfPdr1adRrGjDN9g2S1gbmAe8CZtHhz22Auv0Lnf/cBDzP9hJJqwNXAP8OvJsu+P8toq9ubke6pQ2pdUk7Mvx6pR0Zfr3GfBuSEYmx5fXAb2zfafuvwBnALh2uU9exfRnwcJ/iXYBT6utTKF8go66funWc7ftt31BfPwr8CtiALvjcBqhbx7lYUjdXrz+mCz63iH6kHRmCtCPDl3Zk+MZDG5KOxNiyAXB3Y/seuuAfQoOBn0uaJ2m/TlemjxfZvh/KFwrwNx2uT18HSFpQh6w7OoQpaTqwFXAtXfa59akbdMHnJmmSpPnA74Ff2O66zy2ioZvbkW5uQ6D7/113/PuwJe3IsOozptuQdCTGFrUp66a5aW+yvTXwduAjdfg1BvctYCNgBnA/cEynKiJpCnA2cJDtRzpVj3ba1K0rPjfbS23PAF4KvF7S5p2oR8QQdXM7kjZkxXXF9yGkHRmusd6GpCMxttwDbNjYfilwX4fq8iy276u/fw+cSxlC7xYP1DmSrbmSv+9wfZ5h+4H6RfI0cBId+tzq/Myzge/ZPqcWd8Xn1q5u3fK5tdj+EzAXeBtd8rlFtNG17UiXtyHQxf+uu+X7MO3IihurbUg6EmPL9cDGkl4h6bnAnsD5Ha4TAJKeVxcwIel5wN8DNw981qg6H9invt4H+FEH67Kc1pdFtSsd+Nzqgq//An5l+6uNXR3/3PqrW5d8butLWre+XgvYCbiNLvjcIvrRle3IGGhDoIv/XXfJ92HakeHXa8y3IYnaNMbU0GTHAZOAk21/sbM1KiS9kvIECWA14Pudqpuk04GZwHrAA8BngfOAHwAvA/4fsLvtUV+s1k/dZlKGVQ0sAj7Ymhs5ivXaDrgcWAg8XYv/gzKHtKOf2wB124vOf25bUhbCTaI8mPmB7cMlvZAu+P8top1ubEe6qQ2p9Uk7Mvx6pR0Zfr3GfBuSjkRERERERAxbpjZFRERERMSwpSMRERERERHDlo5EREREREQMWzoSERERERExbOlIRERERETEsKUjEdGFJL1Y0hmSfivpVkk/kbTJCF5/pqRtR+p6ERHRXdKOxGhIRyKiy9TEOecCc21vZPs1lHjXLxrB28wE0gBERIxDaUditKQjEdF9dgSetH1iq8D2fOAKSUdJulnSQkl7wDNPhX7cOlbS1yXNqq8XSfqcpBvqOZtKmg7sD3xM0nxJ24/ie4uIiFUv7UiMitU6XYGIeJbNgXltyt9NycD5WkpG0+slXTaE6z1ke2tJHwY+YfsDkk4Eltg+eqQqHRERXSPtSIyKjEhEjB3bAafbXmr7AeCXwDZDOO+c+nseMH0V1S0iIrpf2pEYUelIRHSfW4DXtSlXP8c/xfL/ltfss/+J+nspGYWMiJgI0o7EqEhHIqL7XAKsIWnfVoGkbYA/AntImiRpfWAH4Drgd8BrJK0haSrwliHc41Fg7ZGvekREdIG0IzEq0quM6DK2LWlX4DhJhwCPA4uAg4ApwE2AgYNt/w+ApB8AC4BfAzcO4TYXAD+UtAvwUduXj/T7iIiIzkg7EqNFtjtdh4iIiIiIGGMytSkiIiIiIoYtHYmIiIiIiBi2dCQiIiIiImLY0pGIiIiIiIhhS0ciIiIiIiKGLR2JiIiIiIgYtnQkIiIiIiJi2NKRiIiIiIiIYfv/rHq3AZjRydwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "#Code task 13#\n", "#Create two subplots on 1 row and 2 columns with a figsize of (12, 8)\n", - "fig, ax = plt.subplots(___, ___, figsize=(___))\n", + "fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12,8))\n", "#Specify a horizontal barplot ('barh') as kind of plot (kind=)\n", - "ski_data.Region.value_counts().plot(kind=___, ax=ax[0])\n", + "ski_data.Region.value_counts().plot(kind='barh', ax=ax[0])\n", "#Give the plot a helpful title of 'Region'\n", - "ax[0].set_title(___)\n", + "ax[0].set_title('Region')\n", "#Label the xaxis 'Count'\n", - "ax[0].set_xlabel(___)\n", + "ax[0].set_xlabel('Count')\n", "#Specify a horizontal barplot ('barh') as kind of plot (kind=)\n", - "ski_data.state.value_counts().plot(kind=___, ax=ax[1])\n", + "ski_data.state.value_counts().plot(kind='barh', ax=ax[1])\n", "#Give the plot a helpful title of 'state'\n", - "ax[1].set_title(___)\n", + "ax[1].set_title('state')\n", "#Label the xaxis 'Count'\n", - "ax[1].set_xlabel(___)\n", + "ax[1].set_xlabel('Count')\n", "#Give the subplots a little \"breathing room\" with a wspace of 0.5\n", - "plt.subplots_adjust(wspace=___);\n", + "plt.subplots_adjust(wspace=0.5);\n", "#You're encouraged to explore a few different figure sizes, orientations, and spacing here\n", "# as the importance of easy-to-read and informative figures is frequently understated\n", "# and you will find the ability to tweak figures invaluable later on" @@ -771,25 +1633,280 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 79, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AdultWeekdayAdultWeekend
state
Alaska47.33333357.333333
Arizona81.50000083.500000
California78.21428681.416667
Colorado90.71428690.714286
Connecticut47.80000056.800000
Idaho56.55555655.900000
Illinois35.00000043.333333
Indiana45.00000048.500000
Iowa35.66666741.666667
Maine51.50000061.000000
Maryland59.00000079.000000
Massachusetts40.90000057.200000
Michigan45.45833352.576923
Minnesota44.59571449.667143
Missouri43.00000048.000000
Montana51.90909151.909091
Nevada78.50000081.000000
New Hampshire65.57142976.500000
New Jersey79.99000079.990000
New Mexico65.66666765.666667
New York50.03225858.945455
North Carolina41.83333364.166667
Ohio42.20000045.400000
Oregon58.85714359.857143
Pennsylvania52.70588263.687500
Rhode IslandNaNNaN
South Dakota51.50000051.500000
Tennessee36.00000065.000000
Utah89.08333393.000000
Vermont83.50000087.900000
Virginia51.00000068.000000
Washington65.10714370.144286
West Virginia62.50000079.750000
Wisconsin46.42857154.266667
Wyoming57.60000056.166667
\n", + "
" + ], + "text/plain": [ + " AdultWeekday AdultWeekend\n", + "state \n", + "Alaska 47.333333 57.333333\n", + "Arizona 81.500000 83.500000\n", + "California 78.214286 81.416667\n", + "Colorado 90.714286 90.714286\n", + "Connecticut 47.800000 56.800000\n", + "Idaho 56.555556 55.900000\n", + "Illinois 35.000000 43.333333\n", + "Indiana 45.000000 48.500000\n", + "Iowa 35.666667 41.666667\n", + "Maine 51.500000 61.000000\n", + "Maryland 59.000000 79.000000\n", + "Massachusetts 40.900000 57.200000\n", + "Michigan 45.458333 52.576923\n", + "Minnesota 44.595714 49.667143\n", + "Missouri 43.000000 48.000000\n", + "Montana 51.909091 51.909091\n", + "Nevada 78.500000 81.000000\n", + "New Hampshire 65.571429 76.500000\n", + "New Jersey 79.990000 79.990000\n", + "New Mexico 65.666667 65.666667\n", + "New York 50.032258 58.945455\n", + "North Carolina 41.833333 64.166667\n", + "Ohio 42.200000 45.400000\n", + "Oregon 58.857143 59.857143\n", + "Pennsylvania 52.705882 63.687500\n", + "Rhode Island NaN NaN\n", + "South Dakota 51.500000 51.500000\n", + "Tennessee 36.000000 65.000000\n", + "Utah 89.083333 93.000000\n", + "Vermont 83.500000 87.900000\n", + "Virginia 51.000000 68.000000\n", + "Washington 65.107143 70.144286\n", + "West Virginia 62.500000 79.750000\n", + "Wisconsin 46.428571 54.266667\n", + "Wyoming 57.600000 56.166667" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 14#\n", "# Calculate average weekday and weekend price by state and sort by the average of the two\n", "# Hint: use the pattern dataframe.groupby()[].mean()\n", - "state_price_means = ski_data.___(___)[[___, ___]].mean()\n", - "state_price_means.head()" + "state_price_means = ski_data.groupby('state')[['AdultWeekday', 'AdultWeekend']].mean()\n", + "state_price_means" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 82, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqAAAAJcCAYAAAAmbBanAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZgX1Zn+//eddgHD5kIcRWO7IKjQAWxQEA0uURONGtGvGhNFowSTicGMmfgzo2kdjSQxi2ImBEfpLAQTURBwY1RQA4g2NDYIbqOoSFQgioA0I/D8/qjT7Ye2F9ZPb/fruvrqqnNOnXqqmlx5PKeqjiICMzMzM7N8+UxjB2BmZmZmrYsTUDMzMzPLKyegZmZmZpZXTkDNzMzMLK+cgJqZmZlZXjkBNTMzM7O8cgJqZtbESHpY0sWb0W6xpJPyEVNDJI2SdN127rNE0p+3Z59m1jQ4ATWzZkfSdEnvS9q1sWPZVrUlWRHx5Yj4ww4853ZPXCNiWET85/bsc3uSNFDSTEkrJf1T0gxJfVPdEEl/34K+CiWFpJ12XMRmLZsTUDNrViQVAscCAZyxA/p3UrGFJBU0dgz1kdQBmAKMBPYAugA3AOsaMy6z1swJqJk1NxcBzwClwMUAknaV9IGkHlWNJHWWtFbS59L+6ZLmpXYzJRXltF0s6UeSKoA1knaSdI2k/5W0StJCSV/LaV8g6ZeSlkt6XdK/5o6ISeoo6S5J/5D0tqSbakvSJJ0KXAucJ2m1pOdT+XRJl+W0u1zSopxY+tTSV/cUy/n1Xa+kPwGfByanc/57LX0NkrRE0rXpGhdLujCnvlTS7yQ9JGkNcHwquymnzZnp/B+m+3jqltybHG0k/TVd+1xJX0j9/FDSfTXiHinpN7X0cShARIyLiA0RsTYipkZEhaTDgFFA/3Q/Pkh9nSapPMX/lqSSnP6eSr8/SMf0T8dcmv5O70t6VNIB9VyXWesWEf7xj3/802x+gFeB7wBHAh8De6fyu4Gbc9p9F3gkbfcB3gOOAgrIEtfFwK6pfjEwD9gfaJvKzgX2JfsP9fOANcA+qW4YsBDYD9gdeIxsRHanVD8R+D3wWeBzwLPAt+u4nhLgzzXKpgOX5cTxNtAXEHAIcEBO3Cel63sTOH0Lrvekeu7xIGA98CtgV+CL6fq7pfpSYCVwTLo/bVLZTam+X6r/UqrvAnTfynvzMXAOsDNwNfB62t4nxdQptd0pXfORtfTTAVgB/AH4MrB7jfohwN9ruQc9U/xFwLvAWamuMPfvncrOIvu3eViK5T+AmY39vxf/+Kep/ngE1MyaDUkDgQOAv0XEHOB/ga+n6r8AF+Q0/3oqA7gc+H1EzI5sBOwPZNOvR+e0vz0i3oqItQARcW9ELI2IjRHxV+AVssQK4P8Bt0XEkoh4HxiRE+PeZEnO8IhYExHvAb8Gzt/Ky74M+HlEPBeZVyPijZz6Y4FJwMURMWULrndzXBcR6yLiSeBBsuuu8kBEzEj3p7LGcd8C7o6I/0n1b0fEi1t5b+ZExPiI+JgsIW4DHB0R/yAbiTw3tTsVWJ7+XWwiIj4EBpIljXcCyyRNSvHUKiKmR8T8FH8FMI4sEa/Lt4FbImJRRKwHfgr08iioWe2cgJpZc3IxMDUilqf9v6QygCeAtpKOSv+n3wuYkOoOAP4tTUd/kKZZ9ycb4azyVu6JJF2UM4X9AdAD2CtV71ujfe72AWQjdP/IOfb3ZKN9W2N/skS7LsPIRtqm1YihoettyPsRsSZn/w3quV+bGfPW3Jvq80TERmBJThx/AL6Rtr8B/KmuTlJiOCQi9iP7W+4L1DZdD0D6dzRN0jJJK8nu8151tU/XdlvOdf2TbMS6Sz3HmLVaftjezJoFSW3JRuAKJL2TincFOkn6QkQ8L+lvZKOg7wJTImJVavcW2fT8zfWcInLOdQDZSNmJwKyI2CBpHllCAfAPsun3KvvnbL9FNtq4VxoJa0g0UP8WcHA99cOAH0n6dURclXNMfdfb0DkBdpf02Zwk9PPAgs3so66Yt/TeQM69lfQZsvu+NBVNBH6n7Nnf04FPPc9amzQaW0o2agm1X8tfgDuAL0dEZXq2dK962lfd87GbE4NZa+cRUDNrLs4CNgCHk41u9iJ73u5psheTIEsazgMu5JPpd8iSyWFpVEuSPpteMmlfx7k+S5ZkLAOQdAnZqFmVvwHfl9RFUifgR1UVaWp4KvBLSR0kfUbSwZLqmr59FyhMyVVt/hu4WtKRKfZDakzrriKbfj5OUtWjAA1d77vAQXWcL9cNknaRdCxZgnfvZhwDcBdwiaQT0/V3kdR9K+4NwJGSzlb2gtdwsgT2GYA09T+e7G/9bES8WVsHyl7Q+jdJ+6X9/cn+Q+WZ1ORdYD9Ju+Qc1h74Z0o++/HJox6Q/bvYyKb3cBTw/0k6Ip2jo6RzMbNaOQE1s+biYmBMRLwZEe9U/ZCNUl0oaaeImE32Ysq+wMNVB0ZEGdlzkXcA75O9LDKkrhNFxELgl8AssuSkJzAjp8mdZIlUBVAOPET20s6GVH8RsAvZi0rvkyVJ+9RxuqqkboWkubXEci9wM1mStYps1G+PGm0+IHvh58uS/nMzrvcW4D/SdPHVdcT1Tjp2KTAWGBYRL9bRtmbMzwKXkD3fuRJ4kmyKGrbs3gA8QPYfFe8D3wTOTs+DVvkD2d+nzul3svt2FDBb2Vv7z5CN5v5bqn8CeAF4R1LV4x3fAW6UtAq4nuw/Oqqu7yOyv8mMdA+PjogJwM+AeyR9mPr/cj0xmbVqiticmRgzM6uLpC8DoyKiRbxwImkQ2Zv5+zXUtrFJ+jzwIvAv6WUjM2sGPAJqZraFJLWV9BVl3wvtAvyET154sjxJjy38ALjHyadZ8+KXkMzMtpzIVtL5K7CW7BNF1zdqRK2MpM+SPR7xBtkzsGbWjHgK3szMzMzyylPwZmZmZpZXnoJvRvbaa68oLCxs7DDMzMzMGjRnzpzlEdG5tjonoM1IYWEhZWVljR2GmZmZWYMkvVFXnafgzczMzCyvnICamZmZWV45ATUzMzOzvGpyz4BK2gDMJ4vtdeCbEfFBWpnj6og4fSv73aLjJRUCUyKiRz1tVkdEu62JZ0vPZWZm1pp8/PHHLFmyhMrKysYOxRrQpk0b9ttvP3beeefNPqbJJaDA2ojoBSDpD8B3ydbcNTMzs1ZiyZIltG/fnsLCQiQ1djhWh4hgxYoVLFmyhAMPPHCzj2vqU/CzgC45++0kjZf0oqSxSv8iJZ0oqVzSfEl3S9o1lZ+a2v4dOLuqE0mfTe2eS8edWV8Qko6Q9KykeZIqJHWtUd9O0uOS5qYYzkzlhZIWSbpT0guSpkpqm+qOlPS8pFlkSbaZmZkllZWV7Lnnnk4+mzhJ7Lnnnls8Ut1kE1BJBcCJwKSc4t7AcOBw4CDgGEltgFLgvIjoSTaqe0UqvxP4KnAs8C85/fwYeCIi+gLHA79Iy7rVZRhwWxqZLQaW1KivBL4WEX1Sf7/UJ/+L6Qr8NiKOAD4ABqfyMcCVEdG/gfswVFKZpLJly5bV19TMzKxFcfLZPGzN36kpJqBtJc0DVgB7AP+TU/dsRCyJiI3APKAQ6Aa8HhEvpzZ/AI4DuqfyVyJbb/TPOf2cDFyTzjMdaAN8vp6YZgHXSvoRcEBErK1RL+CnkiqAx8hGbfdOda9HxLy0PQcolNQR6BQRT6byP9V14ogYHRHFEVHcuXOt33I1MzMza1aa7DOgKUmbQjY9fXuqW5fTbgNZ/PWl3XUtdC9gcES8tDkBRcRfJM0GTgMelXRZRDyR0+RCoDNwZER8LGkxWVJbW8xt0/nris3MzMxqKLzmwe3a3+IRp21WuwkTJnD22WezaNEiunfv/qn6QYMGceutt1JcXFxnHyUlJbRr146rr76a0tJSTj75ZPbdd18eeOABxowZw8SJEwG45ZZbuOuuu3j11VcBmDx5MnfeeSeTJk2qs+/alJaWUlZWxh133FFvu3bt2rF69eot6nt7aYojoABExErgSuBqSfW9VvUi2ajiIWn/m8CTqfxASQen8gtyjnkU+F7OM6S964tF0kHAaxFxO9kjAUU1mnQE3kvJ5/HAAQ1c2wfASkkDU9GF9bU3MzOzxjFu3DgGDhzIPffcs136Ky0tZenSpQAMGDCAWbNmVdfNmjWLDh068N577wEwc+ZMjjnmmO1y3qamySagABFRDjwPnF9Pm0rgEuBeSfOBjcCoVD4UeDC9hJS7HNR/AjsDFZIWpP36nAcsSFP23YE/1qgfCxRLKiNLJl/cjMu7BPhtegmp5pS+mZmZNbLVq1czY8YM7rrrruoEdO3atZx//vkUFRVx3nnnsXbtJ/8X3q7dJ19mHD9+PEOGDNmkv/Hjx1NWVsaFF15Ir169aNeuHR07dqwe8Xz77bcZPHgwM2fOBLIEdMCAASxbtozBgwfTt29f+vbty4wZMwBYs2YNl156KX379qV379488MADn7qGBx98kP79+7N8+XJef/11+vfvT9++fbnuuus2uc4TTzyRPn360LNnz+p+rrvuOm677bbqdj/+8Y+5/fbbP3WOrdHkpuBrflczIr6aszs9p/xfc7YfJ3tBqWZfj5AljDXL1wLfbiCOxUCPtH0LcEtdsUbEcqCul4l65LS/NWd7DvCFnHYl9cVjZmZm+TVx4kROPfVUDj30UPbYYw/mzp3L9OnT2W233aioqKCiooI+ffpsdn/nnHMOd9xxxyZT9gMGDGDmzJls2LCBrl27cvTRR/Poo49y+umnU1FRQd++fbn00ku56qqrGDhwIG+++SannHIKixYt4uabb+aEE07g7rvv5oMPPqBfv36cdNJJ1eebMGECv/rVr3jooYfYfffdufTSS7niiiu46KKL+O1vf1vdrk2bNkyYMIEOHTqwfPlyjj76aM444wy+9a1vcfbZZ/P973+fjRs3cs899/Dss89ul3vb5BJQMzMzs6Zg3LhxDB8+HIDzzz+fcePG8corr3DllVcCUFRURFFRzafytswxxxxTnYD279+ffv36ceONN1JeXk63bt1o06YNjz32GAsXLqw+5sMPP2TVqlVMnTqVSZMmceut2fhWZWUlb775JgDTpk2jrKyMqVOn0qFDBwBmzJjBfffdB8A3v/lNfvSjHwHZtzyvvfZannrqKT7zmc/w9ttv8+6771JYWMiee+5JeXk57777Lr1792bPPffcpuut4gTUzMzMrIYVK1bwxBNPsGDBAiSxYcMGJNG7d+86PzuUW76538UcMGAAI0eOZMOGDVx++eW0b9+eyspKpk+fXv3858aNG5k1axZt27bd5NiI4L777qNbt26blM+ePZuDDjqI1157jZdffnmTF6Rqi33s2LEsW7aMOXPmsPPOO1NYWFgd/2WXXUZpaSnvvPMOl1566WZd0+Zo0s+AmpmZmTWG8ePHc9FFF/HGG2+wePFi3nrrLQ488ED69OnD2LFjAViwYAEVFRXVx+y9994sWrSIjRs3MmHChFr7bd++PatWrareP/zww1m6dClPP/00vXtnTxP26tWLUaNGMWDAAABOPvnkTd5onzcv+7rjKaecwsiRI8m+Ngnl5eXVbQ444ADuv/9+LrroIl544QUgG22tepa16hoAVq5cyec+9zl23nlnpk2bxhtvfPLazNe+9jUeeeQRnnvuOU455ZQtvY118giomZmZNXmb+9mk7WXcuHFcc801m5QNHjyY8vJy1q5dS1FREb169aJfv37V9SNGjOD0009n//33p0ePHrV+4mjIkCEMGzaMtm3bVo9qHnXUUaxcubJ6LfX+/fszevTo6gT09ttv57vf/S5FRUWsX7+e4447jlGjRnHdddcxfPhwioqKiAgKCwuZMmVK9bm6devG2LFjOffcc5k8eTK33XYbX//617ntttsYPHhwdbsLL7yQr371qxQXF9OrV69NPje1yy67cPzxx9OpUycKCgq2z80FVJU1W9NXXFwcZWVljR2GmZnZDrdo0SIOO+ywxg6j1du4cSN9+vTh3nvvpWvXrnW2q+3vJWlORNT6gVRPwZuZmZnZpyxcuJBDDjmEE088sd7kc2t4Cn4rSVpd85NRO9zScijpmNdTmtk2KlnZ2BGYmW2Vww8/nNdee22H9O0RUDMzMzPLKyeg20iZX0haIGm+pPNS+X9JOiNtT5B0d9r+lqSb0vZESXMkvSBpaONdhZmZmVn+eAp+250N9CJb1Wgv4DlJTwFPAceSrR3fBdgntR8IVC0oe2lE/FNS23TcfRGxIrfzlJgOBSjo0JnCyjE7+nrMWoR8vzFrZmabzyOg224gMC4iNkTEu8CTQF/gaeBYSYcDC4F3Je1DtmTnzHTslZKeB54B9gc+9YRvRIyOiOKIKC7Yzc9/mpmZWfPnEdBtV+tyCBHxtqTdgVPJRkP3AP4fsDoiVkkaBJwE9I+IjyRNB9rkJ2QzM7NmZnu/hLuZLwhOmDCBs88+m0WLFm3yfcwqgwYN2mRt91pPVVJCu3btuPrqqyktLeXkk09m33335YEHHmDMmDFMnDgRgFtuuYW77rqLV199FYDJkydz5513MmnSpC26tNLSUsrKyjb5eP32UFhYSFlZGXvttdc29+UR0G33FHCepAJJnYHjgGdT3SxgeGrzNHB1+g3QEXg/JZ/dgaPzG7aZmZk1ZNy4cQwcOLB6BaFtVVpaytKlS4FsGc5Zs2ZV182aNYsOHTrw3nvvATBz5szq5ThbGo+AbrsJZNPqzwMB/HtEvJPqngZOjohXJb1BNgpalYA+AgyTVAG8RDYNX6+eXTpS5ufazMzM8mL16tXMmDGDadOmccYZZ1BSUsLatWu55JJLWLhwIYcddhhr166tbt+uXbvq1Y/Gjx/PlClTKC0tra4fP348ZWVlXHjhhdUrIXXs2JFXX32VQw45hLfffpvBgwczc+ZMzjrrLGbOnMlNN93EsmXLGDZsGG+++SYAv/nNbzjmmGNYs2YN3/ve95g/fz7r16+npKSEM888c5NrePDBB7npppuYPHkyc+fO5Sc/+Qnr1q3j4IMPZsyYMbRr147CwkIuvvhiJk+ezMcff8y9995L9+7dWbFiBRdccAHLli2jX79+bM/FizwCupWqvgEamR9GRI+I6BkRf81pc1dE7Ju2P46Iz0bE/Wl/XUR8OSKKIuLciBgUEdMb5WLMzMzsUyZOnMipp57KoYceyh577MHcuXP53e9+x2677UZFRQU//vGPmTNnzmb3d84551BcXMzYsWOZN28ebdu2ZcCAAcycOZOXXnqJrl27cvTRRzNz5kzWr19PRUUFffv25fvf/z5XXXUVzz33HPfddx+XXXYZADfffDMnnHACzz33HNOmTeOHP/wha9asqT7fhAkTGDFiBA899BAAN910E4899hhz586luLiYX/3qV9Vt99prL+bOncsVV1zBrbfeCsANN9zAwIEDKS8v54wzzqhOgLcHj4CamZmZ1WLcuHEMHz4cgPPPP59x48bxyiuvcOWVVwJQVFREUVHRNp3jmGOOYebMmWzYsIH+/fvTr18/brzxRsrLy+nWrRtt2rThscceY+HChdXHfPjhh6xatYqpU6cyadKk6oSxsrKyOkmcNm0aZWVlTJ06lQ4dOjBlyhQWLlxYPaX/f//3f/Tv37+6z7PPPhuAI488kvvvvx+Ap556qnr7tNNOY/fdd9+ma83lBNTMzMyshhUrVvDEE0+wYMECJLFhwwYk0bt3b6Ra3z/epLyysnKzzjNgwABGjhzJhg0buPzyy2nfvj2VlZVMnz69OlncuHEjs2bNom3btpscGxHcd999dOvWbZPy2bNnc9BBB/Haa6/x8ssvU1xcTETwpS99iXHjxtUax6677gpAQUEB69evr/WatidPwZuZmZnVMH78eC666CLeeOMNFi9ezFtvvcWBBx5Inz59GDt2LAALFiygoqKi+pi9996bRYsWsXHjRiZMmFBrv+3bt2fVqlXV+4cffjhLly7l6aefpnfv3gD06tWLUaNGMWDAAABOPvnkTd5onzdvHgCnnHIKI0eOrH42s7y8vLrNAQccwP33389FF13ECy+8wNFHH82MGTOq37D/6KOPePnll+u9B8cdd1z1tT788MO8//77m3HnNo9HQM3MzKzp28zPJm0v48aN45prrtmkbPDgwZSXl7N27VqKioro1asX/fr1q64fMWIEp59+Ovvvvz89evSofiEp15AhQxg2bFj1S0ht27blqKOOYuXKley8884A9O/fn9GjR1cnoLfffjvf/e53KSoqYv369Rx33HGMGjWK6667juHDh1NUVEREUFhYyJQpU6rP1a1bN8aOHcu5557L5MmTKS0t5YILLmDdunVA9kzooYceWuc9+MlPfsIFF1xAnz59+OIXv8jnP//5rb+hNWh7vtFkO1ZxcXGUlZU1dhhmZmY73KJFizjssMMaOwzbTLX9vSTNiYhaP5DqKXgzMzMzyytPwTcnS8u3/0oQZtY05Hl60cysMXkEtBaSVqffhZIWpO1Bkqak7TMkXVNfH/X0va+k8dsvWjMzs5bJjwk2D1vzd3ICuhUiYlJEjNjKY5dGxDnbOyYzM7OWpE2bNqxYscJJaBMXEaxYsYI2bdps0XGegt8KkoYAxRHxr5JKgQ+BYuBfyJbiHK/sw1k/B75MtkTnTRHxV0mFwJSI6CHpCGAMsAvZfwwMjohX8n09ZmZmTc1+++3HkiVLWLZsWWOHYg1o06YN++233xYd4wR0+9gHGAh0ByYB44GzgV7AF4C9gOckPVXjuGHAbRExVtIuQEHNjiUNBYYCFHToTGHlmB12EWbN2eIRpzV2CGa2He28884ceOCBjR2G7SCegt8+JkbExohYCOydygYC4yJiQ0S8CzwJ9K1x3CzgWkk/Ag6IiLU1O46I0RFRHBHFBbv5BSQzMzNr/pyAbh/rcrZV43edIuIvwBnAWuBRSSfsgNjMzMzMmhQnoDvOU8B5kgokdQaOA57NbSDpIOC1iLidbOq+KP9hmpmZmeWXnwHdcSYA/YHnyV5C+veIeCe9hFTlPOAbkj4G3gFurK/Dnl06Uubn3MzMzKyZ81KczYiX4jQzM7PmwktxmpmZmVmT4QTUzMzMzPLKCaiZmZmZ5ZUTUDMzMzPLKyegZmZmZpZXTkDNzMzMLK/8HdDmZGk5lHg5TjMDSlY2dgRmZlvNI6DbQNJ+kh6Q9Iqk/5V0m6RdJA2RdEcdxzwkqVO+YzUzMzNrKpyAbiVJAu4HJkZEV+BQoB1wc33HRcRXIuKDPIRoZmZm1iQ5Ad16JwCVETEGICI2AFcBlwK7AftKeiSNjv686iBJiyXtlbZ/IGlB+hneCNdgZmZmlnd+BnTrHQHMyS2IiA8lvUl2X3sBvYF1wEuSRkbEW1VtJR0JXAIcBQiYLenJiCjP7VPSUGAoQEGHzhRWjtmBl2RmO9LiEac1dghmZk2CR0C3noCop/zxiFgZEZXAQuCAGu0GAhMiYk1ErCabzj+2ZmcRMToiiiOiuGA3v4BkZmZmzZ8T0K33AlCcWyCpA7A/sIFs5LPKBj492qwdGp2ZmZlZE+Up+K33ODBC0kUR8UdJBcAvgVLgo804/imgVNIIsmT0a8A36zugZ5eOlHkKz8zMzJo5j4BupYgIsqTxXEmvAC8DlcC1m3n8XLJk9VlgNvDfNZ//NDMzM2uJlOVR1hwUFxdHWVlZY4dhZmZm1iBJcyKiuLY6j4CamZmZWV45ATUzMzOzvHICamZmZmZ55QTUzMzMzPLKCaiZmZmZ5ZW/A9qcLC2HEq+GZGbboGRlY0dgZtb6RkAlhaQ/5ezvJGmZpClp/wxJ1zRCXMMkXZTv85qZmZnlW2scAV0D9JDUNiLWAl8C3q6qjIhJwKR8BiRpp4gYlc9zmpmZmTWWVjcCmjwMVK1peQEwrqpC0hBJd6TtcyUtkPS8pKdS2RGSnpU0T1KFpK6p/Aep7QJJw1NZoaQFOX1fLakkbU+X9FNJTwLfl1Qi6eo8XLuZmZlZo2qNI6AA9wDXp2n3IuBu4Nha2l0PnBIRb0vqlMqGAbdFxFhJuwAFko4ELgGOIlvXfXZKLN9vII5OEfFFgKrEtCZJQ4GhAAUdOlNYOWYLLtPMmrrFI05ruJGZWQvTKkdAI6ICKCQb/XyonqYzgFJJlwMFqWwWcK2kHwEHpGn8gcCEiFgTEauB+6k9oa3pr5sR6+iIKI6I4oLd/AKSmZmZNX+tMgFNJgG3kjP9XlNEDAP+A9gfmCdpz4j4C3AGsBZ4VNIJZKOetVnPpve4TY36NVsZu5mZmVmz1ZoT0LuBGyNifl0NJB0cEbMj4npgObC/pIOA1yLidrIktgh4CjhL0m6SPgt8DXgaeBf4nKQ9Je0KnL6Dr8nMzMysyWutz4ASEUuA2xpo9ov0kpGAx4HngWuAb0j6GHiHLIn9p6RS4Nl03H9HRDmApBuB2cDrwIvbEnPPLh0p8/NiZmZm1swpIho7BttMxcXFUVZW1thhmJmZmTVI0pyIKK6trjVPwZuZmZlZI3ACamZmZmZ55QTUzMzMzPLKCaiZmZmZ5ZUTUDMzMzPLKyegZmZmZpZXrfY7oM3S0nIo8XKcZradlKxs7AjMrJVq9SOgklZvYftBkqak7TMkXbNjIjMzMzNrmTwCug0iYhLZcpxmZmZmtpla/QholTSyOV3SeEkvShorSanu1FT2d+DsnGOGSLojbX9V0mxJ5ZIek7R3Ki+RdHfq+zVJV+YcP1HSHEkvSBqa50s2MzMzaxQeAd1Ub+AIYCkwAzhGUhlwJ3AC8Crw1zqO/TtwdESEpMuAfwf+LdV1B44H2gMvSfpdRHwMXJrWkW8LPCfpvohYkdtpSkyHAhR06Exh5ZjteLlm1pwsHnFaY4dgZrZdOAHd1LMRsQRA0jygEFgNvB4Rr6TyP5MSwhr2A/4qaR9gF+D1nLoHI2IdsE7Se8DewBLgSklfS232B7oCmySgETEaGA2w6z5dY3tcpJmZmVlj8hT8ptblbG/gkwR9cxK/kcAdEdET+DbQpr5+JQ0CTgL6R8QXgPIax5iZmZm1SE5AG/YicKCkg9P+BXW06wi8nbYv3kjRXjoAACAASURBVIx+OwLvR8RHkroDR29bmGZmZmbNg6fgGxARlek5zAclLSd71rNHLU1LgHslvQ08AxzYQNePAMMkVQAvpWPq1bNLR8r8DJiZmZk1c4rwY4XNRXFxcZSVlTV2GGZmZmYNkjQnIoprq/MUvJmZmZnllRNQMzMzM8srJ6BmZmZmlldOQM3MzMwsr5yAmpmZmVle+TNMzcnScijp2NhRmFlrULKysSMwsxasRYyASgpJf8rZ30nSMklT0v4Zkq5pvAhB0iBJAxozBjMzM7OmoKWMgK4BekhqGxFrgS/xyapERMQkYFJjBZcMIltXfmYjx2FmZmbWqFrECGjyMFC1TNAFwLiqCklDJN2Rtksl3S5ppqTXJJ2TygdJmi5pvKQXJY2VpFR3pKQnJc2R9KikfVL5lZIWSqqQdE8q20PSxFT2jKQiSYXAMOAqSfMkHSvpq5JmSyqX9JikvfN0n8zMzMwaVUsZAQW4B7g+TbsXAXcDx9bRdh9gINCdbGR0fCrvDRwBLAVmAMdImg2MBM6MiGWSzgNuBi4FrgEOjIh1kjqlPm4AyiPiLEknAH+MiF6SRgGrI+JWAEm7A0dHREi6DPh34N9qBpqWAR0KUNChM4WVY7b2/phZM7XYS/CaWQvTYhLQiKhII40XAA810HxiRGwEFtYYeXw2IpYASJoHFAIfkK39/j9pQLQA+EdqXwGMlTQRmJjKBgKDU0xPSNpTUm1vDu0H/DWNpu4CvF7HdY0GRgPsuk9Xr5tqZmZmzV5LmoKHbDTzVnKm3+uwLmdbdZRvIEvQBbwQEb3ST8+IODm1OQ34LXAkMEfSTjX6q1Jb4jgSuCMiegLfBto0ELOZmZlZi9DSEtC7gRsjYv527PMloLOk/gCSdpZ0hKTPAPtHxDSy6fNOQDvgKeDC1HYQsDwiPgRWAe1z+u3IJy9KXbwd4zUzMzNr0lrMFDxAmj6/bTv3+X/pRaXb01T6TsBvgJeBP6cyAb+OiA8klQBjJFUAH/FJcjkZGC/pTOB7QAlwr6S3gWeAAxuKpWeXjpT5WTAzMzNr5hThxwqbi+Li4igrK2vsMMzMzMwaJGlORBTXVtfSpuDNzMzMrIlzAmpmZmZmeeUE1MzMzMzyygmomZmZmeWVE1AzMzMzyysnoGZmZmaWVy3qO6At3tJyKKltVU8zsyaoZGVjR2BmTVSLHwGVFJL+lLO/k6Rlkqak/TMkXVPP8YWSFtRRd6Okk7Z/1GZmZmYtV2sYAV0D9JDUNiLWAl/ikyUwiYhJZGvIb7GIuH77hGhmZmbWerT4EdDkYaBqDcsLgHFVFZKGSLojbe8taYKk59PPgNSsQNKdkl6QNFVS29S+NC3TiaSvSHpR0t8l3Z4zwtpP0kxJ5el3t5zz3i/pEUmvSPp5fm6FmZmZWeNqDSOgAPcA16eksAi4Gzi2lna3A09GxNckFQDtgN2BrsAFEXG5pL8Bg4E/Vx0kqQ3we+C4iHhd0ricPl9M5evTdP1P0/EAvYDewDrgJUkjI+Kt3IAkDQWGAhR06Exh5ZhtuhFm1jIsHnFaw43MzJqoVjECGhEVQCHZ6OdD9TQ9AfhdOmZDRFQ9Qf96RMxL23NSX7m6A69FxOtpPzcB7Qjcm54j/TVwRE7d4xGxMiIqgYXAAbXEPjoiiiOiuGA3v4BkZmZmzV+rSECTScCtbJocbq51Odsb+PTIseo59j+BaRHRA/gq0GYL+jUzMzNrcVpTAno3cGNEzK+nzePAFQCSCiR12My+XwQOklSY9s/LqevIJy89DdncYM3MzMxaqlYz4hYRS4DbGmj2fWC0pG+RjUheAfxjM/peK+k7wCOSlgPP5lT/HPiDpB8AT2xV8EnPLh0p83NfZmZm1swpIho7hhZBUruIWC1JwG+BVyLi19vzHMXFxVFWVrY9uzQzMzPbISTNiYji2upa0xT8jna5pHnAC2TT7r9v5HjMzMzMmqRWMwW/o6XRzu064mlmZmbWEnkE1MzMzMzyygmomZmZmeWVE1AzMzMzyys/A9qcLC2HEq+GZGa2iZKVDbcxsyYlryOgkkLSn3L2d5K0LK3RnneSBu3Ic0vqlL4PWrVfKOnrO+p8ZmZmZs1Bvqfg1wA9JLVN+1/ik1WCWqJOwHdy9gsBJ6BmZmbWqjXGM6APA1XL+VxAztrskvpJmimpPP3ulsqPkPSspHmSKiR1lfRZSQ9Kel7SAknnpbbXS3oulY1OH4ZH0iGSHkvt50o6OJ22naTxkl6UNDan/WJJe6XtYknT0/YXUxzzUpztU/kP03krJN2Q+h4BHJza/iLtH5v2r6rtunbYXTczMzNrIhrjGdB7gOvT1HcR2Rrtx6a6F4HjImK9pJOAnwKDgWHAbRExVtIuQAHwFWBpRJwGIKnq4cg7IuLGVPYn4HRgMjAWGBEREyS1IUu+9wd6A0cAS4EZwDHA3+uJ/2rguxExQ1I7oFLSyUBXoB8gYJKk44BrgB4R0SvFMwi4OiJOT/sja7muTUgaCgwFKOjQmcLKMQ3fYTNrNIu9XK6ZWYPyPgIaERVkU9EXAA/VqO4I3CtpAdlH3Y9I5bOAayX9CDggItYC84GTJP1M0rERUfUU+vGSZkuaD5wAHJFGKbtExIQUQ2VEfJTaPxsRSyJiIzAvxVafGcCvJF0JdIqI9cDJ6accmAt0J0tIG1LbdW0iIkZHRHFEFBfs5heQzMzMrPlrrM8wTQJuJWf6PflPYFpE9AC+CrQBiIi/AGcAa4FHJZ0QES8DR5Ilorekqfc2wH8B50RET+DO1IfqiWVdzvYGPhkVXs8n96dNVYOIGAFcBrQFnpHUPfV/S0T0Sj+HRMRdDd2E2q6roWPMzMzMmrvGSkDvBm6MiPk1yjvyyUtJQ6oKJR0EvBYRt5Mlr0WS9gU+iog/kyWzffgkUVyepsfPAYiID4Elks5K/e0qabcGYlxMluBC9hhAVSwHR8T8iPgZUEY22vkocGk6J5K6SPocsApon9PnJvu1XVcDMZmZmZk1e43yHdCIWALcVkvVz4E/SPoB8ERO+XnANyR9DLwD3Aj0BX4haSPwMXBFRHwg6U6yUdHFwHM5fXwT+L2kG1P7cxsI8wbgLknXArNzyodLOp5stHQh8HBErJN0GDArvcO0GvhGRPyvpBnpkYKHgWuB9ZKeB0rJEuaa11Wnnl06Uubny8zMzKyZU0Q0dgy2mYqLi6OsrKyxwzAzMzNrkKQ5EVFcW52X4jQzMzOzvHICamZmZmZ55QTUzMzMzPLKCaiZmZmZ5ZUTUDMzMzPLKyegZmZmZpZXjfIdUNtKS8uhxMtxmlkLUrKy4TZm1uK0mBFQSb+WNDxn/1FJ/52z/8u0XOc1jRTfvpLGN8a5zczMzJqSFpOAAjOBAQCSPgPsBRyRUz8AeDSt5Z53EbE0Is5pjHObmZmZNSUtKQGdQUpAyRLPBcAqSbtL2hU4DPiCpDsAJJ0raYGk5yU9lcoKJN0qab6kCknfS+UnSipP5Xen/pC0WNINkuamuu6p/IuS5qWfckntJRWmJTmRNETS/ZIekfSKpJ/n80aZmZmZNaYW8wxoRCyVtF7S58kS0VlAF6A/sBKoAP4v55DrgVMi4m1JnVLZUOBAoHdErJe0h6Q2ZOu2nxgRL0v6I3AF8Jt0zPKI6CPpO8DVwGXp93cjYoakdkBlLSH3AnoD64CXJI2MiLdqNpI0NMVFQYfOFFaO2bobZGYt3uIRpzV2CGZmm6UljYDCJ6OgVQnorJz9mbW0LZV0OVCQyk4CRkXEeoCI+CfQDXg9Il5Obf4AHJfTz/3p9xygMKfvX0m6EuhU1V8Nj0fEyoioBBYCB9R2QRExOiKKI6K4YDe/gGRmZmbNX0tLQKueA+1JNgX/DNkI6ACypLBaRAwD/gPYH5gnaU9AQNToUw2cc136vYE0opyeM70MaAs8UzU1X8dxmxxrZmZm1tK1tAR0BnA68M+I2JBGMDuRJaGzchtKOjgiZkfE9cByskR0KjBM0k6pzR7Ai0ChpEPSod8EnqwviNT3/Ij4GVAG1JaAmpmZmbVKLW3UbT7Z2+9/qVHWLiKWS5sMZv5CUleyEc7HgefJRk0PBSokfQzcGRF3SLoEuDclps8BoxqIY7ik48lGNhcCDwP7bOvF9ezSkTI/42VmZmbNnCJqzjhbU1VcXBxlZWWNHYaZmZlZgyTNiYji2upa2hS8mZmZmTVxTkDNzMzMLK+cgJqZmZlZXjkBNTMzM7O8cgJqZmZmZnnV0j7D1LItLYcSr4ZkZtbslaxs7AjMGlWzT0DTCkaPp91/Ifv25rK03y8i/q/WA83MzMysUTT7BDQiVgC9ACSVAKsj4tZGDcrMzMzM6tQinwGVdKSkJyXNkfSopH1S+XRJP5P0rKSXJR2byodIul/SI5JekfTznL5OljRL0lxJ90pql8pHSFooqULSransXEkLJD0v6alUViDpF5KeS22/ndP3D3PKb8jnPTIzMzNrLM1+BLQWAkYCZ0bEMknnATcDl6b6nSKin6SvAD8BTkrlvYDewDrgJUkjgbXAfwAnRcQaST8CfiDpDuBrQPeICEmdUh/XA6dExNs5Zd8CVkZEX0m7AjMkTQW6pp9+KeZJko6LiKc2uRhpKDAUoKBDZworx2y/O2XWCiz28rVmZk1OS0xAdwV6AP+T1n4vAP6RU39/+j0HKMwpfzwiVgJIWggcAHQCDidLGgF2AWYBHwKVwH9LehCYkvqYAZRK+lvOeU4GiiSdk/Y7kiWeJ6ef8lTeLpVvkoBGxGhgNMCu+3T1uqlmZmbW7LXEBFTACxHRv476den3Bja9/nU521V1Av4nIi741EmkfsCJwPnAvwInRMQwSUcBpwHzJPVKfXwvIh6tcfwpwC0R8fstvUAzMzOz5qwlPgO6DugsqT+ApJ0lHbGVfT0DHCPpkNTXbpIOTc+BdoyIh4DhfPIS1MERMTsirgeWA/sDjwJXSNo5tTlU0mdT+aU5z5R2kfS5rb1oMzMzs+aiJY6AbgTOAW6X1JHsGn8DvLClHaVnSIcA49Lzm5A9E7oKeEBSG7IRzqtS3S8kdU1ljwPPAxVkU/1zlc3jLwPOioipkg4DZqXp/dXAN4D36oqnZ5eOlPl5NjMzM2vmFOHHCpuL4uLiKCsra+wwzMzMzBokaU5EFNdW1xKn4M3MzMysCXMCamZmZmZ55QTUzMzMzPLKCaiZmZmZ5ZUTUDMzMzPLKyegZmZmZpZXLfE7oC3X0nIo6djYUZiZfaJkZWNHYGbNUJMZAZX0Y0kvSKqQNC8tabk1/QySNCBnvzRnHfb6jtuQzvuCpOcl/UBSvfcnnWtKfW1qtB8uabfNbW9mZmbWEjWJEdC0bObpQJ+IWCdpL2CXrexuENmqQjO38Li1EVG1pObngL8AHYGfbGUctRkO/Bn4aDv2aWZmZtasNJUR0H2A5RGxDiAilkfEUgBJJ0oqlzRf0t1VS2JKWpwSVSQVS5ouqRAYBlyVRjOPTf0fJ2mmpNc2ZzQ0It4DhgL/qkyhpKclzU0/A2oeI6lvivOg2mKWdCWwLzBN0rR0zO8klaVR1xu27RaamZmZNQ9NYgQUmApcL+ll4DHgrxHxZFprvRQ4MSJelvRH4Aqytd0/JSIWSxoFrI6IWwEkfYsswR0IdAcmAeMbCigiXktT8J8jW5/9SxFRmdZ6HwdULy2VEtKRwJmp7ZM1Y46I30j6AXB8RCxPh/44Iv4pqQB4XFJRRFTkxiFpKFkyTEGHzhRWjmkodDOzvFnc2AGYWbPUJEZAI2I1cCRZorUM+KukIUA34PWIeDk1/QNw3FacYmJEbIyIhcDeW3Cc0u+dgTslzQfuBQ7PaXMYMBr4akS8uYUx/z9Jc4Fy4Iga/QIQEaMjojgiigt28wtIZmZm1vw1lRFQImIDMB2YnhK9i4F59Ryynk8S6DYNdL8uZ1t1tsptJB0EbCAb0fwJ8C7whXTOypym/0jn7w0s3YL+DwSuBvpGxPuSSmn4OszMzMyavSYxAiqpW5rartILeAN4ESiUdEgq/ybZ9DZkMz9Hpu3BOceuAtpvYzydgVHAHRERZC8j/SMiNqYYCnKafwCcBvxU0qAGYs6NrQOwBlgpaW/gy9sSs5mZmVlz0VRGQNsBIyV1IhvZfBUYmp65vAS4V9JOwHNkiSHADcBdkq4FZuf0NRkYL+lM4HtbEENbSfPIptvXA38CfpXq/gu4T9K5wDSyxLFaRLwr6avAw8ClQF0xjwYelvSPiDheUjnwAvAaMKOhAHt26UjZiNO24JLMzMzMmh5lA3zWHBQXF0dZWVljh2FmZmbWIElzIqK4tromMQVvZmZmZq2HE1AzMzMzyysnoGZmZmaWV05AzczMzCyvnICamZmZWV41lc8w2eZYWg4lXg3JzJqokpWNHYGZNROtZgRUUkj6U87+TpKWSZqylf11kvSd7RehmZmZWevQahJQso/H95DUNu1/CXh7G/rrBDgBNTMzM9tCrSkBhWyloqqlhC4AxlVVSNpD0kRJFZKekVSUyksk3S1puqTXJF2ZDhkBHCxpnqRfSGon6XFJcyXNTysxIalQ0iJJd0p6QdLUqiRY0uWSnpP0vKT7JO2WtzthZmZm1kha2zOg9wDXp2n3IuBu4NhUdwNQHhFnSToB+CPZmvQA3YHjydZxf0nS74BrgB4R0QuyKX3gaxHxoaS9gGckTUrHdwUuiIjLJf2NbO36PwP3R8Sd6fibgG8BI3MDljQUGApQ0KEzhZVjtu8dMTPbThY3dgBm1my0qgQ0IiokFZKNfj5Uo3ogWWJIRDwhaU9JVW/8PBgR64B1kt4D9q6lewE/lXQcsBHoktPu9YiYl7bnAIVpu0dKPDsB7YBHa4l5NNka8uy6T1evm2pmZmbNXqtKQJNJwK3AIGDPnHLV0rYq4VuXU7aB2u/bhUBn4MiI+FjSYqBNHcdXPYdaCpwVEc9LGpJiMjMzM2vRWtszoJBNu98YEfNrlD9FlkQiaRCwPCI+rKefVWRT8lU6Au+l5PN44IDNiKU98A9JO1ed28zMzKyla3UjoBGxBLitlqoSYIykCuAj4OIG+lkhaYakBWQvN/0MmCypDJgHvLgZ4VwHzAbeAOazaUL7KT27dKRsxGn1NTEzMzNr8hThxwqbi+Li4igrK2vsMMzMzMwaJGlORBTXVtcap+DNzMzMrBE5ATUzMzOzvHICamZmZmZ55QTUzMzMzPLKCaiZmZmZ5ZUTUDMzMzPLq1b3HdBmbWk5lHRsuJ2ZWWtQsrKxIzCzrdRsRkAl/YukeyT9r6SFkh6SdGgjxjNc0m45+w9J6rQV/RRK+vr2jc7MzMys6WoWCagkAROA6RFxcEQcDlwL7N2IYQ0HqhPQiPhKRHywFf0UAk5AzczMrNVoFgkocDzwcUSMqiqIiHnA3yX9QtICSfMlnQfZWu6SpksaL+lFSWNTEoukxZJukDQ3HdM9lX9W0t2SnpNULunMVF4g6dbUtkLS9yRdCewLTJM0LaffvdL2Rant85L+lMpKJZ1TFb+k1WlzBHCspHmSrtqxt9HMzMys8TWXZ0B7AHNqKT8b6AV8AdgLeE7SU6muN3AEsBSYARwD/D3VLY+IPpK+A1wNXAb8GHgiIi5NU+nPSnoMuAg4EOgdEesl7RER/5T0A+D4iFieG5CkI1Jfx0TEckl7NHBt1wBXR8TptVVKGgoMBSjo0JnCyjENdGdmVrvFI05r7BDMzIDmMwJal4HAuIjYEBHvAk8CfVPdsxGxJCI2AvPIprqr3J9+z8kpPxm4RtI8YDrQBvg8cBIwKiLWA0TEPxuI6QRgfFViuhnt6xURoyOiOCKKC3bzC0hmZmbW/DWXEdAXgHNqKVc9x6zL2d7Apte6rpZyAYMj4qVNTpBN3ccWxFpX+/WkhD/1ucsW9GlmZmbWYjSXEdAngF0lXV5VIKkv8D5wXnpOszNwHPDsVp7jUeB7Oc+K9k7lU4FhknZK5f8/e/ceZ2dV33v882Wg4ZrBSkohBcfSIALRKFuO4Waw2J4KlquCh1YBa8RWKSj10GPFOXhDFLmDDZQEUAGRi1wsoNzvZEJCAgh6CrFIEIRoMEgiCd/zx7NGtsOeWzKzZ/bM9/16zWs/z7rvPf/8Xmut51ndS+q/ATZp0M5NwAckvb5H+cXATuV6X2C9ftqJiIiIGJNaYgbUtiXtD5wq6ThgBVVAdzSwMfAg1azjZ2z/ovvBokH6AnAqsLAEoYuBfYDzgG1L+svAucCZwCzgPyU9bXvPurE+LOlLwG2SVgPzgcNKve9Lup8qSH2xVFkIrJL0IDDH9im9DXDq5Ha6socrIiIiWpzswawux0iq1Wru6uoa6WFERERE9EvSPNu1RnmtsgQfEREREWNEAtCIiIiIaKoEoBERERHRVAlAIyIiIqKpEoBGRERERFMlAI2IiIiIpmqJ94A2W3nn6BXAm20/KqkDuNb2jmvQ1nLbGw/JwJbMh84cxxkR8Rqdy0Z6BBExCJkBbeyDwJ3AISM9kIiIiIixJgFoD5I2BnYFPkKDAFRSh6Q7JD1Q/nYp6VtIul3SAkkPSdq9R73NJN0jae/e2oiIiIgYD7IE/1r7Adfb/omkpZLeDiyty38WeI/tFZKmABcDNeB/ATfY/pKkNmDD7gqSNgeuBv7N9g8lbdhLG68haSYwE6Bt4iQ6Vswe8i8cEWPb4hzhGxGjTALQ1/og1ZnwAJeU+7Pq8tcDzpQ0DVhNdU48wFzgfEnrAVfZXlBX/ibgn2zf1k8br2F7FtW580zYYkrOTY2IiIiWlwC0jqTXA+8GdpRkoA0wcHZdsWOAZ4C3Um1hWAFg+3ZJewB7AxdJ+prtC4FVwDzgr4Hb+mojIiIiYjzIHtA/dBBwoe032O6wvRXwBPBndWXagadtvwL8PVWQiqQ3AM/aPhf4D+DtpbyBI4DtJB3XVxsRERER40FmQP/QB4ETe6RdDvyfuvuzgcslvR+4BXixpM8A/kXSy8By4EPdFWyvlnQIcI2kF/poo09TJ7fTlb1cERER0eJkZ1thq6jVau7q6hrpYURERET0S9I82w0fss4SfEREREQ0VQLQiIiIiGiqBKARERER0VQJQCMiIiKiqRKARkRERERTJQCNiIiIiKbKe0BbyZL50Nk+0qOIiIjB6Fw20iOIGHVGZAZUkiWdXHd/rKTOQbYxQ9IudfdzJB00gHp/KukSSf8l6RFJP5DU61nsgxhPh6SHynVN0ulr22ZERETEWDRSS/ArgQMkbbYmlSWtS3Xy0C79FO1ZT8CVwK22t7G9PdUpR5sPtL6kfn8z2122jxrM2CIiIiLGi5EKQFcBs4BjemZIeoOkmyQtLJ9bl/Q5kr4h6RbgUuBI4BhJCyTtXqrvIeluSY/3Mhu6J/Cy7W92J9heYPsOSRuX/h6QtEjSvqXfDkk/lnQ28ACwlaSvSXqolDu4wXeYIenact0p6XxJt5ZxHVVX7ipJ8yQ9LGnmmv2UEREREa1lJPeAngUslHRSj/QzgQttXyDpCOB0YL+Sty2wVzlbvRNYbvvrAJI+AmwB7AZsB1wNfK9H2zsC83oZzwpgf9svlJnZeyVdXfLeBBxu+x8lHQhMA94KbAbMlXR7P991O6rgdxPgMUnn2H4ZOML2UkkblHYut/18fcUSmM4EaJs4iY4Vs/vpKiJGm8Un7j3SQ4iIGFVG7Cl42y8AFwI9l6qnA98p1xdRBZTdLrO9uo9mr7L9iu1HGOCyeh0BX5a0EPgRMLmujZ/Zvrdc7wZcbHu17WeA24B39NP2dbZX2n4OeLau3aMkPQjcC2wFTOlZ0fYs2zXbtbYN8wBSREREtL6Rfg3TqcBHgI36KOO66xf7aW9l3bUa5D8M7NRL3UOBScBOtqcBzwDrN+i3Ubv9qR/XamBdSTOAvYDptt8KzK/rLyIiImLMGtEA1PZS4LtUQWi3u4FDyvWhwJ29VP8N1ZL2YNwMTJD00e4ESe+Q9C6gHXjW9suS9gTe0EsbtwMHS2qTNAnYA7h/kOOg9Pcr27+VtB3wzjVoIyIiIqLljIb3gJ4MfKLu/ijgfEn/AvwSOLyXetcA3ysPC31yIB3ZtqT9gVMlHUe173MxcDTV7Og1krqABcCjvTRzJdU2gQepZmc/Y/sXkjoGMoY61wNHliX/x6iW4fs0dXI7XdlLFhERES1OtvsvFaNCrVZzV1fXSA8jIiIiol+S5tmuNcob6T2gERERETHOJACNiIiIiKZKABoRERERTZUANCIiIiKaKgFoRERERDRVAtCIiIiIaKrR8B7QYSXJwDdsf7rcHwtsbLtzCNpen+qdoe+3vaikfQb4c9tHDqB+J3Xn2fdryXzozHGcERFrpHPZSI8gIorxMAO6EjhA0mZD3bDtFVQvsT9blcnAx4B/7a+upDEf/EdEREQ0Mh4C0FXALOCYnhmSJkm6XNLc8rdrSV8kadMSVD4v6UMl/SJJe9W3Yft64GngQ8ApQCcwUdJNkhaWz61L/TmSviHpFuCrPcbyUUn/KWmDIf8FIiIiIkaR8TILdxawUNJJPdJPA06xfWcJEm8A3gzcBewK/Ax4HNgduJDqvPaPN2j/aKrz4H9q+yJJ1wAX2r5A0hHA6cB+pey2wF62V5cleCR9AvgrYD/bK+sbljQTmAnQNnESHStmr8XPEBExOItz/G9EDINxEYDafkHShVTnzL9Ul7UXsL2k7vuJkjYB7gD2oApAzwFmluX1pbaXN2h/iaSbgWtL0nTggHJ9EVAf+F5me3Xd/d8DP6cKPl9u0PYsqhlcJmwxJeemRkRERMsbD0vw3U4FPgJsVJe2DjDd9rTyN9n2b4DbqWY9dwduBX4JHEQVmPbmlfLXSH3g+GKPvIeADuDPBvY1IiIiIlrbuAlAbS8FvksVhHa7EfhE942kaaXsk8BmwBTbjwN3AsfSdwBa727gkHJ9K5B2BAAAIABJREFUaKnfm/lUDy5dLWnLAbYfERER0bLGxRJ8nZOpCzipluTPkrSQ6re4Heh+fdJ9QFu5vgP4Cn0HkvWOAs6X9C9Us6eH91W47EE9FrhO0ntsP9eo3NTJ7XRlP1ZERES0ONnZVtgqarWau7q6RnoYEREREf2SNM92rVHeuFmCj4iIiIjRYUABqKQNJX1O0rnlfoqkfYZ3aBERERExFg10BnQ21YlC08v9z4EvDsuIIiIiImJMG2gAuo3tk4CXAWy/BKjvKhERERERrzXQAPR35YhIA0jahmpGNCIiIiJiUAb6GqZO4HpgK0nfpjqmss9XC0VERERENDLg1zBJej3VWegC7u3tXZUxfGpbtrlr5sYjPYyIiObrXDbSI4iIQVrr1zBJusn287avs32t7eck3TS0wxy9JL3m/PeSPkfSQf3UvVVSwx8/IiIiYjzqcwle0vrAhsBmkl7Hqw8eTQRybGREREREDFp/M6AfA+YB25XP7r/vA2cN79BGH1XOlPSIpOuAP6nLO17SXEkPSZolqf4tAe+XdL+kn0javZRfX9JsSYskzZe0Z7O/T0RERMRI6HMG1PZpwGmSPmn7jCaNaTTbH3gTMBXYHHgEOL/knWn7BABJFwH7ANeUvHVt7yzpvcDngb2AfwKwPVXSdsCNkra1vaK+Q0kzgZkAbRMn0bFi9nB+v4iI0em4635/ufjEvUdwIBExFAb0FLztMyTtCGwPrF+XfuFwDWyU2gO42PZqYImkm+vy9pT0GaotC38MPMyrAegV5XMe0FGudwPOALD9qKSfAdsCC+s7tD0LmAUwYYspA3tiLCIiImIUG1AAKunzwAyqAPQHwN8AdwLjLQCF8i7UemWv7NlAzfaTkjqpC9R59Z2pq3n1N8+L/CMiImJcGuiL6A8C/hL4he3DgbcCE4ZtVKPX7cAhktokbQF079vsDjafk7Qx1e81kLYOBZC0LbA18NgQjzciIiJi1Bnoi+hfsv2KpFWSJgLPAn8+jOMara4E3g0sAn4C3AZg+9eSzi3pi4G5A2jrbOCbkhYBq4DDbPd5utTUye10Ze9TREREtLiBBqBdkjYFzqXax7gcuH/YRjXK2N64fBr4RC9l/g34twbpM+qun6PsAS0PGx025IONiIiIGOUG+hDSP5bLb0q6Hphoe2FfdSIiIiIiGhnwSUjd17YX2144nk5CioiIiIihk5OQIiIiIqKp+luC/xhwNFWwOY8qADXwG+DM4R1aRERERIxFfS7B2z7N9huBLwHTyvVs4HHgniaMLyIiIiLGmAG/B9T2C5J2A94DzAHOGbZRRURERMSYNdDXMK0un3sD37T9/XLaTzTTkvnQ2T7So4iIGB86l430CCLGrIHOgD4l6d+BDwA/kDRhEHVbliRLuqjufl1Jv5R0bT/1apJOH/4RRkRERLSegQaRHwBuAP6n7V8Dfwz8y7CNavR4EdhR0gbl/j3AU/1Vst1l+6hhHVlEREREixpQAGr7t7avsP3Tcv+07RuHd2ijxn9SbT0A+CBwcXeGpJ0l3S1pfvl8U0mf0T1LKqlT0vmSbpX0uKSj6ur/naT7JS2Q9O+S2pr4vSIiIiJGxED3gI5nlwDHl4DyLcD5wO4l71FgD9urJO0FfBk4sEEb2wF7ApsAj0k6B/gL4GBgV9svSzobOBS4sL6ipJnATIC2iZPoWDF7qL9fRMQaW3zi3v0XiojoIQFoP8qpTx1Us58/6JHdDlwgaQrV+1HX66WZ62yvBFZKehbYHPhLYCdgriSADYBnG/Q/C5gFMGGLKV7b7xMREREx0hKADszVwNeBGcDr69K/ANxie/8SpN7aS/2VdderqX53ARfY/tchHmtERETEqJYAdGDOB5bZXiRpRl16O68+lHTYINu8Cfi+pFNsPyvpj4FNbP+stwpTJ7fTleWuiIiIaHFj/lVKQ8H2z22f1iDrJOArku4CBvUAke1HgH8DbpS0EPghsMVaDzYiIiJilJOdbYWtolaruaura6SHEREREdEvSfNs1xrlZQY0IiIiIpoqAWhERERENFUC0IiIiIhoqgSgEREREdFUCUAjIiIioqnyHtBWsmQ+dLaP9CgiIkZG57KRHkFEDJExOwMq6RRJR9fd3yDpvLr7kyV9apj6Pk/S9sPRdkRERESrG7MBKHA3sAuApHWAzYAd6vJ3Ae4ajo5t/0N50XxERERE9DCWA9C7KAEoVeD5EPAbSa+TNAF4M3CqpGndFSTdJektkv5Y0lWSFkq6V9JbSn6npAsk3ShpsaQDJJ0kaZGk6yWtV8rdKqlWrpdL+pKkB0tbm5f0bcr9XEknSFrevJ8mIiIiYuSM2T2gtpdIWiVpa6pA9B5gMjAdWAYsBP6D6gz3oyVtC0ywvVDSGcB82/tJejdwIdAdqG4D7AlsX9o80PZnJF0J7A1c1WMoGwH32v6spJOAjwJfBE4DTrN9saQje/sekmYCMwHaJk6iY8XstfthIiJa1XHX9Zm9+MS9mzSQiFhbY3kGFF6dBe0OQO+pu78buAzYp8xcHgHMKfV2Ay4CsH0z8HpJ3U///Kftl4FFVOe/X1/SFwEdDcbwO+Dacj2vrsz00j/Ad3r7ArZn2a7ZrrVtmAeQIiIiovWN2RnQonsf6FSqJfgngU8DLwDn2/6tpB8C+wIfALrPK1WDtlw+VwLYfkXSy7a701+h8e9ZX2Z1L2UiIiIixo3xMAO6D7DU9mrbS4FNqWYf7yllzgNOB+aWfIDbgUMBJM0AnrP9whCP7V7gwHJ9yBC3HRERETFqjfXZuEVUT79/p0faxrafA7A9T9ILQP3myk5gtqSFwG+BDw/D2I4GviXp08B1VPtS+zR1cjtd2eMUERERLU6vrg6PT5K2BG4FtrP9ShP73RB4ybYlHQJ80Pa+fdWp1Wru6upqzgAjIiIi1oKkebZrjfLG+gxonyR9CPgS8KlmBp/FTsCZkgT8muohqIiIiIgxb1wHoLYvpHrF0kj0fQfw1pHoOyIiImIkjfWHkCIiIiJilEkAGhERERFNlQA0IiIiIpoqAWhERERENNW4fgip5SyZD505jjMiYtTr7PfVzhHj2qiaAZW0WtICSQ9Juqy8K3OkxnKYpDOHuM0tJX1vKNuMiIiIaDWjKgClejH7NNs7Ar8DjhzpAQ0l20tsHzTS44iIiIgYSaMtAK13B/AXkjaSdL6kuZLmS9oXfj9DeYWk6yX9VNJJ3RUlLZf0JUkPSrpX0uYl/f1ldvVBSbeXtDskTaure5ekt9Tdt0taLGmdcr+hpCclrSfpo2VcD0q6vHvGVtIcSadLulvS45IOKukdkh6qu75D0gPlb5dh/0UjIiIiRoFRuQdU0rrA3wDXA58FbrZ9hKRNgfsl/agUnQa8DVgJPCbpDNtPAhsB99r+bAlMPwp8ETge+GvbT5W2AM4DDgOOlrQtMMH2QklvB7C9TNKDwLuAW4D3ATfYflnSFbbPLWP+IvAR4IzS7hbAbsB2wNVAz6X3Z4H32F4haQpwMfCa46okzQRmArRNnETHitk9i0REjEqLT9x7pIcQEaPUaJsB3UDSAqAL+G/gP4C/Ao4r6bcC6wNbl/I32V5mewXwCPCGkv474NpyPQ/oKNd3AXMkfRRoK2mXAftIWo/qOMw5DcZ1KXBwuT6k3APsWGYxFwGHAjvU1bnK9iu2HwE2b9DmesC5pe5lwPaNfhDbs2zXbNfaNswDSBEREdH6RtsM6Eu2p9UnlLPSD7T9WI/0/0E189ltNa9+n5dtu2e67SNLvb2BBZKm2X5e0g+BfYEP0GAWkmoG8yuS/pjqDPebS/ocYD/bD0o6DJhRV6d+bGrQ5jHAM1THca4DrGhQJiIiImLMGW0BaCM3AJ+U9EnblvQ22/PXpCFJ29i+D7hP0vuArYDnqZbhrwHusL20Zz3byyXdD5wGXGt7dcnaBHi6zJ4eCjw1iOG0Az+3/YqkD/PqjGyvpk5upytLWhEREdHiWiEA/QJwKrCwzIYuBvZZw7a+VvZbCrgJeBDA9jxJLwB9bbC8lGqpfEZd2ueA+4CfAYuoAtKBOhu4XNL7qfaWvjiIuhEREREtS6+uVI9fkrak2l+6ne1XRng4varVau7q6hrpYURERET0S9I82422No66h5CaTtKHqGYxPzuag8+IiIiIsaIVluCHle0LgQtHehwRERER48W4nwGNiIiIiOZKABoRERERTZUANCIiIiKaatzvAW0pS+ZDZ05DiogYMp3LRnoEEeNSZkABSX8m6fuSfirpvySdJumPRnpcEREREWPRuA9Ay8vtr6A6u30KsC2wMfClHuUyWxwRERExBMZ9AAq8G1hhezZAOWbzGOAISf8o6TJJ1wA3StpI0vmS5kqaL2lfAEkbSvqupIWSLpV0n6RayfugpEWSHpL01e5OJS2X9CVJD0q6V9Lmzf/qEREREc2XWT3YAZhXn2D7BUn/TfX7TAfeYnuppC8DN9s+QtKmwP2SfgR8HPiV7bdI2hFYAL8/YemrwE7Ar6iC2P1sXwVsBNxr+7OSTgI+Cnyx5+AkzQRmArRNnETHir5OC42IiEYWn7j3SA8hIupkBrQ6F77ReaTd6T+0vbSk/RVwnKQFVEd3rg9sDewGXAJg+yFgYSn/DuBW27+0vQr4NrBHyfsdcG25ngd0NBqc7Vm2a7ZrbRvmAaSIiIhofZkBhYeBA+sTJE0EtgJWAy/WZwEH2n6sR3n10nZv6QAv2+4OfFeT/0VERESME5kBhZuADcuZ8EhqA04G5gC/7VH2BuCT3QGnpLeV9DuBD5S07YGpJf0+4F2SNivtfhC4bfi+SkRERMToN+5n3Wxb0v7A2ZI+RxWU/wD4P1QBY70vAKcCC0sQuhjYBzgbuEDSQmA+1RL8MttPS/pX4Baq2dAf2P7+mo516uR2urKPKSIiIlqcXl0FjjVVZjfXs71C0jZUs6rb2v7dUPZTq9Xc1dU1lE1GREREDAtJ82zXGuWN+xnQIbIhcIuk9ahmOj8+1MFnRERExFiRAHQI2P4N0DDCj4iIiIg/lIeQIiIiIqKpEoBGRERERFMlAI2IiIiIpkoAGhERERFNlYeQWsmS+dCZ4zgjIgLoXDbSI4hYY+N2BlTSrZL+ukfa0ZIel3TcINvaUtL3BlDuB5I2HexYIyIiIsaS8TwDejFwCNXxmt0OAT5s+46ehSWta3tVo4ZsLwEO6q9D2+9dw7FGREREjBnjdgYU+B6wj6QJAJI6gC2Bv5B0ZkmbI+kbkm4BvippG0n3Spor6QRJy7vrSnqoXB8m6QpJ10v6qaSTujuUtFjSZuX6KknzJD0saWYzv3hERETESBq3M6C2n5d0P/A/ge9TzX5eCvQ8m3RbYC/bqyVdC5xm+2JJR/bR/DTgbcBK4DFJZ9h+skeZI2wvlbQBMFfS5baf79lQCU5nArRNnETHitlr8G0jIobW4hP3HukhREQLG88zoPDqMjzl8+IGZS6zvbpcTwcuK9ff6aPdm2wvs70CeAR4Q4MyR0l6ELgX2AqY0qgh27Ns12zX2jbMA0gRERHR+sZ7AHoV8JeS3g5sYPuBBmVeXIN2V9Zdr6bHTLOkGcBewHTbbwXmA+uvQT8RERERLWdcB6C2lwO3AufTePazp3uBA8v1IX0V7Ec78Cvbv5W0HfDOtWgrIiIioqWM2z2gdS4GrmBgAeXRwLckfRq4DljTl7BdDxwpaSHwGFVg26+pk9vpyr6riIiIaHGyez5zE72RtCHwkm1LOgT4oO19m9V/rVZzV1dXs7qLiIiIWGOS5tmuNcrLDOjg7AScKUnAr4EjRng8ERERES0nAegglBfUv3WkxxERERHRysb1Q0gRERER0XwJQCMiIiKiqRKARkRERERTZQ9oK1kyHzpzGlJExJjSuaZv9ItoXS0xAyrJkk6uuz9WUucQtt9R+vhCXdpmkl6WdOYatnmCpL2GaowRERERY0VLBKBUR1seIGmzYezjcWCfuvv3Aw+vaWO2j7f9o7UeVURERMQY0yoB6CpgFnBMzwxJkyRdLmlu+du1pC+StKkqz0v6UEm/qJeZyZeAH0vqfmHqwcB3B9DP9+va/pikb5frOZIOKtfvkHS3pAcl3S9pE0nrS5pdxjlf0p5D9WNFREREjGattAf0LGChpJN6pJ8GnGL7TklbAzcAbwbuAnYFfkY1u7k7cCHVuesf76WPS4BDJP0CWA0sAbbsp5+ZwF2SngA+TY9z3SX9EXApcLDtuZImUgW7/wxge2o5D/5GSdvaXtGj/szSB20TJ9GxYvbAfq2IiGgJi0d6ABEjoGUCUNsvSLoQOIoqgOu2F7B9dTgRABMlbQLcAexBFYCeA8yUNBlYant5L91cD3wBeIYqaKzXsB/bz0g6HrgF2N/20h713gQ8bXtu9/cAkLQbcEZJe1TSz4BtgYU9vvcsqtlfJmwxJeemRkRERMtrmQC0OBV4AKifBlwHmG67PihF0u3APwFbA58F9gcOogpMG7L9O0nzqGYydwDe118/xVTgeV6dLf2DoQCNAkc1SIuIiIgY81plDygAZXbxu8BH6pJvBD7RfSNpWin7JLAZMMX248CdwLH0EYAWJwP/2/bzPdIb9iNpZ+BvgLcBx0p6Y496jwJbSnpHKb+JpHWB24FDS9q2VIHyY/2MLSIiIqLltdoMKFQB4ifq7o8CzpK0kOr73A4cWfLuA9rK9R3AV6gC0V7ZfpjGT7+/ph9J/wycCxxue4mkTwPnS3p3XXu/k3QwcIakDai2D+wFnA18U9IiqoesDrO9sq+xTZ3cTteJe/dVJCIiImLUk51tha2iVqu5q6trpIcRERER0S9J82zXGuW11BJ8RERERLS+BKARERER0VQJQCMiIiKiqRKARkRERERTJQCNiIiIiKZKABoRERERTdWK7wEdv5bMh872kR5FRES0os5lIz2CiN9rmRlQSadIOrru/gZJ59XdnyzpU4Nor1PSsb3k3b0W45whaZc1rR8REREx1rVMAArcDewCIGkdqmM2d6jL3wW4ayg6sr02AeSMMpaIiIiIaKCVAtC7eDWw2wF4CPiNpNdJmgC8GfhrSXMlPSRpliQBSDpK0iOSFkq6pK7N7SXdKulxSUd1J0paXj5nlPzvSXpU0rfr2nxvSbtT0umSrpXUQXUM6DGSFkjaXdIbJN1U+r5J0tal/pxS7+7S/0HD+utFREREjBItswe0nLW+qgRwuwD3AJOB6cAyYCFwpu0TACRdBOwDXAMcB7zR9kpJm9Y1ux2wJ7AJ8Jikc2y/3KPrt1EFvEuoguBdJXUB/w7sYfsJSReXMS6W9E1gue2vl3FcA1xo+wJJRwCnA/uVtrcAdivjuBr4Xs/vLWkmMBOgbeIkOlbMXpOfLyIiRpHFJ+490kOIGFGtNAMKr86Cdgeg99Td3w3sKek+SYuAd/PqEv1C4NuS/g5YVdfedbZX2n4OeBbYvEGf99v+ue1XgAVAB1XA+LjtJ0qZi/sY83TgO+X6IqqAs9tVtl+x/UgvfWN7lu2a7VrbhnkAKSIiIlpfqwWg3ftAp1Itwd9LFeB17/88GzjI9lTgXGD9Um9v4CxgJ2CepO6Z35V1ba+m8YxwozJai+/gXtpemzYjIiIiWkarBaB3US2rL7W92vZSYFOqIPSeUuY5SRsDB8HvH1jayvYtwGdK+Y3XchyPAn9e9nwCHFyX9xuqJf1udwOHlOtDgTvXsu+IiIiIltYye0CLRVRPv3+nR9rGtp+TdG65XwzMLfltwLcktVPNMp5i+9flWaI1YvslSf8IXC/pOeD+uuxrgO9J2hf4JHAUcL6kfwF+CRy+pv1OndxOV/YNRURERIuT7f5LxWtI2tj28vJU/FnAT22fMpx91mo1d3V1DWcXEREREUNC0jzbtUZ5rbYEP5p8VNIC4GGgneqp+IiIiIjoR6stwY8aZbZzWGc8IyIiIsaizIBGRERERFMlAI2IiIiIpkoAGhERERFNlT2grWTJfOjMaUgRETHOdS4b6RHEWhrTM6CSXM6E775fV9IvJV07RO3PGMK2DpN05lC0FRERETGajekAFHgR2FHSBuX+PcBTg2mg7tjOiIiIiBgCYz0ABfhPqrPgAT4IXNydIWlnSXdLml8+31TSD5N0maRrgBslXVRONuqu921Jf1vfST9tXSHpekk/lXRSXZ3DJf1E0m3ArsP2C0RERESMIuNhdu8S4PiyVP4W4Hxg95L3KLCH7VWS9gK+DBxY8qYDb7G9VNK7gGOA75cjPXcBPgzsVtdPX21NA94GrAQek3QGsAr4v8BOwDLgFmB+z8FLmgnMBGibOImOFbPX9veIiBiXFuco44hRY8wHoLYXSuqgmv38QY/sduACSVMAA+vV5f3Q9tLSxm2SzpL0J8ABwOUl0BxoWzfZXgYg6RHgDVRn2t9q+5cl/VJg2wbjnwXMApiwxZScmxoREREtbzwswQNcDXyduuX34gvALbZ3BN4HrF+X92KPshcBhwKHA42mIftqa2Xd9WpeDfwTUEZERMS4M14C0POBE2wv6pHezqsPJR3WTxtzgKMBbD/cIH8wbQHcB8yQ9HpJ6wHvH0CdiIiIiJY35pfgAWz/HDitQdZJVMvmnwJu7qeNZyT9GLiqlyIDbqu097SkTuAe4GngAaCtrzpTJ7fTlT1MERER0eJkZxV4ICRtCCwC3t69n7PZarWau7q6RqLriIiIiEGRNM92rVHeeFmCXyvlqfZHgTNGKviMiIiIGCvGxRL82rL9I2DrkR5HRERExFiQGdCIiIiIaKoEoBERERHRVAlAIyIiIqKpEoBGRERERFPlIaRWsmQ+dLaP9CgiIiLWXmdeKjOeDdsMqCRLOrnu/tjy4vWhar9D0kM90jolHTtUfQxiLL32K+nuZo8nIiIiYjQbziX4lcABkjYbxj5GPdu79EyT1OeJRxERERFj2XAGoKuAWcAxPTMkTZJ0uaS55W/Xkr5I0qaqPC/pQyX9ovIy+AGT9NHS9oOlrw1L+hxJ50i6RdLjkt4l6XxJP5Y0p67+ckknS3pA0k2SJpX0oyQ9ImmhpEvqutxe0q2lzaPq2ymfM0qf3wEWSWqT9LUyxoWSPjaY7xcRERHRqoZ7D+hZwEJJJ/VIPw04xfadkrYGbgDeDNwF7Ar8DHgc2B24EHgn8PEG7W8jaUHd/Z8CXy/XV9g+F0DSF4GPAGeUvNcB7wb+Frim9PkPwFxJ02wvADYCHrD9aUnHA58HPgEcB7zR9kpJm9b1vR2wJ7AJ8Jikc2y/3GO8OwM72n5C0kxgme13SJoA3CXpRttP1Fco5WYCtE2cRMeK2Q1+hoiIaFWLT9x7pIcQ0XTDGoDafkHShcBRwEt1WXtRzRh230+UtAlwB7AHVQB6DjBT0mRgqe3lDbr4L9vTum967DHdsQSemwIbUwW53a6xbUmLgGdsLyr1HwY6gAXAK8Clpfy3gCvK9ULg25KuAq6qa/M62yuBlZKeBTYHft5jvPfXBZh/BbxF0kHlvh2YAvxBAGp7FtVMMhO2mOIGv0FERERES2nGU/CnAg8A9VN36wDTbdcHpUi6HfgnqmMvPwvsDxxEFZgO1hxgP9sPSjoMmFGXt7J8vlJ33X3f22/SHfztTRUk/y3wOUk79GgTYHUv7bxYdy3gk7ZvaFAuIiIiYswa9veA2l4KfJdqCbzbjVTL2QBImlbKPglsBkyx/ThwJ3AsaxaAbgI8LWk94NA1qL8OVfAL8L+AOyWtA2xl+xbgM7w6u7ombgA+XsaHpG0lbbSGbUVERES0jGa9B/Rk6gJOqiX5syQtLGO4HTiy5N0HdD8lfgfwFapAdLA+V9r6GbCIKiAdjBeBHSTNA5YBB5dxfUtSO9UM5im2f123lWAwzqNa7n9AVQO/BPbrq8LUye10Za9QREREtDjZ2VbYiKTlttd0dnNY1Go1d3V1jfQwIiIiIvolaZ7tWqO8HMUZEREREU2VALQXo232MyIiImKsSAAaEREREU2VADQiIiIimioBaEREREQ0VbNewxRDYcl86Gwf6VFERESMLp3LRnoEMUijZgZU0imSjq67v0HSeXX3J0v61CDbnCFplwbpHZJ+Xl4sX5++QNLOks6TtP0g+zpS0of6KVOTdPpg2o2IiIgYa0bTDOjdwPuBU0tguBkwsS5/F+DoRhX7MANYXtr+PduLJT0J7A7cBiBpO2AT2/cD9zdqTFKb7dWN8mx/s7/B2O4C8iLPiIiIGNdGzQwocBdVkAmwA/AQ8BtJr5M0AXgzMF/STpJukzSvzJJuASDpKEmPSFoo6RJJHVSnKx1TZjZ379HfxcAhdfeHlDQk3SqpVq6XSzpB0n3AdEkfkfSTUuZcSWeWcp2Sjq2r/1VJ95eyu5f0GZKuLdc7S7pb0vzy+aYh/TUjIiIiRqlRMwNqe4mkVZK2pgpE7wEmA9OpjsJcCBg4A9jX9i8lHQx8CTgCOA54o+2VkjYtR2R+E1hu++sNuvwuVUD7SdurqI7afH+DchsBD9k+XtKWwLeAtwO/AW4GHuzlK61re2dJ7wU+D+zVI/9RYA/bqyTtBXwZOLBnI5JmAjMB2iZOomPF7F66i4iIZlqco5Ej1tioCUCL7lnQXYBvUAWgu1AFoHcDbwJ2BH5Yzl9vA54udRcC35Z0FXBVfx3Z/oWkh4G/lPQM8LLthxoUXQ1cXq53Bm6zvRRA0mXAtr10cUX5nEd15ntP7cAFkqZQBdbr9TLOWcAsgAlbTMm5qREREdHyRlsAejdVwDmVagn+SeDTwAvA+YCAh21Pb1B3b2AP4G+Bz0naYQD9dS/DP1OuG1lRt+9TA/weACvL52oa/85fAG6xvX/ZLnDrINqOiIiIaFmjaQ8oVDOg+wBLba8uM42bUi3D3wM8BkySNB1A0nqSdigPLW1l+xbgM6XOxlTL5Jv00d/lwHuplt8vGcD47gfH9NX+AAAYB0lEQVTeVfalrkuDJfNBaAeeKteHrUU7ERERES1ltM2ALqJ6+v07PdI2tv0cgKSDgNMltVON/1TgJ8C3SpqAU8oe0GuA70naF/ik7TvqOytl7gU2t/1Ef4Oz/ZSkLwP3AUuAR6i2B6yJk6iW4D9FtZe0X1Mnt9OVPUcRERHR4mRnW+FgSNrY9vIyA3olcL7tK5vRd61Wc1dX3uIUERERo5+kebZrjfJG2xJ8K+iUtIBqj+oTDOCBp4iIiIh41Whbgh/1bB870mOIiIiIaGWZAY2IiIiIpkoAGhERERFNlQA0IiIiIpoqAWhERERENFUeQmolS+ZDZ/tIjyIiIqJ1dK7p67pjOI3rGVBJlnRy3f2xkjqHuc/FkjYbzj4iIiIiRrNxHYBSndd+QALCiIiIiOYZ7wHoKmAWcEzPDEmTJF0uaW7521XSOmUGc9O6cv9P0uaS3ifpPknzJf1I0uYl//WSbizp/051VGh33askzZP0sKSZTfi+ERERESMue0DhLGChpJN6pJ9Gdab8nZK2Bm6w/WZJ3wf2B2ZL+h/AYtvPSLoTeKdtS/oH4DPAp4HPA3faPkHS3kB9oHmE7aWSNgDmSrrc9vP1gyiB6UyAtomT6Fgxe+h/gYiIiFFu8Yl7j/QQYgiN+wDU9guSLgSOAl6qy9oL2F76/YTlREmbAJcCxwOzgUPKPcCfAZdK2gL4I6pjOgH2AA4ofV0n6Vd1fRwlaf9yvRUwBfiDANT2LKpZWiZsMcVr920jIiIiRt54X4LvdirwEWCjurR1gOm2p5W/ybZ/A9wD/IWkScB+wBWl/BnAmbanAh8D1q9r6zWBo6QZVEHudNtvBeb3qBMRERExJiUABWwvBb5LFYR2uxH4RPeNpGmlrIErgW8AP65bMm8HnirXH65r53bg0NLG3wCvqyv/K9u/lbQd8M6h/E4RERERo9W4X4KvczJ1ASfVkvxZkhZS/U63A0eWvEuBucBhdeU7gcskPQXcC7yxpP9f4GJJDwC3Af9d0q8HjiztP1bq9Gnq5Ha6sgcmIiIiWpyqCb1oBbVazV1dXSM9jIiIiIh+SZpnu9YoL0vwEREREdFUCUAjIiIioqkSgEZEREREUyUAjYiIiIimSgAaEREREU2V1zC1kiXzobN9pEcRERHRejqXjfQIos6YnQGV9KeSLpH0X5IekfQDSdv2UX55+dxS0vfq0i+WtFDSMUMwppqk09e2nYiIiIhWNiZnQFUd4H4lcIHtQ0raNGBz4Cd91bW9BDio1PlTYBfbbxhE3+vaXtVL211AXuQZERER49pYnQHdE3jZ9je7E2wvAOZLuknSA5IWSdq3Z0VJHZIeKrc3An8iaYGk3SVNk3RvmRG9UtLrSp1bJX1Z0m3AP5f7r0q6X9JPJO1eys2QdG253lnS3ZLml883DfNvEhERETEqjMkZUGBHYF6D9BXA/rZfkLQZcK+kq937cVB/C1xrexpAOTbzk7Zvk3QC8Hng6FJ2U9vvKuXeB6xre2dJ7y3l9urR9qPAHrZXSdoL+DJwYM8BSJoJzARomziJjhWzB/obREREtLzFOYJ6TBqrAWhvBHxZ0h7AK8BkqmX5X/RbUWqnCjJvK0kXAJfVFbm0R5Uryuc8oKNBk+3ABZKmAAbWa9Sv7VnALIAJW0zJuakRERHR8sbqEvzDwE4N0g8FJgE7lVnNZ4D1h6jPF3vcryyfq2kc6H8BuMX2jsD7hnAcEREREaPaWA1AbwYmSPpod4KkdwBvAJ61/bKkPcv9gNheBvyqez8n8PfAbX1U6U878FS5Pmwt2omIiIhoKWNyCd62Je0PnCrpOKq9n4uBTuB0SV3AAqp9mIPxYeCbkjYEHgcOX4thnkS1BP8pqoC5X1Mnt9OVvTARERHR4tT78zcx2tRqNXd15S1OERERMfpJmme71ihvrC7BR0RERMQolQA0IiIiIpoqAWhERERENFUC0IiIiIhoqgSgEREREdFUCUAjIiIioqnG5HtAx6wl86GzfaRHERERMfp0LhvpEcQgtOwMqCRLOrnu/lhJnUPYfoekh4aqvYiIiIiotGwASnXW+gGSNhvpgQBIahvpMURERES0glYOQFcBs4BjemZImiTpcklzy9+uJX2RpE1VeV7Sh0r6RZL26q0jSW2SvlbaWijpYyV9hqRbJH0HWCRpI0nXSXpQ0kOSDi7ldpJ0m6R5km6QtIWkbSQ9UNfHFEnzhvQXioiIiBiFWn0P6FnAQkkn9Ug/DTjF9p2StgZuAN4M3AXsCvyM6iz33YELgXcCH++jn48Ay2y/Q9IE4C5JN5a8nYEdbT8h6UBgie29ASS1S1oPOAPY1/YvS1D6JdtHSFomaZrtBVTnys/p2bGkmcBMgLaJk+hYMXtwv1BERMQ4sHikBxCD0tIBqO0XJF0IHAW8VJe1F7C9pO77iZI2Ae4A9qAKQM8BZkqaDCy1vbyPrv4KeIukg8p9OzAF+B1wv+0nSvoi4OuSvgpca/sOSTsCOwI/LONpA54u5c8DDpf0KeBgqmC253ecRTXTy4QtpngAP0tERETEqNbSAWhxKvAAUD81uA4w3XZ9UIqk24F/ArYGPgvsDxxEFZj2RcAnbd/Qo70ZwIvd97Z/Imkn4L3AV8os6ZXAw7anN2j3cuDzwM3APNvP9zOOiIiIiJbXyntAAbC9FPgu1TJ5txuBT3TfSJpWyj4JbAZMsf04cCdwLP0HoDcAHy/L6UjaVtJGPQtJ2hL4re1vAV8H3g48BkySNL2UWU/SDmU8K0rb5/CHAXRERETEmDUWZkABTqYu4KRakj9L0kKq73g7cGTJu49qGRyqwPMrVIFoT+tSPWkP1VJ5B/CAqnX0XwL7NagzFfiapFeAl4GP2/5dWbo/XVJ7afdU4OFS59vAAVRBc5+mTm6n68S9+ysWERERMarJzrbCRiTtCxxq+wPD3M+xQLvtz/VXtlaruauraziHExERETEkJM2zXWuUN1ZmQIeUpBOAfYHDhrmfK4FtgHcPZz8RERERo0kC0AZsHw8c34R+9h/uPiIiIiJGm5Z/CCkiIiIiWksC0IiIiIhoqgSgEREREdFUCUAjIiIioqnyEBIgaX/gCuDNth/tpczdtndp7sh6WDIfOttHdAgRERHjQueykR7BmJYZ0MoHqV5Gf0jPDEltACMefEZERESMEeM+AJW0MbAr1VGeh5S0GZJukfQdYFFJW14+T5C0oPw9JWl2Sf+UpIfK39ElrUPSjyWdK+lhSTdK2qDkfVTSXEkPSrpc0obN//YRERERzTfuT0KS9HfAnrY/IuluqiM9JwLXATvafqKUW25747p67VRHeR5ekuYA7wREddzn3wG/Av4fULO9QNJ3gattf0vS620/X9r6IvCM7TMajG8mMBOgbeKknf7s4zkyPiIiYk0sznHWTdXXSUjjfgaUavn9knJ9SbkHuL87+OypnAf/beAU2/OA3YArbb9oeznVftLdS/EnbC8o1/OozpQH2FHSHZIWAYcCOzTqy/Ys2zXbtbYNs/8zIiIiWt+4fghJ0uupjsHcUZKBNsDAD4AX+6jaCfzcdvd0pPoou7LuejWwQbmeA+xn+0FJhwEzBjn8iIiIiJY03mdADwIutP0G2x22twKeoJrRbEjSPsB7gKPqkm8H9pO0oaSNgP2pluf7sgnwtKT1qGZAIyIiIsaFcT0DSrXcfmKPtMuBjwP/1UudTwNbAvdXK/Fcbft4SXOA+0uZ82zPl9TRR9+fo9or+jOqB5026W+wUye305X9KxEREdHixv1DSK2kVqu5q6trpIcRERER0a88hBQRERERo0YC0IiIiIhoqgSgEREREdFUCUAjIiIioqkSgEZEREREUyUAjYiIiIimGu/vAW0tS+ZDZ47jjIiI/9/evQfbVZZ3HP/+ehBDDAQC1EIQYkVFhBLwgHIdAswUhBZ0yoCDLdBLytSpRkspagcjMzLM0FrtVIrxAtTSaKFcO4rcCWi5nJBgghCVi0K5BVHuIRie/rFXhs3pSXLIZe+sc76ff/Ze73rXWs/Zz5xznnnfd+2lMWH2M/2OoG/GzQhokpuS/P6wtllJzu1XTF0xTOxnDJIkSb00bgpQYC5w/LC245v21UoysEEi6pgFWIBKkqRxYzwVoJcARyV5M0DzmMztgYlJ/ifJXUkuTjKp2f9QkjOS3Aoc22yf1fQdSrJXku8nuT/JKc0xSXJOksVJFiU5rmk/uBmBvSTJfUkuavp+vInhxiQ39v4jkSRJ6r1xswa0qn6Z5A7gcOAKOqOf1wOfBQ6rqheS/B3wKeDM5rBlVXUAQJKzgYerat8k/wRcAOwPTADuAc4DPgxMB/YAtgHuTDKvOdeewHuBR4EfAPtX1T8n+RQwo6qeGinuJDOBmQADW2zLtGXnr6+PRJIkrcJDZx/Z7xDGtPE0Agqvn4Y/HngQ2BX4QZKFwInATl39vzPs+Cub10XA7VX1XFUtBZYl2RI4AJhbVSuq6gngZmDv5pg7quqRqnoVWAhMG03AVTWnqgaranBgojcgSZKk9hs3I6CNy4EvJtkL2AxYAFxbVR9ZRf8Xhm2/3Ly+2vV+5fYmQFZz7e7+Kxh/n70kSRIwzkZAq+p54Cbgm3RGQ28D9k+yM0CSiUnetQ6XmAccl2QgybbAQcAdazjmOWDzdbimJElSq4zHUbi5wKXA8VW1NMlJwNyVNycBfw/8ZC3PfRmwL3A3UMBpVfV4kl1Wc8wc4HtJHquqGas7+e5TJzPkmhRJktRyqap+x6BRGhwcrKGhoX6HIUmStEZJ5lfV4Ej7xtUUvCRJkvrPAlSSJEk9ZQEqSZKknrIAlSRJUk9ZgEqSJKmnLEAlSZLUU+Pxe0Db69EFMNvHcUqSJGD2M/2OYK2NixHQJL+T5NtJ7k/y4yTfXdUTj5JMS7J4A8UxO8mpG+LckiRJbTHmC9AkofOEopuq6h1VtSvwGeCt6+n8jiJLkiS9AWO+AAVmAK9U1XkrG6pqIXBrknOSLE6yKMlxww9MMiHJ+c3+BUlmNO0nJbk4yVXANUkmJbk+yV1N36O7zvHZJEuSXAe8u6t9epLbkvwoyWVJttqQH4IkSdLGYjyM3u0GzB+h/cPAdGAPYBvgziTzhvX5GEBV7d48z/2arqn7fYHfq6qnm1HQD1XVs0m2AW5LciWwF3A8sCedz/qurlj+Dfjrqro5yZnA54BZw4NMMhOYCTCwxbZMW3b+Wn0IkiRpbHmo3wGsg/EwAroqBwBzq2pFVT0B3AzsPUKfbwFU1X3Az4GVBei1VfV08z7AWUl+BFwHTKUzxX8gcFlVvVhVzwJXAiSZDGxZVTc3x18IHDRSkFU1p6oGq2pwYKI3IEmSpPYbDwXoPcD7RmjPKI5dXZ8Xut6fAGwLvK+qpgNPABOafTWaICVJksaL8TAFfwOd0cm/qKqvASTZG/gVcFySC4EpdEYg/5bXCkeAeXSKyxuaqfcdgSV0pta7TQaerKpXmnWiO3Udf0GSs+l81n8AfLWqnknyqyQHVtUtwB/TGYFdrd2nTmbo7CPX4iOQJEnaeIz5ArSqKsmHgC8lOR1YRmfZxCxgEnA3nVHK06rq8STTug4/FzgvySLgN8BJVfVy58b617kIuCrJELAQuK+59l1JvtO0/Ry4peuYE5tzTwQeAE5ebz+0JEnSRixVzhC3xeDgYA0NDfU7DEmSpDVKMr+qBkfaNx7WgEqSJGkjYgEqSZKknrIAlSRJUk9ZgEqSJKmnLEAlSZLUU2P+a5jGlEcXwGyfhiRJktbB7Gf6HYEjoGsjybQki4e1zU5yapKTkmw/inPclGTEryaQJEkayyxA17+TgDUWoJIkSeOVBej6NwhclGRhks2SnJHkziSLk8zJ6x+jdGySO5L8JMmB/QpYkiSpl1wDuv4NAadW1RBAkn+pqjOb998CjgKuavpuUlX7JPkg8DngsOEnSzITmAkwsMW2TFt2fg9+BEmS1E8PnX1kv0PYoBwBXTuren7pSO0zktzePE/+EOC9XfsubV7nA9NGPGHVnKoarKrBgYnegCRJktrPEdC180tgq2FtU4AHuxuSTADOBQar6uEks4EJXV1ebl5XYC4kSdI44QjoWqiq54HHkhwKkGQKcDhwK/AcsHnTdWWx+VSSScAf9TpWSZKkjY2jbmvvT4CvJPnHZvvzVXV/kguA85K8BOwLfA1YBDwE3LkuF9x96mSGxviaEEmSNPalalXLGbWxGRwcrKGhoX6HIUmStEZJ5lfViN957hS8JEmSesoCVJIkST3lFHyLJHkOWNLvOLTOtgGe6ncQWi/M5dhgHscG87jx2amqth1phzchtcuSVa2lUHskGTKPY4O5HBvM49hgHtvFKXhJkiT1lAWoJEmSesoCtF3m9DsArRfmcewwl2ODeRwbzGOLeBOSJEmSesoRUEmSJPWUBagkSZJ6ygK0JZIcnmRJkp8lOb3f8Wh0krwtyY1J7k1yT5JPNO1Tklyb5KfN61b9jlVrlmQgyYIk/91sm8eWSbJlkkuS3Nf8Xu5rHtsnySebv6mLk8xNMsE8tosFaAskGQC+AhwB7Ap8JMmu/Y1Ko/Qb4G+q6j3AB4CPNbk7Hbi+qt4JXN9sa+P3CeDerm3z2D5fBq6uql2APejk0zy2SJKpwMeBwaraDRgAjsc8tooFaDvsA/ysqh6oquXAt4Gj+xyTRqGqHququ5r3z9H5ZzeVTv4ubLpdCBzTnwg1Wkl2AI4Evt7VbB5bJMkWwEHANwCqanlV/Rrz2EabAJsl2QSYCDyKeWwVC9B2mAo83LX9SNOmFkkyDdgTuB14a1U9Bp0iFfjt/kWmUfoScBrwalebeWyX3wWWAuc3Sym+nuQtmMdWqar/Bf4B+AXwGPBMVV2DeWwVC9B2yAhtfn9WiySZBPwXMKuqnu13PHpjkhwFPFlV8/sdi9bJJsBewL9W1Z7ACzhN2zrN2s6jgbcD2wNvSfLR/kalN8oCtB0eAd7Wtb0DnekGtUCSN9EpPi+qqkub5ieSbNfs3w54sl/xaVT2B/4wyUN0lsAckuTfMY9t8wjwSFXd3mxfQqcgNY/tchjwYFUtrapXgEuB/TCPrWIB2g53Au9M8vYkm9JZbH1ln2PSKCQJnfVm91bVF7t2XQmc2Lw/Ebii17Fp9Krq01W1Q1VNo/P7d0NVfRTz2CpV9TjwcJJ3N02HAj/GPLbNL4APJJnY/I09lM76evPYIj4JqSWSfJDOGrQB4JtV9YU+h6RRSHIAcAuwiNfWDn6GzjrQ/wR2pPPH9NiqerovQeoNSXIwcGpVHZVka8xjqySZTudGsk2BB4CT6QzGmMcWSfJ54Dg63zSyAPhzYBLmsTUsQCVJktRTTsFLkiSppyxAJUmS1FMWoJIkSeopC1BJkiT1lAWoJEmSesoCVJJaJsmKJAuTLE5ycZKJq+j3w/V0vWOSnDGsbfaw7U2TzGuezS1Jq2UBKknt81JVTa+q3YDlwCndO5MMAFTVfuvpeqcB5zbn3j7J94C/aorgTzbXWg5cT+e7GSVptSxAJandbgF2TnJwkhuT/AedBx+Q5PmVnZKclmRRkruTnN20vSPJ1UnmJ7klyS7DT57kXcDLVfVU0zQLmE+nIN0buLqr++XACRvih5Q0tjhVIkkt1Ux3H8FrReA+wG5V9eCwfkcAxwDvr6oXk0xpds0BTqmqnyZ5P52i8pBhl9kfuKtrezmwNfB08xzue7v2LaZTlErSajkCKknts1mShcAQnUcOfqNpv2N48dk4DDi/ql4EqKqnk0wC9gMubs71VWC7EY7dDljatX0Onf8df5nk+ubRpDTnXQEsT7L5Ov10ksY8R0AlqX1eqqrp3Q1JAF5YRf8Aw5+7/FvAr4efZ6RrAZNXblTVM3SKz8eA7wNXJNmxqpY1Xd4MLPv/p5Gk1zgCKklj3zXAn668Wz7JlKp6FngwybFNW5LsMcKx9wI7r9xI8p4kK/93LAJeBd7U7NsaWNpMzUvSKlmAStIYV1VXA1cCQ810+6nNrhOAP0tyN3APcPQIh88D9kwzxEpnTegPgZOB24EvVNVzzb4ZwHc3zE8haSxJ1fBZGUmSXpPky8BVVXVdV9vsqpo9rN+lwKerakmPQ5TUMo6ASpLW5Cxg+Jfd39S9kWRT4HKLT0mj4QioJEmSesoRUEmSJPWUBagkSZJ6ygJUkiRJPWUBKkmSpJ6yAJUkSVJP/R8rvqN60KizVwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqAAAAJcCAYAAAAmbBanAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB330lEQVR4nOzde5xVVf3/8de70bgIDKnkV/EyZngFQj2a4CU0s4vm3dSvZWhJWGlYVv7qq02mRaZ5QcuwBDVDE0URTU0FL4DCwOCAeCvFVEzxhmJAAp/fH3sNHMYzF2A4Z87M+/l4zOPsvdbaa3/2xu/j+2mtvfdSRGBmZmZmViwfKXUAZmZmZtaxOAE1MzMzs6JyAmpmZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyonoGZmbYykv0n6egvazZd0cDFiao6kqyWd28p9Vkv6c2v2aWZtgxNQMys7kiZLeltSp1LHsr4KJVkR8cWIuG4DnrPVE9eIGBYRv2jNPluTpP0kTZW0SNJbkqZI2ivVDZH06Fr0VSUpJG204SI2a9+cgJpZWZFUBewPBHD4BujfScVaklRR6hiaIqkHMBEYCWwK9AZ+DiwrZVxmHZkTUDMrNycDjwFjgK8DSOok6R1JfesbSeolaYmkj6f9wyTNTu2mSuqf13a+pB9LqgPel7SRpHMk/VPSe5LmSToqr32FpEskvSHpBUnfzR8Rk1Qp6U+SXpX0iqQLCiVpkr4A/AQ4XtJiSU+k8smSvpnX7jRJT+XFskeBvnZOsZzQ1PVKugHYFrgznfNHBfoaLOllST9J1zhf0kl59WMk/V7S3ZLeBw5MZRfktTkinf/ddB+/sDb3Jk9nSTena58l6VOpnx9KurVB3CMlXVagjx0BImJsRKyIiCURcV9E1EnaBbgaGJjuxzupr0Ml1ab4X5JUndffw+n3nXTMwHTMqenf6W1J90raronrMuvYIsJ//vOf/8rmD/gH8G1gT+ADYItUfi1wYV677wD3pO09gNeBTwMVZInrfKBTqp8PzAa2AbqksuOArcj+h/rxwPvAlqluGDAP2Br4GHA/2YjsRqn+duAPwCbAx4HpwLcauZ5q4M8NyiYD38yL4xVgL0DAJ4Ht8uI+OF3fv4DD1uJ6D27iHg8GlgO/BToBn0nXv1OqHwMsAvZN96dzKrsg1e+d6j+X6nsDO6/jvfkAOBbYGDgbeCFtb5li6pnabpSuec8C/fQA3gSuA74IfKxB/RDg0QL3oF+Kvz/wGnBkqqvK//dOZUeS/be5S4rl/4Cppf6/F//5r63+eQTUzMqGpP2A7YC/RsRM4J/A/6bqvwAn5jX/31QGcBrwh4h4PLIRsOvIpl/3yWt/RUS8FBFLACLilohYEBErI+Jm4DmyxArgK8DlEfFyRLwNjMiLcQuyJGd4RLwfEa8DlwInrONlfxO4KCJmROYfEfFiXv3+wATg6xExcS2utyXOjYhlEfEQcBfZdde7IyKmpPuztMFx3wCujYi/p/pXIuLpdbw3MyNiXER8QJYQdwb2iYhXyUYij0vtvgC8kf67WENEvAvsR5Y0XgMslDQhxVNQREyOiDkp/jpgLFki3phvAb+KiKciYjnwS2CAR0HNCnMCambl5OvAfRHxRtr/SyoDeBDoIunT6f/pDwDGp7rtgB+k6eh30jTrNmQjnPVeyj+RpJPzprDfAfoCm6fqrRq0z9/ejmyE7tW8Y/9ANtq3LrYhS7QbM4xspG1Sgxiau97mvB0R7+ftv0gT96uFMa/LvVl1nohYCbycF8d1wFfT9leBGxrrJCWGQyJia7J/y62Ayxprn/47miRpoaRFZPd588bap2u7PO+63iIbse7dxDFmHZYftjezsiCpC9kIXIWkf6fiTkBPSZ+KiCck/ZVsFPQ1YGJEvJfavUQ2PX9hE6eIvHNtRzZS9llgWkSskDSbLKEAeJVs+r3eNnnbL5GNNm6eRsKaE83UvwTs0ET9MODHki6NiLPyjmnqeps7J8DHJG2Sl4RuC8xtYR+Nxby29wby7q2kj5Dd9wWp6Hbg98qe/T0M+NDzrIWk0dgxZKOWUPha/gJcCXwxIpamZ0s3b6J9/T2/sSUxmHV0HgE1s3JxJLAC2JVsdHMA2fN2j5C9mARZ0nA8cBKrp98hSyaHpVEtSdokvWTSvZFzbUKWZCwEkHQK2ahZvb8C35PUW1JP4Mf1FWlq+D7gEkk9JH1E0g6SGpu+fQ2oSslVIX8Ezpa0Z4r9kw2mdd8jm34+QFL9owDNXe9rwCcaOV++n0v6qKT9yRK8W1pwDMCfgFMkfTZdf29JO6/DvQHYU9LRyl7wGk6WwD4GkKb+x5H9W0+PiH8V6kDZC1o/kLR12t+G7H+oPJaavAZsLemjeYd1B95KyeferH7UA7L/Llay5j28Gvh/knZL56iUdBxmVpATUDMrF18HRkfEvyLi3/V/ZKNUJ0naKCIeJ3sxZSvgb/UHRkQN2XORVwJvk70sMqSxE0XEPOASYBpZctIPmJLX5BqyRKoOqAXuJntpZ0WqPxn4KNmLSm+TJUlbNnK6+qTuTUmzCsRyC3AhWZL1Htmo36YN2rxD9sLPFyX9ogXX+yvg/9J08dmNxPXvdOwC4EZgWEQ83UjbhjFPB04he75zEfAQ2RQ1rN29AbiD7H9UvA18DTg6PQ9a7zqyf59Gp9/J7tungceVvbX/GNlo7g9S/YPAk8C/JdU/3vFt4HxJ7wHnkf2Pjvrr+w/Zv8mUdA/3iYjxwK+BmyS9m/r/YhMxmXVoimjJTIyZmTVG0heBqyOiXbxwImkw2Zv5WzfTtOQkbQs8DfxPetnIzMqAR0DNzNaSpC6SvqTse6G9gZ+x+oUnK5L02ML3gZucfJqVF7+EZGa29kS2ks7NwBKyTxSdV9KIOhhJm5A9HvEi2TOwZlZGPAVvZmZmZkXlKXgzMzMzKypPwZeRzTffPKqqqkodhpmZmVmzZs6c+UZE9CpU5wS0jFRVVVFTU1PqMMzMzMyaJenFxuo8BW9mZmZmReUE1MzMzMyKygmomZmZmRVVm3sGVNIKYA5ZbC8AX4uId9LKHGdHxGHr2O9aHS+pCpgYEX2baLM4IrqtSzxrey4zM7OO5IMPPuDll19m6dKlpQ7FmtG5c2e23nprNt544xYf0+YSUGBJRAwAkHQd8B2yNXfNzMysg3j55Zfp3r07VVVVSCp1ONaIiODNN9/k5ZdfZvvtt2/xcW19Cn4a0Dtvv5ukcZKelnSj0n+Rkj4rqVbSHEnXSuqUyr+Q2j4KHF3fiaRNUrsZ6bgjmgpC0m6SpkuaLalOUp8G9d0kPSBpVorhiFReJekpSddIelLSfZK6pLo9JT0haRpZkm1mZmbJ0qVL2WyzzZx8tnGS2GyzzdZ6pLrNJqCSKoDPAhPyincHhgO7Ap8A9pXUGRgDHB8R/chGdU9P5dcAXwb2B/4nr5+fAg9GxF7AgcBv0rJujRkGXJ5GZnPAyw3qlwJHRcQeqb9LtPr/YvoAV0XEbsA7wDGpfDRwZkQMbOY+DJVUI6lm4cKFTTU1MzNrV5x8lod1+XdqiwloF0mzgTeBTYG/59VNj4iXI2IlMBuoAnYCXoiIZ1Ob64ADgJ1T+XORrTf657x+DgHOSeeZDHQGtm0ipmnATyT9GNguIpY0qBfwS0l1wP1ko7ZbpLoXImJ22p4JVEmqBHpGxEOp/IbGThwRoyIiFxG5Xr0KfsvVzMzMrKy02WdAU5I2kWx6+opUtyyv3Qqy+JtKuxtb6F7AMRHxTEsCioi/SHocOBS4V9I3I+LBvCYnAb2APSPiA0nzyZLaQjF3SedvLDYzMzNroOqcu1q1v/kjDm1Ru/Hjx3P00Ufz1FNPsfPOO3+ofvDgwVx88cXkcrlG+6iurqZbt26cffbZjBkzhkMOOYStttqKO+64g9GjR3P77bcD8Ktf/Yo//elP/OMf/wDgzjvv5JprrmHChAmN9l3ImDFjqKmp4corr2yyXbdu3Vi8ePFa9d1a2uIIKAARsQg4EzhbUlOvVT1NNqr4ybT/NeChVL69pB1S+Yl5x9wLnJH3DOnuTcUi6RPA8xFxBdkjAf0bNKkEXk/J54HAds1c2zvAIkn7paKTmmpvZmZmpTF27Fj2228/brrpplbpb8yYMSxYsACAQYMGMW3atFV106ZNo0ePHrz++usATJ06lX333bdVztvWtNkEFCAiaoEngBOaaLMUOAW4RdIcYCVwdSofCtyVXkLKXw7qF8DGQJ2kuWm/KccDc9OU/c7A9Q3qbwRykmrIksmnW3B5pwBXpZeQGk7pm5mZWYktXryYKVOm8Kc//WlVArpkyRJOOOEE+vfvz/HHH8+SJav/X3i3bqu/zDhu3DiGDBmyRn/jxo2jpqaGk046iQEDBtCtWzcqKytXjXi+8sorHHPMMUydOhXIEtBBgwaxcOFCjjnmGPbaay/22msvpkyZAsD777/Pqaeeyl577cXuu+/OHXfc8aFruOuuuxg4cCBvvPEGL7zwAgMHDmSvvfbi3HPPXeM6P/vZz7LHHnvQr1+/Vf2ce+65XH755ava/fSnP+WKK6740DnWRZubgm/4Xc2I+HLe7uS88u/mbT9A9oJSw77uIUsYG5YvAb7VTBzzgb5p+1fArxqLNSLeABp7mahvXvuL87ZnAp/Ka1fdVDxmZmZWXLfffjtf+MIX2HHHHdl0002ZNWsWkydPpmvXrtTV1VFXV8cee+zR4v6OPfZYrrzyyjWm7AcNGsTUqVNZsWIFffr0YZ999uHee+/lsMMOo66ujr322otTTz2Vs846i/32249//etffP7zn+epp57iwgsv5KCDDuLaa6/lnXfeYe+99+bggw9edb7x48fz29/+lrvvvpuPfexjnHrqqZx++umcfPLJXHXVVavade7cmfHjx9OjRw/eeOMN9tlnHw4//HC+8Y1vcPTRR/O9732PlStXctNNNzF9+vRWubdtLgE1MzMzawvGjh3L8OHDATjhhBMYO3Yszz33HGeeeSYA/fv3p3//hk/lrZ199913VQI6cOBA9t57b84//3xqa2vZaaed6Ny5M/fffz/z5s1bdcy7777Le++9x3333ceECRO4+OJsfGvp0qX861//AmDSpEnU1NRw33330aNHDwCmTJnCrbfeCsDXvvY1fvzjHwPZtzx/8pOf8PDDD/ORj3yEV155hddee42qqio222wzamtree2119h9993ZbLPN1ut66zkBNTMzM2vgzTff5MEHH2Tu3LlIYsWKFUhi9913b/SzQ/nlLf0u5qBBgxg5ciQrVqzgtNNOo3v37ixdupTJkyevev5z5cqVTJs2jS5duqxxbERw6623stNOO61R/vjjj/OJT3yC559/nmeffXaNF6QKxX7jjTeycOFCZs6cycYbb0xVVdWq+L/5zW8yZswY/v3vf3Pqqae26Jpaok0/A2pmZmZWCuPGjePkk0/mxRdfZP78+bz00ktsv/327LHHHtx4440AzJ07l7q6ulXHbLHFFjz11FOsXLmS8ePHF+y3e/fuvPfee6v2d911VxYsWMAjjzzC7rtnTxMOGDCAq6++mkGDBgFwyCGHrPFG++zZswH4/Oc/z8iRI8m+Ngm1tbWr2my33XbcdtttnHzyyTz55JNANtpa/yxr/TUALFq0iI9//ONsvPHGTJo0iRdfXP3azFFHHcU999zDjBkz+PznP7+Wd7FxHgE1MzOzNq+ln01qLWPHjuWcc85Zo+yYY46htraWJUuW0L9/fwYMGMDee++9qn7EiBEcdthhbLPNNvTt27fgJ46GDBnCsGHD6NKly6pRzU9/+tMsWrRo1VrqAwcOZNSoUasS0CuuuILvfOc79O/fn+XLl3PAAQdw9dVXc+655zJ8+HD69+9PRFBVVcXEiRNXnWunnXbixhtv5LjjjuPOO+/k8ssv53//93+5/PLLOeaYY1a1O+mkk/jyl79MLpdjwIABa3xu6qMf/SgHHnggPXv2pKKionVuLqD6rNnavlwuFzU1NaUOw8zMbIN76qmn2GWXXUodRoe3cuVK9thjD2655Rb69OnTaLtC/16SZkZEwQ+kegrezMzMzD5k3rx5fPKTn+Szn/1sk8nnuvAU/DqStLjhJ6M2uAW1UF1Z1FOa2XqqXlTqCMzM1smuu+7K888/v0H69giomZmZmRWVE9D1pMxvJM2VNEfS8an8d5IOT9vjJV2btr8h6YK0fbukmZKelDS0dFdhZmZmVjyegl9/RwMDyFY12hyYIelh4GFgf7K143sDW6b2+wH1C8qeGhFvSeqSjrs1It7M7zwlpkMBKnr0omrp6A18OWbtQ7HfmDUzs5bzCOj62w8YGxErIuI14CFgL+ARYH9JuwLzgNckbUm2ZOfUdOyZkp4AHgO2AT70hG9EjIqIXETkKrr6+U8zMzMrfx4BXX8Fl0OIiFckfQz4Atlo6KbAV4DFEfGepMHAwcDAiPiPpMlA56JEbGZmVm5a+yXcFr4gOH78eI4++mieeuqpNb6PWW/w4MFrrO1e8FTV1XTr1o2zzz6bMWPGcMghh7DVVltxxx13MHr0aG6//XYAfvWrX/GnP/2Jf/zjHwDceeedXHPNNUyYMGGtLm3MmDHU1NSs8fH61lBVVUVNTQ2bb775evflEdD19zBwvKQKSb2AA4DpqW4aMDy1eQQ4O/0CVAJvp+RzZ2CfokZtZmZmzRo7diz77bffqhWE1teYMWNYsGABkC3DOW3atFV106ZNo0ePHrz++usATJ06ddVynO2NR0DX33iyafUngAB+FBH/TnWPAIdExD8kvUg2ClqfgN4DDJNUBzxDNg3fpH69K6nxc21mZmZFsXjxYqZMmcKkSZM4/PDDqa6uZsmSJZxyyinMmzePXXbZhSVLlqxq361bt1WrH40bN46JEycyZsyYVfXjxo2jpqaGk046adVKSJWVlfzjH//gk5/8JK+88grHHHMMU6dO5cgjj2Tq1KlccMEFLFy4kGHDhvGvf/0LgMsuu4x9992X999/nzPOOIM5c+awfPlyqqurOeKII9a4hrvuuosLLriAO++8k1mzZvGzn/2MZcuWscMOOzB69Gi6detGVVUVX//617nzzjv54IMPuOWWW9h555158803OfHEE1m4cCF77703rbl4kUdA11H9N0Aj88OI6BsR/SLi5rw2f4qIrdL2BxGxSUTclvaXRcQXI6J/RBwXEYMjYnJJLsbMzMw+5Pbbb+cLX/gCO+64I5tuuimzZs3i97//PV27dqWuro6f/vSnzJw5s8X9HXvsseRyOW688UZmz55Nly5dGDRoEFOnTuWZZ56hT58+7LPPPkydOpXly5dTV1fHXnvtxfe+9z3OOussZsyYwa233so3v/lNAC688EIOOuggZsyYwaRJk/jhD3/I+++/v+p848ePZ8SIEdx9990AXHDBBdx///3MmjWLXC7Hb3/721VtN998c2bNmsXpp5/OxRdfDMDPf/5z9ttvP2prazn88MNXJcCtwSOgZmZmZgWMHTuW4cOHA3DCCScwduxYnnvuOc4880wA+vfvT//+/dfrHPvuuy9Tp05lxYoVDBw4kL333pvzzz+f2tpadtppJzp37sz999/PvHnzVh3z7rvv8t5773HfffcxYcKEVQnj0qVLVyWJkyZNoqamhvvuu48ePXowceJE5s2bt2pK/7///S8DBw5c1efRRx8NwJ577sltt90GwMMPP7xq+9BDD+VjH/vYel1rPiegZmZmZg28+eabPPjgg8ydOxdJrFixAknsvvvuSAXfP16jfOnSpS06z6BBgxg5ciQrVqzgtNNOo3v37ixdupTJkyevShZXrlzJtGnT6NKlyxrHRgS33norO+200xrljz/+OJ/4xCd4/vnnefbZZ8nlckQEn/vc5xg7dmzBODp16gRARUUFy5cvL3hNrclT8GZmZmYNjBs3jpNPPpkXX3yR+fPn89JLL7H99tuzxx57cOONNwIwd+5c6urqVh2zxRZb8NRTT7Fy5UrGjx9fsN/u3bvz3nvvrdrfddddWbBgAY888gi77747AAMGDODqq69m0KBBABxyyCFrvNE+e/ZsAD7/+c8zcuTIVc9m1tbWrmqz3Xbbcdttt3HyySfz5JNPss8++zBlypRVb9j/5z//4dlnn23yHhxwwAGrrvVvf/sbb7/9dvM3roU8AmpmZmZtXws/m9Raxo4dyznnnLNG2THHHENtbS1Lliyhf//+DBgwgL333ntV/YgRIzjssMPYZptt6Nu376oXkvINGTKEYcOGrXoJqUuXLnz6059m0aJFbLzxxgAMHDiQUaNGrUpAr7jiCr7zne/Qv39/li9fzgEHHMDVV1/Nueeey/Dhw+nfvz8RQVVVFRMnTlx1rp122okbb7yR4447jjvvvJMxY8Zw4oknsmzZMiB7JnTHHXds9B787Gc/48QTT2SPPfbgM5/5DNtuu+2639AG1JpvNNmGlcvloqamptRhmJmZbXBPPfUUu+yyS6nDsBYq9O8laWZEFPxAqqfgzczMzKyoPAVfThbUtv5KEGbWNhR5etHMrJQ8AlqApMXpt0rS3LQ9WNLEtH24pHOa6qOJvreSNK71ojUzM2uf/JhgeViXfycnoOsgIiZExIh1PHZBRBzb2jGZmZm1J507d+bNN990EtrGRQRvvvkmnTt3XqvjPAW/DiQNAXIR8V1JY4B3gRzwP2RLcY5T9uGsi4Avki3ReUFE3CypCpgYEX0l7QaMBj5K9j8GjomI54p+QWZmZm3M1ltvzcsvv8zChQtLHYo1o3Pnzmy99dZrdYwT0NaxJbAfsDMwARgHHA0MAD4FbA7MkPRwg+OGAZdHxI2SPgpUNOxY0lBgKEBFj15ULR29oa7BrKzNH3FoqUMws1a08cYbs/3225c6DNtAPAXfOm6PiJURMQ/YIpXtB4yNiBUR8RrwELBXg+OmAT+R9GNgu4hY0rDjiBgVEbmIyFV09QtIZmZmVv6cgLaOZXnbavDbqIj4C3A4sAS4V9JBGyA2MzMzszbFCeiG8zBwvKQKSb2AA4Dp+Q0kfQJ4PiKuIJu671/8MM3MzMyKy8+AbjjjgYHAE2QvIf0oIv6dXkKqdzzwVUkfAP8Gzm+qw369K6nxc25mZmZW5rwUZxnxUpxmZmZWLrwUp5mZmZm1GU5AzczMzKyonICamZmZWVE5ATUzMzOzonICamZmZmZF5QTUzMzMzIrK3wEtJwtqodrLcZoZUL2o1BGYma0zj4CuB0lbS7pD0nOS/inpckkflTRE0pWNHHO3pJ5FDtXMzMyszXACuo4kCbgNuD0i+gA7At2AC5s6LiK+FBHvbPgIzczMzNomJ6Dr7iBgaUSMBoiIFcBZwKlAV2ArSfek0dGL6g+SNF/S5mn7+5Lmpr/hxb8EMzMzs+LzM6DrbjdgZn5BRLwr6V9k93UAsDuwDHhG0siIeKm+raQ9gVOATwMCHpf0UETU5vcpaSgwFKCiRy+qlo7ecFdkZhvU/BGHljoEM7M2wSOg605ANFH+QEQsioilwDxguwbt9gPGR8T7EbGYbDp//4adRcSoiMhFRK6iq19AMjMzs/LnBHTdPQnk8gsk9QC2AVaQjXzWW8GHR5u1QaMzMzMza6M8Bb/uHgBGSDo5Iq6XVAFcAowB/tOC4x8GxkgaQZaMHgV8rakD+vWupMZTeGZmZlbmPAK6jiIiyJLG4yQ9BzwLLAV+0sLjZ5Elq9OBx4E/Nnz+08zMzKw9UpZHWTnI5XJRU1NT6jDMzMzMmiVpZkTkCtV5BNTMzMzMisoJqJmZmZkVlRNQMzMzMysqJ6BmZmZmVlROQM3MzMysqPwd0HKyoBaqvRqSma2H6kWljsDMrOONgEoKSTfk7W8kaaGkiWn/cEnnlCCuYZJOLvZ5zczMzIqtI46Avg/0ldQlIpYAnwNeqa+MiAnAhGIGJGmjiLi6mOc0MzMzK5UONwKa/A2oX9PyRGBsfYWkIZKuTNvHSZor6QlJD6ey3SRNlzRbUp2kPqn8+6ntXEnDU1mVpLl5fZ8tqTptT5b0S0kPAd+TVC3p7A1/6WZmZmal1RFHQAFuAs5L0+79gWuB/Qu0Ow/4fES8IqlnKhsGXB4RN0r6KFAhaU/gFODTZOu6P54Sy7ebiaNnRHwGoD4xbUjSUGAoQEWPXlQtHd3yqzSzNm/+iEObb2Rm1s50yBHQiKgDqshGP+9uoukUYIyk04CKVDYN+ImkHwPbpWn8/YDxEfF+RCwGbqNwQtvQzS2IdVRE5CIiV9HVLyCZmZlZ+euQCWgyAbiYvOn3hiJiGPB/wDbAbEmbRcRfgMOBJcC9kg4iG/UsZDlr3uPODerfX8fYzczMzMpWR05ArwXOj4g5jTWQtENEPB4R5wFvANtI+gTwfERcQZbE9gceBo6U1FXSJsBRwCPAa8DHJW0mqRNw2Aa+JjMzM7M2r6M+A0pEvAxc3kyz36SXjAQ8ADwBnAN8VdIHwL/Jkti3JI0Bpqfj/hgRtQCSzgceB14Anl6fmPv1rqTGz4uZmZlZmVNElDoGa6FcLhc1NTWlDsPMzMysWZJmRkSuUF1HnoI3MzMzsxJwAmpmZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyonoGZmZmZWVB32O6BlaUEtVHs5TjNrJdWLSh2BmXVQHX4EVNLitWw/WNLEtH24pHM2TGRmZmZm7ZNHQNdDREwgW47TzMzMzFqow4+A1ksjm5MljZP0tKQbJSnVfSGVPQocnXfMEElXpu0vS3pcUq2k+yVtkcqrJV2b+n5e0pl5x98uaaakJyUNLfIlm5mZmZWER0DXtDuwG7AAmALsK6kGuAY4CPgHcHMjxz4K7BMRIembwI+AH6S6nYEDge7AM5J+HxEfAKemdeS7ADMk3RoRb+Z3mhLToQAVPXpRtXR0K16umZWT+SMOLXUIZmatwgnomqZHxMsAkmYDVcBi4IWIeC6V/5mUEDawNXCzpC2BjwIv5NXdFRHLgGWSXge2AF4GzpR0VGqzDdAHWCMBjYhRwCiATlv2iVa4RjMzM7OS8hT8mpblba9gdYLeksRvJHBlRPQDvgV0bqpfSYOBg4GBEfEpoLbBMWZmZmbtkhPQ5j0NbC9ph7R/YiPtKoFX0vbXW9BvJfB2RPxH0s7APusXppmZmVl58BR8MyJiaXoO8y5Jb5A969m3QNNq4BZJrwCPAds30/U9wDBJdcAz6Zgm9etdSY2fATMzM7Mypwg/Vlgucrlc1NTUlDoMMzMzs2ZJmhkRuUJ1noI3MzMzs6JyAmpmZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyp/hqmcLKiF6spSR2FmHUH1olJHYGbtWLsYAZUUkm7I299I0kJJE9P+4ZLOKV2EIGmwpEGljMHMzMysLWgvI6DvA30ldYmIJcDnWL0qERExAZhQquCSwWTryk8tcRxmZmZmJdUuRkCTvwH1ywSdCIytr5A0RNKVaXuMpCskTZX0vKRjU/lgSZMljZP0tKQbJSnV7SnpIUkzJd0ractUfqakeZLqJN2UyjaVdHsqe0xSf0lVwDDgLEmzJe0v6cuSHpdUK+l+SVsU60aZmZmZlVJ7GQEFuAk4L0279weuBfZvpO2WwH7AzmQjo+NS+e7AbsACYAqwr6THgZHAERGxUNLxwIXAqcA5wPYRsUxSz9THz4HaiDhS0kHA9RExQNLVwOKIuBhA0seAfSIiJH0T+BHwg4aBpmVAhwJU9OhF1dLR63h7zKxczfcSvGbWzrSbBDQi6tJI44nA3c00vz0iVgLzGow8To+IlwEkzQaqgHfI1n7/exoQrQBeTe3rgBsl3Q7cnsr2A45JMT0oaTNJhd4c2hq4OY2mfhR4oZHrGgWMAui0ZR+vm2pmZmZlrz1NwUM2mnkxedPvjViWt61GyleQJegCnoyIAemvX0QcktocClwF7AnMlLRRg/7qFUocRwJXRkQ/4FtA52ZiNjMzM2sX2lsCei1wfkTMacU+nwF6SRoIIGljSbtJ+giwTURMIps+7wl0Ax4GTkptBwNvRMS7wHtA97x+K1n9otTXWzFeMzMzszat3UzBA6Tp88tbuc//pheVrkhT6RsBlwHPAn9OZQIujYh3JFUDoyXVAf9hdXJ5JzBO0hHAGUA1cIukV4DHgO2bi6Vf70pq/CyYmZmZlTlF+LHCcpHL5aKmpqbUYZiZmZk1S9LMiMgVqmtvU/BmZmZm1sY5ATUzMzOzonICamZmZmZF5QTUzMzMzIrKCaiZmZmZFZUTUDMzMzMrqnb1HdB2b0EtVBda1dPMrA2qXlTqCMysjWr3I6CSQtINefsbSVooaWLaP1zSOU0cXyVpbiN150s6uPWjNjMzM2u/OsII6PtAX0ldImIJ8DlWL4FJREwgW0N+rUXEea0TopmZmVnH0e5HQJO/AfVrWJ4IjK2vkDRE0pVpewtJ4yU9kf4GpWYVkq6R9KSk+yR1Se3HpGU6kfQlSU9LelTSFXkjrHtLmiqpNv3ulHfe2yTdI+k5SRcV51aYmZmZlVZHGAEFuAk4LyWF/YFrgf0LtLsCeCgijpJUAXQDPgb0AU6MiNMk/RU4Bvhz/UGSOgN/AA6IiBckjc3r8+lUvjxN1/8yHQ8wANgdWAY8I2lkRLyUH5CkocBQgIoevahaOnp97oOZtRPzRxzafCMzszaqQ4yARkQdUEU2+nl3E00PAn6fjlkREfVP0L8QEbPT9szUV76dgecj4oW0n5+AVgK3pOdILwV2y6t7ICIWRcRSYB6wXYHYR0VELiJyFV39ApKZmZmVvw6RgCYTgItZMzlsqWV52yv48Mixmjj2F8CkiOgLfBnovBb9mpmZmbU7HSkBvRY4PyLmNNHmAeB0AEkVknq0sO+ngU9Iqkr7x+fVVbL6pachLY7WzMzMrJ3qMCNuEfEycHkzzb4HjJL0DbIRydOBV1vQ9xJJ3wbukfQGMD2v+iLgOknfBx5cp+CTfr0rqfFzX2ZmZlbmFBGljqFdkNQtIhZLEnAV8FxEXNqa58jlclFTU9OaXZqZmZltEJJmRkSuUF1HmoLf0E6TNBt4kmza/Q+lDcfMzMysbeowU/AbWhrtbNURTzMzM7P2yCOgZmZmZlZUTkDNzMzMrKicgJqZmZlZUfkZ0HKyoBaqvRqSmdkaqhc138bM2pSijoBKCkk35O1vJGlhWqO96CQN3pDnltQzfR+0fr9K0v9uqPOZmZmZlYNiT8G/D/SV1CXtf47VqwS1Rz2Bb+ftVwFOQM3MzKxDK8UzoH8D6pfzOZG8tdkl7S1pqqTa9LtTKt9N0nRJsyXVSeojaRNJd0l6QtJcScentudJmpHKRqUPwyPpk5LuT+1nSdohnbabpHGSnpZ0Y177+ZI2T9s5SZPT9mdSHLNTnN1T+Q/Teesk/Tz1PQLYIbX9TdrfP+2fVei6NthdNzMzM2sjSvEM6E3AeWnquz/ZGu37p7qngQMiYrmkg4FfAscAw4DLI+JGSR8FKoAvAQsi4lAASfUPR14ZEeenshuAw4A7gRuBERExXlJnsuR7G2B3YDdgATAF2Bd4tIn4zwa+ExFTJHUDlko6BOgD7A0ImCDpAOAcoG9EDEjxDAbOjojD0v7IAte1BklDgaEAFT16UbV0dHP318xKaL6XyzUza1bRR0Ajoo5sKvpE4O4G1ZXALZLmkn3UfbdUPg34iaQfA9tFxBJgDnCwpF9L2j8i6p9CP1DS45LmAAcBu6VRyt4RMT7FsDQi/pPaT4+IlyNiJTA7xdaUKcBvJZ0J9IyI5cAh6a8WmAXsTJaQNqfQda0hIkZFRC4ichVd/QKSmZmZlb9SfYZpAnAxedPvyS+ASRHRF/gy0BkgIv4CHA4sAe6VdFBEPAvsSZaI/ipNvXcGfgccGxH9gGtSH2oilmV52ytYPSq8nNX3p3N9g4gYAXwT6AI8Jmnn1P+vImJA+vtkRPypuZtQ6LqaO8bMzMys3JUqAb0WOD8i5jQor2T1S0lD6gslfQJ4PiKuIEte+0vaCvhPRPyZLJndg9WJ4htpevxYgIh4F3hZ0pGpv06SujYT43yyBBeyxwDqY9khIuZExK+BGrLRznuBU9M5kdRb0seB94DueX2usV/oupqJyczMzKzsleQ7oBHxMnB5gaqLgOskfR94MK/8eOCrkj4A/g2cD+wF/EbSSuAD4PSIeEfSNWSjovOBGXl9fA34g6TzU/vjmgnz58CfJP0EeDyvfLikA8lGS+cBf4uIZZJ2Aaald5gWA1+NiH9KmpIeKfgb8BNguaQngDFkCXPD62pUv96V1Pj5MjMzMytziohSx2AtlMvloqamptRhmJmZmTVL0syIyBWq81KcZmZmZlZUTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OicgJqZmZmZkXlBNTMzMzMiqok3wG1dbSgFqq9HKeZtSPVi5pvY2btTrsZAZV0qaThefv3Svpj3v4labnOc0oU31aSxpXi3GZmZmZtSbtJQIGpwCAASR8BNgd2y6sfBNyb1nIvuohYEBHHluLcZmZmZm1Je0pAp5ASULLEcy7wnqSPSeoE7AJ8StKVAJKOkzRX0hOSHk5lFZIuljRHUp2kM1L5ZyXVpvJrU39Imi/p55JmpbqdU/lnJM1Of7WSukuqSktyImmIpNsk3SPpOUkXFfNGmZmZmZVSu3kGNCIWSFouaVuyRHQa0BsYCCwC6oD/5h1yHvD5iHhFUs9UNhTYHtg9IpZL2lRSZ7J12z8bEc9Kuh44HbgsHfNGROwh6dvA2cA30+93ImKKpG7A0gIhDwB2B5YBz0gaGREvNWwkaWiKi4oevahaOnod7o6ZdQTzRxxa6hDMzFqkPY2AwupR0PoEdFre/tQCbcdIOg2oSGUHA1dHxHKAiHgL2Al4ISKeTW2uAw7I6+e29DsTqMrr+7eSzgR61vfXwAMRsSgilgLzgO0KXVBEjIqIXETkKrr6BSQzMzMrf+0tAa1/DrQf2RT8Y2QjoIPIksJVImIY8H/ANsBsSZsBAqJBn2rmnMvS7wrSiHJ6zvSbQBfgsfqp+UaOW+NYMzMzs/auvSWgU4DDgLciYkUawexJloROy28oaYeIeDwizgPeIEtE7wOGSdootdkUeBqokvTJdOjXgIeaCiL1PScifg3UAIUSUDMzM7MOqb2Nus0he/v9Lw3KukXEG9Iag5m/kdSHbITzAeAJslHTHYE6SR8A10TElZJOAW5JiekM4Opm4hgu6UCykc15wN+ALdf34vr1rqTGz3iZmZlZmVNEwxlna6tyuVzU1NSUOgwzMzOzZkmaGRG5QnXtbQrezMzMzNo4J6BmZmZmVlROQM3MzMysqJyAmpmZmVlROQE1MzMzs6Jqb59hat8W1EK1V0MyMyt71YtKHYFZSZV9AppWMHog7f4P2bc3F6b9vSPivwUPNDMzM7OSKPsENCLeBAYASKoGFkfExaWMyczMzMwa1y6fAZW0p6SHJM2UdK+kLVP5ZEm/ljRd0rOS9k/lQyTdJukeSc9Juiivr0MkTZM0S9Itkrql8hGS5kmqk3RxKjtO0lxJT0h6OJVVSPqNpBmp7bfy+v5hXvnPi3mPzMzMzEql7EdACxAwEjgiIhZKOh64EDg11W8UEXtL+hLwM+DgVD4A2B1YBjwjaSSwBPg/4OCIeF/Sj4HvS7oSOArYOSJCUs/Ux3nA5yPilbyybwCLImIvSZ2AKZLuA/qkv71TzBMkHRARD69xMdJQYChARY9eVC0d3Uq3yaxjmO/la83M2pz2mIB2AvoCf09rv1cAr+bV35Z+ZwJVeeUPRMQiAEnzgO2AnsCuZEkjwEeBacC7wFLgj5LuAiamPqYAYyT9Ne88hwD9JR2b9ivJEs9D0l9tKu+WytdIQCNiFDAKoNOWfbxuqpmZmZW99piACngyIgY2Ur8s/a5gzetflrddXyfg7xFx4odOIu0NfBY4AfgucFBEDJP0aeBQYLakAamPMyLi3gbHfx74VUT8YS2vz8zMzKystcdnQJcBvSQNBJC0saTd1rGvx4B9JX0y9dVV0o7pOdDKiLgbGM7ql6B2iIjHI+I84A1gG+Be4HRJG6c2O0raJJWfmvdMaW9JH1/HOM3MzMzKRnscAV0JHAtcIamS7BovA55c247SM6RDgLHp+U3Ingl9D7hDUmeyEc6zUt1vJPVJZQ8ATwB1ZFP9s5TN4y8EjoyI+yTtAkxL0/uLga8CrzcWT7/eldT4eTYzMzMrc4rwY4XlIpfLRU1NTanDMDMzM2uWpJkRkStU1x6n4M3MzMysDXMCamZmZmZF5QTUzMzMzIrKCaiZmZmZFZUTUDMzMzMrKiegZmZmZlZU7fE7oO3Xglqorix1FGZmq1UvKnUEZlaG2swIqKSfSnpSUp2k2WlJy3XpZ7CkQXn7Y/LWYW/quBXpvE9KekLS9yU1eX/SuSY21aZB++GSura0vZmZmVl71CZGQNOymYcBe0TEMkmbAx9dx+4Gk60qNHUtj1sSEQNSPB8H/gJUAj9bxzgKGQ78GfhPK/ZpZmZmVlbaygjolsAbEbEMICLeiIgFAJI+K6lW0hxJ19YviSlpfkpUkZSTNFlSFTAMOCuNZu6f+j9A0lRJz7dkNDQiXgeGAt9VpkrSI5Jmpb9BDY+RtFeK8xOFYpZ0JrAVMEnSpHTM7yXVpFHXn6/nPTQzMzMrC21iBBS4DzhP0rPA/cDNEfFQWmt9DPDZiHhW0vXA6WRru39IRMyXdDWwOCIuBpD0DbIEdz9gZ2ACMK65gCLi+TQF/3Gy9dk/FxFL01rvY4FVS0ulhHQkcERq+1DDmCPiMknfBw6MiDfSoT+NiLckVQAPSOofEXX5cUgaSpYMU9GjF1VLRzcXuplZ0cwvdQBmVpbaxAhoRCwG9iRLtBYCN0saAuwEvBARz6am1wEHrMMpbo+IlRExD9hiLY5T+t0YuEbSHOAWYNe8NrsAo4AvR8S/1jLmr0iaBdQCuzXoF4CIGBURuYjIVXT1C0hmZmZW/trKCCgRsQKYDExOid7XgdlNHLKc1Ql052a6X5a3rUZb5TeSPgGsIBvR/BnwGvCpdM6leU1fTeffHViwFv1vD5wN7BURb0saQ/PXYWZmZlb22sQIqKSd0tR2vQHAi8DTQJWkT6byr5FNb0M287Nn2j4m79j3gO7rGU8v4GrgyogIspeRXo2IlSmGirzm7wCHAr+UNLiZmPNj6wG8DyyStAXwxfWJ2czMzKxctJUR0G7ASEk9yUY2/wEMTc9cngLcImkjYAZZYgjwc+BPkn4CPJ7X153AOElHAGesRQxdJM0mm25fDtwA/DbV/Q64VdJxwCSyxHGViHhN0peBvwGnAo3FPAr4m6RXI+JASbXAk8DzwJTmAuzXu5KaEYeuxSWZmZmZtT3KBvisHORyuaipqSl1GGZmZmbNkjQzInKF6trEFLyZmZmZdRxOQM3MzMysqJyAmpmZmVlROQE1MzMzs6JyAmpmZmZmRdVWPsNkLbGgFqq9GpKZtVHVi0odgZmViQ4zAiopJN2Qt7+RpIWSJq5jfz0lfbv1IjQzMzPrGDpMAkr28fi+krqk/c8Br6xHfz0BJ6BmZmZma6kjJaCQrVRUv5TQicDY+gpJm0q6XVKdpMck9U/l1ZKulTRZ0vOSzkyHjAB2kDRb0m8kdZP0gKRZkuaklZiQVCXpKUnXSHpS0n31SbCk0yTNkPSEpFsldS3anTAzMzMrkY72DOhNwHlp2r0/cC2wf6r7OVAbEUdKOgi4nmxNeoCdgQPJ1nF/RtLvgXOAvhExALIpfeCoiHhX0ubAY5ImpOP7ACdGxGmS/kq2dv2fgdsi4pp0/AXAN4CR+QFLGgoMBajo0YuqpaNb836YmbWa+aUOwMzKRodKQCOiTlIV2ejn3Q2q9yNLDImIByVtJqn+jZ+7ImIZsEzS68AWBboX8EtJBwArgd557V6IiNlpeyZQlbb7psSzJ9ANuLdAzKPI1pCn05Z9vG6qmZmZlb0OlYAmE4CLgcHAZnnlKtC2PuFblle2gsL37SSgF7BnRHwgaT7QuZHj659DHQMcGRFPSBqSYjIzMzNr1zraM6CQTbufHxFzGpQ/TJZEImkw8EZEvNtEP++RTcnXqwReT8nngcB2LYilO/CqpI3rz21mZmbW3nW4EdCIeBm4vEBVNTBaUh3wH+DrzfTzpqQpkuaSvdz0a+BOSTXAbODpFoRzLvA48CIwhzUT2g/p17uSmhGHNtXEzMzMrM1ThB8rLBe5XC5qampKHYaZmZlZsyTNjIhcobqOOAVvZmZmZiXkBNTMzMzMisoJqJmZmZkVlRNQMzMzMysqJ6BmZmZmVlROQM3MzMysqDrcd0DL2oJaqK5svp2ZWUdQvajUEZjZOiqbEVBJ/yPpJkn/lDRP0t2SdixhPMMldc3bv1tSz3Xop0rS/7ZqcGZmZmZtWFkkoJIEjAcmR8QOEbEr8BNgixKGNRxYlYBGxJci4p116KcKcAJqZmZmHUZZJKDAgcAHEXF1fUFEzAYelfQbSXMlzZF0PGRruUuaLGmcpKcl3ZiSWCTNl/RzSbPSMTun8k0kXStphqRaSUek8gpJF6e2dZLOkHQmsBUwSdKkvH43T9snp7ZPSLohlY2RdGx9/JIWp80RwP6SZks6a4PeRTMzM7M2oFyeAe0LzCxQfjQwAPgUsDkwQ9LDqW53YDdgATAF2Bd4NNW9ERF7SPo2cDbwTeCnwIMRcWqaSp8u6X7gZGB7YPeIWC5p04h4S9L3gQMj4o38gCTtlvraNyLekLRpM9d2DnB2RBxWqFLSUGAoQEWPXlQtHd1Md2Zmhc0fcWipQzAzA8pnBLQx+wFjI2JFRLwGPATsleqmR8TLEbESmE021V3vtvQ7M6/8EOAcSbOByUBnYFvgYODqiFgOEBFvNRPTQcC4+sS0Be2bFBGjIiIXEbmKrn4ByczMzMpfuYyAPgkcW6BcTRyzLG97BWte67IC5QKOiYhn1jhBNnUfaxFrY+2XkxL+1OdH16JPMzMzs3ajXEZAHwQ6STqtvkDSXsDbwPHpOc1ewAHA9HU8x73AGXnPiu6eyu8DhknaKJXXT6m/B3Qv0M8DwFckbdag/Xxgz7R9BLBxM/2YmZmZtUtlMQIaESHpKOAySecAS8kSuuFAN+AJslHHH0XEv+tfLFpLvwAuA+pSEjofOAz4I7BjKv8AuAa4EhgF/E3SqxFxYF6sT0q6EHhI0gqgFhiSjrtD0nSyJPX9dEgdsFzSE8CYiLi0sQD79a6kxs9wmZmZWZlTxNrMLlsp5XK5qKmpKXUYZmZmZs2SNDMicoXqymUK3szMzMzaCSegZmZmZlZUTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OicgJqZmZmZkVVFt8BLbb0zdHbgF0i4mlJVcDEiOi7Dn0tjohurRLYglqo9nKcZmYfUr2o1BGY2VrwCGhhJwKPAieUOhAzMzOz9sYJaAOSugH7At+gQAIqqUrSI5Jmpb9BqXxLSQ9Lmi1prqT9Gxy3uaRpkg5trA8zMzOzjsBT8B92JHBPRDwr6S1JewBv5dW/DnwuIpZK6gOMBXLA/wL3RsSFkiqArvUHSNoCmAD8X0T8XVLXRvr4EElDgaEAFT16UbV0dGtfr5m1c/O9hK+ZtTFOQD/sRLI14QFuSvtX5dVvDFwpaQCwgmydeIAZwLWSNgZuj4jZee0fAL4TEQ8108eHRMQosnXn6bRlH6+bamZmZmXPCWgeSZsBBwF9JQVQAQTwu7xmZwGvAZ8ie4RhKUBEPCzpAOBQ4AZJv4mI64HlwEzg88BDTfVhZmZm1hH4GdA1HQtcHxHbRURVRGwDvABsndemEng1IlYCXyNLUpG0HfB6RFwD/AnYI7UP4FRgZ0nnNNWHmZmZWUfgEdA1nQiMaFB2K/CTvP3fAbdKOg6YBLyfygcDP5T0AbAYOLn+gIhYIekE4E5J7zbRR5P69a6kxs9ymZmZWZlThB8rLBe5XC5qampKHYaZmZlZsyTNjIiCL1l7Ct7MzMzMisoJqJmZmZkVlRNQMzMzMysqJ6BmZmZmVlROQM3MzMysqJyAmpmZmVlR+Tug5WRBLVRXljoKMzNbG9WLSh2BWZtTkhFQSSHpkrz9syVVr2UfgyUNytsfI+nYFhz3P5JukvRPSfMk3S2p0bXY1yKeKklz03ZO0hXr26eZmZlZe1SqKfhlwNGSNl+XgyVtRLby0KBmmjY8TsB4YHJE7BARu5KtcrRFS4+X1Ow9i4iaiDhzbWIzMzMz6yhKlYAuB0YBZzWskLSdpAck1aXfbVP5GEm/lTQJuBkYBpwlabak/dPhB0iaKun5RkZDDwQ+iIir6wsiYnZEPCKpWzrfLElzJB2Rzlsl6SlJvwNmAdtI+o2kuand8QWuYbCkiWm7WtK1kianuM7Ma3e7pJmSnpQ0dN1upZmZmVl5KeUzoFcBdZIualB+JXB9RFwn6VTgCuDIVLcjcHBaW70aWBwRFwNI+gawJbAfsDMwARjXoO++wMxG4lkKHBUR76aR2cckTUh1OwGnRMS3JR0DDAA+BWwOzJD0cDPXujNZ8tsdeEbS7yPiA+DUiHhLUpfUz60R8Wb+gSkxHQpQ0aMXVUtHN3MqM2tr5o84tNQhmJm1KSV7Cz4i3gWuBxpOVQ8E/pK2byBLKOvdEhErmuj29ohYGRHzaOG0eh4Bv5RUB9wP9M7r48WIeCxt7weMjYgVEfEa8BCwVzN93xURyyLiDeD1vH7PlPQE8BiwDdCn4YERMSoichGRq+jqF5DMzMys/JX6M0yXAd8ANmmiTeRtv99Mf8vytlWg/klgz0aOPQnoBewZEQOA14DOBc5bqN/m5Me1AthI0mDgYGBgRHwKqM07n5mZmVm7VdIENCLeAv5KloTWmwqckLZPAh5t5PD3yKa018aDQCdJp9UXSNpL0meASuD1iPhA0oHAdo308TBwvKQKSb2AA4DpaxkH6XxvR8R/JO0M7LMOfZiZmZmVnbbwHdBLgO/m7Z8JXCvph8BC4JRGjrsTGJdeFjqjJSeKiJB0FHCZpHPInvucDwwnGx29U1INMBt4upFuxpM9JvAE2ejsjyLi35KqWhJDnnuAYWnK/xmyafgm9etdSY2fJTMzM7Myp4hovpW1CblcLmpqakodhpmZmVmzJM2MiFyhulI/A2pmZmZmHYwTUDMzMzMrKiegZmZmZlZUTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OiagvfAd2gJAXw24j4Qdo/G+gWEdWt0Hdnsm+GHhcRc1LZj4BPRMSwFhxfTd569s1aUAvVXo7TzGydVC8qdQRmlnSEEdBlwNGSNm/tjiNiKdlH7H+nTG/gW8D/a+5YSe0++TczMzMrpCMkoMuBUcBZDSsk9ZJ0q6QZ6W/fVD5HUs+UVL4p6eRUfoOkg/P7iIh7gFeBk4FLgWqgh6QHJNWl323T8WMk/VbSJODXDWI5TdLfJHVp9TtgZmZm1oZ0lFG4q4A6SRc1KL8cuDQiHk1J4r3ALsAUYF/gReB5YH/gerL12k8v0P9wsvXgn4uIGyTdCVwfEddJOhW4Ajgytd0RODgiVqQpeCR9FzgEODIiluV3LGkoMBSgokcvqpaOXuebYGa2tuZ7+V8z2wA6RAIaEe9Kup5snfkleVUHA7tKqt/vIak78AhwAFkC+ntgaJpefysiFhfof4GkB4GJqWggcHTavgHIT3xviYgVeftfA14mSz4/KND3KLIRXDpt2cfrppqZmVnZ6whT8PUuA74BbJJX9hFgYEQMSH+9I+I94GGyUc/9gcnAQuBYssS0MSvTXyH5ieP7DermAlXA1i26CjMzM7My12ES0Ih4C/grWRJa7z7gu/U7kgakti8BmwN9IuJ54FHgbJpOQPNNBU5I2yel4xtTS/bi0gRJW7WwfzMzM7Oy1SGm4PNcQl7CSTYlf5WkOrJ78TBQ//mkx4GKtP0I8CuaTiTznQlcK+mHZKOnpzTVOD2DejZwl6TPRcQbhdr1611JjZ/HMjMzszKnCD9WWC5yuVzU1NSUOgwzMzOzZkmaGRG5QnUdZgrezMzMzNqGFiWgkrpKOlfSNWm/j6TDNmxoZmZmZtYetXQEdDTZikID0/7LwAUbJCIzMzMza9damoDuEBEXAR8ARMQSQE0fYmZmZmb2YS1NQP+blogMAEk7kI2ImpmZmZmtlZZ+hqkauAfYRtKNZMtUNvlpITMzMzOzQlr8GSZJm5GthS7gsca+VWkbTm6riqgZ2q3UYZiZFV/1olJHYGZrab0/wyTpgYh4MyLuioiJEfGGpAdaN8y2S9KH1n9P5WMkHdvMsZMlFbz5ZmZmZh1Rk1PwkjoDXYHNJX2M1S8e9QC8bKSZmZmZrbXmRkC/BcwEdk6/9X93AFdt2NDaHmWulDRP0l3Ax/PqzpM0Q9JcSaMk5X8l4DhJ0yU9K2n/1L6zpNGS5kiqlXRgsa/HzMzMrBSaHAGNiMuByyWdEREjixRTW3YUsBPQD9gCmAdcm+qujIjzASTdABwG3JnqNoqIvSV9CfgZcDDwHYCI6CdpZ+A+STtGxNL8E0oaCgwFqOjRi6qlozfk9ZmZtU3n3LVqc/6IQ0sYiJm1hha9BR8RIyX1BXYFOueVX7+hAmujDgDGRsQKYIGkB/PqDpT0I7JHFjYFnmR1Anpb+p0JVKXt/YCRABHxtKQXgR2BuvwTRsQoYBRApy37tOyNMTMzM7M2rEUJqKSfAYPJEtC7gS8CjwIdLQGF9C3UfOlZ2d8BuYh4SVI1eYk6q7+ZuoLV99wf8jczM7MOqaUfoj8W+Czw74g4BfgU0GmDRdV2PQycIKlC0pZA/XOb9cnmG5K6kd2vlvR1EoCkHYFtgWdaOV4zMzOzNqelH6JfEhErJS2X1AN4HfjEBoyrrRoPHATMAZ4FHgKIiHckXZPK5wMzWtDX74CrJc0BlgNDIqLJ1aX69a6kxs8+mZmZWZlraQJaI6kncA3Zc4yLgekbKqi2JiK6pd8AvttIm/8D/q9A+eC87TdIz4Cml42GtHqwZmZmZm1cS19C+nbavFrSPUCPiKhr6hgzMzMzs0JavBJS/XZEzI+Iuo60EpKZmZmZtR6vhGRmZmZmRdXcFPy3gOFkyeZMsgQ0gPeAKzdoZGZmZmbWLjU5BR8Rl0fE9sCFwIC0PRp4HphWhPjMzMzMrJ1p8XdAI+JdSfsBnwPGAL/fYFGZmZmZWbvV0s8wrUi/hwJXR8QdabUfK6YFtVBdWeoozMw6hupFpY7ArN1q6QjoK5L+AHwFuFtSp7U4tmxJCkk35O1vJGmhpInNHJeTdMWGj9DMzMys/LQ0ifwKcC/whYh4B9gU+OGGCqoNeR/oK6lL2v8c8EpzB0VETUScuUEjMzMzMytTLUpAI+I/EXFbRDyX9l+NiPs2bGhtxt/IHj0AOBEYW18haW9JUyXVpt+dUvng+lFSSdWSrpU0WdLzks7MO/6rkqZLmi3pD5IqinhdZmZmZiXR0mdAO7KbgPNSQtkfuBbYP9U9DRwQEcslHQz8EjimQB87AwcC3YFnJP0e+CRwPLBvRHwg6XfAScD1+QdKGgoMBajo0YuqpaNb+/rMzNbZ/BGHNt/IzKwBJ6DNSKs+VZGNft7doLoSuE5SH7Lvo27cSDd3RcQyYJmk14EtgM8CewIzJAF0AV4vcP5RwCiATlv2ifW+IDMzM7MScwLaMhOAi4HBwGZ55b8AJkXEUSlJndzI8cvytleQ3XcB10XE/2vtYM3MzMzaMiegLXMtsCgi5kganFdeyeqXkoasZZ8PAHdIujQiXpe0KdA9Il5s7IB+vSup8XSXmZmZlbl2/yml1hARL0fE5QWqLgJ+JWkKsFYvEEXEPOD/gPsk1QF/B7Zc72DNzMzM2jhF+LHCcpHL5aKmpqbUYZiZmZk1S9LMiMgVqvMIqJmZmZkVlRNQMzMzMysqJ6BmZmZmVlROQM3MzMysqJyAmpmZmVlR+Tug5WRBLVRXljoKM7PSqF5U6gjMrJW02xFQSZdKGp63f6+kP+btXyLp+xvo3H+UtOuG6NvMzMys3LXbBBSYCgwCkPQRYHNgt7z6QcCUDXHiiPhm+tC8mZmZmTXQnhPQKaQElCzxnAu8J+ljkjoBuwCXSRpQf4CkKZL6S9pU0u2S6iQ9Jql/qq+WdJ2k+yTNl3S0pIskzZF0j6SNU7vJknJpe7GkCyU9kfraIpXvkPZnSDpf0uKi3RkzMzOzEmq3z4BGxAJJyyVtS5aITgN6AwOBRUAd8CeyNdyHS9oR6BQRdZJGArURcaSkg4DrgQGp6x2AA4FdU5/HRMSPJI0HDgVubxDKJsBjEfFTSRcBpwEXAJcDl0fEWEnDGrsOSUOBoQAVPXpRtXT0+twWM7Pydc5dTVbPH3FokQIxs/XVnkdAYfUoaH0COi1vfypwC3BYGrk8FRiTjtsPuAEgIh4ENpNU//bP3yLiA2AO2frv96TyOUBVgRj+C0xM2zPz2gxM5wf4S2MXEBGjIiIXEbmKrn4ByczMzMpfux0BTeqfA+1HNgX/EvAD4F3g2oj4j6S/A0cAXwHq1ytVgb4i/S4DiIiVkj6IiPrylRS+n/ltVjTSxszMzKzD6AgjoIcBb0XEioh4C+hJNvo4LbX5I3AFMCPVAzwMnAQgaTDwRkS828qxPQYck7ZPaOW+zczMzNqs9j4aN4fs7fe/NCjrFhFvAETETEnvAvkPV1YDoyXVAf8Bvr4BYhsO/FnSD4C7yJ5LbVK/3pXU+BknMzMzK3NaPTvcMUnaCpgM7BwRK4t43q7AkogISScAJ0bEEU0dk8vloqampjgBmpmZma0HSTMjIleorr2PgDZJ0snAhcD3i5l8JnsCV0oS8A7ZS1BmZmZm7V6HTkAj4nqyTyyV4tyPAJ8qxbnNzMzMSqm9v4RkZmZmZm2ME1AzMzMzKyonoGZmZmZWVE5AzczMzKyoOvRLSGVnQS1UezlOM7M2r7rZTzubdWhtagRU0gpJsyXNlXRL+lZmqWIZIunKVu5zK0njWrNPMzMzs3LTphJQsg+zD4iIvsB/gWGlDqg1RcSCiDi21HGYmZmZlVJbS0DzPQJ8UtImkq6VNENSraQjYNUI5W2S7pH0nKSL6g+UtFjShZKekPSYpC1S+XFpdPUJSQ+nskckDcg7doqk/nn7lZLmS/pI2u8q6SVJG0s6LcX1hKRb60dsJY2RdIWkqZKel3RsKq+SNDdv+xFJs9LfoA19Q83MzMzagjb5DKikjYAvAvcAPwUejIhTJfUEpku6PzUdAOwOLAOekTQyIl4CNgEei4ifpsT0NOAC4Dzg8xHxSuoL4I/AEGC4pB2BThFRJ2kPgIhYJOkJ4DPAJODLwL0R8YGk2yLimhTzBcA3gJGp3y2B/YCdgQlAw6n314HPRcRSSX2AscCHlquSNBQYClDRoxdVS0c3bGJm1ibNH3FoqUMwszaqrY2AdpE0G6gB/gX8CTgEOCeVTwY6A9um9g9ExKKIWArMA7ZL5f8FJqbtmUBV2p4CjJF0GlCRym4BDpO0MdlymGMKxHUzcHzaPiHtA/RNo5hzgJOA3fKOuT0iVkbEPGCLAn1uDFyTjr0F2LXQDYmIURGRi4hcRVe/gGRmZmblr62NgC6JiAH5BWmt9GMi4pkG5Z8mG/mst4LV1/NBRETD8ogYlo47FJgtaUBEvCnp78ARwFcoMApJNoL5K0mbkq3h/mAqHwMcGRFPSBoCDM47Jj82FejzLOA1suU4PwIsLdDGzMzMrN1pawloIfcCZ0g6IyJC0u4RUbsuHUnaISIeBx6X9GVgG+BNsmn4O4FHIuKthsdFxGJJ04HLgYkRsSJVdQdeTaOnJwGvrEU4lcDLEbFS0tdZPSLbqH69K6nxlJaZmZmVuXJIQH8BXAbUpdHQ+cBh69jXb9LzlgIeAJ4AiIiZkt4FmnrA8mayqfLBeWXnAo8DLwJzyBLSlvodcKuk48ieLX1/LY41MzMzK1taPVPdcUnaiuz50p0jYmWJw2lULpeLmpqaUodhZmZm1ixJMyOi0KONbe4lpKKTdDLZKOZP23LyaWZmZtZelMMU/AYVEdcD15c6DjMzM7OOosOPgJqZmZlZcTkBNTMzM7OicgJqZmZmZkXV4Z8BLSsLaqHaqyGZmbWa6kWljsCsQ/IIKCBpa0l3SHpO0j8lXS7po6WOy8zMzKw96vAJaPq4/W1ka7f3AXYEugEXNmjn0WIzMzOzVtDhE1DgIGBpRIwGSMtsngWcKunbkm6RdCdwn6RNJF0raYakWklHAEjqKumvkuok3SzpcUm5VHeipDmS5kr6df1JJS2WdKGkJyQ9JmmL4l+6mZmZWfF5VA92A2bmF0TEu5L+RXZ/BgL9I+ItSb8EHoyIUyX1BKZLuh84HXg7IvpL6gvMhlUrLP0a2BN4myyJPTIibgc2AR6LiJ9Kugg4DbigYXCShgJDASp69KJqaVOrhZqZWSHzRxxa6hDMLI9HQLN14QutR1pf/veIeCuVHQKcI2k22dKdnYFtgf2AmwAiYi5Ql9rvBUyOiIURsRy4ETgg1f0XmJi2ZwJVhYKLiFERkYuIXEVXv4BkZmZm5c8joPAkcEx+gaQewDbACuD9/CrgmIh4pkF7NdJ3Y+UAH0REfeK7Av9bmJmZWQfhEVB4AOia1oRHUgVwCTAG+E+DtvcCZ9QnnJJ2T+WPAl9JZbsC/VL548BnJG2e+j0ReGjDXYqZmZlZ29fhR90iIiQdBfxO0rlkSfndwE/IEsZ8vwAuA+pSEjofOAz4HXCdpDqglmwKflFEvCrp/wGTyEZD746IO9Y11n69K6nxc0xmZmZW5rR6FtjWVRrd3DgilkragWxUdceI+G9rnieXy0VNTU1rdmlmZma2QUiaGRG5QnUdfgS0lXQFJknamGyk8/TWTj7NzMzM2gsnoK0gIt4DCmb4ZmZmZrYmv4RkZmZmZkXlBNTMzMzMisoJqJmZmZkVlRNQMzMzMysqv4RUThbUQrWX4zQzM6B6UakjMFtnHXYEVNJkSZ9vUDZc0vOSzlnLvraSNK4F7e6W1HMtQzUzMzNrVzryCOhY4ASy5TXrnQB8PSIeadhY0kYRsbxQRxGxADi2uRNGxJfWMVYzMzOzdqPDjoAC44DDJHUCkFQFbAV8UtKVqWyMpN9KmgT8WtIOkh6TNEPS+ZIW1x8raW7aHiLpNkn3SHpO0kX1J5Q0X9Lmaft2STMlPSlpaFGv3MzMzKyEOuwIaES8KWk68AXgDrLRz5uBhmuT7ggcHBErJE0ELo+IsZKGNdH9AGB3YBnwjKSREfFSgzanRsRbkroAMyTdGhFvNuwoJadDASp69KJq6ei1v1gzs1Y2f8ShpQ7BzMpYRx4BhdXT8KTfsQXa3BIRK9L2QOCWtP2XJvp9ICIWRcRSYB6wXYE2Z0p6AngM2AboU6ijiBgVEbmIyFV09QtIZmZmVv46egJ6O/BZSXsAXSJiVoE2769Dv8vytlfQYKRZ0mDgYGBgRHwKqAU6r8N5zMzMzMpOh05AI2IxMBm4lsKjnw09BhyTtk9oqmEzKoG3I+I/knYG9lmPvszMzMzKSod9BjTPWOA2WpZQDgf+LOkHwF3Aun6E7R5gmKQ64BmyxLZZ/XpXUuPnrszMzKzMKaLhOzfWGEldgSUREZJOAE6MiCOKdf5cLhc1NTXFOp2ZmZnZOpM0MyJyheo8Arp29gSulCTgHeDU0oZjZmZmVn6cgK6F9IH6T5U6DjMzM7Ny1qFfQjIzMzOz4nMCamZmZmZF5QTUzMzMzIrKz4CWkwW1UO3VkMzM2pXqdf2in1n5KosRUEkh6ZK8/bMlVbdi/1XpHL/IK9tc0geSrlzHPs+XdHBrxWhmZmbWXpRFAkq2tOXRkjbfgOd4Hjgsb/844Ml17SwizouI+9c7KjMzM7N2plwS0OXAKOCshhWSekm6VdKM9LdvKp8jqacyb0o6OZXf0MjI5BLgKUn1H0w9HvhrC85zR17f35J0Y9oeI+nYtL2XpKmSnpA0XVJ3SZ0ljU5x1ko6sLVulpmZmVlbVk7PgF4F1Em6qEH55cClEfGopG2Be4FdgCnAvsCLZKOb+wPXk627fnoj57gJOEHSv4EVwAJgq2bOMxSYIukF4Ac0WNdd0keBm4HjI2KGpB5kye73ACKiX1oP/j5JO0bE0gbHD03noKJHL6qWjm7Z3TIzs7Iwv9QBmJVA2SSgEfGupOuBM8kSuHoHA7tmixMB0ENSd+AR4ACyBPT3wFBJvYG3ImJxI6e5B/gF8BpZ0piv4Hki4jVJ5wGTgKMi4q0Gx+0EvBoRM+qvA0DSfsDIVPa0pBeBHYG6Btc9imz0l05b9vG6qWZmZlb2yiYBTS4DZgH5w4AfAQZGRH5SiqSHge8A2wI/BY4CjiVLTAuKiP9Kmkk2krkb8OXmzpP0A95k9WjpGqEAhRJHFSgzMzMza/fK5RlQANLo4l+Bb+QV3wd8t35H0oDU9iVgc6BPRDwPPAqcTRMJaHIJ8OOIeLNBecHzSNob+CKwO3C2pO0bHPc0sJWkvVL77pI2Ah4GTkplO5Ilys80E5uZmZlZ2Su3EVDIEsTv5u2fCVwlqY7seh4GhqW6x4GKtP0I8CuyRLRREfEkhd9+/9B5JH0PuAY4JSIWSPoBcK2kg/L6+6+k44GRkrqQPT5wMPA74GpJc8heshoSEcuaiq1f70pqRhzaVBMzMzOzNk8RfqywXORyuaipqSl1GGZmZmbNkjQzInKF6spqCt7MzMzMyp8TUDMzMzMrKiegZmZmZlZUTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OiKsfvgHZcC2qhurLUUZiZWTmqXlTqCMxWKZsRUEmXShqet3+vpD/m7V8i6ftr0V+1pLMbqZu6HnEOljRoXY83MzMza+/KJgEFpgKDACR9hGyZzd3y6gcBU1rjRBGxPgnk4BSLmZmZmRVQTgnoFFYndrsBc4H3JH1MUidgF+DzkmZImitplCQBSDpT0jxJdZJuyutzV0mTJT0v6cz6QkmL0+/gVD9O0tOSbszr80up7FFJV0iaKKmKbBnQsyTNlrS/pO0kPZDO/YCkbdPxY9JxU9P5j92wt8/MzMysbSibZ0DTWuvLUwI3CJgG9AYGAouAOuDKiDgfQNINwGHAncA5wPYRsUxSz7xudwYOBLoDz0j6fUR80ODUu5MlvAvIkuB9JdUAfwAOiIgXJI1NMc6XdDWwOCIuTnHcCVwfEddJOhW4Ajgy9b0lsF+KYwIwruF1SxoKDAWo6NGLqqWj1/7mmZlZmzJ/xKGlDsGspMppBBRWj4LWJ6DT8vanAgdKelzSHOAgVk/R1wE3SvoqsDyvv7siYllEvAG8DmxR4JzTI+LliFgJzAaqyBLG5yPihdRmbBMxDwT+krZvIEs4690eESsjYl4j5yYiRkVELiJyFV39ApKZmZmVv3JLQOufA+1HNgX/GFmCV//85++AYyOiH3AN0DkddyhwFbAnMFNS/cjvsry+V1B4RLhQG63HNUQjfa9Pn2ZmZmZlo9wS0Clk0+pvRcSKiHgL6EmWhE5Lbd6Q1A04Fla9sLRNREwCfpTad1vPOJ4GPpGe+QQ4Pq/uPbIp/XpTgRPS9knAo+t5bjMzM7OyVjbPgCZzyN5+/0uDsm4R8Yaka9L+fGBGqq8A/iypkmyU8dKIeCe9S7ROImKJpG8D90h6A5ieV30nME7SEcAZwJnAtZJ+CCwETlnX8/brXUmNnxsyMzOzMqeIaL6VfYikbhGxOL0VfxXwXERcuiHPmcvloqamZkOewszMzKxVSJoZEblCdeU2Bd+WnCZpNvAkUEn2VryZmZmZNaPcpuDbjDTauUFHPM3MzMzaI4+AmpmZmVlROQE1MzMzs6JyAmpmZmZmReVnQMvJglqo9mpIZmbWwVUvKnUEtp7a9QiopEhrwtfvbyRpoaSJrdT/4Fbsa4ikK1ujLzMzM7O2rF0noMD7QF9JXdL+54BX1qaDvGU7zczMzKwVtPcEFOBvZGvBA5wIjK2vkLS3pKmSatPvTql8iKRbJN0J3CfphrSyUf1xN0o6PP8kzfR1m6R7JD0n6aK8Y06R9Kykh4B9N9gdMDMzM2tDOsLo3k3AeWmqvD9wLbB/qnsaOCAilks6GPglcEyqGwj0j4i3JH0GOAu4Iy3pOQj4OrBf3nma6msAsDuwDHhG0khgOfBzYE9gETAJqG0YvKShwFCAih69qFo6ej1vh5lZxzTfSxmbtRntPgGNiDpJVWSjn3c3qK4ErpPUBwhg47y6v0fEW6mPhyRdJenjwNHArSnRbGlfD0TEIgBJ84DtyNa0nxwRC1P5zcCOBeIfBYwC6LRlH6+bamZmZmWvI0zBA0wALiZv+j35BTApIvoCXwY659W936DtDcBJwClAoWHIpvpalre9gtWJvxNKMzMz63A6SgJ6LXB+RMxpUF7J6peShjTTxxhgOEBEPFmgfm36AngcGCxpM0kbA8e14BgzMzOzstfup+ABIuJl4PICVReRTZt/H3iwmT5ek/QUcHsjTVrcV+rvVUnVwDTgVWAWUNHUMf16V1LjZ5jMzMyszCnCs8AtIakrMAfYo/55zmLL5XJRU1NTilObmZmZrRVJMyMiV6iuo0zBr5f0VvvTwMhSJZ9mZmZm7UWHmIJfXxFxP7BtqeMwMzMzaw88AmpmZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyq/hFROFtRCdWWpozAzM1t/1f6oTEe2wUZAJYWkS/L2z04fXm+t/qskzW1QVi3p7NY6x1rE0uh5JU0tdjxmZmZmbdmGnIJfBhwtafMNeI42LyIGNSyT1OSKR2ZmZmbt2YZMQJcDo4CzGlZI6iXpVkkz0t++qXyOpJ7KvCnp5FR+Q/oYfItJOi31/UQ6V9dUPkbS7yVNkvS8pM9IulbSU5LG5B2/WNIlkmZJekBSr1R+pqR5kuok3ZR3yl0lTU59npnfT/odnM75F2COpApJv0kx1kn61tpcn5mZmVm52tDPgF4F1Em6qEH55cClEfGopG2Be4FdgCnAvsCLwPPA/sD1wD7A6QX630HS7Lz9/wEuTtu3RcQ1AJIuAL4BjEx1HwMOAg4H7kzn/CYwQ9KAiJgNbALMiogfSDoP+BnwXeAcYPuIWCapZ965dwYOBLoDz0j6fUR80CDevYG+EfGCpKHAoojYS1InYIqk+yLihfwDUruhABU9elG1dHSB22BmZuVq/ohDSx2CWdFt0AQ0It6VdD1wJrAkr+pgshHD+v0ekroDjwAHkCWgvweGSuoNvBURiwuc4p8RMaB+p8Ezpn1T4tkT6EaW5Na7MyJC0hzgtYiYk45/EqgCZgMrgZtT+z8Dt6XtOuBGSbcDt+f1eVdELAOWSXod2AJ4uUG80/MSzEOA/pKOTfuVQB9gjQQ0IkaRjSTTacs+UeAemJmZmZWVYrwFfxkwC8gfuvsIMDAi8pNSJD0MfIds2cufAkcBx5IlpmtrDHBkRDwhaQgwOK9uWfpdmbddv9/YPalP/g4lS5IPB86VtFuDPgFWNNLP+3nbAs6IiHsLtDMzMzNrtzb4d0Aj4i3gr2RT4PXuI5vOBkDSgNT2JWBzoE9EPA88CpzNuiWg3YFXJW0MnLQOx3+ELPkF+F/gUUkfAbaJiEnAj1g9urou7gVOT/EhaUdJm6xjX2ZmZmZlo1jfAb2EvISTbEr+Kkl1KYaHgWGp7nGg/i3xR4BfkSWia+vc1NeLwByyhHRtvA/sJmkmsAg4PsX1Z0mVZCOYl0bEO3mPEqyNP5JN989S1sFC4MimDujXu5IaPytkZmZmZU4RfqywEEmLI2JdRzc3iFwuFzU1NaUOw8zMzKxZkmZGRK5QnZfiNDMzM7OicgLaiLY2+mlmZmbWXjgBNTMzM7OicgJqZmZmZkXlBNTMzMzMiqpYn2Gy1rCgFqorSx2FmZlZ21K9qNQR2FpqMyOgki6VNDxv/15Jf8zbv0TS99eyz8GSBhUor5L0cvqwfH75bEl7S/qjpF3X8lzDJJ3cTJucpCvWpl8zMzOz9qYtjYBOBY4DLkuJ4eZAj7z6QcDwtexzMLA49b1KRMyX9BKwP/AQgKSdge4RMR2YXqgzSRURsaJQXURc3VwwEVED+EOeZmZm1qG1mRFQYApZkgmwGzAXeE/SxyR1AnYBaiXtKekhSTPTKOmWAJLOlDRPUp2kmyRVka2udFYa2dy/wfnGAifk7Z+QypA0WVIubS+WdL6kx4GBkr4h6dnU5hpJV6Z21ZLOzjv+15Kmp7b7p/LBkiam7b0lTZVUm353at3baWZmZtY2tZkR0IhYIGm5pG3JEtFpQG9gINlSmHVAACOBIyJioaTjgQuBU4FzgO0jYpmknmmJzKuBxRFxcYFT/pUsoT0jIpaTLbV5XIF2mwBzI+I8SVsBfwb2AN4DHgSeaOSSNoqIvSV9CfgZcHCD+qeBAyJiuaSDgV8CxzTsRNJQYChARY9eVC0d3cjpzMysmOZ7aWSzddZmEtCkfhR0EPBbsgR0EFkCOhXYCegL/D2tv14BvJqOrQNulHQ7cHtzJ4qIf0t6EvispNeADyJiboGmK4Bb0/bewEMR8RaApFuAHRs5xW3pdybZmu8NVQLXSepDllhv3Eico4BRAJ227ON1U83MzKzstbUEdCpZwtmPbAr+JeAHwLvAtYCAJyNiYIFjDwUOAA4HzpW0WwvOVz8N/1raLmRp3nOfauF1ACxLvysofJ9/AUyKiKPS4wKT16JvMzMzs7LVlp4BhWwE9DDgrYhYkUYae5JNw08DngF6SRoIIGljSbull5a2iYhJwI/SMd3Ipsm7N3G+W4EvkU2/39SC+KYDn0nPpW5EgSnztVAJvJK2h6xHP2ZmZmZlpa2NgM4he/v9Lw3KukXEGwCSjgWukFRJFv9lwLPAn1OZgEvTM6B3AuMkHQGcERGP5J8stXkM2CIiXmguuIh4RdIvgceBBcA8sscD1sVFZFPw3yd7lrRZ/XpXUuNnjszMzKzMKcKPFa4NSd0iYnEaAR0PXBsR44tx7lwuFzU1/oqTmZmZtX2SZkZErlBdW5uCLwfVkmaTPaP6Ai144cnMzMzMVmtrU/BtXkScXeoYzMzMzMqZR0DNzMzMrKicgJqZmZlZUTkBNTMzM7OicgJqZmZmZkXll5DKyYJaqK4sdRRmZmblo3pdP9dtG1KHHgGVFJIuyds/W1L1Bj7nfEmbb8hzmJmZmbVlHToBJVuv/WgnhGZmZmbF09ET0OXAKOCshhWSekm6VdKM9LevpI+kEcyeee3+IWkLSV+W9LikWkn3S9oi1W8m6b5U/geypULrj71d0kxJT0oauuEv18zMzKz0/AwoXAXUSbqoQfnlZGvKPyppW+DeiNhF0h3AUcBoSZ8G5kfEa5IeBfaJiJD0TeBHwA+AnwGPRsT5kg4F8hPNUyPiLUldgBmSbo2IN/ODSInpUICKHr2oWjq69e+AmZlZGzd/xKGlDsFaUYdPQCPiXUnXA2cCS/KqDgZ2lVYNWPaQ1B24GTgPGA2ckPYBtgZulrQl8FGyZToBDgCOTue6S9Lbeec4U9JRaXsboA+wRgIaEaPIRmnptGWfWL+rNTMzMyu9jj4FX+8y4BvAJnllHwEGRsSA9Nc7It4DpgGflNQLOBK4LbUfCVwZEf2AbwGd8/r6UOIoaTBZkjswIj4F1DY4xszMzKxdcgIKRMRbwF/JktB69wHfrd+RNCC1DWA88Fvgqbwp80rglbT99bx+HgZOSn18EfhYXvu3I+I/knYG9mnFSzIzMzNrszr8FHyeS8hLOMmm5K+SVEd2nx4GhqW6m4EZwJC89tXALZJeAR4Dtk/lPwfGSpoFPAT8K5XfAwxL/T+TjmlSv96V1PgZGDMzMytzygb0rBzkcrmoqakpdRhmZmZmzZI0MyJyheo8BW9mZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyonoGZmZmZWVP4MUzlZUAvVlaWOwszMrPxULyp1BJan3Y6ASvofSTdJ+qekeZLulrRjE+0Xp9+tJI3LKx8rqU7SWa0QU07SFevbj5mZmVk5a5cjoMoWcB8PXBcRJ6SyAcAWwLNNHRsRC4Bj0zH/AwyKiO3W4twbRcTyRvquAfwhTzMzM+vQ2usI6IHABxFxdX1BRMwGaiU9IGmWpDmSjmh4oKQqSXPT7n3AxyXNlrS/pAGSHksjouMlfSwdM1nSLyU9BHwv7f9a0nRJz0raP7UbLGli2t5b0lRJtel3pw17S8zMzMzahnY5Agr0BWYWKF8KHBUR70raHHhM0oRofDmow4GJETEAIC2beUZEPCTpfOBnwPDUtmdEfCa1+zKwUUTsLelLqd3BDfp+GjggIpZLOhj4JXBMwwAkDQWGAlT06EXV0tEtuwNmZmbtwHwvQd0utdcEtDECfinpAGAl0JtsWv7fzR4oVZIlmQ+louuAW/Ka3NzgkNvS70ygqkCXlcB1kvoAAWxc6LwRMQoYBdBpyz5eN9XMzMzKXnudgn8S2LNA+UlAL2DPNKr5GtC5lc75foP9Zel3BYUT/V8AkyKiL/DlVozDzMzMrE1rrwnog0AnSafVF0jaC9gOeD0iPpB0YNpvkYhYBLxd/zwn8DXgoSYOaU4l8EraHrIe/ZiZmZmVlXY5BR8RIeko4DJJ55A9+zkfqAaukFQDzCZ7DnNtfB24WlJX4HnglPUI8yKyKfjvkyXMzerXu5IaPwtjZmZmZU6Nv39jbU0ul4uaGn/FyczMzNo+STMjIleorr1OwZuZmZlZG+UE1MzMzMyKygmomZmZmRWVE1AzMzMzKyonoGZmZmZWVE5AzczMzKyo2uV3QNutBbVQXVnqKMzMzNqe6kWljsDWQtmOgEoKSZfk7Z8tqboV+6+SNLe1+jMzMzOzTNkmoGRrrR8tafNSBwIgqaLUMZiZmZmVg3JOQJcDo4CzGlZI6iXpVkkz0t++qXyOpJ7KvCnp5FR+g6SDGzuRpApJv0l91Un6ViofLGmSpL8AcyRtIukuSU9Imivp+NRuT0kPSZop6V5JW0raQdKsvHP0kTSzVe+QmZmZWRtU7s+AXgXUSbqoQfnlwKUR8aikbYF7gV2AKcC+wItka7nvD1wP7AOc3sR5vgEsioi9JHUCpki6L9XtDfSNiBckHQMsiIhDASRVStoYGAkcERELU1J6YUScKmmRpAERMZtsXfkxDU8saSgwFKCiRy+qlo5eqxtkZmbWEcwvdQC2Vso6AY2IdyVdD5wJLMmrOhjYVVL9fg9J3YFHgAPIEtDfA0Ml9QbeiojFTZzqEKC/pGPTfiXQB/gvMD0iXkjlc4CLJf0amBgRj0jqC/QF/p7iqQBeTe3/CJwi6fvA8WTJbMNrHEU20kunLftEC26LmZmZWZtW1glochkwC8gfGvwIMDAi8pNSJD0MfAfYFvgpcBRwLFli2hQBZ0TEvQ36Gwy8X78fEc9K2hP4EvCrNEo6HngyIgYW6PdW4GfAg8DMiHizmTjMzMzMyl45PwMKQES8BfyVbJq83n3Ad+t3JA1IbV8CNgf6RMTzwKPA2TSfgN4LnJ6m05G0o6RNGjaStBXwn4j4M3AxsAfwDNBL0sDUZmNJu6V4lqa+f8+aCbSZmZlZu9UeRkABLiEv4SSbkr9KUh3ZNT4MDEt1j5NNg0OWeP6KLBFtaCOyN+0hmyqvAmYpm0dfCBxZ4Jh+wG8krQQ+AE6PiP+mqfsrJFWmfi8DnkzH3AgcTZY0N6lf70pqRhzaXDMzMzOzNk0RfqywEElHACdFxFc28HnOBioj4tzm2uZyuaipqdmQ4ZiZmZm1CkkzIyJXqK69jIC2KknnA0cAQzbwecYDOwAHbcjzmJmZmbUlTkALiIjzgPOKcJ6jNvQ5zMzMzNqasn8JyczMzMzKixNQMzMzMysqJ6BmZmZmVlROQM3MzMysqPwSEiDpKOA2YJeIeLqRNlMjYlBxI2tgQS1UV5Y0BDMzsw6helGpI2jXPAKaOZHsY/QnNKyQVAFQ8uTTzMzMrJ3o8AmopG7AvmRLeZ6QygZLmiTpL8CcVLY4/Z4vaXb6e0XS6FT+fUlz09/wVFYl6SlJ10h6UtJ9krqkutMkzZD0hKRbJXUt+sWbmZmZlUCHXwlJ0leBAyPiG5Kmki3p2QO4C+gbES+kdosjolvecZVkS3mekorGAPsAIlvu86vA28A/gFxEzJb0V2BCRPxZ0mYR8Wbq6wLgtYgYWSC+ocBQgIoevfbc+nQvGW9mZrYu5ns566JqaiWkDj8CSjb9flPavintA0yvTz4bSuvB3whcGhEzgf2A8RHxfkQsJnuedP/U/IWImJ22Z5KtKQ/QV9IjkuYAJwG7FTpXRIyKiFxE5Cq6+vlPMzMzK38d+iUkSZuRLYPZV1IAFUAAdwPvN3FoNfByRNQPR6qJtsvytlcAXdL2GODIiHhC0hBg8FqGb2ZmZlaWOvoI6LHA9RGxXURURcQ2wAtkI5oFSToM+BxwZl7xw8CRkrpK2gQ4imx6vindgVclbUw2AmpmZmbWIXToEVCy6fYRDcpuBU4H/tnIMT8AtgKmZzPxTIiI8ySNAaanNn+MiFpJVU2c+1yyZ0VfJHvRqXtzwfbrXUmNn18xMzOzMtfhX0IqJ7lcLmpqakodhpmZmVmz/BKSmZmZmbUZTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OicgJqZmZmZkXlBNTMzMzMiqqjfwe0vCyohWovx2lm9v/bu/dgu8ryjuPfXw9iiOEWoBaCECsqIpSAB5TrcJspCC3olAEHW6CXlKlTjZZS1A5GZmSYobXaqRTjJVBLo4VyCR1F7gS0XE5IMEGIykWhhJsohEsAw9M/9sqwOT1JDrnsnXXO9/PP3utd71rrOfuZc84z7/uuvaQxYeYz/Y6gb8bNCGiSm5L8/rC2GUnO71dMXTFM7GcMkiRJvTRuClBgDnDisLYTm/bVSjKwQSLqmAFYgEqSpHFjPBWglwLHJHkzQPOYzB2AiUn+J8ldSS5JMqnZ/1CSs5LcChzfbJ/T9B1KsneS7ye5P8lpzTFJcl6SxUkWJTmhaT+kGYG9NMl9SS5u+n68ieHGJDf24TORJEnquXGzBrSqfpnkDuBI4Eo6o5/XA58Fjqiq55P8HfAp4OzmsOVVdSBAknOBh6tqvyT/BFwIHABMAO4BLgA+DEwD9gS2Be5MMq85117Ae4FHgR8AB1TVPyf5FHBoVT01UtxJpgPTAQa22I6py2evp09EkiStykPnHt3vEMa08TQCCq+fhj8ReBDYDfhBkoXAycDOXf2/M+z4uc3rIuD2qlpWVU8Cy5NsBRwIzKmqFVX1OHAzsE9zzB1V9UhVvQosBKaOJuCqmlVVg1U1ODDRG5AkSVL7jZsR0MYVwBeT7A1sBiwArq2qj6yi//PDtl9qXl/ter9yexMgq7l2d/8VjL/PXpIkCRhnI6BV9RxwE/BNOqOhtwEHJNkFIMnEJO9ah0vMA05IMpBkO+Bg4I41HLMM2HwdrilJktQq43EUbg5wGXBiVT2Z5BRgzsqbk4C/B36ylue+HNgPuBso4IyqeizJrqs5ZhbwvSRLq+rQ1Z18jylbMuSaFEmS1HKpqn7HoFEaHBysoaGhfochSZK0RknmV9XgSPvG1RS8JEmS+s8CVJIkST1lASpJkqSesgCVJElST1mASpIkqacsQCVJktRT4/F7QNvr0QUw08dxSpIkYOYz/Y5grY2LEdAkv5Pk20nuT/LjJN9d1ROPkkxNsngDxTEzyekb4tySJEltMeYL0CSh84Sim6rqHVW1G/AZ4K3r6fyOIkuSJL0BY74ABQ4FXqmqC1Y2VNVC4NYk5yVZnGRRkhOGH5hkQpLZzf4FSQ5t2k9JckmSq4BrkkxKcn2Su5q+x3ad47NJliS5Dnh3V/u0JLcl+VGSy5NsvQE/A0mSpI3GeBi92x2YP0L7h4FpwJ7AtsCdSeYN6/MxgKrao3me+zVdU/f7Ab9XVU83o6Afqqpnk2wL3JZkLrA3cCKwF53P+q6uWP4N+OuqujnJ2cDngBnDg0wyHZgOMLDFdkxdPnstPgJJkjTWPNTvANbBeBgBXZUDgTlVtaKqHgduBvYZoc+3AKrqPuDnwMoC9Nqqerp5H+CcJD8CrgOm0JniPwi4vKpeqKpngbkASbYEtqqqm5vjLwIOHinIqppVVYNVNTgw0RuQJElS+42HAvQe4H0jtGcUx66uz/Nd708CtgPeV1XTgMeBCc2+GsV1JEmSxo3xMAV/A53Ryb+oqq8BJNkH+BVwQpKLgMl0RiD/ltcKR4B5dIrLG5qp952AJXSm1rttCTxRVa8060R37jr+wiTn0vms/wD4alU9k+RXSQ6qqluAP6YzArtae0zZkqFzj16Lj0CSJGnjMeYL0KqqJB8CvpTkTGA5nWUTM4BJwN10RinPqKrHkkztOvx84IIki4DfAKdU1UudG+tf52LgqiRDwELgvubadyX5TtP2c+CWrmNObs49EXgAOHU9/ciSJEkbtVQ5Q9wWg4ODNTQ01O8wJEmS1ijJ/KoaHGnfeFgDKkmSpI2IBagkSZJ6ygJUkiRJPWUBKkmSpJ6yAJUkSVJPjfmvYRpTHl0AM30akiRJWgczn+l3BI6Aro0kU5MsHtY2M8npSU5JssMoznFTkhG/mkCSJGksswBd/04B1liASpIkjVcWoOvfIHBxkoVJNktyVpI7kyxOMiuvf4zS8UnuSPKTJAf1K2BJkqRecg3o+jcEnF5VQwBJ/qWqzm7efws4Briq6btJVe2b5IPA54Ajhp8syXRgOsDAFtsxdfnsHvwIkiSpnx469+h+h7BBOQK6dlb1/NKR2g9NcnvzPPnDgPd27buseZ0PTB3xhFWzqmqwqgYHJnoDkiRJaj9HQNfOL4Gth7VNBh7sbkgyATgfGKyqh5PMBCZ0dXmpeV2BuZAkSeOEI6BroaqeA5YmORwgyWTgSOBWYBmwedN1ZbH5VJJJwB/1OlZJkqSNjaNua+9PgK8k+cdm+/NVdX+SC4ELkrwI7Ad8DVgEPATcuS4X3GPKlgyN8TUhkiRp7EvVqpYzamMzODhYQ0ND/Q5DkiRpjZLMr6oRv/PcKXhJkiT1lAWoJEmSesop+BZJsgxY0u84tM62BZ7qdxBaL8zl2GAexwbzuPHZuaq2G2mHNyG1y5JVraVQeyQZMo9jg7kcG8zj2GAe28UpeEmSJPWUBagkSZJ6ygK0XWb1OwCtF+Zx7DCXY4N5HBvMY4t4E5IkSZJ6yhFQSZIk9ZQFqCRJknrKArQlkhyZZEmSnyU5s9/xaHSSvC3JjUnuTXJPkk807ZOTXJvkp83r1v2OVWuWZCDJgiT/3Wybx5ZJslWSS5Pc1/xe7mce2yfJJ5u/qYuTzEkywTy2iwVoCyQZAL4CHAXsBnwkyW79jUqj9Bvgb6rqPcAHgI81uTsTuL6q3glc32xr4/cJ4N6ubfPYPl8Grq6qXYE96eTTPLZIkinAx4HBqtodGABOxDy2igVoO+wL/KyqHqiql4FvA8f2OSaNQlUtraq7mvfL6Pyzm0Infxc13S4CjutLgBq1JDsCRwNf72o2jy2SZAvgYOAbAFX1clX9GvPYRpsAmyXZBJgIPIp5bBUL0HaYAjzctf1I06YWSTIV2Au4HXhrVS2FTpEK/HYfQ9PofAk4A3i1q808tsvvAk8Cs5ulFF9P8hbMY6tU1f8C/wD8AlgKPFNV12AeW8UCtB0yQpvfn9UiSSYB/wXMqKpn+x2P3pgkxwBPVNX8fseidbIJsDfwr1W1F/A8TtO2TrO281jg7cAOwFuSfLS/UemNsgBth0eAt3Vt70hnukEtkORNdIrPi6vqsqb58STbN/u3B57oV3walQOAP0zyEJ0lMIcl+XfMY9s8AjxSVbc325fSKUjNY7scATxYVU9W1SvAZcD+mMdWsQBthzuBdyZ5e5JN6Sy2ntvnmDQKSUJnvdm9VfXFrl1zgZOb9ycDV/Y6No1eVX26qnasqql0fv9uqKqPYh5bpaoeAx5O8u6m6XDgx5jHtvkF8IEkE5u/sYfTWV9vHlvEJyG1RJIP0lmDNgB8s6q+0N+INBpJDgRuARbx2trBz9BZB/qfwE50/pgeX1VP9yVIvSFJDgFOr6pjkmyDeWyVJNPo3Ei2KfAAcCqdwRjz2CJJPg+cQOebRhYAfw5Mwjy2hgWoJEmSesopeEmSJPWUBagkSZJ6ygJUkiRJPWUBKkmSpJ6yAJUkSVJPWYBKUsskWZFkYZLFSS5JMnEV/X64nq53XJKzhrXNHLa9aZJ5zbO5JWm1LEAlqX1erKppVbU78DJwWvfOJAMAVbX/erreGcD5zbl3SPI94K+aIviTzbVeBq6n892MkrRaFqCS1G63ALskOSTJjUn+g86DD0jy3MpOSc5IsijJ3UnObdrekeTqJPOT3JJk1+EnT/Iu4KWqeqppmgHMp1OQ7gNc3dX9CuCk9f8jShprnCqRpJZqpruP4rUicF9g96p6cFi/o4DjgPdX1QtJJje7ZgGnVdVPk7yfTlF52LDLHADc1bX9MrAN8HTzHO57u/YtplOUStJqOQIqSe2zWZKFwBCdRw5+o2m/Y3jx2TgCmF1VLwBU1dNJJgH7A5c05/oqsP0Ix24PPNm1fR6d/x1/meT65tGkNOddAbycZPO1/9EkjQeOgEpS+7xYVdO6G5IAPL+K/gGGP3f5t4BfDz/PSNcCtly5UVXP0Ck+lwLfB65MslNVLW+6vBlY/v9PI0mvcQRUksa+a4A/XXm3fJLJVfUs8GCS45u2JNlzhGPvBXZZuZHkPUlW/u9YBLwKvKnZtw3wZDM1L0mrZAEqSWNcVV0NzAWGmun205tdJwF/luRu4B7g2BEOnwfslWaIlc6a0B8CpwK3A1+oqmXNvkOB726QH0LSmJKq4bMykiS9JsmXgauq6rqutplVNXNYv8uAT1fVkh6HKKllHAGVJK3JOcDwL7u/qXsjyabAFRafkkbDEVBJkiT1lCOgkiRJ6ikLUEmSJPWUBagkSZJ6ygJUkiRJPWUBKkmSpJ76Pyu+o3rlO50YAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -839,7 +1956,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 87, "metadata": {}, "outputs": [], "source": [ @@ -849,16 +1966,15 @@ "#gather the ticket prices from the 'Adultweekday' and 'AdultWeekend' columns using the `value_vars` argument,\n", "#call the resultant price column 'Price' via the `value_name` argument,\n", "#name the weekday/weekend indicator column 'Ticket' via the `var_name` argument\n", - "ticket_prices = pd.melt(ski_data[[___, ___, ___]], \n", - " id_vars=___, \n", - " var_name=___, \n", - " value_vars=[___, ___], \n", - " value_name=___)" + "ticket_prices = pd.melt(ski_data[['state', 'AdultWeekday', 'AdultWeekend']], \n", + " id_vars= 'state', var_name='Ticket',\n", + " value_vars=['AdultWeekday', 'AdultWeekend'],value_name='Price' )\n", + "#var_name='state', value_name='Ticket'" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 90, "metadata": {}, "outputs": [ { @@ -931,7 +2047,7 @@ "4 Arizona AdultWeekday 74.0" ] }, - "execution_count": 20, + "execution_count": 90, "metadata": {}, "output_type": "execute_result" } @@ -949,16 +2065,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 91, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtQAAAIlCAYAAAD1429MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACLH0lEQVR4nO3deXzcVb3/8denSaEpbVlSrFiBAgUEoRYoyKYIthIVWUS9Itq4cvFqW3D5eVW8FMQr170tKnKv2laxqCxqpUZaZS+CpdSWTYlYkIAsYSu0lCb5/P4430kn6WQm32UyS97Px6OPdOY7c3IymXy/nznncz7H3B0REREREUlmRKU7ICIiIiJSyxRQi4iIiIikoIBaRERERCQFBdQiIiIiIikooBYRERERSUEBtYiIiIhICo2V7kAa48eP90mTJlW6GyIiIiJS5+68886n3H3XQsdqOqCeNGkSq1atqnQ3RERERKTOmdlDAx1TyoeIiIiISAoKqEVEREREUlBALSIiIiKSQk3nUIuIiIjUgi1btvDII4/w0ksvVborUsKoUaN49atfzciRIwf9HAXUIiIiImX2yCOPMHbsWCZNmoSZVbo7MgB3p7Ozk0ceeYS99tpr0M9TyoeIiIhImb300ks0NzcrmK5yZkZzc3PsmQQF1CIiIiJDQMF0bUjye1JALSIiIjKMdXZ2MnXqVKZOncorX/lKJk6cyNSpUxkzZgz/8R//UfS5Y8aMGfT3ueGGG1i5cmXa7lYl5VCLiIiIDGPNzc2sWbMGgLlz5zJmzBg+85nPZP59brjhBsaMGcPRRx+deduVphFqEREREdnGDTfcwEknnQTACy+8wIc+9CEOPvhgpkyZwlVXXdXnsU899RRHHXUU1157LU8++SSnn346hx9+OIcffji33nor69ev59JLL+Xb3/42U6dO5eabb67Ej1Q2GqEWERERkaK+/OUvs+OOO7Ju3ToAnnnmmd5jjz/+OCeffDIXXXQRM2bM4H3vex/nnnsuxx57LA8//DAnnngi9913H2effXbZRr8rTQG1iIiIiBS1YsUKrrjiit7bO++8MxDqa7/5zW/mu9/9Lscdd1zvY++9997exz7//PNs2LBhaDs8xBRQi4iIiEhR7l6w+kVjYyOHHXYYv//973sD6p6eHm677TaampqGupsVoxxqERERESnqLW95C5dccknv7VzKh5nxox/9iPvvv5+LL7644GNzCx7Hjh1btyPVCqhrUGdnJ7Nnz6azszPRcREREZE4zjvvPJ555hkOOuggXve613H99df3HmtoaOCKK67g+uuv53vf+x7z589n1apVTJkyhQMPPJBLL70UgHe84x1cc801dbko0dy90n1IbNq0ab5q1apKd2PIfetb32Lp0qWcfPLJnHvuubGPi4iIyNC67777OOCAAyrdDRmkQr8vM7vT3acVerxGqGtMZ2cnbW1tuDttbW3bjEKXOi4iIiIi2VJAXWMWLVpET08PAN3d3SxevDjWcRERERHJlgLqGrNixQq6uroA6OrqYvny5bGOi4iIiEi2FFDXmOnTp9PYGKodNjY2MmPGjFjHRURERCRbCqhrTGtrKyNGhF9bQ0MDM2fOjHVcRERERLKlgLrGNDc309LSgpnR0tJCc3NzrOMiIiIiki0F1DWotbWVgw8+eMDR51LHRUREZHi65pprMDPuv//+gsff9KY3Uaok8dy5c/nGN74BwMKFC3n00UcB+PWvf82pp57a+7ivfvWrTJ48ufd2rqRvXAsXLuSTn/xkyceNGTMmdttZ0dbjNai5uZn58+cnPi4iIiKV9clPfZYnnno6s/ZeMX4XLvnW10s+bsmSJRx77LFcccUVzJ07N/X3XbhwIQcddBCvetWrOProoznrrLN6j912222MGzeOJ554gle84hWsXLmSY445JvX3rEZlC6jN7EfAScAT7n5QdN/Pgf2jh+wEPOvuU81sEnAf8Nfo2J/c/exy9U1ERESkkp546mn+PuG47Bp8/MaSD3nhhRe49dZbuf766zn55JOZO3cumzZt4kMf+hD33nsvBxxwAJs2bep9/JgxY3jhhRcAuPLKK/ntb3/LwoULe49feeWVrFq1ijPPPJOmpiZuu+02dtxxR9rb25k8eTIdHR2cfvrprFy5klNPPZWVK1dy0UUX8eSTT3L22Wfz8MMPA/Cd73yHY445hhdffJFZs2axbt06urq6mDt3Lqecckqfn+Haa6/loosuYunSpWzYsIH3ve99dHV10dLS0ufnPOWUU3jmmWfYsmULF110Eaeccgpf+tKXGD9+PHPmzAHgi1/8IhMmTGD27NmJX/acco5QLwQuAXoLIbv7v+X+b2bfBJ7Le/zf3X1qGfsjIiIiMmz96le/oqWlhf32249ddtmF1atXc8MNNzB69GjWrl3L2rVrOfTQQwfd3rve9S4uueQSvvGNbzBtWthA8Oijj2blypV0d3ez7777cuSRR/L73/+ek046ibVr13L44Yfz4Q9/mHPPPZdjjz2Whx9+mBNPPJH77ruPr3zlK5xwwgn86Ec/4tlnn+WII45g+vTpvd/vmmuu4Vvf+hbLli1j55135sMf/jAf//jHmTlzJt/97nd7Hzdq1CiuueYaxo0bx1NPPcWRRx7JySefzEc+8hHe+c53MmfOHHp6erjiiiu44447MnltyxZQu/tN0cjzNszMgPcAJ5Tr+4uIiIjIVkuWLOGcc84B4L3vfS9LlizhgQce6B2hnTJlClOmTEn1PY455pjegPqoo47iiCOO4MILL+Suu+5i//33Z9SoUaxYsYJ777239znPP/88GzZs4LrrruM3v/lNb372Sy+91DuKff3117Nq1Squu+46xo0bB8Ctt97KVVddBcAHPvABPve5zwHg7nzhC1/gpptuYsSIEXR0dPD4448zadIkmpubueuuu3j88cc55JBDMiveUKkc6jcAj7v7A3n37WVmdwHPA+e5+82FnmhmZwFnAeyxxx5l76iIiIhIrevs7OSPf/wjd999N2ZGd3c3ZsYhhxxCGOfcVv79L7300qC+z9FHH82CBQvo7u7mYx/7GGPHjuWll17ihhtu6M2f7unp4bbbbqOpqanPc92dq666iv3337/P/bfffjt77703Dz74IH/72996R8P79zHn8ssv58knn+TOO+9k5MiRTJo0qbf/H/3oR1m4cCH/+te/+PCHPzyon2kwKlXl4wxgSd7tx4A93P0Q4FPAz8xsXKEnuvtl7j7N3aftuuuuQ9BVERERkdp25ZVXMnPmTB566CHWr1/PP//5T/baay8OPfRQLr/8cgDuvvtu1q5d2/ucCRMmcN9999HT08M111xTsN2xY8eyYcOG3tsHHnggjz76KDfffDOHHHIIAFOnTuXSSy/l6KOPBuAtb3kLl1xySe9z1qxZA8CJJ57IggULcHcA7rrrrt7H7Lnnnlx99dXMnDmTe+65Bwij4VdccQVA788A8Nxzz/GKV7yCkSNHcv311/PQQw/1HjvttNNoa2vjz3/+MyeeeGLMV3FgQx5Qm1kj8E7g57n73H2zu3dG/78T+Duw31D3TURERKQeLVmyhNNOO63Pfaeffjrr16/nhRdeYMqUKXzta1/jiCOO6D1+8cUXc9JJJ3HCCSew2267FWz3gx/8IGeffTZTp05l06ZNmBmvf/3rGT9+PCNHjgTgqKOO4sEHH+wNqOfPn8+qVauYMmUKBx54IJdeeikAX/rSl9iyZQtTpkzhoIMO4ktf+lKf77X//vtz+eWX8+53v5u///3vzJs3j+9+97scfvjhPPfc1mV5Z555JqtWrWLatGlcfvnlvOY1r+k9tt1223H88cfznve8h4aGhhSvaF+W+xRQDlEO9W9zVT6i+1qAz7v7cXn37Qo87e7dZrY3cDNwsLsXrSczbdo0L1UrUURERKTS7rvvPg444IDe25Uqmzfc9fT0cOihh/LLX/6Sfffdd8DH9f99AZjZne4+rdDjy1k2bwnwJmC8mT0CnO/uPwTeS990D4A3AheaWRfQDZxdKpgWERERqVUKfofevffey0knncRpp51WNJhOopxVPs4Y4P4PFrjvKuCqcvVFRERERIa3Aw88kAcffLAsbWvrcRERERGRFBRQi4iIiIikoIBaRERERCQFBdQiIiIiIikooBYREREZJq655hrMjPvvv7/g8Te96U2UKkk8d+7c3u3BFy5cyKOPPgrAr3/9a0499dTex331q19l8uTJvbeXLl3KySefHLvPCxcu5JOf/GTs55UyadIknnrqqUzaqtTW4yIiIiLD1hc+/Umee+rxzNrbcfwE/vubl5R83JIlSzj22GO54oormDt3burvu3DhQg466CBe9apXcfTRR3PWWWf1HrvtttsYN24cTzzxBK94xStYuXJl7/bj9UYBtYiIiMgQe+6px/ncPoVHiZP4n7+XfswLL7zArbfeyvXXX8/JJ5/M3Llz2bRpEx/60Ie49957OeCAA9i0aVPv48eMGcMLL7wAhK3Lf/vb37Jw4cLe41deeSWrVq3izDPPpKmpidtuu40dd9yR9vZ2Jk+eTEdHB6effjorV67k1FNPZeXKlVx00UU8+eSTnH322Tz88MMAfOc73+GYY47hxRdfZNasWaxbt46uri7mzp3LKaec0udnuPbaa7noootYunQpq1ev5vzzz2fz5s3ss88+/PjHP2bMmDFMmjSJ1tZWli5dypYtW/jlL3/Ja17zGjo7OznjjDN48sknOeKII8hyc0OlfIiIiIgMA7/61a9oaWlhv/32Y5dddmH16tV8//vfZ/To0axdu5YvfvGL3HnnnYNu713velfv9t5r1qyhqamJo48+mpUrV/LXv/6VfffdlyOPPJKVK1fS1dXF2rVrOfzww5kzZw7nnnsuf/7zn7nqqqv46Ec/CsBXvvIVTjjhBP785z9z/fXX89nPfpYXX3yx9/tdc801XHzxxSxbtgyAiy66iBUrVrB69WqmTZvGt771rd7Hjh8/ntWrV/Pxj3+8Nz3lggsu4Nhjj+Wuu+7i5JNP7g3os6ARahEREZEBLFiwgPb2djo6OgCYOHEikydPZtasWb3Hb7zxxoLHqs2SJUs455xzAHjve9/LkiVLeOCBB5g9ezYAU6ZMYcqUKam+xzHHHMPKlSvp7u7mqKOO4ogjjuDCCy/krrvuYv/992fUqFGsWLGCe++9t/c5zz//PBs2bOC6667jN7/5TW8A/NJLL/UGvddffz2rVq3iuuuuY9y4cfz2t7/l3nvv7U0hefnllznqqKN623znO98JwGGHHcbVV18NwE033dT7/7e//e3svPPOqX7WfAqoRURERErIT4WIc6xadHZ28sc//pG7774bM6O7uxsz45BDDsHMCj4n//6XXnppUN/n6KOPZsGCBXR3d/Oxj32MsWPH8tJLL3HDDTf0Br89PT3cdtttNDU19Xmuu3PVVVex//7797n/9ttvZ++99+bBBx/kb3/7G9OmTcPdmTFjBkuWLCnYj+233x6AhoYGurq6Cv5MWVLKh4iIiMgAZs2axbx585g8eTKTJ09m3rx5fUagZ82aNeCxanLllVcyc+ZMHnroIdavX88///lP9tprLw499FAuv/xyAO6++27Wrl3b+5wJEyZw33330dPTwzXXXFOw3bFjx7Jhw4be2wceeCCPPvooN998M4cccggAU6dO5dJLL+Xoo48G4C1veQuXXLJ1AeWaNWsAOPHEE1mwYEFvbvNdd93V+5g999yTq6++mpkzZ3LPPfdw5JFHcuutt9Le3g7Axo0b+dvf/lb0NXjjG9/Y+7P+7ne/45lnnin9wg2SAmoRERGROrdkyRJOO+20PvedfvrprF+/nhdeeIEpU6bwta99jSOOOKL3+MUXX8xJJ53ECSecwG677Vaw3Q9+8IOcffbZTJ06lU2bNmFmvP71r2f8+PGMHDkSgKOOOooHH3ywN6CeP38+q1atYsqUKRx44IFceumlAHzpS19iy5YtTJkyhYMOOogvfelLfb7X/vvvz+WXX8673/1unn/+eRYuXMgZZ5zBlClTOPLIIwcsBZhz/vnnc9NNN3HooYdy3XXXsccee8R7EYuwLFc4DrVp06Z5qVqJIiIiImnNmTMHgHnz5sU6lnPfffdxwAEH9N6uVNk8GZz+vy8AM7vT3acVerxyqEVERESGmILf+qKUDxERERGRFBRQi4iIiIikoIBaREREZAjU8rq14STJ70kBtYiIiEiZjRo1is7OTgXVVc7d6ezsZNSoUbGep0WJIiIiImX26le/mkceeYQnn3yy0l2REkaNGsWrX/3qWM9RQC0iIiJSZiNHjmSvvfaqdDekTJTyISIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJQQG1iIiIiEgKCqhFRERERFJQQC0iIiIikoIC6irR2dnJ7Nmz6ezsrHRXRERERCQGBdRVYtGiRaxbt47FixdXuisiIiIiEoMC6irQ2dlJW1sb7k5bW1vJUepSo9ka7RYREREZOgqoq8CiRYvo6ekBoLu7u+QodanRbI12i4iIiAwdBdRVYMWKFXR1dQHQ1dXF8uXLB3xsqdHsuKPdIiIiIpKOAuoqMH36dBobGwFobGxkxowZAz621Gh23NFuEREREUlHAXUVaG1tZcSI8KtoaGhg5syZAz621Gh2nNFuEREREUlPAXUVaG5upqWlBTOjpaWF5ubmAR9bajQ7zmi3iIiIiKSngLpKtLa2cvDBBxcdnc49rthodpzRbhERERFJTwF1lWhubmb+/PlFR6dzjys2mh1ntFtERERE0musdAckvtbWVtavXz/g6HOp4yIiIiKSHQXUNSg3mp30uIiIiIhkRykfIiIiIiIpKKAWEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJoWwBtZn9yMyeMLO78+6ba2YdZrYm+ve2vGOfN7N2M/urmZ1Yrn6JiIiIiGSpnCPUC4GWAvd/292nRv+WAZjZgcB7gddGz/memTWUsW8iIiIiIpkoW0Dt7jcBTw/y4acAV7j7Znf/B9AOHFGuvlVCZ2cns2fPprOzs9JdEREREZEMVSKH+pNmtjZKCdk5um8i8M+8xzwS3Vc3Fi1axLp161i8eHGluyIiIiIiGRrqgPr7wD7AVOAx4JvR/VbgsV6oATM7y8xWmdmqJ598siydzFpnZydtbW24O21tbRqlFhEREakjQxpQu/vj7t7t7j3A/7I1reMRYPe8h74aeHSANi5z92nuPm3XXXctb4czsmjRInp6egDo7u7WKLWIiIhIHRnSgNrMdsu7eRqQqwDyG+C9Zra9me0F7AvcMZR9K6cVK1bQ1dUFQFdXF8uXL69wj0REREQkK+Usm7cEuA3Y38weMbOPAF8zs3VmthY4HjgXwN3vAX4B3Au0AZ9w9+5y9W2oTZ8+ncbGRgAaGxuZMWNGhXskIiIiIllpLFfD7n5Ggbt/WOTxXwG+Uq7+VFJrayttbW0ANDQ0MHPmzAr3SERERESyop0Sh0BzczMtLS2YGS0tLTQ3N1e6SyIiIiKSkbKNUEtfra2trF+/XqPTIiIiInVGAfUQaW5uZv78+ZXuhoiIiIhkTCkfIiIiIiIpKKAWEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJQQG1iIiIiEgKCqhFRERERFJQQC0iIiIikoICahERERGRFBRQ16DOzk5mz55NZ2dnouMiIiIikh0F1DVo0aJFrFu3jsWLFyc6LiIiIiLZUUBdYzo7O2lra8PdaWtr22YUutRxEREREcmWAuoas2jRInp6egDo7u7eZhS61HERERERyZYC6hqzYsUKurq6AOjq6mL58uWxjouIiIhIthRQ15jp06fT2NgIQGNjIzNmzIh1XERERESypYC6xrS2tjJiRPi1NTQ0MHPmzFjHRURERCRbCqhrTHNzMy0tLZgZLS0tNDc3xzouIiIiItlqrHQHJL7W1lbWr18/4OhzqeMiIiIikh0F1DWoubmZ+fPnJz4uIiIiItlRyoeIiIiISAoKqEVEREREUlBALSIiIiKSgnKoRUSqxIIFC2hvb6ejowOAiRMnMnnyZGbNmjWo4yIiUhkKqEVEqsymTZtSHRcRkaGlgFpEpErkRprnzJkDwLx582IdFxGRylAOtYiIiIhICgqoRURERERSUEAtIiIiIpKCAmoRERERkRQUUIuIiIiIpKCAWkREREQkBQXUIiIiIiIpKKAWEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJQQG1iIiIiEgKCqhFRERERFIoW0BtZj8ysyfM7O68+75uZveb2Vozu8bMdorun2Rmm8xsTfTv0nL1q1p1dnYye/ZsOjs7K90VEREREYmhnCPUC4GWfvctBw5y9ynA34DP5x37u7tPjf6dXcZ+VaVFixaxbt06Fi9eXOmuiIiIiEgMZQuo3f0m4Ol+913n7l3RzT8Bry7X968lnZ2dtLW14e60tbVplFpERESkhjRW8Ht/GPh53u29zOwu4HngPHe/uTLdytaCBQtob2+no6MDgIkTJzJ58mRmzZrV+5hFixbR09MDQHd3N4sXL+bcc8+tSH9FREREJJ6KLEo0sy8CXcDl0V2PAXu4+yHAp4Cfmdm4AZ57lpmtMrNVTz755NB0OAObNm1i06ZNBY+tWLGCrq4wcN/V1cXy5cuHsmsiIiIiksKQj1CbWStwEvBmd3cAd98MbI7+f6eZ/R3YD1jV//nufhlwGcC0adN8qPqdVG4kes6cOQDMmzdvm8dMnz6dZcuW0dXVRWNjIzNmzBjSPoqIiIhIckM6Qm1mLcDngJPdfWPe/buaWUP0/72BfYEHh7JvldTa2sqIEeFX0dDQwMyZMyvcIxEREREZrHKWzVsC3Absb2aPmNlHgEuAscDyfuXx3gisNbO/AFcCZ7v70wUbrkPNzc20tLRgZrS0tNDc3FzpLomIiIjIIJUt5cPdzyhw9w8HeOxVwFXl6kstaG1tZf369RqdFhEREakxlazyIXmam5uZP39+pbshIiIiIjFp63ERERERkRQUUIuIiIiIpKCAWkREREQkBQXUIiIiIiIpKKAWERERGULt7e28/e1vp729PdFxqT4KqEVERESG0EUXXcSLL77IRRddlOi4VB8F1CIiIiJDpL29nfXr1wOwfv36bUahSx2X6qSAWkRERGSI9B91jntbqpMCahEREZEhkht9TnpbqpMCahEREZEhMmnSpFS3pTopoBYREREZIuedd16q21KdFFCLiIiIDJHJkyf3jjpPmjSJyZMnxzou1UkBtYiIiMgQOu+889hhhx0GHH0udVyqT2OlOyAiIiJSaxYsWNBb0i73dc6cOb3HJ0+ezKxZswo+d/LkyVx77bUDtl3quFQfBdQiIiIiMbW3t/PAPXexx5huttsSJvw3P7QKgIdfaKhk16QCFFCLiIiIJLDHmG6+cOjz29z/36vHVaA3UkkKqEVERET6yU/pgG3TOjo6OhhfkZ5JNVJALSIiItJPe3s7a+6+j+7RuwAw4mUH4M4HH6dh49OMGTUSRlayh1JNFFCLiIiIFNA9ehc2veZt29zfdP8y6NlQgR5JtVLZPBERERGRFBRQi4iIiIikoIBaRERERCQFBdQiIiIiIikooBYRERERSUEBtYiIiIhICgqoRURERERSUEAtIiIiIpKCAmoRERERkRQUUIuIiIiIpKCtx0VEZEgtWLCA9vZ2Ojo6ADjuuOOYNWtWwWMTJ05k8uTJvcdFRKqRAmoREamITZs2JTomIlJtFFCLiMiQyo02z5kzp8/tQsfmzZs3xL0TEYlPOdQiIiIiIikooBYRERERSUEpHyIiVS63UC8n9/9cWgSghXsiIhWkgFpEpMq1t7fzwD13sceYbgC22xImFzc/tAqAh19oqFjfREREAbWISE3YY0w3Xzj0+YLH/nv1uCHujYiI5FMOtYiIiIhICgqoRURERERSUEAtIiIiIpKCAmoRERERkRS0KFGkAnJl0Do6OgCYOHFin7JnpY6LiIhI9YgVUJvZDsBL7t5dpv6IDCubNm1KdVxEREQqr2hAbWYjgPcCZwKHA5uB7c3sSWAZcJm7P1D2XorUmdxIc25jjnnz5sU6LiIiItWjVA719cA+wOeBV7r77u7+CuANwJ+Ai83s/WXuo4iIiIhI1SqV8jHd3bf0v9PdnwauAq4ys5Fl6ZmIiIiISA0oOkJdKJg2s+2iXOoBHyMiIiIiMlyULJtnZnPMbP/o/8cB/wQeMLP/KHfnRERERESq3WDqULcC7dH/zwNOBvYFPl6uTomIiIiI1IpSVT7OB14FfNHMtgOmAicCLcBYM/sv4AZ3v6ncHRURERERqUalcqgvAFYTAu9dgKvc/ULgy8Bj7n7hQMG0mf3IzJ4ws7vz7tvFzJab2QPR153zjn3ezNrN7K9mdmIWP5yIiIiISLkNJuXjI8D2QCfw2ei+/YD/K/G8hYSR7Hz/CfzB3fcF/hDdxswOJNS7fm30nO+ZWcMg+iYiIiIiUlEld0p098eAz/W7737g/hLPu8nMJvW7+xTgTdH/FwE3RG2fAlzh7puBf5hZO3AEcFvJn0BEpMbltprPyf0/t7FPe3s7u6tAqYhI1So6Qm1m55nZLkWOn2BmJ8X4fhOiAD0XqL8iun8ioXpIziPRfSIida+9vZ01d9/HnQ8+zp0PPs6Gl50NL3vv7Rde3FjpLkoV6OzsZPbs2XR2diY6LiLlU2qEeh2w1MxeIuRSPwmMIlT5mAqsAP47g35Ygfu84APNzgLOAthjjz0y+NYiIpXXPXoXNr3mbQWPjVn9E+Dloe2QVJ1Fixaxbt06Fi9ezLnnnhv7uIiUT6lFib9292OAs4F7gAbgeeCnwBHufq67Pxnj+z1uZrsBRF+fiO5/BNg973GvBh4doE+Xufs0d5+26667xvjWIlKNNKomUlpnZydtbW24O21tbdv8vZQ6LiLlVTKHGsDdHwAeyOD7/YZQ1/ri6Ouv8+7/mZl9i1Cmb1/gjgy+n4hUOY2qVUYub7ujowOAiRMnMnnyZGbNmlXhnkkhixYtoqenB4Du7u5t/l5KHRcpptT5QOeL0gZT5SMRM1tCWFS4v5k9YmYfIQTSM8zsAWBGdBt3vwf4BXAv0AZ8wt27y9U3EakOGlWrvE2bNrFp06ZKd0NKWLFiBV1dXQB0dXWxfPnyWMdFBqPU+UDni4ENaoQ6CXc/Y4BDbx7g8V8BvlKu/ohI9dGoWuXkRpZylUTmzZtXye5ICdOnT2fZsmV0dXXR2NjIjBkzYh0XKabU+UDni9LKNkItIlKKRtVEBqe1tZURI8Ilu6GhgZkzZ8Y6LiLlNaiA2sz2M7M/5HY9NLMpZnZeebsmIvVu+vTpNDaGiTKNqkka9b64tbm5mZaWFsyMlpYWmpubYx0XkfIa7Aj1/wKfB7YAuPtaws6GIiKJaVRNspK/uLVetba2cvDBBw/4d1LquIiUz2AD6tHu3r/qRlfWnRGR4UWjapKF4bK4tbm5mfnz5w/4d1LquIiUz2AXJT5lZvsQbbZiZu8CHitbr0Rk2GhtbWX9+vUaVZPEBlrcqlJfIjJUBjtC/QngB8BrzKwDOAf4eLk6JSLDh0bVJK1Si1tV6ktEym2wG7s8CEw3sx2AEe6+obzdEhERGZyBSsap1JeIDJXBVvn4bzPbyd1fdPcNZrazmV1U7s6JiIiUosWtIlJpg035eKu7P5u74e7PAG8rS49ERERi0OJWEam0wS5KbDCz7d19M4CZNQHbl69bIiIig6fFrSJSSYMNqH8K/MHMfkyo9PFhYFHZeiUiIhJDbnGriEglDCrlw92/BnwFOAB4LfDl6D4RERERkbKphZ1QB5tDjbv/zt0/4+6fdvffl7NTIiIiIiJQGzuhFg2ozeyW6OsGM3s+798GM3t+aLooIiIiIsNRreyEWjSH2t2Pjb6OHZruiIiIiEi9iruD6UA7oSZpq5xKLko0sxHAWnc/aAj6IyIiZZS7AOXk/p/b/ATQ9twiUnaD3b200E6ouYA6bls5nZ2dXHDBBZx//vnblNksdqyYkgG1u/eY2V/MbA93fzhWj0VEpKq0t7fzwD13sceYbgC22xIy/zY/tAqAh19oqFjfRIa7/iOuxx13XN19uI27g+lAO6EmaSsnPye7f3Be7Fgxgy2btxtwj5ndAbyYu9PdTx70dxIRkaqwx5huvnBo4WUw/7163BD3RkTyA+lNmzb1jrjeeOONtLe3D+tZo9bWVtra2oBsdkLtn5M9c+bM3pHoYsdKGWyVjwuAk4ALgW/m/RMRERGRFHIzR+O7HmP3kc+yY+MWdmzcwviux3jgnrv6pGkNN1nvhFooJ3swx0opOkJtZqOAs4HJwDrgh+7eFbfzIiIiIjKwgWaONGuU7U6oxXKyB5OvPZBSI9SLgGmEYPqtaFRaRERERIZQbifUtKPTEHKyGxvDeHL/nOxix0oplUN9oLsfDGBmPwTuiNft2lSqDEslyrT0z6/KaWpq6vO4/itdm5qaKlpGRkRERIKB4gcZOsVystPka5cKqLfk/uPuXWYWo8u1r1QZlrhlWtJob29nzd334SMasZ7eXwsbXnZsyyZ2aOxm+xFOT3ff31H3lud54NknhqyfIiIi0tdAiw43bdrUe9/uIyvcyWEil5O9dOnSbXKyix0rpVRA/bq8HRENaIpuG+DuXpeJPaXKsCQt05JW9+hd2PSat21z/5jVP2GPMS9r1b6IiGQiaS1eKSw3KNY9ehcYMZYRDQ7AcyPG8txmaHhxI+xU2T6WWzXVwC+Wk500X7vUTokqSCoiIjLMJK3FKwMbaFAMwsAYvDy0HRpi1VQDP5eTHfdYMYOtQy0iIiLDQJpavCLF1HMN/MHWoRYREZFhIE0tXpHhSiPUMVRT/o+IiEg5pKnFW086Ojpo2PgcTfcv2+ZYw8ZONvZ08dCIhoIjqw9taGCHqJKHDA8KqGOopvwfERGRcpg+fTrLli2jq6srdi1ekeFKAXVM9Zz/IyIikqYWbz2ZOHEi/9rcWHAhYdP9yxjTs4HdRz474O6G20+cOBTdlCoxbALqwWzGUiqlo729XXUiRTJSjg2SVOprq+GygUQlNtqqd2lq8YoMV8MmoM4pthlLnzqRwIiXQ53IOx98HBgedSJFhlqWGySp1Ne2hnIDqkoaLj/nUElai1dkuBo2AfVgN2MZ7nUiRYZK1hsk1XWpr55uHtpQePETFF4ANdDrm7+Iuh5UaqOtepe0Fq/IcDVsAupKyE8hGagiSO6YpitFiis1tV+o1JdGqUVEZCgooI4j5ihRfgrJNukjG58GtgbVmq4UGZyB/lbqutTXiAb2HLu56IJoLYASEakcBdRlNlAKyQ5rruizADJfe3s7c+bM0Ui1SJ5SU/sq9SUiIpWigDqODEeJrGcLvnlzbw1r1bQWSUelvkREpFK09XgF5Wpaf+HQ55l37LPMO/bZ3tu5zWNEZHBypb7MrCKlvjo7O5k9ezadnZ2JjouISO3SCLWI1I1KlvoqVbJPJf1EpNaU2p8DUHpqRAF1no6ODho2PkfT/csKP6C7i8c3VmZQv2jfurfQ/lxjrJJaIvWoUqW+SpXsq6aSfh0dHbwYswSfiAxP7e3tPHDPXb2z5kpPHZgCaslEsZJm2sls8KphNKD/7+u4447r/X76XRZWqmSfSvqJSK3KpacWMtAH8+FIAXWeiRMn8q/NjUU3dtnc0937BsqNVk8YHS6UD7/QwL4V6NuY1T9h8tiNVVFSq1j5P5UGLK2aRgP0uxy8UiX7qqmk38SJE9nc9VhVnC9EROqFAuoYfMRIbLvt2H7PUDv65Wj0MHd7X7bWlR5uipU0005m8VR6NKD/7yt/9Fm/y8JKleyr5ZJ+CxYsoK2tjY0bN+LuvfebGQ0N4QNed3d3n2O546NHj6alpWXYz2CIlE4pHTh1U2lYtUEBdQw9o8Yxee8J22zhq6BCZHgrVbJPJf1EROqbAmoRkZRyJfuWLl1asGRfqePVvCB61qxZGmEWSWkwKaUDpW7WSxpWvS+IVkAtUqcGmqoHTceXQ6mSfUNZ0i9/cWv/ha3t7e3sPrLsXSjZr1xfIPQtf6Fr/2M5WgArItVKAbWISAZKlewrdnwwo1cTRr886L60t7ez5u776B69CyNeDh+m7nzwcQAaXtwIOw26qUzl9wvo07eGDZ3s0NjN5q7HAJXnEqk39b4gWgF1ArlRlvwRFI2cSLWphql6ldmrnO7RuwxYFQgGH5xnrVi/9hjzsspziUhNUkDdT8PGp3vzGEe8FE7sPaPG9R6DCb2PbWpqGvL+idQildkTEZF6poA6T/+Sd+3tG8L9e+eC6AkaXROJQWX2RERkOFBAnad/oKwgQEREhhOlaQ0vpXbnreQi5lqjgLpSerp5qI7Lx4hI5RQtw1fBEnxSO5SmNTwUWygMlV3EXGuGPKA2s/2Bn+fdtTfwX4Rf2ceAJ6P7v+DuAxRlFRERkawpTatyHn5h6yBb7kPvhNE9PPxCA/uW8fsOtFAYKr+IuZYMeUDt7n8FpgKYWQPQAVwDfAj4trt/Y6j7VBEjGthz7Oa6LR8jIpVTrAxf3BJ8IlJ+PmIktt12bL9nWMv1cpR6sf2ek9mXbdd4SfWpdMrHm4G/u/tDZlbhroiIiIgMvZ5R45i894TeGQHNENSeSgfU7wWW5N3+pJnNBFYBn3b3ZyrTLRERkb4WLFjAjTfeCGixnoj0VbGVKWa2HXAy8Mvoru8D+xDSQR4DvjnA884ys1VmturJJ58s9BAREZGy2LRpkxbsicg2KjlC/VZgtbs/DpD7CmBm/wv8ttCT3P0y4DKAadOmeTk6pp0QRUSyV7z6yBban2us6spHs2bN6r0uaCpeRPJVsnbSGeSle5jZbnnHTgPuHvIe9dPU1KTdEEVERESkqIqMUJvZaGAG8O95d3/NzKYCDqzvd2xIaSRaRCR7paqPTB67UZWPpG41bHy6d3ZmxEvhfd4zalzvMZiwzQz5ggULFJPUiIoE1O6+EWjud98HKtEXERERkXLqX/auvX1DuH/vCdE9E/o8RrPjtafSVT5ERERE6lr/UWaVxas/CqjLSNv/ioiIyHCSS1vpiBYR50pM1jsF1CIiIiKSqeFWXlIBdRllvf1vbkFD/8UMdHfx8AsNveWmciPfE0b3APDwCw3sm/SHEBERERmkXHpL/7SWOXPm1HWsooC6RuRPl/RfzNDR0QXQuwL+5Wh18PZ7hufsy7YLIkRERESylEv3APrs5QEhDXb0Tq+o21hFAXWNyF/QUGoxgxY7iIhIHPmBEGwbDAHa4ExKam9vZ83d99E9ehdGvBz23rvzwbBvX8PG55l60AF9RqyhfmIVBdSSSqmTsE7AIiLpDLTIK3duLXV8MNrb23ngnrvYY0w3ANttCdPxmx9aBYTpeJHB6B69S8FU14IFGuqIAmpJJf/TKNDnE2koVC8iUtuKTWPD0A0clFrklXYR2B5juoturCMiA6v7gFojqOU3XD+Nikj1yjIIzh+9rcTI7UCLvAZ7PN9wLWlWLfrvhDhnzhzFIXWi7gPqYtNYmsIqv46Ojt6TvHLyRGSoZB0EDzR6W6sjt8OtpFm10U6I9afuA2qovxNhLdm0aVNFR3ZEZPjSuX9bxUqaSfkNxQDSggULaGtrY+PGjbh7n2Nmxjvf+c6KDmTV6yj9sAiopbJ0URMREZF89TZKr4BaREREpE7MmjWrqkd7q7lvaSigFhFJYShKmomISHVTQF1B9bwFp8hwU+6SZlI5HR0dvLihoWCa2kMbGtgh+rAkIsOXAuoK8REjse22691ys9624JTCSpVxbG9vZ/eRFelaUdpFbWBZljQTEZHapIC6QnpGjWPy3hPqdgtOKazYRjgADS9uhJ0q1buBaRc1Gc4mTpzI5q7HBlxcvf3EiRXolYhUEwXUIkNsoI1wAMas/gnw8tB2aJC0i5qIiEhhdRNQa/enbGkhlYhIZZVKtco/Pxc6HuecXSxPHOonV3zBggVcffXVBeszjx49mpaWFl3nJJG6CahztPAnW3o9RUS2LiIfygXkJVPENnSyQ2M3m7seA7QTsAwf1biup24Cau3+lC0tpBIRCXKznR0dHTzX9TQAL29poqmpiX1fW97Z0FIpYnuMeTmTjbOK5Ynn2quHXPFqr9Esg1ON63rqJqAWEREph/ya4jfeeCOgNDiRSqu2dT0KqEVERAahlkc3a7Vkp9SWjo4OGjY+R9P9y7Y51rCxk46Orgr0amgooBaRIZd/ca+G3DeRelerJTtFaoUCahEZcvn5b9WQ+yYyHNRqyU6pHRMnTuRfmxsLvs+a7l/GxIkTKtCroaGAehjrXxrvuOOOA6i6lbNSnwbKf1NNaxGRoVEsRQOA7i20P9dY9+UUs6CAWvqUxqvGlbMikq1cCThgSMvASXXT+0IkOQXUw1j/0nizZs1izpw5VbdyVkSy4yNGYtttx/Z7hlJvL0ezULnb+4I2xRqG9L4YnoqlaEBIBZo8dmPdl1PMggJqEZFhpGfUOCbvPWGbWv2qNT+86X0hks6ISndARERERKSWaYR6GCpWj/See+5hpDdoAYLUHG26IZJe7vqQf13Q39LAKrEl/XBT6NxejRRQD0PF6pE2dHUxUusOpUblL7CV+lZqo5KOjg7GV6Rn9aGpqanSXah6TU1NTJxc/znn1bBYtRbO7Qqoh6mB6pGOWf0T9tQChJqxYMEC2tra2LhxI+7ee7+ZMXr0aFpaWobNyNKsWbN6gyrlfda/ogMDG59mpPXw4gCzbbUy05ampFnSn3G4nC+yMHHixIrmnPcvfVuOmblqWKxa6NyeX8p3MPJfq/zgvKmpqc+od5rXUwG1iNQ07bo4fA00MNB0/zJGbnqqAj0SGXrlHL2tl8WquQ/gPqIR69nSe/+Gl50nn7kP2PrBIOnrqYBapIbNmjVr2AeL2nVRCtl+++3ZfeSmATcPqoWZtjQlzWrlZ5Tk+pe+rbUgd6gV+wAO6V9PBdQiUvO066JI7Su2sHgo0htE0lBALSJSBRo2Pt07UjLipfDhoGdU9IGgu6sqFgaJlFup6fZaWJwmw5MCakml2KKZho2dbDaHkRXomEgN6b+op719Q7h/7wkAdHR0AfRO4ddzRQEZvootLFZ6g1Q7BdQiUlJHRwcvblB98nyDKdsGYWq60PH86er+09alggYFFSIi2Rjx0vO0t2/oPa8mXdxe8wF1qYtae3s7u9fRCGn+z9u/4H4lCvIXWzTTdP8yxvRsADRFJ/WnWNk2gIYNnezQ2M3mrscA+iyY1GJJEZHiilVwyjK2s54t+ObNvYvZky5ur/mAuuRF7cWNsFOlelcepQruqyC/ZG3ixIls7npM9cn7GWjVOIQKDHuMeVmLJUVEEsiP78od2w20sB0Gf76u+YAaSl/U4OWh7VAZFSuTptXOIiIiUi+KbUJXbbFdXQTU1Sy3cr//qv2GjU8DEyrYs4E9/EIDc27ZiZe6rc/9oxqczT1W8WoC/csnHXfccfowUceGW1qXSDmU2nWxYWNn7+LXoVZsar/UWgQYfps3lTonQmVfk1qMe7KggLqM8lfd91+1DxOqclV+bpvRhqYmRvQrT9TQ1MS+eVt0DsbmzZt56KXybP+r8knDw3BM6xIZTopO7RdZiwDDc/OmkufEjU9XrG+1GPdkRQF1GeV/OqyVVfn9txmtRv3LJw2nkYnhajildYmUQ6ldF5vuX8bEiZUbPSw2tT/QWgQYvusRip0TB5qFGApDFvf0dPNQlVWeUkAtZVUP2/+KiIiIFKOAWkREpEI6Ozu54IILOP/882lubq50d0Rqw4gG9hy7uaoqT9V/QF1kWmA4bkYhIiLVY9GiRaxbt47Fixdz7rnnVro7IpJQ/QfUIjLkBrOL4PiK9EykenR2dtLW1oa709bWxsyZMzVKLVKj6j+gLjItoBze+te/xN7EqEpJ/90lBzo+5KpwoUUSxVahN2x8mjGjRoJK3ckwt2jRInp6egDo7u7WKLXUhUrs2lwN6j+gFqF0iT2V4MveQKvQm+5fBj0bKtAjkeqyYsUKurpC7eeuri6WL18+LAPqojWyu7fQ/lxjzQ8yDEfDbdfmigTUZrYe2AB0A13uPs3MdgF+DkwC1gPvcfdnKtE/qR/9S+z1L99T6viQq8KFFlKbhuvmCrVk+vTpLFu2jK6uLhobG5kxY0aluyQ1oJo36YHhW8q2kiPUx7v7U3m3/xP4g7tfbGb/Gd3+XGW6JiJSu4bz5gq1pLW1lba2NgAaGhqYOXNmhXtUGcVqZI9Z/RMmj92oQQapetWU8nEK8Kbo/4uAG1BALWVSatHccMj3kvpVi5tKDUfNzc20tLSwdOlSWlpatCBRBqXaN+kZrioVUDtwnZk58AN3vwyY4O6PAbj7Y2b2igr1TYaB9vZ2HrjnLvYY0w303c52OG5lKyKV0drayvr164dkdDqXBgQoFShD+QM0w2UBnmyrUgH1Me7+aBQ0Lzez+wf7RDM7CzgLYI899ihX/2QY2GNM94DVX0REhkJzczPz588v+/fpn+ajVKBs1fICvGr9oFV8sWoXj28cMfSdKqIiAbW7Pxp9fcLMrgGOAB43s92i0endgCcGeO5lwGUA06ZN86Hqs4gMXrETYcPGTjb2dPHQiMptuBS3nOJxxx2nEaeMDHjx7u7i4Re2vidyF8sJo0NZuYdfaGDfvHZKvcc2m6s0Y57+71+lAmVn1qxZNXt+GC4ftIaiksyQB9RmtgMwwt03RP9/C3Ah8BugFbg4+vrroe6b1I9SOdL33HMPI107aA53/csl5gfSmzZt6j1+44030t7erqnclIpdvHNVCXILzF6O/ma33zM8Z98Czxcpt4E+ANZLikw1f9AqtVh1wuiXK9CrgVVihHoCcI2Z5b7/z9y9zcz+DPzCzD4CPAy8uwJ9kzpRbGMRgIauLkYqVbpsip0Im+5fxpieDew+8tmKbbg0ULnEOXPmbM2tHwmPR7n147se44F7Ck6aSQxxLt6lLuyDeY+B6svXioHKPMaduchS8dHb+hi5HS5KBefb2ebe2/3fY2bh+aUMeUDt7g8Crytwfyfw5qHuj9SvgTYWgfAHtOcApZiGaxmmYqP67e3t7D4Mps87OjrwvESy3AkVwJ3eFJDcY4vVgi02jahZEJGtipV5rOTMRTWP3kp8A6ab9XRjo8f2vqeSvseqqWyeSFEqdVdeRbcLf3Ej7FTBzhVTZLv2JIHr5m7joQ1h+mJLjwEwcoSzudvYIX1vRaSfOGUeFdRKEoOZbUi70VvNB9SlR4kquxK01J72w3XP+yRU6q78BhrVH7P6J0B15auVw3HHHdcnh7onyqHeYedd2C9auJhTqhZssQ0phussiIhkY6grc9R6rDIUsw01H1DXilIldWq55M5QyrLU3UB5eeXMyZMyKLJde9zAVVU+RKTaVbIyh2KVgdV8QD2YUaJKrgQtdRHWRboyfMRIbLvtCuZMJc3JK1WKrdZVamFQlkqlDYFSh+pJ7j1bq+/XwSjXwEBnZycXXHAB559/vnZwLIM0r28lcrt1Tiyt5gNqkSR6Ro1j8t4T+lR3gGxOSP1LsdWDYh9AoHZKmpWs/rLx6Yr1TbLV1NTExMm1/X4tpRwDAzmLFi1i3bp1LF68mHPPPTeL7koevb71RwG1SEbSLmioZuX8ADLUilV/GXAthtSciRMn1sX7tZhy/V12dnbS1taGu/O73/2OmTNnapQ6Q/mvb1tbm17fhKpt1lQB9TBUaoexXJmiWlZqsWru56z1hRa1bDhMx1czvfe3Ve9pW4O1aNEitmzZAsCWLVuGbBQ1PyWrnhfwL1q0iJ6ecL7r7u7WKHUC1ThrqoBaBC20GGpxpuOrvZJPrdN7f1v1mLYVx/Lly/GoILu7c9111w1ZwDccFvCvWLGCrq4wcNXV1cXy5csVUMdUjbOmCqiHoVI7jE2cGK/cTtGtWUeNrMhIZKnFqrmfsxZHN+pB1tPxG7aMqMhod7HSVcV2eKuGUXi997c1mLStUovJ+m9fny8XDD777LN0d3f3Bq0AZsbo0aNpaWmp+O9mwoQJrF+/vs/toTBr1qwBf/ZKvyZZmj59OsuWLaOrq4vGxkZmzJhR6S5JBoZFQF3NF7VaV6pY+osvvsgOO1TPlIzUnlIfjnZYcwXbb2dsv+fkIX2PlSpdVWyHN733a1epxWS5ha8+ohHr2dLn2IaXHet6iQbbtt384LrSHn/88aK3JZ3W1lba2toAaGhoYObMmRXukWSh7gPqcq6CHg5KjcbEKd9TDVMyUn/yp/6G8j0Wt3SV3v+1b7CLyUotfJ0avV87Ozs544wzePnll9l+++1ZvHhxVSxOmzFjBkuXLsXdMTPe8pa3VLpLdaW5uZmWlhaWLl1KS0tLVfzOJb26D6irMc+mlqi0T2mqbVw7BrtYVYaXwf4Nb9mypeRisjjvsWpdnNba2srvfvc7tmzZwsiRIzWCWgatra2sX78+1WtbTws160HdB9SSnEr7DE6xLdEBbYsuUuUGW5/8gQceyHQx2WAWpw31FtMQRlDf+ta3snTpUt761rfqvF8Gzc3NzJ8/P5O26mGhZj1QQD1MFV1IGJ2gq3X0pBoNtCU6JNsWXcpjsItVZfgZTH3ywSwmi/MeK9VeJbeYzmIEtV5U60hwlt+/Wn/GrPX/ORcsWJBZaUYF1MNQqYWEueO1XtqnEiM7IlJ7Bpum8V//9V+ZLiYrtTitEltM52Q5glovhsNI8HD4GaH4z5n0NVBAPQwN9iRdy6V9KjmyIyL1abCLyQb7YV6L02pDvY3SFjIcfkYo/nOmfQ0UUMuAarm0TyVHdkSktsRJ0yiVChH3w7xSK0TqgwJqGZBGTypjoLrpuWOqnS6SvTijysVSIeJ+mFdqhUh9UEAtRQ3l6MlHP/pRHnvsMTZv3ty7GDJnxIgRIfXEGgsu8ntoQwM7dHSUtX/5O6BBGNWaPHkyHR0dvLihYcDFh3H6VqxuOlR+M5x6WLii3HrpL/c3ldvdcFP3SwA09RhNTU1M3PuAukkRq4e/YZFqpIBaihrK0ZNnn32WF17cCGbQb9ewbu8Z4FlDr/92wgCbu42HNoTyeFt6wjZoI0d477EdBtl2rdRNr9WFK8qtl0L6r/Lv/6G5HoPNWv0bFqlWCqilapTKYxyz+idMHruxYHm6/149rneL56z13/QhX+7+XcbvCoRguycKuEeMaqKpqYn9ootyPaj1wKIcufWlRvw0Ilg7qrUMWZbvMb3vRMpDAbVICaU3fXieqQeFKeHhMrol2yo14qcRweEpy9+73mMi1asuAmrlREq5DWbTh1oPnIvV4tWW3AMr9Xuv9feFJJPl713vMZHqV/MBtXIipZgspl0Hu+mDiAytwez4KiIyFGo+oFa94eFloJJypcrJaSq0tGI57NqSW6rNYHd8FREZCjUfUMvwUayk3EDl5LKYCo2z6YPUBi0UrH0aTBGRaqKAWmpGrZSUk9qhmQsREcmCAmoRGXY0Ei0iIllSQC0iIiJ1YcGCBbS1tbFx40Y8b4MwM2P06NG0tLToA7WUxYhKd0BEJAv5edFz5sxhwYIFle6SiIgMExqhlprTf0HZggULNOJQhSpR0kw50SLD26xZs3Q9kIpQQC01S8FT9apESTNdSEVEpFKGTUCtMln1Q7+z6pd1STPthioytDo7O7ngggs4//zzaW5urnR3RKresAmoczSqKVJbtBuqyNBbtGgR69atY/HixZx77rmV7o5I1Rs2AbVGNSUNjZBWjjbwEBlanZ2dtLW14e60tbUxc+ZMjVKLlDBsAmqRpDRCKiLDyaJFi+jp6QGgu7tbo9RSMbnBrFoYyFJALVWlGkeCsxwh7ejooGHjc70/Y38NGzvp6OiK30kRkYysWLGCrq5wHurq6mL58uUKqGXI5Q9U1cJAlgJqyUSxRZ+DXRCqkWARkcqbPn06y5Yto6uri8bGRmbMmFHpLskwlB8j1EKqnwJqyVSxRZ+lFoQOh1zZiRMn8q/NjWx6zdsKHm+6fxkTJ1bXNJaIDC+tra20tbUB0NDQwMyZMyvcI5Hqp4BaMlFs0acWhIqIVJfcjqLz5s3bZuavubmZlpYWli5dSktLixYkigyCth4XEREZZi666CJefPFFLrroooLHW1tbOfjggzU6LTJICqhFRESGkfb2dtavXw/A+vXre9e35Gtubmb+/PkanRYZpLpJ+dBOiPH1f80WLFig16tK6P0saek9pNdgIP1HpS+66CIWLlxYmc6I1Im6CahztBNifHrNhlac0oD63Uhaeg/pNegvNzo90G0Ria9uAurhPuKQhF6zeLIY7cot/uno6GDTpk1s6n4JgKYeo6mpiYl7H6ARNMmE3kN6DQYyadKkPkH0pEmTKtYXkXpRNwG1yFBJM9qVu8DngvOOjg4glNNTIC0iQ+G8887jox/9aJ/bIpKOAmqRQcoy2FXgLCKVMnny5N5R6kmTJmnDLJEMqMqHiIjIMHPeeeexww47aHRaJCMaoRYRERlmJk+ezLXXXlvpbojUDY1Qi4iIiIikoIBaRERERCSFIQ+ozWx3M7vezO4zs3vMbE50/1wz6zCzNdG/tw1132pFZ2cns2fPprOzM9FxEREREclOJUaou4BPu/sBwJHAJ8zswOjYt919avRvWQX6VhMWLVrEunXrWLx4caLjIiIiIpKdIQ+o3f0xd18d/X8DcB8wcaj7Uas6Oztpa2vD3Wlra9tmFLrUcRERERHJVkWrfJjZJOAQ4HbgGOCTZjYTWEUYxX6mgt2rSosWLaKnpweA7u5uFi9ezLnnnjvo47Ugix0JJZmBtkXvvyW6iIhIpVVTvFCxRYlmNga4CjjH3Z8Hvg/sA0wFHgO+OcDzzjKzVWa26sknnxyq7laNFStW0NXVBUBXVxfLly+PdbyWNDU1pdqVUOKZPHkyUw86gMP2nsBhe09g7HbG2O2Mw/aewNSDDtDmDyIiUpWqIV6oyAi1mY0kBNOXu/vVAO7+eN7x/wV+W+i57n4ZcBnAtGnTvPy9rS7Tp09n2bJldHV10djYyIwZM2IdrwUaia6M/q/7nDlzAJg3b14luiMiIlJUNcULlajyYcAPgfvc/Vt59++W97DTgLuHum+1oLW1lREjwq+toaGBmTNnxjouIiIiItmqRMrHMcAHgBP6lcj7mpmtM7O1wPFAbSX+DpHm5mZaWlowM1paWmhubo51XERERESyNeQpH+5+C2AFDqlM3iC1trayfv36AUefSx0XERERkexUtMqHJNPc3Mz8+fMTHxcRERGR7GjrcRERERGRFBRQi4iIiIikoIBaRERERCQFBdQiIiIiIikooBYRERERSUFVPkSkjwULFtDe3k57e3vv7XLsRtX/+8yZM4fJkydX1c5XQ63Ua1Ivr1mx91jcn7FeXhMRqW0KqEWkoKamprr6PrWk1GtSL69ZsZ8j7s9YL6+JiNQmBdQi0sdQjexpBHFbpV6TennNiv0ccX/GenlNRKS2KYdaRERERCQFBdQiUjc6OzuZPXs2nZ2dle6KiIgMIwqoRaRuLFq0iHXr1rF48eJKd0VERIYRBdQiUhc6Oztpa2vD3Wlra9MotYiIDBkF1CJSExYsWMCcOXN6S6TNmTOHBQsW9B5ftGgRPT09AHR3d2uUWkSkDuSXxux/3q8mCqhFpKY0NTUVLJG2YsUKurq6AOjq6mL58uVD3TURESmDgc771URl80SkJpQqjzZ9+nSWLVtGV1cXjY2NzJgxY4h6JiIi5TJr1qyaKI+pEWoRqQutra2MGBFOaQ0NDcycObPCPRIRkeFCAbWI1IXm5mZaWlowM1paWmhubq50l0REZJhQyoeIlE3+YhKAOXPmMHny5LJN37W2trJ+/XqNTouIyJBSQC0iZTdUi0mam5uZP3/+kHwvERGRHAXUIlI2tbCQREREJC3lUIuIiIiIpKCAWkREREQkBQXUIiIiIiIpKKAWEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJQQG1iIiIiEgKCqhFRERERFJQQC0iIiIikoICahERERGRFBRQi4iIiIikoIBaRERERCQFc/dK9yExM3sSeGgQDx0PPJXRt1VblW1PbamtcrentuqjrazbU1tqq9ztqa3qb2tPd9+10IGaDqgHy8xWufs0tTX0bWXdntpSW+VuT23VR1tZt6e21Fa521Nbtd2WUj5ERERERFJQQC0iIiIiksJwCagvU1sVayvr9tSW2ip3e2qrPtrKuj21pbbK3Z7aquG2hkUOtYiIiIhIuQyXEWoRERERkbJQQC0iInXBzLYvcN8uleiLiAwvSvkQERkGzGxPYF93X2FmTUCju29I0M4q4MfAz9z9mQz6tR2wX3Tzr+6+JUVb1wKn5tows92A37r7YQnb2xnYFxiVu8/db0raPxk8MzsIOJC+r/3ihG0dS3jv/9jMdgXGuPs/sumpSNBY6Q5Icma2IzAXeEN0143Ahe7+XIK25rj7vFL3xWwzkwulme0DPOLum83sTcAUYLG7P5uwvcwuklm1ZWYGnAns7e4XmtkewCvd/Y4k/cpKGV77icCe5J17KhmgmNn73f2nZvapQsfd/VtD3af+sniPmdnHgLOAXYB9gFcDlwJvTtCl9wIfAv6cF1xf5wlGZ6L31CJgPWDA7mbWmuI98Svgl2Z2OrA78BvgM0kaMrOPAnMIr9Ua4EjgNuCEhO29jq3n6pvd/S9J2qk2ZrYOGPB37+5TErR5PvAmQkC9DHgrcAsQO6CO2poG7E94r44EfgocE7etrJnZH9z9zaXui9Fe1X0ANLN9ga+y7YejvVO0WVXXkZy6DKjN7EhgAXAAsB3QALzo7uMStDUK+AjwWvq+GT6csG9Zvrl+BNwNvCe6/QHCCeOdCdpqBfoHzx8scN+gZHyhvAqYZmaTgR8SLpI/A96WoF+ZXSQzvuB+D+iJnnshsIHwcx8eoz8LKH5hm52gX1m+9v8D/BtwL9Cd6xaQ9MPMrsDn2PZvKc7rv0P0dWySPgzQr8zOGRm+xz4BHAHcHvXlATN7Rdz+RM9tB75oZl8CTiKch3rM7EfAPHd/OkZz3wTe4u5/BTCz/YAlQKIRZXf/3+iD/K+AScC/u/vKJG0RXvfDgT+5+/Fm9hrggiQNmdkc4GPA1dFdPzWzy9x9QYK2do3amkTfgCLpNSnt9fKk6Osnoq8/ib6eCWxM0ifgXcDrgLvc/UNmNgH4v4RtnQYcAqwGcPdHzSzx37uZHUMYyMoFdBaaHfw1PDpHjAbGR0GwRYfGAa9K2K8sr23vBP4HeEXUt9zPGDuGIsQk5wPfBo4nfBi3os8o3rfMriNmtoFtr5nPAauAT7v7g3Haq8uAGriEMIryS8In05nA5IRt/QS4HziREOicCdyXom9Zvrn2cffT825fYGZr4jRgZmcA7wP2MrPf5B0aC3Qm7Bdke6HscfcuMzsN+I67LzCzuxL2K7OLZMZtvd7dD839XO7+TBQYxLEq+noMIcj8eXT73cCdCfuV5Wt/KrC/u29O+Pz+Lif8jG8HziZ8KHwyTgPu/gMzawCed/dvZ9SvLM8ZWb3HNrv7y2EiBMyskSIfvkoxsymEc9fbCB+6LgeOBf4ITI3R1MjcOQLA3f9mZiMT9Cd/hsEIo9NrgCPN7MiEMw0vuftLZoaZbe/u95vZ/gnagfAB6/Xu/mLU3/8hBDuxA2rg18DNwAq2BhRppLpeuvtDEAJNd88f9f1PM7uV8DcQ1yZ37zGzLjMbBzwBJB3RfNnd3cw86ucOpZ5Qwg+Bcwnn1KSv/78D5xCC5zvZGgM8D3w3YZtZXo++BrzD3dPEOjlN7v4HM7PovTLXzG4mxEFJnEp215FvAY8SBomM8HfwSuCvhIGCN8VprF4Daty93cwa3L0b+LGZJR2lmOzu7zazU9x9kZn9DPh9iq5l+ebaZGbHuvst0PvJeVPMNlYCjxH2sf9m3v0bgLUJ+pSTyYUysiUK/FuBd+TaT9hWlhfJLNvaEgV2uZP+roQR60Fz90XRcz8IHJ+XR3opcF2KfmX12j8YPTergLrZ3X8YpSbdCNxoZjfGbcTdu83sZMKH3Cxkec7I6j12o5l9AWgysxnAfwBLk3TIzO4EniUEFv+Zd2G7PToHxbHKzH5I31HNJB/++o84XjPA/XE8YmY7EUa7l5vZM4SLbxJG3+Crm+QDKaPd/XMJn1tQRtfLHfpdj45m6wxQXKui1/5/Ce+HF4Ck6W+/MLMfADtZSH36cNRuUs+5++9SPJ8olXKemc1KMksxgCyvR49nFEwDvGRmI4AHzOyTQAdh5DupLK8jLe7++rzbl5nZn6K0yy/EbaxeA+qN0ejeGjP7GiFgTPqHncv7fdbCIol/EabaksryzfVxYJGFXGoDniakaQxaFNQ/BByVsA8DyepCCWEk7GzgK+7+DzPbi5ADl0SWF8ks25pPCAJeYWZfIUx5npewrVcRAonc1PsYEk4jku1rv5HwN/kH8k6GCVNRYOvf5mNm9nbCa//qhG2tNLNLCCPeL+b1bXWKfmVxzsjqPfY54KPAOsLo2DKST6G/e6CpUHePm272cUKqwGzCOewmQvpTLO5+QfSB9GJ3/2zc5w/Q5mnRf+ea2fXAjkBbwuZ+TPjAkQv0TyV8IEnit2b2NndflvD5/WV1vfwI8KPoegThQ1eiNBR3/4/ov5eaWRswzt0TDfC4+zeiD5HPE/Ko/8vdl8dtx8wOjf57vZl9nZC+k38ei32uiGb8jmbb9J0kiy+zvB6tMrOfR23l/4xXD/iMgZ1DSG+ZDXyZkILSmrBfkO11pMfM3gNcGd1+V96x+GtCEqwjqXoWVrM/TsgHO5dwIvyuu/89QVsfJUxpTiGcFMcQ/iAvTdi3wwnTvzsR3lw7Al9z9z8laS9qcxyAuz+foo38XKLtCJ8AE+WdR+1tT7hQHkvehTLD6f7UzOw4oouku79c6baiKbo3E16vPyQdITCzDxFy/K6P7joOmJsbwY7Z1hzPaLGqmRU8iSbpV9TeSYSp790JU+fjCD9n7JHXKGAq0LVY+di5tjI9Z+S1m+g9Fn2AX+vuB6X5/nntTQD+G3iVu7/VzA4EjnL32AFiNP3+UjQyShQUb+/uiXJvLcWCrgHaawAm0DfYeThhW4eSdz5090SpU9G5egfgZbZ+eEua35q7Xj5BOOfnrpff85Arn6S9cYTYIvbi+Lw2sl6sl1/hZjTQ4DEr3AxwjshJeq74CWGR8Bry8oFTDDLk2k11PTKzHxe42z1hnn6WsryOmNnehHViRxHinz8R/gY6gMNysy2Dbq9OA+q39p+SMbOz017QqoUNUJEgJ2G+YP/vcSpwhLvHnvbIipn9wt3fY9uuIs8tkIi9ejxqN5OLpJldSAjoVuZyI9PI+OL9SiA3lXW7u/8rYTur3f3Qfvfd5e6HJGkvSxZyNm8tdV8tshK1kz3ewj/M7HLg80nfT/3a+h3hg8IX3f11FvKx73L3gxO09Sdguru/EN0eQ6gYcnTCvn2TUOXgl/SdaYg9smZmswipeI+zNf0q1nnHzMa5+/MD/T7j/h6rWTSIcjrbjrYOOofati7Wu56Qv5q/WO937n5Agn71Vrhx930sFAa4NMsPXkmZ2X3AgZ4iEKvW95iZfcfdzzGzpRQY7XX3kyvQrbKq15SPL5nZZnf/I4CZ/T/CAsDYAXUWJ4monSzfXLm8wP0JixByiwnfQcKKCQX68ysz+8+kz7dtV0Ln2o2zsGRO9PWkoo+K16+CF0nCaGJc64EzgPnRqNHNhJGnX6fsVy6/Mmm/IKzUf5Lw2u9nZvt5jAorVobFqpZ9+aQFwKGDuG8wffuvQvfH/TuP2srinHEn4fdvwB7AM9H/dwIeBvaK2a3dgHvM7A76BppJLmrj3f0XZvb5qI0uM0u6OGtULpiO2nohGkFMahfC+zN/tNDZWl0jjjmExU9pFmf/jHD+yv0+c3J/34ne+xZy/t8Y3bzB3X+boI2BBiyAROXufk2okHAnyfNb8xfr5adQpFmsl1mFm5woxax/FZ8kiy/vJiyCeyxFd/q/x/Jz8xO9x8zs1YRz6TFRG7cAc9z9kRjN5NI9vxH3+w/Qp8wH2Czjijn1GlCfTMgz+yzQArwmui+JLE4SkOGby90vADCz64BDc1NXZjaXMDITm4UyOTkjCKu900xfpF4J7e6PRV8fiqaZcyXk7nD3JxL2K4uLZK5/PyLkDL6SULrwM4SRkCQLoTLrl20tK3QPfT80xPmwVY7FqplUuDGzo4CjgV37zdaMI3yQSCJ/hmEU4QKVdFFO6nOGu+8FvQtKf+NRvqyZvRWYnqDJpKv9C3nRzJrZuoD2SMLPm7StQ3P5p2Z2GPEXVvdy9w8lfW4B/yT5zwWAu58UfY37AWhAZnYx4Vx4eXTXHAuLAeMOgGQ9YPFqd29J04CXZ7Fe1hVuLiWMoh9PWIfwLpIvmBwP3Bt90M3PBx50vFKO9xjRxk2EClEA74/umxGjX3dGX2MvFB9A5gNsZFwxpy5TPgCiT6ArCBe1DyedUjGzu7PKPcyamd0PvM6jvORoZOwv7v6aBG3l50x1EUZf/zdp4Gpmt3vf1bOJWVg08HXgBkIA9gbgs+5+ZbHnDdDW9cAMd+/KoF//RxhtfZzwR3kLsDpJ2xn366/AFM8gX93M/sf7VRQodN8g27rT3Q8zs3W59AAzu9nd31Dquf3aOY4wHXw2fWedNgBL3f2BuH0r8D22JwSyJyZ4bmbnjNxr1u++Ve4+LYv2E/bpUMLo1UGEEbZdgXd5gkVjFtaUXMHWxVO7Af+WuxgnaC+LkbVcWz8kzAJeS99gJ1FKnWW0GYWZrQWmuntPdLuBkHKTdDYrE2Z2GbDA3ddl0NZ2hL/v3lF44AeeYHMwCwstnyWUA5xFqHBzr7t/MWHf1rr7lLyvY4Cr3f0tCdo6rtD9SYPQDN9ja9x9aqn7BtlW6rrd/drbga1lFfcjDJj+LuF7I9HPNJC6GqG2rQvrctNp2xGmO95lZu7JFm2sNLODszhJRH3M8s31E+AOCyvHnVDAPtHWrFmN7FgZVkIDXwQOzwX30TTNCrauzI3jQeAGC1sUp71INhNGRJ8lVNR4KkVAnGW/siwrNINQISLfWwvcNxiZVLjxrSXyFkazF2PD3VtTBzIwmuR1b7M8ZzxlZucRKqs4YaRo0LMYZnaLux9r225gkHijBndfHQUC+0ftJN4F1d3/bGExbq6t+5O2FUk9spbn4ejfdtG/xCzjTY0IqT+53NgdizxuMH3LahOPY4EPmtk/COeeNGtdvkc4h+UqvnwA+D6hUk1c/0moQJJFhRvYOoOy0cxeRfh7TDQ67O43ZjX7mvF77Ckzez9h7wgIqY1JZ0+zqNud7ybgDRY2xPkDYf+FfyNUEosr04o5dTtCnRUzu5dQ5D6Lk0RuVHmbN1fSqf5oivTY6GaaleOLCCM5z0a3dwa+GTeXyMqzErp3RDO6PYIwEp9kEVTBet+5NJokzOwAwiYe5xJWj8cu3ZZlv8zsKsIuY4nLCpnZxwkjOfsA+av9xwK3uvv7E/Qr0wo3FkrS/YSQNwvwFNDq7ncnaCs/L6+BMOp6obtfkqCtzM4ZFhYanc/WkbqbgAu8govZzOzdhOoBG6Jg/1Dgojgfls3sBHf/Y79Us16erDxXpiNrWcp41ugM4GLCwj0jvDc+7+5XJGyvnQw28bBQSWMbHm38ErOtv7j760rdl6DdXQipKYn3WLCwQ+gCQkWm7xLOG//n7l9K0FaWs69Zvsf2IGz4k6t+sRKY7ckW72c2Wx21t9rDJmizCPt6fM0SLpS3rRVzNhMq5qTZEbK+RqhzolHgNe7+YvQp61DCLm9JVri/NdvepS8Kn8/d7zSzfxItjjCzPRL+nFNywXTU7jNmFvsN6u7HJ/jepbSZ2e/Z+mn53wijDLGlCZz7s1C27Q2EC9rOhF3ibq50vwiLVH9T8lHF/Qz4HWERYX5u5oakwZy7/zn67wuE/Om0LgM+5e7XA5jZm6L7klSIyM/L6yJsbJB0tiGzc0b0Ws8p+cBBsOyqyHzJ3X9pZscSPkh+gzB6GOeieRzh7+UdBY4lXUQIGYysWXmqE2Q2a+TuS8zsBsKopgGf84RVfCKZbOLhW3dMfAV5i/US6jazfTwqdWuhvFmi0c3otTqZ8L5fAzxpZje6e9FqWUV8LQparzKz3xJ+1pcStpX17GtWM5O793+fR3FVkvNFlrPVUVfsKMKI9Eei+xLFsu6eZuOnbdTlCHWUY/Y6QoWEnxCmHN7p7gXzlQbR3usIgRPAze7+lxR9u5gwApb6zWVhpfc3CSuinyBUA7jf3V+boK2/AG9y92ei27sANyYZBc5rM6uV0JjZ6YS8yFwN12tKPGWgdnYF/l+BfiUZOf8uYcTwZndPVEC/TBfvTEWB077u/mMzGw+Mdfd/JGin0M/4HGHK7gfuHuuilPUoVr+/85vSjGJF7fUJLBKO7mTyfrUMSsDltXWXux9iZl8F1rn7z5KOEGXFzL5H+OC3E9uOrM2JM0pqZodFAxWp81vNbEHUj4mknDXKa7NQFZvngIeSfAg0s3mEShO/IsUmHgWuR3sC9yW8Hr2ZkKrzIOGcvyfwodyH55ht5d6vHyUEiudblP8ct62ovUKlRLe5b5BtZTn7mnpmMq+tLH/GzGr8R+29kVAA4FZ3/5/ow9Y5MWdgX+NhJ8mCP0/SYL8uR6iBLnd3MzsFmOdhe+KCxcBLMbM5hLIquZPLT83sMk++Ajk3ipO/qMjpW+ZpsL4MHAmsiE4YxxNGZJL4JiH3M/fJ+N3AVxK2hWW7Ehp3v4qwWUZalxN2wzuJsOillVBeLkmfPpHLf4v+MJPkv2VaWgjAMixPF6WiTCPkuP6YkEv6U8KHm7geJKRS5M80PA7sR9gK+ANx24umX3Ov4fsJaRaxFfg7vzzp3/lAgQUhKI4rq/drZlVkgA4LWzlPB/7HwgLOEUkasrCxxSc92gQkShv4kcevEbyekEZ3ftoPoZ5tdYJV0dd7CdP6PYSR1sSVTAh5xYcSqu0YYXHoWqDZwn4L18Vsbxxh97n8RXVJZgmyvB79nVBPvDe3nuQlRBvNbDdCJaZECxEBLFRzmgg09QvExhGudUkUmn1NOoOdembSylBBKetZaw+LLG/Ku/0gYRfGOD5FqMj1zQLHksZj4O519w+4Efg88DfCJ+8GwkhKkrbWAjvk3d6BsOtYkrYagHMz/DlXRV//AoyI/n9HivYOBD5JWAl9YMq+re33NbdhQ5K23gk8QBiFeZ5QzeH5hG3dmd+v3PslYVvvJmzbvoiwGPQfhGoHZXtvD7JftxDy+9YSgrm5hLzbJG2tIVzQ7ur/u03Q1k0D3Qfck6C9nQlbtq8G7gK+A+ycsG9Z/p3/hbBg9a7o9vHAZQnbyuT9Ssi3bczo/TU6+pvcN7q9G/CWhG39OyFYehvhA83fCPm8SdqaSPjwsYLwAf6duX8x21kXvR/6/1sX9z1BmIL/GiG/P/c+fYqQNzsy4c95BfDavNsHEj7s7k1IdUz9O07Yr8yuR4QPRxPzbr+R5Nfwd0e/v+9Ft/cGrkrQTmv0d7SBkK6U+/fruO+xfu2eDnyLUE70tEr9/qK+HEeYyXos+pr796nc33uMtt4fff1UoX8p+rgfIbXvuvzfQyVft9y/eh2h/jfCphQfcfd/RQn2X0/YltE3dyu36UZs7t4djV59O2Ff+nvWQsmemwgjak8Q8j8HzfrusvQvQu5s7tgunnzxU2YroQkXpNSLZiK5CgKPRSkpjwKxFxFGziOj/LcsR5UJCzX+YGbmYap7rpndTDgxxvWyu7uZedTPHRK0kbNrfo5/9Hc5Pvd94jbmIT1pdtRWAyEgfj5h3zL7Owe2uHunmY0wsxHufr2FFfiJ2oq+Jnq/5o0yZVJFJpqSvsPzygJ6qBefaGMKd/+Bmd1DCFSeAg7xhPnA7t4R/XxfIeRm59dgjzPammWd268RBhP28q37BYwjzEh9nbCJSVyvcfd7cjfc/V4zO8TdHzSL/5a1sDvhR9g2rSju5hapr0d5zgZ+ZWGdymGEre7flqQhd/8lefszeBjRPD1BU+OB30b/ILyvngRu8QQpcHn9ucrMlhNlDMS97lqGG/R4vwpKg33eAHLXikzzlAm/y0sJM9+pqoZE1423s+3GLolKY9ZlQB2dkL+Vd/thEpaTI3zyv91CaTqAU4EfpejeSjO7hDCSkr9jWZKcnVMIgeu5hAT9HYG4Ocpl2cmLUI5mJ8JFY3XUVtJSRZksmolcZGY7Ap8mrNQeR3j9khjhfVM8Okk49U1Gm55EMilPF/lFNL2/k4UtfD9MSM9I4tPALWb2d8LPthfwH1GQvihuY2b2M8KFt5vw/t3RzL7l7kk+POf/nRvhb+uHCdqBbAOLtO/X3MUskxJwHmq//sWSL37uw8w+AHyJUCN4CrDMzD7kMdepmNlrCQsjHwWOiIL8RPIDCUtf0uwkYD+Phtai9p+3UEXnfpIF1H81s+8TRqohDCD9LUq9SVJy8CdRX04kXD/OJNmmRqcQFueluR4BveUUZwPLozZnuHui1DwLdagvIlwr2wh5xue4+09jNjWmwH17Al80s7meoMqKmf074TXaRPgAmOS6Oyf6muUHwUtygyh5Yq13cfcfRF+zXHAPIaX3+xm1tZTw/lrH1g/gidXrosQjCRefAwgXjwbgBXffMWF7hxJK0+UWxN2Vom+ZJOhHn6x+7+5Jdk0bUtGJfpRHeZIJnp/JopmsWVi5PIW++W9rvYKbnkTPy7o83QxCfqUR3nPLk7QTtbU9oRB/ruZw0tXxveXQzOxMwijW5wgpEkkXG2Xydx59QNhE+HCVCyx+mmS2x8x2TRpIFGlzBDAm6Wi+mf2REGSm3sbczH4FnJU3y3MEIT1masx27iMsPoybP1yszdQlzczsb+6+X9xjJdpsIpS0zL1XbyHkVb8EjPaY9dht66K93EYlIwl/58nySFOwbRcuH0iY/XgGEr/HcueJ0wgDYucC13vKEnx57e9CyBtPsmDvAeAod38qi75kJbrm9l/v8i+gCRjn7oNe72Jm8wvc/RwhRejXCfo2l7A25Rr6xgNJzq+JF6cWUpcj1IRV3u8lTA1MI4x+7JukIQu7ZS1w9/l5981197lJ2vOMEvSj9JGNZrZj0kA1n5n9wfstBCp03yDaKVhXNjqWNAhOvWjGzP6fh3qVuVX3fXiCldDu/lnrW33kMk9YfYQMR5U9w/J0UXD4R3dfbmb7A/ub2UiPsfmGDVxzeO8U7wmAkdHF/1TgEnffUmBUZbB93IeQx73aQvm9N5jZPzyvlGQM/xV9qOohGnmPUj6SbIaz0sJGGT8n7Mb2TII2sh7Nz2zEyd1Pjfq3g7u/6O53REF1XFM9g/q7/WRR0uxeM5vp7n1mSC2U9rs/SafcfZOFqia/dfe/9jucZHOj3N/ysxZqu/+LMAU+KLbthmq9h4hf0zezxdl5RkZf3wYscfenk6TGDCRqL2mDfydc21KzbTdvgq2jyp+OUl0G6xB3f2Pe7aVmdpO7vzFK0YpjFGEQJZd2czpwD/ARMzve3c+J2V5r9PWzefclnU3/nZm9JasP4vUaUOPu7WbW4O7dwI/NbGXCpk4EDosuPrmT4smEhV6xRdO357N1o4YbCRtIJAmKXwLWRflX+SNFccrHjCIsMhpvYTOX3IlhHKFKQVy5urKvIKwW/mN0+3jCSE/s4Mmz2cUxN4W5quijYvLsqo+cQ/g9zCaMKp/A1hPHoBQY3ekjyegOfXelWkGyXamOozw1h39AqO7wF+AmCxUikuZQXwVMM7PJhNSkpYR0qCR5m5ntLunu+0YB5nsJU8v3AlckmK4+MEo1OJNQw/1zhMA6dkDtYXe3PQmLlFaY2WgSVgCwUFXgh4Tp9D0slC78d8IIbJw+ZR1MQzYpXZ8ArjazD7M1re5wwkjfaUk6ZWEdztcJs697mdlUwjUkaXWTy6K/7y8RqkSMif4/KJ5hLV/PprJKf0stbKi2iZBitivJ60Zvw8xOIBpBT+DzhA/Nt5Oy1B0hzfVRwnnLCOeMVwJ/JaSpvilGW1mud5kMnOBRSccoXek6wnky9m6y7p50LVYhfwKuiQazUm/sUq8pHzcRSjr9H+HT9mPAB5NM8ZjZasIb8XJCDuIc4M+esOaqhVqRd7M1Z/QDwOvcfcCR3SJtFQy43H3Q+agWyoWdQwieO9gaUD8P/K8n2Ckuave3wMc8ymW0ULbou3F+znKMKmdhgJEASPnHmJYNUDc3J8nFyjLclWoomFmjJ6vFm/s5/x+wyd0XxP05bevuknsTRp5yEu8u2a/98YSL5pnuHiuAjUaVphIutpdEQXGimt0WcunPAnZx930sLKi9NO5sVtTW7YSKHL/JvdZmdrfnLXqsFMs2pesEwqI/I8yE/CFFv+4kfOC+Ie81S1NXOTfwlEo0y/OIu2+OZnmmAIuTzPJY4bTNFxMHOuEDw/PRzO4OhFr6sRa/WuFFf7sQgtiZ7h57xsHM7iCk7PTJ4Y1zDc9ra5sdCc3sT+5+ZNy/dTN7G2HhX5/1LoRBsY+5+3ditPVXwrqGXGnMHYHb3f01Sa4l0azkx9k6KHkDIa879voBM3uQMMO5zjMIhut1hPoDhD/ATxLypXYn2apeCB86ngfeEeXu3EjIiUxqH3fP78sFZrYmSUPuvsjMtiOUkQH4a9w3lbvPA+aZ2SxPXlu7kEned2FQrt5wHJmNKmc5epvliIyZFa0bGrNfN0ZtngQsc/fUiyxCc9nsSmUhf/p0tl1RnXSznwmE1f+vcve3mtmBhA09kiwm3GJhS+eZbB1JH1nk8YVkvrukhYoQpxFGm/Yh5A0mSYnIcjT/E1Efbgdw9wcsbGKTiLv/s9+MeeLgLgpc/+TuqabRoyn8+YTR5FyucuKULnfPlffKQpe7P5dh2sI/zKyNkFb0xxSBRf4szw8Jo91JZ3myTNscTXjP7kH4IPgqQn3r3xZ7XgH9F/050OnuLxZ68CB1efIdG/vrsZD3n0tJelfesVi/U3dfFn1QLrTe5Tsx+/U1YI2FHSuNEAj/d/TBZkXMtiAsPh5JWDcAId77PvDRBG09ANydRTANdRpQ+9ZV2ptIn+/XG/C4+1wzW0Woo5jUJjM71t1vAbCwnWeiIv/RKMAiwoXSgN3NrNVD4fO4esxsp9xoQvSJ/gx3/17xpw3oBttasN4JJ8dCCzIH5O5Lo6+xP60XkMvNeydhGiw3ZX4G4fWrlKOAfxJep9shcWWPfO8lfEi6Cvixp6uQcg5hWvIad7/Hwq5UsX6PeX5NyOm7k2y2x11IqM6R26zhb4SgIElA/SFCjvFX3P0fZrYXW98jgxKNwDwHnGF9t/keY2ZjPFlVjL8QFuNe6O63JXh+rm/zCQFizkMWNt5IYrO7v5wL6MyskZgX7Dz/NLOjAY8GB2aTrMJEzgeBS82sE7g5+neLx8w9d3c3s1+5+2EkT0kql7vN7H1AQxT0zCbsCJnU/oQPkZ8AfhQNPlyRu0bF0OPuXRYW/30nN8uTtFOeXdrmjwnnnKOj248QAvVYAbWnLyNXyPVmdhYhxSzVAjvCoMc8QqDphHSG91tYxPrJBO0dxtbBjykW1rvEqpYWpVLcR3jtjyBc377gW3cW/uxAzy3i8H6j7X+0sNNzEo8RYpXfkaKcaE5dpXwMMCWT40mmN7NmIUdwMVtHuZ8BWj3BNsfR1N/7PFqYYmb7ERZdHJagrTXeb2V92ql9C4vQ8rdyjjW6k+Wocl6bN3nfxRYF7xsqUeA1gxDYTwGuJfwO4y786N/uuKjNDxFewx9H7W5I1+NUfcp0Kt/M/uzuh+e/Twu9jxO0uzNhi+LYf5PR8z9JWGORxTbfFgV3O6QZCTOzZsLajWMJ74dbCEF67J0TLZQhe5YwajiLMBV8r7vH3oUuSmOZR0jRM0Ju5Zwk/erX7qsII3SfIcxgxB48MrPvAgt96yLfqhCNuH6RrYu0fw9c5Ckq5uS1vTPh95Ekreh2wujlFwn7Bvwj6d+8ZZu2ucrdp/U7TyRKd8qahQXH/bnH3H8guo5c7O5JAtRC7f2EMCO2hq0zRu7JtjG/zd2PyqJfUXurgXe7+9+j23sDV3qyKisF92bwhKX+6m2EulAdRiNshPCFOA2Z2S3ufqxtmy+bKE/WzOZE6RVj3P11UcCDJ9+IAsJOW72rvN39b1F+URIjchfvqL8NpKhXG/XnatKN7pRjxfeuZra3Ryueo5HIXcvwfQYlGn1pI2xBuz0hCL7BzC5Mk4LjYQHaVYTFT+cQ0gY+a2bz47Rrocxjofz1JCW1VprZwe4eeyHKAF6MAsXce/ZIwghxbNF05MmEc+Ia4EkzuzHhdOw5ZLfN95EWKg31WbTn7rEW7RFqFt/E1tS3Mwmj+UnKbv4nIf1nHWEB4TIS1pj3UC4szgLXoixUz3gDcDBho5hLCKPUSRwP/LuZPURY9J0792dWZiuu6Lz8Gw/lUhNvo12g3eMIOeJvBf5M2KY7rtSzPHk+QFgAmkXa5svRKG3uPLEP2cyQpRKN3v6nu/88bVsecsNjD6QVMY2wkDmLEdfrLFTDujqj9j5LGNl/kPA3uScJq1nlAmczGxtuxis52V9djVDns7Dy+X2EE8M/CFuNJlpgl1F/crUwVyf5JDVAmz8inCR+Et11JmF74dhvLgsLcCYRFiI44cT4T3f/dMx2qnLBXm8nzFoI25bmSghNIgQov69gn7Yn7NZ0RtSf3wA/cveOhO2dTDjB7EN4byxy9yeika373H3PGG3ln6RHES5qXe7+/2K0kZs5aiTkQT5IuKClClAs1I1eABxEWOi7K2Hr9ySzPXd5qMX7UcLo9PmWcKFX9CFkhidYHFmgrUwW7VlU57zffavcfVraPiZhhWvT9koyEha1+xRhIdWlhFrD65O0E7VV8O+kTFP/g2Zh3cUHPINyqVF7/yB8iPwF4X2WJic4MxaqceAp67BbqKN/HqGm9XWEMqcfdPcb0vYxrSxnR83sm4Tz6y/pW/Ur9qCWmf0SmO0pNkjKa2sDYdfELkJ1ldSxQHTN3J+t+d2JPiBZKBP5E8LiUggfwmcmnSGuqxHqKOXhvYTApJMwAmOesPZz9AlybUbT1PeZ2XrCCGn+BT9NUPFxQt7b7Kidm9iaqB/X5wijTR9n69Rr7FEnz3bBXrEUnlhbquY9p822LraAFH+MWTCzRYSA8HfABe5+dwbNng582/vl0rv7RgvluwbN3e/sd9etZha3WkiWO3j18lAz+ji2nlhjL8rN02ihEs17SD/yl8k233nPy2LR3vVm9l5C0AQhSL82TgMl/h43EwLZr/rgdjk8m/Ah6BeEKgmZrLBz9/EWdk18I/CV6G/9rx5jI4q8th4CsLDgclSJhw+l1OVS+3ldmpnSLM/TFt7o5xNGpo0wc9pF2Asi6a6Ly6M0gSOjNud49WykstzMPsO2OycnyaHehRD35M8eJi1LOp5QQ/0O+p7DYqdZZhkTAJjZJ4DLcwMnZrazmX3Ek633ugz4lLtfH7X1JsJOwEcXec7AfaunEWoz6yFM733E3duj+x6Mm4/Ur83Lgc97NtvsvpKQ77bNm7LSox4A0bTYHr7tZgEVMdAIUU7S18zCIqhJ9K00kXRr+lSi92zuRJpFalGmO2ha2AUsZwRhocp8d98/QVtHEkqGbYhujyVMK96eon+Z/C7N7N2E2ru3uPt/RHl5X/e+FXkG21ZmeXlmdiWhVN4lhIBgNjDN3d8bs53cKFEup3sEee+7wbzPSvw9NhI+GM71Qay7iFJ13k1IM+giBBRXecKNa/LaHUcYgTyOkPoxnlD1I1ZN96itk4FvEqpCPEGYWr7P3V+bpo9pWSjP2Ej4XXYTLWr3mIu3bYBypDmDDdCzPE+b2bmEqiBnufs/ovv2JlRxaHP3bw+2rX7tTiT8/vLPE0kW72fKMsqhzpoNUILVY5ReNbPXuPv90UxiobZWJ+xbZuu9rEAufaH7Bt1enQXUufJSRxPyUq8A/s9TFAK3wtvsurufkrK7iZVj5NbyNgtw970s/WYBVckyXGxRrbKcEo5O+Lld0LoI6VMXevwKAFhY8X+oe2+e/gjC9rOJUqCq/XeZRV6elWnRXrmY2QXuXvADRZHnTCTMKn4K+Jy7/6TEU4q1tZaw4PIWwkLoR1K09RfCaN+KKB3oeELlo7OStpmGhWoq/w18GHiI8KFod8KC4y/EnZ2xAfYxyIkboGchOkfM6D+CHKV/XJcwaPofwge3e+i7SLgurm1Wvfs1XObuZ0UpcP25J9zaPvobf13edaSBkEkQ+4OumV0DrGZr2uz7CQMWpybqWz0F1DkW6hueSjhJn0AoLXeNJ9hest8nNSOskj8j7i/PzH7h7u8pEAzHTvkox8itZbxZQBasDPnYZnYf2S22qEpm9gvCaGZWU8KZGGBkIc2GFKl/l+W4GGWdl5cVM5vCtqP5FS0JF41enUGodHMn8E13vzeDdlNVRYnayFWH+AthK+YeM7vD3ZPUAU/NzL5N2CTo3LxZnnGExdsbPf4Wzrl2D/JsUs1SsyLrA4odK9HmX4EpXsHUvoFYWNfyKcLM8FlRitL+7j7okn5m9ne21ukudA6Ls9FbZsUYzGyau2e6M3HUbibrvaK2diaUVj42uusmQuplopmyusqhzolOpJcDl0dT1u8mrEyPHVB72FFsKn0XOF6aoFtzoq+p80nzA2YLm1scHt28w/tulRtH1psFpOYZ515F7ibUoU692KKKXUvM/NhiMkyRedDMZhOmbyGUW3uwyONLyeJ3WY4t6VPn5ZnZfxU57O7+5TgdsrCAeQr9RumoUI1lM7uAcC68jzCT+HnPZhFnwa3MPX5VFIBnzWwM4SJ7uZk9QZilqZSTgP3yP0B6qObzceB+QnWZJC61UAN8IfAzT7CzYYaKbWsdd8vrnAcJG4FUXUBNNjWyFxA+VO1GSJ1a4u5rknTG3Y+NvmZx7f3f6O9nSdSnNPXl832OsEFPqvVekYlZDjTV5Qh1FqzwAsfPeIwKCeVmYVekrxO23jRCzuBn3f3KYs8boK0fAn8gfPA4nZCrOdLdz86sw1Ugmn6aSkjhSbXYYjjIMq3CwuKu+YSZECe8385J+iGwWn+XWeTlmVmh0ZYdCOXqmt19TMw+3evuB8Z5TpG2Uu9GGK0deJCtm1rlLkRpK79ktpV5NNO5iZBacSZh74DLK5VuY2Z/c/eCu80WOzbItvclpJK8m/D3tDDhjG6qdThm1k3erFr+IWCUu8cuC2uhfOjrCOeb/PNExVPDLMMa2dHM9Xujf6PYGsg+kLBv+ZtTAeAx15KZ2f5Rf/6N8IFoCWHToEzWjEUDpq/25HsG3EIoD5zbp+HZVP1RQF2YZbzAsUzpC38h5Js9Ed3elZDvl+SPMX+zACMsnvyyZ7BZQDWxDBZbVLvo4vhVQpmo3uoESd671Zwik8Xv0jLc+j2vzWzz8kIu9hxCMP0LQlpErA8h0QfmrNIpFhNSihLvRliOtLWo3dvd/fVpAhQLW2dPcPdb+93/RqDDow0lhpqZ/YpQy3dxv/vfD7wn7QfJKIA6lfCh93no3dVuULMYZvYOwkhpVa3DGShXPE4qRLlY2P3xzcCt7n6ohRrZS9KmFZnZIcCPCKkusTboiZ4/i1BtJfXmVHltvo4QXL8H+Je7H5OwnRvot2cAkHTPgNzg6YfY+mHyx+6+PElbdZnykZHTibbLNrPcAsfE+RBlSl8Y0e/C2kkYTYktGm36IhluFlCN6ilwLuLHhJPht4HjCSeLpO/d1GkV5Vo0k9Hvshxbv3+YkJd3ddTeTSTYeCAaffkUYXR0EWFBZ9IqGIuA28zsX6SsAe7uM6P+5XYj/C6hEsagrydZjVAVkMVW5t+h8EZgG6Nj70jTwRQ+AVxtofTlnYS/pcMJmzedlrTRKLf+Q4Ra+MsJuxyujn6/tzH4tKC5hO2lbwBw9zVmNilpv7JSDYFzf2Z2CeGcM5dQQGF3CxXFjgE+mLDNkUALIW55M3Aj4TyUxByy25wqtwD9FYQR7x0IQXBSO0apTh8lBL/nW99SxLF42BDvPELa33zgEAu5r4P+MJmjgHoAHrbJvsa2LnA8F5hgZt8n4QLHfNavtmncqZRIm5n9nvCHCWFaZVnC/uxH2KZ3En2neBKtxK025ZghqGJN7v4HM7MocJlrZjcTguxBsa3bvo8lfT3ScuQpY2Fr+/8hnKiNZL/LV7J16/f3kcHW71HQm2o6OVp4805CPvbBnnIHL8Jo1QcIuxv2lHhsqb5luRth1s4mVEWZSMhHvY4QiMYxqdAUsruvqmSA6GGjp9dHKTevJbzff+fuf0jZ9CWEHP8vuHsuBQd3fzQKNAar6tbhAJjZMYTANVc2L3eeqGRpugfYmvf8R8IHmbtIUCPbwsY1ZxA+EN1BGPw7y9Mtyv0nCXed7de3N0R9O5UwOHMFYVFtmrYz2zMgww+Tob0qnMmtWrZ1geO/JQ00LYPapvlTklFQcSzhJPEMIccv9pRklD5yKWHko3fjCN92Yw+pcmZ2KyHguZJwsu4ALvYYtaMHSqfIqYaRfjNrJ5wAM1nsYlu3fv86Yao61tbvWaaPRClnmwmL4LKoT/7HrD4cW4a7EVYjM2t398lxj9UDC1UPdk+Sk1qt63DM7H7CgFj/a1vFS08WyHv+GfBzd/9bjDauj553lSfbECa/rVzaxGsJG2Yl3pzKzP4JPEwIon/h7o+n6Vteu6n3DDCzc4BbCTNOlwJX5n+YjB7zAY9ZwlMB9RCzDGqbmtlvCaMJa/vdPw04391jT0laga2JpTaZ2eGEUeGdgC8TFlN9zd3/lKCtvYDHcrn00aKjCXGCqHLkKUft3po0D69fO5ls/W5mT1IkfaSSH0LM7HuE98NS+l4gE1X5sK27ER5LKNeVaDdCy2CBY9ROZlVRzGwJ8Ed3/99+938EeIu7/1vCblalrHJSq3UdTi6vvpJ9GIy0ec8Z9aHoLKbH2JzKzPYsY2pXKmb2DUJllQOAvwArCQH2bWk+lCigHmKWQW1TK16rc527H5ygX3MJI+bX0PeCm+oTr9Q2M1sFHO3uL0e3tyMsoDm8+DP7tFGWQNPM5hFSNn5FwiDR+m79foWnqMcbLerKTb9OIYP0kayY2Y8L3O3uHmsr+qitLHcjTL3AMWons6ooFkqRXkOoSpCboZtGqAZwmrv/K07fqp1FCzijnNTdczmpSfLrM+xTFulcubYuBhoI0/f554lEO/VlaYC85yXu/qtK9itflP88xlNsT59RP8qxZ8B2hL/townraY4CnvWEFZGUQz30nrX0tU1HFTnWlLBfuYvhZ/Puc6CiW6DK4JVpJLgxF0xHbbwcnYTiyDxPOTKOsFDsLXn3xa2t/AFCma79gNl5+Z+xL+Du3k1YYNSWlz5yg5nFTh/JmrvHXhRZxC15/y7xFLsRegYLHKN2vpn7v22tivIhwnTzNwd63gBtPQ4cHc0e5gYurnX3P8Zpp4akyknNW29RUMLzztfILp0rNzo9Le8+J8wUV0SZ8p4zY2Y/I6xH6CZ8qNzRzL7l7l+vYLe2j2Zf/0L4sJtFsn4T4TqyY/TvUcI6k0QUUA+RXN4zcAqhtum5hNX7ewKzYjb3ZzP72ABTkolynj3F9uxSNcpRseJJMzvZ3X8DYGanEBaiDVq5As0sgkR3T1QVZyAF0kfmU6HNU/KZ2SjCaO1r6bsYOvYIdW7k0rLZjTCzBY6WbVUUPGzMU2jb5HpzISE94xZ3/3OUkxqndvE3oq/vJHx4/ml0+wxgfcI+PZ7V2gh3Pz6LdjL2BULe82eqdBb4QA+VNM4kFDr4HCG2iB1Qm9kxvm0Jym3uG4QdCQuOU6dpmNllhHPhBsK1ciXwrTTnC1DKx5DJMu+5XFOSlt2OeFIB5Ug5sFAX9XLCqKERAvaZHtVmj9FOJnnKUVtlKcOXVpbpI1kzs18SdtN7HyGAOpOwGHpO0ScWbqt3N0J3T7UbYVYLHK1vVZTvevqqKBKTmd3k7m8sdV+JNt4Z/fc4UqZz5bU5Afhv4FXu/lYzOxA4yt1/GLet4cLM7iFsmvUzwizUjZZ8w5nV7n5oqftitJc6TcNCKeTxhMojKwkVPe72lAGxAuohUqa85/wpyXvSTElahjviSeVZyooVBdobQzhfbEjw3EwDTTN7h7svtSrbsMFCZY7ciG3qyhxZysuTXevuU6Lczd97gsofluFuhNFzUy9wtIyrogwnFjYE+xjbDqbEmr2wsAnU2939wej2XsAydz8gRhuFcv3zupQo5/93hNr8X3T315lZI3BXkmvucGFmswmj0n8hDITsAfzU3d8Qo42jCEHvOYQ9EXLGEQb+YgfnUbs7EoLoY6KvOwHr4s5YWsjve23Ux6MJ16inCSPegy4xm08pH0Mn87znjKckp1GlO+LJ4JUj5cDM3k6UKpDLMXb3C2M0kVmecvS9l0Zfq2rDhqzTRzK2Jfr6rJkdBPyL8P5IxN3/aX3rDXcP9NhiogWOexBS3yYRpnVj18mu8te+2v2akGazgoS/x8i5hFSuB6Pbk4BBV6+CrWlcA6UJxGnLzBrdvQsY7+6/MLPPR9+jy8IW5zIAd59PuHbkPBQN4MWxHTCGEGfmb2z3POEDeSxZp2lEsc7dZvYsoeb2c8BJhM2JFFBXuczznjOWekc8qax+I8EXZJFyYGaXAqOB44H/I5wI74jTRhnylMtShq/OXWahxvCXCOk2Y4BipeaKyWI3wpzMFjhmLctKE1VutLt/Lm0j7t5mZvsCr4nuut/dNxd7ThELgP4pAYXuK+aO6PEvmlkz0cyFmR1JBpuW1Lv8gZS8uwc9kOKhetONZrbQo/J5KSuG7AFsT8jv7yBs3PRsgnZyI/BHE0a5txDlYhPKFiZelKiUjyFSrrznrFgoDj+VcBJKuiOeVFA5Ug7yUgRyX8cAV7v7W0o+uUysius9DwdmNp6wOGg64bW/jrDDW+KNMrJY4Jg1y3jjoGplZhcBK9090S67ee2MBD5OSN+BsAX5D9x9y4BP2raNzNIE8tKcDiUE4wcRBo52Bd7Vfz2TbDXQQIq7fyRBW9tUDCGMLCdZ4JhJmoaZfYtoUaO7ZzaIqIB6iGWZ95wlG2BnPAUnw5tFmyKY2Z8Ii746CYs39q1gn6q23nO1sa07nxXkMXY+K4csFzhmzTLaOKjamdkGQs3uzYTRuqS7cf4fMJJQYQVCqle3u380RhvHAW8iBGCX5h3aACx190FXHzGzR4Dc+3sEYXTTCD9nd6Xf+9Usy4EUM1vj7lMtVAw5jKhiiKeoc25mryaMLh9NSNNodvedkraXFaV8DLGM854zE63inQDkNuy4w92fqGSfpCr81sx2IixuXE0Y+f6/SnbIq7jecxXKz138d+AHSRuyDHcjzPMd4ERCGgru/hczG3RViHLIqzSxysx+TgaVJqqZu48t/ahBObzfCPIfLWxgFqcv26QJpNBASG3qXz50dMp2h4Pc7pYbLdSI7wSSltYdGc1enEpI69piZrFHcsuVppElBdQCgJm9hxA03UA4AS0ws8+6+5UV7ZhUVF6QdJWF0o+j3L3i+YflWHxZjzxvq2AzO9VjbB1cQKGUjN7dCAnb3MeW1QLHDOWXME27cVBNMLOJhIWh+VU+borZTLeZ7ePuf4/a3Jvkv8uFhYKumFVpHou5eHrYM7NzCIHqb6KBlK+RfiDlB4R65H8BbjKzPQkLE+OaBFwJnJtlmkaWFFBLzhcJIwxPQG8ppRWEN7AMU2b2bqDNQ7m8zwKHmtmX3f2uCvYp88WXw0Sq/D7PcDfCPFkucMxElpUmaoGZ/Q/wb8C95JVMJezmG8dngeujKh9GCNCTbr70mbz/jwJOJ/6OwllsbDXcvJqtm6dMJ+QZf5SQo5xojURGFUNw96Lpa9VAOdQCbFsLO1qN+xfV6hze8nLojgW+StgV7Qvu/voSTy1nn6q23nM1sxSbKeS10X83wnlJy1ZF7WW+wDErhV6vLF7DamNmfwWmpKjIkd/W9sD+hN9lmiofhdq+0d0LrvUZ4PG7eHXuQlj1LIPNU/LaGjYb62iEWnLazOz3hMoJEEYsUq36lrqQG7F6O/B9d/+1mc2tYH9UczgGM1vH1g8dk80sV9kg9+Fj0AuDrO9uhAd7BrsRuvtThOC8auRVmti136LOcYS83HrzIGExYRbB72Fs3SDmdWaWaLfd6INbzoio3VfGaUPBdCpNhPf7jtG/R0mep7yQaGOd6PbfgJ8TFiPXFQXUw5yZTQYmuPtno8U4xxIutrcRtpyW4a3DzH5AGEH8n2gESgFt7Tgpw7Y+TQi6zgO+aCk26CnTAsesZLohRQ3YCKwxsz/Qd/FlrF1ybYDddoHYATWhvJoT3ltdwD8IufpSRpbx5imRYbOxjgJq+Q7wBehdvX41gJlNi469Y6AnyrDwHqAF+Ia7P2tmuxFyJaUGZFApIb+tLD9IlWWBYxaiike3EEbh0yzirBW/if6lldluu+6etKKEpJPZ5il5hs3GOsqhHubM7G53P2iAY33yqmX4MbN9gEfcfbOZvYlQ93mxuz9byX5J/chb4PgR4BfAN6uhZKeZ/TFmVYmaZWZNwB7u/tcUbfwSmJ1FBYYsNomRZLLaPCWvvcMIixLrfmMdBdTDnJm1u/vkuMdkeDCzNYSRp0nA7wkjWfu7+9sq2C2pA1kvcMyamX0T2Bf4JXkj6vVWh9rM3kFYbLydu+9lZlOBC32Qu+Sa2VLC6ONYMtptN4tNYiSdtJun5JXgy1WEyi1W/Wu9fjBSyof82cw+5u7/m3+nmX2ErVuky/DVE+W8vRP4jrsvMLOKlcyTZMzsBOBP7r6x0n2B8ixwLINdCBta5I9S12Md6rnAEYRRYNx9jZnFSbn4Rhn6lHqTGIkv481TciX4XgOsJdrqm7DAsS4XjGqEepiLStpcA7zM1gB6GmFhzmnu/q9K9U0qz8xuJ+TSfxF4h7v/o1iakFQnM1sMHEkIEG+O/t1SqRHhqPThZsKCM5U+rCAzu93dX29md7n7IdF9a9NsDR210QC8191jL243s9XAu/ttEnNlvZUsrDZm9i2iwDerzVOyLMFX7TRCPcy5++PA0VGh9VyQdK27/7GC3ZLq8SHgbOArUTC9F/DTCvdJYnL3mQDRNsLvAr4LvIoKXQNqofRhNOW9gDBa58AthBrZj1S0Y9m728zeBzSY2b6EzXVWDvbJZjYO+AQwkZAStjy6/VlCxY8k1aKy3CRGBqlMm6dkWYKvqmmEWkSkzpnZ+4E3AAcDTxGCw5vd/baKdqyKmdly4GfAT6K73g+c6e4zKter7JnZaMIMVG6L9d8DF7n7S4N8/q+BZwipAW8GdibMcM5x9zUp+lW2TWKk/AqU4PsTIe2satZJZE0BtYgMKBqx+ipwIGELYADcfe+KdUpiM7OngL8DlwLXu/v6yvao+pnZGnefWuq+WmVmowizT5MJI4Y/dPe423v3qQYVpXk8RagYsiFBW4cD/8ylGprZTMK24w8Bc7VZS+0wszZgPKGyx0rCB667syirWK2qftpNRCrqx8D3CbmuxxM2afhJ0WdI1XH38cCHCR+KvmJmd0QbccjAnjKz95tZQ/Tv/YQc9HqxiJDbug54K8kXF/ZWbHD3buAfSYLpyA8I63kwszcCFxPOOc8RFrBKjXD3FuBwtr6vPk0ognCdmdVlfXeNUIvIgMzsTnc/rN8o1M3u/oZK900GL8pzPQY4jpD6MZ4w/dpa0Y5VMTPbA7iEsIjKCaNsc7LcLKeS+v1NNwJ3JFn0F+16lysraISc2Y0k20HzL7nqHmb2XeBJd58b3a6b2YHhJm0JvlqhRYkiUsxLZjYCeMDMPknYPesVFe6TxHdL3r9L6nBhXebc/WEgdg3lGpI/styVt5V8LO7ekFmPwsLIxij15M3AWXnHFK/UkIxL8NUEvUFFpJhzgNGElf9fJtTk1ahmjcmVQDOzHdy90LbfEjGz/ypy2N29YtuiZ+x1ZvZ89H8DmqLblSxduAS4Mcr530Qo74iZTaZOt6uuY5OAK4FzsyrBV+2U8iEiUufM7Cjgh8AYd9/DzF4H/Lu7/0eFu1Z1zOzTBe7egbA1erO7jxniLg0rZnYksBtwXe7Dn5ntR3jvrq5o50SKUEAtItsws98UO55kO2GpnGiDnncBv8nbvEMb9JRgZmOBOYRg+hfAN939icr2SkSqkVI+RKSQo4B/EqZgbydMA0sNc/d/9suT7a5UX6qdme0CfAo4k1AN49B6rp8rIukpoBaRQl4JzADOAN4HXAsscfd7KtorSeqfZnY04NFWwLOB+yrcp6pkZl8H3kko03awu79Q4S6JSA1QyoeIFBXtWHYG8HXgQndfUOEuSUxmNh6YB0wnzDZcRygBV091lTNhZj3AZkLt9fwLZCUX64lIlVNALSIFRYH02wnB9CTgN8CP3L2jkv0SERGpNgqoRWQbZrYIOAj4HXCFu99d4S5JAsOoBJyISEUpoBaRbUTT3rl6xZr2rlEqASciMjQUUIuIDAMqASciUj6q8iEiUsdUAk5EpPwUUIuI1CmVgBMRGRpK+RARqVMqASciMjQUUIuIiIiIpDCi0h0QEREREallCqhFRERERFJQQC0iIiIikoICahGROmBmXzSze8xsrZmtMbPXm9k5ZjZ6EM8d1ONERKQwLUoUEalxZnYU8C3gTe6+2czGA9sBK4Fp7v5UieevH8zjRESkMI1Qi4jUvt2Ap9x9M0AUGL8LeBVwvZldD2Bm3zezVdFI9gXRfbMLPO4tZnabma02s1+ambYoFxEpQiPUIiI1Lgp4bwFGAyuAn7v7jf1Hns1sF3d/2swagD8As919bf7jotHtq4G3uvuLZvY5YHt3v7ACP5qISE3QTokiIjXO3V8ws8OANwDHAz83s/8s8ND3mNlZhHP/bsCBwNp+jzkyuv9WM4OQOnJbufouIlIPFFCLiNQBd+8GbgBuMLN1QGv+cTPbC/gMcLi7P2NmC4FRBZoyYLm7n1HeHouI1A/lUIuI1Dgz29/M9s27ayrwELABGBvdNw54EXjOzCYAb817fP7j/gQcY2aTo7ZHm9l+Zey+iEjN0wi1iEjtGwMsMLOdgC6gHTgLOAP4nZk95u7Hm9ldwD3Ag8Ctec+/rN/jPggsMbPto+PnAX8bmh9FRKT2aFGiiIiIiEgKSvkQEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKfx/K56ceUfEFXAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "#Code task 16#\n", "#Create a seaborn boxplot of the ticket price dataframe we created above,\n", "#with 'state' on the x-axis, 'Price' as the y-value, and a hue that indicates 'Ticket'\n", "#This will use boxplot's x, y, hue, and data arguments.\n", "plt.subplots(figsize=(12, 8))\n", - "sns.boxplot(x=___, y=___, hue=___, data=ticket_prices)\n", + "sns.boxplot(x='state', y='Price', hue='Ticket', data=ticket_prices)\n", "plt.xticks(rotation='vertical')\n", "plt.ylabel('Price ($)')\n", "plt.xlabel('State');" @@ -1012,15 +2141,374 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 93, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countmeanstdmin25%50%75%max
summit_elev330.04591.8181823735.535934315.01403.753127.57806.0013487.0
vertical_drop330.01215.427273947.86455760.0461.25964.51800.004425.0
base_elev330.03374.0000003117.12162170.0869.001561.56325.2510800.0
trams330.00.1727270.5599460.00.000.00.004.0
fastEight164.00.0060980.0780870.00.000.00.001.0
fastSixes330.00.1848480.6516850.00.000.00.006.0
fastQuads330.01.0181822.1982940.00.000.01.0015.0
quad330.00.9333331.3122450.00.000.01.008.0
triple330.01.5000001.6191300.00.001.02.008.0
double330.01.8333331.8150280.01.001.03.0014.0
surface330.02.6212122.0596360.01.002.03.0015.0
total_chairs330.08.2666675.7986830.05.007.010.0041.0
Runs326.048.21472446.3640773.019.0033.060.00341.0
TerrainParks279.02.8207892.0081131.01.002.04.0014.0
LongestRun_mi325.01.4332311.1561710.00.501.02.006.0
SkiableTerrain_ac327.0739.8012231816.1674418.085.00200.0690.0026819.0
Snow Making_ac284.0174.873239261.3361252.050.00100.0200.503379.0
daysOpenLastYear279.0115.10394335.0632513.097.00114.0135.00305.0
yearsOpen329.063.656535109.4299286.050.0058.069.002019.0
averageSnowfall316.0185.316456136.35684218.069.00150.0300.00669.0
AdultWeekday276.057.91695726.14012615.040.0050.071.00179.0
AdultWeekend279.064.16681024.55458417.047.0060.077.50179.0
projectedDaysOpen283.0120.05300431.04596330.0100.00120.0139.50305.0
NightSkiing_ac187.0100.395722105.1696202.040.0072.0114.00650.0
\n", + "
" + ], + "text/plain": [ + " count mean std min 25% 50% \\\n", + "summit_elev 330.0 4591.818182 3735.535934 315.0 1403.75 3127.5 \n", + "vertical_drop 330.0 1215.427273 947.864557 60.0 461.25 964.5 \n", + "base_elev 330.0 3374.000000 3117.121621 70.0 869.00 1561.5 \n", + "trams 330.0 0.172727 0.559946 0.0 0.00 0.0 \n", + "fastEight 164.0 0.006098 0.078087 0.0 0.00 0.0 \n", + "fastSixes 330.0 0.184848 0.651685 0.0 0.00 0.0 \n", + "fastQuads 330.0 1.018182 2.198294 0.0 0.00 0.0 \n", + "quad 330.0 0.933333 1.312245 0.0 0.00 0.0 \n", + "triple 330.0 1.500000 1.619130 0.0 0.00 1.0 \n", + "double 330.0 1.833333 1.815028 0.0 1.00 1.0 \n", + "surface 330.0 2.621212 2.059636 0.0 1.00 2.0 \n", + "total_chairs 330.0 8.266667 5.798683 0.0 5.00 7.0 \n", + "Runs 326.0 48.214724 46.364077 3.0 19.00 33.0 \n", + "TerrainParks 279.0 2.820789 2.008113 1.0 1.00 2.0 \n", + "LongestRun_mi 325.0 1.433231 1.156171 0.0 0.50 1.0 \n", + "SkiableTerrain_ac 327.0 739.801223 1816.167441 8.0 85.00 200.0 \n", + "Snow Making_ac 284.0 174.873239 261.336125 2.0 50.00 100.0 \n", + "daysOpenLastYear 279.0 115.103943 35.063251 3.0 97.00 114.0 \n", + "yearsOpen 329.0 63.656535 109.429928 6.0 50.00 58.0 \n", + "averageSnowfall 316.0 185.316456 136.356842 18.0 69.00 150.0 \n", + "AdultWeekday 276.0 57.916957 26.140126 15.0 40.00 50.0 \n", + "AdultWeekend 279.0 64.166810 24.554584 17.0 47.00 60.0 \n", + "projectedDaysOpen 283.0 120.053004 31.045963 30.0 100.00 120.0 \n", + "NightSkiing_ac 187.0 100.395722 105.169620 2.0 40.00 72.0 \n", + "\n", + " 75% max \n", + "summit_elev 7806.00 13487.0 \n", + "vertical_drop 1800.00 4425.0 \n", + "base_elev 6325.25 10800.0 \n", + "trams 0.00 4.0 \n", + "fastEight 0.00 1.0 \n", + "fastSixes 0.00 6.0 \n", + "fastQuads 1.00 15.0 \n", + "quad 1.00 8.0 \n", + "triple 2.00 8.0 \n", + "double 3.00 14.0 \n", + "surface 3.00 15.0 \n", + "total_chairs 10.00 41.0 \n", + "Runs 60.00 341.0 \n", + "TerrainParks 4.00 14.0 \n", + "LongestRun_mi 2.00 6.0 \n", + "SkiableTerrain_ac 690.00 26819.0 \n", + "Snow Making_ac 200.50 3379.0 \n", + "daysOpenLastYear 135.00 305.0 \n", + "yearsOpen 69.00 2019.0 \n", + "averageSnowfall 300.00 669.0 \n", + "AdultWeekday 71.00 179.0 \n", + "AdultWeekend 77.50 179.0 \n", + "projectedDaysOpen 139.50 305.0 \n", + "NightSkiing_ac 114.00 650.0 " + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 17#\n", "#Call ski_data's `describe` method for a statistical summary of the numerical columns\n", "#Hint: there are fewer summary stat columns than features, so displaying the transpose\n", "#will be useful again\n", - "ski_data.___.___" + "ski_data.describe().T" ] }, { @@ -1032,7 +2520,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 106, "metadata": {}, "outputs": [ { @@ -1044,7 +2532,7 @@ "dtype: float64" ] }, - "execution_count": 23, + "execution_count": 106, "metadata": {}, "output_type": "execute_result" } @@ -1077,17 +2565,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 108, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA28AAAJOCAYAAAAgSD/bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACQeklEQVR4nOzdebwcVZn/8c/XsO9gJEKIBDWiIIqKCOMWQWRzhHFEQURwcNARBplBJaijuKDR36AouKEgKGsUEUaUReCKqCyCILsECCQkEHYIIhp4fn+c06Rup/ve7nt7qer7fb9e/brdVdVVT/V9+vQ5VadOKSIwMzMzMzOzcntOvwMwMzMzMzOz0bnxZmZmZmZmVgFuvJmZmZmZmVWAG29mZmZmZmYV4MabmZmZmZlZBbjxZmZmZmZmVgFuvJnZciR9V9L/jHMdMyUtGMP7TpT0xfFs28zMzMZH0qaS/iTpcUkH92ibn5T0gxaXPULSyd2OqWzceCsZSXtLuqAL650n6a2dXq9Vn6T9JF1WnBYRH46IL/QrJrMqlFk+0GCdUoV8twnpE8BQRKwZEd8cywokDUn6YN20kPSEpCWFxycAIuJLEfHBxmtre9sD+b1aod8B2HARcQpwSu21pABmRMTc/kVlg0pSpcoASStExNJ+x2Fm1isu96yPNgZO79K6X+m67dj4zJtZBUmaJemnddO+IembktaWdLykRZLukfRFSZPyMvtJ+p2kr0t6CDgD+C6wbT7y9UhebtgZBUm7SbpW0mOSbpe0U57+AUk35y4Vd0j60Bj25VWSrsnrOANYpTBvpqQFkg6TdC/wQ0krSzpa0sL8OFrSynXLf1LSA/mo297txmRm1iuSfgy8APi/2hmIfGZif0l3Axfn5X4i6V5Jj0q6VNLmhXWcKOnbkn6V1/E7Sc/P5ePDkm6R9KrC8ofl34fHJd0qafue77iVmqSLgbcAx+ac+mjuQvmYpPmSjigsu4qkkyU9KOkRSVdJmiLpSOCNhXUc28J2h3WFlPR+SXfldf9Pg7NpK0n6Uc7lGyVtld+33PeqM59M/034xlujAqxBxXXYtTs5cT4u6c9Kp32Pz0n6q7yeX0taNy87PRfCH8jJ/rCkD0t6bX7/I8VkVqELm6RL8+TrcuK9Z5R9eXuuYD8i6feSXtFkuecoVf5vz1+GOZLWy/POk3RQ3fLXSXpnmx+tdddpwC6S1gJQapy9GzgVOAlYCrwYeBXwNqDYBeF1wB3A+sD7gA8Df4iINSJinfoNSdoa+BHwcWAd4E3AvDx7MfB2YC3gA8DXJb261Z2QtBLwc+DHwHrAT4B/rVvs+XnexsABwKeAbYAtgVcCWwOfrlt+MjAV2Bc4TtKmrcZkpfJaSTflcvOHuYKwrqRfSLo/T/+FpI1qb8hl6B25LL5Thca7pH9TOtjwsKTzJW08WgCSXirpQkkP5d+Id4+wbMMyWCMcbBnbx2KDJCL2Ae4G/jki1gDm5FlvBl4G7Jhf/wqYQSq7r6HQSyd7N6ksnAw8BfwhLzcZ+CnwNUjXMQEHAa+NiDXz+ud1YdeswiJiO+C3wEE5L68D3k+qB+wK/Iek3fPi+wJrA9OA55LqFU9GxKeK64iIYfXL0UjaDPg2sDewQd7G1LrF3kE6O7gOcA5wbI5/2PcqIr7azrbLbEI33sZZgP0rsAPwEuCfSYXqJ0mF5HOA+gs7X0cqdN8DHE2qgL4V2Bx4t6Q3128gIt6Un74yJ94ZI+zLq4ETgA+RvjjfA85RPiNR52Bgd9IPw4bAw8C38rxTgb0K692MVGk+t9m2rfci4i7Sj/LuedJ2wF+BO4GdgUMi4omIWAx8Hdiz8PaFEXFMRCyNiCdb2Nz+wAkRcWFEPBMR90TELTmOcyPi9kh+A1xAOsrWqm2AFYGjI+IfEfFT4Kq6ZZ4BPhsRT+V49wY+HxGLI+J+4HPAPnXv+Z+8/G9Iudu0wm2ltjepXH4Rqaz9NKl8/SGpXHoB8CT5x1rS6sA3gZ1zmf5PwLV53u6kMvqdwPNIFYrTRtp4Xt+FpHJxfVLZ+G0VzngUlh2pDB7pYItZM0fkcvxJgIg4ISIej4ingCOAV0pau7D8WRFxdUT8DTgL+FtE/Cginib1sqideXsaWBnYTNKKETEvIm7v2V5ZJUXEUERcn+sBfyaVa7W66z9I5d6LI+LpnIePjbLKa/KBrtpjxwbLvAv4v4i4LCL+DnwGiLplLouIX+Y8/zHpoO5Am9CNN8ZXgB0TEfdFxD2kSsAVEfGnXKiexbJCsuYLEfG3iLgAeAI4LVc+a++vX75d/w58LyKuyF+ck0hH3rZpsOyHgE9FxILCj8C7lK5/OgvYsnBEem/gZ3k5K5diQ/u9+fXGpMbQolqBSKpErl943/w2tzMNaPi9kLSzpMvzWYlHgF1IBzBatSFwT0QUC+O76pa5P1dGiu+5q275DQuvH46IJ0aYb9VxbETMj4iHgCOBvSLiwYg4MyL+GhGP5+nFg1/PAC+XtGpELIqIG/P0DwFfjoib8/VDX2J4WdfI24F5EfHDfLDjGuBMUoWiXtMyuNnBloi4fAyfiU0cz5bVkiZJmp17zDzGsgPNxfL2vsLzJxu8XgMgX2d0COm3f7Gk0yW5jLQRSXqdpEtyr4dHSWfXavn3Y+B84HSlyxm+KmnFUVb56ohYp/A4v8EyG1L4HkTEX4EH65a5t/D8r8Aqqtj1/O2a0I23cRZgLRWS41i+XRsDhxaPYpAq3Y32Z2PgrMJyN5MaslNyZehclp2p2ZPlu2ZYOfwEmJm7jP0LqfE2n1RhnFwoENeKiOKZgvqjVvWv680nnfkYJp9ROBP4X1LurAP8ElAb+7AImCqp+J4XjBLfQlIOF5dfWHi9bj5j0my+VUfxQMNdwIaSVpP0PaVrIB4DLgXWkTQpN9rfQ6pULJJ0rqSX5vdvDHyjUO49RMrV+i44RRsDr6srV/cmdc1ttOxIZXCjgy1mNY3K4eK09wK7kXrsrA1Mz9PbKW+XrTji1Ih4AylvA/jKWNZjE8qppG6J0yJibdL18gLIPWc+FxGbkXo8vJ3UxRJGr2OMZBFQ7Ba/KukMX6vGs+3SmtCNN2hagD0BrFZYrNEPddnMB46sO4qxWkQ06hY0n9StqLjsKvksIKRT4XtJ2hZYFbikR/tgbchdBodIXcjuzGcUFpG6Lh4laS2l6xtf1KhbbsF9wEb5+rNGjgc+oHQ96HMkTc0V4pVIZ67vB5ZK2pl0fV07/kC6Pu9gSSsoXVu59SjvOQ34tKTnSZpM6kZRf5+Xz0laSdIbST8iP2kzLiuHaYXntUb4ocCmwOsiYi3SNZiwrBJxfkTsQLo+4hbg+3n+fOBDdeXeqhHx+xG2Px/4Td171oiI/2iy7EhlcKODLWY19wEvHGH+mqQDcw+S6idfGuuGlO7dtV0+APc30gHkp8e6Ppsw1gQeioi/KV0L/97aDElvkbRF7hL+GKkbZS2nRsvtkfwU+GdJ/5TrKJ+jvQMW49l2aU3oxtsIBdi1pOsT1pP0fNLZuX5pNfG+D3w4n9aWpNUl7SppzQbLfhc4stZdKFeCdyvM/yWpMft54IyIeGac+2DdcyrpSGyxIvh+UsPqJtL1jD8lVWSbuRi4EbhX0gP1MyPiSvJgJMCjwG+AjfNZ2oNJF9c/TCrIz2kn+NyH/Z3Afnkd7wF+Nsrbvgj8EfgzcD2pO1rxXlv35nUtJJ01/nDka/Sscg6UtJHSgEqfJF23syaprH4kT/9sbWGlgaPekc+8PgUsYVkF4rvA4bXr1ZRGZd1jlO3/AniJpH0krZgfr5X0sgbLjlgGNzrYMqZPxAbVl0kHpR6hcbfcH5HOPt9DKtvH0+V2ZWA28ACpvFyf9P0yG8lHgM9Lepx00HROYd7zSXWNx0i9uX7DsoOq3yBdmvOwhg/SdJ2G3+ft6PoN5m7v/0kakGQR8DhpoLRWL+V59nsl6WMtvqf8ImLCPoBXAFeSkuEh0g/1hqShys8gJeGfgf8CFhTeNw94a+H1yaQLi2uvPwj8Oj+fTjqjt0Jh/gJgZt37P52f70e6+LI278OkhH0EePco+7MTabCHR/J7fgKsWR8zqdH+38Cted9vB75Ut67jc9yv7ff/yQ8/Wn0AM4vfVT+q+8hl1uGkiuojpFFUV8tl9BCpYfYX0rVsQbpv6QakSsOj+T1DwGaFde5DavA/RjpTdkILcWxK6kp+P+msx8XAlnneicAXC8s2LYML2w/g4/3+fP3www8/qvYgXWK0FNik37H086H8YZiZVZ6kmcDJEbHRKIuamZlZyUn6Z+AiUnfJo0ijt786JnADZkJ3mzSz7pP0grquEcVH/eAkZmZmZjW7kS6DWEi65daeE7nhBvjMW5VI+iSN+6X/NiJ27nU8ZmZVlwe1+VWjeZFuTGtmZlYabryZmZmZmZlVQCluYjd58uSYPn36s6+feOIJVl999eZvKKmqxg3ljf3qq69+ICKe1+84RjIo+duOQd/HTu1f2fO3PndrBv3/C97H0ZQ9d2Fi52+9ibjP0Hy/y56/zt3hJuJ+jyt3+z1iSkTwmte8JoouueSSqKKqxh1R3tiBP0YJcnSkx6DkbzsGfR87tX9lz9/63O30/peZ93FkZc/dmOD5W28i7nNE8/0ue/46d4ebiPs9ntwddcASSSdIWizphsK09SRdKOm2/HfdwrzDJc2VdKukHVtugpqZmZmZmVlTrYw2eSLp3jVFs4CLImIGafjOWQCSNgP2BDbP7/l2vtu6mZmZmZmZjcOo17xFxKWSptdN3o10M1xIN04dAg7L00+PiKeAOyXNBbYG/jCW4KbPOrft98ybvetYNmXWce3mr3PXyuL6ex5lP+evVVS7+evctbJw2WutGOuAJVMiYhFARCyStH6ePhW4vLDcgjxtOZIOAA4AmDJlCkNDQ8/OW7JkCUNDQxy6xdK2Ayuup9dqcVdRlWM3MzMzM5sIOj3apBpMa3gvgog4DjgOYKuttoqZM2c+O29oaIiZM2e2ffQBYN7eM0ddpltqcVdRlWM3MzMzM5sIWrnmrZH7JG0AkP8uztMXANMKy21EuiO6mZmZmZmZjcNYG2/nAPvm5/sCZxem7ylpZUmbADOAK8cXopmZmZmZmY3abVLSaaTBSSZLWgB8FpgNzJG0P3A3sAdARNwoaQ5wE7AUODAinu5S7GZmZmZmZhNGK6NN7tVk1vZNlj8SOHI8QZmZmZmZmdlwY+02aWZmZmZmZj3kxpuZWQlJOkHSYkk3FKatJ+lCSbflv+sW5h0uaa6kWyXt2J+ozczMrJvceDMzK6cTgZ3qps0CLoqIGcBF+TWSNgP2BDbP7/m2pEm9C9XMzMx6wY03M7MSiohLgYfqJu8GnJSfnwTsXph+ekQ8FRF3AnOBrXsRp5mZmfVOp2/SbWZm3TMlIhYBRMQiSevn6VOBywvLLcjTliPpAOAAgClTpjA0NLT8RlaFQ7dY2lZgjdZTZkuWLKlczO2aCPtoZjbRuPFmZlZ9ajAtGi0YEccBxwFstdVWMXPmzOWWOeaUsznq+vZ+Hubtvfx6ymxoaIhG+z5IJsI+mplNNG68mZXE9Fnntv2eebN37UIkVmL3Sdogn3XbAFicpy8AphWW2whY2PPozMzMrKt8zZuZWXWcA+ybn+8LnF2YvqeklSVtAswAruxDfGZmZtZFPvNmZlZCkk4DZgKTJS0APgvMBuZI2h+4G9gDICJulDQHuAlYChwYEU/3JXAzMzPrGjfezMxKKCL2ajJr+ybLHwkc2b2IzMzMrN/cbdLMzMzMzKwC3HgzMzMzMzOrADfezMzMzMzMKsCNNzMzM+sYSdMkXSLpZkk3Svponr6epAsl3Zb/rlt4z+GS5kq6VdKO/YvezKzc3HgzMzOzTloKHBoRLwO2AQ6UtBkwC7goImYAF+XX5Hl7ApsDOwHfljSpL5GbmZWcG29mZmbWMRGxKCKuyc8fB24GpgK7ASflxU4Cds/PdwNOj4inIuJOYC6wdU+DNjOrCN8qwMzMzLpC0nTgVcAVwJSIWASpgSdp/bzYVODywtsW5GmN1ncAcADAlClTGBoaWm6ZKavCoVssbTnGRuuomiVLlgzEfrRrou63TWxuvJmZmVnHSVoDOBM4JCIek9R00QbTotGCEXEccBzAVlttFTNnzlxumWNOOZujrm+9ejNv7+XXUTVDQ0M0+iwG3UTdb5vY3G3SzMzMOkrSiqSG2ykR8bM8+T5JG+T5GwCL8/QFwLTC2zcCFvYqVrMiSSdIWizphsI0D7ZjpeHGm5mZmXWM0im244GbI+JrhVnnAPvm5/sCZxem7ylpZUmbADOAK3sVr1mdE0kD5xR5sB0rDTfezMzMrJNeD+wDbCfp2vzYBZgN7CDpNmCH/JqIuBGYA9wEnAccGBFP9yd0m+gi4lLgobrJHmzHSsPXvJmZmVnHRMRlNL6ODWD7Ju85Ejiya0GZjU8pB9sBD7hTVePZZzfebMKSNA94HHgaWBoRW0laDzgDmA7MA94dEQ/3K0YzMzMrrb4OtgMecKeqxrPPbrzZRPeWiHig8LrWr322pFn59WH9Cc2sOqbPOret5efN3rVLkZiZddx9kjbIZ9082I711cA13lyBsHHaDZiZn58EDOHGm5mZ2URWG2xnNssPtnOqpK8BG+LBdqwHBq7xZtaGAC6QFMD3cpeGZv3ahxmp73qtH3O7/dbHol99xAe9f/qg75+ZmTUm6TTSQdzJkhYAnyU12uZI2h+4G9gD0mA7kmqD7SzFg+1YD7jxZhPZ6yNiYW6gXSjpllbfOFLf9Vo/5v3aPAs8Fv3q6z7o/dMHff/MzKyxiNirySwPtmOlMK7Gmwd8sCqLiIX572JJZ5GG923Wr72U3E3YzMzMbOLoxH3e3hIRW0bEVvl1wxsZmpWJpNUlrVl7DrwNuIHmN5E1MzMzM+urbnSb9IAPVgVTgLMkQfoenBoR50m6igb92s3MzMzM+m28jTcP+FBQ5UEOqhz7WETEHcArG0x/kCb92s3MzMzM+mm8jTcP+FBQ5UEOqhy7tc7XyJmZmZlV17iueSsO+AAMG/ABoAoDPpiZmZmZmVXBmBtvHvDBzKw/JM2TdL2kayX9MU9bT9KFkm7Lf9ftd5xmZmbWWeM58zYFuEzSdaS7yZ8bEeeRbmS4g6TbgB3yazMz6yyP9GtmZjbBjPmaNw/4YGZWKh7p18zMbMB141YBZmbWXV0Z6bdmyqp0fbTffo9uOxFG2J0I+2hmNtG48WZmVj1dGem35phTzuao67v789DJkX7HYiKMsDsR9tHMbKKZ8I03D51uZlVTHOlX0rCRfvNZN4/0a2ZmNoDGdasAMzPrLY/0a2ZmNnFN+DNvZmYVMwU4SxKkMvzUiDhP0lXAHEn7A3cDe/QxRjMzM+sCN97MzCrEI/2amZlNXO42aWZmZmZmVgFuvJmZmZmZmVWAu02aWVPNRmM9dIul7NdgnkdjNTMzM+seN95KyLcvMDMzMzOzeu42aWZmZmZmVgFuvJmZmZmZmVWAu02aWce02+UX3O3XzMzMrFVuvA0AXyNnZtZ7LnvNzKzX3HgzMzNjbGeOzczMesmNtwmoUQWl2dDvNT5ibGZmZmbWXx6wxMzMzMzMrALceDMzMzMzM6sAd5vsgUG4jsIX5puZmZmZ9Zcbb2ZmZj3QiwN5PnBmZjbY3G3SzMzMzMysAnzmzcz6yl1yrVtGyq3RRtg1MzMrIzfe2uTKgFl/ubFnZmZmE5Ubb2Zm1nODMJCTmZlZr7nxZl3hsyNmZmZmZp3lxpuZmZlZG3yA0sz6xY03MzOzAVFsVLRyHbYbFWZm1eLGm5lZwfRZ57Y9+JArwGZmZtYLXbvPm6SdJN0qaa6kWd3ajlmnOXetypy/VlXOXasy56/1SlfOvEmaBHwL2AFYAFwl6ZyIuKkb2zPrFOfu4JlIoxo6f62qnLvjc/09j7Z9qyL3GOgc56/1Ure6TW4NzI2IOwAknQ7sBjiJreycu1Zlzl+rKuduyXmQlhE5fye4dr8fJ+60+pi31a3G21RgfuH1AuB1xQUkHQAckF8ukXRrYfZk4IEuxdY1B1c0buh/7PpK01kb9zAMaCF3YTDztx39zpdua3f/qpS/o+RuzUD/f2Hwcxha28cq5S50J39H+Aw6pgfbaDufux1TLz5Xmu936fK3W2Vvjz7nbhv48rjeW74y9tztVuNNDabFsBcRxwHHNXyz9MeI2KobgXVTVeOGasfeYaPmLgxm/rZj0Pexwvs3rrL32ZVUd/9b5n0snXGXvc+uqFr73RETcZ+hVPvtsnccJuJ+j2efuzVgyQJgWuH1RsDCLm3LrJOcu1Zlzl+rKueuVZnz13qmW423q4AZkjaRtBKwJ3BOl7Zl1knOXasy569VlXPXqsz5az3TlW6TEbFU0kHA+cAk4ISIuLGNVYx4WrnEqho3VDv2julA7sLE+CwHfR8ruX8dyl+o6P63yftYIh3MXajQfnfQRNxnKMl+u+wdt4m432PeZ0Us16XczMzMzMzMSqZrN+k2MzMzMzOzznHjzczMzMzMrAJK1XiTtJOkWyXNlTSr3/EASJon6XpJ10r6Y562nqQLJd2W/65bWP7wHP+tknYsTH9NXs9cSd+U1GhY2fHGeoKkxZJuKEzrWKySVpZ0Rp5+haTpnd6HqitjDrdC0jRJl0i6WdKNkj6ap5cy18dC0iRJf5L0i/x6YPatU6qavzVVKq9b5XK9dVXP37FoVnZPBPVlepWMlqtKvpnn/1nSq/sRZye1sM8zJT2ay+9rJX2mH3F2UqPyu27+2P7PEVGKB+kCz9uBFwIrAdcBm5UgrnnA5LppXwVm5eezgK/k55vluFcGNsn7MynPuxLYlnQvkF8BO3ch1jcBrwZu6EaswEeA7+bnewJn9Pv/U6ZHWXO4xdg3AF6dn68J/CXnSClzfYz7+N/AqcAv8uuB2bcOfT6Vzd/CPlSmvG5jn1yut/Y5VT5/x7jfDcvufsfVo30fVqZX5dFKrgK75O+pgG2AK/oddw/2eWbV/pct7Pdy5Xcn/s9lOvO2NTA3Iu6IiL8DpwO79TmmZnYDTsrPTwJ2L0w/PSKeiog7gbnA1pI2ANaKiD9E+m/9qPCejomIS4GHuhhrcV0/BbYftDMP41SlHB4mIhZFxDX5+ePAzcBUSprr7ZK0EbAr8IPC5IHYtw6qbP6OotL/Z5frLRvU/B3RCGX3QGtSpldFK7m6G/CjSC4H1snf46qaqN/PRuV30Zj+z2VqvE0F5hdeL6AcBVAAF0i6WtIBedqUiFgEqeAE1s/Tm+3D1Py8fnovdDLWZ98TEUuBR4Hndi3y6ilrDrcld5t6FXAF1cr1kRwNfAJ4pjBtUPatUwYhf6teXrfK5fryBiF/x6Wu7B50R7N8mV4VreTqoOVzq/uzraTrJP1K0ua9Ca2vxvR/7sp93sao0ZG+MtzH4PURsVDS+sCFkm4ZYdlm+1DGfRtLrGXcjzKp/OcjaQ3gTOCQiHhshAPwlcl1SW8HFkfE1ZJmtvKWBtNKuW8dNgj7N6jldasmcrk+KPsxJvVld7/j6aYxlOll00quDlo+t7I/1wAbR8QSSbsAPwdmdDuwPhvT/7lMZ94WANMKrzcCFvYplmdFxML8dzFwFunU732105r57+K8eLN9WJCf10/vhU7G+ux7JK0ArM3Ip4MnmlLmcKskrUj68T8lIn6WJ1cp15t5PfAOSfNIXTW2k3Qyg7FvnVTp/IWBKK9b5XJ9eZXP37FqUnYPsmZlelW0kquDls+j7k9EPBYRS/LzXwIrSprcuxD7Ykz/5zI13q4CZkjaRNJKpAunz+lnQJJWl7Rm7TnwNuCGHNe+ebF9gbPz83OAPfPoXZuQjhhcmbu1PC5pm3wtwfsL7+m2TsZaXNe7gIvz9ROWlC6HW5X/18cDN0fE1wqzqpTrDUXE4RGxUURMJ/1PLo6I9zEA+9Zhlc1fGJjyulUu15dX6fwdqxHK7oE1QpleFa3k6jnA+/NohNsAj9a6SlfUqPss6fm1620lbU1qozzY80h7a2z/51ZGNenVgzTqyl9II9J8qgTxvJA0Is51wI21mEjXA1wE3Jb/rld4z6dy/LdSGKEM2IpUkbgdOBZQF+I9DVgE/IPUmt+/k7ECqwA/IV0EfyXwwn7/j8r2KFsOtxH3G0in6v8MXJsfu5Q118exnzNZNtrkQO1bhz6fSuZvjr1S5XUb++VyvfXPqrL5O459blh29zuuHu7/s2V6lR6NchX4MPDh/FzAt/L864Gt+h1zD/b5oFx2XwdcDvxTv2PuwD43Kr/H/X+uFd5mZmZmZmZWYmXqNmlmZmZmZmZNuPFmZmZmZmZWAW68mZmZmZmZVYAbb2ZmZmZmZhXgxpuZmZmZmVkFuPFmZmZmZmZWAW68mZmZmZmZVYAbb22QtKmkP0l6XNLBPdrmJyX9oBfbssHSj3ztBkkzJS3odxxm9STNk/TWfsdhE4ekF0haImlSC8tOlxSSVuhFbDaxSTpR0hfHuY79JF02wvwhSR8czzYGgRtv7fkEMBQRa0bEN8eygkaJJ2k3SddKekzSA5IukjQdICK+FBETPlFtTLqVr5L0cUm3SXpS0t2SviRppY5EbWY2QY12QCAi7o6INSLi6V7GZWbl4cZbezYGbuzkCiW9GPgRcCiwNrAJ8G3gmU5uxyakjudr9k3gAOD9wJrAzsBbgdO7sC0zMwN8Bs3MwI23lkm6GHgLcGzusvDR3CXtMUnzJR1RWHYVSSdLelDSI5KukjRF0pHAGwvrOBbYErgzIi6K5PGIODMi7s7rOkLSyfn5eyTdIWmt/HpnSfdKel5+/W+Sbpb0sKTzJW2cp0vS1yUtlvSopD9LennvPj3rtW7lq6QZwEeAvSPiDxGxNCJuBP4V2FXSm/M6h52xq+8KIekbOY7HJF0t6Y2Feavm7hcPS7oJeG3dvh0m6Z7cHfRWSdt34zO06pL0KknX5Bw5Q9Lpkr7YqEtO7lb24vx812bfkzx/H0l35e/Kp3q4SzYBSPox8ALg/3KZ+4mcn/tLuhu4WHVdIXNZ+2VJV+bf97Mlrddk/WtLOl7SolyGflEtdL80a6S+nAVWKcz7d0lzJT0k6RxJG+bpy3Xlra8vpEk6JufzLSP9xjer9w46N95aFBHbAb8FDoqINYDrSGce1gF2Bf5D0u558X1JZ9GmAc8FPgw8GRGfKq4jIg4CrgFemhtXb5G0xggxnAH8AfimpOcCxwMfjIj787Y/CbwTeF7ezmn5rW8D3gS8JMf7HuDB8X4mVl5dzNftgQURcWXd9uYDl5NyrRVXkQ5crAecCvxEUq3g/yzwovzYMccHpOv4gIOA10bEmnn+vBa3aROAUvfdnwM/JuXXT0gHF1rxBE2+J5I2A74D7ANsSPqubNS5yG2ii4h9gLuBf87l9pw8683Ay0jlXSPvB/6NlJdLSb0jGjkpz38x8CpSee3LMqxtI5WzkrYDvgy8G9gAuIv2eua8DrgDmEyqD/ys0QGJUeq9A82NtzGKiKGIuD4inomIP5MS5s159j9IP+wvjoinI+LqiHisyXruAGYCU0kF9QP5rEOzRtyBwHbAEPB/EfGLPP1DwJcj4uaIWAp8CdgyH4X4B6l720sB5WUWjesDsErpVL6SCtNmubOIVIC2Es/JEfFgPnN3FLAysGme/W7gyIh4KDcKixWRp/Oym0laMSLmRcTtrWzTJoxtgBWBoyPiHxHxU9LBglGN8j15F/CLiLg0Ip4C/gd3b7feOCIinoiIJ5vM/3FE3BART5Dy8t31Z9QkTSF1cT8kr2sx8HVgz65GboNqpHJ2b+CEiLgml5WHA9sqj+XQgsWF9Z4B3Eo6mFZvpHrvQHPjbYwkvU7SJZLul/Qo6WzF5Dz7x8D5wOmSFkr6qqQVm60rIi6PiHdHxPNI3dTeBDTskhMRj5COcLwcOKowa2PgG0rd3h4BHgIETI2Ii4FjgW8B90k6TrnrpU0MHczXB0hH0hrZALi/xXgOzV0dHs35unYhng2B+YXF76o9iYi5wCHAEcDi3B1uw1a2aRPGhsA9ERGFaXc1W7holO/JsLzMFWX3YLBemN/G/LtIlerJdctsnKcvKtQTvges36kgbUIZqZzdkOG/20tIZeXUFtfdaL2Nfueb1ntb3E5lufE2dqcC5wDTImJt4LukpCEfLfhcRGwG/BPwdlK3BoBotLKaiLgK+BmpcbYcSVuSukecxvAzEvOBD0XEOoXHqhHx+7zeb0bEa4DNSd0nPz6Gfbbq6lS+XgxMk7R1caKkaaQjcb/Jk54AViss8vzCsm8EDiOdYVs3ItYBHq3FQzqDN63w3hcUtxURp0bEG0gFdwBfaWH/beJYBEyVpMK0Wg4Ny0tJz2e4pt8T6vJS0mqkM9ZmndSojjBivYHly8t/kA60Fc0HngImF+oIa0XE5mMP1SawkcrZhaTfZwAkrU4qK+8hlcHQpH6QNVrvwgYxjFjvHWRuvI3dmsBDEfG3XJF9b21GvnZti9xt4TFSQVob1vc+4IWFZd+QL+xcP79+KfAO0vVDw+Rrgk4m9fH9ACnBP5Jnfxc4XNLmedm1Je2Rn782H1FekfTF+VshHpsYOpKvEfEXUq6dImkbSZNyzp0J/B74dV70WuCdklZTGgxi/7pYlpLO0q0g6TNA8UzwHFIurytpI+A/C7FuKmk7SSuT8vhJnMs23B9I+XWwpBUkvROoHWy4Dthc0pa5PD2i7r1NvyfAT4G35zJ7JeDz+DfUOm9Ymdui90naLB9Q+Dzw0/pbCeRLJS4AjpK0lqTnSHqR8iBTZm0aqZw9FfhALmdXJnVnvCJf5nA/qRH3vlx/+DfS9e1F6+f1rpjrsS8Dftkghqb13kHnH56x+wjweUmPA59h2YXFkI4i/JRUEb6ZdDbi5DzvG8C7lEbG+SbwCKmxdr2kJcB5wFnAVxts88ukwSK+k/sRvw/4oqQZEXEW6QzE6ZIeA24g9W+HVDH+PvAw6fTzg8D/jv8jsArpVL5CGjDkB3mZv5Jy7S5g94ioXQP0deDvpIrIScAphe2dD/wK+Et+398Y3u3nc3n6naTKxo8L81YGZpOOKt9LKuQ/2d5HYYMsIv5OuoB9P1KZ9x5Sb4bawYfPkw4y3AbU3wy26fckj6p6IKlisiiv2zePt077MvDp3A3sXS2+58fAiaQycRXg4CbLvR9YCbiJlL8/pXk3eLOmRilnLyJde3kmqax8EcOvrfx3Uu+vB0m9werPlF0BzCD9zh8JvCsiluuiPkq9d6BpeLdSM7P2SPo8sDvwpnxNplmpSDqRdODr0/2OxayTJA0BJ0fED/odi5n1hm/4aGbjEhGfkbSYdM3bef2Ox8zMzGxQufFmZuMWEcf2OwYzMzOzQeduk2ZmZmZmZhXgAUvMzMzMzMwqoBTdJidPnhzTp09fbvoTTzzB6quv3vuA2uAYO6NZjFdfffUD+eblpeX87a4qx1j2/K1i7pY1trLGBWOLrey5C9XL37LGBeWNbaxxlT1/q5a7zTjezmspdyOi74/XvOY10cgll1zScHqZOMbOaBYj8McoQY6O9HD+dleVYyx7/lYxd8saW1njihhbbGXP3ahg/pY1rojyxjbWuMqev1XL3WYcb+e1krvuNmlmZmZmZlYBpeg22cz19zzKfrPObes982bv2qVozNrTbv46d60sXPZalbnstapy2Wut8Jk3MzMzMzOzCnDjzczMzDpK0gmSFku6oTBtPUkXSrot/123MO9wSXMl3Sppx/5EbWZWfm68mZmZWaedCOxUN20WcFFEzAAuyq+RtBmwJ7B5fs+3JU3qXahmZtXhxpuZmZl1VERcCjxUN3k34KT8/CRg98L00yPiqYi4E5gLbN2LOM3MqqbUA5aYmZnZwJgSEYsAImKRpPXz9KnA5YXlFuRpy5F0AHAAwJQpUxgaGlp+I6vCoVssbTmoY045u+Vla7aYunbb71myZEnDeMugrLGVNS6zfnLjzczMzPpJDaZFowUj4jjgOICtttoqZs6cudwyx5xyNkdd393qzby9l9/uaIaGhmgUbxmUNbayxmXWT+42aWZmZr1wn6QNAPLfxXn6AmBaYbmNgIU9js3MrBLceDMzM7NeOAfYNz/fFzi7MH1PSStL2gSYAVzZh/jMzErP3SbNzMysoySdBswEJktaAHwWmA3MkbQ/cDewB0BE3ChpDnATsBQ4MCKe7kvgZmYl58abmZmZdVRE7NVk1vZNlj8SOLJ7EZmZDQZ3mzQzMzMzM6sAN97MzMzMzMwqwI03MzMzMzOzCnDjzQaWpGmSLpF0s6QbJX00T19P0oWSbst/1y2853BJcyXdKmnH/kVvZmZmZjacG282yJYCh0bEy4BtgAMlbQbMAi6KiBnARfk1ed6ewObATsC3JU3qS+RmZmZmZnXceLOBFRGLIuKa/Pxx4GZgKrAbcFJe7CRg9/x8N+D0iHgqIu4E5gJb9zRoMzMzM7MmfKsAmxAkTQdeBVwBTImIRZAaeJLWz4tNBS4vvG1BntZofQcABwBMmTKFoaGh5ZaZsiocusXSlmNstI5uW7JkSV+22w7HaGZmZpa48WYDT9IawJnAIRHxmKSmizaYFo0WjIjjgOMAttpqq5g5c+ZyyxxzytkcdX3rX7F5ey+/jm4bGhqiUexl4hjNzMzMEnebtIEmaUVSw+2UiPhZnnyfpA3y/A2AxXn6AmBa4e0bAQt7FauZmZmZ2UjceLOBpXSK7Xjg5oj4WmHWOcC++fm+wNmF6XtKWlnSJsAM4MpexWtmZmZmNpJRG28ebt0q7PXAPsB2kq7Nj12A2cAOkm4DdsiviYgbgTnATcB5wIER8XR/QjczMzMzG66VC3Jqw61fI2lN4GpJFwL7kYZbny1pFmm49cPqhlvfEPi1pJe4Emy9FhGX0fg6NoDtm7znSODIrgVlZmZmZjZGo55583DrZmZmZmZm/dfWaJOdHG69G0OtQ++HW6/CEOGO0czMzMys+lpuvHV6uPVuDLUOvR9uvQpDhDtGMzMzM7Pqa2m0SQ+3bmZmZmZm1l+tjDbp4dbNzMzMzMz6rJUzbx5u3cysxySdIGmxpBsK03yLFjOzLnLZa2XXymiTl0WEIuIVEbFlfvwyIh6MiO0jYkb++1DhPUdGxIsiYtOI+FV3d8HMbCCdCOxUN20W6RYtM4CL8mvqbtGyE/BtSZN6F6qZ2cA4EZe9VmItXfNmZma9FRGXAg/VTfYtWszMushlr5Vde0M5mplZP43rFi1Q/du0lPW2ImWNC8odm1lFTPiyt5GqlS1Vi7cZN97MzKqvpVu0QPVv01LW24qUNS4od2xmFTdhyt5Gqla2VC3eZtxt0sysOnyLFjOz3nPZa6XhxpuZWXX4Fi1mZr3nstdKw90mzcxKSNJpwExgsqQFwGdJt2SZI2l/4G5gD0i3aJFUu0XLUnyLFjOzMXHZa2XnxpuZWQlFxF5NZm3fZPkjgSO7F5FZZ0iaBzwOPA0sjYitJK0HnAFMB+YB746Ih/sVo01cLnut7Nx4MzMzs157S0Q8UHhdu4/WbEmz8uvD+hPa6KbPOret5efN3rVLkZjZRONr3szMzKzfmt1Hy8zMCnzmzczMzHopgAskBfC9PIR6s/toDdOte2V129DQUKnvMVXW2Moal1k/ufFmZmZmvfT6iFiYG2gXSrql1Td2615Z3TZv75mlvsdUWWMra1xm/VSu0s3MzCrJ1wBZqyJiYf67WNJZwNbk+2jls27F+2iZmVmBr3kzMzOznpC0uqQ1a8+BtwE30Pw+WmZmVuDGmw00SSdIWizphsK09SRdKOm2/HfdwrzDJc2VdKukHfsTtZnZwJoCXCbpOtLNjM+NiPNI99HaQdJtwA75tZmZ1XG3SRt0JwLHAj8qTGs4JLWkzYA9gc2BDYFfS3qJb7hpZtYZEXEH8MoG0x+kyX20zKw5d1mfeHzmzQZaRFwKPFQ3udmQ1LsBp0fEUxFxJzCXdC2GmZmZmVnf+cybTUTNhqSeClxeWG5BnracbgxX3Y/hkKswDLNjNDMzM0vceDNbRg2mRaMFuzFc9by9l19Ht1VhGGbHaGZmZpa426RNRPfloaipG5J6ATCtsNxGwMIex2ZmZmZm1pDPvNlEVBuSejbDh6Q+BzhV0tdIA5bMII2GZmZmNmbTZ53LoVssZb8WB5fwoBLWLR7gpPrceLOBJuk0YCYwWdIC4LOkRtscSfsDdwN7AETEjZLmADcBS4EDPdKkmZmZmZWFG2820CJiryazGg5JHRFHAkd2LyIzMzMzs7HxNW9mZmZmZmYV4MabmZmZmZlZBbjxZmZmZmZmVgFuvJmZmZmZmVWABywxM7Oe83DVZmZm7fOZNzMzMzMzswpw483MzMzMzKwC3HgzMzMzMzOrADfezMzMzMzMKsCNNzMzMzMzswpw483MzMzMzKwC3HgzMzMzMzOrADfezMzMzMzMKsA36TYzs9Kr3dT70C2Wsl+LN/j2jb1tomj3pvfg74e1ZqTcalYeO7e6y403s5Lwj6+ZmZmZjcTdJs3MzMzMzCrAZ97MKqzds3U+U2dmZjD896OV7sj+/TArh4FrvLkya2ZmZtZZrl+ZlYO7TZqZmZmZmVVA1868SdoJ+AYwCfhBRMzu1rbMOsm5a1Xm/B07n1noL+euVZnz13qlK403SZOAbwE7AAuAqySdExE3dWN7vVT/4+5+4oNlkHN3LFyZrRbnb2/5mqHOce4Onon0++H8HW4i/e/7oVtn3rYG5kbEHQCSTgd2AyZkElulDHTujuXgQ7eNVsjXx+hCfkQDnb82ukbfp5G+5yX6Pjl3rcqcv9YziojOr1R6F7BTRHwwv94HeF1EHFRY5gDggPxyU+DWBquaDDzQ8QA7yzF2RrMYN46I5/UqiFZyN093/vZOlWMsXf4OQO6WNbayxgVji610uZunVzl/yxoXlDe2scZVuvyteO4243g7b9Tc7daZNzWYNqyVGBHHAceNuBLpjxGxVScD6zTH2BklinHU3AXnby85xrYMfNlb1tjKGheUO7aCgS97yxoXlDe2ssbVwMCXvY043v7o1miTC4BphdcbAQu7tC2zTnLuWpU5f62qnLtWZc5f65luNd6uAmZI2kTSSsCewDld2pZZJzl3rcqcv1ZVzl2rMuev9UxXuk1GxFJJBwHnk4ZMPSEibhzDqkY8vVwSjrEzShFjB3MXSrJPo3CMnVGKGCdI2VvW2MoaF5Q7NmDClL1ljQvKG1tZ4xpmgpS9jTjePujKgCVmZmZmZmbWWd3qNmlmZmZmZmYd5MabmZmZmZlZBZS28SZpJ0m3SporaVa/46knaZqkSyTdLOlGSR/td0zNSJok6U+SftHvWBqRtI6kn0q6JX+e2/Y7pvEoe+4CSJon6XpJ10r6Y7/jqZF0gqTFkm4oTFtP0oWSbst/1y1ZfEdIuid/ltdK2qVf8bVrtFxV8s08/8+SXt2juEYtXyXNlPRo4XP/TI9iG/G704/PTNKmhc/hWkmPSTqkbpm+fF7dVMb8de6OKa4Jmb/1qlB3KCprPaKm7PWJcYmI0j1IF3veDrwQWAm4Dtis33HVxbgB8Or8fE3gL2WLsRDrfwOnAr/odyxN4jsJ+GB+vhKwTr9jGse+lD53c5zzgMn9jqNBXG8CXg3cUJj2VWBWfj4L+ErJ4jsC+Fi/P7sx7MuouQrsAvyKdA+jbYArehTbqOUrMLMfZdpo351+fWZ1/9d7STd67fvn1eX9LF3+Onc78n8d+Pxtst+lrzvUxVzKekQhvlLXJ8bzKOuZt62BuRFxR0T8HTgd2K3PMQ0TEYsi4pr8/HHgZmBqf6NanqSNgF2BH/Q7lkYkrUX6gh0PEBF/j4hH+hrU+JQ+d8ssIi4FHqqbvBupgU/+u3svYypqEl9VtZKruwE/iuRyYB1JG3Q7sKqUr0305TMr2B64PSLu6uE2+6GU+evcHbeJkr/1XHfosLLXJ8ajrI23qcD8wusFlLjwkzQdeBVwRZ9DaeRo4BPAM32Oo5kXAvcDP1Tq2vkDSav3O6hxqEruBnCBpKslHdDvYEYxJSIWQaoYAev3OZ5GDsrdjE6oUDeMVnK17/k8Svm6raTrJP1K0uY9Cmm0706/P7M9gdOazOvH59Utpc9f5+6YTJT8rVeGz75dVapH1FShPjGqsjbe1GBaKe9pIGkN4EzgkIh4rN/xFEl6O7A4Iq7udywjWIF0Wvs7EfEq4AnSqeyqqkruvj4iXg3sDBwo6U39DqjCvgO8CNgSWAQc1ddoWtdKrvY1n0cpX68hda16JXAM8PMehTXad6dvn5nSzYHfAfykwex+fV7dUur8de62b4Llb72q1B2KXI/ok7I23hYA0wqvNwIW9imWpiStSCqcT4mIn/U7ngZeD7xD0jzSKfjtJJ3c35CWswBYEBG1I5M/JTXmqqoSuRsRC/PfxcBZpC4bZXVfretO/ru4z/EMExH3RcTTEfEM8H3K/VkWtZKrfcvn0crXiHgsIpbk578EVpQ0udtxtfDd6WcZsDNwTUTcVz+jX59XF5U2f527YzaR8rdevz/7tlWsHlFT6vpEq8raeLsKmCFpk3wkZk/gnD7HNIwkka7TujkivtbveBqJiMMjYqOImE76DC+OiPf1OaxhIuJeYL6kTfOk7YGb+hjSeFUhd1eXtGbtOfA24IaR39VX5wD75uf7Amf3MZbl1F0T8i+U+7MsaiVXzwHen0eh2wZ4tNblpJtaKV8lPT8vh6StSb9nD3Y5rla+O335zLK9aNLlrB+fV5eVMn+du+MykfK3XunrDkUVrEfUlLo+0aoV+h1AIxGxVNJBwPmkEXhOiIgb+xxWvdcD+wDXS7o2T/tkPiJk7flP4JRcYN0BfKDP8YxZRXJ3CnBW/h1cATg1Is7rb0iJpNNIo4pNlrQA+CwwG5gjaX/gbmCPksU3U9KWpC4u84AP9Su+djTLVUkfzvO/C/ySNALdXOCv9O672bB8BV5QiO1dwH9IWgo8CewZEd3uZtTwu1OGz0zSasAOFPKvLq5+fF5dU+L8de6OwUTL33oVqTsUlbYeUVP2+sR4aIBy38zMzMzMbGCVtdukmZmZmZmZFbjxZmZmZmZmVgFuvJmZmZmZmVWAG29mZmZmZmYV4MabmZmZmZlZBbjxZmZmZmZmVgFuvJmZmZmZmVWAG28lIWlTSX+S9Likg/sdj5mZmZWPpBslzezDdockfbDX2zUrC0m/krRvv+Nw4608PgEMRcSaEfHNfgdjViTpRElfHMf7x/yjL+m7kv5nrNu2iUfSPElPSloi6d6cv2v0Oy4bHDm3ao9nCvm2RNLe3dx2RGweEUMtxln8Ltwn6Yf+Lgy2/D9/a7/jGImkmZIW1E07QtI/cq4+Iun3krbtV4yNRMTOEXFSv+Nw463PJK2Qn24M3NjPWKza2imwq1C410TEhyPiC/2OwyrnnyNiDWBL4FXA4f0NxwZJRKxRewB3k/MtP05pZR2F3/8Rp3VA7bvwauC1wKfbebMS1xetF87IuToZuAT4SZ/jKSV/GcdJ0mGS7sndHW+VtH39WYr6Iwy54nyYpD8DT0i6GHgLcGw+4vASSbvmbpSPSZov6Yi67b4hH5V4JM/fL09fWdL/Sro7H2X7rqRVe/JhmPVYlyo6NkAi4l7gfGDLJkd7nz2QkY/8zpH0o1ym3yhpq8Kyy5X3vd0bKztJz5E0S9Ltkh7M+bRenjddUkjaX9LdwMWS9pP0O0lfl/QQcISkF0m6OL//AUmnSFqnsI2Wc7YoIu4BfgW8XNK6kn4h6X5JD+fnGxW2MSTpSEm/A/4KvLBuPzeQ9GdJH8uv95N0R47hzm6ffbT25Lrh0ZIW5sfRklbO82ZKWiDpUEmLJS2S9IHCe58r6f9yffQqSV+UdFlh/kslXSjpoVwuvrswbxdJN+W8uEfSxyStTsrDDbXsbPWGxXgjYilwCjBV0vPyuoYddM65f3J+Xvtu7Zvrvw9I+lQLn8sRkn4i6eQc4/W5Dn54/izmS3pbYflSdB12420cJG0KHAS8NiLWBHYE5rX49r2AXYF1ImI74LfAQfmo3V+AJ4D3A+vk5f5D0u55uy8gJf4xwPNIR5avzev9CvCSPO3FwFTgM2PeSasEST8GXgD8Xy4IPyHpHfmH/JFc4Lys2bJ5+k+Uupg9KulSSZuPIY7dJF2bC/nbJe1UmL1xrqQ8LukCSZML72u6bRUOhhR+ZA6TdC/wQ0mTc8Xjkfzj8Vv5KLFluUK6MzC3xbe8AzidVPaeAxyb1zOe8t4mjoOB3YE3AxsCDwPfqlvmzcDLSDkE8DrgDmB94EhAwJfz+18GTAOOGGGbDXO2nqRpwC7An0j1vx+Sev28AHiywfv2AQ4A1gTuKqxnOvAb4NiI+N9cGf8msHP+bvwTy+okVg6fArYh1Q1fCWzN8DOwzwfWJtUZ9we+JWndPO9bpDrp84F98wOA/L+/EDiVlL97Ad8u/IYfD3wo58XLgYsj4glSmbywcLZ6YTFYSSuR6sAPkr5DrXoDsCmwPfCZWr1nFP8M/BhYl/TdOJ/0/ZgKfB74Xhvb7wlXcMbnaWBlYDNJK0bEvIi4vcX3fjMi5kfEk41mRsRQRFwfEc9ExJ+B00gFPsDewK8j4rSI+EdEPBgR10oS8O/Af0XEQxHxOPAlYM9x7aWVXkTsQ6HrDvBzUs4cQmrg/5LUWFupftmI+Gpeza+AGaQC+BrSUa+WSdoa+BHwcVIl4k0Mr9y+F/hAXv9KwMcK89rZ9vOB9UiVjgOAQ4EFeT+nAJ8Eop3YbSD9XNLjwHxgMfDZFt93WUT8MiKeJv2gvzJPH095bxPHh4BPRcSCiHiK1Oh6l4b3EjgiIp4o/P4vjIhjImJpRDwZEXMj4sKIeCoi7ge+xrLf/0aa5WzNzyU9AlxGanR9KdcbzoyIv+a6wpENtnFiRNyY4/pHnrYZMAR8NiKOKyz7DOmM3qoRsSgifBlIuewNfD4iFuec+hypcV7zjzz/HxHxS2AJsKmkScC/kv7ff42Im4DiNV9vB+ZFxA9znlwDnAm8q7DezSStFREP5/kjeXfO1SdJ9dl35bNwrfpc/g5dB1zH8t+FRn4bEefn7fyEVJeYnXP+dGC6Cme+y8CNt3GIiLmkyvERwGJJp9ef+h3B/JFmSnqdpEuUujQ8CnyY1AcY0lG4RpWG5wGrAVfnsxCPAOfl6TaxvAc4N1cA/gH8L7Aq6YhoQxFxQkQ8XqhwvFLS2m1sc3/ghLzNZyLinoi4pTD/hxHxl1xhmUM6AjiWbT9D+iF5Kq/rH8AGwMb5h+e3EeHGm+2ej/bOBF7KsvJzNPcWnv8VWEXSCuMs723i2Bg4q/AbfDOp4T+lsEz97/+w15LWz/l1j6THgJMZOX8b5mxh2u4RsU5EbBwRH4mIJyWtJul7ku7K27gUWCdX1pvFCakRcA/w09qEfCblPaR6yiJJ50p66QjxWu9tSOHsaX5eLL8erGsk/RVYg1R/XIHhuVB8vjHwulq+55zfm3SQFVLDbxfgLkm/0egDkMyJiHVI35cbgNe0sG9F9d+FVgbnua/w/EnggXwgpPaaFtfTM268jVNEnBoRbyAlcJC6LT5BakTVPL/RW0dZ9amk7g/TImJt4LukrhSQvjgvavCeB0iJtnkuqNeJiLXzmRibWIYV1BHxDClvpjZaWNIkSbNzV8fHWHbGrNUKLzQ/qFDTsFAdw7bvj4i/FV7/P1KXuAuUrrmY1UbMNuAi4jfAiaQDGMPK5lxRbfngVpPy3qxoPqn74DqFxyqRrjerqf/9r3/95TztFRGxFvA+lv3+d8qhpO5lr8vbeFOeXtxOo3rKEaS6xqnFhl4+c7ED6UDaLcD3Oxyvjc9CUrlV84I8bTT3A0uBjQrTphWezwd+U5fva0TEfwBExFURsRupV83PSQduYZQ6cEQ8QDqLfYSkDfLkVurWE4Ibb+OgdG+27ZQu+vwbqeH0NKmv9y6S1pP0fNLR2natCTwUEX/L3dHeW5h3CvBWSe+WtILSxaRb5gr694GvS1o/xzhV0o7Lr94GULEwHFZQ5y6100hHTOuXhZRfuwFvJfV7n157axvbb3ZQYTTtbntY7PmM3aER8UJS3/X/lgeSsOGOBnYg/fCvojQg1Iqkaz5WbmUFI5T3ZkXfBY6UtDGApOdJ2q3NdaxJ6rb2iKSppK7onbYmKYcfURpQpdVuxf8A9gBWB36sNEDLFKVrrFcHnsqx+7vRXytKWqX2IF1G8emcj5NJYyGcPNpK8hmon5EaUavlM6rvLyzyC+AlkvaRtGJ+vFbSyyStJGlvSWvnHkCPsSwv7gOeO1Lvntxz53zSrbQg1a33zNvYimVdMyccN97GZ2VgNuko1L2kIwufJPU5v450BuEC4IwxrPsjwOfzNRufYdnRCiLibtJp6EOBh0gJXevXexjpLMTl+SzGr0lH12zw3ceyEcHmALsqjX66IilXngJ+32BZSD/kT5EuDl6NdK1ku44HPpC3+Zx84KCVrjPj2rakt0t6cW6g1n4cXHGwZ+VrPH5EGkziI8APSAcyniBdL9mKZuW9WdE3SL1mLsi/35eTBiRpx+dIw/o/CpxLqjx32tGkrvQPkGI8r9U3RsTfgXeSvgMnkLrVHUo6aPgQ6dq5j3Q2XGvTL0mN89pjFeCPwJ+B60nXlrd679aDSAdW7yXVb08j/WaTr5d8G2lshYV5ma+w7KDYPsC8XB/9MOkscq1hdhpwR+5u2awL+v8DDsgnJP6HdID4YdJ35NQW4x848qUhZoMhH909BliLVCjfTroIfSqpgf+R2kXkDZb9LumM7nakH9//IV2UPCMi5ko6EVgQESPeH0jSv5AK1U1IDcQDI+J8SUPAyRHxg7zcfsAHI+INSjeMbWnbkmbm9RSHtP4v4KOk7m8PA98L3xfOzMys4yR9BXh+ROw76sLWFW68mZmZmZnZcnIPmpVIZ+xeSzqr98GI+Hk/45rI3G3SzMzMzMwaWZPUdfcJ0iUZRwFn9zWiNkj6lZbdDLz4qGy3d595M7OW5cKuUYH324jYudfxmJmZmU0kbryZmZmZmZlVwAqjLSDpBNId1BdHxMvztPVIIyhOJ42o+O6IeDjPO5x0s96ngYMj4vzRtjF58uSYPn36ctOfeOIJVl999RZ3pT8cY2c0i/Hqq69+ICJKfZPxKudvJ3l/l1f2/G2Uu2X8P5YtpokQT9lzF5qXvWVVtrxpR9ViL3v+Vrne4Bg7Y1z13ogY8UG6ceOrgRsK074KzMrPZwFfyc83Iw2RvzJptLnbgUmjbeM1r3lNNHLJJZc0nF4mjrEzmsUI/DFGyZ9+P6qcv53k/V1e2fO3Ue6W8f9YtpgmQjxlz90Yoewtq7LlTTuqFnvZ87fK9QbH2BnjqfeOOmBJRFxKGr67aDfSUN7kv7sXpp8eEU9FxJ2k+41tPdo2zMzMzMzMbGSjdptsYkpELAKIiEX55nmQ7id1eWG5BXnaciQdABwAMGXKFIaGhpZbZsmSJQ2nl4lj7IwqxGhmZmZm1k9jbbw1owbTGo6IEhHHAccBbLXVVjFz5szlljnmlLM56rIn2gpg3uxd21p+vIaGhmgUe5k4xmqYPuvctt/T63y3icG5aFXWbv46d63KnO8Tz1gbb/dJ2iCfddsAWJynLwCmFZbbCFg4ngDb5SQ2MzMzM7NBNNabdJ8D7Juf78uym/WdA+wpaWVJmwAzgCvHF6KZmZmZmZm1cquA04CZwGRJC4DPArOBOZL2B+4G9gCIiBslzQFuApYCB0bE012K3czMzMzMbMIYtfEWEXs1mbV9k+WPBI4cT1BmZmZmZmY23Fi7TZqZmZmZmVkPdXq0STMzMzMza9P19zzKfmMY7dcmFp95MzMzMzMzqwA33szMzMzMzCrAjTczMzMzM7MKcOPNzMzMzMysAtx4MzMzMzMzq4AJP9rk9DZH9Zk3e9cuRWJmZmZmZtacz7yZmZmZmZlVgBtvZmZmZmZmFeDGm5mZmZmZWQW48WZmZmZmZlYBbryZmZmZmZlVgBtvZmZmZmZmFeDGm5mZmZmZWQW48WYDTdIJkhZLuqEwbT1JF0q6Lf9dtzDvcElzJd0qacf+RG1mZmZmtjw33mzQnQjsVDdtFnBRRMwALsqvkbQZsCeweX7PtyVN6l2oZmZmZmbNufFmAy0iLgUeqpu8G3BSfn4SsHth+ukR8VRE3AnMBbbuRZxmZmZmZqNZod8BmPXBlIhYBBARiyStn6dPBS4vLLcgT1uOpAOAAwCmTJnC0NDQcsssWbKk4fRmDt1iacvL1rSz/m5rd3+rbqLtr5mZmfWfG29my6jBtGi0YEQcBxwHsNVWW8XMmTOXW2ZoaIhG05vZb9a5LS9bM2/v1tffbe3ub9VNtP01a4ekE4C3A4sj4uV52nrAGcB0YB7w7oh4OM87HNgfeBo4OCLO70PYZmal526TNhHdJ2kDgPx3cZ6+AJhWWG4jYGGPYzMzGwQn4uuNzcw6zo03m4jOAfbNz/cFzi5M31PSypI2AWYAV/YhPjOzSvP1xmZm3eFukzbQJJ0GzAQmS1oAfBaYDcyRtD9wN7AHQETcKGkOcBOwFDgwIp7uS+BmZoOnJ9cbt3v9cK+uXa3ydbJVjt1s0LjxZgMtIvZqMmv7JssfCRzZvYjMzKxOR683bvf64V5dO1zl62SrHLsNN73d78fsXbsUiY2Vu02amZWQbzBvA8jXG1ulSZon6XpJ10r6Y57WtFw26wY33szMyulEPOCDDRZfb2yD4C0RsWVEbJVfNyyXzbrFjTczsxLygA9WZfl64z8Am0pakK8xng3sIOk2YIf8moi4Eahdb3wevt7YqqVZuWzWFb7mzcysOro+4MOSJUs4dIv2683dHMygbIMlOJ7R+XpjG1ABXCApgO/lazCblcvDtDLYzpRV2x9wp9sa/UaUrbypN+gxjqvxJmke8DjppppLI2KrkW7CaWZmXdGxAR+GhoY46rIn2g6gm4M+lG2wBMdjNmG9PiIW5gbahZJuafWNrQy2c8wpZ3PU9eU6r1JftlehvBn0GDvRbdJ9f83MesMDPpiZ9UlELMx/FwNnkbqnNyuXzbqiG9e8ue+vmVl3eMAHM7M+kLS6pDVrz4G3ATfQvFw264rxnpt1398B71fbK1WI0ayXfIN5M7NSmQKcJQlS/fnUiDhP0lU0KJfNumW8jTf3/R3wfrW9UoUY23X9PY+2fbNYs5qqDfjgG7+a2SCLiDuAVzaY/iBNymWzbhhXt0n3/TUzMzMzM+uNMZ/Wyv19nxMRjxf6/n6eZX1/Z+O+v2Zd5bMdZmZmZhPHePokuu+vmZmZmZlZj4y58ea+v2ZmZmZmZr3TjVsFmJmZmZmZWYe58WZmZmZmZlYBbryZmZmZmZlVQLluomZmZmZmZqVQP6r1oVssHfUeth7Zurt85s3MzMzMzKwC3HgzMzMzMzOrADfezMzMzMzMKsCNNzMzMzMzswpw483MzMzMzKwCPNqkmZmZmZn1Rf2IlqOZ6KNZuvFmZmZmE1a7FUdw5dHM+sfdJs3MzMzMzCrAjTczMzMzM7MKcOPNzMzMzMysAnzNm5mZmZmZdcRYriO11rnx1qb6hDx0i6XsN0qS+sJmMzMzMzMbL3ebNDMzMzMzqwCfeTMzMzNrg+9LZWb94sabmZmZWRdNn3VuS5dZ1LixZ2bNuPHWAz5CZ2ZmZmZm4+XGm9kE4gMJZmZmZtXlxpuZmfVcOwcSDt1iKTO7F4qZmVlleLRJMzMzMzOzCnDjzczMzMzMrALcbdLMzEqv3es1wddsmpnZ4PGZNzMzMzMzswpw483MzMzMzKwC3G3SzMwGkm+NYWZmg8aNtwEwWgXl0C2Wsl9hGVdQrFUezt3MzMzKZKLXe7vWeJO0E/ANYBLwg4iY3a1tDZqxXJhvnePcHTsPKtF/zl+rKufuMr04a+yDc53l/C2vMtarT9xp9TG/tyuNN0mTgG8BOwALgKsknRMRN3Vje2ad4tztPXdt6xznr1WVc3d8ylg5nUicv9ZL3TrztjUwNyLuAJB0OrAb4CSuqG7/MIznCESHOXdLriyVlGK3jBI1KJ2/49BqbtX+9yX6vz+rwgdDnLsTXMV7bjh/rWcUEZ1fqfQuYKeI+GB+vQ/wuog4qLDMAcAB+eWmwK0NVjUZeKDjAXaWY+yMZjFuHBHP61UQreRunj4o+dtJ3t/llS5/W8jdMv4fyxbTRIindLmbp7dS9pZV2fKmHVWLvXT5O0D1BsfYGWOu93brzJsaTBvWSoyI44DjRlyJ9MeI2KqTgXWaY+yMEsU4au7C4ORvJ3l/S2HcZW8Z96tsMTmeruhY2VtWVf4/VTn2HnG9t0QGPcZu3edtATCt8HojYGGXtmXWSc5dqzLnr1WVc9eqzPlrPdOtxttVwAxJm0haCdgTOKdL2zLrJOeuVZnz16rKuWtV5vy1nulKt8mIWCrpIOB80pCpJ0TEjWNYVRW6RjjGzihFjB3MXSjJPvWQ97fPOpS/pdsvyheT4+mwDpe9ZVXl/1OVY+8613tLZ6Bj7MqAJWZmZmZmZtZZ3eo2aWZmZmZmZh3kxpuZmZmZmVkFlLbxJmknSbdKmitpVr/jaUTSPEnXS7pW0h/7HQ+ApBMkLZZ0Q2HaepIulHRb/rtuCWM8QtI9+bO8VtIu/YxxPKqQu+MhaZqkSyTdLOlGSR/N00uVZ50maZKkP0n6RX49cPvbj9xtt8ySdHiO71ZJO3Yhnrbzu5sxSVpF0pWSrsvxfK6f8Vj7ylhXGEkV6hGDqOx1h2ZlYxnV/16XjaR1JP1U0i3589y2nfeXsvEmaRLwLWBnYDNgL0mb9Teqpt4SEVuW6H4SJwI71U2bBVwUETOAi/LrfjqR5WME+Hr+LLeMiF/2OKaOqFjujtVS4NCIeBmwDXBg3sey5VmnfRS4ufB6oPa3j7l7Ii2WWTmePYHN83u+nePupLbyuwcxPQVsFxGvBLYEdpK0TR/jsbEpW11hJCdS/nrEQKlI3aFZ2VhG9b/XZfMN4LyIeCnwStqMtZSNN2BrYG5E3BERfwdOB3brc0yVEBGXAg/VTd4NOCk/PwnYvZcx1WsS46AY+NyNiEURcU1+/jip0JlKyfKskyRtBOwK/KAwedD2ty+522aZtRtwekQ8FRF3AnNz3J2Mp9387mpMkSzJL1fMj+hXPDb4qlCPGEClrzuMUDaWSpPf69KQtBbwJuB4gIj4e0Q80s46ytp4mwrML7xeQAkThPQDeoGkqyUd0O9gRjAlIhZB+vIB6/c5nmYOkvTn3GWjql0yqpK7HSFpOvAq4Aqqk2djcTTwCeCZwrRB298y5W6zz7anMbaY312PKXcBuhZYDFwYEX2Nx9pWlbrCSAatvCubSn1v68rGsjma5X+vy+SFwP3AD3PXzh9IWr2dFZS18aYG08p4T4PXR8SrSae5D5T0pn4HVGHfAV5E6ha0CDiqr9GMXVVyd9wkrQGcCRwSEY/1O55ukfR2YHFEXN3vWLqsCrnbsxjbyO+uxxQRT0fElsBGwNaSXt7PeKxtrivYaCrzvS3zb39Ffq9XAF4NfCciXgU8QZvdkMvaeFsATCu83ghY2KdYmoqIhfnvYuAsyts15T5JGwDkv4v7HM9yIuK+XEF5Bvg+5f0sR1OJ3B0vSSuSCu9TIuJneXLp82yMXg+8Q9I8UleW7SSdzODtb5lyt9ln25MY28zvnn1uuWvNEOl6pL7HY62pUF1hJINW3pVNJb63TcrGMmn2e10mC4AFuQcFwE9JjbmWlbXxdhUwQ9ImklYiXXx9Tp9jGkbS6pLWrD0H3gbcMPK7+uYcYN/8fF/g7D7G0lDtRyH7F8r7WY6m9Lk7XpJE6qt9c0R8rTCr9Hk2FhFxeERsFBHTSf/PiyPifQze/pYpd5t9tucAe0paWdImwAzgyk5ueAz53dWYJD1P0jr5+arAW4Fb+hWPtadidYWRDFp5VzZlKn8bGqFsLI0Rfq9LIyLuBeZL2jRP2h64qZ11rNDxqDogIpZKOgg4H5gEnBARN/Y5rHpTgLNSLrMCcGpEnNffkEDSacBMYLKkBcBngdnAHEn7A3cDe/QvwqYxzpS0JambwDzgQ/2Kbzwqkrvj9XpgH+D6fB0OwCcpWZ71wEDtb79yt50yKyJulDSH9EO3FDgwIp7ucEht5XcPYtoAOCmPRvccYE5E/ELSH/oUj7WnlHWFkVShHjFoKlJ3aFg2VnV08D77T+CU3FC/A/hAO29WRCm71JqZmZmZmVlBWbtNmpmZmZmZWYEbb2ZmZmZmZhXgxpuZmZmZmVkFuPFmZmZmZmZWAW68mZmZmZmZVYAbb2ZmZmZmZhXgxpuZmZmZmVkFuPFmZl0nKSS9uMm8JZJe2OuYrHMknSjpi/2Ow8zMrF2S/kXS/FwfedUoy+4n6bLC66b1m24Z+MZb/YdcN29vSRe0uJ4jJJ08wvx5kt461ji7TdILclJO6ncs1pykN0j6vaRHJT0k6XeSXtvHeIZywfTKuuk/z9NnjncbEbFGRNwx3vXY4JK0jqTvSLpX0l8lXS/pAz3a9kxJCzq8ziFJH8zPJelSSZ+pW2ZfSbdLWq2T27bBJmkzSefk35DHJV0i6Z/6HZdZM5JWknSUpAW5nnqnpK/3OIz/BQ7K9ZE/9XjbbRuYxttYKr0RcUpEvK2HMb4xJ+YSSU/kyu+SwuMF3dp2RNydk/Lpbm3DxkfSWsAvgGOA9YCpwOeAp/oZF/AX4P21F5KeC2wD3N+3iGzCkLQS8GtgY2BbYG3g48BsSf/dz9g6ISIC2B/4b0mbA0h6Hqky8cGI+GsntiNphU6sx/pntP+hpBcBvwOuBzYBNgTOAi6QtG33I7RB1IOy43BgK2BrYE3gLUCvG1AbAzf2eJtjNhCNtxJXeoeJiN/mBtQawOZ58jq1aRFxdyvrafRF8hm1gfASgIg4LSKejognI+KCiPgzLDuLLOl/JT2cj07tXHuzpA3zEdeHJM2V9O95+iqSnpQ0Ob/+tKSl+XuDpC9KOnqEuE4B3lPIsb1IFYK/F7a9taQ/SHpE0iJJx+ZK93LygZb5kt6SXz/b5SB3v/uWpHPzUeMrcoWk9t63Sbo1H6T5tqTf1M5gNCPpRZIulvSgpAcknSJpncL8aZJ+Jun+vMyxI63PQNKrJF2T/0dnAKvk6etK+kX+LB/OzzfK8/aQdHXdeg6V9PP8fBdJN+V13iPpY3mxfYAXAHtExJ0R8Y+IOA84GPh8IY/nSTo8r+NhST+UtEphW2+XdG3O0d9LekVh3jxJH5P055xbZxTfO8LnsKukP0l6LOf0EYV5q0g6OefUI5KukjRF0pHAG4Fj80G7YyPiNuBI4HhJzwG+CZwZEZeMEvcspbNzj+f9/pfCvP2UDmJ+XdJDwLOxWedJ+rikM+umHSPpaElrSzo+l4335DJ3Ul5mtPJpnqTDJP0ZeELSCvn1Pfn/fquk7fPiRwB/iIhPRcRDEfF4RHwT+DHwlby+6bnMPUDSwhzToYXtPaeQVw9KmiNpvbr37ivp7hzvp7r4sVoLGpUDklbOZcbLC8s9T6kusH5+PVqZWJ93I5U3k5TOnj2gVDc5KOfKCnl+0+8A8FrgrIhYGMm8iPhRXSxNy2dJ/65U53lIqQ60YZ7+OUnH5OcrKp00+Wp+vaqkv+UyeQkwCbhO0u3NPtMO/9vGJyIq/yC12B9pMm8/4LLC6/8HXEY6els/7xvAfOAx4GrgjYV5RwA/Bc4AHgeuAV5ZmD8PeGt+/hxgFnA78CAwB1ivLq7pQAAr5NdrA8cDi4B7gC8Ckwr78Dvg68BDed6JwHeAXwJPAG8FdiUdrXgs78cRI2xvCPhCXu/jwAXA5BY+658A9wKPApcCmxfmrQocBdyV518GrNrv/KjKA1gr58tJwM7Aug1y+R/Av5MKmv8AFgLK838DfJtUkd6SdGZs+zzvUuBf8/MLcm7uXJj3L01iGgI+mN9TW/5K0hmQBcDMPO01pLNxK+Rcuxk4pLCeAF4M7Jhzc+v6efn5iTnHt87rOgU4Pc+bnHP7nXneR/Pn8cFRPtcXAzsAKwPPy/t7dJ43Cbguf7dWz5/dG/qdC2V+ACvl7/h/ASsC78r/hy8CzwX+FViNdAT1J8DP8/tWzv/blxXW9adCXi4il7nAusCr8/PTgZMaxLECsBTYMb+eB9wATCMdxPsd8MU879XAYuB1+X++b15+5cJ7rySdqVgv5++H87yZwIImn8VMYAtSmf8K4D5g9zzvQ8D/5c9iUv6OrFX8XtWtaxJwBfAz4O78+Y0W9x455ucA7yH9FmxQKC+WAv+ZPyuXxd39XmyQP/91Cvm5OP/ffw58L5cx6+dc+1Bermn5VMjNa3NerwpsSipDN8zzpwMvys/vBT7QILa3AE/nXJxOKnNPy/FsQfqtqNVfDgEuBzbKMX0POK2wrQC+n2N5Jekg+cs6/Xn60VbuNSwHgBOAIwvLHQicl5+3UiY+m3cjbSfP+zBwU86bdUm9JYp1zpG+A58mlXkfyfmouv2bR/PyeTvggbw/K5NO4lxamHd9fv5PpHrPFYV51xW28Ww9pIV93Y/hbYdh7+3J/7zfSdehxG1a6a19yPkf8H3gfGC1Jv+A95EqHysAh5IKwlXyvCNIFZR3kSosHwPuBFYsJNeohV9hW9PbSOz9qPsRJlVyHwVen/dtFUauSNRvbygn8kvy+oaA2S181v9GqlSsDBwNXFuY9628nqmkwuCfyAWBHy3n8svy/3ZB/p+fA0wp5MHcwrKr5f/p80kF7NPAmoX5XwZOzM+/QDqav0LO648Cs3PePEmThjvLGm/vI/3Ybwr8Jc97tvHW4H2HkI6k1V4HqWvEXcAWdcvWN95+UJi3C3BLfv5+0lHl2jyRKjEjNt4axLY78Kf8fFtSxWWFfv/vq/IA3kThoEGe9ntyQ6lu2S2Bhwuvv0OuTJB6HzzMssrC3aQGz1p16/h1s7Ip5/Le+fk88g96IXduL2z3C3XvvRV4c+G97yvM+yrw3fx8Jk0abw3iORr4en7+b/lzeUWD5YYa5W3+TALYrZW4G7z/2sJ79wPu7ne+TKQH8Cvg3/Pzt5Mqs1NIDZxVC8vtBVzSZB3Plk/59Tzg3wqvX0yqdL+VXP8ozFsK7NRgnS/NeTWVZXWBlxbmfxU4Pj+/mXzQL7/egFT3WaHw3o0K868E9uz3Z+/HsP/3tcBuOUfuKEz/HfD+/LyVMvHfWtlOfn4xuc6aX78158oKo30HSPXFA3N8T5F+X/YtLDuP5uXz8cBXC/PWyPk6nVS3/RupXj8L+CSp3rIGqXfeNwvvG7EBxvJla18bbwPRbTIiHgPewLIjQvfnU6dT8iIrkiqe6wH/HE2uIYiIkyPiwYhYGhFHkRoomxYWuToifhoR/wC+Rqr4btNgVR8CPhURCyLiKVLD711q0m84x7kz6UzFExGxmHQmYM/CYgsj4pgc25N52tkR8buIeCYi/hYRQxFxfX7957zPbx7ho/thRPwlr28OqaI1oog4IVJXjNp+vTKfDn8OqbLy0Yi4J1K3v9/n5axFEXFzROwXERsBLycd+Tm6sMi9hWVrebxGXu6hiHi8sOxdpB9rSGflZpKOTl0PXEjKjW1IDcIHRgntZ6QjVf9J6oIzjKSXKHWRu1fSY8CXSGfKig4B5kTE9aNs697C87/m/YO0j/NrMyKVmqMOJCFpfUmn564ajwEnF2KbBtwVEUtHW489a0Pgnvz519wFIGk1Sd+TdFf+rC8F1il0jzkJeK8kkbpDzimUEf9KanDdpdQdtnaNzgOkCuQwuTydnOfXzC88vyvHCul6hkNz96BHJD1C+t9vWFi+Wd41Jel1SgNC3C/pUdLR51pu/Zh0sPD03D3tq5JWHGl9EVG75qL2d8S4Jb2/0O3pEVKZUfzeFT8P676TSAe6yH9/TPofrggsKvyfvkc6SDta+VRTLPfmksrSI4DF+b21PG74XcnTniEdLFlunSz/XTmrEOvNpAODUwrLt/1dse4ZoRy4GFg1l1Mbk+p4Z+W3tVImDis/RilvNqxbvvh8xO9Ari9+KyJeD6xD6kJ+gqSXFdYxUr3grtqMiFhCOpkzNddt/0iq67yJVA/6Pemkx5vz64ZaKFv7aiAabzBqpffFpKMQn4uIvzdZRe36i5tzn9pHSF0ZG/4QRsQzpIrjhiyvlcKvfvmmiV2/7WbTRqlINNJWAazUp3l27gf8GOloCHkbk0mN2dtHWoe1LiJuIZ2Jevkoi0I6UrWepDUL015A6oILqcDaFPgX4DcRcVOevysjFGCFWP5KOqr8HzRovJGO4t0CzIiItUhHuFS3zB7A7pIOaWF/GllEOpsNpFH6iq9H8GXSgZ1X5NjeV4htPvCCZgdWrKFFwNT8+dfUBls6lJRnr8uf9ZvydAFExOWkayXfCLyXQi5FxFURsRup3Ps56YASpDNvO0tavS6OfyUdpb28MG1aXUwL8/P5pDN+6xQeq0XEaW3t+fJOJZ0dnxYRawPfLezrPyLicxGxGakXwttZNvBPNFpZA03jzpWx7wMHAc+NiHVI3UaL/5dWt2Od8XPgFUrXGb2d1O17PilPJxf+h2tFRO2695HKp5ph/8eIODUi3kCqOwT5ejbSd2WPBnG9m9RroXjgeqTvys51ObdKRNyDlc5I5UCup84hneV6L/CLwgHeVsrEaGU7eZFhv88Mz6/RvgPLNpiu9f8W6UDDZi18BAtJ34NanKuTzrTV8vU3pAPPrwKuyq93JF2acWmjFbZYtvbVwDTeihpUem8GPgD8StKmjd4j6Y3AYaRCbt38z3qU4f+saYXln0NK1IUsr93Cr5XEbvQjXD+taUWiQ97LslPxa5NOS5O38QDp9PSLGr7TRiXppfkAQm2Ah2mkQvfykd8JETGf1ED7stJACa8gjWB3Sp7/V9J1nAeyrLH2e9JZ4lEbb9knSV0q5jWYtybperQlkl5KauTVWwhsDxws6SMtbrPoXGALSbvnxtaBpC6jo1kTWAI8ImkqaaTCmitJPzqzJa2eP7vXjyG2ieQPpO5ZBytdxP5O0g8hpM/6SdJnvR7w2Qbv/xFwLLA0Ii6DZ4eK3lvS2rlnw2OkA16QGngLgJ8oDZiwoqQdSd2Aj4iIRwvrPlDSRnnbnyRdowzph/jD+QCX8v9617qDHSPKuVF8KO/vQxHxN0lbk8rI2vJvkbSF0lnHx0hdeWr7dB/Qyr0NR4p7ddJvwP15ex+gtQM91iUR8TfStfGnAldGGuV5Eema4aMkraU0IMiLJNV6xYxUPi1H0qaStpO0Muk390mW5dXngH+SdKSk9SStKek/SQcNDqtb1f8onSnfnFQ/qn1XvgscmSuwtUEudhvzh2LdNlo5cCrpmq298/OadsvE0bYzB/iopKlKA+48m2+jfQckHaJ0S5ZV82/KvqTvxZ9a2P9TgQ9I2jJ/J75Euq5tXp7/G1L+35RP3gyRLgW5MyKajZhd+rJ1IBpvrVR689GETwK/VmH0uoI1SRWS+4EVlO65s1bdMq+R9M5ccTyE5Y/61rRV+LVQuLeqaUWiQ9Yk7fODpOutvlSbkY/wnAB8TWnUw0mSts1fJmvN46SLh6+Q9AQpt24gnc1oxV6kBvVCUteIz0bEhYX5vyGd4b2y8HpNmhx9qhdpJKiG90wkXQP63rwP32dZRaB+HXeTGnCHaZRRIhu89wHSUeWvknJwM1KXiNG65n6O1F30UVID8GeFdT4N/DPp7PzdpEbCe9qJa6LJP4DvJPX7f5j0edU+06NJ1xk8QMrf8xqs4sekH8L6M7j7APOUzup/mNz9LHerfCvpINcVpIbQ10hd0/9f3TpOJZWld+THF/M6/kga6OfYHPPcHH+rppIqycXHi0gX2H9e0uPAZ1h2thDSgYWf5nhvJn3favcK/QapK/3Dkr7ZbKMjxZ3Pnh9FakzfR7re+Xdt7JN1x0mk/0Uxv99PGujnJtL/8acs697YtHxqYmXS9coPkHrPrE+q2xBp1NI3kAYSmUc6MPWvpEF96nPjN6R8ugj434io3fP2G6SDwBfkvL6c9LtkJTRaORARV5AG29iQ1HumNr2tMrGF8ub7pLL3z6RG1y9JderagYWRvgNP5nXfS8rrA0kDWY16/9eIuAj4H+BMUr6/iOGXHP2e9JtUq+fcRDro0bTeU4myNUpwceV4H6Qf1jmk06RP5L/fIzW+9mP4hYX/TuofO704j3TB5PGkH9pFwCcYPgjJEQwfbfJP5NHQYtkFlcXRJv+bdPHn46SuhF+qi3k6y482+R1S5fHRvP49o8HFkXnaidQNEEAaTOWuvM1fkL6UJzfZ3hCFC+YbbaPB57wGcHZe/12kL+OzF2qSviBH58+/NhqlRzjzoyuP/D1bCLyl37H40db/bdVchszo8HqfLYP98KNfD1IXxL9SN/BOWR71dQE//OjGgzSOw139jmNQH7Uhxs3MSi93l7uCdKTu46QjdC+MZYP4WMkp3Vj77RGxXYfXO490QOrXnVyvWavy5RRfIzXc/q3f8TQiaTrLRsr2QE3WEZJWJd2S4gLS+A5nApdHxCH9jGtQ+SJ9M6uSbUld42rdL3aPiCclfZdlo7wVnRwRH+5lgNZcbmCJNBy62cBQGijhPlKvlJ36HI5Zr4nUBfgM0sHVc0ldya0LfObNhpG0N6nLab27osHIQGZmZmZm1htuvJmZmZmZmVVAKbpNTp48OaZPn77c9CeeeILVV6+/tU/5Oe7Oufrqqx+IiOf1O46RVCV/yxYPlC+mTsdT9vxtlLtl+5804hjHb7T4yp67UJ2ytxe8z8OVPX+LuVvW/10Z4ypjTNDZuFrK3X6PmBIRvOY1r4lGLrnkkobTy85xdw7wxyhBjo70qEr+li2eiPLF1Ol4yp6/jXK3bP+TRhzj+I0WX9lzNypU9vaC93m4sudvMXfL+r8rY1xljCmis3G1krsDcZ83MzMzMzOzQVeKbpPNXH/Po+w369y23jNv9q5disasPe3mr3PXrLnphe/SoVssbem75e/UxOSy16pqept1XnD+TkQ+82ZmZmZmZlYBbryZmZmZmZlVgBtvZmZmZmZmFeDGm5mZmZmZWQW48WZmZmZmZlYBbryZmZmZmZlVgBtvZmZmZmZmFeDGm5mZmZmZWQW48WZmVkKSTpC0WNINhWnrSbpQ0m3577qFeYdLmivpVkk79idqMzMz6yY33szMyulEYKe6abOAiyJiBnBRfo2kzYA9gc3ze74taVLvQjUzM7NecOPNzKyEIuJS4KG6ybsBJ+XnJwG7F6afHhFPRcSdwFxg617EaWZmZr2zQr8DMOsWSdOAHwHPB54BjouIb0haDzgDmA7MA94dEQ/n9xwO7A88DRwcEef3IXSzZqZExCKAiFgkaf08fSpweWG5BXnaciQdABwAMGXKFIaGhobNX7JkyXLTyuDQLZY++3zKqsNfN9PP/Sjr51hT9vjMzKwxN95skC0FDo2IayStCVwt6UJgP1LXs9mSZpG6nh1W1/VsQ+DXkl4SEU/3KX6zVqnBtGi0YEQcBxwHsNVWW8XMmTOHzR8aGqJ+WhnsN+vcZ58fusVSjrp+9J+veXvP7GJEIyvr51hT9vjMzKwxd5u0gRURiyLimvz8ceBm0tkIdz2zqrpP0gYA+e/iPH0BMK2w3EbAwh7HZmZmZl3mM282IUiaDrwKuIIedD2D1rt21XS7C1MZu0mVLaayxdPAOcC+wOz89+zC9FMlfY101ngGcGVfIjQzM7OucePNBp6kNYAzgUMi4jGpUQ+ztGiDaWPqegZwzClnt9S1q6bbXbzK2E2qbDGVKR5JpwEzgcmSFgCfJTXa5kjaH7gb2AMgIm6UNAe4idRd+EB39zUzMxs8brzZQJO0IqnhdkpE/CxPvk/SBvmsm7ueWSlFxF5NZm3fZPkjgSO7F5GZmZn1m695s4GldIrteODmiPhaYVat6xks3/VsT0krS9oEdz0zMzMzsxLxmTcbZK8H9gGul3RtnvZJ3PXMzMzMzCrIjTcbWBFxGY2vYwN3PTMzMzOzinG3STMzMzMzswpw483MzMzMzKwC3HgzMzMzMzOrgFEbb5KmSbpE0s2SbpT00Tx9PUkXSrot/1238J7DJc2VdKukHbu5A2ZmZmZmZhNBK2felgKHRsTLgG2AAyVtBswCLoqIGcBF+TV53p7A5sBOwLclTepG8GZmZmZmZhPFqI23iFgUEdfk548DNwNTgd2Ak/JiJwG75+e7AadHxFMRcScwF9i6w3GbmZlZCbnHjplZ97R1qwBJ04FXAVcAUyJiEaQGnqT182JTgcsLb1uQp9Wv6wDgAIApU6YwNDS03PamrAqHbrG0nRAbrqfXlixZUoo42lXVuM3MrFRqPXaukbQmcLWkC4H9SD12ZkuaReqxc1hdj50NgV9Leonvs2lmtryWG2+S1gDOBA6JiMekZrfPanhfrVhuQsRxwHEAW221VcycOXO5Nx1zytkcdX17t6Kbt/fy6+m1oaEhGu1P2VU1bjMzK498YLd2cPdxScUeOzPzYicBQ8BhFHrsAHdKqvXY+UNvIzernumzzm1r+Xmzd+1SJNYrLbWMJK1IaridEhE/y5Pvk7RBPuu2AbA4T18ATCu8fSNgYacCNjMzs2roZI+dvL6O99oZhB4nE7HnzETcZzNoofGmdIrteODmiPhaYdY5wL7A7Pz37ML0UyV9jdT9YQZwZSeDNjMzs3LrdI8d6E6vnTL02BmvidhzZiLusxm0dubt9cA+wPWSrs3TPklqtM2RtD9wN7AHQETcKGkOcBOp3/uB7rduZma95u5E/eMeO2Zm3TFq4y0iLqPxUTGA7Zu850jgyHHEZWZmZhXkHjs2qCTNAx4HngaWRsRWktYDzgCmA/OAd0fEw/2K0QZfK/d5MzMzM2tVrcfOdpKuzY9dSI22HSTdBuyQXxMRNwK1Hjvn4R47Vm5viYgtI2Kr/LrhfY/NuqW9oRzNzMzMRuAeOzbBNBtF1awr3HgzMzMzMxtdABdICuB7eQCdZqOoDtNspNTiqJnt3tt4LFodobOMo3mWMSbofVxuvJmZmZmZje71EbEwN9AulHRLq29sNlJqcdTM/docZGksWh1dtYyjeZYxJuh9XL7mzczMzMxsFBGxMP9dDJxFupn8fXn0VOpGUTXrCp95MzMzMzMbgaTVgedExOP5+duAz9N8FNVSavUWKodusZT9Zp3rW6iUkBtvZmZmZmYjmwKclW82vwJwakScJ+kqGtz32Kxb3HgzM6sY32vIzKy3IuIO4JUNpj9Ik1FUzbrB17yZmVWT7zVkZmY2wbjxZgNN0gmSFku6oTBtPUkXSrot/123MO9wSXMl3Sppx/5EbTYmu5HuMUT+u3v/QjEzM7NucLdJG3QnAscCPypMq52hmC1pVn59mKTNgD2BzYENgV9LeklEPN3jmM1G0/F7DdWU9T46xfsfTVm1O/dD6uR+l/VzrCl7fGZm1pgbbzbQIuJSSdPrJu8GzMzPTwKGgMPy9NMj4ingTklzScMA/6EnwZq1ruP3Gqop6310ivc/OnSLpRx1fed/vlq9/1Eryvo51pQ9PjMza8yNN5uImp2hmApcXlhuQZ62nNHOXkD7Zwe6fRS8jEfayxZT2eJppnivIUnD7jWUc9r3GjIzMxtAbryZLaMG06LRgqOdvQA45pSz2zo70Mmj/o2U8Uh72WIqWzyNTLR7DZmZmdkybrzZRNTsDMUCYFphuY2AhT2PzmxkvteQmZnZBOXGm01Ezc5QnAOcKulrpAFLZgBX9iVCsyZ8ryEzMyuzdntWzJu9a5ciGUxuvNlAk3QaaXCSyZIWAJ8lNdqWO0MRETdKmgPcBCwFDvRIk2ZmZjZRuYt7+bjxZgMtIvZqMqvhGYqIOBI4snsRmZmZmZmNjW/SbWZmZmZmVgFuvJmZmZmZmVWAu02amZmZmVlftHpd3aFbLGW/WedO+AFOfObNzMzMzMysAtx4MzMzMzMzqwA33szMzMzMzCrAjTczMzMzM7MKcOPNzMzMzMysAtx4MzMzMzMzqwA33szMzMzMzCrAjTczMzMzM7MK8E26zczMaP1GsTUT/UaxZmbWez7zZmZmZmZmVgFuvJmZmZmZmVWAG29mZmZmZmYV4GvezEqi3ettwNfcWHmMJX/NzMysPW68mZmZmZlZJUz0waXceDMzMzMzs4E0aD2bfM2bmZmZmZlZBbjxZmZmZmZmVgFd6zYpaSfgG8Ak4AcRMbtb2yqa6P1gbfz6lbtmneD87Z2Rfm8O3WIp+9XN9+/NyJy7VmXOX+uVrjTeJE0CvgXsACwArpJ0TkTc1I3tmXWKc9eqrFP565Ejrddc9lqVOX+tl7p15m1rYG5E3AEg6XRgN8BJbGVXqdxtp5J96BZLmdm9UKwcKpW/E82gXTTfYc5dqzLn74Bpt35V39NiNOMp27vVeJsKzC+8XgC8rriApAOAA/LLJZJubbCeycADXYmwFsdXurLarsfdJWWMe+Meb2/U3IXy5G87DobJB7+vPPFkpfqM6Hw8pcvfFnK3bP+T5Rw8gWLs0m8UjB5f6XIXulP2dvEz7qXSfye6YKR9Ll3+jpC7pfzflbGcLWNMMLa4Rih3Rs3dbjXe1GBaDHsRcRxw3Igrkf4YEVt1MrBecNyVNmruQjXzt2zxQPliKls8YzDusrcKn4FjHL8SxjewZW8veJ/7bsxlb8n241lljKuMMUHv4+rWaJMLgGmF1xsBC7u0LbNOcu5alTl/raqcu1Zlzl/rmW413q4CZkjaRNJKwJ7AOV3allknOXetypy/VlXOXasy56/1TFe6TUbEUkkHAeeThkw9ISJuHMOqRuwaUWKOu6I6mLtQvs+zbPFA+WIqWzxt6VD+VuEzcIzjV6r4Brzs7QXvcx+NM39Lsx91yhhXGWOCHseliOW6lJuZmZmZmVnJdKvbpJmZmZmZmXWQG29mZmZmZmYVUNrGm6SdJN0qaa6kWX3Y/gmSFku6oTBtPUkXSrot/123MO/wHOutknYsTH+NpOvzvG9KUp6+sqQz8vQrJE3vUNzTJF0i6WZJN0r6aFViHxS9zN1u5+kY4ul6/rUZzyqSrpR0XY7nc/3+jMqs3+VujqEjOd3lGDuW512Kr2N5XyVlyN9OKVvZ3gtl+/3ohX7lbJnLMEmTJP1J0i9KFNM6kn4q6Zb8mW3b17gionQP0sWetwMvBFYCrgM263EMbwJeDdxQmPZVYFZ+Pgv4Sn6+WY5xZWCTHPukPO9KYFvSPUB+Beycp38E+G5+vidwRofi3gB4dX6+JvCXHF/pYx+ER69zt9t5Wsb8azMeAWvk5ysCVwDb9PMzKuuj17nb7Zzucowdy/MuxdexvK/Koyz528H9KVXZ3qN9LtXvRw/2t285W+YyDPhv4FTgF/l1GWI6Cfhgfr4SsE4/4+p78jb5kLYFzi+8Phw4vA9xTK8rOG8FNsjPNwBubRQfabShbfMytxSm7wV8r7hMfr4C6c7s6sI+nA3sUMXYq/joR+52M0/LmH/jiGU14BrgdWWIp2yPspS7edvjyuk+xDumPO9RbGPO+37l4hj3szT528F9Km3Z3qP9L83vR5f2rzQ5W5YyjHR/vIuA7VjWeOt3TGsBd1JXz+1nXGXtNjkVmF94vSBP67cpEbEIIP9dP09vFu/U/Lx++rD3RMRS4FHguZ0MVqk746tIR10rFXuFlSF3O/m/HrMu5l+7cUySdC2wGLgwIvoaT4mVIXebaff/1TPjzPNuxtWJvK+SQdiH0UyYcqssvx9dVoqcLVkZdjTwCeCZwrR+x/RC4H7gh7k75w8krd7PuMraeGvUNzl6HkXrmsU70n50dR8lrQGcCRwSEY+NtGiTOPoWe8WV+bMZy/96bBvqbv61JSKejogtSUf0tpb08n7GU2JV3Me+xtyBPO+aDuV9lQzCPozVQJVbZfr96LK+x1mmMkzS24HFEXF1q29pMK0bn98KpC7M34mIVwFPkLpJ9i2usjbeFgDTCq83Ahb2KZai+yRtAJD/Ls7Tm8W7ID+vnz7sPZJWANYGHupEkJJWJH0ZT4mIn1Up9gFQhtzt5P+6bT3IvzGJiEeAIWCnMsRTQmXI3Wba/X91XYfyvOvGmfdVMgj7MJqBL7fK+vvRJX3N2RKWYa8H3iFpHnA6sJ2kk/scU207C3LvBYCfkhpzfYurrI23q4AZkjaRtBJpUIxz+hwTpBj2zc/3JfURrk3fU2kUxk2AGcCV+TTq45K2ySMdvb/uPbV1vQu4OHLn2PHI2zkeuDkivlal2AdEGXK3k//rtvQo/9qJ53mS1snPVwXeCtzSr3hKrgy520xb/69uB9OpPO9ifB3J+27F1yVlzt9OGehyq2y/Hz3Qt5wtYxkWEYdHxEYRMZ30WVwcEe/rZ0w5rnuB+ZI2zZO2B27qa1ydvrCvUw9gF9LoN7cDn+rD9k8DFgH/ILWi9ydd13URcFv+u15h+U/lWG+lMKoRsBVwQ553LPmCR2AV4CfA3PxPfWGH4n4D6fTsn4Fr82OXKsQ+KI9e5m6387SM+ddmPK8A/pTjuQH4TJ7et8+ozI9e5m63c7rLMXYsz7sUX8fyvkqPMuRvB/elVGV7j/a5VL8fPdrnvuRsBcqwmSwbsKTvMQFbAn/Mn9fPgXX7GVetMm5mZmZmZmYlVtZuk2ZmZmZmZlbgxpuZmZmZmVkFuPFmZmZmZmZWAW68mZmZmZmZVYAbb2ZmZmZmZhXgxpuZmZmZmVkFuPFmZmZmZmZWAW68NSHpRElf7PSy3dRmzPtJuqzbMVnvDXrujnM7Q5I+2O3tWGOS3ijp1hLEUYq8t2qTtETSC1tcNiS9uEPbnZ7Xt0KDeS/IcU3Kr38lad9ObNfMymFCNt5yBe5hSSt3Yd0zJS0ovN4gF7JTCtM+1WTaeZ2OxwaLc9eqLCJ+GxGbjnc9Ha4Iz5T0TK7wLpG0QNIcSa/txPpH2bYkfVzSbZKelHS3pNnd+H5b+yTNk3SfpNUL0z4oaQggItaIiDs6sJ3lDqZK2kjSmZIekPSopOsl7TfauiLi7hzX0/n1zhFx0nhjNLPymHCNN0nTgTcCAbyj29uLiEXAXOBNhclvAm5pMO3Sbsdj1eXctbJrdCagIhZGxBrAmsA2pBz/raTtu7zdbwIHAO/P294Z2A6Y0+XtWutWAD7ah+3+GJgPbAw8l5Qj9/UhDjMrmQnXeCMVgJcDJwLPdiWQ9CpJ10h6XNIZwCqFeY2Oii135DcfnfsVsGHhKO6GpIrtm/Iyk4BXAd+om7ZtXg5J/ybp5nyG5XxJGxe28VJJF0p6SNKtkt7daCclrSnpEknfzEd3nyvpHEmPSboSeFHd8t+QND/Pv1rSG/P050v6q6TnFpZ9jaT7Ja3YwudtnTNRc7fp+5S6v31L0rl5/6+Q9KLC/B0k3ZKPXB8LqOVP256Vz0AcLumm/L/9oaRVlM/WSjpM0r3ADyWtLOloSQvz42jlM0la/uzuhvnswv2S7pR0cGHeJEmflHR7/t9eLWmapNqBgutynr4nL/92SddKekTS7yW9orCupt+RokgWRMRngB8AXymsY0xlpKQXS/pNzsEH8vaRNAP4CLB3RPwhIpZGxI3AvwI7SdouL3eipO/m78DjeV0tfa9G+35YS/4f8DFJ69TPKJalSr+x/5fz4ypJX9Tylya8Veks68P5/yJJLwO+C2yb8/mRvOxrgRMj4omcG3+KiF81ClDSv+bv6MtV16VSha7iyr8Hkv43x3CnpJ0L69lE0qU5V36dYzx5tA9I0k8k3Ztz/FJJmxfmrSrpKEl35fmXSVp1tHWaWXMTtfF2Sn7sKGmKpJWAn5OOdK0H/IT0A9qWiHiCdOR0Ye62sEZELKRQASZVfm8BLqqbtiJwpaTdgU8C7wSeB/wWOA2erWBfCJwKrA/sBXy7WFDm5Z6b1/+7iDg4IgL4FvA3YAPg3/Kj6Cpgy7z/pwI/kbRKRNwLDAHFivb7gNMj4h/tfkY2LhMud4HVWnjfXsDngHVJZwqPzOuaDJwJfBqYDNwOvL7dz8aetTewI+nAz0tInyvA80m5tzHpLNKnSGevtgReCWxdWPZZkp4D/B9wHTAV2B44RNKOeZH/Jv1vdwHWIpVZf42IWu69MufpGZJeDZwAfIh0luJ7wDlKDcmxfkd+Brxay7rMjbWM/AJwASk/NwKOyctsDyyIiCuLG42I+aSDNDsUJu+d1zMZuJZUBrT6vWr4/bCW/ZH0//3YKMt9C3iC9H3Yl8IBtoK3kxplryTly44RcTPwYeAPOZ/XycteDnxL0p6SXtBso5I+QDrI8NaIuKGF/XkdcCspl74KHC+pdlDrVOBK0nfoCGCfFtYH6cDfDFIOXkPOz+x/gdcA/0T67nwCeKbF9ZpZIxExYR7AG4B/AJPz61uA/yJVRBcCKiz7e+CL+fl+wGV16wrgxfn5iYVlZ5J+kIvLTgeeJv14/hdwZJ5+T2HaJXnar4D9C+99DvBXUsXoPcBv69b9PeCzhThOAG4APl5YZlLe75cWpn2pfp/q1vswqXJE3u7vCuu6F9i63//PifSYwLnbyvt+UJi3C3BLfv5+4PLCPAELgA/2+/9ZtQcwD/hw3ed8e86ZvwOrFObdDuxSeL0jMK8+x0iVyLvrtnM48MP8/FZgtybxPJvD+fV3gC/ULXMr8OYWviPL5X2e/tK8nalNYmipjAR+BBwHbFT3/k8X87Nu3unA92NZjp9emLdG/k5OG8/3w4+W8/6twMuBR0kHpT4IDBXzkGW/sZsW3vtFCmVvXvYNhddzgFn5+X4sX06vC8wGbsz/72uB1+Z50/P6PgbcVMytwrwV8ushcpmXtzO3sOxqednnAy8AlgKrFeafDJzc5me2Tl7n2qTfgCdr3xM//PCjM4+JduZtX+CCiHggvz41T9sQuCciorDsXZ3aaETMI1Ua30CqSPw2z/pDYVqtK9DGwDeUuv48AjxEqnROzfNeV5uX5+9NKnhrdgVWJXXDqHkeqd/+/MK0Yfsn6VCl7m6P5vWuTToyB3A2sJnSqFo7AI9G3dFi67qJmrutvO/ewvO/kiq3kD6bZ3M+f0bF74C1p7782DA/vz8i/laYtyHDc7C4bNHGpG66xf/tJ4HaYDjTSA3BVmwMHFq3rml5u2P9jkwlVUIfgXGVkZ8gfQ+ulHSjpFqvhwdIPSEa2SDPrynm8RLSd2tDxvf9sBZFOqP1C2BWk0Ua/cY2Kmta/l9ExMMRMSsiNid9J64Ffl44SwbwceBbEbGg0TqaeDaGiPhrfroGKZ8eKkxrtg/DKHVvnq3UvfkxUoMX0ndjMqmLcqvfYzNrQVUvLm9b7mP9bmCS0rUZACuTjhItAqZKUuEH/gUsK3CeIB2hqq2r+MNYL5pM/y2porsty7pT1Ka9ATg2T5tPOrtxSv0KlK5z+E1E7FA/r+D7pCN2v5S0U6TucPeTjqhNI52xqe1fbb1vBA4jdeO5MSKekfQw+fqgiPibpDmkSsFLSd2PrEcmeO7Ob+F9zSwi5XwtBhVfW9uKn90LSGezYPm8WUhqVNzYYNmi+cCdETGjyfbmk7pottIVrJZ7y3UJlPRmRv6ONPMvwDUR8cR4yshI3Sr/PcfyBuDXStftXUzq4rh18WCYpGmkbqdfKMRSzOM1SN3PFjK+74e157OkLoFHNZhX+43dCPhLntZOWdOs7E0zIx6Q9L+k8ne9wqy3AedJujcizmxje40sAtaTtFqhAdfKPrwX2I10hnIe6aBG7bvxAOlyjReRukebWQdMpDNvu5O6HmxGum5hS+BlpEro7qSC92BJK0h6J+k6jZrrgM0lbSlpFVJf8GbuA54rae266ZeSunEtjIjH8rTL8rS1SWcyIJ11OLx2zYKktSXtkef9AniJpH2ULoRfUdJrlS54LjqI1GXoF5JWjTRk8M+AIyStJmkzhvfHXzPv//3ACpI+Q7rGpOhHpC4X7yB1pbDe2Z0JmrttvK+Rc/O+v1Pp4v2DGX5GwtpzoNLw5euRzpCd0WS504BPS3qe0nWHn6FxmXEl8JjSYCer5iP4L9eyIfp/AHxB0gwlr9CyQUHuA4r31/o+8GFJr8vLri5pV0lrkvJzpO/Is/J7p0r6LKl73CfzrDGXkZL2kLRRfvkwqaL+dET8hfSdOUXSNnn/Nyddp/nriPh1Yd27SHqD0vV7XwCuiHRt3Hi+H9aGiJhLyvmDG8yr/419Kal8bNV9wEb5/wuApK/k78MKOY//g9Tl8cHC+24EdiJdGzeuEYgj4i7S9X1HSFpJ0rbAP7fw1jWBp4AHSQcKv1RY5zOk7vBfUxqcaJKkbeVbYZiNy0RqvO1Lupbi7oi4t/YgnTXYizTIwn6kH9f3kApiAPKP7OeBXwO3kSquDUXELaTKyx1K3Vhq3YV+Q7qYt/jea0ndxK6uHemKiLNIFx+frtQF4QbSQBJExOOkI217ko663puXHVYQ5qPLB5COyp6dK+0HkbpG3Eu6DuKHhbecT7pe6S+k7kR/o667RET8jnSR8TW5K531zoTNXdJ1JKO+r8n+PADsQbpu5EHSBfW/G+191tSppIE37siPZje5/iKpEvhn4HrS2Yrlls0V3n8mHYy4k3SU/gekAwIAXyNdF3QB8BhwPCnnIB2EOCnn6bsj4o+ks1vHkr4Hc0nfCSLi74zwHck2lLQEWEIamGQLYGZEXJDnj6eMfC1wRV7/OcBHI+LOPO+gvM8n522fR7pGqX5AlVNJZ34eIg3+sHfeZkvfK+uYzwOrN5l3ECl37yWdeT2N1KhpxcWkhti9kmrdZVcDziJ1272DdDZ7uQZaRFxHGgjl+yqMHDlGe5N6WDxI+s6ewej78CPSd+Ie0vV3l9fN/xipHLiKlL9fYWLVPc06TsMvAzBrTtLFwKkR8YN+x2JmvSNpHmnQg1+Ptuwo69mONIDGC0dduIK6UUZKOpE0oMpyI3ZaeUn6CvD8iNh31IVLSv+/vfsPlew+6zj+frJNatlGknTTdekGb1pCoTQ1DcuqRMqt1brNSreClUCVBFIWxEDFiN5S0Opfq1BRRIqx1i7aNko1zdKANqRe/M9m12yymyYx23hrN7tmjT9qsn9Yt33845zb3Cz3x/w653y/d94vGO7Mydydz8w8Ocxzv88503ytxdOZ+ZtDZ5H0Cv/6oZG0o0y3svGolCRt5e00q2zbjvvI+RbN9+29ox293Q/cTbNyVo125PYtEXFFRBygOZbtiwPHknSZuTlhiSYXEUdpjq36SDumI0ljiYg/oBn7qnYlYiPuI0Vz7Nfnac7aeIHmxCYPDppofD9AM1L8BpqzDP9iZj4WER+i+QqKy32jPRumpB45NilJkiRJFXBsUpIkSZIqUMTY5K5du3JhYWHQDBcvXmTnzo1OIjUMM8GJEydezMzre3vACQxZvyXWCJhrVen1W8K+dz2l1s9GassLW2cuvXZh4/ot8f0oMRNs31w11K80qSKat4WFBY4fPz5ohuXlZRYXFwfNcDkzQUR8o7cHm9CQ9VtijYC5VpVevyXse9dTav1spLa8sHXm0msXNq7fEt+PEjPB9s1VQ/1Kk3JsUpIkSZIqYPMmSZIkSRUoYmxylhaWHhrr/itHDnaURBrPuLUL8JkD5R2rIHVhkv8/3L/Pp1PPf4u7xqgX60RSTbZd8yZJKt9mzdi9N18a68O3JEnzwrFJSZIkSaqAzZskSZIkVWDuxyZXR3dGHdNxNl6SJEnSEFx5kyRJkqQK2LxJkiRJUgVs3iRJkiSpAjZvkiRJklSBuT9hiVQzv4xWkiRpfrjyJkmSJEkVsHmTJEmSpArYvEmSJElSBWzeJEmSJKkCNm+SJEmSVAGbN0mSJEmqgM2bJEmSJFXA5k2SJEmSKmDzJkmSJEkVsHmTJEmSpAq8ZugAkvqzsPTQWPdfOXKwoySSJEkalytvkiRJklQBmzdJkiRJqoDNmyRJkiRVYKpj3iJiBXgJ+A5wKTP3RcR1wF8CC8AK8HOZ+V/TxZQkSZq9cY8FBo8HljScWay8vTszb8nMfe3tJeCRzLwJeKS9LUmSJEmaQhdjk4eAo+31o8AHOngMaWoRsRIRpyLiZEQcb7ddFxEPR8Sz7c9rh84pSZIkwfRfFZDAlyMigT/OzPuA3Zl5HiAzz0fEG9f7xYg4DBwG2L17N8vLy1NGadx786WJfm/360b73VnlHMXLL7/c6+ONosRMU3p3Zr645vbqyvGRiFhqb//6MNEkTcOvxpAkbTfTNm+3Zea5tkF7OCKeHvUX20bvPoB9+/bl4uLilFEad00wuw5N4/aJUyO8HKcujv1vT/qBYHl5mVm9LrNSYqYZOwQsttePAsvYvEnSzHi8vCRNbqrmLTPPtT8vRMQDwH7ghYjY06667QEuzCCn1IWiVo4nWTUedcV4UpM+r1JXaEvNJc0hpx4kaQITN28RsRO4IjNfaq+/F/ht4BhwJ3Ck/fngLIJKHShq5XiSVeORV4wntPKhxYl+r9QV2lJzSXLqQZJGMc2nvt3AAxGx+u98LjP/NiIeBf4qIu4G/hX44PQxpdlz5Vi1cuxMlet06qHriQQYfyqh1FV/c0n1mbh5y8zngB9aZ/t/AO+ZJpTUNVeOtQ04dqZadTr18IeffbDTiQQYfyqh1FV/c0n16XbvJpXLlWNtN46dqQpOPUjS5GzeNJdcOVblijrZziQ2G2vrY+xtPdvtBD2bGSqzUw+SNB2bN0mqT1En25nEZifo6fpEPBvZbifo2cyAmZ16kKQp2LxJUmUcO1OtnHqQpOlcMXQASdLoImJnRFy9ep1m7Ow0r4ydgWNnkiRtS668SVJdHDuTJGlO2bxJUkUcO5MkaX45NilJkiRJFbB5kyRJkqQK2LxJkiRJUgVs3iRJkiSpAjZvkiRJklQBmzdJkiRJqkDRXxWwsPTQ0BEkSZIkqQhFN2+ShjXuH1BWjhzsKIkkSZIcm5QkSZKkCti8SZIkSVIFbN4kSZIkqQIe89YDjxuSJEmSNC1X3iRJkiSpAjZvkiRJklQBmzdJkiRJqoDNmyRJkiRVwBOWSJIkjWHcE5F95sDOjpJImjeuvEmSJElSBWzeJEmSJKkCjk1KkqY27hiZJEkanytvkiRJklQBmzdJkiRJqoDNmyRJkiRVwGPepI54DJAkSZJmyZU3SZIkSaqAzZskSZIkVcCxSUmSpA6dev5b3DXGKP3KkYMdppFUM5u3Aq0eK3XvzZdG2tm7k1cpxq1dsH5VjnGPU7V2JUl9s3nbBvzAoZpZv5IkSaOxeZMkvYpnSpUkqUw2b5IkSQVxIkHSRjo722REHIiIZyLiTEQsdfU40qxZu6qZ9ataWbuStLVOVt4iYgfwR8BPAmeBRyPiWGZ+rYvH03imGYka50QU4yjlr4bWbvms341Zv6qVtdu/haWHOj25VB/76lL2vVKfuhqb3A+cycznACLifuAQ4E5YpbN2VTPrt0eTnF11XF19YF7NXNCHX2u3cB4LK5UhMnP2/2jEzwIHMvPD7e1fAH44M+9Zc5/DwOH25luBZ2YeZDy7gBcHznA5M8EPZub1fT3YKLXbbi+lfkusETDXquLqt6Da3Uyp9bOR2vLC1pmLq912+yj1W+L7UWIm2L65eq1fqU9drbzFOtte1SVm5n3AfR09/tgi4nhm7hs6x1pmGsSWtQvl1G+p74e5BlPdvnc9tb1PteWFIjPPbN9b4HMrMhOYS6pRVycsOQvcsOb2XuBcR48lzZK1q5pZv6qVtStJI+iqeXsUuCkiboyIq4A7gGMdPZY0S9auamb9qlbWriSNoJOxycy8FBH3AH8H7AA+nZlPdvFYM1TiGJGZelZh7Zb6fphrABXW70Zqe59qywuFZZ5x7Rb13FolZgJzSdXp5IQlkiRJkqTZ6uxLuiVJkiRJs2PzJkmSJEkVmMvmLSJWIuJURJyMiOPttusi4uGIeLb9eW0POT4dERci4vSabRvmiIiPRsSZiHgmIn6qx0wfj4jn29frZETc3mcmNazbiXJZu4UptX62yHxDRPx9RDwVEU9GxEdKzh0R3xcRX42Ix9u8v1Vy3lmJiANt/jMRsdTzYxdbIxGxIyIei4gvFZTpmoj4QkQ83b5mP1pCLqkKmTl3F2AF2HXZtt8FltrrS8Dv9JDjXcCtwOmtcgBvAx4HXgvcCHwd2NFTpo8Dv7rOfXvJ5OV7r7d1O34ua7ewS6n1s0XmPcCt7fWrgX9usxWZm+Y7017fXr8S+EfgR0rNO6PnvKPN/Wbgqvb5vM0aSYBfAT4HfKm9XUKmo8CH2+tXAdeUkMuLlxouc7nytoFDNDsT2p8f6PoBM/MfgP8cMcch4P7M/N/M/BfgDLC/p0wb6SWTNmXdbp5rI9buQEqtn81k5vnM/Kf2+kvAU8CbKDR3Nl5ub17ZXrLUvDOyHziTmc9l5reB+2meVy9KrZGI2AscBD61ZvPQmb6f5o84fwqQmd/OzP8eOpdUi3lt3hL4ckSciIjD7bbdmXkemp0w8MaBsm2U403AN9fc72y7rS/3RMQT7cjT6ijD0JnmjXU7GWu3fCXXz6tExALwTprVrGJzt6NyJ4ELwMOZWXTeGSjmORRWI78P/Brw3TXbhs70ZuDfgT9rxzk/FRE7C8glVWFem7fbMvNW4H3AL0XEu4YONIJYZ1tf3/PwSeAtwC3AeeATBWSaR9bt+KzduhX1PkXE64G/Bn45M/9ns7uus63X3Jn5ncy8BdgL7I+It29y98HzzkARz6GkGomInwYuZOaJUX9lnW1dvIavoRmd/mRmvhO4SDMmOXQuqQpz2bxl5rn25wXgAZrl9xciYg9A+/PCQPE2ynEWuGHN/fYC5/oIlJkvtB8Evgv8Ca+MKwyWaR5Zt+OzdqtRZP2sFRFX0nwo/2xm/k27ufjc7TjaMnCACvJOYfDnUGCN3Aa8PyJWaMZIfzwi/mLgTKuPc7ZdDQb4Ak0zN3QuqQpz17xFxM6IuHr1OvBe4DRwDLizvdudwIPDJNwwxzHgjoh4bUTcCNwEfLWPQKs709bP0Lxeg2aaN9btZKzdahRZP6siImiOz3kqM39vzX8qMndEXB8R17TXXwf8BPB0qXln5FHgpoi4MSKuAu6geV69KLFGMvOjmbk3MxdoXo+vZObPD5mpzfVvwDcj4q3tpvcAXxs6l1SNoc+Y0veFZtb68fbyJPCxdvsbgEeAZ9uf1/WQ5fM0o1z/R/OXpbs3ywF8jOYsS88A7+sx058Dp4AnaHaie/rM5MW6nSKXtVvYpdT62SLzj9GMaT0BnGwvt5eaG3gH8Fib9zTwG+32IvPO8HnfTnOWx6+v7iOtke891iKvnG1y8Ew0o+zH29fri8C1JeTy4qWGS2Q6NixJkiRJpZu7sUlJkiRJqpHNmyRJkiRVwOZNkiRJkipg8yZJkiRJFbB5kyRJkqQK2LxJkiRJUgVs3iRJkiSpAv8P2vUGp/NbpuEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "#Code task 18#\n", "#Call ski_data's `hist` method to plot histograms of each of the numeric features\n", "#Try passing it an argument figsize=(15,10)\n", "#Try calling plt.subplots_adjust() with an argument hspace=0.5 to adjust the spacing\n", "#It's important you create legible and easy-to-read plots\n", - "ski_data.___(___)\n", - "#plt.subplots_adjust(hspace=___);\n", + "ski_data.hist(figsize=(15,10))\n", + "plt.subplots_adjust(hspace=0.5);\n", "#Hint: notice how the terminating ';' \"swallows\" some messy output and leads to a tidier notebook" ] }, @@ -1114,13 +2615,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 116, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "39 26819.0\n", + "Name: SkiableTerrain_ac, dtype: float64" + ] + }, + "execution_count": 116, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 19#\n", "#Filter the 'SkiableTerrain_ac' column to print the values greater than 10000\n", - "ski_data.___[ski_data.___ > ___]" + "ski_data.SkiableTerrain_ac[ski_data.SkiableTerrain_ac > 10000]" ] }, { @@ -1132,14 +2645,187 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 117, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
39
NameSilverton Mountain
RegionColorado
stateColorado
summit_elev13487
vertical_drop3087
base_elev10400
trams0
fastEight0.0
fastSixes0
fastQuads0
quad0
triple0
double1
surface0
total_chairs1
RunsNaN
TerrainParksNaN
LongestRun_mi1.5
SkiableTerrain_ac26819.0
Snow Making_acNaN
daysOpenLastYear175.0
yearsOpen17.0
averageSnowfall400.0
AdultWeekday79.0
AdultWeekend79.0
projectedDaysOpen181.0
NightSkiing_acNaN
\n", + "
" + ], + "text/plain": [ + " 39\n", + "Name Silverton Mountain\n", + "Region Colorado\n", + "state Colorado\n", + "summit_elev 13487\n", + "vertical_drop 3087\n", + "base_elev 10400\n", + "trams 0\n", + "fastEight 0.0\n", + "fastSixes 0\n", + "fastQuads 0\n", + "quad 0\n", + "triple 0\n", + "double 1\n", + "surface 0\n", + "total_chairs 1\n", + "Runs NaN\n", + "TerrainParks NaN\n", + "LongestRun_mi 1.5\n", + "SkiableTerrain_ac 26819.0\n", + "Snow Making_ac NaN\n", + "daysOpenLastYear 175.0\n", + "yearsOpen 17.0\n", + "averageSnowfall 400.0\n", + "AdultWeekday 79.0\n", + "AdultWeekend 79.0\n", + "projectedDaysOpen 181.0\n", + "NightSkiing_ac NaN" + ] + }, + "execution_count": 117, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 20#\n", "#Now you know there's only one, print the whole row to investigate all values, including seeing the resort name\n", "#Hint: don't forget the transpose will be helpful here\n", - "ski_data[ski_data.___ > ___].___" + "ski_data[ski_data.SkiableTerrain_ac> 10000].T" ] }, { @@ -1179,35 +2865,57 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 118, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "26819.0" + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 21#\n", "#Use the .loc accessor to print the 'SkiableTerrain_ac' value only for this resort\n", - "ski_data.___[39, 'SkiableTerrain_ac']" + "ski_data.loc[39, 'SkiableTerrain_ac']" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 120, "metadata": {}, "outputs": [], "source": [ "#Code task 22#\n", "#Use the .loc accessor again to modify this value with the correct value of 1819\n", - "ski_data.___[39, 'SkiableTerrain_ac'] = ___" + "ski_data.loc[39, 'SkiableTerrain_ac'] = 1819" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 121, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "1819.0" + ] + }, + "execution_count": 121, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 23#\n", "#Use the .loc accessor a final time to verify that the value has been modified\n", - "ski_data.___[39, 'SkiableTerrain_ac']" + "ski_data.loc[39, 'SkiableTerrain_ac']" ] }, { @@ -1226,12 +2934,12 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 122, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEXCAYAAADm5+DTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5gcZZn+8e9NwikknDY4G0JI4GdATooygIqHiaAcFfXyEBYRVjSw6ioKKqdV1GWXVQF31wU2CgvIISBn0FWQpUUUhATDMYBAAgmEcA4MKpj4/P543yGVprunpzM9XZO5P9fV13S/VfXWU09X9dNVXVOliMDMzKws1uh0AGZmZkUuTGZmViouTGZmViouTGZmViouTGZmViouTGZmViptL0ySzpD0T4PU1+aSeiWNyq8rkj49GH3n/v5X0sGD1d8A5vvPkp6W9MQAp1sgaY86w+6R1NNkPyHp9XWGHSLppoHEVRaSDpP0/U7H0UfSKZIOX4Xp15V0taSlkn4ymLG1S6N1dAB9HCvpR4MVk606SVPy58bodvS/Sp1KWgB0AcuA5cC9wLnAzIj4K0BENLUh5r4+HRG/rDdORDwKjF2VmAvzOwF4fUR8otD/3oPR9wDjmAQcCUyOiCcHq9+I2G6w+hqOJK0FHA+8tdOxFHwXuFXSWRHxSgvTf4S0vf1NRCyTdDawKCKOH8wgyyYi/qXTMdjQGow9pvdHxDhgMnAS8DXgzEHodyXtqswlMBl4ZjCL0nDUhvd3f+C+iHhsMDtdlTgjYjFwH/CBFruYDDwQEctajaGomWXpOzphr83FavyZ1HkR0fIDWADsUdW2C/BXYPv8+mzgn/Pz8cA1wPPAs8CvScXxx3maPwG9wFeBKUAAhwKPAjcW2kbn/irAvwK3AkuBK4GN87Ae0rfJ18QL7AW8Avwlz++OQn+fzs/XIH3jfgR4krQnuEEe1hfHwTm2p4HjGuRpgzz9U7m/43P/e+Rl/muO4+wa09bMWXX+gTcA84HpNYbtAtyc+1gM/ABYqzCPAL4APJyX5buFeRwC3FQY9w3AdTmW+4GPNVjuvwfmAS/mvg8rDOsBFpG+yDyR14E1gKOBh4BngIv73s88zU/yuEvz+rBdg3mfBRxf1VZ3emBd4OT8/iwFbsptfe/1q+thHv9TedmeA35B2uMFEHBqXmeWAneSt4U8/DjgfxrEXTNG4JusvM4elp+/kl9fncfbFLiUtK7NB75Q6PsE4BLgPOAF8rpeNf+zgdOBnwEvkdbRZvq8KL/PtwNvqvUZQf/r4XasWLeWAMcW5nFeM9tefs/Oye/LPNJnyaIG+a67PtfJxQLSOnsn8DLpqNMHgHvyclWAbaqW/6g8/tKcp3UKw/cD5uZpfwu8sTBsm9zf87n/DxSGVYrvH4XtlH7WwcI004HZVW1fAq7Kz/cFfp/XlYXACYXx+t6H0YXl3KMw/NX3LL9+a16+54E7gJ6GtaXRwP4e1cEU2h8F/qHw5vYVpn8FzgDWzI93AqqzYH0Lfi6wHit/SBQL02PA9nmcS1mxAvdQpzDVSlz1m0364HkQ2JJ0+PAy4MdVsf0wx/Um0kq6TZ08nUsqmuPytA8Ah9aLs2rafnMGvCXnfL86y7pTXjFG5/nPA44ojBvADcDGwOY5vr48HMKKFX490gr697mvt5A+GGoWCNKK/f9IG8q7gT8Cbyks9zLg34C1cx6PAG4BNstt/w1cWOjvUzmHawPfB+Y2yNttwEer2upOD/xXfv8nAqOAt+fx+t7r4nr4wbxubJPzcDzw29zPnsAcYMO83NsAEwrz+TBwe4O4G8V4Aitv7GeTt638eo08768Da5HW3YeBPQvT/yXHvwawbo35n036MNstjzOmyT4/Qlo/jyIVrzUHsh7mZV5MOqy9Tn69a/Vy08+2Rzpq8ytgI9J6dCd1ti/6WZ9r5GKdvDxzgUl5/luRitZ78/J/lbRurFVY/ltJxX3jvMyH52FvIRWPXUnr3MF5/LVzXw8Cx+a8v4dU+Leu/qyqsZ02XAcL04zJfU6t2m76vtz2ADvkZX8j6cvCB6veh34LE2mbegbYJ/f13vx6k7rbwUCLUb0P+qr2W8jfYli5MH2L9AH9+v76Kiz4ljXaioXppMLwbUnfIEex6oXpeuCzhWFbkzbAvo0qgM0Kw2/te0Or+hxF2nC2LbQdBlQKb36jwtRfzr5J2vOY1sx7k4cdAVxeeB3AXoXXnwWur7HCfxz4dVVf/w18o8n15Qrgi4XlfoWVvz3OA3YvvJ7Ql/MafW2Y496gzrz+UFymRtOTNpY/Ufim3896+L/kLxb59RqkojuZ9AHyAOkDeI0a/b0XeLjJfK20jNXrLK8tTLsCj1b1cQx5Dy1Pf2M/8zwbOHeAfd5SlYvFwDsHsh4CBwC/rzPeq8tNP9sehaKZX3+a+oWp4fpcnYvC8nyq8PqfgIurlv8x8h5BHv8TheHfAc7Iz08Hvl3V//2kL3HvJO05r1EYdiF5r4XGhanhOlg1v/OAr+fnU0mFakydcb8PnFr1PjRTmL5G/lJfGP4L4OB6cbXrrLyJpF3jat8lfQu4VtLDko5uoq+FAxj+COmbxvimomxs09xfse/RpB+f+xTPovsjtU/MGE/6xlPd18Qm4+gvZ4eTvq3fUK8DSVtJukbSE5JeAP6F1+aoOo+b1uhqMrCrpOf7HsCBwN/Wme/ekm6R9Gwed5+q+T4VEX+u6v/yQt/zSCfVdEkaJekkSQ/lZViQp6n3Xj9H+tbdF0uj6ceTvg0/VKcvWDk/k4F/L8T5LOmb6cSI+D/SIar/ApZImilp/cK040iHM16jhWWsNhnYtOr9OZaV19n+tqfqcQbUZ6STnhZRY/3pZz2cROP8V6u37W1aFX+j5W1mfa41fbFtpc+JvPwLWXn7rhfrZODIqvlPyn1uCizM/fVp6nOjiXWw6ALSlwKAvwOuiIg/AkjaVdINkp6StJT0WdPKZ+tk4KNVy/kO0hfPmga9MEnamZS815xiHBEvRsSREbEl8H7gy5J27xtcp8t67X0mFZ5vTvqG/TRp93pMIa5RwCYD6PdxUkKLfS8j7c4OxNM5puq+mvpRvp+cQVpZNpd0aoNuTif96D41ItYnfbCoapzqPD5eo5+FwK8iYsPCY2xE/EP1iJLWJh1a/R7QFREbko7VF+db/R4sBPau6n+dSCcw/B3phIY9SHs5U/pmVWeZ7yQdZunTaPqngT+TDjvWU4x1Ien3smKc60bEbwEi4j8iYifSbyZbAV8pTLsN6Rh7LQNdxlr5m18V17iI2KfBNP3120yfr647ktYgHUKrtf40Wg8X0jj/zVqc5/+a2GpoZn2ula9i20qfE5KU59nM9r0QOLFq/mMi4sLc76Sczz7Fz42VPt+o+nLYzzpYdC0wXtKOpAJ1QWHYBcBVwKSI2ID0k0K9dbFRPAtJe0zF5VwvIk6q09fgFSZJ60vaD5hF2oW7q8Y4+0l6fX7zXiB9G16eBy8hHb8eqE9I2lbSGNJhr0siYjlpV3YdSftKWpP0O8DahemWAFOq3viiC4EvSdpC0ljSt7uLYoBnROVYLgZOlDRO0mTgy6Rd6H71kzNIu957Ae+SVO+NHpen7ZX0BuA1hQT4iqSN8unrXyT9SFvtGmArSQdJWjM/dpa0TY1x1yLl+ylgmaS9gff1s7hnkPI0OS/7JpL2LyzDy6Rj02NI70cjPyMdEulTd/r8rfQs4BRJm+Y9l7fl4lovzmMkbZfj3EDSR/PznfM3zTVJG+ufWfn9ejfpUGAtA13G6m3mVuAFSV9T+p+nUZK2z18WW9VMnztJ+nA+S+2IvAy31Oir0Xp4DfC3ko6QtHbeVnZtId6LSe/NRpImAp9vMO5A1udG89tX0u75PT+StPy/bWLaHwKH5/VFktbLn1fjgN+R1p+v5rh6SF9MZ+Vp5wIfljRG6X8QD+3rtIl18FX58+wS0pGZjUkngvQZBzwbEX+WtAvpi1M9c4HpOdZu0m+Ofc4D3i9pz7z+rCOpR9JmtbsanMJ0taQXSVXxOOAU0o+JtUwFfkk6i+hm4LSIqORh/wocn3f1jhrA/H9MOhb8BOlwzBcAImIp6beSH5G+ZbxEOsTQp+8fFJ+RdHuNfs/Kfd9I+jH3z8A/DiCuon/M83+YtCd5Qe6/GY1yBkBEPE/67WJvSd+u0cdRpJXqRdLGUKvoXEn6wXQu8FNqnPIfES+Sist00je6J1hx8kKtcb9A2nCfy/O/qp9l/fc8zrV5nbqF9BsHpJMPHiG9l/dS+4Ov6GrgDZL6Din1N/1RwF2kH3+fzctVc/uIiMvz8Fn5kNTdQN//wK1PyvFzeX7PkPYakTSB9DvoFXViHugynglsm7eZK/KXoPcDO5LW2adJ6/8G/fRTV5N9Xkn6veY54CDgwxHxlxrd1V0P8/ry3jyvJ0i/EU5rIeRvkbbz+aTt5hJSoai1bE2vz/VExP3AJ4D/JOXm/aR/oen3/9QiYjbwGdJht+dIh+wPycNeIZ3tt3fu9zTgkxFxX578VNJvtEtIZyGeX+i67jpYxwWkvfSfVH3x/izwrbwtfp20LdfzT6Q93udIv3u/uucVEQtJRwKOJX1RXUjag6tbf/rO7jJb7UiaQTrp5IhOxwIg6WTgoYg4rdOxDBbV+Ef1MpH0D6QTI97d78hWGv4HMVttRcTMTsdQFBFHdjqG1V3eK92SdHRhKunQ2g86GpQNmAuTma1O1iKd8r0F6ezHWaTDYDaM+FCemZmVim97YWZmpTKsD+WNHz8+pkyZ0tK0L730Euutt97gBrQacX4ac34ac34a63R+5syZ83REbNL/mJ0xrAvTlClTmD17dkvTVioVenp6Bjeg1Yjz05jz05jz01in8yPpkf7H6hwfyjMzs1JpW2GSNClfZ2me0t1Uv5jbN5Z0naQ/5L8bFaY5RtKDku6XtGe7YjMzs/Jq5x7TMuDIiNiGdJXbz0nalnS/nesjYirpCt5HA+Rh00nXdtoLOE2+SZmZ2YjTtsIUEYsj4vb8/EXSlaInki5NcU4e7RzSvWHI7bMi4uWImE+6PMcu7YrPzMzKaUh+Y5I0BXgz6cKEXZFuMU3++7o82kRWvpz8Ipq/NYSZma0m2n5WXr4y96WkO1W+kC6SXXvUGm2v+e/ffP2zGQBdXV1UKpWW4urt7W152pHA+WnM+WnM+WnM+WmsrYUpX3b9UuD8iLgsNy+RNCEiFufrWj2Z2xex8r1Tat7TJV//bCZAd3d3tHrKZadP1yw756cx56cx56cx56exdp6VJ9Jl+edFxCmFQVeR7m1P/ntloX16vhfLFqQLMN7arvjMzKyc2rnHtBvp3ix3SZqb244FTgIulnQo8CjwUYCIuEfSxaT70CwDPpfvBWNmZiNI2wpTRNxE/dvw7l6rMSJOBE5sV0zVphz906bGW3DSvm2OxMzM+vjKD2ZmViouTGZmViouTGZmViouTGZmViouTGZmViouTGZmViouTGZmViouTGZmViouTGZmViouTGZmViouTGZmViouTGZmViouTGZmViouTGZmViouTGZmViouTGZmViouTGZmViouTGZmViptK0ySzpL0pKS7C20XSZqbHwskzc3tUyT9qTDsjHbFZWZm5Ta6jX2fDfwAOLevISI+3vdc0snA0sL4D0XEjm2Mx8zMhoG2FaaIuFHSlFrDJAn4GPCeds3fzMyGJ0VE+zpPhemaiNi+qv1dwCkR0V0Y7x7gAeAF4PiI+HWdPmcAMwC6urp2mjVrVkux9fb2Mn/p8qbG3WHiBi3NYzjr7e1l7NixnQ6jtJyfxpyfxjqdn2nTps3p+/wto3YeymvkAODCwuvFwOYR8YyknYArJG0XES9UTxgRM4GZAN3d3dHT09NSAJVKhZNveqmpcRcc2No8hrNKpUKruR0JnJ/GnJ/GnJ/GhvysPEmjgQ8DF/W1RcTLEfFMfj4HeAjYaqhjMzOzzuvE6eJ7APdFxKK+BkmbSBqVn28JTAUe7kBsZmbWYe08XfxC4GZga0mLJB2aB01n5cN4AO8C7pR0B3AJcHhEPNuu2MzMrLzaeVbeAXXaD6nRdilwabtiMTOz4cNXfjAzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1Jp563Vz5L0pKS7C20nSHpM0tz82Kcw7BhJD0q6X9Ke7YrLzMzKrZ17TGcDe9VoPzUidsyPnwFI2haYDmyXpzlN0qg2xmZmZiXVtsIUETcCzzY5+v7ArIh4OSLmAw8Cu7QrNjMzK6/RHZjn5yV9EpgNHBkRzwETgVsK4yzKba8haQYwA6Crq4tKpdJSEL29vRy5w/Kmxm11HsNZb2/viFzuZjk/jTk/jTk/jQ11YTod+DYQ+e/JwKcA1Rg3anUQETOBmQDd3d3R09PTUiCVSoWTb3qpqXEXHNjaPIazSqVCq7kdCZyfxpyfxpyfxob0rLyIWBIRyyPir8APWXG4bhEwqTDqZsDjQxmbmZmVw5AWJkkTCi8/BPSdsXcVMF3S2pK2AKYCtw5lbGZmVg5tO5Qn6UKgBxgvaRHwDaBH0o6kw3QLgMMAIuIeSRcD9wLLgM9FRHM/AJmZ2WqlbYUpIg6o0Xxmg/FPBE5sVzxmZjY8+MoPZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKi5MZmZWKm0rTJLOkvSkpLsLbd+VdJ+kOyVdLmnD3D5F0p8kzc2PM9oVl5mZlVs795jOBvaqarsO2D4i3gg8ABxTGPZQROyYH4e3MS4zMyuxthWmiLgReLaq7dqIWJZf3gJs1q75m5nZ8KSIaF/n0hTgmojYvsawq4GLIuK8PN49pL2oF4DjI+LXdfqcAcwA6Orq2mnWrFktxdbb28v8pcubGneHiRu0NI/hrLe3l7Fjx3Y6jNJyfhpzfhrrdH6mTZs2JyK6OxZAP0Z3YqaSjgOWAefnpsXA5hHxjKSdgCskbRcRL1RPGxEzgZkA3d3d0dPT01IMlUqFk296qalxFxzY2jyGs0qlQqu5HQmcn8acn8acn8aG/Kw8SQcD+wEHRt5di4iXI+KZ/HwO8BCw1VDHZmZmnTekhUnSXsDXgA9ExB8L7ZtIGpWfbwlMBR4eytjMzKwc2nYoT9KFQA8wXtIi4Buks/DWBq6TBHBLPgPvXcC3JC0DlgOHR8SzNTs2M7PVWtsKU0QcUKP5zDrjXgpc2q5YzMxs+PCVH8zMrFRcmMzMrFRcmMzMrFRcmMzMrFRcmMzMrFSaKkySdmumzczMbFU1u8f0n022mZmZrZKG/8ck6W3A24FNJH25MGh9YFQ7AzMzs5Gpv3+wXQsYm8cbV2h/AfhIu4IyM7ORq2FhiohfAb+SdHZEPDJEMZmZ2QjW7CWJ1pY0E5hSnCYi3tOOoMzMbORqtjD9BDgD+BHpIqtmZmZt0WxhWhYRp7c1EjMzM5o/XfxqSZ+VNEHSxn2PtkZmZmYjUrN7TAfnv18ptAWw5eCGY2ZmI11ThSkitmh3IGZmZtBkYZL0yVrtEXHu4IZjZmYjXbO/Me1ceLwTOAH4QKMJJJ0l6UlJdxfaNpZ0naQ/5L8bFYYdI+lBSfdL2nPAS2JmZquFpgpTRPxj4fEZ4M2kq0I0cjawV1Xb0cD1ETEVuD6/RtK2wHRguzzNaZJ8ySMzsxGo1dte/BGY2miEiLgReLaqeX/gnPz8HOCDhfZZEfFyRMwHHgR2aTE2MzMbxpr9jelq0ll4kC7eug1wcQvz64qIxQARsVjS63L7ROCWwniLclutWGYAMwC6urqoVCothAG9vb0cuUNz/yvc6jyGs97e3hG53M1yfhpzfhpzfhpr9nTx7xWeLwMeiYhFgxiHarRFjTYiYiYwE6C7uzt6enpammGlUuHkm15qatwFB7Y2j+GsUqnQam5HAuenMeenMeensWZ/Y/oVcB/pCuMbAa+0OL8lkiYA5L9P5vZFwKTCeJsBj7c4DzMzG8aavYPtx4BbgY8CHwN+J6mV215cxYp/1j0YuLLQPl3S2pK2IP1+dWsL/ZuZ2TDX7KG844CdI+JJAEmbAL8ELqk3gaQLgR5gvKRFwDeAk4CLJR0KPEoqdETEPZIuBu4lHSr8XET4YrFmZiNQs4Vpjb6ilD1DP3tbEXFAnUG71xn/RODEJuMxM7PVVLOF6eeSfgFcmF9/HPhZe0IyM7ORrGFhkvR60ineX5H0YeAdpDPobgbOH4L4zMxshOnv5IfvAy8CRMRlEfHliPgSaW/p++0OzszMRp7+CtOUiLizujEiZpNus25mZjao+itM6zQYtu5gBmJmZgb9F6bbJH2mujGf7j2nPSGZmdlI1t9ZeUcAl0s6kBWFqJt0ZfEPtTMwMzMbmRoWpohYArxd0jRg+9z804j4v7ZHZmZmI1Kzt1a/AbihzbGYmZm1fD8mMzOztnBhMjOzUnFhMjOzUnFhMjOzUnFhMjOzUnFhMjOzUnFhMjOzUnFhMjOzUmn2RoGDRtLWwEWFpi2BrwMbAp8Bnsrtx0aEb0ZoZjbCDHlhioj7gR0BJI0CHgMuB/4eODUivjfUMZmZWXl0+lDe7sBDEfFIh+MwM7OS6HRhmg5cWHj9eUl3SjpL0kadCsrMzDpHEdGZGUtrAY8D20XEEkldwNNAAN8GJkTEp2pMNwOYAdDV1bXTrFmzWpp/b28v85cub2rcHSZu0NI8hrPe3l7Gjh3b6TBKy/lpzPlprNP5mTZt2pyI6O5YAP3oZGHaH/hcRLyvxrApwDURsX31sKLu7u6YPXt2S/OvVCoc8vOXmhp3wUn7tjSP4axSqdDT09PpMErL+WnM+Wms0/mRVOrC1MlDeQdQOIwnaUJh2IeAu4c8IjMz67ghPysPQNIY4L3AYYXm70jakXQob0HVMDMzGyE6Upgi4o/A31S1HdSJWMzMrFw6fVaemZnZSlyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVDpya3VJC4AXgeXAsojolrQxcBEwBVgAfCwinutEfGZm1jmd3GOaFhE7RkR3fn00cH1ETAWuz6/NzGyEKdOhvP2Bc/Lzc4APdjAWMzPrEEXE0M9Umg88BwTw3xExU9LzEbFhYZznImKjGtPOAGYAdHV17TRr1qyWYujt7WX+0uVNjbvDxA1amsdw1tvby9ixYzsdRmk5P405P411Oj/Tpk2bUzhaVTod+Y0J2C0iHpf0OuA6Sfc1O2FEzARmAnR3d0dPT09LAVQqFU6+6aWmxl1wYGvzGM4qlQqt5nYkcH4ac34ac34a68ihvIh4PP99Ergc2AVYImkCQP77ZCdiMzOzzhrywiRpPUnj+p4D7wPuBq4CDs6jHQxcOdSxmZlZ53XiUF4XcLmkvvlfEBE/l3QbcLGkQ4FHgY92IDYzM+uwIS9MEfEw8KYa7c8Auw91PGZmVi5lOl3czMzMhcnMzMrFhcnMzErFhcnMzErFhcnMzErFhcnMzErFhcnMzErFhcnMzErFhcnMzErFhcnMzErFhcnMzEqlU/djGlamHP3TpsZbcNK+bY7EzGz15z0mMzMrFRcmMzMrFRcmMzMrFRcmMzMrFRcmMzMrlSEvTJImSbpB0jxJ90j6Ym4/QdJjkubmxz5DHZuZmXVeJ04XXwYcGRG3SxoHzJF0XR52akR8rwMxmZlZSQx5YYqIxcDi/PxFSfOAiUMdh5mZlZMionMzl6YANwLbA18GDgFeAGaT9qqeqzHNDGAGQFdX106zZs1qad69vb3MX7q8pWnr2WHiBoPaXyf19vYyduzYTodRWs5PY85PY53Oz7Rp0+ZERHfHAuhHxwqTpLHAr4ATI+IySV3A00AA3wYmRMSnGvXR3d0ds2fPbmn+lUqFQ37+UkvT1rM6XfmhUqnQ09PT6TBKy/lpzPlprNP5kVTqwtSRSxJJWhO4FDg/Ii4DiIglheE/BK7pRGyrwpcuMjNbdZ04K0/AmcC8iDil0D6hMNqHgLuHOjYzM+u8Tuwx7QYcBNwlaW5uOxY4QNKOpEN5C4DDOhCbmZl1WCfOyrsJUI1BPxvqWMzMrHx85QczMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMysVFyYzMyuVjlySyAaXL4VkZqsTF6YOcCExM6vPh/LMzKxUXJjMzKxUXJjMzKxU/BtTiTX7W1Q73PXYUg5pYv7+HczMBpv3mMzMrFRcmMzMrFR8KG8EGcihwSN3GNw+mz3k51Ppzcx7TGZmVireY7Ih0ckTOcxseCndHpOkvSTdL+lBSUd3Oh4zMxtapdpjkjQK+C/gvcAi4DZJV0XEvZ2NzMrGv0WZrb5KVZiAXYAHI+JhAEmzgP0BFyZrSScLWKdODOmksn8RGA5faIZDjO2miOh0DK+S9BFgr4j4dH59ELBrRHy+MM4MYEZ+uTVwf4uzGw88vQrhru6cn8acn8acn8Y6nZ/JEbFJB+ffUNn2mFSjbaXKGREzgZmrPCNpdkR0r2o/qyvnpzHnpzHnpzHnp7GynfywCJhUeL0Z8HiHYjEzsw4oW2G6DZgqaQtJawHTgas6HJOZmQ2hUh3Ki4hlkj4P/AIYBZwVEfe0aXarfDhwNef8NOb8NOb8NOb8NFCqkx/MzMzKdijPzMxGOBcmMzMrlRFZmEbiZY8kTZJ0g6R5ku6R9MXcvrGk6yT9If/dqDDNMTlH90vas9C+k6S78rD/kFTrNP9hSdIoSb+XdE1+7fxkkjaUdImk+/J69DbnZwVJX8rb1t2SLpS0jvPToogYUQ/SSRUPAVsCawF3ANt2Oq4hWO4JwFvy83HAA8C2wHeAo3P70eHrpesAAAZNSURBVMC/5efb5tysDWyRczYqD7sVeBvp/87+F9i708s3iHn6MnABcE1+7fysyM05wKfz87WADZ2fV3MzEZgPrJtfXwwc4vy09hiJe0yvXvYoIl4B+i57tFqLiMURcXt+/iIwj7Qx7U/6wCH//WB+vj8wKyJejoj5wIPALpImAOtHxM2RtqJzC9MMa5I2A/YFflRodn4ASesD7wLOBIiIVyLieZyfotHAupJGA2NI/4Pp/LRgJBamicDCwutFuW3EkDQFeDPwO6ArIhZDKl7A6/Jo9fI0MT+vbl8dfB/4KvDXQpvzk2wJPAX8Tz7U+SNJ6+H8ABARjwHfAx4FFgNLI+JanJ+WjMTC1O9lj1ZnksYClwJHRMQLjUat0RYN2oc1SfsBT0bEnGYnqdG22uaHtDfwFuD0iHgz8BLp0FQ9Iyo/+bej/UmH5TYF1pP0iUaT1GhbbfMzUCOxMI3Yyx5JWpNUlM6PiMty85J8+ID898ncXi9Pi/Lz6vbhbjfgA5IWkA7vvkfSeTg/fRYBiyLid/n1JaRC5fwkewDzI+KpiPgLcBnwdpyflozEwjQiL3uUz+w5E5gXEacUBl0FHJyfHwxcWWifLmltSVsAU4Fb8+GIFyW9Nff5ycI0w1ZEHBMRm0XEFNI68X8R8QmcHwAi4glgoaStc9PupNvROD/Jo8BbJY3Jy7U76Xdc56cVnT77ohMPYB/SWWkPAcd1Op4hWuZ3kA4J3AnMzY99gL8Brgf+kP9uXJjmuJyj+ymcGQR0A3fnYT8gX0FkdXkAPaw4K8/5WbFcOwKz8zp0BbCR87NSfr4J3JeX7cekM+6cnxYeviSRmZmVykg8lGdmZiXmwmRmZqXiwmRmZqXiwmRmZqXiwmRmZqXiwmRmZqXiwmTDjqTj8u0F7pQ0V9KukhZIGl9j3N/209cUSXfXGVaR1N1g2svz/B+UtDQ/nyvp7QNfqrrz2FTSJYPVn9lwMLrTAZgNhKS3AfuRbuHxci5Ga9UbPyIGrUjU6PtDOaYe4KiI2K+Z6SSNjohl9V5XzeNx4CODEK7ZsOE9JhtuJgBPR8TLABHxdP7wBkDSupJ+Lukz+XVv/jtW0vWSbs83YSve6mS0pHPyHtglksZUz1TS+yTdnKf/Sb4Y7mtI2kTSpZJuy4/dcvsJkmZKuhY4t8brKZJ+nfu/vW+vq7hHJ+kQSZfl5fuDpO80SpSk0yXNznuX3yy07yzpt5LukHSrpHHNJN5syHT60hN++DGQBzCWdDmlB4DTgHfn9gXAFOCXwCcL4/fmv6NJ97kBGE+6/43yNAHsloedRdr7AaiQLg8zHrgRWC+3fw34emEePay4hNEFwDvy881J1yYEOAGYw4obyVW/HgOsk59PBWbn51OAu/PzQ4CHgQ2AdYBHgEkNcrVx/jsqL8sbSXuXDwM752HrA6M7/b764Ufx4UN5NqxERK+knYB3AtOAiyT13X7hSuA7EXF+jUkF/Iukd5HutzQR6MrDFkbEb/Lz84AvkO6t0+etpDuO/iZdV5O1gJvrhLgHsK1W3A17/cIeyVUR8afCuMXXawI/kLQjsBzYqk7/10fEUgBJ9wKTWfm+PkUfkzSDVJQn5GUIYHFE3AYQjW99YtYRLkw27ETEctIeQEXSXay4evNvgL0lXRAR1ReBPBDYBNgpIv6Sb2+xTl+X1bOoei3guog4oInw1gDeVlWAyIXqpapxi6+/BCwB3pT7+HOd/l8uPF9OnW04X7H6KNKe0XOSziYtrxiB9/ex4cW/MdmwImlrSVMLTTuSDmkBfB14hnSIr9oGpBsB/kXSNNKeRp/N80kVAAcAN1VNewuwm6TX5xjGSKq3R3Mt8PlCvDs2sVh98S2OiL8CB5EOv62K9UmFb6mkLmDv3H4fsKmknXN845RuBW5WGi5MNtyMBc6RdK+kO0mHp04oDD8CWKfGiQHnA92SZpP2nu4rDJsHHJz72xg4vThhRDxF+n3nwjzOLcAb6sT3hTyfO/OhtsObXK7Tcgy3kA7jVe9dDUhE3AH8HriH9LvZb3L7K8DHgf+UdAdwHSv2HM1Kwbe9MDOzUvEek5mZlYqPLZsNc5J+R7pbatFBEXFXJ+IxW1U+lGdmZqXiQ3lmZlYqLkxmZlYqLkxmZlYqLkxmZlYq/x8GqBhObMyWNQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEXCAYAAADm5+DTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmT0lEQVR4nO3de5gcZZn+8e9NwikknDY4G0JI4GdATooygIqHiaAcFfXyEBYRVjSw6ioKKqdV1GWXVQF31wU2CgvIISBn0FWQpUUUhATDMYBAAgmEcA4MKpj4/P543yGVprunpzM9XZO5P9fV13S/VfXWU09X9dNVXVOliMDMzKws1uh0AGZmZkUuTGZmViouTGZmViouTGZmViouTGZmViouTGZmViptL0ySzpD0T4PU1+aSeiWNyq8rkj49GH3n/v5X0sGD1d8A5vvPkp6W9MQAp1sgaY86w+6R1NNkPyHp9XWGHSLppoHEVRaSDpP0/U7H0UfSKZIOX4Xp15V0taSlkn4ymLG1S6N1dAB9HCvpR4MVk606SVPy58bodvS/Sp1KWgB0AcuA5cC9wLnAzIj4K0BENLUh5r4+HRG/rDdORDwKjF2VmAvzOwF4fUR8otD/3oPR9wDjmAQcCUyOiCcHq9+I2G6w+hqOJK0FHA+8tdOxFHwXuFXSWRHxSgvTf4S0vf1NRCyTdDawKCKOH8wgyyYi/qXTMdjQGow9pvdHxDhgMnAS8DXgzEHodyXtqswlMBl4ZjCL0nDUhvd3f+C+iHhsMDtdlTgjYjFwH/CBFruYDDwQEctajaGomWXpOzphr83FavyZ1HkR0fIDWADsUdW2C/BXYPv8+mzgn/Pz8cA1wPPAs8CvScXxx3maPwG9wFeBKUAAhwKPAjcW2kbn/irAvwK3AkuBK4GN87Ae0rfJ18QL7AW8Avwlz++OQn+fzs/XIH3jfgR4krQnuEEe1hfHwTm2p4HjGuRpgzz9U7m/43P/e+Rl/muO4+wa09bMWXX+gTcA84HpNYbtAtyc+1gM/ABYqzCPAL4APJyX5buFeRwC3FQY9w3AdTmW+4GPNVjuvwfmAS/mvg8rDOsBFpG+yDyR14E1gKOBh4BngIv73s88zU/yuEvz+rBdg3mfBRxf1VZ3emBd4OT8/iwFbsptfe/1q+thHv9TedmeA35B2uMFEHBqXmeWAneSt4U8/DjgfxrEXTNG4JusvM4elp+/kl9fncfbFLiUtK7NB75Q6PsE4BLgPOAF8rpeNf+zgdOBnwEvkdbRZvq8KL/PtwNvqvUZQf/r4XasWLeWAMcW5nFeM9tefs/Oye/LPNJnyaIG+a67PtfJxQLSOnsn8DLpqNMHgHvyclWAbaqW/6g8/tKcp3UKw/cD5uZpfwu8sTBsm9zf87n/DxSGVYrvH4XtlH7WwcI004HZVW1fAq7Kz/cFfk9aVxYCJxTG63sfRheWc4/C8Fffs/z6rXn5ngfuAHoa1pZGA/t7VAdTaH8U+IfCm9tXmP4VOANYMz/eCajOgvUt+LnAeqz8IVEsTI8B2+dxLmXFCtxDncJUK3HVbzbpg+dBYEvS4cPLgB9XxfbDHNebSCvpNnXydC6paI7L0z4AHFovzqpp+80Z8Jac8/3qLOtOecUYnec/DziiMG4ANwAbA5vn+PrycAgrVvj1SCvo3+e+3kL6YKhZIEgr9v8jbSjvBv4IvKWw3MuAfwPWznk8ArgF2Cy3/TdwYaG/T+Ucrg18H5jbIG+3AR+taqs7PfBf+f2fCIwC3p7H63uvi+vhB/O6sU3Ow/HAb3M/ewJzgA3zcm8DTCjM58PA7Q3ibhTjCay8sZ9N3rby6zXyvL8OrEVadx8G9ixM/5cc/xrAujXmfzbpw2y3PM6YJvv8CGn9PIpUvNYcyHqYl3kx6bD2Ovn1rtXLTT/bHumoza+AjUjr0Z3U2b7oZ32ukYt18vLMBSbl+W9FKlrvzcv/VdK6sVZh+W8lFfeN8zIfnoe9hVQ8diWtcwfn8dfOfT0IHJvz/h5S4d+6+rOqxnbacB0sTDMm9zm1arvp+3LbA+yQl/2NpC8LH6x6H/otTKRt6hlgn9zXe/PrTepuBwMtRvU+6KvabyF/i2HlwvQt0gf06/vrq7DgW9ZoKxamkwrDtyV9gxzFqhem64HPFoZtTdoA+zaqADYrDL+17w2t6nMUacPZttB2GFApvPmNClN/Ofsmac9jWjPvTR52BHB54XUAexVefxa4vsYK/3Hg11V9/TfwjSbXlyuALxaW+xVW/vY4D9i98HpCX85r9LVhjnuDOvP6Q3GZGk1P2lj+ROGbfj/r4f+Sv1jk12uQiu5k0gfIA6QP4DVq9Pde4OEm87XSMlavs7y2MO0KPFrVxzHkPbQ8/Y39zPNs4NwB9nlLVS4WA+8cyHoIHAD8vs54ry43/Wx7FIpmfv1p6hemhutzdS4Ky/Opwut/Ai6uWv7HyHsEefxPFIZ/BzgjPz8d+HZV//eTvsS9k7TnvEZh2IXkvRYaF6aG62DV/M4Dvp6fTyUVqjF1xv0+cGrV+9BMYfoa+Ut9YfgvgIPrxdWus/ImknaNq32X9C3gWkkPSzq6ib4WDmD4I6RvGuObirKxTXN/xb5Hk3587lM8i+6P1D4xYzzpG091XxObjKO/nB1O+rZ+Q70OJG0l6RpJT0h6AfgXXpuj6jxuWqOrycCukp7vewAHAn9bZ757S7pF0rN53H2q5vtURPy5qv/LC33PI51U0yVplKSTJD2Ul2FBnqbee/0c6Vt3XyyNph9P+jb8UJ2+YOX8TAb+vRDns6RvphMj4v9Ih6j+C1giaaak9QvTjiMdzniNFpax2mRg06r351hWXmf7256qxxlQn5FOelpEjfWnn/VwEo3zX63etrdpVfyNlreZ9bnW9MW2lT4n8vIvZOXtu16sk4Ejq+Y/Kfe5KbAw99enqc+NJtbBogtIXwoA/g64IiL+CCBpV0k3SHpK0lLSZ00rn62TgY9WLec7SF88axr0wiRpZ1LyXnOKcUS8GBFHRsSWwPuBL0vavW9wnS7rtfeZVHi+Oekb9tOk3esxhbhGAZsMoN/HSQkt9r2MtDs7EE/nmKr7aupH+X5yBmll2VzSqQ26OZ30o/vUiFif9MGiqnGq8/h4jX4WAr+KiA0Lj7ER8Q/VI0pam3Ro9XtAV0RsSDpWX5xv9XuwENi7qv91Ip3A8HekExr2IO3lTOmbVZ1lvpN0mKVPo+mfBv5MOuxYTzHWhaTfy4pxrhsRvwWIiP+IiJ1Iv5lsBXylMO02pGPstQx0GWvlb35VXOMiYp8G0/TXbzN9vrruSFqDdAit1vrTaD1cSOP8N2txnv9rYquhmfW5Vr6KbSt9TkhSnmcz2/dC4MSq+Y+JiAtzv5NyPvsUPzdW+nyj6sthP+tg0bXAeEk7kgrUBYVhFwBXAZMiYgPSTwr11sVG8Swk7TEVl3O9iDipTl+DV5gkrS9pP2AWaRfurhrj7Cfp9fnNe4H0bXh5HryEdPx6oD4haVtJY0iHvS6JiOWkXdl1JO0raU3S7wBrF6ZbAkypeuOLLgS+JGkLSWNJ3+4uigGeEZVjuRg4UdI4SZOBL5N2ofvVT84g7XrvBbxLUr03elyetlfSG4DXFBLgK5I2yqevf5H0I221a4CtJB0kac382FnSNjXGXYuU76eAZZL2Bt7Xz+KeQcrT5Lzsm0jav7AML5OOTY8hvR+N/Ix0SKRP3enzt9KzgFMkbZr3XN6Wi2u9OI+RtF2OcwNJH83Pd87fNNckbax/ZuX3692kQ4G1DHQZq7eZW4EXJH1N6X+eRknaPn9ZbFUzfe4k6cP5LLUj8jLcUqOvRuvhNcDfSjpC0tp5W9m1hXgvJr03G0maCHy+wbgDWZ8bzW9fSbvn9/xI0vL/tolpfwgcntcXSVovf16NA35HWn++muPqIX0xnZWnnQt8WNIYpf9BPLSv0ybWwVflz7NLSEdmNiadCNJnHPBsRPxZ0i6kL071zAWm51i7Sb859jkPeL+kPfP6s46kHkmb1eyJwSlMV0t6kVQVjwNOIf2YWMtU4Jeks4huBk6LiEoe9q/A8XlX76gBzP/HpGPBT5AOx3wBICKWkn4r+RHpW8ZLpEMMffr+QfEZSbfX6Pes3PeNpB9z/wz84wDiKvrHPP+HSXuSF+T+m9EoZwBExPOk3y72lvTtGn0cRVqpXiRtDLWKzpWkH0znAj+lxin/EfEiqbhMJ32je4IVJy/UGvcLpA33uTz/qxovKv+ex7k2r1O3kH7jgHTywSOk9/Jean/wFV0NvEFS3yGl/qY/CriL9OPvs3m5am4fEXF5Hj5L6ZDU3UDf/8CtT8rxc3l+z5D2GpE0gfQ76BV1Yh7oMp4JbJu3mSvyl6D3AzuS1tmnSev/Bv30U1eTfV5J+r3mOeAg4MMR8Zca3dVdD/P68t48rydIvxFOayHkb5G28/mk7eYSUqGotWxNr8/1RMT9wCeA/yTl5v2kf6Hp9//UImI28BnSYbfnSIfsD8nDXiGd7bd37vc04JMRcV+e/FTSb7RLSGchnl/ouu46WMcFpL30n1R98f4s8K28LX6dtC3X80+kPd7nSL97v7rnFRELSUcCjiV9UV1I2oOrW3/6zu4yW+1ImkE66eSITscCIOlk4KGIOK3TsQwW1fhH9TKR9A+kEyPe3e/IVhr+BzFbbUXEzE7HUBQRR3Y6htVd3ivdknR0YSrp0NoPOhqUDZgLk5mtTtYinfK9Bensx1mkw2A2jPhQnpmZlYpve2FmZqUyrA/ljR8/PqZMmdLStC+99BLrrbfe4Aa0GnF+GnN+GnN+Gut0fubMmfN0RGzS/5idMawL05QpU5g9e3ZL01YqFXp6egY3oNWI89OY89OY89NYp/Mj6ZH+x+ocH8ozM7NSaVthkjRJ6TpL85TupvrF3L6xpOsk/SH/3agwzTGSHpR0v6Q92xWbmZmVVzv3mJYBR0bENqSr3H5O0rak++1cHxFTSVfwPhogD5tOurbTXsBp8k3KzMxGnLYVpohYHBG35+cvkq4UPZF0aYpz8mjnkO4NQ26fFREvR8R80uU5dmlXfGZmVk5D8huTpCnAm0kXJuyKdItp8t/X5dEmsvLl5BfR/K0hzMxsNdH2s/LylbkvJd2p8oV0kezao9Zoe81//+brn80A6OrqolKptBRXb29vy9OOBM5PY85PY85PY85PY20tTPmy65cC50fEZbl5iaQJEbE4X9fqydy+iJXvnVLzni75+mczAbq7u6PVUy47fbpm2Tk/jTk/jTk/jTk/jbXzrDyRLss/LyJOKQy6inRve/LfKwvt0/O9WLYgXYDx1nbFZ2Zm5dTOPabdSPdmuUvS3Nx2LHAScLGkQ4FHgY8CRMQ9ki4m3YdmGfC5fC8YMzMbQdpWmCLiJurfhnf3Wo0RcSJwYrtiqjbl6J82Nd6Ck/ZtcyRmZtbHV34wM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NSaVthknSWpCcl3V1ou0jS3PxYIGlubp8i6U+FYWe0Ky4zMyu30W3s+2zgB8C5fQ0R8fG+55JOBpYWxn8oInZsYzxmZjYMtK0wRcSNkqbUGiZJwMeA97Rr/mZmNjwpItrXeSpM10TE9lXt7wJOiYjuwnj3AA8ALwDHR8Sv6/Q5A5gB0NXVtdOsWbNaiq23t5f5S5c3Ne4OEzdoaR7DWW9vL2PHju10GKXl/DTm/DTW6fxMmzZtTt/nbxm181BeIwcAFxZeLwY2j4hnJO0EXCFpu4h4oXrCiJgJzATo7u6Onp6elgKoVCqcfNNLTY274MDW5jGcVSoVWs3tSOD8NOb8NOb8NDbkZ+VJGg18GLiory0iXo6IZ/LzOcBDwFZDHZuZmXVeJ04X3wO4LyIW9TVI2kTSqPx8S2Aq8HAHYjMzsw5r5+niFwI3A1tLWiTp0DxoOisfxgN4F3CnpDuAS4DDI+LZdsVmZmbl1c6z8g6o035IjbZLgUvbFYuZmQ0fvvKDmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmVSjtvrX6WpCcl3V1oO0HSY5Lm5sc+hWHHSHpQ0v2S9mxXXGZmVm7t3GM6G9irRvupEbFjfvwMQNK2wHRguzzNaZJGtTE2MzMrqbYVpoi4EXi2ydH3B2ZFxMsRMR94ENilXbGZmVl5je7APD8v6ZPAbODIiHgOmAjcUhhnUW57DUkzgBkAXV1dVCqVloLo7e3lyB2WNzVuq/MYznp7e0fkcjfL+WnM+WnM+WlsqAvT6cC3gch/TwY+BajGuFGrg4iYCcwE6O7ujp6enpYCqVQqnHzTS02Nu+DA1uYxnFUqFVrN7Ujg/DTm/DTm/DQ2pGflRcSSiFgeEX8FfsiKw3WLgEmFUTcDHh/K2MzMrByGtDBJmlB4+SGg74y9q4DpktaWtAUwFbh1KGMzM7NyaNuhPEkXAj3AeEmLgG8APZJ2JB2mWwAcBhAR90i6GLgXWAZ8LiKa+wHIzMxWK20rTBFxQI3mMxuMfyJwYrviMTOz4cFXfjAzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JpW2GSdJakJyXdXWj7rqT7JN0p6XJJG+b2KZL+JGlufpzRrrjMzKzc2rnHdDawV1XbdcD2EfFG4AHgmMKwhyJix/w4vI1xmZlZibWtMEXEjcCzVW3XRsSy/PIWYLN2zd/MzIYnRUT7OpemANdExPY1hl0NXBQR5+Xx7iHtRb0AHB8Rv67T5wxgBkBXV9dOs2bNaim23t5e5i9d3tS4O0zcoKV5DGe9vb2MHTu202GUlvPTmPPTWKfzM23atDkR0d2xAPoxuhMzlXQcsAw4PzctBjaPiGck7QRcIWm7iHihetqImAnMBOju7o6enp6WYqhUKpx800tNjbvgwNbmMZxVKhVaze1I4Pw05vw05vw0NuRn5Uk6GNgPODDy7lpEvBwRz+Tnc4CHgK2GOjYzM+u8IS1MkvYCvgZ8ICL+WGjfRNKo/HxLYCrw8FDGZmZm5dC2Q3mSLgR6gPGSFgHfIJ2FtzZwnSSAW/IZeO8CviVpGbAcODwinq3ZsZmZrdbaVpgi4oAazWfWGfdS4NJ2xWJmZsOHr/xgZmal4sJkZmal4sJkZmal4sJkZmal4sJkZmal0lRhkrRbM21mZmarqtk9pv9sss3MzGyVNPw/JklvA94ObCLpy4VB6wOj2hmYmZmNTP39g+1awNg83rhC+wvAR9oVlJmZjVwNC1NE/Ar4laSzI+KRIYrJzMxGsGYvSbS2pJnAlOI0EfGedgRlZmYjV7OF6SfAGcCPSBdZNTMza4tmC9OyiDi9rZGYmZnR/OniV0v6rKQJkjbue7Q1MjMzG5Ga3WM6OP/9SqEtgC0HNxwzMxvpmipMEbFFuwMxMzODJguTpE/Wao+Icwc3HDMzG+ma/Y1p58LjncAJwAcaTSDpLElPSrq70LaxpOsk/SH/3agw7BhJD0q6X9KeA14SMzNbLTRVmCLiHwuPzwBvJl0VopGzgb2q2o4Gro+IqcD1+TWStgWmA9vlaU6T5EsemZmNQK3e9uKPwNRGI0TEjcCzVc37A+fk5+cAHyy0z4qIlyNiPvAgsEuLsZmZ2TDW7G9MV5POwoN08dZtgItbmF9XRCwGiIjFkl6X2ycCtxTGW5TbasUyA5gB0NXVRaVSaSEM6O3t5cgdmvtf4VbnMZz19vaOyOVulvPTmPPTmPPTWLOni3+v8HwZ8EhELBrEOFSjLWq0EREzgZkA3d3d0dPT09IMK5UKJ9/0UlPjLjiwtXkMZ5VKhVZzOxI4P405P405P401+xvTr4D7SFcY3wh4pcX5LZE0ASD/fTK3LwImFcbbDHi8xXmYmdkw1uwdbD8G3Ap8FPgY8DtJrdz24ipW/LPuwcCVhfbpktaWtAXp96tbW+jfzMyGuWYP5R0H7BwRTwJI2gT4JXBJvQkkXQj0AOMlLQK+AZwEXCzpUOBRUqEjIu6RdDFwL+lQ4eciwheLNTMbgZotTGv0FaXsGfrZ24qIA+oM2r3O+CcCJzYZj5mZraaaLUw/l/QL4ML8+uPAz9oTkpmZjWQNC5Ok15NO8f6KpA8D7yCdQXczcP4QxGdmZiNMfyc/fB94ESAiLouIL0fEl0h7S99vb2hmZjYS9VeYpkTEndWNETGbdJt1MzOzQdVfYVqnwbB1BzMQMzMz6L8w3SbpM9WN+XTvOe0JyczMRrL+zso7Arhc0oGsKETdpCuLf6iNcZmZ2QjVsDBFxBLg7ZKmAdvn5p9GxP+1PTIzMxuRmr21+g3ADW2OxczMrOX7MZmZmbWFC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZVKszcKHDSStgYuKjRtCXwd2BD4DPBUbj82InwzQjOzEWbIC1NE3A/sCCBpFPAYcDnw98CpEfG9oY7JzMzKo9OH8nYHHoqIRzoch5mZlUSnC9N04MLC689LulPSWZI26lRQZmbWOYqIzsxYWgt4HNguIpZI6gKeBgL4NjAhIj5VY7oZwAyArq6unWbNmtXS/Ht7e5m/dHlT4+4wcYOW5jGc9fb2Mnbs2E6HUVrOT2POT2Odzs+0adPmRER3xwLoRycL0/7A5yLifTWGTQGuiYjtXzNhQXd3d8yePbul+VcqFQ75+UtNjbvgpH1bmsdwVqlU6Onp6XQYpeX8NOb8NNbp/EgqdWHq5KG8AygcxpM0oTDsQ8DdQx6RmZl13JCflQcgaQzwXuCwQvN3JO1IOpS3oGqYmZmNEB0pTBHxR+BvqtoO6kQsZmZWLp0+K8/MzGwlLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqHbm1uqQFwIvAcmBZRHRL2hi4CJgCLAA+FhHPdSI+MzPrnE7uMU2LiB0joju/Phq4PiKmAtfn12ZmNsKU6VDe/sA5+fk5wAc7F4qZmXWKImLoZyrNB54DAvjviJgp6fmI2LAwznMRsVGNaWcAMwC6urp2mjVrVksx9Pb2Mn/p8qbG3WHiBi3NYzjr7e1l7NixnQ6jtJyfxpyfxjqdn2nTps0pHK0qnY78xgTsFhGPS3odcJ2k+5qdMCJmAjMBuru7o6enp6UAKpUKJ9/0UlPjLjiwtXkMZ5VKhVZzOxI4P405P405P4115FBeRDye/z4JXA7sAiyRNAEg/32yE7GZmVlnDXlhkrSepHF9z4H3AXcDVwEH59EOBq4c6tjMzKzzOnEorwu4XFLf/C+IiJ9Lug24WNKhwKPARzsQm5mZddiQF6aIeBh4U432Z4DdhzoeMzMrlzKdLm5mZubCZGZm5eLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpdKp+zENK1OO/mlT4y04ad82R2JmtvrzHpOZmZWKC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZXKkBcmSZMk3SBpnqR7JH0xt58g6TFJc/Njn6GOzczMOq8Tp4svA46MiNsljQPmSLouDzs1Ir7XgZjMzKwkhrwwRcRiYHF+/qKkecDEoY7DzMzKSRHRuZlLU4Abge2BLwOHAC8As0l7Vc/VmGYGMAOgq6trp1mzZrU0797eXuYvXd7StPXsMHGDQe2vk3p7exk7dmynwygt56cx56exTudn2rRpcyKiu2MB9KNjhUnSWOBXwIkRcZmkLuBpIIBvAxMi4lON+uju7o7Zs2e3NP9KpcIhP3+ppWnrWZ2u/FCpVOjp6el0GKXl/DTm/DTW6fxIKnVh6sgliSStCVwKnB8RlwFExJLC8B8C13QitlXhSxeZma26TpyVJ+BMYF5EnFJon1AY7UPA3UMdm5mZdV4n9ph2Aw4C7pI0N7cdCxwgaUfSobwFwGEdiM3MzDqsE2fl3QSoxqCfDXUsZmZWPr7yg5mZlYoLk5mZlYoLk5mZlYoLk5mZlYoLk5mZlYoLk5mZlYoLk5mZlUpHLklkg8uXQjKz1YkLUwe4kJiZ1edDeWZmViouTGZmViouTGZmVir+janEmv0tqh3uemwphzQxf/8OZmaDzXtMZmZWKi5MZmZWKj6UN4IM5NDgkTsMbp/NHvLzqfRm5j0mMzMrFe8x2ZDo5IkcZja8lG6PSdJeku6X9KCkozsdj5mZDa1S7TFJGgX8F/BeYBFwm6SrIuLezkZmZePfosxWX6UqTMAuwIMR8TCApFnA/oALk7WkkwWsUyeGdFLZvwgMhy80wyHGdlNEdDqGV0n6CLBXRHw6vz4I2DUiPl8YZwYwI7/cGri/xdmNB55ehXBXd85PY85PY85PY53Oz+SI2KSD82+obHtMqtG2UuWMiJnAzFWekTQ7IrpXtZ/VlfPTmPPTmPPTmPPTWNlOflgETCq83gx4vEOxmJlZB5StMN0GTJW0haS1gOnAVR2OyczMhlCpDuVFxDJJnwd+AYwCzoqIe9o0u1U+HLiac34ac34ac34ac34aKNXJD2ZmZmU7lGdmZiOcC5OZmZXKiCxMI/GyR5ImSbpB0jxJ90j6Ym7fWNJ1kv6Q/25UmOaYnKP7Je1ZaN9J0l152H9IqnWa/7AkaZSk30u6Jr92fjJJG0q6RNJ9eT16m/OzgqQv5W3rbkkXSlrH+WlRRIyoB+mkioeALYG1gDuAbTsd1xAs9wTgLfn5OOABYFvgO8DRuf1o4N/y821zbtYGtsg5G5WH3Qq8jfR/Z/8L7N3p5RvEPH0ZuAC4Jr92flbk5hzg0/n5WsCGzs+ruZkIzAfWza8vBg5xflp7jMQ9plcvexQRrwB9lz1arUXE4oi4PT9/EZhH2pj2J33gkP9+MD/fH5gVES9HxHzgQWAXSROA9SPi5khb0bmFaYY1SZsB+wI/KjQ7P4Ck9YF3AWcCRMQrEfE8zk/RaGBdSaOBMaT/wXR+WjASC9NEYGHh9aLcNmJImgK8Gfgd0BURiyEVL+B1ebR6eZqYn1e3rw6+D3wV+GuhzflJtgSeAv4nH+r8kaT1cH4AiIjHgO8BjwKLgaURcS3OT0tGYmHq97JHqzNJY4FLgSMi4oVGo9Zoiwbtw5qk/YAnI2JOs5PUaFtt80PaG3gLcHpEvBl4iXRoqp4RlZ/829H+pMNymwLrSfpEo0lqtK22+RmokViYRuxljyStSSpK50fEZbl5ST58QP77ZG6vl6dF+Xl1+3C3G/ABSQtIh3ffI+k8nJ8+i4BFEfG7/PoSUqFyfpI9gPkR8VRE/AW4DHg7zk9LRmJhGpGXPcpn9pwJzIuIUwqDrgIOzs8PBq4stE+XtLakLYCpwK35cMSLkt6a+/xkYZphKyKOiYjNImIKaZ34v4j4BM4PABHxBLBQ0ta5aXfS7Wicn+RR4K2SxuTl2p30O67z04pOn33RiQewD+mstIeA4zodzxAt8ztIhwTuBObmxz7A3wDXA3/IfzcuTHNcztH9FM4MArqBu/OwH5CvILK6PIAeVpyV5/ysWK4dgdl5HboC2Mj5WSk/3wTuy8v2Y9IZd85PCw9fksjMzEplJB7KMzOzEnNhMjOzUnFhMjOzUnFhMjOzUnFhMjOzUnFhMjOzUnFhsmFH0nH59gJ3SporaVdJCySNrzHub/vpa4qku+sMq0jqbjDt5Xn+D0pamp/PlfT2gS9V3XlsKumSwerPbDgY3ekAzAZC0tuA/Ui38Hg5F6O16o0fEYNWJGr0/aEcUw9wVETs18x0kkZHxLJ6r6vm8TjwkVWP1mz48B6TDTcTgKcj4mWAiHg6f3gDIGldST+X9Jn8ujf/HSvpekm355uwFW91MlrSOXkP7BJJY6pnKul9km7O0/8kXwz3NSRtIulSSbflx265/QRJMyVdC5xb4/UUSb/O/d/et9dV3KOTdIiky/Ly/UHSdxolStLpkmbnvctvFtp3lvRbSXdIulXSuGYSbzZkOn3pCT/8GMgDGEu6nNIDwGnAu3P7AmAK8Evgk4Xxe/Pf0aT73ACMJ93/RnmaAHbLw84i7f0AVEiXhxkP3Aisl9u/Bny9MI8eVlzC6ALgHfn55qRrEwKcAMxhxY3kql+PAdbJz6cCs/PzKcDd+fkhwMPABsA6wCPApAa52jj/HZWX5Y2kvcuHgZ3zsPWB0Z1+X/3wo/jwoTwbViKiV9JOwDuBacBFkvpuv3Al8J2IOL/GpAL+RdK7SPdbmgh05WELI+I3+fl5wBdI99bp81bSHUd/k66ryVrAzXVC3APYVivuhr1+YY/kqoj4U2Hc4us1gR9I2hFYDmxVp//rI2IpgKR7gcmsfF+foo9JmkEqyhPyMgSwOCJuA4jGtz4x6wgXJht2ImI5aQ+gIukuVly9+TfA3pIuiIjqi0AeCGwC7BQRf8m3t1inr8vqWVS9FnBdRBzQRHhrAG+rKkDkQvVS1bjF118ClgBvyn38uU7/LxeeL6fONpyvWH0Uac/oOUlnk5ZXjMD7+9jw4t+YbFiRtLWkqYWmHUmHtAC+DjxDOsRXbQPSjQD/ImkaaU+jz+b5pAqAA4Cbqqa9BdhN0utzDGMk1dujuRb4fCHeHftdqBXxLY6IvwIHkQ6/rYr1SYVvqaQuYO/cfh+wqaSdc3zjlG4FblYaLkw23IwFzpF0r6Q7SYenTigMPwJYp8aJAecD3ZJmk/ae7isMmwccnPvbGDi9OGFEPEX6fefCPM4twBvqxPeFPJ8786G2w5tcrtNyDLeQDuNV710NSETcAfweuIf0u9lvcvsrwMeB/5R0B3AdK/YczUrBt70wM7NS8R6TmZmVio8tmw1zkn5Hultq0UERcVcn4jFbVT6UZ2ZmpeJDeWZmViouTGZmViouTGZmViouTGZmVir/HwaoGE7VjUXwAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1265,7 +2973,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 123, "metadata": {}, "outputs": [ { @@ -1276,7 +2984,7 @@ "Name: Snow Making_ac, dtype: float64" ] }, - "execution_count": 31, + "execution_count": 123, "metadata": {}, "output_type": "execute_result" } @@ -1287,7 +2995,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 124, "metadata": {}, "outputs": [ { @@ -1345,7 +3053,7 @@ " \n", " \n", " fastEight\n", - " 0\n", + " 0.0\n", " \n", " \n", " fastSixes\n", @@ -1377,11 +3085,11 @@ " \n", " \n", " Runs\n", - " 97\n", + " 97.0\n", " \n", " \n", " TerrainParks\n", - " 3\n", + " 3.0\n", " \n", " \n", " LongestRun_mi\n", @@ -1389,23 +3097,23 @@ " \n", " \n", " SkiableTerrain_ac\n", - " 4800\n", + " 4800.0\n", " \n", " \n", " Snow Making_ac\n", - " 3379\n", + " 3379.0\n", " \n", " \n", " daysOpenLastYear\n", - " 155\n", + " 155.0\n", " \n", " \n", " yearsOpen\n", - " 64\n", + " 64.0\n", " \n", " \n", " averageSnowfall\n", - " 360\n", + " 360.0\n", " \n", " \n", " AdultWeekday\n", @@ -1417,7 +3125,7 @@ " \n", " \n", " projectedDaysOpen\n", - " 157\n", + " 157.0\n", " \n", " \n", " NightSkiing_ac\n", @@ -1436,7 +3144,7 @@ "vertical_drop 3500\n", "base_elev 7170\n", "trams 2\n", - "fastEight 0\n", + "fastEight 0.0\n", "fastSixes 2\n", "fastQuads 7\n", "quad 1\n", @@ -1444,21 +3152,21 @@ "double 3\n", "surface 8\n", "total_chairs 28\n", - "Runs 97\n", - "TerrainParks 3\n", + "Runs 97.0\n", + "TerrainParks 3.0\n", "LongestRun_mi 5.5\n", - "SkiableTerrain_ac 4800\n", - "Snow Making_ac 3379\n", - "daysOpenLastYear 155\n", - "yearsOpen 64\n", - "averageSnowfall 360\n", + "SkiableTerrain_ac 4800.0\n", + "Snow Making_ac 3379.0\n", + "daysOpenLastYear 155.0\n", + "yearsOpen 64.0\n", + "averageSnowfall 360.0\n", "AdultWeekday NaN\n", "AdultWeekend NaN\n", - "projectedDaysOpen 157\n", + "projectedDaysOpen 157.0\n", "NightSkiing_ac NaN" ] }, - "execution_count": 32, + "execution_count": 124, "metadata": {}, "output_type": "execute_result" } @@ -1483,7 +3191,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 125, "metadata": {}, "outputs": [ { @@ -1492,7 +3200,7 @@ "2880.0" ] }, - "execution_count": 33, + "execution_count": 125, "metadata": {}, "output_type": "execute_result" } @@ -1524,7 +3232,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 126, "metadata": {}, "outputs": [ { @@ -1535,7 +3243,7 @@ "Name: fastEight, dtype: int64" ] }, - "execution_count": 34, + "execution_count": 126, "metadata": {}, "output_type": "execute_result" } @@ -1553,13 +3261,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 127, "metadata": {}, "outputs": [], "source": [ "#Code task 24#\n", "#Drop the 'fastEight' column from ski_data. Use inplace=True\n", - "ski_data.drop(columns=___, inplace=___)" + "ski_data.drop(columns='fastEight', inplace=True)" ] }, { @@ -1571,13 +3279,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 128, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "34 104.0\n", + "115 2019.0\n", + "Name: yearsOpen, dtype: float64" + ] + }, + "execution_count": 128, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 25#\n", "#Filter the 'yearsOpen' column for values greater than 100\n", - "ski_data.___[ski_data.___ > ___]" + "ski_data.yearsOpen[ski_data.yearsOpen > 100]" ] }, { @@ -1596,14 +3317,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 130, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeG0lEQVR4nO3de5hcVZnv8e/PcAnQJAHBnhiQBo0XDhGEVhxQT8eIgoDBR7k4wARFcxiV0THqxCt4hTmDnvHoKEZUIjgERBwiKMpEG/TIcImoQQFRCBDARDCJNCAYeM8fazXsVPpSSfeu6u71+zxPP1177du7dtV+a9Xau1YpIjAzs3I8rd0BmJlZaznxm5kVxonfzKwwTvxmZoVx4jczK4wTv5lZYZz4W0zS2ZI+MkrbepakPkmT8nSvpLeOxrbz9r4vad5obW8z9vtJSfdL+kOr920bG8lrStLpks7Pjzd6rVp7OfGPIkkrJT0i6UFJ6yT9TNIpkp48zhFxSkR8osltvWqoZSLirojoiIjHRyH2J0/SyvYPi4jFI932ZsaxO7AA2Dsi/qaV+7b6jOZrtZGk90m6KZ93d0h6X8P8Lkk/lvSwpFuq55Wk6ZKWSrpXUkjqalh3hqRLJf1J0ipJp4x2/O3gxD/6joyIHYE9gDOBfwa+Oto7kbTVaG9zjNgDeCAi1rQziAl8fCciAX8P7AQcCrxT0nGV+RcANwJPBz4EXCxp1zzvCeAK4A2DbPt84A6gEzgc+LSk2aNeg1aLCP+N0h+wEnhVQ9lLSC+uffL0ucAn8+NdgMuAdcCfgJ+Q3ozPy+s8AvQB7we6gABOBu4Crq6UbZW31wucAVwHrAcuBXbO83qAVQPFSzpZHgP+mvf3y8r23pofPw34MHAnsAb4BjA1z+uPY16O7X7gQ0Mcp6l5/T/m7X04b/9Vuc5P5DjOHWDdm0hvrv3TW+f97ZenXwr8LB/TXwI9lWXfDNwMPAjcDvyvyrweYBXpjfoP+TkY8PkZpE4HAdfn4349cFBl3qDPSxMx9wKfAP5fjvuHwC5DHNsjgF/kbf0MeGEuPzbXeUqePizXc9c8PTev92fg98ChA7wGTgfOr+yr/3nvf/3tCVyV47wS+EL/8gMsO2S9SIn8TuAB4CMMcG4NcQz+L/D5/Pi5wKPAjpX5PwFOaVhnqxxfV6WsI5ftWilbBJzX7lwz4lzV7gAm0t9gL05SMvyH/Phcnkr8ZwBnk5LX1sDLAQ20rcqJ8w1gB2C7QU6me4B98jLfrpx4PQyS+PPjjU7qyvb6T/q3AL8D9sonxCX9J0Aljq/kuPbNJ9sLBjlO3yAlvx3zur8FTh4szoZ13w9cWJmeC6zIj2fkRPFa0hvJIXm6P7kdDjyb1EL8n8DDwP6V/W4A/gXYNtdj0OenIaadgbXAiaQE8qY8/fQmnpfhYu4lJeLn5ph6gTMHOTb7k96UDwQmkd6IVwLb5vnfJL3+ng7cCxyRy19CekM6JMcwA3j+AK+B0xk68V8DfDYfv1eQEvpQiX/AegF7k974XwZsA5xFapQMm/jzc3sjObEDrwdubljmC+Q3hkrZQIl/x1z2jErZV4Ab251rRvrnrp7WuJeUHBr9FZgO7BERf42In0R+dQ3h9Ih4KCIeGWT+eRFxU0Q8RGopHTNKF9SOBz4bEbdHRB/wAeC4hi6Rj0XEIxHxS1LLdd/GjeRYjgU+EBEPRsRK4DOkpNmM84HXSpqSp08ktc4BTgC+FxHfi4gnIuJK4AZSUiUiLo+I30dyFamV+fLKtp8ATouIR/Pxbfb5ORy4LSLOi4gNEXEBcAtwZGWZwZ6XIWPOvh4Rv80xXQTsN8ixeRvw5Yi4NiIej3R95lHSJwqAdwCvJCXZ70bEZbn8ZOBrEXFljuGeiLhlkH0MSNKzgBcDH8nH72rgu8OsNli93pjj+2lEPAZ8lJSAm3E66c3r63m6g/SmVrWelNSHFBEPkj6RfETSZEn7k7qEtm8yljHLib81ZpC6Chr9K6kV/UNJt0ta2MS27t6M+XeSWqq7NBXl0J6Zt1fd9lakvs9+1btwHiaddI12IbXiGrc1o5kgIuJe0sn4BknTSF0W38yz9wCOzhfW10laR2o1TgeQdJik/84X6taRkmv12PwxIv5SmW72+Wk8NgPVabDnZciYs2aOK3lbCxq2tXuOj4hYB3yL9MnjM5X1die1vkfimcDa/MbWr/GYNBqsXs+kcrwi4mHSp6AhSXonqYvo8Ih4NBf3AVMaFp1C+jTSjONJXVh3A18ivdZWNbnumOXEXzNJLyYlgJ82zsst3gURsRepdfgeSXP6Zw+yyeFaPrtXHj+L1Gq9H3iISksltzZ3rSw73HbvJSWW6rY3AKuHWa/R/Tmmxm3dsxnbWExqKR8NXBMR/eveTWpZT6v87RARZ0raltTFchbQGRHTgO+Rugb6bXQMhnl+qhqPzUB1Gux5GTTmZg9Gxd3Apxq2tX3+BIKk/UhddheQ+sGr6z27ie1v9BoCqndd3QfsJGmHStmztqAO/dvarX9C0nak7qlBSXoLsBCYExHVxPxrYC9J1Rb+vrl8WBFxZ0QcERG7RsSBOY7rmqvG2OXEXxNJUyQdASwh9XOuGGCZIyQ9R5JIF9Uez3+QEupeW7DrEyTtLWl74OPAxZFuofstMFnS4ZK2Jl1Q3bay3mqgq3rraYMLgH+StKekDuDTpL72DZsTXI7lIuBTknaUtAfwHlIXTrP+k9Sf/S7S9YJ+5wNHSnqNpEn543mPpN1InzK2JV1Q3iDpMODVQ+1kmOen6nvAcyX9naStJB1L6qe+rLLMYM/LUDFvrq8Ap0g6UMkO+fneUdLkvK8Pki5yz5D09rzeV4E3S5oj6Wn5FsbnD7D9XwCvULonfyqpuw9ICZLURfUxSdtIehkbd3VtjotJx+QgSdsAH2PjN+iNSDqe9Ho8JCJur86LiN/muE/Lx/b1wAtJjYD+9Sfz1LmwbZ7un/eCfPy2kXQC6TXz2S2s15jhxD/6vivpQVIr6kOkF8mbB1l2JvBfpI+j1wBfjIjePO8M4MP5I/t7N2P/55Eu4P0BmAz8I0BErAfeDpxDaok+xMYfWb+V/z8g6ecDbPdredtXk25v+wtw6mbEVXVq3v/tpE9C/5G335TcJ/xt0kfwSyrld5Mu9n6QlODvBt5HuhPnQdKxuIh04fXvgKXD7Gqo56cazwOku2kWkLok3k+6cHp/ZbHBnpdBY27iUDTGcQOpn/8LuY6/A07Ks88gXTT/Uu4GOQH4pKSZEXEd6TX6f0j931ex6ScY8vWHC4FfAcvZ+I0N0jE9kNSteRobvylvTj1+TXqNLCG1/h8kXbR+dJBVPklqiV+v9CWxPklnV+YfB3STjsmZwBsj4o+V+f13z0G6NlO9fvYa0ut0LXAK6W6n6rrjUv8dJGbjiqSPAs+NiBPaHctwJPWSPvWd0+5YxqP8CXMdMDMi7mhzOBOCW/w27kjamXQnyqJ2x2L1kHSkpO3zNYOzgBWkW1NtFDjx27gi6W2k7pDv51sGbWKaS7pofi+py+24Jm51tia5q8fMrDBu8ZuZFWZcDES1yy67RFdXV7vDaImHHnqIHXbYYfgFJxjXuyyud2ssX778/ojYtbF8XCT+rq4ubrjhhnaH0RK9vb309PS0O4yWc73L4nq3hqQBvz3trh4zs8I48ZuZFcaJ38ysME78ZmaFceI3MyuME7+ZWWGc+M3MCuPEb2ZWGCd+M7PC1PrN3fybqOeQfuMzSD/7divpxxy6SMOsHhMRa+uMw6wuXQsvb2q5lWceXnMkZs2ru8X/OeCKiHg+6Xcubyb9LuayiJgJLMvTZmbWIrUlfklTgFeQfs+TiHgsItaRxtlenBdbDBxVVwxmZrap2sbjl7Qf6ReSfkNq7S8n/Tj2PRExrbLc2ojYaYD15wPzATo7Ow9YsmRJLXGONX19fXR0dLQ7jJYbr/Vecc/6ppabNWPqgOXjtd4j5Xq3xuzZs5dHRHdjeZ2Jvxv4b+DgiLhW0ueAPwOnNpP4q7q7u8Ojc05s47XeI+3jH6/1HinXuzUkDZj46+zjXwWsiohr8/TFwP7AaknTc1DTgTU1xmBmZg1qS/wR8QfgbknPy0VzSN0+S4F5uWwecGldMZiZ2abq/iGWU4FvStoGuB14M+nN5iJJJwN3AUfXHIOZmVXUmvgj4hfAJv1LpNa/mZm1gb+5a2ZWGCd+M7PCOPGbmRXGid/MrDBO/GZmhXHiNzMrjBO/mVlhnPjNzArjxG9mVhgnfjOzwjjxm5kVxonfzKwwTvxmZoVx4jczK4wTv5lZYZz4zcwK48RvZlYYJ34zs8I48ZuZFcaJ38ysME78ZmaFceI3MyuME7+ZWWGc+M3MCuPEb2ZWmK3q3LiklcCDwOPAhojolrQzcCHQBawEjomItXXGYWZmT2lFi392ROwXEd15eiGwLCJmAsvytJmZtUg7unrmAovz48XAUW2IwcysWIqI+jYu3QGsBQL4ckQskrQuIqZVllkbETsNsO58YD5AZ2fnAUuWLKktzrGkr6+Pjo6OdofRcuO13ivuWd/UcrNmTB2wfLzWe6Rc79aYPXv28kpvy5Nq7eMHDo6IeyU9A7hS0i3NrhgRi4BFAN3d3dHT01NTiGNLb28vpdS1arzW+6SFlze13MrjewYsH6/1HinXu71q7eqJiHvz/zXAd4CXAKslTQfI/9fUGYOZmW2stsQvaQdJO/Y/Bl4N3AQsBeblxeYBl9YVg5mZbarOrp5O4DuS+vfzHxFxhaTrgYsknQzcBRxdYwxmZtagtsQfEbcD+w5Q/gAwp679mpnZ0PzNXTOzwjjxm5kVxonfzKwwTvxmZoVx4jczK4wTv5lZYZz4zcwK48RvZlYYJ34zs8I48ZuZFcaJ38ysME78ZmaFceI3MyuME7+ZWWGc+M3MCuPEb2ZWGCd+M7PCOPGbmRXGid/MrDBO/GZmhXHiNzMrjBO/mVlhnPjNzArjxG9mVhgnfjOzwtSe+CVNknSjpMvy9M6SrpR0W/6/U90xmJnZU1rR4n8XcHNleiGwLCJmAsvytJmZtUitiV/SbsDhwDmV4rnA4vx4MXBUnTGYmdnGFBH1bVy6GDgD2BF4b0QcIWldREyrLLM2Ijbp7pE0H5gP0NnZecCSJUtqi3Ms6evro6Ojo91htNx4rfeKe9Y3tdysGVMHLB+v9R4p17s1Zs+evTwiuhvLt6prh5KOANZExHJJPZu7fkQsAhYBdHd3R0/PZm9iXOrt7aWUulaN13qftPDyppZbeXzPgOXjtd4j5Xq3V22JHzgYeJ2k1wKTgSmSzgdWS5oeEfdJmg6sqTEGMzNrUFsff0R8ICJ2i4gu4DjgRxFxArAUmJcXmwdcWlcMZma2qXbcx38mcIik24BD8rSZmbVInV09T4qIXqA3P34AmNOK/ZqZ2ab8zV0zs8I48ZuZFcaJ38ysME78ZmaFceI3MyuME7+ZWWGc+M3MCuPEb2ZWGCd+M7PCNJX4JR3cTJmZmY19zbb4P99kmZmZjXFDjtUj6W+Bg4BdJb2nMmsKMKnOwMzMrB7DDdK2DdCRl9uxUv5n4I11BWVmZvUZMvFHxFXAVZLOjYg7WxSTmZnVqNlhmbeVtAjoqq4TEa+sIygzM6tPs4n/W8DZwDnA4/WFY2ZmdWs28W+IiC/VGomZmbVEs7dzflfS2yVNl7Rz/1+tkZmZWS2abfH3/zj6+yplAew1uuGYmVndmkr8EbFn3YGYmVlrNJX4Jf39QOUR8Y3RDcfMzOrWbFfPiyuPJwNzgJ8DTvxmTehaePmA5QtmbeCkhnkrzzy8FSFZwZrt6jm1Oi1pKnBeLRGZmVmttnRY5oeBmaMZiJmZtUazffzfJd3FA2lwthcAF9UVlJmZ1afZPv6zKo83AHdGxKqhVpA0Gbga2Dbv5+KIOC3f/38hafiHlcAxEbF2M+M2M7Mt1FRXTx6s7RbSCJ07AY81sdqjwCsjYl9gP+BQSS8FFgLLImImsCxPm5lZizT7C1zHANcBRwPHANdKGnJY5kj68uTW+S+AucDiXL4YOGrzwzYzsy2liBh+IemXwCERsSZP7wr8V27ND7XeJGA58Bzg3yPinyWti4hplWXWRsROA6w7H5gP0NnZecCSJUuar9U41tfXR0dHR7vDaLnxWu8V96wf0fqd28HqRzYumzVj6oi2OR6M1+d7pFpd79mzZy+PiO7G8mb7+J/Wn/SzB2ji00JEPA7sJ2ka8B1J+zS5PyJiEbAIoLu7O3p6eppddVzr7e2llLpWjdd6N96Dv7kWzNrAZ1ZsfBquPL5nRNscD8br8z1SY6XezSb+KyT9ALggTx8LfK/ZnUTEOkm9wKHAaknTI+I+SdOBNUOvbWZmo2nIVruk50g6OCLeB3wZeCGwL3ANuTU+xLq75pY+krYDXkW6QLyUpwZ9mwdcOpIKmJnZ5hmuxf9vwAcBIuIS4BIASd153pFDrDsdWJz7+Z8GXBQRl0m6BrhI0snAXaQLxmZm1iLDJf6uiPhVY2FE3CCpa6gV83ovGqD8AdJYP2Zm1gbDXaCdPMS87UYzEDMza43hWvzXS3pbRHylWpi7aZbXF5ZZew02mqbZRDBc4n836TbM43kq0XcD2wCvrzEuMzOryZCJPyJWAwdJmg3034N/eUT8qPbIzMysFs2Ox/9j4Mc1x2JmZi2wpePxm5nZOOXEb2ZWGCd+M7PCNDtWj5lZbZq9fdY/RD863OI3MyuME7+ZWWGc+M3MCuPEb2ZWGCd+M7PCOPGbmRXGid/MrDBO/GZmhXHiNzMrjBO/mVlhnPjNzArjxG9mVhgP0mZmtRhq4LUFszZwkn/XuG3c4jczK4wTv5lZYZz4zcwKU1sfv6TdgW8AfwM8ASyKiM9J2hm4EOgCVgLHRMTauuIwG2/8oyRWtzpb/BuABRHxAuClwDsk7Q0sBJZFxExgWZ42M7MWqS3xR8R9EfHz/PhB4GZgBjAXWJwXWwwcVVcMZma2KUVE/TuRuoCrgX2AuyJiWmXe2ojYaYB15gPzATo7Ow9YsmRJ7XGOBX19fXR0dLQ7jJYbab1X3LO+qeVmzZg6qtsbqc7tYPUjW7Zus3Vpl6GO4ZbWe6zXeTitPr9nz569PCK6G8trT/ySOoCrgE9FxCWS1jWT+Ku6u7vjhhtuqDXOsaK3t5eenp52h9FyI633aPeLN7u9kVowawOfWbFll9rGeh//cPfxb0m9x3qdh9Pq81vSgIm/1rt6JG0NfBv4ZkRckotXS5qe508H1tQZg5mZbay2xC9JwFeBmyPis5VZS4F5+fE84NK6YjAzs03VOWTDwcCJwApJv8hlHwTOBC6SdDJwF3B0jTGYmVmD2hJ/RPwU0CCz59S1XzMzG5q/uWtmVhgnfjOzwjjxm5kVxonfzKwwTvxmZoVx4jczK4wTv5lZYZz4zcwK48RvZlYYJ34zs8I48ZuZFabOQdrMbAzwb/haI7f4zcwK48RvZlYYd/VYUVr1k4qtMJHqYq3lFr+ZWWGc+M3MCuPEb2ZWGCd+M7PCOPGbmRXGid/MrDC+ndPGNN+y2Dr+hm853OI3MyuME7+ZWWGc+M3MClNb4pf0NUlrJN1UKdtZ0pWSbsv/d6pr/2ZmNrA6W/znAoc2lC0ElkXETGBZnjYzsxaqLfFHxNXAnxqK5wKL8+PFwFF17d/MzAamiKhv41IXcFlE7JOn10XEtMr8tRExYHePpPnAfIDOzs4DlixZUlucdVlxz/qmlps1Y+qTj/v6+ujo6KgrpDFrsHo3ewzHq87tYPUj7Y5i81Rfr0MZ6rnb0no3u++xqtXn9+zZs5dHRHdj+Zi9jz8iFgGLALq7u6Onp6e9AW2Bk5q9L/r4nicf9/b2Mh7rOlKD1bvZYzheLZi1gc+sGLOn4YCqr9ehDPXcbWm9m933WDVWzu9W39WzWtJ0gPx/TYv3b2ZWvFYn/qXAvPx4HnBpi/dvZla8Om/nvAC4BniepFWSTgbOBA6RdBtwSJ42M7MWqq1zMSLeNMisOXXt08zMhudv7pqZFWZ83U5gY9rmjKTpER7N2sctfjOzwjjxm5kVxl091haN3UILZm2Y8F/WMhsr3OI3MyuME7+ZWWHc1WPD8u/emk0sbvGbmRXGid/MrDBO/GZmhXHiNzMrjBO/mVlhnPjNzArjxG9mVhgnfjOzwjjxm5kVxonfzKwwE37IhmaHG/APg5iNfT6fR4db/GZmhXHiNzMrzITv6hltdYxUWd1mK3+QxB+HbUt4tNbxzy1+M7PCOPGbmRXGXT1ZiR9fS6yz2ZYY7buJNufcq6NLti0tfkmHSrpV0u8kLWxHDGZmpWp54pc0Cfh34DBgb+BNkvZudRxmZqVqR4v/JcDvIuL2iHgMWALMbUMcZmZFUkS0dofSG4FDI+KtefpE4MCIeGfDcvOB+XnyecCtLQ20fXYB7m93EG3gepfF9W6NPSJi18bCdlzc1QBlm7z7RMQiYFH94Ywtkm6IiO52x9FqrndZXO/2akdXzypg98r0bsC9bYjDzKxI7Uj81wMzJe0paRvgOGBpG+IwMytSy7t6ImKDpHcCPwAmAV+LiF+3Oo4xrLjurcz1Lovr3UYtv7hrZmbt5SEbzMwK48RvZlYYJ/42kbS7pB9LulnSryW9K5fvLOlKSbfl/zu1O9Y6SJok6UZJl+XpCV9vSdMkXSzplvy8/20h9f6n/Bq/SdIFkiZP1HpL+pqkNZJuqpQNWldJH8hD19wq6TWtitOJv302AAsi4gXAS4F35KErFgLLImImsCxPT0TvAm6uTJdQ788BV0TE84F9SfWf0PWWNAP4R6A7IvYh3dBxHBO33ucChzaUDVjXfL4fB/yPvM4X85A2tXPib5OIuC8ifp4fP0hKAjNIw1cszostBo5qS4A1krQbcDhwTqV4Qtdb0hTgFcBXASLisYhYxwSvd7YVsJ2krYDtSd/bmZD1joirgT81FA9W17nAkoh4NCLuAH5HGtKmdk78Y4CkLuBFwLVAZ0TcB+nNAXhGG0Ory78B7weeqJRN9HrvBfwR+Hru4jpH0g5M8HpHxD3AWcBdwH3A+oj4IRO83g0Gq+sM4O7KcqtyWe2c+NtMUgfwbeDdEfHndsdTN0lHAGsiYnm7Y2mxrYD9gS9FxIuAh5g43RuDyv3Zc4E9gWcCO0g6ob1RjRlNDV9TByf+NpK0NSnpfzMiLsnFqyVNz/OnA2vaFV9NDgZeJ2klaWTWV0o6n4lf71XAqoi4Nk9fTHojmOj1fhVwR0T8MSL+ClwCHMTEr3fVYHVt2/A1TvxtIkmk/t6bI+KzlVlLgXn58Tzg0lbHVqeI+EBE7BYRXaQLWz+KiBOY+PX+A3C3pOflojnAb5jg9SZ18bxU0vb5NT+HdD1rote7arC6LgWOk7StpD2BmcB1rQjI39xtE0kvA34CrOCpvu4Pkvr5LwKeRTppjo6IxotFE4KkHuC9EXGEpKczwestaT/SBe1tgNuBN5MaXxO93h8DjiXdyXYj8FaggwlYb0kXAD2k4ZdXA6cB/8kgdZX0IeAtpGPz7oj4fkvidOI3MyuLu3rMzArjxG9mVhgnfjOzwjjxm5kVxonfzKwwTvw24Sj5qaTDKmXHSLqinXGZjRW+ndMmJEn7AN8ijYE0CfgFcGhE/H4LtjUpIh4f3QjN2seJ3yYsSf+bNCbODvn/HsAs0rg5p0fEpXmAvPPyMgDvjIif5S+XnUYaWGw/4MWkL+HsRnoj+UREXNiwv/2As0kjUP4eeEtErJXUS3rjeQkwJZdflwdp+/wAMZ0EvC5v59nAdyLi/aN3ZKx0Tvw2YeXE+nPgMeAy4NcRcb6kaaSvxr+INCjWExHxF0kzgQsiojsn/suBfSLiDklvIH1ieFve9tSIWN+wv18Bp0bEVZI+DkyJiHfnxH9bRLxN0iuAL0bEPpI+DfxmgJiOBj6aHz8K3Aq8LCKqIzmabbGt2h2AWV0i4iFJFwJ9wDHAkZLem2dPJn2F/l7gC7m1/jjw3MomrsvjpEMaWuMsSf8CXBYRP6nuS9JUYFpEXJWLFpO6mvpdkGO6WtKUnOhfTRqwrjEmSD/csT5v+zekTytO/DYqnPhtonsi/wl4Q0TcWp0p6XTSmCr7km52+Etl9kP9DyLit5IOAF4LnCHphxHx8c2Io/GjdQwR04Gkln6/x/G5aqPId/VYKX4AnJpHiETSi3L5VOC+iHgCOJHUf78JSc8EHo6I80k/LLJ/dX5una+V9PJcdCJwVWWRY/N2Xkb6MZL1Q8RkViu3IqwUnyD98tevcqJdCRwBfBH4tqSjgR9TaeU3mAX8q6QngL8C/zDAMvOAsyVtz1Ojb/ZbK+ln5Iu7w8RkVitf3DWrWb64+96IuKHdsZiBu3rMzIrjFr+ZWWHc4jczK4wTv5lZYZz4zcwK48RvZlYYJ34zs8L8f4RWK25Xye/sAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "#Code task 26#\n", "#Call the hist method on 'yearsOpen' after filtering for values under 1000\n", "#Pass the argument bins=30 to hist(), but feel free to explore other values\n", - "ski_data.___[ski_data.___ < ___].hist(___)\n", + "ski_data.yearsOpen[ski_data.yearsOpen < 1000].hist(bins=30)\n", "plt.xlabel('Years open')\n", "plt.ylabel('Count')\n", "plt.title('Distribution of years open excluding 2019');" @@ -1625,7 +3359,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 131, "metadata": {}, "outputs": [ { @@ -1642,7 +3376,7 @@ "Name: yearsOpen, dtype: float64" ] }, - "execution_count": 38, + "execution_count": 131, "metadata": {}, "output_type": "execute_result" } @@ -1660,7 +3394,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 132, "metadata": {}, "outputs": [], "source": [ @@ -1720,9 +3454,116 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 142, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
stateresorts_per_statestate_total_skiable_area_acstate_total_days_openstate_total_terrain_parksstate_total_nightskiing_ac
0Alaska32280.0345.04.0580.0
1Arizona21577.0237.06.080.0
2California2125948.02738.081.0587.0
3Colorado2243682.03258.074.0428.0
4Connecticut5358.0353.010.0256.0
\n", + "
" + ], + "text/plain": [ + " state resorts_per_state state_total_skiable_area_ac \\\n", + "0 Alaska 3 2280.0 \n", + "1 Arizona 2 1577.0 \n", + "2 California 21 25948.0 \n", + "3 Colorado 22 43682.0 \n", + "4 Connecticut 5 358.0 \n", + "\n", + " state_total_days_open state_total_terrain_parks \\\n", + "0 345.0 4.0 \n", + "1 237.0 6.0 \n", + "2 2738.0 81.0 \n", + "3 3258.0 74.0 \n", + "4 353.0 10.0 \n", + "\n", + " state_total_nightskiing_ac \n", + "0 580.0 \n", + "1 80.0 \n", + "2 587.0 \n", + "3 428.0 \n", + "4 256.0 " + ] + }, + "execution_count": 142, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 27#\n", "#Add named aggregations for the sum of 'daysOpenLastYear', 'TerrainParks', and 'NightSkiing_ac'\n", @@ -1733,10 +3574,10 @@ "state_summary = ski_data.groupby('state').agg(\n", " resorts_per_state=pd.NamedAgg(column='Name', aggfunc='size'), #could pick any column here\n", " state_total_skiable_area_ac=pd.NamedAgg(column='SkiableTerrain_ac', aggfunc='sum'),\n", - " state_total_days_open=pd.NamedAgg(column=__, aggfunc='sum'),\n", - " ___=pd.NamedAgg(column=___, aggfunc=___),\n", - " ___=pd.NamedAgg(column=___, aggfunc=___)\n", - ").___\n", + " state_total_days_open=pd.NamedAgg(column='daysOpenLastYear', aggfunc='sum'),\n", + " state_total_terrain_parks=pd.NamedAgg(column='TerrainParks', aggfunc='sum'),\n", + " state_total_nightskiing_ac=pd.NamedAgg(column='NightSkiing_ac', aggfunc='sum')\n", + ").reset_index()\n", "state_summary.head()" ] }, @@ -1756,26 +3597,35 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 145, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0 82.317073\n", - "2 14.329268\n", - "1 3.353659\n", - "dtype: float64" + "0 0\n", + "1 0\n", + "2 0\n", + "3 0\n", + "4 0\n", + " ..\n", + "323 0\n", + "326 0\n", + "327 0\n", + "328 0\n", + "329 1\n", + "Length: 281, dtype: int64" ] }, - "execution_count": 41, + "execution_count": 145, "metadata": {}, "output_type": "execute_result" } ], "source": [ "missing_price = ski_data[['AdultWeekend', 'AdultWeekday']].isnull().sum(axis=1)\n", - "missing_price.value_counts()/len(missing_price) * 100" + "missing_price.value_counts()/len(missing_price) * 100\n", + "missing_price" ] }, { @@ -1787,13 +3637,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 147, "metadata": {}, "outputs": [], "source": [ "#Code task 28#\n", "#Use `missing_price` to remove rows from ski_data where both price values are missing\n", - "ski_data = ski_data[___ != 2]" + "ski_data = ski_data[missing_price != 2]" ] }, { @@ -1805,12 +3655,12 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 148, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA24AAAJOCAYAAADPilTlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdebwcVZn/8c+XhCWEsEYjSySKiIIosinjFsUFxBEcRUFUMi7oKKOMUQH1p+iIRkccXHBlVXYXIIMLInJBRPYt7AQIJCQQwpoEVALP749zOqnb6b63+95eqm9/369Xv253VXXVU3WfPn3OqVPVigjMzMzMzMysvNbodgBmZmZmZmY2NDfczMzMzMzMSs4NNzMzMzMzs5Jzw83MzMzMzKzk3HAzMzMzMzMrOTfczMzMzMzMSs4NtzoknSjpa61etp2ajHmGpEvaHZN13ljP3VFuZ0DSh9u9HbN2kvR7SQd2O45+J2mZpOc3uGxIekGLtjstr298jXnPzXGNy6+dK2ZjSF823HLl7RFJa7dh3dMlLSi83jQXsFMK075QZ9ofWh2PjS3OXesVkuZJemO34xhKdc7naUdIeipXfh+VdKmk3boVYy0RsWdEnNTtOMa6nMMPSJpYmPZhSQMAEbFeRNzVgu2s1pEqaQtJv5a0RNJjkuZImjHcuiLi3hzX0/m1c8U6Jn9mnszl5/25U3a9bsc1lvRdw03SNOA1QABvb/f2ImIRMBd4bWHya4Fba0y7uN3xWO9y7pp1zBkRsR4wGbgQ+GWX47HuGQ98qgvb/QUwH9gS2AT4APBAF+Iwa9a/5vJzB+DlwOFdjmdM6buGG6nwuww4EVg5fEDSyyVdI2mppDOAdQrzavWGrTbsIffK/R7YLPc2LJO0GalS+9q8zDhSIn+3atpueTkkfVDSLfnMynmStixs40WSzpf0sKTbJL271k5KmiTpQknfU7KJpNmSHpd0BbBV1fLflTQ/z79a0mvy9OdIekLSJoVld5L0oKQ1Gzje1jr9mrt135d7846R9Nu8/5dL2qow/02Sbs091j8A1PDRtpaTtLakoyUtzI+jlc8eV85+SZopabGkRZL+vfDeTST9Xy6jrpT0tWJuD5Mnb5V0c86R+yR9ZoicXykiVgCnAJtLelZe16AziUpn6E7OzytD2A6UdK/S2ZIvNHBcjpD0S0kn5xjnSHqhpMPzsZgv6c2F5T3kt3P+B/iMpA2rZxTL0uHyM3ujpDty+XhMLt9eDPwY2C3n4KN52V2AEyNieUSsiIhrI+L3tQKU9M6cly9R1TDKYq5Uvg8kfTvHcLekPQvreZ6ki3MO/inHePJwByjn7v25nL1Y0naFeRMkHSXpnjz/EkkThlun9b6IuB84D9hBtUc3rCxLcxl4pqSf5/y7SdLOhWUPzWX30ly+797ZvSmPfm24nZIfb5E0RdJawNmkHq6NSb2r72x2xRGxHNgTWJiHKqwXEQspVH5JFd9bgQuqpq0JXCFpH+DzwL8BzwL+ApwGKyvX5wOnAs8G9gd+WCwk83Kb5PX/NSI+GREBHAP8HdgU+GB+FF1J6h3ZOK//l5LWyR+8AaBYyX4fcHpEPNXsMbJR6bvcBdZt4H37A18BNiKdITwyr2sy8Gvgi6QzJ3cCr2r22FhLfQF4JamseRmwK+n/U/EcYANgc+BDwDGSNsrzjgGW52UOZHDnxXD5dRzw0YiYBLwE+PMQOU9hvWuRPncPAY80sZ+vBrYBdge+lCvnw/lX0ud4I+BaUoVnjXwsvgr8pIntW+tcRfoO/Mwwy9XNz4K3kRpkLyN9p74lIm4BPgb8LedgpYF4GSn/95P03HobVerc+Cbwxoi4sYH9eQVwG6lM/BZwnKRKh9apwBWkM3xHAO9vYH2QOkC2Jn32riF9R1V8G9gJ+BfSd9TngGcaXK/1MElbkMrYuQ2+5e3A6cCGwGzgB3k92wAHA7vkMvwtwLxWx9sr+qrhJunVpGEHZ0bE1aSK3HtJFYk1gaMj4qmI+BWpIdMqFwEvyRWQ1wB/iYg7gMmFaZdFxD+BjwLfiIhbcm/v10m9FVuSCv15EXFC7oG7hlQxfVdhW5vl7f0yIr6Y93scqTL/pdx7dyMwaMx7RJwcEQ/l9R4FrE2qeJCXfV9hXfuTKhjWIf2auw2+7zcRcUXh7MgOefpbgZsj4le5k+Fo4P4WHhtr3gHAVyNicUQ8SGpwFyuHT+X5T0XE74BlwDaFMuzLEfFERNzM4DJsuDx5CthW0voR8UieP5R35zMfTwIfAd6V86tRX4mIJyPieuB6UkV9OH+JiPPydn5J6vyYlXP3dGBarbM+1hFfAv5T+axrtQbys2JWRDwaEfeShuDuUGOZin1JnV//D7hb0nWSdqla5hDgs8D0iGi0cnxPRPwsXwN3Eqkzd0puHO5Cqif8MyIuIVWehxURx0fE0oj4B6nB9zJJG0hag9RJ/KmIuC8ino6IS/NyNnadLWkpaajvYuDLDb7vkoj4Xc7NX7Cq3HyaVCfdVtKaETEvIu5sedQ9oq8abqQesD9GxJL8+tQ8bTPgvnxmquKeVm00IuYBC0i9sK8lFcYAfytMq1wjtCXwXaWL4h8FHiYN79o8z3tFZV6efwCph69iL2ACaehFxbNI4/Tn19s/peFJt+ShDI+Ser0n59nnkD4wzwfeBDwWEVeM6GDYSPVr7jbyvmJj7AmgciH0ZhRyPh+j4mfAOm8zBufnPXlaxUNVDaTK/7NWGVZ8PlyevJPUkL9H0kUa/mYjZ+YzH1OAG0lnDJpRLyeHUrx+6UlgSeUGE/k1Da7HWix3dp4LHFZnkeHys6LhvMgdDIdFxHakPLyOVCEuDvf+LHBMRCyouZLaVsYQEU/kp+uRPocPF6bV24dBJI2TNEvSnZIeZ9WZkMn5sQ6po9H6xz75zNh04EWsqksOp/rzsY6k8blT4hBSp8BiSaeralh7P+mbhlseU/1u4HV5LPb9wH+RWvSLSNcwFAvE4tCE5aQhW5V1FSuN1aLO9L+QKrm7AZdWTXs1qyq/80lDejYsPCZExKV53kVV89aLiP8obOdnwB+A32nVnbAeBFYAU2vtn9L1bIeSjs9GucLyGPl6oIj4O3AmqSL0fny2raP6PHcbeV89iyjkfD5GU+svbh2wkNTIqnhunjacShm2RWFa8X85ZJ5ExJURsTdpKNfZpPIM6uc8+X1LSGeSj5C0aZ486DPF4E4EG7u+TDr7unmNecPl53AaycNvkxpXGxdmvRn4oqSmh8fXsAjYWFIxtxvZh/cCewNvJHX4TsvTBSwhXaKxVc132pgWEReRrsn/NqvXRcaROjwaXdepEVEZeRSk4cF9qW8absA+pNOt25KGJ+wAvJhUAd2HVOh+UtJ4Sf9Guvai4npgO0k7SFqH1Oqv5wFgE0kbVE2/mHStxMKIeDxPuyRP24B0BgPS2YbDK9dm5OEG++Z55wIvlPR+SWvmxy41rp84mDSG/VxJE3Kv7W9IlY91JW3L4PH3k/L+PwiMl/QlYP2qdf4cmEEagzzsxcrWUn2bu028r5bf5n3/N6UL9T+JK9mdtqakdSoP0jWPX5T0LKVrEL9EA+VJjTLsRaT8q6ibJ5LWknSApA3ysMPHSZ8nqJ/zxW3fSrre7HN50nXAfnkbOzN42K6NUbnX/wxSOVI9b7j8HM4DwBZK11QCIOmbSjcbGS9pEvAfwNyIeKjwvpuAPUjXwo3qTsMRcQ/per4j8mdmN9J1l8OZBPyDdB3ouqQh8pV1PgMcD3xH0mb57NxuasPP2VhpHU0aqbUu6QzaXko3tvsiafjjsCRtI+kNOW/+ThqB8PQwbxuz+qnhdiBwQqTfOLm/8iBd/Lg/6YYKM0gXoL+HVAgDEBG3ky4O/xNwB6nSWlP+kj8NuCsP2amczr2I1NtbfO91pKFhV1eGJ0TEWaSehNPzsIMbSRd3EhFLST1s+5F6qe/Pyw5K/jwk7CBSL/Q5ucJ0MGk4xP2kHpATCm85j3Rx8e2koUt/p2qIRET8lXRB8TV5+Jx1Tt/mLunapGHfV2d/lpCuE5lFqlRsDfx1uPdZS/2O9CVbeaxDqhzeAMwh3cig0R9eP5jUUXA/6az/aaQKYyP59X5gXs7Lj5Gv2R0i56v9D3CQpGeTrjnaivR5+wpp2LL1h68CE+vMq5ufDfgzqRF2v6TKcPh1gbOAR4G7SGcaVmuc5eso3wb8TIU7RI7QAaSRFQ+RPpdnMPw+/JxUb7gPuJl0U5Wiz5A+61eShs9/k/6qe/a1SNcy/5zU4fFx4FhSriwnXYbRiLVJ3+NLSJ+vZ5NuhNaXNPjSGLP6JP0ZODUiju12LGbW3yR9E3hORNS6e59ZV42F/FT6eZlbI6LRm0uYWZu518MaonQ3qx1JPXBmZh2l9DttL1WyK+nnAs7qdlxmMDbyMw8v3krSGpL2IF27dna34zKzVdxws2FJOok01O6QPCTJzKzTJpGGAS8n3VzkKNJw2p4g6fda9UPfxUffDvkZY3o6P7PnkH6zbhnwPeA/IuLafI1ordy9qavRmvUhD5U0MzMzMzMrOZ9xMzMzMzMzK7nx3Q4AYPLkyTFt2rSuxrB8+XImTqx3s6jucExw9dVXL4mIhn/roxu6mb9lzBFwXBVlz996uVvW/1+RY2yNejGWPXeht/K3jDHB2I2r7PlbK3fL+L9wTI1pZUzD5m5EdP2x0047RbddeOGF3Q5hNY4pArgqSpCjQz26mb9lzJEIx1VR9vytl7tl/f8VOcbWqBdj2XM3eix/yxhTxNiNq+z5Wyt3y/i/cEyNaWVMw+Wuh0qamZmZmZmVnBtuZmZmZmZmJVeKa9xaadphv21q+Xmz9mpTJGbNaTZ3AU7co1zjvK1/uey1sphz32PMaCIfnYtWFiOpBzh/+4vPuJmZmZmZmZWcG25mZmZmZmYl54abmZmZmZlZyY25a9yaVRlPPHP7FQ2NifdYYjMzMzMz67S+b7iZmdlgzd7cwczMzNrPQyXNzMzMzMxKzg03MzMzMzOzknPDzczMzMzMrOR8jZtZD/MPzZqZmZn1B59xMzMzMzMzKzk33MzMzMzMzErODTczMzMzM7OSc8PNzMzMzMys5NxwMzMzMzMzKzk33MzMzMzMzErODTczMzMzM7OSc8PNzMzMzMys5NxwMzMzMzMzKzk33MzMzMzMzEpufLcDMLPOmXbYb5taft6svdoUiZmZmZk1w2fczMzMzMzMSs4NNzMzMzMzs5Ib1VBJSfOApcDTwIqI2FnSxsAZwDRgHvDuiHhkdGGamVmFy14zM7P+04pr3F4fEUsKrw8DLoiIWZIOy68PbcF2zMxsFZe91pPK1vHQ7LW/4Ot/xzJJxwNvAxZHxEvytLr5Kelw4EOkfP5kRJzXhbCtT7RjqOTewEn5+UnAPm3YhpmZDeay13rJ6yNih4jYOb+udDxsDVyQX5t1w4nAHlXTauanpG2B/YDt8nt+KGlc50K1fjPaM24B/FFSAD+JiJ8CUyJiEUBELJL07FpvlHQQcBDAlClTGBgYGGUoycztV4zofVMmNPbeVsXZiGXLlnV0e40oY0wjVbZeX7MmtLXsbbQ8HI3RliO9UBY5xqbsDUzPz08CBvAZY+uCiLhY0rSqyfXyc2/g9Ij4B3C3pLnArsDfOhGr9Z/RNtxeFRELcwXhfEm3NvrGXNH4KcDOO+8c06dPH2UoyYwRDHmAVEk5ak4Dh2PO8qbXPdIhFQMDA7TquLRKGWMaJQ83s17U1rL3+6ec01h5OArzDlh9u83ohbLIMdbVdx0PJWogD+K4GlYvPzcHLisstyBPW81wubts2TJmbv9004G18ziV8P/Q9zGN6ps5Ihbmv4slnUXqZXhA0qY5sTcFFrcgTrNOca+vld5YKHv9m4J9re86HsraiHdco6Ya06LWgsPl7sDAAEddMoKTA6PsBBtKGf8P/R7TiEs2SROBNSJiaX7+ZuCrwGzgQGBW/ntOKwI1a4NSDfUdSQ9xu3uWR7pfZewRg/LG1QyXvdbrxkLHg/Wdevm5AJhaWG4LYGHHo7O+MZouqSnAWZIq6zk1Iv4g6UrgTEkfAu4F9h19mGZtUaqhviMZ5tvwEN8RGmlPXhl7xKC8cTXJZa/1LHc8WI+ql5+zgVMlfQfYDNgauKIrEVpfGHGNLyLuAl5WY/pDwO6jCcqsE9zra73IZa/1OHc8WKlJOo10ycRkSQuAL5MabKvlZ0TcJOlM4GZgBfCJiGj+QjWzBrV3ELhZSbnX18ys89zxYGUXEfvXmVUzPyPiSODI9kVktoobbtav3OtrZmZmZj3DDTfrS+71NTMzM7Neska3AzAzMzMzM7OhueFmZmZmZmZWch4qaWZmZmbWg6Y1+VNC82bt1aZIrBN8xs3MzMzMzKzk3HAzMzMzMzMrOTfczMzMzMzMSs4NNzMzMzMzs5Jzw83MzMzMzKzkfFdJMzMrveo7p83cfgUzhrmbmu+eZmZmY4nPuJmZmZmZmZVcqc+4NfvbFGZmZmZmZmORz7iZmZmZmZmVXKnPuJlZdzV71tvXFJmZmZm1h8+4mZmZmZmZlZwbbmZmZmZmZiXnhpuZmZmZmVnJ+Rq3DvB1QmZmZmZmNho+42ZmZmZmZlZybriZmZmZmZmVnBtuZmZmZmZmJeeGm5mZmZmZWcn55iRmZmZmTWj2pmMn7jGxTZGYWT9xw83MzMakZivXzfIdgM3MrJM8VNLMzMzMzKzk3HAzMzMzMzMrOTfczMzMzMzMSs4NNzMzMzMzs5Jzw83MzMzMzKzkfFdJszZp9x3tzMzMzKx/uOFmZmZmZtYHmulUnrn9Cqa3LxQbAQ+VNDMzMzMzKzmfcTMzMzNrozn3PcaMJs50+MfdzawWN9xKqHIae+b2Kxoq6F3AW1k0m7vg/DUzMzNrhBtuY0CzN8FwRdnKxPlrZmZWTiO50Zq/p9vH17iZmZmZmZmVnBtuZmZmZmZmJde2oZKS9gC+C4wDjo2IWe3allkrOXetlzl/rVc5d62XOX9X8SUQ7dOWhpukccAxwJuABcCVkmZHxM3t2J41ZzQ/DN3MTSeaUZYPrXO3/Jy/9Tl/O2u4XGxXvrXSiXtM7HYIgHO32lio+HairC7Lfjt/rVPadcZtV2BuRNwFIOl0YG/ACWxl59y1Xub8tV7l3O2waYf91ncAbh3n7yiMhR8F71RniyJiRG8ccqXSu4A9IuLD+fX7gVdExMGFZQ4CDsovtwFua3kgzZkMLOlyDNUcE2wZEc/q1MYayd08vSz5W8YcAcdVUbr8bTB3y/r/K3KMrVEvxtLlbp7eq/lbxphg7MZVuvxtIHfL+L9wTI1pZUxD5m67zripxrRBLcSI+Cnw0zZtv2mSroqInbsdR5Fj6ophcxfKk79l/X84rq5pSdnbC8fJMbZGiWJsWdlbon1aqYwxgeNqoVGXvWXcZ8fUmE7G1K67Si4AphZebwEsbNO2zFrJuWu9zPlrvcq5a73M+Wsd0a6G25XA1pKeJ2ktYD9gdpu2ZdZKzl3rZc5f61XOXetlzl/riLYMlYyIFZIOBs4j3Rb1+Ii4qR3baqGuD3urwTF1WA/mbln/H46rC1qYv71wnBxja5QixhaXvaXYpypljAkcV0u0KH/LuM+OqTEdi6ktNycxMzMzMzOz1mnXUEkzMzMzMzNrETfczMzMzMzMSq4vG26S5kmaI+k6SVflaRtLOl/SHfnvRh2I43hJiyXdWJhWNw5Jh0uaK+k2SW/pYExHSLovH6/rJL21kzFZ4rwdUVzO3SZJ2iMfk7mSDut2PNUkTZV0oaRbJN0k6VPdjqkeSeMkXSvp3G7HUoukDSX9StKt+Xju1u2YRqObuVsvL0tSNg7Kw5LEtFrulSGubulW7pbt+7yMnyNJ60i6QtL1OaavdDWmiOi7BzAPmFw17VvAYfn5YcA3OxDHa4EdgRuHiwPYFrgeWBt4HnAnMK5DMR0BfKbGsh2JyY+Vx9t523xczt3mjuG4fCyeD6yVj9G23Y6rKsZNgR3z80nA7WWLsRDrp4FTgXO7HUud+E4CPpyfrwVs2O2YRrEvXc3denlZkrJxUB6WJKbVcq8McfVb7pbt+7yMnyPSb/Stl5+vCVwOvLJbMfXlGbc69iYVJOS/+7R7gxFxMfBwg3HsDZweEf+IiLuBucCuHYqpno7EZENy3g4dVz3O3dp2BeZGxF0R8U/gdNKxKo2IWBQR1+TnS4FbgM27G9XqJG0B7AUc2+1YapG0PqnSdhxARPwzIh7tblSj0tXcHSIvu1o21snDbsdUL/e6/j3SJV3L3bJ9n5fxcxTJsvxyzfyIbsXUrw23AP4o6WpJB+VpUyJiEaTEAZ7dpdjqxbE5ML+w3AI6W1k5WNIN+bR65XRwt2PqN87bkXHuNq6njoukacDLST2gZXM08DngmW4HUsfzgQeBE/IwumMlTex2UKNQmtytystul4218rDbMdXLvW7H1S1l279S/B/K9DnKw42vAxYD50dE12Lq14bbqyJiR2BP4BOSXtvtgBqgGtM69VsOPwK2AnYAFgFHlSCmfuS8bZ5ztzk9c1wkrQf8GjgkIh7vdjxFkt4GLI6Iq7sdyxDGk4ZI/SgiXg4sJw336VWlyN0m8rLt8Y4gDzt1DJvNvVL8b9uoV/avY3GW6XMEEBFPR8QOwBbArpJe0q2Y+rLhFhEL89/FwFmkU5gPSNoUIP9d3KXw6sWxAJhaWG4LYGEnAoqIB3LSPgP8jFWnfLsWUz9y3jbPudu0njguktYkfamfEhG/6XY8NbwKeLukeaRhT2+QdHJ3Q1rNAmBB7jkG+BWpMt2rup67dfKym2VjvTzsdnldL/e6HVe3lG3/uvp/KOHnaKU8pHcA2KNbMfVdw03SREmTKs+BNwM3ArOBA/NiBwLndCfCunHMBvaTtLak5wFbA1d0IqBKYmbvIB2vrsbUb5y3I+PcbdqVwNaSnidpLWA/0rEqDUkiXRtzS0R8p9vx1BIRh0fEFhExjXQM/xwR7+tyWINExP3AfEnb5Em7Azd3MaTR6mruDpGXXSsbh8jDrpbXQ+ReKb9HOqBs5W7X/g9l/BxJepakDfPzCcAbgVu7FlOr7nLSKw/S2Orr8+Mm4At5+ibABcAd+e/GHYjlNNLwradILfQPDRUH8AXS3WluA/bsYEy/AOYAN+SE3LSTMfnhvB1FXM7d5o/jW0l38rqzkmdlegCvJg07uQG4Lj/e2u24hoh3OuW9q+QOwFX5WJ4NbNTtmEa5P13L3Xp5WYayMW9rZR6WIaZauVeGuLr16Fbulu37vIyfI+ClwLU5phuBL+XpXYlJeQNmZmZmZmZWUn03VNLMzMzMzKzXuOFmZmZmZmZWcm64mZmZmZmZlZwbbmZmZmZmZiXnhpuZmZmZmVnJueFmZmZmZmZWcm64mZmZmZmZlZwbbmbWdpJC0gvqzFsm6fmdjsn6l6SbJE3vwnYHJH2409s16wRJ75A0P5fpLx9m2RmSLim8rvsdYWarjPmGW3XhUDXvAEl/bHA9R0g6eYj58yS9caRxtpuk5+bCdFy3Y7H6JL1a0qWSHpP0sKS/Stqli/EM5C/Ul1VNPztPnz7abUTEehFx12jXY70ll0eVxzOSniy8PqCd246I7SJioME45xVie0DSCZLWa2d8Zs2StJakoyQtyLl6t6T/7XAY3wYOzmX6tR3etrVI2euzAJJOlPS1bsfRDWOm4TaSCm9EnBIRb+5gjK8pVEyW54pvsfLy3HZtOyLuzYXp0+3aho2OpPWBc4HvAxsDmwNfAf7RzbiA24EPVF5I2gR4JfBg1yKynpfLo/UiYj3gXuBfC9NOaWQdksY3Mq0F/jXHuSOwC/DFZt6sZMx831rz2pSXRYcDOwO7ApOA1wOdbjxtCdzU4W2a9ZUx8UVS4grvIBHxl0JFZbs8ecNCZeXeRtZTp7LiM2m974UAEXFaRDwdEU9GxB8j4gZYdfZY0rclPZJ7VPesvFnSZpJm546LuZI+kqevk88YTM6vvyhpRf7cIOlrko4eIq5TgPcUcmx/4Czgn4Vt7yrpb5IelbRI0g8krVVrZbmTZb6k1+fXK4fI5F60YyT9VtJSSZdL2qrw3jdLui130PxQ0kXDDT2TtJWkP0t6SNISSadI2rAwf6qk30h6MC/zg6HWZ+0laQ1Jh0m6M/8/zpS0cZ43LefLhyTdC/w5fy7+Kul/JT0MHNHA/3xlj7LSaIozJf0859xNknauFVtE3Af8HniJpI0knZvz5pH8fIvCNgYkHSnpr8ATwKDhwJI2lXSDpM/k1zMk3ZVjuFttPutogxVybqmkm5WG/a2dy7SXFJZ7Vi5Pn51fv03SdXm5SyW9tLDsPEmHSroBWC5pfK3tFJYfp3TWbEnOgYNzvo/P8zeQdFwuY+/LZXelXN4FOCsiFkYyLyJ+XhXLZ3LOPSbpDEnrFOZ/ROl742Gl75HN8vSvSPp+fr6mUqfzt/LrCZL+LmmKpGXAOOB6SXfWO6Yt/reZ9Z0x0XBjmApvkaT/Uar8bqDVx1h/V6lC+bikqyW9purt6+TCbqmka1Q1fKywnroVj3qGKpDrVExOlPQjSb+TtBx4vaS9JF2b458v6YjC+isVnsoXwICk/87rXSrpj8oV+2Hi/KWk+3PBf7Gk7QrzJuQvnXvy/EskTRhunbbS7cDTkk6StKekjWos8wrgNmAy8C3gOEnK804DFgCbAe8Cvi5p94j4O3Al8Lq83GuBe4BXFV5fNERcC4GbgcrZ6Q8AP69a5mngv3JcuwG7Ax+vXpGkt+Q43xkRF9bZ3v6kjpeNgLnAkfm9k4FfkXqWN8nH4V+GiHvlZoFvkI7Li4GpwBF5neNInT73ANNInT6nN7BOa59PAvuQ8nUz4BHgmKplXkf6X74lv34FcBfwbFK+1P2f1/F20v99Q2A2ULPxLmkq8FbSmYw1gBNIZxmeCzxZ433vBw4inQG5p7CeaaTP3A8i4tuSJgLfA/aMiEmkvL5uiHit9e4EXgNsQCp/TiZ1BP+GVCZVvBu4KCIWS9oROB74KKlM+gkwW9LaheX3B/YiddKuqLUdSZvmZT8C7AnsQDq7u09VjCcBK4AXAONkdEgAACAASURBVC8nlcmVjqvLgE9L+rik7QvfC0XvBvYAnge8FJgBIOkNpM/Lu4FNSblaKQcvAqbn57sA97Pqu2Q34LaIeCB3SAO8LCIqnW1D7auV2y65sf2I0vDwdTR8Z1XdzidJH5R0S37feZK2HC4ASS+SdH7uTLhN0ruHWLZmB0qui/+qatnvSvreyA5LCUREzz+A9YGHSIXansBGhXkzgEtIX7I/A84D1i3OKyz7PlLhOx6YSSqg1snzjgCeIlWI1wQ+A9wNrJnnzwPemJ8fQipEtwDWJhXmp1XFPA0IYHx+fXZebiKp8nEF8NFCnCuA/8yxTQBOBB4jVb7XANYhFa7b59cvBR4A9qmzvQFSofrCvL4BYFYDx/qDpErI2sDRwHWFecfk9WxO6nn7F2DtbudHLz1IlcwTSQ2wFaRK5JRCHswtLLtu/p8+h1QxfRqYVJj/DeDE/Py/SRXD8TmvPwXMynnzJDC5TjwDpIrB+0gNrm2A2/O8BcD0Ou87hNT7W3kdpAbXPcD2VcsG8IL8/ETg2MK8twK35ucfAP5WmCdgPvDhJo/xPsC1+flupCGf47v9v+/nB4PLz1uA3QvzNiWVveML5djzC/NnAPc2+j+vsb0jgD8V5m0LPFm17DLg0Zy/PwQm1NjGDsAjhdcDwFerlhkAvpPXuX9h+sS8/nfWWrcfXcnJ64C9gTcCdxWm/xX4QH7+I+C/q953G/C6Qu58sJHt5Od/Jn/v59dvzPk+HphCGkU0oTB/f+DC/Hwc8Ikc3z9IHW4HFpadB7yv8PpbwI/z8+OAbxXmrZc/c9NI9YO/k+pGhwGfJ5X965EaY98rvG9lWd7Avs5gcP1ryPf60dHcnwfcSKpXbJxz6ms5B95JqntMAn4JnJ3fMxF4HNgmv94U2C4/34fUCfvinMtfBC4dJoaJpO/3f8/v2RFYUljnicDX8vMdgcWkDrxxwIF5H9Ymdaw9Aawfqz4ni4BXdvs4j/QxJs64RcTjwKtJH/yfAQ8qneqfkhdZk1Tp3Jh0rcITddZzckQ8FBErIuIo0j99m8IiV0fEryLiKdKX7zqka32qfRT4QkQsiIh/kCoG71KdMe45zj2BQyJieUQsBv4X2K+w2MKI+H6O7ck87ZyI+GtEPBMRf4+IgYiYk1/fkPf5ddR3QkTcntd3JqniMaSIOD4ilhb262X5bOEapEbdpyLivkhnPi/Ny1mDIuKWiJgREVsALyGdMSgOY7y/sGwlj9fLyz0cEUsLy95DakTDql7THYE5wPmk3HglqTG4ZJjQfgO8gdR58IvqmZJemHvf7pf0OPB10tm3okOAMyNizjDbur/w/Im8f5D2cX5lRqRSeMEw60LSsyWdns9kP07qSa/ENhW4J1JPuJXDlsBZuef0UVJD7mlSxbViftV7Br0e5n9eS3XOrVNVXu8TERtGxJYR8fGIeFLSupJ+kkcYPA5cDGyowcPWq+MEOAC4j3T2GICIWA68B/gYsEhpqPCLhojXWkzSBwo99o+Syt/JpMbUBEmvyGcJdiANFYeUqzMr78nvm0oqqyqqc7PedqCqjKt6viWpLrOo8N6fkDp6yd+5x0TEq0hnjo8Ejpf04sI6hipbV54RjohlpM7wzXP94CrS90VldMalpE7j1zHEaI1h9tXK7QcRMT8iHibl0v65fvzriHgi1zWOZHAd8xnSMPIJEbEoIirXO34U+Eau36wg1Q92GOas29uAeRFxQq73XgP8mnTypNpHgJ9ExOX5c3ASqfPilRFxD3ANq85evwF4IiIuG8lBKYMx0XCDYSu8LyD1nH0lIv5Zbx2SZuZTuY/lQmYDBhcyxUrjM6wallatkYpH9fJ1C+Tqbdeblr9YLsynsR8jVQKaqawMeac0pfH3s5SGgD5O6tEgb2MyqSF751DrsMZFxK2kXqWXDLMopN7VjSVNKkx7LqmCCOmLdhvgHaRhPjfn+Xsx9DDJSixPkK7t+Q9qNNxIPc+3AltHxPqkXtnqoTr7AvtIOqSB/allEeksNpBu+FB8PYRvkDp1Xppje18htvnAc+t1qlhXzCcNGdyw8Fgn0vVlFVH1nurXQ/3PW2Um6TP1iryN1+bpxe1UxwWpw2sJcGqxkRcR50XEm0g91beSOiGtA3IF8mfAwcAmEbEh6YyD8nf9maSzW+8Fzi10kM0HjqzK1XUj4rTC6qOR7eRFBpVxpEZgxXxSZXRyYVvrR8R2VIl0ucgxpGHG2zZwCBaS6iGVOCeSzq5UPnMXkSq8LycNu7+INEx5V1KHxWoa2Fcrt2L98h5gs6E6q4bpfNoS+G6hfvswKQ82p74tgVdUdYocQBphVGvZoTpQTmXVcOf35tc9a8w03IpqVHhvIZ1u/b2kbWq9R+l6tkNJY7w3yoXMYwwuZKYWll+DVMAurLG6Rioe1csPVyDXqgBUTzuVNLRuakRsAPyY1haS72XV0JENSMMoyNtYQhpOsVXNd9qw8njumZUx40rX0+xPGnY7pIiYT2qcfUNpLPpLgQ+RbixSaXhdTRpKU2moXUrqCRu24ZZ9njQEaF6NeZNIwySW5cL6P2oss5B07dsnJa12/VsDfgtsL2mf3ND6BLUL8VqxLQMelbQ58NnCvCtIlaVZkibmY/eqWiuxjvkxcGSlN1bpZhB7N7mOof7nrTKJNMz4UaVrmL/c4PueInViTAR+oXRN9BRJb88V5n/k2H0H4M6ZSPo+fRBA0r8zuMPsVFKl9AAGV/p+Bnwsd5oqlyF7VXWgNbOdM4FPSdpc6WY6h1ZmRMQi4I/AUZLWz3mzlaTX5XUdImm60rXm4yUdSMrRRu4seSrw75J2ULo+7+vA5YWy/iLSUPWbc+f3AGkI/d0RUe/uwsPtq5VbsdPguaTv7yE7q4bofJpPGgJcrBNPiIhLh9j+fFInc/E960VErbrFcB0ovwSm57rVO3DDrfsaqfDmf+DngT+pcJe6gkmka4oeBMZL+hLp2rminST9W640HkL6gq1VqW6q4jFcgdyESaThcn+XtCupodVKk0j7/BBpjPPXKzNyr+TxwHeU7m44TtJuGnyRtg1tKWmM9uVKN5y5jNRDObPB9+9PakwvJA3l+XJEnF+YfxHpzO4VhdeTqNNjWi3S3cpq/iYi6ZrP9+Z9+BlwRp113EtqvB2qJn+IOA/n3Jd0bcZDpJ7kqxj+7rFfIQ0RfYzU+PtNYZ1PA/9KOit/L+ks+nuaicta7rukDqg/SlpK+hy8osl11P2ft9DRpOt/lpBi/EOjb8yV338jjao4nlXXVS8k9Ua/jho397H2yCMQjgL+Rro2fHvSdT2V+ZcDy0k9+L8vTL+KNEzrB6SzW3PJN/wYyXZIZecfgRtIDa7fkeollUb8B4C1SDeLeoQ03LZys48n87rvJ+XkJ0g3gRr2NzIj4gLg/5GGoi0idcAWL9W4lJTrle+Km0kdtXW/OxrYVyu3T0jaIndKfZ70nV63s2qYzqcfA4cr38xO6fKafYfZ/rnACyW9X+lupmtK2kWDh/5WDNmBkjsXBkg3k7o7Im4Z0REpiyjBhXajfZBOt55JOq2/PP/9CanhNYPBF8B+hFV3kFs5j3TB4nGkswaLgM+x+gXsvyIl71JSobpjYb3FZdcAPk26SHkpafjg16tinsbgm4VsQBputoBU2bgW2C/PG7QPUXVhZmHau/K+LSUl/Q+Ak+tsb4DCTR1qbaPGcV4POCev/x7Sl0jxxhITSJWZ+/I+XIwvtPejTY/8OVsIvL7bsfjhhx9+tPpBuvb9nm7H4Ud/PXJ99nBSA/1R0o3/1iV1XAyQGmW3k0bsVG6esympM/ix/J4BYNvCOt9Pur7+cdIZsuMbiGMbUsfbg6TO2j8DO+R5g+rApLulXpm3vYh0lm1S1fYD+Gy3j+9oH8o7ZGZWeko/J3A5qdfvs6Re5efHqhv2mJn1JKWfz3k96azbFNIZsMsiYqTXBZvZGDMmhkqa1SPpeEmLJd1YmLax0m+D3JH/blSYd7jSj5DelhsJVi67kc5gLyENcdwn0h3+fixpWY3Hj7sbrplZw0Qa5vsIadTNLcCXuhqRmZWKz7jZIEo/mPiTGrPuiRp3ryo7Sa8lndb/eUS8JE/7FulawFmSDiPdjOZQSduSfkJhV9KQgD8BL4x0HZSZmZmZtUC+KeDva82LVT/oblXccLMxT9I00i2cKw2320g/HL1I0qbAQERsI+lwgIj4Rl7uPOCIiPhbdyI3MzMzM0tK8dtFkydPjmnTpq02ffny5UycOLHzAQ2hbDGN9XiuvvrqJRHxrJatMJkS6U6e5MZb5ffyNmfwXUIXUOd3RiQdBBwEMGHChJ2mTp262jLPPPMMa6xRjtHIjqW2dsdy++23tyN/W6Ze2dsOZSmrHEdjcbSp7G2pYv6W5XgWlTEm6I+4yp6/tcresv5fWq0f9nM0+zhs7nb77igRwU477RS1XHjhhTWnd1PZYhrr8QBXxejvkDQNuLHw+tGq+Y/kv8cA7ytMP450O+Wez1/HUlu7Y2lF/rbzUS9326Es/3fHMVi9OMqeu1GVv2U5nkVljCmiP+Iqe/7WKnvL+n9ptX7Yz9Hs43C5W45ub7POeiAPkST/XZynL2Dwj07W+4F1MzMzM7OOKsVQyXrm3PcYMw77bVPvmTdrrzZFY2PIbOBAYFb+e05h+qmSvkO6OcnWrPqx6qY1m7/OXSuLaU2Wu+D8tfJoNn+du1YWLnttOKVuuJmNlqTTgOnAZEkLgC+TGmxnSvoQcC+wL0BE3CTpTNKPTq4APhG+o6SZmZmZlYAbbjamRcT+dWbtXmf5I4Ej2xeR2dg0XE/xzO1XDDoD7V5iMzOz5vgaNzMzMzMzs5Jzw83MzMzMDJB0vKTFkm4sTNtY0vmS7sh/NyrMO1zSXEm3SXpLd6K2fuGGm5mZmZlZciKwR9W0w4ALImJr4IL8GknbAvsB2+X3/FDSuM6Fav1m2IabpKmSLpR0i6SbJH0qT3fvg5mZmZmNGRFxMfBw1eS9gZPy85OAfQrTT4+If0TE3cBcYNeOBGp9qZGbk6wAZkbENZImAVdLOh+YQep9mCXpMFLvw6FVvQ+bAX+S9ELfnc/MzMzMetCUiFgEEBGLJD07T98cuKyw3II8bTWSDgIOApgyZQoDAwOD5i9btoyZ2zdfVa5eT9ktW7as52JuVjv3cdiGW07USrIulXQLKSn3Jt1mHVLvwwBwKIXeB+BuSZXeh7+1OngzMzMzsy5RjWlRa8GI+CnwU4Cdd945pk+fPmj+wMAAR12yvOkA5h0wfdhlymRgYIDqfR9r2rmPTf0cgKRpwMuByxll78NwPQ8AUyakW0g3o92t+LL1FDgeMzMzs7Z6QNKmub67KbA4T18ATC0stwWwsOPRWd9ouOEmaT3g18AhEfG4VKuTIS1aY9pqvQ/D9TwAfP+UczhqTnM/Ndfunoey9RQ4HjMzM7O2mg0cCMzKf88pTD9V0ndIlwdtDVzRlQitLzTUKpK0JqnRdkpE/CZPdu+DmZmZmY0Zkk4jXQo0WdIC4MukBtuZkj4E3AvsCxARN0k6E7iZdE+IT/ieDtZOwzbclE6tHQfcEhHfKcxy74OZmZmZjRkRsX+dWbvXWf5I4Mj2RWS2SiNn3F4FvB+YI+m6PO3zuPfBzMzMzMysIxq5q+Ql1L5uDdz7YGZmZmZm1nbD/gC3mZmZmZmZdZcbbmZmZmZmZiXnhpuZmZmZmVnJueFmZmZmZmZWcm64mZmZmZmZlZwbbmZmZmZmZiXXyO+4mZlZiUiaBywFngZWRMTOkjYGzgCmAfOAd0fEI92K0czMzFrLZ9zMzHrT6yNih4jYOb8+DLggIrYGLsivzczMbIxww83MbGzYGzgpPz8J2KeLsZiZmVmLeaikmVnvCeCPkgL4SUT8FJgSEYsAImKRpGfXeqOkg4CDAKZMmcLAwMBqy8zcfkXLA54yYfB6a223E5YtW9a1bTsOMzMbDTfczMx6z6siYmFunJ0v6dZG35gbeT8F2HnnnWP69OmrLTPjsN+2Ks6VZm6/gqPmrPrKmXfA6tvthIGBAWrts+MwM7Oy81BJM7MeExEL89/FwFnArsADkjYFyH8Xdy9CMzMzazU33MzMeoikiZImVZ4DbwZuBGYDB+bFDgTO6U6EZmZm1g4eKmlWEtNGMDxt3qy92hCJldwU4CxJkMrwUyPiD5KuBM6U9CHgXmDfLsZo1jNc9ppZr3DDzcysh0TEXcDLakx/CNi98xGZNce/Q2hmNjIeKmlmZmad5t8hNDNrkhtuZmZm1m3+HUIzs2F4qKSZmZl1Ust/h7D4e3Tt+B3Cao389l1ZfyPPcZn1LjfcrG/5Ogszs65o+e8QFn+Prh2/Q1itkd8hLOtv5Dkus97loZLW73ydhZlZB/l3CM3MRsYNN7PBfJ2FmVmb+HcIzcxGzkMlrZ+1/DqLoikT2n+tRaPXA5Tp2gHHYtD8b2f5d7PGDP8OoVkLuSztL264WT9r+XUWRd8/5RyOmtPej1gj11lAua4dcCxm/cu/Q2hmNnIeKml9y9dZmJmZWaMkzZM0R9J1kq7K0zaWdL6kO/Lfjbodp41dwzbcJB0vabGkGwvT6iappMMlzZV0m6S3tCtws9HwdRZmZmY2Ar6pmXVNI2fcTgT2qJpWM0klbQvsB2yX3/NDSeNaFq1Z60wBLpF0PXAF8NuI+AMwC3iTpDuAN+XXZmZmZrX4pmbWMcNegBMRF0uaVjV5b2B6fn4SMAAcmqefHhH/AO6WNJc0/OxvrQnXrDV8nYWZmY1UIzeEmLn9ipW/KecbQowZbbup2bJly5i5/dPtjB1o/KZm7dIPNwVr5z6O9M4J9ZJ0c+CywnIL8rTVtOuufO1OhrIlnOMxMzMz64i23dRsYGCAoy5Z3spYa2r0pmbt0g83BWvnPrb6lneqMS1qLdiuu/K1OyHLlnCOx8zMzKz9ijc1kzTopmb5RIZvamZtNdK7Sta7894CYGphuS2AhSMPz8zMzMysu3xTMyuDkZ5xqyTpLAYn6WzgVEnfATYDtibd+MHM2qDRH96sXGvh6yzMzMxGxD8eb103bMNN0mmkG5FMlrQA+DKpwbZakkbETZLOBG4GVgCfiIj2X2lpZmZmZtYmvqmZlUEjd5Xcv86smkkaEUcCR44mKDMzMzMzM1tlpNe4mZmZmZmZWYe0+q6SZmZmLdfo9ZxFvqbTzMzGEjfczMzMzEqk2Y4Kd1KY9Qc33MzMzMzaaCRnjM3MqvkaNzMzMzMzs5Jzw83MzMzMzKzkPFTSrI/4ugkzMzOz3uQzbmZmZmZmZiXnhpuZmZmZmVnJueFmZmZmZmZWcr7GzczMxqRa13TO3H4FM+pc6+lrOq1XNXP9cuUz4Hw36z0+42ZmZmZmZlZyPuNmZmZmZmZd0e4fqB9LZ5d9xs3MzMzMzKzk3HAzMzMzMzMrOTfczMzMzMzMSs4NNzMzMzMzs5IbczcnafYCx7F0waKZmZmZma3S7pufQOfaE2Ou4WZmZjYS7vgzMxus1Y2eoX5L04bnoZJmZmZmZmYl5zNuZmZmZjYkn5EeGzoxbNDaxw03MzMzsz7jCrxZ6xQ/T40MBx1px0bfN9yaLbhO3GNimyIxK592fLFXF2julTUzMzMbXtsabpL2AL4LjAOOjYhZ7dqWWSs5d8utlY3JVl0kXabGp/O3czx0rLWcu9bLnL/WCW1puEkaBxwDvAlYAFwpaXZE3NyO7XXSnPsea7qi5y/r3jGWc9fGPuev9SrnrvUy5691SrvOuO0KzI2IuwAknQ7sDTiBreycu9bLnL8l1uw1EJ1QouH/zt0xptkz0iP5TJSoY9z5ax3Rrobb5sD8wusFwCuKC0g6CDgov1wm6bYa65kMLGlLhCP0yRHEpG+2KZikbMeo1fFs2cJ1NWLY3IXey9+R5G27VMfS5s9HU7GM1BD7ULr8bTB3W64sOeg4Bnv9N+vGUbrchSHztxTHs6gs/+NqYymuMVb2lvL/0mplzb9WamQfR5q77Wq4qca0GPQi4qfAT4dciXRVROzcysBGq2wxOZ6WGzZ3offy17HUVqZYWqQlZW87lOVYO45yxsEoy94S7cdKZYwJHFebjLrs7fH9b1g/7Gc797FdP8C9AJhaeL0FsLBN2zJrJeeu9TLnr/Uq5671MuevdUS7Gm5XAltLep6ktYD9gNlt2pZZKzl3rZc5f61XOXetlzl/rSPaMlQyIlZIOhg4j3Rb1OMj4qYRrKrjw3kaULaYHE8LtTB3oVzHwrHUVqZYRq3F+dtqZTnWjmOwUsTRgtwtxX5UKWNM4LharkVlb8/uf5P6YT/bto+KWG0IuZmZmZmZmZVIu4ZKmpmZmZmZWYu44WZmZmZmZlZypW24SdpD0m2S5ko6rI3bmSrpQkm3SLpJ0qfy9CMk3Sfpuvx4a+E9h+e4bpP0lsL0nSTNyfO+J6nW7WEbiWleXs91kq7K0zaWdL6kO/LfjToRj6RtCsfgOkmPSzqkm8en7DqVu4Xt1cvhpnOmhTGNk3StpHO7GYukDSX9StKt+fjs1s3jMtbVy8WqZaZLeqxQdnypTbGsVo5WzVcuh+ZKukHSjm2IoWb5WbVMW46HpOMlLZZ0Y2Fa3dyvem9Hy7DR6FasZSx3q+IrRRlcFZPL4zp66TNXS63ydiT/W5WonthsGdrsPklaW9IZefrlkqY1FFhElO5BurDzTuD5wFrA9cC2bdrWpsCO+fkk4HZgW+AI4DM1lt82x7M28Lwc57g87wpgN9Lvefwe2HOEMc0DJldN+xZwWH5+GPDNTsVT9X+5n/TjgF07PmV+dDJ3G8jhpnOmhTF9GjgVOHek+duiOE4CPpyfrwVs2M3jMtYf9XKxapnplbxocyyrlaNV89+ayyEBrwQub3M8K8vPThwP4LXAjsCNhWk1c79GnB0tw0Z5TLsSaxnL3ar4SlEGV8Xk8rj2cemZz9wQ+7BaeTuS/y0lqic2U4aOZJ+AjwM/zs/3A85oJK6ynnHbFZgbEXdFxD+B04G927GhiFgUEdfk50uBW4DNh3jL3sDpEfGPiLgbmAvsKmlTYP2I+Fuk/8LPgX1aGOrepEKP/HefwvROxbM7cGdE3DNMnN04PmXRsdytGCKHm8qZVsUjaQtgL+DYwuSOxyJpfVLBexxARPwzIh7tRiz9YgTlaTftDfw8ksuADXM51S6NlJ8tExEXAw9XTa6X+0UdL8NGoWuxlq3cLSpLGVwVk8vj+nrpM9eMMtRbR6zJMnQk+1Rc16+A3Rs5w1jWhtvmwPzC6wV04Ms/n6Z8OXB5nnRwHkJzfOF0aL3YNs/Pq6ePRAB/lHS1pIPytCkRsQjSFwbw7A7GU7EfcFrhdbeOT5l1JXcrqnK42ZxplaOBzwHPFKZ1I5bnAw8CJ+QhQ8dKmtilWPpOjfK0aDdJ10v6vaTt2hRCrXK0qNP/7+rys6gTxwPq535RL30OShFrScrdorKUwUUuj+sbC/ta1nprq7Vyn1a+JyJWAI8BmwwXQFkbbrVanG393QJJ6wG/Bg6JiMeBHwFbATsAi4CjhomtlTG/KiJ2BPYEPiHptUOF3oF4UPpBybcDv8yTunl8yqxr+1kjh+suWmNaS2KU9DZgcURc3ehb2hUL6XcqdwR+FBEvB5aThjZ0I5a+MkwuXkMaLvgy4PvA2W0KY7hytGP/7xrlZ1Gnjkejeulz0PVYy1DuVsVTpjK4yOVxfWNhX0tXb+2wkezTiPa3rA23BcDUwustgIXt2pikNUkF7ykR8RuAiHggIp6OiGeAn7HqFH292Bbk56OOOSIW5r+LgbPyth+oDOPJfxd3Kp5sT+CaiHggx9a141NyHc3dilo5TPM50wqvAt4uaR5puMcbJJ3cpVgWAAsionLG51ekikM3YukbdXJxpYh4PCKW5ee/A9aUNLnVcdQpR4s6+f8eVH5WxdmR45HVy/2iXvocdDXWEpW7RWUqg4tcHtfX8/ta0nprO7Ryn1a+R9J4YANWH5q5mrI23K4Etpb0vNxTuR8wux0byuNJjwNuiYjvFKYXr3V4B1C5q8xsYL98N5jnAVsDV+RTpkslvTKv8wPAOSOIZ6KkSZXnwJvztmcDB+bFDiysu63xFOxPYZhPt45PD+hY7lbUy2GazJlWxBIRh0fEFhExjbTvf46I93UplvuB+ZK2yZN2B27uRiz9YohcLC7znMo4fkm7kr6HHmpxHPXK0aLZwAeUvBJ4rDIEpg0GlZ9Vsbb9eBTUy/2ijpdho9C1WMtU7haVqQyuisvlcX299JlbTYnrre3Qyn0qrutdpM/q8GcYowR3o6n1IN3x63bSnVm+0MbtvJp0avIG4Lr8eCvwC2BOnj4b2LTwni/kuG6jcMcbYGdSst4J/ADQCOJ5PunONNcDN1X2nTTu9QLgjvx3407Ek9ezLqkisUFhWleOTy88OpW7DeRw0znT4rims+qOZl2JhTSU96p8bM4GNur2cRnLjyFy8WPAx/IyB+ey7XrgMuBf2hBHvXK0GIeAY/L/ew6wc5uOSa3ys+3Hg9RQXAQ8RerZ/VC93Ac2A35XeG9Hy7BR7mdXYi1ruVsVY9fL4Kp4XB7XPzY985mrEXvp6q0t2q+Gy9CR7BOwDmn4/FxSp8TzG4mr8mYzMzMzMzMrqbIOlTQzMzMzM7PMDTczMzMzM7OSc8PNzMzMzMys5NxwMzMzMzMzKzk33MzMzMzMzErODTczMzMzM7OSc8PNzMzMzMys5MZUw03SiZK+1u04zHpdKz5LkmZIumSI+QOSPjyabZiZlZmkbSRdK2mppE92aJufl3RsJ7ZlvUHSayTdVoI4XE8fpTHVcGs3SRtK+pGk+yU9IWmOpH/v0LanS1rQ4nWurDgruVjSl6qWOVDSnZLWbeW2zczq6UZltx3aUW5bz/kcMBARkyLieyNZQa1OLkl7S7pO0uOScxUqOQAAIABJREFUlki6QNI0gIj4ekS4U8xWioi/RMQ2o12PpJD0glbElMvHZyQty48Fks6UtEsr1j/MtiXps5LukPSkpHslzZK0dru3PVpuuDVI0lrAn4Atgd2ADYDPArMkfbqbsbVCRATwIeDTkrYDkPQs4NvAhyPiiVZsR9L4VqzHzMa0dlV2a31Zfz2X72btsCVwUytXmCvOPwdmkuoizwN+CDzTyu1Y7+jhutXCiFgPmAS8ErgV+Iuk3du83e8BBwEfyNveE3gDcGabtztqPd1wk/RySdfkXtkzgHXy9I0knSvpQUmP5Odb5Hn7Srq6aj0zJZ2dn79V0s15nfdJ+kxe7P3Ac4F9I+LuiHgqIv4AfBL4qqT18/vnSTo8r+MRSSdIWqewrbflXrJHJV0q6aWFefMkfUbSDZIek3RG8b1DHIe9cu/045LmSzqiMG8dSSdLeihv80pJUyQdCbwG+EHu6fhBRNwBHAkcJ2kNUmL/OiIuHCbuw/JZuaV5v99RmDdD0l8l/a+kh4GVsVl51Pss5XkfkTRX0sOSZkvaLE+flnvfxheWra4sS9L3cz7fOlRhLOmDkm7Jn5vzJG3Zjn21ntDyym5W68v6jcDpbdiW9TlJfwZez6rv2U+14rsa2AG4OyIuiGRpRPw6Iu7N6zpC0sn5+Xsk3VWoo+ypNGroWfl1zXJXyf9KWpzL7xskvaSDh8+oX6dUPpsv6VBJ9wMnSFpb0tGSFubH0cpnkFR19l/SZpJ+rVRPvluFkQ2SxikNt63U666WNFXSxXmR63MuvicvP1T9sG7doijn8YKI+BJwLPDNwjq+mz8vj+dYXpOnP0dp9NsmhWV3yvu0pqQXSLoo5++SvH0kbQ18HDggIv4WESsi4ibgncAekt6QlztR0o8lnZ/jv6hYL5H0ojzvYUm3SXp3Yd6Jko6R9Nv83sslbdXkv7+2iOjJB7AWcA/wX8CawLuAp4CvAZvkf8C6pC/nXwJn5/etDTwMvLiwrmuBd+bni4DX5OcbATvm56cDJ9WIYzywAnhLfj0PuBGYCmwM/BX4Wp63I7AYeAUwDjgwL7924b1XAJvl994CfCzPmw4sqHMspgPbkxriLwUeAPbJ8z4K/F8+FuOAnYD187wB0tm04rrGAZcDvwHuzcdvuLj3zTGvAbwHWA5smufNyMfnP/OxmtDt3PGjqc/SG4AlOQfWBr4PXJzfNw0IYHxhXStzqvC/r6z3PcBj/H/27jxerqLO+/jnCwIioBAjkYRIXCIjiKJGxMFxgoggOsZxQRARHJzIDDzomMchiAsujJkZxd1RFExAtrggecSFRa4Mys4AYREJECAkJLInOKAJv+ePqgsnne57u+/t5Zzu7/v16tftrrP07/Strq46VacOTKiz7tuBJcBLcj75BPC7Xn82fvQkP/4aWAc8BqwBPkwqox8B7gaOK6z7dOAHwP3AQ8CVwCTSCajiPr4BTM9pu9W831TgceBv8+v1ysWcjy8pvP5qjuMR4Gry70VetjkwH3gQuIk0KmNZYfnRwD3AauAWYK9ef95+dDw/F8u5mbThtxp4Qc7bXyY1DLesec/jgB8UXp+W8+WzgeXAW3N6w3IX2Cfn760B5XW26/XnOWgPGtQpc15aS2rgbJbLns8ClwHbAs8Bfgd8rpD3luXnG+X/7adIv/8vAG7nqXrsx4DFwI75f/9y4Nl5WQAvKsTXsH7ICHWL2phqjvkNpN7jLfLr9+W8+zRSL/O9wNPzsp8D/1TY9svA1/PzM4Bj8/E+HXhdTj8cuLPB5/0b4Av5+XxSWf36fDxfJf8WAFuQfgc+kON6JamutHNh2weA3fLy04Az25Inep0px5GZX08qgFRI+91whqhZd1fgwcLr/wKOz893Jv3IDjdC7iIVoM+s2ccFwLwGsdxLarmTM+zhhWX7AbcV3vdzNdvewlMVhqXA+wrL/gP49kgZvEE8XwG+nJ//Q/5cXlZnvSFqGm6FzySAWc3EXWf7awvbHgrc1ev84seI+aXhdwk4CfiPQvqWpIJ3Gs013Gr3ewVwcJ11fwEcVlhvI+BPwA69/nz86P6DzlR2R/uxPr7BdoeyfsNtpErEPOC/SRWsqaQK13BlaUfSD/3k/Hoa8MJef9Z+dC8v11k25t9q0rCyhcAfSY24+eQGHBs23LYm1W0WA98ppDcsd0mV5z/k99mo15/joD5oUKfM5eKfh8uevOw2YL/C632Apfn5zEJZ9Bpq6mXAMcD38/NbyHW4OvHUNtwa1g8ZpZ5O44bbX+X3mdIghgeBl+fn7wF+m59vnMvj3fLrU4ATge1rtv8EcFmDfZ8JfDc/n0+hsUWq/6wjle3vAf67ZtvvAJ8ubPu9mv/b79uRJ6o8VHIycE/kTyS7E0DSMyR9R9Kdkh4BLga2lrRxXm8B8F5JIg2BXBgRj+dl7yR9wHfmbtHX5vT7gO1qg1AaJjYxLx92d01Mk/PzHYA5uTv5IUkPkTLA5ML69xae/4mUUUYk6TWSLsrdww+TKigT8+JTgV8BZ+au8/+QtMlI+4vUZQxPDVUaMW5J7y90kz8EvLTw/rWfh5VPw+9SXjb8nIhYQ+rdmNLkvuvtd3Kd9XYAvlrIQw+QzvQ1+z7WpyJiKCIWR8QTEXE96Szq3+bFfyE1ol4UEesi4uqIeKTBriaSRlTUs4J0hrqZeH4QEfdHGl7zJdKZ2OGL/vcnNQAfiIi7SUMzh63L6+4kaZOIWBoRtzXzntYf2vlbHRGXRcT+EfEc0lDK15N6F+qt+xBp5NFLgS8VFjUsdyPi16Se6m8CKyWdqDzc0rquUZ3yjxHxWGHZer/XjPx7O7mmTvdx0mgFSPW7ZsumkeqHI9UtRjKF1HB7CJ68nOnmPOTxIdJ1ncPfm3NIZeoLgL2BhyPiirzsX0n5+QpJN0r6h5xetz6fbUeD+nyu/zyQj2sH4DU1x30Q8NzCti3X55tR5YbbCmBKbnwNe17+O4f0Q/qaiHgmqUCD9A8kIi4jnan4G+C9pAKTvOzKiJhF6mr+KU9dqHgB8GZJW9TE8U7SMJvLCmlTa2Janp/fTfpR37rweEZEnNHaoW/gdGARMDUingV8u3Csf4mIz0TETsBfA28lXd8B6YvRjIZx5/G+3wWOJHWlb006y1z8vzT7PtYbI32XlpMKKABy/n82abjXozm5OONosdCiwX6Xs6G7gQ/V5LHNI+J3rR+O9ZM2VnZH+7H+Y5PxjFSJmMyGlSwAImIJ8BFSb8gqSWcqXy9qA6Mjv9URcSXp8oa616BJ2pXUo3cG659MGLHcjYivRcSrSKNwXkwaQmfd16hOWZsv1vu9ZuTf2ztq/u9bRcR+heXNXo81Ur12pLrFSP4euCYiHs3Xsx1NOim2Ta5jPsxT35vHSPX0g0gdMcX6/L0R8Y8RMZk0OuNbShP7/BqYKmm34ptKmkrqYb6wkDy1sHxL0miK5fm4f1Nz3FtGxD81cXzjUuWG26Wk8b1HSXqapHeQxpJCui7rf4GHJE0APl1n+1NIZ5PWRsQlkGaOlHSQpGdFxF9I1zCsy+ufCiwDfqg0KcMmkvYhFYLHRcTDhX0fIWn7/N4fB87K6d8FDs8VEUnaQmlika2aPWili1KLD+XjfSAiHssZ8b2F9feUtEvubXyEdIZ6+JhWksY2j2akuLcgFR5/zO/3ARr8eFhpjfRdOh34gKRdlS5y/jfg8txb8EdSA+59Shcz/wMbFvbb5v1uIundpOskfl4nhm8Dx+ipGU2fldc3a1dld7Qf69/kpEdpcDJitEoEqaJSW8l6UkScHhGvI1WugsIF+DYQ2vJbLel1SpNGbZtf/xXwNtY/gTy87vB1oB8nXY8zRdI/58UNy11Jr86/+ZuQvhOPFeKx7mpUp6x1BvAJSc+RNJF0DdsP6qx3BfCI0sQmm+ff75fqqWn4vwd8TtL0XOd7mZ6aAKS23jhS/XCkusV68rZTJH0a+GA+TkjfmbWkOubTlG5ZVdvzewppSPvbiserNBnh9vnlg6Qyd11E/IGU90+TtHs+/p2BHwMXRMQFhX3vl79vmwKfI9V/7gZ+BrxY0sG5frNJ/s68pN7xtVNlG24R8WfgHaR/1oOk8aY/yYu/QrpQ8z5SQfbLOrs4ldTAOLUm/WBgqdIQy8NJ1zOQh1K+kdTKvpxUsJ4AHBsR/1mzj9OB80gXe95OulaIiLgK+EdSg/FB0kXBh7Zw2FNIDdLi44Wk2XE+K2k16YtanM70ucCPcrw3kyonwxn7q8C7lGYqajjl9khxR8RNpKEXl5K+0LuQLp61ihjpuxQRFwKfJBVoK0j57YDC5v9IOgt7P+msbG0P2eWkSSHuI00Y8a6IuL9ODGeTKrFn5u/eDaQZ/8zaUtkd5cf6d6RRFZCu0X2H0pD7F5Fuk1KMZaRKxEJSRXibXGH4P4VYd5T0hnwC5DFS+e2K8GBp12/1Q6RK6mJJa0h1nLNJ18XX+gLpOqL/yvWY9wGflzR9lHL3maRK+YOknuP7SbcHsu6rW6es4/PAVcD1pOsZr6m3bkSsA/6OPDsp6ff5e6TRA5Dqtgvzez5CutZ987zsOGCB0vDA/UepH45UTx82OefhNaTJpXYBZkbEeXn5r0jXYv6BlA8fo+bym4j4LWkyk2siYmlh0auBy/P+FwEfjog78rIj8zH/IL/3L0nXkr6zJr7TSZ0/D5CuoT4ov+dq4E2k+tBy0rDI4YliOkrrDz0dHJI2J82E88pI0+C3a79LSRcRXzDaumZmtiFJQ6TJFb4n6V2kk0MTSJXZpcDWEfE+SQeSKhLbk358zwI+GhFrla5PXkC6du3UiDhK6TYnHyNVNKaSZj37EanMfji/90TSj/VrSRWg84E3RsTrcgPxRNJMuo+SZjD757z9BZKeQWocvo30Y/59UmVhe6Upsr9H6nX+C6mxODsi6g1lMjNrW51SaYr770VEM6OsKkfp1hunR8T32rjP+aSTHp9o1z7bYZAbbh8lTYn7hjbvdyluuJmZlZ6kz5KmRH99nsDBzKw02thwO4o0U2Snb2zddXmI5/mk4fSr27jf+ZSw4VbVO62PS/4iiPSDbWZmAygiPiVpFekat3pD6s3MKk3SV0mjAA7pdSztJmkBqS7/4XY22sps1B43SSeTLvheFREvzWkTSENSppGGrewfEQ/mZceQrglYBxwVEb/qVPBmZmZmZmaDoJnJSeYD+9akzQUujIjppGkz5wJI2ol0od7OeZtv6al7p5mZmZmZmdkYjDpUMiIuljStJnkW6Y7nkC7+HiJNkTyLdJfxx4E7JC0hTf156UjvMXHixJg2bf23ePTRR9lii9pbplWTj2Xsrr766vsi3WC0tOrlX6je/93xtl/Z82+V865jbI9GMZY970K182+7DeIxQ3Xzb6O8WyWDlue6dbyj5d2xXuM2KSJWAETEiuF7iZCmqy/eR2RZTtuApNnAbIBJkybxxS+uP8vsmjVr2HLLttxkvOd8LGO355573jn6Wr01bdo0rrrqqg3Sh4aGmDlzZvcDGiPH236SSp1/q5x3HWN7NIqx7HkXqp1/220Qjxmqm38b5d0qGbQ8163jHS3vtntyEtVJq3sRXUScSJpWmRkzZkTth9FPGcLHYmZmZmZm4zHWG3CvlLQdQP67KqcvI90bZ9j2pHvZmJmZmZmZ2RiNtcdtEWla0Xn57zmF9NMlnQBMBqYDV4w3yKpbfM/DHDr33KbXXzrvLR2MxrrF/3erqlbzLjj/Wnm47DVrn2kNvktzdlnb8Hvm71TnjNpwk3QGaSKSiZKWAZ8mNdgWSjoMuAt4N0BE3ChpIXATsBY4IiLWdSh2MzMzMzOzgdDMrJIHNlhU9+7rEXE8cPx4gjIzMzMzM7OnjPUaNzMzMzMzM+sSN9zMzMzMzMxKrt23AzAzMzMzswHVaEKTRjyZSfPc42ZmZmZmZlZybriZmZWQpKmSLpJ0s6QbJX04p0+QdL6kW/PfbQrbHCNpiaRbJO3Tu+jNzMys3dxwMzMrp7XAnIh4CbA7cISknYC5wIURMR24ML8mLzsA2BnYF/iWpI17ErmZmZm1nRtuZmYlFBErIuKa/Hw1cDMwBZgFLMirLQDenp/PAs6MiMcj4g5gCbBbd6M2MzOzTvHkJGZmJSdpGvAK4HJgUkSsgNS4k7RtXm0KcFlhs2U5rXZfs4HZAJMmTWJoaGiD95u0OczZZW1LMdbbTyetWbOm6+/ZKsdoZmbt5IabmVmJSdoS+DHwkYh4RFLDVeukxQYJEScCJwLMmDEjZs6cucFGXz/tHL60uLWfh6UHbbifThoaGqJe7GXiGM3MrJ08VNLMrKQkbUJqtJ0WET/JySslbZeXbwesyunLgKmFzbcHlncrVjMzM+ssN9zMzEpIqWvtJODmiDihsGgRcEh+fghwTiH9AEmbSXo+MB24olvxmpmZWWe54WZmVk57AAcDb5B0bX7sB8wD9pZ0K7B3fk1E3AgsBG4CfgkcERHrehO6DTLfysLMrDN8jZuZWQlFxCXUv24NYK8G2xwPHN+xoMyaM3wri2skbQVcLel84FDSrSzmSZpLupXF0TW3spgMXCDpxT7xYGa2Pve4mZmZWdv4VhbWryQtlbQ4j4C4Kqc17Ek2azf3uJmZmVlHtPNWFnl/bb+dRT/cDmFQb+vQo+PeMyLuK7yeS52e5G4HZYPBDTczMzNru3bfygI6czuLbt/KohMG9bYOJTnuWcBwEAuAIdxwa8m0uee2tP7SeW/pUCTl54abmZmZtdVIt7LIvW2+lYVVUQDnSQrgO/lEQqOe5PU001tcRo16r1vt2W6nXnx2ZenVdsPNzMzM2qaJW1nMY8NbWZwu6QTS5CS+lYWV1R4RsTw3zs6X9PtmN2ymt7iMDm3QGzZnl7Ut9Wy3Uy96yUvSu+uGm5mZmbXV8K0sFku6Nqd9nNRgWyjpMOAu4N2QbmUhafhWFmvxrSyspCJief67StLZpEl0GvUkm7WdZ5W0vibpZEmrJN1QSPO9hMzMOiQiLokIRcTLImLX/Ph5RNwfEXtFxPT894HCNsdHxAsjYseI+EUv4zerR9IW+fYWSNoCeBNwA0/1JMP6PclmbeeGm/W7+cC+NWnDM0BNBy7Mr6m5l9C+wLckbdy9UM3MzKykJgGXSLqONJT33Ij4JakneW9JtwJ759dmHeGhktbXIuLiPB11UaMZoJ68lxBwh6Thewld2o1YzczMrJwi4nbg5XXS7wf26n5ENojccLNB5HsJ1VGWGZOaVbV4zczMzMbDDTezpwz0vYTKMmNSs6oWr5mZmdl4+Bo3G0Qr88xP+F5CZmZmZlYFbrjZIGo0A9Qi4ABJm0l6Pr6XkJmZmZmVhIdKWl+TdAZpIpKJkpYBn8b3EjIzMzOzinHDzfpaRBzYYFHdGaAi4njg+M5FZGZmZmbWOg+VNDMzMzMzK7lx9bhJWgqsBtYBayNihqQJwFnANGApsH9EPDi+MM3MzMzMzAZXO3rc9oyIXSNiRn49F7gwIqYDF+bXZmZmZmZmNkadGCo5C1iQny8A3t6B9zAzMzMzMxsY452cJIDzJAXwnXxT4kkRsQIgIlZI2rbehpJmA7MBJk2axNDQ0HrL16xZs0FaVU3aHObssrbp9ct83P30fzEzMzMzq4rxNtz2iIjluXF2vqTfN7thbuSdCDBjxoyYOXPmesuHhoaoTauqr592Dl9a3PxHvfSgmZ0LZpz66f9iZmZmZlYV4xoqGRHL899VwNnAbsBKSdsB5L+rxhukmZmZmZnZIBtzw03SFpK2Gn4OvAm4AVgEHJJXOwQ4Z7xBmpmZmZmZDbLx9LhNAi6RdB1wBXBuRPwSmAfsLelWYO/82szMWiDpZEmrJN1QSJsg6XxJt+a/2xSWHSNpiaRbJO3Tm6jNzMysU8Z8jVtE3A68vE76/cBe4wnKzMyYD3wDOKWQNny7lXmS5ubXR0vaCTgA2BmYDFwg6cURsa7LMZuZmVmHjHdykoEzbe65LW8zZ5fOvsfSeW9p7Q3MrPQi4mJJ02qSZwEz8/MFwBBwdE4/MyIeB+6QtIR0zfGl3YjVzMzMOs8NNzOz6mh0u5UpwGWF9ZbltA2MdisWaP0WJtD925hU4dYkgxyjpJOBtwKrIuKlOW0CcBYwDVgK7B8RD+ZlxwCHAeuAoyLiV20Pysys4txwMzOrPtVJi3orjnYrFmj9FibQ/duYVOHWJAMe43w81NfMrK3GdTsAMzPrqka3W1kGTC2stz2wvMuxmT0pIi4GHqhJnkUa4kv++/ZC+pkR8XhE3AEMD/U1Kw1JUyVdJOlmSTdK+nBOP07SPZKuzY/9eh2r9S/3uJmVxFiun/T1jQNn+HYr81j/diuLgNMlnUDqsZhOmu3XrExKOdS37MNZm1GFYbmd0OXjXgvMiYhr8u2wrpZ0fl725Yj4YrcCscHlhpuZWQlJOoM0EclEScuAT5MabAslHQbcBbwbICJulLQQuIlUuTjCw8ysQno61Lfbw3w7oQrDcjuhm8edTzoMn3hYLelmGpxgMOsUN9zMzEooIg5ssKju7VYi4njg+M5FZDZuKyVtl3vbPNTXKivP+PsK4HJgD+BISe8HriL1yj1YZ5tRe4vLqFHv9VgmsWqXXnx2ZenVdsPNzMzMusFDfa3yJG0J/Bj4SEQ8Ium/gM+Reok/B3wJ+Ifa7ZrpLe6G1i/LqN9UmLPL2pYnsWqXXvSSl6VX2w03MzMzaysP9bV+JGkTUqPttIj4CUBErCws/y7wsx6FZwPADTczMzNrKw/1tX4jScBJwM0RcUIhfbvhSXeAvwdu6EV8NhjccDMzMzMzG9kewMHAYknX5rSPAwdK2pU0VHIp8KHehGeDwA03swprday6bx9gZmbWuoi4hPozoP6827HY4PINuM3MzMzMzErODTczMzMzM7OSc8PNzMzMzMys5HyNWx/wdU5mZmZmZv3NPW5mZmZmZmYl54abmZmZmZlZybnhZmZmZmZmVnJuuJmZmZmZmZXcwE9O0urEHmZmZmZm1huDPCmfe9zMzMzMzMxKzg03MzMzMzOzkhv4oZJmZmZmZlXkS34GixtuZgNkpAJ+zi5rObRmeT+NCzczMzOrMjfczMxs3Ab5YnEzM7NucMPNzMzMzMz60liGk5b15KInJzEzMzMzMys597gNoH4682Bm1eShlWZm6/NEIzaavmu4OdObmZnZIFl8z8MbTC41Gp8MMauejg2VlLSvpFskLZE0t1PvY9ZuzrtWZc6/VlXOu1Zlzr/WDR3pcZO0MfBNYG9gGXClpEURcVMr+3HvWXVVdRhUu/Juv6jq/3FQOf9aVTnv2ljqfPP33aIDkbTO+bf/1ObHerdMKupW/adTQyV3A5ZExO0Aks4EZgHOwBU1nIFHy7h9wHm3y8Z6gqbZvNhqYVrxa0D7Nv+2+iM6FiX6Pw6ivs27NhCcfwdct050d6rhNgW4u/B6GfCa4gqSZgOz88s1km6p2cdE4L4OxddVR/lYRqV/b7hoh3a/1yhGzbvQVP6Fiv3f2/G/HeH/2HbNxtuNmKqUf/sl73aiLOpAXin950jjGEuXd6Ez+beb5VYHtZzX+uG49/z36uTfJvNuZfRT3bYZ7T7esdYbOtVwU520WO9FxInAiQ13IF0VETPaHVgv+FgqZdS8C6PnX6jeZ+V4+8K4y16oxmfrGNujRDEObNnbDoN4zFCq425L2VslJfrsu6Isx9upyUmWAVMLr7cHlnfovczayXnXqsz516rKedeqzPnXuqJTDbcrgemSni9pU+AAYFGH3susnZx3rcqcf62qnHetypx/rSs6MlQyItZKOhL4FbAxcHJE3NjibvqmOxkfS2W0Ke8Oq9pn5Xgrro35twqfrWNsj1LEOOBlbzsM4jFDSY67zfm3Kkrx2XdRKY5XERsMITczMzMzM7MS6dgNuM3MzMzMzKw93HAzMzMzMzMrudI13CTtK+kWSUskze11PM2QdLKkVZJuKKRNkHS+pFvz320Ky47Jx3eLpH16E/WGJE2VdJGkmyXdKOnDOb1yx9JLVcvDkpZKWizpWklX9TqeWq1+v2x8qpB/y5hnq5BPG8R4nKR78md5raT9ehnjeFQh77Zbvf9pv2tUV7H26Zd6bbOqVP8tVcNN0sbAN4E3AzsBB0raqbdRNWU+sG9N2lzgwoiYDlyYX5OP5wBg57zNt/Jxl8FaYE5EvATYHTgix1vFY+mJCufhPSNi1zLco6SO+TT5/bLxqVj+LVuenU/58+l8NowR4Mv5s9w1In7e5ZjaomJ5t53mU/9/2s8a1VWsfebTH/XaZlWm/luqhhuwG7AkIm6PiD8DZwKzehzTqCLiYuCBmuRZwIL8fAHw9kL6mRHxeETcASwhHXfPRcSKiLgmP18N3AxMoYLH0kOVzMNl1uL3y8bH+XeMqpBPG8TYLwYy7/b5/7SuEeoq1ib9Uq9tVpXqv2VruE0B7i68XkZ1v4yTImIFpAwBbJvTK3GMkqYBrwAup+LH0mVV/EwCOE/S1ZJm9zqYJjXKkzY+Vcm/VcmzVcmnR0q6Pg+Pquqw46rkXWujmrqKddZA1AXLXv8tW8NNddL67X4FpT9GSVsCPwY+EhGPjLRqnbRSHUsPVPEz2SMiXkkaYnSEpNf3OiDrmarkX+fZ9vkv4IXArsAK4Eu9DWfMqpJ3rU1aqKtYZ/XNd68K9d+yNdyWAVMLr7cHlvcolvFaKWk7gPx3VU4v9TFK2oSUaU+LiJ/k5EoeS49U7jOJiOX57yrgbKoxxKFRnrTxqUT+rVCeLX0+jYiVEbEuIp4Avkt5P8vRVCLvWns0qKtYZ/V1XbAq9d+yNdyuBKZLer6kTUkX/i3qcUxjtQg4JD8/BDinkH6ApM0kPR+YDlzRg/g2IEnAScDNEXFCYVHljqWHKpWHJW0haavh58CbgCrMTtYoT9r4lD7/Vizu/a/nAAAgAElEQVTPlj6fDldKsr+nvJ/laEqfd609RqirWGf1bV2wUvXfiCjVA9gP+ANwG3Bsr+NpMuYzSENM/kJqhR8GPJs0A82t+e+EwvrH5uO7BXhzr+MvxPU6Ulfv9cC1+bFfFY+lx59jZfIw8ALguvy4sYzxtvr98mPcn3ep829Z82wV8mmDGE8FFudyfxGwXa8/y3EcX6nzbrf+p72OqQvHXLeu0uu4+unRL/XaFo63MvVf5Tc3MzMzMzOzkirbUEkzMzMzMzOr4YabmZmZmZlZybnhZmZmZmZmVnJuuJmZmZmZmZWcG25mZmZmZmYl54abmZmZmZlZybnhZmZmZmZmVnJuuPUBSUslvbHXcZiZVY2kHSX9j6TVko7qdTxmZmaNuOFmZm0j6SBJ53Vgvz45YZ3yr8BQRGwVEV/rdTBmRZLmS/r8OLYfkvTBMW77bUmfHOt722Dw73N3ueFmZm0TEadFxJuGX0sKSS/qZUxm9Uh6Wn66A3BjL2Oxamul4lqlSm5EHB4Rn+t1HFZdhXLW2sQNtw6S9ApJ1+QhOGdJOlPS5yUdKumSmnWfrOBKekseuvOIpLslHVez7sGS7pR0v6Rju3hIZmalIOloSffk8vUWSXvV9k5ImilpWeH10rzd9cCjkn4N7Al8Q9IaSS9uovx9naTfSXooLz80p28m6YuS7pK0MvdWbN6VD8Osy1whNwBJpwLPA/5fLkP/NddnD5N0F/DrvN4PJd0r6WFJF0vaubCP+ZK+JekXeR+/lfRcSV+R9KCk30t6RWH9Dcr+rh94D7nh1iGSNgV+CpwKTAB+CLyzyc0fBd4PbA28BfgnSW/P+90J+C/gYGAy8Gxg+7YGb5UxjsrrxyRdL+lRSSdJmpQLzdWSLpC0TV53Wi6EP5ArqQ9KOlzSq/P2D0n6RmHfT56UkHRxTr4uF8bvGeVY3irp2rzP30l6WYP1NpI0V9Jt+eTFQkkT8rJfSjqyZv3rJL2jxY/WSkzSjsCRwKsjYitgH2Bpk5sfSCpXt46INwD/DRwZEVtGxB8Yufx9HvAL4OvAc4BdgWvzfv8deHFOexEwBfjU+I7Uyq5BxfVtkm7MZdmQpJc0WjenN6zUthDHrFx+PpLLxn0Li3fIleHVks6TNLGw3WgV6s/n5zMlLcu/OfcC35c0UdLP8nE+IOm/JbleOUAi4mDgLuDvImJLYGFe9LfAS0hlM6RyczqwLXANcFrNrvYHPgFMBB4HLs3rTQR+BJwA4y77+4K/YJ2zO7AJ8JWI+EtE/Ai4spkNI2IoIhZHxBMRcT1wBulLAPAu4GcRcXFEPA58EniiA/FbyY2zAHsnsDepovl3pEL146RCciOgdpKG15AK3fcAXwGOBd4I7AzsL+lva9YnIl6fn748V4rPGuFYXgmcDHyIdDLiO8AiSZvVWf0o4O2k78Rk4EHgm3nZ6aSK+fB+dyINhTu30XtbJa0DNgN2krRJRCyNiNua3PZrEXF3RPxvvYWjlL8HARdExBm5XL8/Iq6VJOAfgX+JiAciYjXwb8AB4zpKK706FdefkvLMR0iN+5+TGmqb1q4bEf+RdzNapXZEknYDTgE+Rjrh8HrW/y14L/CBvP9Ngf9bWNbKez+XdCJ6B2A2MAdYlo9zEuk3JFqJ3frWcRHx6HA5GxEnR8TqXG89Dni5pGcV1j87Iq6OiMeAs4HHIuKUiFgHnAUM97iNp+zvC264dc5k4J6IKBZidzazoaTXSLpI0h8lPQwcTqpQD+/37uF1I+JR4P42xWzVMp4C7OsRsTIi7iH1OFweEf+TC9WzeaqQHPa5iHgsIs4j9UicERGrCtvXrt+qfwS+ExGXR8S6iFhAOuu2e511PwQcGxHLCj8C71IaunM2sKukHfK6BwE/yetZn4iIJaSK8XHAKqVh6JOb3PzukRaOUv5OBep9x54DPAO4Ovc+PAT8MqfbYHkPcG5EnB8RfwG+CGwO/HWjDZqo1I7mMODk/J5PRMQ9EfH7wvLvR8QfciV6IalXeCzv/QTw6Yh4PO/rL8B2wA75RMZ/19R5bHA9Wc5K2ljSvNwT/AhPnVSYWFh/ZeH5/9Z5vSWMu+zvC264dc4KYEo+Ezvsefnvo6QfeQAkPbdm29OBRcDUiHgW8G1geD8rSJWH4W2fQeqhsAEzzgKsqUJyHOu3agdgznClN1d8p5JOVNRb9+zCejeTGrGTck/HuTzV03EALZ69tmqIiNMj4nWk/BCkoYrrla2kHoINNh1l1yOVv3cDL6yzzX2k78HOEbF1fjwr98DYYJlM4SRtRDxByjdT6q3cZKV2NI1OKAy7t/D8T+Tyegzv/cfcIzLsP4ElwHmSbpc0t4WYrX/UK1OLae8FZpFG6TwLmJbTxRg0KPsHhhtunXMpsBY4StLT8jU2u+Vl1wE7S9pV0tNJFe+irYAHIuKxPATivYVlPwLeqnSB/KbAZ/H/cWCNo/JaNncDxxcqvVtHxDMi4owG6765Zt2n594/SMOUDpT0WtKZ7ou6dAzWJUr3XntDHkr7GKnRtI50vdl+kibkE2IfGcPuRyp/TwPeKGn/XK4/W9KuuXL+XeDLkrbNMU6RtM+Gu7c+VKykLieVxwDkk7dTgXvqrAvtqdQ2OqEwmlbfe73Yc0/dnIh4AWnI/Uc1YBNFGJBO5L5ghOVbkUbQ3E+qm/zbWN9ohLJ/YLjC3yER8WfgHcChpGtw3gP8JC/7A6nBdQFwK3BJzeb/DHxW0mrSxe3DF3sSETcCR5DOCq/I+16GDZwOV17bZbQCfdh3gcPzMDVJ2kJpdr+t6qz7beD44eGQkp4jaVZh+c9JFafPAmflSrX1l82AeaSerntJ1+d8nDQZ1HWknoPzSNdGtGqk8vcuYD/StT0PkL5rL8+Ljyb1PlyWey8uAHYcw/tb9RTLuYXAW5QmitqElFceB35XZ11oT6X2JOAD+T03yicN/qqJ7cb13koTSr0oN04fIf3+DFQl2gD4AvCJPALmXXWWn0Lqhb4HuAm4bBzv1ajsHxwR4UeXHsB84PO9jsOP/ngALwOuAFaTKpE/Iw3TeTqpwvoIcD3wL8CywnZLgTcWXv+AdCHx8OsPkiZggHQGNoCnFZYvA2bWbP+J/PxQ4JLCssNJJxgeAvYf5Xj2JU3g81De5ofAVrUxk044fRS4JR/7bcC/1ezrpBz3q3v9f/LDDz/6+0Hqtborl13/F/h7UgX1YeA3pCG0jdbdEjgnl2V3kmY0DeBFef2m6g35Pa/P+1kC7JPTh4APFtZ7soxu5b2BmcXfkZz2L7lsfjT/Lnyy1/8LP/zo94cifB1pt0iaTyr4PtHrWMzMzMzMrDo8VNL6mqSTJa2SdEMhbYKk8yXdmv9uU1h2jKQlSvdE8/UpZmZmZlYKbrh1UUQc6t62rptPGoJXNBe4MCKmAxfm18P3/DqAdG+yfYFvSdq4e6H2N0kfV7rpbO3jF72OzcyszFx+mhngoZLW/yRNI920/KX59S2ka7RWSNoOGIqIHSUdAxARX8jr/Yp07delvYnczMzMzCx5Wq8DAJg4cWJMmzZtg/RHH32ULbbYovsBNaGssZU1LhhbbFdfffV9EdHum9hOiogVALnxtm1On8L6sx0to/G9d2YDswE233zzV02dOpUnnniCjTaqZie2Y++MP/zhD53Iv21ThbK3LLEMWhwdKnvbqgr5t1sG8Zih8XGXPf9WOe86xvYYc97t9ewoEcGrXvWqqOeiiy6qm14GZY2trHFFjC024KoYZ/4izYx4Q+H1QzXLH8x/vwm8r5B+EvDO0fY/nH/L/NmPxrF3RjvybycfVSh7yxLLoMVR9rwbFcm/3TKIxxzR+LjLnn+rnHcdY3uMNe+W8zS1WWetzEMkyX9X5fRlpBulDtuedDNVMzMzM7OeKsVQyUYW3/Mwh849t6Vtls57S4eisT6yCDiEdBPHQ0j3sRlOP13SCaT7oU0n3SdtTKY575o11Oz3Y84uazl07rn+fljHtFpWg8tr6wzXe200pW64mY2XpDNINw6dKGkZ8GlSg22hpMNIN0J9N0BE3ChpIenGqWuBIyJiXU8CNzMzMzMrcMPN+lpEHNhg0V4N1j8eOL5zEZmZmZmZtc7XuJmZmZmZmZWcG25mZmZmZmYl54abmZmZmZlZybnhZmZmZmZmVnJuuJmZmZmZmZWcG25mZmZmZmYl54abmZmZmZlZybnhZmZmZmZmVnJuuJmZmZmZmZWcG25mZmZmZmYl54abmZmZmZlZybnhZmZmZmYGSJoq6SJJN0u6UdKHc/oESedLujX/3aawzTGSlki6RdI+vYve+p0bbmZmZmZmyVpgTkS8BNgdOELSTsBc4MKImA5cmF+Tlx0A7AzsC3xL0sY9idz6nhtuZmZm1laSTpa0StINhTT3WFjpRcSKiLgmP18N3AxMAWYBC/JqC4C35+ezgDMj4vGIuANYAuzW3ahtUDyt1wGYmZlZ35kPfAM4pZA23GMxT9Lc/Promh6LycAFkl4cEeu6HLPZeiRNA14BXA5MiogVkBp3krbNq00BLitstiyn1e5rNjAbYNKkSQwNDW3wfpM2hzm7rG0pxnr76aQ1a9Z0/T1b1c8xuuFmZmZmbRURF+dKb9EsYGZ+vgAYAo6m0GMB3CFpuMfi0m7EalaPpC2BHwMfiYhHJDVctU5abJAQcSJwIsCMGTNi5syZG2z09dPO4UuLW6uaLz1ow/100tDQEPViL5N+jnHU3CHpZOCtwKqIeGlOmwCcBUwDlgL7R8SDedkxwGHAOuCoiPhVy1GZmZlZvxlXjwU012vR6pnsVns4oPu9HKOpQg9DJ3TquCVtQmq0nRYRP8nJKyVtl/PudsCqnL4MmFrYfHtgeduDMqO5Hrf5eLiDmZmNYNrcc3sdglVXUz0W0FyvRatnsg8dQ97tdi/HaKrQw9AJnThupa61k4CbI+KEwqJFwCHAvPz3nEL66ZJOINV9pwNXtDUos2zUyUki4mLggZpkX6BpZmZmrViZeypwj4WV2B7AwcAbJF2bH/uRGmx7S7oV2Du/JiJuBBYCNwG/BI5wh4V1ylivcevKcIcyX6RZ1mEJZY0Lyh2bmZl1nHssrPQi4hLq9wID7NVgm+OB4zsWlFnW7slJ2jrcocwXaZZ1WEJZ44Jyx2ZmZu0j6QzSRCQTJS0DPk1qsC2UdBhwF/BuSD0WkoZ7LNbiHgszs7rG2nDzBZpmZmZWV0Qc2GCReyzMzMZorDfgHh7uABsOdzhA0maSno+HO5iZmZmZmY1bM7cD8HAHMzMzMzOzHhq14ebhDmZmZmZmZr3V7slJzMyswyQtBVYD64C1ETFD0gTgLGAasBTYPyIe7FWMZmZm1l5jvcbNzMx6a8+I2DUiZuTXc4ELI2I6cGF+bWZmZn3CPW5mZv1hFul6ZIAFwBBwdK+Cabdpc89teZul897SgUjMzMx6ww03M7PqCeA8SQF8J98Xc1JErADIt2rZtt6GkmYDswEmTZrE0NDQBuusWbOmbvpI5uyytqX1mzVp87Hvu9VjGMlYPpNOKEscZmbWfW64mZlVzx4RsTw3zs6X9PtmN8yNvBMBZsyYETNnztxgnaGhIeqlj+TQMfSINWPOLmv50uKx/VQtPWhm2+IYy2fSCWWJY9C12gPs3l8zawdf42YDS9JSSYslXSvpqpw2QdL5km7Nf7fpdZxmtSJief67Cjgb2A1YKWk7gPx3Ve8iNDMzs3Zzw80GnSd4sEqRtIWkrYafA28CbgAWAYfk1Q4BzulNhGZmZtYJHipptr6+nuDB+sIk4GxJkMrw0yPil5KuBBZKOgy4C3h3D2M0MzOzNnPDzQZZWyd4qJ00oNUJFb5+WusdJLtMeVbL29RT5QkPqhz7WETE7cDL66TfD+zV/YjMzMysG9xws0HW1gkeaicN6NRkDUXtmnyhyhMeVDl2MzMzs2b5GjcbWJ7gwczMzMyqou963DxFrzUjT+qwUUSsLkzw8FmemuBhHp7gwczMzMxKou8abmZN8gQPZmZmZlYZbrjZQPIED2ZmZmZWJb7GzczMzMzMrOTccDMzMzMzAySdLGmVpBsKaRMknS/p1vx3m8KyYyQtkXSLpH16E7UNCjfczMzMrGskLZW0WNK1kq7KaQ0rxmZdNh/YtyZtLnBhREwHLsyvkbQTcACwc97mW5I27l6oNmjG1XBz4WtmZmZjsGdE7BoRM/LruhVjs26LiIuBB2qSZwEL8vMFwNsL6WdGxOMRcQewhHRrIbOOaMfkJHtGxH2F18OF7zxJc/Pro9vwPmZmZtafZgEz8/MFwBCuO1h5TIqIFQARsULStjl9CnBZYb1lOW0DkmYDswEmTZrE0NDQhm+yOczZZW1LgdXbTyetWbOm6+/Zqn6OsROzSrrwNTMzs0YCOE9SAN+JiBNpXDFeTzOV31YrRK1WlMei05XIKlRUO6EEx606aVFvxZzPTwSYMWNGzJw5c4N1vn7aOXxpcWtV86UHbbifThoaGqJe7GXSzzGOt+HW0cJ3LGceWjXWL3wJCou6yhoXlDs2MzPrmj0iYnmuH5wv6ffNbthM5bfVCtGhc89tet2x6nTlugoV1U7o4nGvlLRdrtduB6zK6cuAqYX1tgeWdyMgG0zjbbh1tPAdy5mHVo21MC1rIVnWuKDcsVXVtBYrHEvnvaVDkZiZNScilue/qySdTbomqFHF2KwMFgGHAPPy33MK6adLOgGYDEwHruhJhDYQxjU5SbHwBdYrfAFc+JqZmdkwSVtI2mr4OfAm4AaeqhjD+hVjs66SdAZwKbCjpGWSDiM12PaWdCuwd35NRNwILARuAn4JHBER63oTuQ2CMXdn5QJ3o4hYXSh8P0vjsxJmZmY22CYBZ0uCVAc5PSJ+KelKYGGuJN8FvLuHMdoAi4gDGyzaq8H6xwPHdy4is6eMZxyiC18zW0+rQzfBwzfNBklE3A68vE76/TSoGJuZWTLmhlu/FL6+RsjMzMzMzMquszN/mJlZ5Sy+5+GuzLRnZmZmzXPDzczM+pJHVJiZWT8Z16ySZmZmZmZm1nnucTMzM7O+4aG+Ztav3ONmZmZmZmZWcu5xMzMzY+Rr4ubssnaDXhxfE2fN8vWWZtYO7nEzMzMzMzMrOfe4mVlP+Uy0mZmZ2ejc42ZmZmZmZlZybriZmZmZmZmVnIdKtmh4WFe9C9Ub8dAuq6pWhzF2Q21Mo30X/f0zMzOzfuCGm5n1NV9DZ2ZmZv3AQyXNzMzMzMxKzj1uZgOkUe9TK0N/zSxxb66ZmXWTe9zMzMzMzMxKzj1uZmYFY5mQxT0pZmbWj1qdEAz8m9hJ7nEzMzMzMzMruY71uEnaF/gqsDHwvYiY16n3Mmsn512rMuff8nJv7sicd63KnH+tGzrScJO0MfBNYG9gGXClpEURcVMn3q/fjOfeWe7CHh/nXasy51+r6oQpzrvra/X/OH/fLToUiTXD+de6pVM9brsBSyLidgBJZwKzAGfgAVHvR2ekRmVZKg8471q1Of/2mbFcX1JRzrvjsPiehzueL0r0O11Gzr8DrlsnWxQRY9pwxJ1K7wL2jYgP5tcHA6+JiCML68wGZueXOwK31NnVROC+tgfYHmWNraxxwdhi2yEintOJYOppJu/m9Hr5t8yf/Wgce2eULv9WsOwtSyyDFkfp8m5Or1r+7ZZBPGZofNyly799lHcdY3uMKe92qsdNddLWayFGxInAiSPuRLoqIma0M7B2KWtsZY0Lyh1bwah5F+rn34ocX12OvW/0XdlbllgcR8eNuezdYEf9+xk1NIjHDKU67r4rextxjO0x1hg7NavkMmBq4fX2wPIOvZdZOznvWpU5/1pVOe9alTn/Wld0quF2JTBd0vMlbQocACzq0HuZtZPzrlWZ869VlfOuVZnzr3VFR4ZKRsRaSUcCvyJNi3pyRNw4hl2N2KXcY2WNraxxQbljA8add0t/fCNw7H2gT8vessTiODqojXkX+vQzGsUgHjOU5Lj7tOxtxDG2x5hi7MjkJGZmZmZmZtY+nRoqaWZmZmZmZm3ihpuZmZmZmVnJlaLhJmlfSbdIWiJpbp3lkvS1vPx6Sa/sUlxTJV0k6WZJN0r6cJ11Zkp6WNK1+fGpLsW2VNLi/J5X1Vne9c9M0o6Fz+FaSY9I+kjNOj35vDpptPzbK/XyiKQJks6XdGv+u01h/WPyMdwiaZ9C+qvyfpbkPFVv2uPxxnqypFWSbiiktS1WSZtJOiunXy5pWruPoYrKUPaWqZwtS7k6qGXpeJW1LG63Rt+ZkcrMfiFpY0n/I+ln+XXfHHPZ82+93+myaeb3pNckPV3SFZKuyzF+pqUdRERPH6SLOG8DXgBsClwH7FSzzn7AL0j3ydgduLxLsW0HvDI/3wr4Q53YZgI/68HnthSYOMLynnxmNf/Xe0k3Euz559Xh4xwx//Ywtg3yCPAfwNz8fC7w7/n5Tjn2zYDn52PaOC+7Anhtzku/AN7cgVhfD7wSuKETsQL/DHw7Pz8AOKvX/59eP8pS9papnC1juTooZWmbPqdSlsUdONa635lGZWY/PYCPAqcP5/1+OeYq5N96v9NlezTze9LrR/792DI/3wS4HNi92e3L0OO2G7AkIm6PiD8DZwKzataZBZwSyWXA1pK263RgEbEiIq7Jz1cDNwNTOv2+bdKTz6xgL+C2iLizi+/ZC83k3zKZBSzIzxcAby+knxkRj0fEHcASYLecZ54ZEZdGKmVOKWzTNhFxMfBAB2Mt7utHwF6d6DmsmFKUvRUrZ3tRrg5KWTpeVSuLx2yE70yjMrMvSNoeeAvwvUJyvxxz6fNvg9/pUqnC70n+/ViTX26SH03PFFmGhtsU4O7C62Vs+CE3s05H5aFVryC1jGu9Nnd5/kLSzl0KKYDzJF0taXad5b3+zA4AzmiwrBefV6f0+nMeSb08MikiVkAq4IBtc3qj45iSn9emd0M7Y31ym4hYCzwMPLtjkVdD6creEpSzZSxXB6UsHa8yl8UdU/OdaVRm9ouvAP8KPFFI65djHsj820mj/J70VB7yey2wCjg/IpqOsSP3cWtRvbPetS3PZtbpGElbAj8GPhIRj9QsvoY0hGWNpP2AnwLTuxDWHhGxXNK2wPmSfp/PhjwZdp1tuvKZKd188m3AMXUW9+rz6pSe5s1RbJBHRli30XGU8fjGEmsZj6PXSlX2lqScLVW5OmBl6XgN3He89jvTz4MIJL0VWBURV0ua2et4OmDg8m8njfJ70nMRsQ7YVdLWwNmSXhoRTV07WIYet2XA1MLr7YHlY1inIyRtQvrnnxYRP6ldHhGPDHd5RsTPgU0kTex0XBGxPP9dBZxN6mYv6tlnBrwZuCYiVtYu6NXn1UG9/JxH1CCPrBwe2pX/rsqrNzqOZfl5bXo3tDPWJ7eR9DTgWZR8yEcXlKbsLUs5W8JydZDK0vEqbVncCQ2+M43KzH6wB/A2SUtJwwjfIOkH9M8xD1T+7aTRfk/KJCIeAoaAfZvdpgwNtyuB6ZKen88uHgAsqllnEfB+JbsDDw93jXdSvgbmJODmiDihwTrPHb5WRtJupM/0/g7HtYWkrYafA28CalvqPfnMsgNpMLSnF59XhzWTf7tuhDyyCDgkr3YIcE5+vgg4QGn2xeeTztxfkfPMakm75//b+wvbdFo7Yy3u613Ar/N1cIOsFGVvWcrZkparg1SWjlcpy+JOGOE706jMrLyIOCYito+IaaT/7a8j4n30zzEPTP7tpGZ+T3pN0nNyTxuSNgfeCIw0Imp9UY4ZVvYjzfxyG3BsTjscODyemoHlm3n5YmBGl+J6Hamr+nrg2vzYrya2I4EbSTMAXQb8dRfiekF+v+vye5fpM3sGqfLwrEJaTz+vLhzzBvm3148R8sizgQuBW/PfCYVtjs3HcAuFmSOBGaQK7G3ANwB1IN4zgBXAX0hnHg9rZ6zA04EfkiYyuQJ4Qa//R2V4lKHsLUs5W7ZydRDL0jZ8ZqUrizt0nI2+Mw3LzH56UJhRtZ+Ouez5t97vdK9jqhNj3e9Gr+OqifFlwP/kGG8APtXK9sOVGjMzMzMzMyupMgyVNDMzMzMzsxG44WZmZmZmZlZybriZmZmZmZmVnBtuZmZmZmZmJeeGm5mZmZmZWcm54WZmZmZmZlZybriZmZmZmZmVnBtuPSLpeZLWSNq4iXWnSQpJT+tGbGaSvi3pk+Pcx0xJy8aw3XxJnx/Pe5uZmZn1GzfcOkTSUklvbLQ8Iu6KiC0jYl034zKrJelQSZcU0yLi8Ij4XK9iMusVSTtJWiTpYUmrJV0k6a97HZeZmZkbbj3gnjMri6rlxarFa+UyWv6R9ELgt8Bi4PnAZOBs4DxJr+18hGZmZo254dYBkk4Fngf8vzwc8l/zUMfDJN0F/Lp2+KOkIUlfkHRFPtN7jqQJDfb/LEknSVoh6R5Jn29myKX1D0lzJf2oJu2rkr42Uv7IvWu/lfRlSQ8AZwHfBl6b8+pDeb31hitKmiXpWkmPSLpN0r45/QOSbs49E7dL+tAYjuUVkq7J+zgLeHph2UxJyyQdLele4PuSNpP0FUnL8+MrkjarWf/jku7LPd8HtfwBW9dJ+pikH9ekfT3/f0fK0y+U9GtJ9+f/+WmSti7sY2nOP9cDj0p6Wn59T85zt0jaK69+HHBpRBwbEQ9ExOqI+BpwKvDveX/DZffsnP9WSJpTeL+N8vfzthzTwuGyvLDtIZLuyvEe28nP1czM+ocbbh0QEQcDdwF/FxFbAgvzor8FXgLs02DT9wP/QDrLuxb4WoP1FuTlLwJeAbwJ+GBbgreqOAPYT9IzAXIldn/gdEbPH68Bbge2Bd4HHE6qrG4ZEVtTQ9JuwCnAx4CtgdcDS/PiVcBbgWcCHwC+LOmVzR6EpE2Bn5IqxhOAHwLvrFntuXnZDsBs4Fhgd2BX4OXAbsAnatafCEwBDgFOlAgEohIAABJ1SURBVLRjszFZz/wA2He40ZVPar2HlDdGytMCvkAqN18CTCU1wIoOBN5Cyr8vBI4EXh0RW5HK46V5vb1JebDWQmAPSc8opO0JTM+xzNVTQ+OPAt5OKu8nAw8C36zZ3+uAHYG9gE9JeknDT8XMzCxzw627jouIRyPifxssPzUiboiIR4FPAvvX9qRJmgS8GfhI3tcq4MvAAR2N3EolIu4EriFVEAHeAPwJuIPR88fyiPh6RKwdIS8WHQacHBHnR8QTEXFPRPw+x3FuRNwWyW+A84C/aeFQdgc2Ab4SEX+JiB8BV9as8wTw6Yh4PMd7EPDZiFgVEX8EPgMcXLPNJ/P6vwHOJTVqrcQiYgVwMfDunLQvcB+wjBHydEQsyXnz8ZwfTiA1moq+FhF35/yzDtgM2EnSJhGxNCJuy+tNBFbUCW8F6fdym0LaZ3I8i4HvkxqHAB8Cjo2IZRHxOKkR+S6tP0zzMxHxvxFxHXAd6QSEmZnZiHy9SHfd3cLyO0kV2ok16+yQ01dIGk7bqIl9W/85nVRZPAV4b37dTP5oNa9MBX5eb4GkNwOfBl6c3+cZpOuDmjUZuCciopB2Z806f4yIx2q2ubNm/cmF1w/mkx+Nllt5LQD+CfguqTf4VEbJ05K2JY1O+Btgq7zswZr9PpnnI2KJpI+QGlQ7S/oV8NGIWE5qKG5XJ67tSCcQHiT1VK+3T1Ie2yU/3wE4W9ITheXrgEmF1/cWnv8J2LLOe5qZma3HPW6dE02mFU0tPH8e8BdSRaLobuBxYGJEbJ0fz4yIncceqlXUD4GZkrYH/p7UcGsmf9Tmw9Hy5d2k4WXrydeV/Rj4IjApD7P8OWnoWrNWAFNUqJGT8v5I8S0nVY6L6y8vvN5G0hYjLLfy+inwMkkvJQ3BPY3R8/QXSHnkZRHxTFKDrzYPrpeHIuL0iHgdKR8F+fo14AKe6vEr2p80nPhPhbTa8no4j90NvLkQ69YR8fSIuKfZD8HMzKweN9w6ZyXwgha3eZ/SVNTPAD4L/Kj2dgF5ONF5wJckPTNfCP9CSbVDg6zP5WFhQ6RhWndExM1jzB8rge3z9Wb1nAR8QNJeeX9TJP0VsClpyNkfgbW59+1NLR7GpaRrl47Kk0a8g3TN2kjOAD4h6TmSJgKfIl0fVfQZSZtK+htSA6DedUtWMrln9UekkxBX5NumjJantwLWAA9JmkK6FrMhSTtKekM+8fAYMDx8EtKw27+WdLykCZK2kvR/SNcfH12zq09KeoaknUnXd56V078NHC9ph/x+z5E0a8wfipmZWeaGW+d8gVS5fAh4V5PbnArMJw2jeTrpIvd63k+qNN9EGrrzI+oP77H+dzrwxvx3WKv549fAjcC9kmp7eImIK8gTjwAPA78BdoiI1aQ8ujC/z3uBRa0EHxF/Bt4BHJr38R7gJ6Ns9nngKuB60rDMa3LasHvzvpaTemwOH74mzyphAWnY4amFtJHy9GeAV5Ly5rmMnn82A+aRRjPcSxr6+HGAiLiVNHHIy0kTlqwgTZazT0T8tmY/vwGWABcCX4yI83L6V0nfg/MkrQYuI00IZGZmNi5a/9IS6xVJQ8APIuJ7vY7FrKokzSR9j7bvdSw2NpKeB/weeG5EPNLreGpJmkaaBGiTiFjb22jMzGyQuMfNzMxKQdJGwEeBM8vYaDMzM+slzyppZh2Ve1BuarB4p4i4q5vxWDnlCWVWkmZo3LfH4ZiZmZWOh0qamZmZmZmVnIdKmpmVkKSTJa2SdEMhbYKk8yXdmv9uU1h2jKQlkm6RtE9vojaz/9/e/cfIcZYHHP8+mB+iLhUgk2sUp1z+cBGhEbScTFCk6tIIMKTC/EGQowJOleooSiSQIpFL/wAJCcmq1KpqRX9YJcIRkNQSpLEafoXQE/xBi+00bRKCVTeY9GorVgAlcUCgg6d/7FyyWe+eb/d2dt6d/X6k0+3OzN4+78xzo3123nlfSapLEVfcduzYkfPz8+ctf/bZZ9m+ffv5LyhAqbGVGheMFtvx48efzMzX1BTSWPTmb8nHYFza3sZxtW8r+RsRv09nmPs7MvN3qmV/Dvw4Mw9ExDLwqsy8NSIupzNNwm46k41/A/jt3ulEeg0697Zd2/N3kGHaPQ3nXkmaNUXc4zY/P8+xY8fOW76yssLi4uLkA9qEUmMrNS4YLbaI+GE90YxPb/6WfAzGpe1tHFf7tpK/mfmtagTDbnuBxerxITrz+N1aLb8rM38O/CAiTtIp4r6z0XsMOve2Xdvzd5Bh2j0N515JmjVFFG6SpE2ZqyakJjPPRMRF1fJL6MwXtm61WnaeiFgClgDm5uZYWVmpL9pCnTt3znZLkqaOhZskTb/os6xvP/jMPAgcBFhYWEivPM2OWW23JLVF0YXbQ//3FDcs3zvUa04duLamaKThzJu7Gr8nIuLi6mrbxcDZavkqcGnXdjuB0xOPbsr5PytJKpmjSkrS9DgC7K8e7wfu6Vq+LyJeFhGXAbuA7zYQnyRJqknRV9wkaVZFxJ10BiLZERGrwCeAA8DhiLgReBy4DiAzH4mIw3QmOl8DbrrQiJKSJGm6WLhJUoEy8/oBq64ZsP2ngE/VF5EkSWqSXSUlSZIkqXAWbpIkSZJUuNZ1lXRUMEmSJElt4xU3SZIkSSqchZskSZIkFa51XSWlaTVsN1+wq68kSdKs8IqbJEmSJBXOwk2SJEmSCmfhJkmSJEmFs3CTJEmSpMJZuEmSJElS4SzcJEmSJKlwFm6SJEmSVDgLN0mSJEkqnIWbJEmSJBXOwk2SJEmSCmfhJkmSJEmFs3CTJEmSpMJZuEmSJElS4V7cdABSUyLiFPAM8EtgLTMXIuLVwD8B88Ap4H2Z+ZOmYpQkSZLAK27S1Zn5psxcqJ4vA/dn5i7g/uq5JEmS1CgLN+mF9gKHqseHgPc0GIskSZIE2FVSsy2Br0dEAv+QmQeBucw8A5CZZyLion4vjIglYAlgbm6OlZWV59adO3eOlZUVbrlire74X/C+k7TexrZqe/skSdL0sXDTLLsqM09Xxdl9EfH9zb6wKvIOAiwsLOTi4uJz61ZWVlhcXOSG5XvHHe95Tv3R4gW3qcN6G9uq7e2TJEnTx66SmlmZebr6fRa4G9gNPBERFwNUv882F6EkSZLUYeGmmRQR2yPiFeuPgbcDDwNHgP3VZvuBe5qJUJIkSXqeXSU1q+aAuyMCOv8HX8jMr0bEUeBwRNwIPA5c12CMkiRJErDFws15sDStMvMx4I19lv8IuGbyEUmSJEmDjaOrpPNgSZIkSVKN6ugquRdYrB4fAlaAW2t4H2nmzQ85cuWpA9fWFIkmyd4OkiTNnq0WbrXMg7Vu7uXUPhfWqHM1lTrPU6lxQdmxSVPo6sx8suv5em+HAxGxXD33SzNJklpiq4VbLfNgrfubz9/DXzxU7/gpo86DVeo8T6XGBWXHJrWAvR0kSWqxLVVF3fNgRcQL5sGqrrY5D5YkjV+tvR3abtDV/2F7eEzbvrPXgyRNt5ELt2ruqxdl5jNd82B9kufnwTrAFMyD5T1CmiXme2vU2tuh7QZd/b9h2P+PEXtsNMVeD5I03bZyxc15sCSpAfZ22JxBX1TccsXa0EWaJElNG7lwcx4sSZq8tvR2kCRJw6l35A9J0rjZ20GSpBlk4SZJU8TeDtNr2HtMwftMJUnPe1HTAUiSJEmSNmbhJkmSJEmFs3CTJEmSpMJZuEmSJElS4SzcJEmSJKlwjio5pPVRwYaZwNVRwSSpfUYZJVKSpFF5xU2SJEmSCmfhJkmSJEmFs3CTJEmSpMJZuEmSJElS4SzcJEmSJKlwFm6SJEmSVDinA5A00KDhzgdNh+HUF6qLQ+9LkmadV9wkSZIkqXAWbpIkSZJUOAs3SZIkSSqc97hJGptR7kPyvjhJkqQL84qbJEmSJBXOwk2SJEmSCmfhJkmSJEmFs3CTJEmSpMJZuEmSJElS4SzcJEmSJKlwTgdQoGGHVHc4dU0z870dPI6SJNXLK26SJEmSVDivuEmSJm6UydolSZplXnGTJEmSpMJ5xa0Fur+5vuWKNW6o4Zts70eRJEmSmmPhJmmqOAhG/ezGKElSeWrrKhkReyLiREScjIjlut5HGjdzV9PM/JUkqZ1queIWEduATwNvA1aBoxFxJDO/V8f7qX6zcpXD3NX88r1DdzkuJd/N3/YZ59XPfnldSu5Kki6srq6Su4GTmfkYQETcBewF/PAwI/p92Njow3BBHx7MXU0z81eSpJaKzBz/H414L7AnM/+kev4B4C2ZeXPXNkvAUvX0dcCJPn9qB/Dk2AMcj1JjKzUuGC2212bma+oIpp/N5G61fKP8LfkYjEvb2ziu9hWXv5s897Zd2/N3kGHaPdHclSRdWF1X3KLPshdUiJl5EDi44R+JOJaZC+MMbFxKja3UuKDs2LpcMHdh4/ydknZuSdvbOMXtG8u5t+2m+Phuyay2W5Laoq7BSVaBS7ue7wRO1/Re0jiZu5pm5q8kSS1VV+F2FNgVEZdFxEuBfcCRmt5LGidzV9PM/JUkqaVq6SqZmWsRcTPwNWAbcHtmPjLCnyq5O0+psZUaF5QdGzC23C2+nWPQ9jZOZfvGeO5tu6k8vmMwq+2WpFaoZXASSZIkSdL41DYBtyRJkiRpPCzcJEmSJKlwRRRuEbEnIk5ExMmIWO6zPiLir6v1/xURvzehuC6NiH+NiEcj4pGI+EifbRYj4qmIeLD6+fiEYjsVEQ9V73msz/qJ77OIeF3XfngwIp6OiI/2bNPI/pqUC+VyqQblekS8OiLui4j/rn6/qus1t1XtPBER7+ha/uYqN09WOdhviPqJi4htEfEfEfEv1fPWtE2D9TtXbnTsp1lE3B4RZyPi4a5lQ+e5JKlMjRduEbEN+DTwTuBy4PqIuLxns3cCu6qfJeDvJhTeGnBLZr4euBK4qU9sAN/OzDdVP5+cUGwAV1fv2W9enonvs8w8sb4fgDcDPwXu7rNpU/urVpvM5VINyvVl4P7M3AXcXz2nWrcPeAOwB/jbqv3QybUlns+/PZNsyAY+Ajza9bxNbdPGes+VfY99C3yW83NylDyXJBWo8cIN2A2czMzHMvMXwF3A3p5t9gJ3ZMe/Aa+MiIvrDiwzz2TmA9XjZ+h86Luk7vcdk0b2WZdrgP/JzB9O8D2btplcLtIGub4XOFRtdgh4T/V4L3BXZv48M38AnAR2Vzn2G5n5neyMfHRH12saExE7gWuBf+xa3Iq2aSSDjv1Uy8xvAT/uWTxUnk8kUEnSSEoo3C4B/rfr+SrnF0eb2aZWETEP/C7w731WvzUi/jMivhIRb5hQSAl8PSKOR8RSn/VN77N9wJ0D1jWxvyah6X0+Fj25PpeZZ6BT3AEXVZsNausl1ePe5U37K+BjwK+6lrWlbdpYv3PloGPfRsPmuSSpULXM4zakfveI9M5RsJltahMRvw58EfhoZj7ds/oB4LWZeS4i3gX8M50uVHW7KjNPR8RFwH0R8f3q29bnwu7zmonss+hM/Ptu4LY+q5vaX5PQaJ6OQ2+ub3AL16C2FrcPIuIPgbOZeTwiFjfzkj7LimybNuW8c2XTARXCfJakKVPCFbdV4NKu5zuB0yNsU4uIeAmdD7Kfz8wv9a7PzKcz81z1+MvASyJiR91xZebp6vdZOveR9XZxaWyf0bnH64HMfKJ3RVP7a0Ka3OdbNiDXn1jvYlv9PlstH9TW1epx7/ImXQW8OyJO0em++gcR8Tna0TZdwIBz5aBj30bD5rkkqVAlFG5HgV0RcVl1pWYfcKRnmyPAB6PjSuCp9a4fdapGjPsM8Ghm/uWAbX5zfWS5iNhNZ5/+qOa4tkfEK9YfA28HHu7ZrJF9VrmeAd0km9hfE7SZXC7SBrl+BNhfPd4P3NO1fF9EvCwiLqNz1fS7VY49ExFXVn/zg12vaURm3paZOzNzns4x+WZmvp8WtE0b2+BcOejYt9FQed5AfJKkTWq8q2RmrkXEzcDXgG3A7Zn5SET8abX+74EvA++ic/P0T4E/nlB4VwEfAB6KiAerZX8G/FZXbO8FPhwRa8DPgH3VwAV1mgPuruqfFwNfyMyvlrDPIuLXgLcBH+pa1h1XE/trIgblcsNhbdagXD8AHI6IG4HHgesAqv/Rw8D36IxIeVNm/rJ63YfpjG73cuAr1U+J2tw2dQw6Vx6lz7GfdhFxJ7AI7IiIVeATjJbnkqQCRUs+M0uSJElSa5XQVVKSJEmStAELN0mSJEkqnIWbJEmSJBXOwk2SJEmSCmfhJkmSJEmFs3CTJEmSpMJZuEmSJElS4f4fTcC9QhRPDaEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAJOCAYAAAAkve/mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACTk0lEQVR4nOzdebgcVbnv8e/PMM/EQIQQCSqiIIoaUY6oQZTRY3AA4aCCojjARe6JSkCP4oBGryjOioIgMjogHFABkQ2iMguGUQIEEhIIcwYBCbz3j7Wa1O507929d/fu6u7f53n2s7urqqvf6n5r9VpVq1YpIjAzMzMzM7Nyek6nAzAzMzMzM7P63GgzMzMzMzMrMTfazMzMzMzMSsyNNjMzMzMzsxJzo83MzMzMzKzE3GgzMzMzMzMrMTfazGwlkn4k6X9GuY5pkuaP4HUnSfryaN7bzMzMRkfSVpL+LmmJpMPG6D2PkvTTsXivbuNGW8lI2l/ShW1Y71xJb2n1eq37STpQ0uXFaRHx0Yj4UqdiMuuGMssHGKxVuiHfrS99GhiIiHUj4jsjWYGkAUkfqpo2XdL1khZLelDSxZKmAETEVyLiQzVX1ufcaCuZiDg1InapPJcUkl7UyZisd0lapdMxNKPb4jUzGy2Xe9ZBmwM3tXKFuU77c2AGsD6wBfAD4JlWvk8vcqPNrAtJminpV1XTvi3pO5LWl3SCpIWS7pX0ZUnj8jIHSvqLpG9Jehg4E/gRsIOkpZIezcsNOoNQdVTsDkm75ekfkHRL7jpxp6SPjGBbXinpuryOM4E1CvOmSZov6QhJ9wE/k7S6pOMkLch/x0lavWr5o/LRu7mS9m82JjOzsSLpFOD5wP/mcvjT+YDtQZLuAf6Ul/ulpPskPSbpMknbFNZxkqQfSPp9XsdfJD0vl4+PSLpV0isLyx+Rfx+WSLpN0s5jvuFWapL+BOwEfC/n1CdyV8nFkuZJOrqw7BqSfiHpIUmPSrpa0kRJxwBvKKzje8B2wF0RcXEkSyLi1xFxT17X0ZJ+kR+/J9ct1svPd8/7wEb5+QdzHeQRSRdI2jxPV67nLMr7yz8kvWzsPr326PtGW62Cq0aFddC1Obki+KmcBMtyBXliLiyXSPqjpA3zslNy4fuBnOSPSPqopNfk1z+ak7iy7me7qkm6LE++ISf7e4bZlrcpVawflfRXSS+vs9xzlCr9d+Qd7CxJ4/O8P0g6tGr5GyS9s8mP1trrdGCPQkE2DtgHOA04GVgOvAh4JbALUOxq8FrgTmBj4L3AR4G/RcQ6EbFB9RtJ2p50VOxTwAbAG4G5efYi4G3AesAHgG9JelWjGyFpNeC3wCnAeOCXwLuqFntenrc5cDDwGeB1pIL/FcD2wGerlp8ATAIOAI6XtFWjMVmpvEbSzbnc/FmuGGwo6TxJD+Tp50narPKCXIbemcviu1RotNf7gR+KpJdIukjSw/k3Yp8hlq1ZBmuIgywj+1isl0TE+4B7gP+MiHWAs/KsNwEvBXbNz38PbEkqu68DTq1a1T6ksnAC8CTwt7zcBOBXwDchXacEHAq8JiLWzeuf24ZNsy4WEW8G/gwcmvPyBuD9pHrAnsDHJO2VFz+AdNZsMvBcUr3i8Yj4THEdEXEoKSdfkhtVO0laZ4gYziTl8XckPRc4AfhQRDyQ3/so4J3ARvl9Ts8v3YVUV3lxjvc9wEOj/Uw6ra8bbaMsuN4FvJWUEP9JKkyPIhWOzwGqL9h8LamwfQ9wHKni+RZgG2AfSW+qfoOIeGN++Iqc7GcOsS2vAk4EPkLaYX4MnKt8BqLKYcBepB+ETYFHgO/neacB+xXWuzWpsnx+vfe2sRcRd5MKvr3ypDcD/wLuAnYHDo+IZRGxCPgWsG/h5Qsi4rsRsTwiHm/g7Q4CToyIiyLimYi4NyJuzXGcHxF35KNllwIXko6qNep1wKrAcRHxVET8Cri6aplngM9HxJM53v2BL0bEooh4APgC8L6q1/xPXv5SUu7WrWhbqe1PKpdfSCprP0sqX39GKpeeDzwOfA9A0trAd4Ddc5n+H8D1ed5e1P+Brymv7yJSubgxqWz8gQpnOArLDlUGD3WQxayeo3M5/jhARJyYz0o8CRwNvELS+oXlz46IayPiCeBs4ImI+HlEPE3qVVE50/Y0sDqwtaRVI2JuRNwxZltlXSkiBiJidq4H/INUrlXqrk+Ryr0XRcTTOQ8X11nPncA00oHVs4AH88mSeo23Q0h1nAHgfyPivDz9I8BXI+KWiFgOfAXYLh+MewpYF3gJoLzMwlF9ACXQ1402RldwfTci7o+Ie0k//ldGxN9zYXo2KwrHii9FxBMRcSGwDDg9Vzorr69evlkfBn4cEVfmHeZk0pG219VY9iPAZyJifqHwf7dSv/mzWZH0kCpNv8nLWbkUG9j/lZ9vTmoELcxH+x8lVR43LrxuXpPvMxmouV8odVW4Ip+FeBTYg3TgolGbAvdGRBSm3V21zAO5ElJ8zd1Vy29aeP5IRCwbYr51j+9FxLyIeBg4BtgvIh7KXWn+FRFL8vTiQa9ngJdJWjMiFkZE5XqMoX7g63kbMDcifpYPclwH/Bp4d41l65bB9Q6yRMQVI/hMrH88W1ZLGidpVu4hs5gVB5iL5e39hceP13i+DkBEzAEOJ/32L5J0hiSXkTYkSa+VdEnu5fAY6WxaJf9OAS4AzlC6bOHrklatt66IuCIi9omIjUgHet9IOplRa9lHSb1wXgYcW5i1OfDtQl3nYUDApIj4E+lg3veB+yUdXzlo1s36utE2yoKrocJxFMs3a3NgRiV5cwJPpnZldXPg7MJyt5AasBNzJeh8VpyZ2ZeVu2BYOfwSmJa7hr2D1GibR6ooToiIDfLfehFRPDMQVeupfl5tHulMxyD5DMKvgW+QcmcD4HekQrNRC4FJkoqvef4w8S0g5XBx+QWF5xvmMyT15lv3KB5guBvYVNJakn4s6e5ceb0M2EDSuNxYfw+pMrFQ0vmSXpJfX/cHfoj33xx4bVW5uj+pC26tZYcqg2sdZDGrqFUOF6f9FzCd1ENnfWBKnt5MebtixRGnRcSOpLwN4GsjWY/1ldOAc4HJEbE+6Xp4AeSeMl+IiK1JPRzeRupKCcPUMSLiauA3pEbZSiRtB3yQdGav2KV8HvCRQl1ng4hYMyL+mtf7nYh4NalH24tJl3h0tb5utEHdgmsZsFZhsVo/0GUzDzimKnnXioha3X/mkboPFZddI5/1g7Rj7CdpB2BN4JIx2gZrQu4aOEDqKnZX4fT/hcCxktZTun7xhbW63xbcD2ymdH1ZLScAH1C63vM5kiblivBqpDPVDwDLJe1O6kfejL+Rrr87TNIqStdObj/Ma04HPitpI0kTgM8Bv6ha5guSVpP0BtKPxy+bjMvKYXLhcaXxPQPYCnhtRKxHOkILKyoPF0TEW4FNgFuBn+T5Q/7A1zEPuLTqNetExMfqLDtUGVzrIItZxf3AC4aYvy7pgNxDpPrJV0b6Rkr33npzPvD2BOnA8dMjXZ/1jXWBhyPiCaVr3f+rMiNfm7Zt7vq9mNQ9sZJTg3Jb0o6SPixp4/z8JcDbgZV6Hkhag/T7fhTpuvlJkj6eZ/8IOLLSXV1pELa98+PX5DODq5Lq9E/QAzne1422IQqu60nXH4yX9DzS2bhOGa4gr/gJ8NGcpJK0tqQ9Ja1bY9kfAcdoxSg7G0maXpj/O1Ij9ovAmRHhYVjL6zTSkddiBfD9pAbVzaTrFX9FqsDW8yfSkL73SXqwemZEXEUeZAR4DLgU2DyflT2M1Cf9EVIBfm4zwUfEv0nXGB2Y1/Ee0hG3oXwZuAb4BzCb1O2seK+s+/K6FpDOEn808jV41nUOkbSZ0kBJR5Guy1mXVFY/mqd/vrKw0oBQb89nWp8ElrLih7ruD/wQzgNeLOl9klbNf6+R9NIayw5ZBtc6yDKiT8R61VdJB6MepXb325+TzjbfSyrbR9O1dnVgFvAgqbzcmLR/mQ3l48AXJS0hHSw9qzDveaS6xmJS761LWXEw9dukS3AeURp86VFSI222pKXAH0iX5ny9xnt+FZgfET/Ml+m8F/iypC0j4mzSiZYzcq+LG0nX9EMaHO0npLrA3aSDHd8Y/UfQYRHRt3/Ay4GrgCWkrjLnkbqyrEGqHCwmVQz/LylpKq+bC7yl8PwXpAuGK88/BPwxP55COoO3SmH+fGBa1es/mx8fCFxemPdRUheyR4F9htme3UiDODyaX/NLYN3qmEmN9f8Gbsvbfgfwlap1nZDjfk2nvyf/+a/RP9LFzfM7HYf/WvJdzgWOJFVQHyWNirpWLqMHSA2yf5KuVQtgFdLBiUtJBxcezcttXVjn+0gN/cWkM2MnNhDHVqQu4w+Qfvj/BGyX550EfLmwbN0yuPD+AXyq05+v//znP//5r7v+FDHc5SxmZt1B0jTgFxGx2TCLmpmZmXWNVTodgJn1NknPJ50tqWXryDfUNDMzM7Pahr2mTdKJSncUv7EwbbzSzUZvz/83LMw7UtIcpZuQ7lp7rTYSko5Susl29d/vOx2bWT0RcU+kwRtq/bW0wRbpPjI+y2YNk/SGOuXq0k7HZmZmVjFs90hJbyRdO/DziHhZnvZ10ggysyTNBDaMiCOUbsR8Omn0t02BPwIvjnRjRzMzMzMzM2vSsN0jI+IySVOqJk8nXfAP6eLwAeCIPP2MSCO83CVpDqkB97eh3mPChAkxZcoUli1bxtprrz3UoqXl2Nvj2muvfTDSzRdLq5K/FWX+PFul17exVdtX9vytzl3o/e+2oh+2czTbWPbchdr5C93x3TrG1qgXY9nzt5tztx36cbtHkrsjvaZtYqT7QRERCyv3WiDdpLQ4DO186ty4VNLBwMEAEydO5Bvf+AZLly5lnXVGe4/pznDs7bHTTjvd3ekYhjNlyhSuueaaZ58PDAwwbdq0zgU0Bnp9G1u1fZJKnb/VuQu9/91W9MN2jmYby567UDt/oTu+W8fYGvViLHv+dnPutkM/bvdIcrfVA5GoxrSa/S8j4njgeICpU6fGtGnTuvpLc+xmZmZmZtYOI7259v2SNgHI/xfl6fOByYXlNiPd4NbMzMzMzMxGYKRn2s4FDgBm5f/nFKafJumbpIFItiTdvHpEpsw8v+nXzJ2150jfzqylms1f566Vhcte62az732MA5vIYeeulUWzuQvO334ybKNN0umkQUcmSJoPfJ7UWDtL0kHAPcDeABFxk6SzSPdkWg4c4pEjzczMzMzMRq6R0SP3qzNr5zrLHwMcM5qgzMzMzMzMLBnpNW1mZmZmZmY2BtxoMzMrIUknSlok6cbCtPGSLpJ0e/6/YWHekZLmSLpN0q6didrMzMzawY02M7NyOgnYrWraTODiiNgSuDg/R9LWwL7ANvk1P5A0buxCNTMzs3Zyo83MrIQi4jLg4arJ04GT8+OTgb0K08+IiCcj4i5gDrD9WMRpZmZm7dfqm2ubmVn7TIyIhQARsVDSxnn6JOCKwnLz87SVSDoYOBhg4sSJDAwMDJq/dOlSZmzb/KC/1espu6VLl3ZdzM3qh200M+sXbrSZmXU/1ZgWtRaMiOOB4wGmTp0a06ZNGzR/YGCAYy9f1nQAc/efNuwyZTIwMED1tveafthGM7N+4UabWUn4hsbWgPslbZLPsm0CLMrT5wOTC8ttBiwY8+jMzMysLXxNm5lZ9zgXOCA/PgA4pzB9X0mrS9oC2BK4qgPxmZmZWRv4TJuZWQlJOh2YBkyQNB/4PDALOEvSQcA9wN4AEXGTpLOAm4HlwCER0fyFaWZmZlZKbrSZmZVQROxXZ9bOdZY/BjimfRGZmZlZp7h7pJmZmZmZWYm50WZmZmYtI2mypEsk3SLpJkmfyNPHS7pI0u35/4aF1xwpaY6k2yTt2rnord85f62s3GgzMzOzVloOzIiIlwKvAw6RtDUwE7g4IrYELs7PyfP2BbYBdgN+IGlcRyI3c/5aSbnRZmZmZi0TEQsj4rr8eAlwC+lm79OBk/NiJwN75cfTgTMi4smIuAuYA2w/pkGbZc5fKysPRGJmZmZtIWkK8ErgSmBiRCyEVDGWtHFebBJwReFl8/O0Wus7GDgYYOLEiQwMDKy0zMQ1Yca2yxuOsdY62m3p0qUded9mOMbW5m87chc6k7+t1g251moj2WY32szMzKzlJK0D/Bo4PCIWS6q7aI1pUWvBiDgeOB5g6tSpMW3atJWW+e6p53Ds7MarN3P3X3kd7TYwMECt2Muk32Nsdf62I3ehM/nbat2Qa602km1290gzMzNrKUmrkiq8p0bEb/Lk+yVtkudvAizK0+cDkwsv3wxYMFaxmlVz/loZudFmZmZmLaN0SuIE4JaI+GZh1rnAAfnxAcA5hen7Slpd0hbAlsBVYxWvWZHz18rK3SPNzMyslV4PvA+YLen6PO0oYBZwlqSDgHuAvQEi4iZJZwE3k0buOyQinh7zqM0S56+VkhttZmZm1jIRcTm1r/MB2LnOa44BjmlbUGYNcv5aWbnRZn1L0lxgCfA0sDwipkoaD5wJTAHmAvtExCOditHMzMzMzNe0Wb/bKSK2i4ip+XnNm2eamZmZmXWKG21mg9W7eaaZmZmZWUe4e6T1swAulBTAj/M9VOrdPHOQoW6SWblhYrM3yByJTt2MstdvhNnr22dmZmbdxY0262evj4gFuWF2kaRbG33hUDfJrNww8cCZ57c63pV06qaavX4jzF7fPjMzM+su7h5pfSsiFuT/i4Czge2pf/NMMzMzM7OOcKPN+pKktSWtW3kM7ALcSP2bZ5qZmZmZdYS7R1q/mgicLQnSfnBaRPxB0tXUuHmmmZmZmVmnuNFmfSki7gReUWP6Q9S5eaaZmZmZWSeMqtHmmxObmZmZmZm1VyvOtO0UEQ8WnlduTjxL0sz8/IgWvI+ZVZnS5AiVc2ft2aZIzMzMzKxd2jEQiW9ObGZmZmZm1iKjPdPW0psTV9/QdiQ3J/7uqc0N9rftpPWbfo9auvlmvN0cu5mZmZlZrxtto62lNyeuvqFtN92cuJtvxtvNsZtZObirrpmZWfuMqtFWvDmxpEE3J85n2XxzYrMSccW6N3gQKDMzs/4y4mvafHNiM7OO2ikitouIqfl5ZRCoLYGL83MzMzPrAaM50+abE5uZlcd0YFp+fDIwgEfuNTMz6wkjbrT55sRmZh3T0kGgipYuXcqMbZ9uZ+wAHR/8qB8GYOqHbTQz6xetuE+bmZmNrZYOAlU0MDDAsZcva2WsNbVqEKiR6ocBmPphG83M+kU77tNmZmZtVBwEChg0CBSAB4GyTpN0oqRFkm4sTBsv6SJJt+f/GxbmHSlpjqTbJO3amajNnLtWXm60mZl1EQ8CZV3iJGC3qmk1B8uRtDWwL7BNfs0PJI0bu1DNBjkJ566VkBttZmbdZSJwuaQbgKuA8yPiD8As4K2Sbgfemp+bdUREXAY8XDV5OmmQHPL/vQrTz4iIJyPiLmAO6eyx2Zhz7lpZ+Zo2M7Mu4kGgrIvVGyxnEnBFYbn5edpKhhtIB2DimjBj2+UNB9WJwVq6YZAYxzhIKXMXOj+oUyt0Q6612ki22Y02MzMz6yTVmBa1FhxuIB2A7556DsfObrx604lBcbphkBjH2JCO5i50flCnVijB9zjmRrLN7h5pZmZmY6HeYDnzgcmF5TYDFoxxbGZDce5ax/X9mbYpM89vavm5s/ZsUyRmZmY9rTJYziwGD5ZzLnCapG8CmwJbkq7XNCsL5651XN832szMzKy1JJ0OTAMmSJoPfJ5U4T1L0kHAPcDeABFxk6SzgJuB5cAhEdH+O7yb1eDctbJyo83MzMxaKiL2qzOr5mA5EXEMcEz7IjJrjHPXysrXtJmZmZmZmZWYz7SVkK+zMzMzMzOzCp9pMzMzMzMzKzGfaTOzuuqd9Z2x7XIOrDHPZ33NzMzMWs9n2szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxHxNm5m1TLMjn4KvgzMzMzMbjhttZmZm+HYrZmZWXm60mZmZjYAbeWZmNlbcaOsBrjiYmZmZmfUuD0RiZmZmZmZWYj7TNgZGMjhDO1XHU+9GyUU+O2dmZmZm1hlutJmZmY2BsTiA5wNsZma9yY02a4ivm7N2cW5ZuwyVW430MDAzMysLN9rMzKz0ytbN3MzMbCy50dakehUHH7U1M2ucG2FmZmaNc6PN2sJd3szMxl6x7PUgU2ZmvcONNjMzM7M2anbUZjemzayaG21m1lV8FtfMzKx3zL73saYuMerX3/W23Vxb0m6SbpM0R9LMdr2PWas5d62bOX+tWzl3rZs5f63d2nKmTdI44PvAW4H5wNWSzo2Im9vxfmat4ty1KTPPb3pgobIc9XP+Wrdy7lo3c/5as72ATtpt7abfo13dI7cH5kTEnQCSzgCmA05eKzvnrnUz5691K+dunxvJiLIjqfi2ifPX2q5djbZJwLzC8/nAa4sLSDoYODg/XSrpNmAC8GCbYmqrwxz7qOhrdWdtPoZhQAO5C3Xzt6Ljn2e7lSFnGjVEbtXV7PZ1U/4Ok7vQRd/taHRTDo9UI9vYTbkLDeUvtG7/bZvhvptOxFRD6feRnb5WN8bS5W87chdKkyujVfp9ttVGkrvtarSpxrQY9CTieOD4QS+SromIqW2Kqa0ce88YNnehdv4+u4I++Dx7fRu7ePtGVPYOWkH3bntT+mE7u2wbR132PruiLthux9gaJYpx1GUvlGp7xlQ/bvdItrldA5HMByYXnm8GLGjTe5m1knPXupnz17qVc9e6mfPX2q5djbargS0lbSFpNWBf4Nw2vZdZKzl3rZs5f61bOXetmzl/re3a0j0yIpZLOhS4ABgHnBgRNzXw0iFPG5ecY+8Bo8jdon74PHt9G7ty+5y/TemH7eyabWxR7lZ0w3Y7xtYoRYwtzN9SbE8H9ON2N73Nilipy7iZmZmZmZmVRNturm1mZmZmZmaj50abmZmZmZlZiZWm0SZpN0m3SZojaWan4wGQNFfSbEnXS7omTxsv6SJJt+f/GxaWPzLHf5ukXQvTX53XM0fSdyTVGhq2FfGeKGmRpBsL01oWr6TVJZ2Zp18paUo7tqOblTGPGyFpsqRLJN0i6SZJn8jTS5vvzZI0TtLfJZ2Xn/fMtrVKt+ZvRbeV2Y1wud64bsjfWt9nmdT7LSgTSWtIukrSDTnGL3Q6plbohvxttbLvD+0wqn0sIjr+R7po8w7gBcBqwA3A1iWIay4woWra14GZ+fFM4Gv58dY57tWBLfL2jMvzrgJ2IN3H4/fA7m2K943Aq4Ab2xEv8HHgR/nxvsCZnf6OyvRX1jxuMPZNgFflx+sC/8w5Utp8H8E2/jdwGnBeft4z29aiz6dr87ewDV1VZje4TS7XG/ucuiJ/a32fZfqr91vQ6biqYhSwTn68KnAl8LpOxzXKbeqK/G3Ddpd6f2jTNo94HyvLmbbtgTkRcWdE/Bs4A5je4ZjqmQ6cnB+fDOxVmH5GRDwZEXcBc4DtJW0CrBcRf4v0Df288JqWiojLgIfbGG9xXb8Cdu61Mw2j1E15PEhELIyI6/LjJcAtwCRKnO/NkLQZsCfw08Lknti2Fura/B1GV3/PLtcb1hX5W+f7LI0hfgtKI5Kl+emq+a/bR9XrivxttbLvD+0wmn2sLI22ScC8wvP5lKOQCOBCSddKOjhPmxgRCyF98MDGeXq9bZiUH1dPHyutjPfZ10TEcuAx4Llti7z7lDWPm5K7R72SdPSy2/K9nuOATwPPFKb1yra1Si/kby+U2Y1wub6yXsjfUqn6LSiV3N39emARcFFElC7GJjl/+1Cz+1hb7tM2ArWO6pXhqMnrI2KBpI2BiyTdOsSy9bahrNs2knjLui1l0fWfj6R1gF8Dh0fE4iEOuHdNvkt6G7AoIq6VNK2Rl9SYVspta7Fe2L5eLrMb0c/leq9sRylU/xZ0Op5qEfE0sJ2kDYCzJb0sIrr5uijnb58ZyT5WljNt84HJheebAQs6FMuzImJB/r8IOJt0+vr+3NWE/H9RXrzeNszPj6unj5VWxvvsayStAqxPn53WHkYp87hRklYlFSCnRsRv8uRuy/daXg+8XdJcUpeTN0v6Bb2xba3U1fkLPVNmN8Ll+sq6Pn/Los5vQSlFxKPAALBbZyMZNedvHxnpPlaWRtvVwJaStpC0Guli6HM7GZCktSWtW3kM7ALcmOM6IC92AHBOfnwusG8eiWsLYEvgqtx1ZYmk1+XrBN5feM1YaGW8xXW9G/hTvj7CktLlcaPyd30CcEtEfLMwq9vyfSURcWREbBYRU0jfyZ8i4r30wLa1WNfmL/RUmd0Il+sr6+r8LYshfgtKQ9JG+QwbktYE3gIMdVa9Gzh/+8So9rFmRz1p1x+wB2kElTuAz5QgnheQRu+5AbipEhOpr//FwO35//jCaz6T47+NwmhjwFRS5eEO4HuA2hTz6cBC4CnSUZuDWhkvsAbwS9LF7VcBL+j091S2v7LlcRNx70jqivEP4Pr8t0eZ832E2zmNFaNH9tS2tejz6cr8zbF3XZnd4Ha5XG/8syp9/tb6PjsdU1V8NX8LOh1XVYwvB/6eY7wR+FynY2rRdpU+f9uwzaXeH9q0zSPexyqFtpmZmZmZmZVQWbpHmpmZmZmZWQ1utJmZmZmZmZWYG21mZmZmZmYl5kabmZmZmZlZibnRZmZmZmZmVmJutJmZmZmZmZWYG21mZmZmZmYl5kbbECRtJenvkpZIOqzT8YyUpGmS5nc6DrNaJM2V9JZOx2H9QdLzJS2VNK6BZadICkmrjEVsZpJOkvTlUa7jQEmXDzF/QNKHRvMeZqPVK3XsseRG29A+DQxExLoR8Z2RrKBW4ajkU5Jul/S4pHskfUXSai2J2sysTw13ECAi7omIdSLi6bGMy8zMBhl1HbvfuNE2tM2Bm9qw3u8ABwPvB9YFdgfeApzRhvcyMzPAZ8zMzDqrUA63q47ds9xoq0PSn4CdgO/lrjSfyKdxF0uaJ+nowrJrSPqFpIckPSrpakkTJR0DvKGwju9J2hL4OLB/RPwtIpZHxE3Au4A9Jb0pr3PQGbrq7g6Svp3jWCzpWklvKMxbM3exeETSzcBrqrbtCEn35lPSt0nauR2foXU3Sa+UdF3OkzMlnSHpy7W63uQuZC/Kj/est6/k+e+TdHfeXz4zhptkPU7SKcDzgf/NZe6nc24eJOke4E/VXR5zWftVSVdJekzSOZLG11n/+pJOkLQwl6FfbqSbpVk91eUssEZh3oclzZH0sKRzJW2ap6/UbbdGrx5J+m7O6VuH+p2X9EFJt+Q6wwWSNm/HtlpvqFWHVFW3XlVdlpN7QBwh6R/Ashp17Bc3UHfYUdJfcz17nqQD8/TVJX1Dqdfa/ZJ+JGnNMfkwxpgbbXVExJuBPwOHRsQ6wA2kM2MbAHsCH5O0V178AGB9YDLwXOCjwOMR8ZniOiLiUGBnYH5EXFX1fvOAK4BdGgzxamA7YDxwGvBLSZXC/vPAC/Pfrjk+IPUhBg4FXhMR6+b5cxt8T+sTSl11fwucQsqxX5IOLDRiGXX2FUlbAz8E3gdsStpfNmtd5NbPIuJ9wD3Af+Zy+6w8603AS0nlXS3vBz5IysnlpN4QtZyc578IeCWpvPa1QTYiQ5Wzkt4MfBXYB9gEuJvmeuO8FrgTmECqE/ym1sGIXDYfBbwT2IhUZzl9JNtjvW+Udcj9SHWCDarr2BHxT4auOzwf+D3wXVKebgdcn9f7NeDFedqLgEnA50a8kSXmRluDImIgImZHxDMR8Q9SofamPPspUuXzRRHxdERcGxGL66xqArCwzryFpGRsJJ5fRMRD+UzdscDqwFZ59j7AMRHxcG4MFisgT+dlt5a0akTMjYg7GnlP6yuvA1YFjouIpyLiV6QDBcMaZl95N3BeRFwWEU8C/wM804b4zYqOjohlEfF4nfmnRMSNEbGMlJP7VJ9BkzSR1JX98LyuRcC3gH3bGrn1sqHK2f2BEyPiulxWHgnsIGlKg+teVFjvmcBtpIpwtY8AX42IWyJiOfAVYDufbbM6RlOH/E5EzKtXDg9Td9gf+GNEnJ5z+qGIuF6SgA8D/zfXeZeQcrgny2U32hok6bWSLpH0gKTHSGfTJuTZpwAXAGdIWiDp65JWrbOqB0lHzWrZBHigwXhm5O4Mj0l6lHSmrxLPpsC8wuJ3Vx5ExBzgcOBoYJFSl7dNG3lP6yubAvdGRBSm3V1v4aJh9pVBuZkryQ+1KGazeuY1Mf9uUkV6QtUym+fpC3P3nEeBHwMbtypI6ztDlbObMvi3eymprJzU4LprrbfWb/3mwLcLOf0woCbex/rIKOuQQ5bDw9QdJgO1GocbAWsB1xZy+A80eAKk27jR1rjTgHOByRGxPvAjUsFGbvV/ISK2Bv4DeBvpFC9AVK3nT8BkSdsXJ0qaTDrqdmmetIyUiBXPKyz7BuAI0hm1DSNiA+CxSjykM3aTC699fvG9IuK0iNiRVFgH6dSyWdFCYFI+ilVRyaNBuSnpeQxWd1+hKjclrUU6S23WKtVlbr1pRdXl5VOkA2xF84AngQkRsUH+Wy8ithl5qNbnhipnF5B+owGQtDaprLyXVAZDnTpCVmu9C2rEMA/4SCGnN4iINSPir81vjvWDOnXIunXW4kuHWfVQdYd5pEt+qj0IPA5sU8jf9XP3+J7jRlvj1gUejogncoPrvyozJO0kadvcnWYx6Qe/Mpz0/cALKsvmfrs/Ak6V9DpJ4yRtA/wa+Cvwx7zo9cA7Ja2lNMDDQVWxLCedlVtF0ueA9QrzzwKOlLShpM2A/1OIdStJb5a0OvAEKdk99LVV+xspxw6TtIqkdwKVAw03ANtI2i5fR3l01Wvr7ivAr4C35QuKVwO+iMsha61BZW6D3itp63wQ4YvAr6pvCRARC4ELgWMlrSfpOZJeqDx4lNkIDFXOngZ8IJezq5O6fF2Zu6M9QGq8vTfXIT7IyhXajfN6V5W0N+mazt/ViOFHpPrCNvDsYDt7t3pDrTcMUYe8HthD0vh8IPfwEax+qLrDqcBbJO2T95XnStouIp4BfgJ8S9LGOcZJkupdv9zVXFlq3MeBL0paQrrA8azCvOeRKqOLgVtIZ8t+ked9G3i30qhMlWvLDgV+mpf5F3AjqevCXjkBIV0r8W9SBeRkUsJWXEC6IPOf+XVPMPi08xfy9LtIlYxTCvNWB2aRjk7cRyrYj2ruo7BeFxH/Jl2YfiDwCPAe4Dd53j9JFds/ArcD1Tdxrbuv5JFSDyFVSBbmdfvG79ZKXwU+m7vJvLvB15wCnEQqE9cA6t3o9f3AasDNpNz9FfW7u5sNaZhy9mLS9ZW/JpWVL2TwdTofBj5F6jK5Demgb9GVwJak3/pjgHdHxEpd0SPibNKZkjMkLSbVR3ZvyQZaL6pXhzyFdEB3LqneeeYI1j1U3eEeYA9gBqkL7/XAK/LsI4A5wBU5h//IijEeeooGd3m2TpD0RWAv4I0R8WhnozGrTdJJpJFPP9vpWMxaRdIA8IuI+GmnYzEzM6vHNxotgYj4nKRFpGva/tDpeMzMzMzMrDzcaCuJiPhep2MwMzMzM7PycfdIMzMzMzOzEvNAJGZmZmZmZiVWiu6REyZMiClTpqw0fdmyZay99tpjH1ATHGNr1Ivx2muvfTAiSn2TxG7L37LGBeWNbaRxlT1/uy13obyxlTUuGFlsZc9d6M78rcXxtl7Z87cbcrcssfRbHEPmbkR0/O/Vr3511HLJJZfUnF4mjrE16sUIXBMlyNGh/rotf8saV0R5YxtpXGXP327L3YjyxlbWuCJGFlvZcze6NH9rcbytV/b87YbcLUss/RbHULnr7pFmZmZmZmYlVorukfXMvvcxDpx5flOvmTtrzzZFY9acZvPXuWtl4bLXupnLXrP6pjS4b8zYdjkHzjzf+0eJ+EybmZmZmZlZibnRZmZmZmZmVmJutJmZmZmZmZWYG21mZmZmZmYl5kabmZmZmZlZibnRZmZmZmZmVmLDDvkvaTLwc+B5wDPA8RHxbUnjgTOBKcBcYJ+IeCS/5kjgIOBp4LCIuKAt0ZuZWSk0Oox0hYeRNjMza1wjZ9qWAzMi4qXA64BDJG0NzAQujogtgYvzc/K8fYFtgN2AH0ga147gzczMzMzMet2wjbaIWBgR1+XHS4BbgEnAdODkvNjJwF758XTgjIh4MiLuAuYA27c4bjMzMzMzs74wbPfIIklTgFcCVwITI2IhpIadpI3zYpOAKwovm5+nVa/rYOBggIkTJzIwMLDS+01cM92RvRm11tNOS5cuHfP3bJZjNDMzMzPrXg032iStA/waODwiFkuqu2iNabHShIjjgeMBpk6dGtOmTVvpRd899RyOnd1Uu5K5+6+8nnYaGBigVuxl4hjNzMzMzLpXQ6NHSlqV1GA7NSJ+kyffL2mTPH8TYFGePh+YXHj5ZsCC1oRrZmZmZmbWX4ZttCmdUjsBuCUivlmYdS5wQH58AHBOYfq+klaXtAWwJXBV60I2MzMzMzPrH430PXw98D5gtqTr87SjgFnAWZIOAu4B9gaIiJsknQXcTBp58pCIeLrVgZuZmZmZmfWDYRttEXE5ta9TA9i5zmuOAY4ZRVxmZmZmZmZGg9e0mZmZmZmZWWe40WZmZmZmZlZibrSZmZmZmZmVmBtt1tMknShpkaQbC9PGS7pI0u35/4aFeUdKmiPpNkm7diZqMzMzM7MVmrtztVn3OQn4HvDzwrSZwMURMUvSzPz8CElbA/sC2wCbAn+U9GKPfmpmZmZlNGXm+Z0OwcaIz7RZT4uIy4CHqyZPB07Oj08G9ipMPyMinoyIu4A5wPZjEaeZmZmZWT0+02b9aGJELASIiIWSNs7TJwFXFJabn6etRNLBwMEAEydOZGBgYOU3WRNmbLu84aBqraMdli5dOmbv1ayyxlbWuMzMzKw/uNFmtkKt+xFGrQUj4njgeICpU6fGtGnTVlrmu6eew7GzG9/F5u6/8jraYWBggFrxlkFZYytrXGZlJelE4G3Aooh4WZ42HjgTmALMBfaJiEfyvCOBg4CngcMi4oIOhG1mVlruHmn96H5JmwDk/4vy9PnA5MJymwELxjg2M7NecBKwW9W0yvXEWwIX5+dUXU+8G/ADSePGLlQzs/Jzo8360bnAAfnxAcA5hen7Slpd0hbAlsBVHYjPzKyr+XpiM7PWcvdI62mSTgemARMkzQc+D8wCzpJ0EHAPsDdARNwk6SzgZmA5cIhHjjQza5m+vp64nm67Zrbb4jXrFW60WU+LiP3qzNq5zvLHAMe0LyIzM6vSF9cT19Nt18x2W7xmvcLdI83MzGws+Hpi62qS5kqaLel6SdfkaeMlXSTp9vx/w07Hab3JjTYzMzMbC76e2HrBThGxXURMzc9rDrBj1mruHmlmZmYt5euJrY9MJ+U6pAF2BoAjOhVMq02ZeX7Tr5k7a882RGJutJmZdRlJc4ElpHtaLY+IqUPdA8tsrPl6YutRAVwoKYAf52ss6w2wM0gjg+iMZJCXZgbdaUazA/oUtXKgmrIMfFOGONxoMzPrTjtFxIOF55UuOrMkzczPe+Zor5lZCbw+IhbkhtlFkm5t9IWNDKIzkkFeDhzBmbBGzNh2eVMD+hS1cnCfsgx8U4Y4fE2bmVlvqHcPLDMza4GIWJD/LwLOJt1PsN4AO2Yt5TNtZmbdp61ddEbTLaZRI+1mUoYuKrWUNS4od2xm3ULS2sBzImJJfrwL8EVWDLAzi8ED7Ji1lBttZmbdp61ddJq9z9VIjLT7TBm6qNRS1rig3LGZdZGJwNmSINWfT4uIP0i6mhoD7Ji1mhttZmZdpthFR9KgLjr5LJu76JiZtVBE3Am8osb0h6gzwI5ZK7nRZmbWRXqli06zw0h7CGkzM+tnbrSZmXUXd9ExMzPrM8M22iSdCLwNWBQRL8vT6t4PSNKRwEGk+wcdFhEXtCVysx7jG1haI9xFx8zMrP80MuT/ScBuVdMq9wPaErg4P0fS1sC+wDb5NT+QNK5l0ZqZmZmZmfWZYRttEXEZ8HDV5Hr3A5oOnBERT0bEXcAc0gXyZmZmZmZmNgIjvaat3v2AJgFXFJabn6etpF33Chrre9F0w/1vHKOZmZmZWfdq9UAkqjEtai3YrnsFjfTePyPVDfe/cYxmZmZmZt2rkWvaark/3weIqvsBzQcmF5bbDFgw8vDMzMzMzMz620gbbZX7AcHg+wGdC+wraXVJWwBbAleNLkSz9pA0V9JsSddLuiZPGy/pIkm35/8bdjpOMzMzM+tvjQz5fzowDZggaT7wedLNW1e6H1BE3CTpLOBmYDlwSEQ83abYzVphp4h4sPC8MjLqLEkz8/MjOhOamZm1m2+3YmbdYNhGW0TsV2dWzfsBRcQxwDGjCcqsg6aTDlJAGhl1ADfazMzMzKyDWj0QiVk3CeBCSQH8OA+OU29k1EHaNfpps0Yy4maZR+osa2xljaufVM6GzNh2OQc2eGbEZ0PMzKxXuNFm/ez1EbEgN8wuknRroy9s1+inzRrJaKllHqmzrLGVNS4zMzPrDyMdiMSs60XEgvx/EXA26Ubw9UZGNTMzMzPrCDfarC9JWlvSupXHwC7AjdQfGdXMzMzMrCPcPdL61UTgbEmQ9oPTIuIPkq6mxsioZmZmFc2OOOnrK81stNxos74UEXcCr6gx/SHqjIxqZmZmZtYJbrSZdTEf7TUzM+sNs+99rOHRca3/uNFmZmZmZmYt4QPK7eGBSMzMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxHxNm5mZmZmZdcRQ18DN2Hb5SoOz9Os1cD7TZmZmZmZmVmJutJmZmZmZmZWYG21mZmZmZmYl5kabmZmZmZlZiXkgErM+MmXm+TUv6q2nXy/2NTMzMysTN9rMzMwYegSzWnxQw8zMxkrPNdr8o2tmZmZl4iHNzWy0eq7RZmZmZmZmvalfT9B4IBIzMzMzM7MS6/szbf3aWjczMzMzs+7Q9402MzOzkSge9GtmVNZm+EChmZlBGxttknYDvg2MA34aEbPa9V5mreTctW7m/LVu5dy1bub8La9me9VBOQ+YtaXRJmkc8H3grcB84GpJ50bEze14P7NWce6OzkgKxqJGzlaUsSAtC+evdSvn7mC+dKO7OH9tLPbZdp1p2x6YExF3Akg6A5gOdH3yVn8prmT2nJ7NXWtMrYJ3uP28RPu487fH9FHl3blr3cz522NGUt9vt3Y12iYB8wrP5wOvLS4g6WDg4Px0qaTbaqxnAvBgWyJskcMaiFFfG6Ng6iv950j9GDcf4ziGzV3o7vxtJGcrxjp3y7o/DRfXEDGVLn+7OXehvPnbTFztVGebRxJb6XIXuj9/a2lF7oxxudgNn2/p8rfbcrcsZVqvxjGSekO7Gm2qMS0GPYk4Hjh+yJVI10TE1FYG1mqOsTVKFOOwuQvdnb9ljQvKG1tZ46qh58vessZW1rig3LEV9HzZW4/j7Qk9V/aWJRbHsUK77tM2H5hceL4ZsKBN72XWSs5d62bOX+tWzl3rZs5fa7t2NdquBraUtIWk1YB9gXPb9F5mreTctW7m/LVu5dy1bub8tbZrS/fIiFgu6VDgAtLQpydGxE0jWNWQp5FLwjG2RilibGHuQkm2qYayxgXlja2scQ3SJ2VvWWMra1xQ7tiAvil763G8Xa5Hy96yxOI4MkWs1GXczMzMzMzMSqJd3SPNzMzMzMysBdxoMzMzMzMzK7HSNtok7SbpNklzJM3sdDy1SJorabak6yVd0+l4ACSdKGmRpBsL08ZLukjS7fn/hiWM8WhJ9+bP8npJe3QyxmYMl6tKvpPn/0PSq8YgpsmSLpF0i6SbJH2ixjLTJD1W+Mw/1+648vsOud904vPK77tV4bO4XtJiSYdXLdORz6xdypi7+X2dv83F1He5W0s31BuKyliHKOqG+kS3KkPZW6ZytizlaunL0ogo3R/pIs47gBcAqwE3AFt3Oq4acc4FJnQ6jqqY3gi8CrixMO3rwMz8eCbwtRLGeDTwyU5/fiPYlmFzFdgD+D3pPi6vA64cg7g2AV6VH68L/LNGXNOA8zrwmQ2533Ti86rzvd4HbF6Gz6yN21i63M3v6/wd3ffa07k7xHaXvt5QFXPp6hBV8ZW+PtGNf2Upe8tUzpaxXC1jWVrWM23bA3Mi4s6I+DdwBjC9wzF1hYi4DHi4avJ04OT8+GRgr7GMqVqdGLtVI7k6Hfh5JFcAG0japJ1BRcTCiLguP14C3AJMaud7ttCYf1417AzcERF3j/H7jqVS5i44f0epH3K3FtcbWqwb6hNdqhRlb5eVs50oV0tXlpa10TYJmFd4Pp9yJlIAF0q6VtLBnQ5mCBMjYiGknRTYuMPx1HNoPu19Yhd1uWgkVzuaz5KmAK8ErqwxewdJN0j6vaRtxiik4fabMuz/+wKn15nXic+sHUqfu+D8HYF+yN1aOv25j0S31CGKuqU+UWalK3tLUM6WsVwtXVnalvu0tYBqTCvjvQleHxELJG0MXCTp1nxkypr3Q+BLpO/5S8CxwAc7GlFjGsnVjuWzpHWAXwOHR8TiqtnXkU77L1W6hvC3wJZjENZw+01H93+lG6O+HTiyxuxOfWbtUOrcBedvs/ood2vplnpDkesQ/alUZW9JytlSlatlLUvLeqZtPjC58HwzYEGHYqkrIhbk/4uAs0mnvMvo/spp5Px/UYfjWUlE3B8RT0fEM8BPKO9nWa2RXO1IPktalVQQnxoRv6meHxGLI2Jpfvw7YFVJE9odVwP7Taf3/92B6yLi/uoZnfrM2qS0uQvO3xHql9ytpdPlRtO6qA5RVPr6RBcoTdlblnK2hOVqKcvSsjbarga2lLRFbu3uC5zb4ZgGkbS2pHUrj4FdgBuHflXHnAsckB8fAJzTwVhqquqb/A7K+1lWayRXzwXen0c/eh3wWKV7SbtIEnACcEtEfLPOMs/LyyFpe1J58FCb42pkvxnzz6vKftTpEtGJz6yNSpm74PwdhX7J3VpKX28o6rI6RFHp6xNdoBRlb1nK2ZKWq6UsS0vZPTIilks6FLiANHrLiRFxU4fDqjYRODt/b6sAp0XEHzobEkg6nTSyzQRJ84HPA7OAsyQdBNwD7N25COvGOE3SdqTT3XOBj3QqvmbUy1VJH83zfwT8jjTy0RzgX8AHxiC01wPvA2ZLuj5POwp4fiGudwMfk7QceBzYNyLa3Z2o5n5Tgs8LAElrAW+lkH9VsXXiM2uLEucuOH+b1k+5W0uX1BuKSlmHKOqG+kQ3KlHZW5ZytlTlapnLUvVQmW1mZmZmZtZzyto90szMzMzMzHCjzczMzMzMrNTcaDMzMzMzMysxN9rMzMzMzMxKzI02MzMzMzOzEnOjzczMzMzMrMTcaDMzMzMzMysxN9rMzKyvSLpJ0rQOvO+ApA+N9fualYmk30s6oNNxmHUbN9rGiKSTJH15FK8f8Y+9pB9J+p+Rvrf1J0lzJT0uaamk+3IOr9PpuKw35Lyq/D1TyLWlkvZv53tHxDYRMdBgnMX94H5JP/N+0Pvy9/6WTscxFEnTJM2vmna0pKdyvj4q6a+SduhUjLVExO4RcXKn4+hVkg6UdHmdeftLurDB9Rwt6RdDzC/1PiLp+Xk/GNfpWFrFjbaCZhKw7MlaFBEfjYgvdToO60r/GRHrANsBrwSO7Gw41isiYp3KH3APOdfy36mNrEPSKo1Ma4HKfvAq4DXAZ5t5sRL/3tpYOTPn6wTgEuCXHY7H2kDSjrlR/pikhyX9RdJrhnpNRJwaEbuMYYxvKByMWyYpqg7YPb9d7x0R9+Tfk6fb9R5jzT8ifa5NFRzrMRFxH3ABsF2do7vPHsTIR+fOkvRzSUtyV7SphWWPkHRvnnebpJ3HdmuszCQ9R9JMSXdIeijn0vg8b0r+0T9I0j3An/JR5b9I+pakh4GjJb1Q0p/y6x+UdKqkDQrv0XC+FkXEvcDvgZdJ2lDSeZIekPRIfrxZ4T0GJB0j6S/Av4AXVG3nJpL+IemT+fmBku7MMdzV7rON1jxJq0s6TtKC/HecpNXzvGmS5kuaIWmRpIWSPlB47XMl/a+kxZKulvTl4tkQSS+RdFGufN8maZ/CvD0k3Zxz415Jn5S0NikXNy1UgDctxhsRy4FTgUmSNsrrGnTAWYWzKYX96wBJ9+R95zMNfC5HS/qlpF/kGGdLerGkI/NnMU/SLoXl3U14lCStB5wHfBcYD0wCvgA82cm4qkXEnwsH57bJkzcoHKC7p5H11KqrqofOoDXKjbZM0inA84H/zYXfpyW9Pf+AP5oLmZfWWzZP/6VSN7LHJF0maZv671g3jumSrs8F+x2SdivM3jxXTpZIulDShMLr6r63Cl0zCz8sR0i6D/iZpAm5wvFo/sH4s3xU2ApyZXR3YE6DL3k7cAawAXAu8L28nq2AQ4HXRMS6wK7A3BaHa93tMGAv4E3ApsAjwPerlnkT8FJS/gC8FrgT2Bg4BhDw1fz6lwKTgaOHeM+a+VpN0mRgD+DvpN/PnwGbk34PHq/xuvcBBwPrAncX1jMFuBT4XkR8I1fAvwPsnveL/wCuHyJe64zPAK8j9Tx4BbA9g8+6Pg9Yn1SBPgj4vqQN87zvA8vyMgfkPwDy938RcBoph/cDflD4HT8B+EjOjZcBf4qIZaQyeUGhArygGKyk1YD3Aw+R9qNG7QhsBewMfK5S9xnGfwKnABuS9o8LSPvIJOCLwI+beH8b3osBIuL0iHg6Ih6PiAsj4h/VC0r6f5Iul7S+qrpOSvp2blQvlnStpDdUvXwNSWfmeud1kl5RKxgNcbCtnhzPCfkAx735QMa4PK/WwbiTJP1Q0u8kLQN2krSnpL/n+OdJOrqw/spBiFXy8wFJX6pXjx4izqHq12tKOlbS3Xn+5ZLWHG6dI+WKeRYR76PQRQf4LXA6cDiwEfA7UiNtteplI+LreTW/B7YkFbrXkY5wNUzS9sDPgU+RKg9vZHCF9r+AD+T1rwZ8sjCvmfd+HunIzOakCsUMYH7ezonAUUA0E7v1rN9KWgLMAxYBn2/wdZdHxO9yt4RTSBUcgKeB1YGtJa0aEXMj4o6WR23d7CPAZyJifkQ8SWpsvbvqSOvREbEsIh7PzxdExHcjYnmuvMyJiIsi4smIeAD4JqmhV0+9fK34raRHgctJja2vRMRDEfHriPhXRCwhNRar3+OkiLgpx/VUnrY1MAB8PiKOLyz7DOkM3poRsTAibhr2k7Kxtj/wxYhYlPPqC6SGecVTef5TEfE7YCmwVa6Ivov0nf8rIm4Gitd0vQ2YGxE/y7lyHfBr4N2F9W4tab2IeCTPH8o+OV8fBz4MvDufdWvUF/J+dANwAyvvD7X8OSIuyO/zS1J9YlbO+zOAKSqc7bZR+yfwtKSTJe1eODjwrNyQ+gnwcmCXiHisxnquJh2EGE86aPBLSWsU5k8nfZ+V+b+VtGqN9TRysK3aycBy4EWkyy92AYpnYKsPxkGqBx9DOhB2OelAyPtJdeY9gY9J2muI9xyqHl3PUPXrbwCvJh1oGw98mlSWt4UbbfW9Bzg///A/Rfpi1iR9MTVFxIkRsaRQ0XiFpPWbeM+DgBPzez4TEfdGxK2F+T+LiH/mispZpB1tJO/9DOnH48m8rqeATYDN84/NnyPCjTYD2Csf3Z0GvIR0jUQj7is8/hfpaN0qETGHdCDkaGCRpDNU1aXH+t7mwNn5zP+jwC2kxv7EwjLzql4z6LmkjXNu3StpMfALhs7dmvlamLZXRGwQEZtHxMcj4nFJa0n6cT7Cuhi4DNhAg7vsVMcJqeJ/L/CryoR81uQ9wEeBhZLOl/SSIeK1ztiUwhnT/LhYfj1U1Tj6F7AOqQGzCoPzofh4c+C1lZzPeb8/6QArpAbfHsDdki7V8AOLnBURG5D2mRtJlcpmVO8PjQy8c3/h8ePAg4VriSoHVzyAT4tExGLSGdEAfgI8IOlcSZVyclXSiYfxpBMM/6qznl/kA1DLI+JY0kHVrQqLXBsRv8r14G8Ca5DONldr5GDbs3KcuwOH5wNwi4BvAfsWFht0MC5POyci/pLryE9ExEBEzM7P/5G3eagDdHXr0fXUq1/nHmkfBD6R6+tPR8Rf83Jt4UZbfYMK54h4hlTITqq1sKRxkmblU8OLWXGGrNFKLqQuPEOddahZkI7gvR+IiCcKz/8fqdvbhUrXVMxsImbrAxFxKXAS6eDFMmCtyrxcSd2oiXWdFhE7kioqAXytpcFat5tH6ia4QeFvjUjXk1VUH1Sqfv7VPO3lEbEe8F5Sl8lWmkGq3Lw2v8cb8/Ti+9Q6+HU08CBwWrGBl89SvJV0AO1WUkXMymUBqdyqeH6eNpwHSGcUNitMm1x4PA+4tCrn14mIjwFExNURMZ10pP+3pMomDNMjJiIeJFWmj5a0SZ48qPxmRcPQukxE3BIRB0bEZqRus5sCx+XZLyKdJftCRPy73jqUrsG8JXfte5TUvbdYd3z24EKuB89n8IGKikYOtlUvvyrpIFXlNT8m5fhK711vmqTXSrpE6drix0gHvpo5QDfkgYRh6tcTSI3YMest5EbbYMUCcFDhLEmkQvbeGstCOuU6HXgLKemnVF7axPvPA17YxPIjfe9BsecjCDMi4gWkfun/LQ8OYSs7Dngr6Qd/jdyXfFXSNR2rN7ICSVtJerPSxftPkI7A9szITtYSPwKOkbQ5gKSNJE1vch3rkrqmPSppEqnLeautS8rfR5Wu3Wi06/BTwN7A2sApuQvTRKVrqNcmDSSwFO8XZbCqpDUqf6Sj+J/NOTkB+BzpLO6Q8hmn35AaT2vls6jvLyxyHvBiSe+TtGr+e42kl0paTWmY9vXz2Y7FrMiN+4HnDtWjJ/fWuYDUbQvStZL75veYyooumNbF8vd8EqnxBqnR9AHg90rXkq9E6fq1I4B9gA3z2dnHGFx3nFxY/jmkAw+1DlQ0crCtevkngQmF5deLiOJYELUOSlRPO410HfLkiFif9PvRygN0Q9WvHyTVY0ZSbx8RN9oGu58VI3ydBewpaedcMZ1BSrC/1lgW0g/4k6QLftcCvjKC9z8B+EB+z+dImtRgF5lRvbekt0l6UW6YVn4QXGGwQSJdw/FzUt/1jwM/JR3EWEY6+taI1YFZpMLuPtJRtaNaHqx1s2+TfoQvVLqe8grStQ3N+AJpeP7HgPNJFeZWO47UZf5BUox/aPSF+cj3O0n5fyKp69wMUmXoYVL3no+3Nlwbgd+RGuaVvzWAa4B/ALNJ17c0ev/VQ0mVvvtI102eTh7pL9I1kbuQuoYtyMt8jRUHw94HzM1H+j9KOnNcqaifDtyZz1bU62r+/4CDJW0M/A+pkvkIaT85rcH4rUSURhudoTxirdIgSfuRyiIgDVJC+n39o6RaDYt1SWeAHwBWkfQ5YL2qZV4t6Z25m+PhpJy9gpU1dbAtIhYCFwLHSlov13lfKGmoro21rAs8HBFPKI0L8V9Nvr6R9desX+czjycC35S0aT4rt0M+KN0eEeG//EdqTd8DPEq6OPEdwM2kH/5LgW2GWHYd4BxgCalb5ftJRwRelJc/CfhyAzG8g/SDsITUZXHXPH0A+FBhuQNJF8/TzHuTrk2aX/We/5d0yrdS+f6fTn8X/vOf//znP//16h+pUXZyp+PwX3f+kS7VOYsVB07vJXUvXK9YP8zLfjjXDadU1R3HkU4WLAYWks7GzgXekucfTbr29sxcv/w78KrCeovLPgf4b+C2vOwdpAGbijFPyXXTVfLz9YEf5nrnY3n9++Z5g7YhT1upHk06U3x3fs/zSCP4/qLO+9WtRw/xOQ9Xv16TdADv3rwNlwFrtut7V35TMzMzM2uD3GtmNdIZuteQzuJ9KCJ+28m4zKx7uHukmZmZWXutS+qmu4x0huRY0hH8riDp91pxE+/in7u3m40Rn2kbY7mAq1XI/Tkidh/reMzMzMzM+pGk/al98/e7Y/DAKB3nRpuZmZmZmVmJ1bzp3VibMGFCTJkyZaXpy5YtY+211x77gDqsH7e73jZfe+21D0ZEw/cA64Ra+VvG79AxDa/V8ZQ9f+uVve1Qlu/acTQWR9lzF7q77uAYW6Nb87ebcrdsMfV6PEPmbqdHwIkIXv3qV0ctl1xySc3pva4ft7veNgPXRAlydKi/Wvlbxu/QMQ2v1fGUPX/rlb3tUJbv2nEM1mtl71DbVCaOsTW6NX+7KXfLFlOvxzNU7nogEjMzMzMzsxJzo83MzMzMzKzESnFNWytNmXl+U8vPnbVnmyKxfudctG7VbO6C89e6l/PdymL2vY9xoOsOVofPtJmZmZmZmZVYz51pMzOzsTfc2YoZ2y4fdATZR4fNzMwa5zNtZmZmZmZmJeZGm5mZmZmZWYm5e6SZmZn1jJEM5mBWIWky8HPgecAzwPER8W1J44EzgSnAXGCfiHgkv+ZI4CDgaeCwiLigA6Fbj/OZNjMzMzOzZDkwIyJeCrwOOETS1sBM4OKI2BK4OD8nz9sX2AbYDfiBpHEdidx6mhttZmZmZmZARCyMiOvy4yXALcAkYDpwcl7sZGCv/Hg6cEZEPBkRdwFzgO3HNGjrC+4eaWZmZmZWRdIU4JXAlcDEiFgIqWEnaeO82CTgisLL5udp1es6GDgYYOLEiQwMDKz0fhPXTCPtNqPWelpp6dKlbX+PZvRzPG60mZmZmZkVSFoH+DVweEQsllR30RrTYqUJEccDxwNMnTo1pk2bttKLvnvqORw7u7mq+dz9V15PKw0MDFAr1k7p53jcPdLMzMzMLJO0KqnBdmpE/CZPvl/SJnn+JsCiPH0+MLnw8s2ABWMVq/UPN9rMzMzMzAClU2onALdExDcLs84FDsiPDwDOKUzfV9LqkrYAtgSuGqt4rX+4e6SZmZmZWfJ64H3AbEnX52lHAbOAsyQdBNwD7A0QETdJOgu4mTTy5CER8fSYR209z402MzMzMzMgIi6n9nVqADvXec0xwDFtC8oMd480MzMzMzMrtWEbbZJOlLRI0o2FaeMlXSTp9vx/w8K8IyXNkXSbpF3bFbiZmZmZmVk/aORM20mkO7wX+a7wZmZmZmZmY2DYRltEXAY8XDXZd4U3MzMzMzMbAyMdiGRUd4WHxu4MP5K7jJftTvIjUba7vY+FftxmMzMzM7NGtHr0yIbuCg+N3Rl+JHcZP3Dm+U0t3+47yY9E2e72Phb6cZvNzMzMzBox0tEjfVd4M7MOkTRX0mxJ10u6Jk+rO0CUmZmZdbeRNtp8V3gzs87aKSK2i4ip+XnNAaLMzMys+zUy5P/pwN+ArSTNz3eCnwW8VdLtwFvzcyLiJqByV/g/4LvCm5mNlXoDRJmZmVmXG/aatojYr84s3xXezKwzArhQUgA/ztcI1xsgapBGBoFqdkCnRkxcc/B6OzXwUFkGPernOCTNBZYATwPLI2KqpPHAmcAUYC6wT0Q8MqaBmZmVWKsHIjErFUknAm8DFkXEy/K0upUDSUcCB5EqE4dFxAUdCNtsOK+PiAW5YXaRpFsbfWEjg0A1O6BTI2Zsu5xjZ6/4yenUIFBlGfTIcbBTRDxYeF7p3jtL0sz8/IhOBGZmVkYjvabNrFuchG8Obz0mIhbk/4uAs0n3w6w3QJRZN3D3XjOzIfhMm/W0iLhM0pSqydOBafnxycAA6YjuszeHB+6SVLk5/N/GJFizBkhaG3hORCzJj3cBvsiKAaJmMXiAKLOyaWv33uquuO0w2i6lZekeOxTHaFYubrRZP2r7zeGXLl3KjG2bG4On3T88ZfxxK1tMZYunjonA2ZIgleGnRcQfJF0NnJUHi7oH2LuDMZoNpa3de7976jmDuuK2w2i795ale+xQHKNZubjRZrZCy24OPzAwwLGXL2vqzdt9jU8Zf9zKFlPZ4qklIu4EXlFj+kPUGSDKrEyK3XslDeremw+klb5775Qmr/ucO2vPNkViZv3C17RZP/LN4c3MOkDS2pLWrTwmde+9kfr3fzUzM9xos/7km8ObmXXGROBySTeQytfzI+IP1Ln/q5mZJe4eaT0t3xx+GjBB0nzg86TKwErX/kTETZIqN4dfjm8Ob2bWUu7ea2Y2Mn3faHO/9N7mm8ObmZmZWbdz90gzMzMzM7MSc6PNzMzMzMysxPq+e6SZmY09d003MzNrnM+0mZmZmZmZlZjPtJmVRLNnHsBnH8zMzMz6gc+0mZmZmZkBkk6UtEjSjYVp4yVdJOn2/H/DwrwjJc2RdJukXTsTtfUDN9rMzMzMzJKTgN2qps0ELo6ILYGL83MkbQ3sC2yTX/MDSePGLlTrJ260mZmZmZkBEXEZ8HDV5OnAyfnxycBehelnRMSTEXEXMAfYfizitP7ja9rMzMzMzOqbGBELASJioaSN8/RJwBWF5ebnaSuRdDBwMMDEiRMZGBhY+U3WhBnbLm8qsFrraaWlS5e2/T2a0c/xuNFmZmZmZtY81ZgWtRaMiOOB4wGmTp0a06ZNW2mZ7556DsfObq5qPnf/ldfTSgMDA9SKtVP6OZ5RNdokzQWWAE8DyyNiqqTxwJnAFGAusE9EPDK6MM3MzMy6U/XowDO2Xc6BQ4wY7JGBS+d+SZvks2ybAIvy9PnA5MJymwELxjw66wutuKZtp4jYLiKm5uc1L9Y0MzMzM+tC5wIH5McHAOcUpu8raXVJWwBbAld1ID7rA+0YiKTexZpmZmZmZqUl6XTgb8BWkuZLOgiYBbxV0u3AW/NzIuIm4CzgZuAPwCER8XRnIrdeN9pr2gK4UFIAP879detdrDlIIxdkjuTivmYv4GzWWFxsWLaLLMdCP26zmZmZlUtE7Fdn1s51lj8GOKZ9EZklo220vT4iFuSG2UWSbm30hY1ckDmSi/uG6iPeCu2+4BPKd5HlWOjHbTYzMzMza8SoukdGxIL8fxFwNuneFPfnizSpuljTzMzMzMzMmjTiM22S1gaeExFL8uNdgC+y4mLNWQy+WNPMzGxEqkffa4RH4DMzs14xmu6RE4GzJVXWc1pE/EHS1cBZ+cLNe4C9Rx+mmZmZmZlZfxpxoy0i7gReUWP6Q9S5WNPMzMzMzMya044h/83MzMzMzKxF3GgzMzMzMzMrMTfazMzMzMzMSsyNNjMzMzMzsxIb7c2122r2vY+1/WbZZmZmZmZmZVbqRpuZmZlZvxnJfQmb5fsYmnUXN9qa5Bu8mpl1h1rl9Yxtl9ftweGy2szMysrXtJmZmZmZmZWYG21mZmZmZmYl5kabmZmZmZlZibnRZmZmZmZmVmJutJmZmZmZmZWYR48062LNjGY6Y9vlTGtfKGZmZmbWJm60mZmZmZl1oWZvReVbm3QvN9rMzMxw5cfMzMrL17SZmZmZmZmVmM+0mfURn0kwMzMz6z5utJmZmZmZ9YFmD96etNvabYrEmuXukWZmZmZmZiXWtjNtknYDvg2MA34aEbPa9V5l56Ma3cW5u4K7U3Yf5+/Y8f7RWs5d62bOX2u3tjTaJI0Dvg+8FZgPXC3p3Ii4uR3v12tm3/sYBzZZGWiGKw71OXetmzl/rVs5d8fecAcdZmy7vK11kVYoy0HuXs7fkdRJXc9sj3adadsemBMRdwJIOgOYDnR98lpjuvjsonN3FJr93st4w+9mtwFK9QPl/C2xYm6VpULsstesJZy/1nbtarRNAuYVns8HXltcQNLBwMH56VJJt9VYzwTgwbZEWGKHtXm79bV2rXnkdvpa3W3efIxDGTZ3oaH8LV3utjuvRuIwmHDYe0sV04g+oyH2qdLlb4Nlb8uVJf8cx2A9WPZCST7boZTl+x9KN8TYTfnbrbk7kjxocz2zbJ9Rq+Opm7vtarSpxrQY9CTieOD4IVciXRMRU1sZWDfox+0u0TYPm7swfP6WaHue5ZiGV7Z4RqAlZW87lOWzdRzljIMWlb1Qqm2qyzG2Roli7Nl6b9li6ud42jV65HxgcuH5ZsCCNr2XWSs5d62bOX+tWzl3rZs5f63t2tVouxrYUtIWklYD9gXObdN7mbWSc9e6mfPXupVz17qZ89fari3dIyNiuaRDgQtIQ5+eGBE3jWBVY96FpyT6cbtLsc09nruOaXhli6cpLczfdijLZ+s4BitFHC3O3VJs0zAcY2uUIkbXHcZU38ajiJW6jJuZmZmZmVlJtKt7pJmZmZmZmbWAG21mZmZmZmYlVtpGm6TdJN0maY6kmZ2Opx0kTZZ0iaRbJN0k6RN5+nhJF0m6Pf/fsNOxtpqkcZL+Lum8/LwntrlTeSvpREmLJN1YmFb3M5V0ZI7xNkm7timmpvO73XFJWkPSVZJuyDF9odMx9ZJ633nVMtMkPSbp+vz3uTbFMlfS7Pwe19SYL0nfyd/tPyS9qg0xbFXYzuslLZZ0eNUybfk8mi0Tql7blb+/ZY+7kf2jLKp/o8tG0gaSfiXp1vx57tDpmEZrrPJ3iN/moyXdWyiL9ii8pubvoKRX53J2Ti5Pa936oJGYViqvR/K73Ip46pXbnfx8nhURpfsjXcR5B/ACYDXgBmDrTsfVhu3cBHhVfrwu8E9ga+DrwMw8fSbwtU7H2oZt/2/gNOC8/Lzrt7mTeQu8EXgVcGNhWs3PNOfYDcDqwBY55nFtiKmp/B6LuEj30lknP14VuBJ4Xac/q175q/edVy0zrbLftzmWucCEIebvAfw+58TrgCvbHM844D5g87H4PJopE2rE2XW/v90QdyP7R1n+qPqNLtsfcDLwofx4NWCDTsc0yu0Zs/wd4rf5aOCTNZav+zsIXAXskMvR3wO7jzCmlcrrkfwutyqequ/lPtINrzv2+VT+ynqmbXtgTkTcGRH/Bs4Apnc4ppaLiIURcV1+vAS4BZhE2taT82InA3t1JMA2kbQZsCfw08LkXtjmjuVtRFwGPFw1ud5nOh04IyKejIi7gDmk2FsdU7P53fa4Ilman66a/6KTMfWSIb7zMpoO/DznxBXABpI2aeP77QzcERF3t/E9ntVkmVDUrb+/pY+7W/aPOr/RpSFpPdJBiRMAIuLfEfFoR4MavTHL3xHkYc3fwVxerhcRf4vUQvk5ra27NfW73KZ4Gim3xyyesjbaJgHzCs/nU8KCrZUkTQFeSTryPzEiFkLauYCNOxhaOxwHfBp4pjCtF7a5bHlb7zMd8zgbzO8xiSt3+7keWARcFBEdj6kXVX3n1XZQ6qL6e0nbtCmEAC6UdK2kg2vMH+vvdl/g9DrzxuLzgMbK2W7N+a6Ke5j9o9OOY+Xf6DJ5AfAA8LPchfOnktbudFCj1JH8rZGHhyp1Fz+x0B2xXmyT8uPq6SNRq7xu9ne5lfFUVJfbnfp8gPI22mr1+ezZexNIWgf4NXB4RCzudDztJOltwKKIuLbTsbRBt+TtmMbZRH6PSVwR8XREbAdsRjoa9rJOx9RrhvnOryN1EXwF8F3gt20K4/UR8Spgd+AQSW+sDrPGa9ry3SrdbPftwC9rzB6rz6NR3ZrzXRN3mX/zu+Q3ehVS198fRsQrgWWk7nPdbMzzt0Ye/hB4IbAdsBA4dpjYWhnzcOX1oNDHIJ5a5XYnPx+gvI22+cDkwvPNgAUdiqWtJK1K2mlOjYjf5Mn3V7rp5P+LOhVfG7weeLukuaTT/2+W9At6Y5vLlrf1PtMxi7PJ/B7Tzy93pxkAditLTL2gznf+rIhYXOmiGhG/A1aVNKHVcUTEgvx/EXA2K3drHcvvdnfguoi4v0acY/J5ZI2Us92a810R93D7RwnU+40uk/nA/NxLAuBXpEZcNxvT/K2VhxFxfz6o+QzwE1aUmfVim58fjzrmOuV1s7/LLYsnG1Rud/LzqShro+1qYEtJW+SW7r7AuR2OqeXyKDInALdExDcLs84FDsiPDwDOGevY2iUijoyIzSJiCul7/VNEvJfe2Oay5W29z/RcYF9Jq0vaAtiSdLFsS40gv9sel6SNJG2QH68JvAW4tZMx9ZIhvvPiMs+rjKAlaXvS79BDLY5jbUnrVh4DuwA3Vi12LvB+Ja8DHqt0xWmD/ajTNXIsPo+CRsrZspVjjSp93I3sH502xG90aUTEfcA8SVvlSTsDN3cwpFYYs/ytl4dV1/S+gxVlZs3fwVxeLpH0urzO9zOCutsQ5XVTv8utiqdgULndqc9nkCjBqDm1/kgje/2TNArLZzodT5u2cUfSqdJ/ANfnvz2A5wIXA7fn/+M7HWubtn8aK0aP7Ilt7lTe5oJlIfAU6ejOQUN9psBncoy3McrRjIaIqen8bndcwMuBv+eYbgQ+N1z+jcVn1St/Q3znHwU+mpc5FLiJNNrWFcB/tCGOF+T135Df6zN5ejEOAd/P3+1sYGqbPpO1SI2w9QvT2v55NFMmAJsCvyu8tit/f8sed739o9NxDRHvNMo7euR2wDX5s/wtsGGnY2rBNo1J/g5RTp+Sy8J/kBoimxReU/N3EJhK+i29A/geoBHEU6+8bvp3uRXx5PXUKrc78vkU/5RXamZmZmZmZiVU1u6RZmZmZmZmhhttZmZmZmZmpeZGm5mZmZmZWYm50WZmZmZmZlZibrSZmZmZmZmVmBttZmZmZmZmJeZGm5mZmZmZWYm50dYlJIWkF9WZt1TSC8Y6JmsdSSdJ+nKn4zAzMxsJSe+QNC/XSV45zLIHSrq88LxuHcfGRjP1kLLUWZqMeVDOdaOea7RJ2lHSXyU9JulhSX+R9JoOxjOQC6NXVE3/bZ4+bbTvERHrRMSdo12P9S5JG0j6oaT7JP1L0mxJHxij954maX6L1zkg6UP5sSRdJulzVcscIOkOSWu18r2tt0naWtK5+TdkiaRLJP1Hp+MyG4qk1SQdK2l+bjTdJelbYxzGN4BDc53k72P83jaE/Jv5iKTV27DuQb/xkjbJ9duJhWmfqTPtD62Op5f1VKNN0nrAecB3gfHAJOALwJOdjAv4J/D+yhNJzwVeBzzQsYisb0haDfgjsDmwA7A+8ClglqT/7mRsrRARARwE/LekbQAkbUSqQHwoIv7ViveRtEor1mOdM9x3KOmFwF+A2cAWwKbA2cCFknZof4TWq8ag/DgSmApsD6wL7ASMdcNpc+CmMX5PG4akKcAbgADe3u73i4iFwBzgjYXJbwRurTHtsnbH00t6qtEGvBggIk6PiKcj4vGIuDAi/gErTo1K+kY+4nCXpN0rL5a0aT7C+rCkOZI+nKevIelxSRPy889KWp4biUj6sqTjhojrVOA9ksbl5/uRKgL/Lrz39pL+JulRSQslfS9XtleSzybOk7RTfv5st4J8qvj7ks7PR4mvzBWRymt3kXRbPor8A0mXVs5Y1CPphZL+JOkhSQ9KOlXSBoX5kyX9RtIDeZnvDbU+A0mvlHRd/o7OBNbI0zeUdF7+LB/JjzfL8/aWdG3VemZI+m1+vIekm/M675X0ybzY+4DnA3tHxF0R8VRE/AE4DPhiIY/nSjoyr+MRST+TtEbhvd4m6fqco3+V9PLCvLmSPinpHzm3ziy+dojPYU9Jf5e0OOf00YV5a0j6Rc6pRyVdLWmipGNIP0DfUzqi/L2IuB04BjhB0nOA7wC/johLhol7ptLZuCV5u99RmHeg0pn6b0l6GHg2Nms9SZ+S9Ouqad+VdJyk9SWdkMvGe3OZOy4vM1z5NFfSEZL+ASyTtEp+fm/+3m+TtHNe/GjgbxHxmYh4OCKWRMR3gFOAr+X1Tcll7sGSFuSYZhTe7zmFvHpI0lmSxle99gBJ9+R4P9PGj9UaVKsskLR6LjdeVlhuI6X6wMb5+XDlYnXuDVXmjFM6W/agUv3k0Jwvq+T5dfcD4DXA2RGxIJK5EfHzqljqltGSPqxU73lYqR60aZ7+BUnfzY9XlbRM0tfz8zUlPZHL5aXAOOAGSXfU+0xb/LVZY94PXAGcBBxQmag69ZA8b6WuhKrRhVXS2sDvgU2Vfo+X5ty5jNxAyzn6SuDbVdN2yMsh6YOSblGqe1wgafPCe7xE0kU5N2+TtE+tjZS0rlLPiO8oeW7O5cWSrgJeWLX8t5XqHYslXSvpDXn685R6JD23sOyrleplqzbwebdPRPTMH7Ae8BBwMrA7sGHV/AOBp4APkwqXjwELAOX5lwI/ICXudqQzYTvneZcB78qPLwTuAHYvzHtHnZgGgA/l11SWv4qUrPOBaXnaq0ln31YBpgC3AIcX1hPAi4BdgXnA9tXz8uOTgIdJR9tWITUYz8jzJgCLgXfmeZ/In8eHhvlcXwS8FVgd2Chv73F53jjgBuBbwNr5s9ux07lQ5j9gNeBu4P8CqwLvzt/Dl4HnAu8C1iIdLf0l8Nv8utXzd/vSwrr+XsjLhcAb8uMNgVflx2cAJ9eIYxVgObBrfj4XuBGYTDpT/Rfgy3neq4BFwGvzd35AXn71wmuvIp2ZGJ/z96N53jRgfp3PYhqwLekA0suB+4G98ryPAP+bP4txeR9Zr7hfVa1rHHAl8Bvgnvz5DRf33jnm5wDvAZYBmxTKi+XA/8mf1Zqdzp1e/gM2yZ//BoX8XJS/998CP85lzMY51z6Sl6tbPhVy8/qc12sCW5HK0E3z/CnAC/Pj+4AP1IhtJ+DpnItTSGXu6TmebUm/FW/Jyx5OqiBtlmP6MXB64b0C+EmO5RWkniAvbfXn6b+m869mWQCcCBxTWO4Q4A/5cSPl4rO5N9T75HkfBW7OubMhqYdEAKvk+UPtB58llXsfzzmpqu2bS/0y+s3Ag3l7Vif1VrqsMG92fvwfpLrPlYV5NxTe49m6SAPbeiBweb3X+q+luT0n58WrSXWNiQxRD6n1/VR/R6S6ZmXZaVT9xud94Yb8eCqpXN6yatrjOY69cowvJZX7nwX+mpdbm1RefyDPe1XO1W2KcZDqTldVYsrzzgDOyut4GXBvVc69N79uFWAGqfxfI8/7HfCxwrLfAr7b8e+y0wG0ITlfmr/E+aQK17nAxEISziksu1ZOwueRCtWngXUL878KnJQff4l09H6V/MV+AphFaqQ8DkyoE88AqdH2XtKP/FbAP/O8ZxttNV53OOmoWXFnOTLvZNsOsyP9tDBvD+DW/Pj9pKPIlXnKO8OQjbYase0F/D0/3oFUYVml0999t/yRjjQ9e7AgT/trsbApTN8OeKTw/IfkCgSwDfAIKyoI95AaOutVreOPwKw6sdwH7J8fzyX/iBdy547C+36p6rW3AW8qvPa9hXlfB36UH0+jTqOtRjzHAd/Kjz+YP5eX11huoFbe5s8kgOmNxF3j9dcXXnsgcE+n86Wf/khHbD+cH7+NVIGdSGrYrFlYbj/gkjrreLZ8ys/nAh8sPH8RqaL9FmDVqtcuB3arsc6X5LyaxIqG10sK878OnJAf30I+2Jefb0KqDK1SeO1mhflXAft2+rP330rf+fXA9Jwndxam/wV4f37cSLn4wUbeJz/+E7kRlp+/JefLKsPtB6RG4yE5vidJvzEHFJadS/0y+gTg64V56+ScnUI6uPAEqXI7EziKVHdZh3T5yXcKrxuy4cXK5asbbe3P4x3zdzkhP7+V1FAbsh5S/f1Uf0cM32ibQqpTb5jfr1JvubcwrZK7vwcOKrz2OcC/SN1t3wP8uWrdPwY+X4jjRNIB508VlhmXt7tYTn+lepuq1vsI8Ir8+D3AXwrruo/CyZJO/fVa90gi4paIODAiNiO1rDclVQQr7issW7nWZZ283MMRsaSw7N2kH2lIZ+GmkVr5s4GLgDeRzo7NiYgHhwntN6SjUv+H1NVmEEkvVuoKd5+kxaTkmlC12OHAWRExe5j3uq/w+F95+yBt47zKjEjZOOwAEZI2lnRG7o6xGPhFIbbJwN0RsXy49dizNgXuzZ9/xd0AktaS9GNJd+fP+jJgg0IXmJOB/5IkUrfHsyKics3mu0gNrbuVur1WrsF5kFRxHCR3uZmQ51fMKzy+O8cKqfCckbsAPSrpUdJ3v2lh+Xp5V5ek1+buDA9Ieox0pLmSW6cAFwBnKHVD+/pwXRMionI9ReX/kHFLer9WdG16lFRmFPe74udh7Xcy6QAX+f8ppO9wVWBh4Xv6MelMw3DlU0Wx3JtDKkuPBhbl11byuOa+kqc9Q/pRX2mdrLyvnF2I9RZS5WViYfmm9xVrryHKgj8Ba+ayanPSgbSz88saKRcHlSHDlDmbVi1ffDzkfhDpkpDvR8TrgQ1I3cVPlPTSwjqGqhvcXZkREUtJvZYmRcTjwDWk+s4bSXWhvwKvz9MupY4GyldrvwOACwt11NPytLr1kFaIiLmk+uWOpLz5c571t8K0yvVsmwPfLuTJw6STCpPyvNdW7WP7k062VOxJOrjwo8K0jUgHO6rL6WcpXV5yi1J34UdJ1/tX8vMcYGulkdnfCjwWEVc1/0m0Vs812ooi4lZSK/xlwywK6YjDeEnrFqY9n3RUAFIhtRXwDuDSiLg5z9+TIQqtQiz/Ih1N+Bg1Gm2kI3a3AltGxHqko1mqWmZvYC9JhzewPbUsJHW7ANKoe8XnQ/gq6QjLy3Ns7y3ENg94vjxIQzMWApPy51/x/Px/BinPXps/68pFuwKIiCtI10K+AfgvCrkUEVdHxHTSj/hvSd0CIJ1p2z33PS96F+mI7BWFaZOrYlqQH88jHSnboPC3VkSc3tSWr+w00tnwyRGxPqnQrWzrUxHxhYjYmtQt522sGNAnaq2shrpx5wrYT4BDgedGxAako3XF76XR97HW+C3wcqVriN5G6t49j5SnEwrf4XoRsU1+zVDlU8Wg7zEiTouIHUkVgiBfr0baV/auEdc+pF4KxUFthtpXdq/KuTUi4l6slIYqCyLiGVJZuh+pzD2vcHC3kXIxGnmfvMig32gG59hw+8GKN0zX83+fdJBh6wY+ggWkfaES59qkM2uVnL2UdND5lcDV+fmupMswag4k0WD5am0kaU1S2fWmfELgPtIZrlcwdD0EUlfWtQrrKjaSqtX7nfwzqQ6zA6kOXZy2IytyZx7pDHNxP1ozIv6a511aNW+diPhY4X1+AvwB+F2hnvMAqedEdTld2Z43AEeQPp8Nc34+xor6xxOk/X5/0gHyWvX2MddTjTalixVnaMXADZNJBe0VQ78SImIeKam+qjQAwstJI9Kdmuf/C7iW1P2g0kj7K6k72rCNtuwoUreJuTXmrUu63myppJeQGnfVFgA7A4dJ+niD71l0PrCtpL1yI+sQBh+tqGddYCnwqKRJpJEHK64i7fyzJK2dP7vXjyC2fvI3UmFymNKF6e8k/fhB+qwfJ33W44HP13j9z4HvAcsj4nJ4drjn/SWtHxFPkXLp6bz8KaQjXr9UGghhVUm7krr7Hh0RjxXWfYikzfJ7HwWcmaf/BPhoPtqs/F3vWXWQY0g5N4p/ytv7cEQ8IWl7UqWosvxOkrZVOsu4mNTVobJN9wON3JtwqLjXJv3YPJDf7wM0doDH2iT/UP6K1Ji/KiLuiTQS2YXAsZLWUxro44WS3pRfNlT5tBJJW0l6s9LQ10+Q9rdKXn0B+A9Jx0gar3Rh+/8hHSw4ompV/6N0Znwb0vUWlX3lR8AxudJaGbhi+og/FBsLw5UFp5G6S+2fH1c0Wy4O9z5nAZ+QNElpMJ1nc264/UDS4UpDr6+Zf1cOIO0bf29g+08DPiBpu7xffIV03drcPP9S0j5wc0T8mxWXfdwVEfVGwXb52nl7kcq2rUlniLcjXUL05zyvXj0E0lgF2+ScWIOhB+K6H3iupPWrpl9GypsFEbE4T7s8T1ufVBeCVGYeqRWjP68vqXLw7DzgxZLel+suq0p6jQafQYZ0cOA24DxJa0bE06QebkfncnprCoOwkPaN5eTLe5RuGbRe1Tp/Tuom+nZSD46O66lGG7CEdEHwlZKWkRprN5LOXjRiP1I/3AWk7g+fj4iLCvMvJXVPuKrwfF0aHLI00qhO9W7s90lShXUJ6YfgzFoLRcQ9pIbbERpm1Mcar32QdBT566SuD1uTuj0Md0uEL5C6hT5Gavj9prDOp4H/JF0ncg+pcfCeZuLqN/lH752kwuAR0udV+UyPI53mf5CUv7XuYXIK6cev+sjP+4C5Sl3EPkruZpa7T76FdMTqSlID6JvAZyLi/1Wt4zRSxeDO/PflvI5rSAP4fC/HPCfH36hJpMpx8e+FpIujvyhpCfA5VpwdhHRA4Vc53ltI+1ul4Pw28G6lkaa+U+9Nh4o7ny0/lvTDcT/p4v2/NLFN1h4nk76LYn6/n3TB+s2k7/FXrOjGWLd8qmN10vXID5K6i21MOkBBpFFIdyQdiZ5LOiD1LtJgPdW5cSkpny4GvhERF+bp3yadPb4w5/UVpN8lK6nhyoKIuJJ05mFTUo+ZyvSmysUGypyfkMrff5AaW78jVSwrBxWG2g8ez+u+j5Tbh5AGqRr2Hq4RcTHwP8CvSTn/QmDfwiJ/Jf0uVeo6N5MOeNSt+7h8LYUDgJ/lg1/3Vf5I+bof9eshRMQ/gS+Seh/cTmps1ZR7tZ0O3KnUhbHSPfhSUvlafO31pFy6ttJzISLOJvV2OCPXX24kDSZIPqu9CykfF5Dy+2ukcrwYQwAHk+o55+SG5qGkLsD3kXrd/azwkgtI+/I/Sd0mn6CqK3Mu858BrqtzsmXMVUZNtD6kNDT6fNJAFJd0Oh5rjFKXh0Wk0SFvb+F655IG9/hjq9Zp1ixJzyd1FX9e4ehsaSjd8+gu0iAmvpbX2kbplkQ/iojNh13YzFpO0p+A0yLip52OBXrvTJsNQ9KukjbIXSAq180N233USuVjwNWtbLCZlUE+kPTfpNuUlK7BZtZOuWvjHrm72iRS9/izh3udmbWepNeQenHU7PnWCcM22iSdKGmRpBsL08Yr3eju9vx/w8K8I5Vu0Hib0nUzVi47kO6z8iCpW+NeEfG4pB9pxY0Ri38/Gnp15dZr+ZvPhn2Cxrv8mnUFpQvIF5NG6qp1LadZrxOpu+8jpO6Rt5C6jZvZGJJ0Mqlr6OExeFT5jhq2e6SkN5Iu8v55RLwsT/s6afCAWZJmkkZeOSJf6Hc66WLGTUkb/OJ83ZPZmHP+mpmZmVm3G/ZMW0RcRrpnQtF00sXi5P97FaafERFPRsRdpItyt8esQ5y/1q167SyxmZmZjdxI7601MQ8/S0QslLRxnj6JwddHzWfFzakHkXQwaaQX1lxzzVdPnjx5pWWeeeYZnvOcclx251jqa2c8//znPx+MiI1avNq25m/Zvp/R6qXtGettGWX+nkQa5evnhWkzgYsLZ4lnkkaS3Zo0utY25LPEkoY9SzxhwoSYMmXKCMPrXsuWLWPttatvW9j7mtnua6+9th1lb0sV87eM32kZY4L+iKvs+VuGsreMeeCYhsndiBj2jzQM/o2F549WzX8k//8+8N7C9BNIQ84Ouf5Xv/rVUcsll1xSc3onOJb62hkPcE00kKND/Y11/pbt+xmtXtqesd6W0eZvjdy9DdgkP94EuC0/PhI4srDcBcAOw62/Xtnb63opp5vRzHa3ouxt918xf8v4nZYxpoj+iKvs+VuGsreMeeCYhs7dkZ5pu1/SJpHOUmxCGn4c0pmJ4imzzUj3VTArE+evdauWniWeOHEiAwMD7Yu2pJYuXertNjOzrjLSRtu5pJv2zcr/zylMP03SN0lddLZkxY2omzb73sc4cOb5Tb1m7qw9R/p21j/GJH97wZSZ5zNj2+UN74fe/zpGNabVHGUqIo4HjgeYOnVqTJs2rY1hldPAwAC1tntKj//e1NvuXtPr36NZkfO9fwzbaJN0OjANmCBpPmko5lnAWZIOAu4B9gaIiJsknQXcDCwHDgmPvGcd5Py1HuOzxGZmZn1o2EZbROxXZ9bOdZY/BjhmNEGZtYrz13qMzxKbmZn1oZF2jzQzszbyWWIzMzOrcKPNzKyEfJbYzMxarXINXKPXq/sauPLojZsvmZmZmZmZ9Sg32szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSW6XTAZiZmZmZlZ2kucAS4GlgeURMlTQeOBOYAswF9omIRzoVo/Uun2kzMzMzM2vMThGxXURMzc9nAhdHxJbAxfm5Wcu50WZmZmZmNjLTgZPz45OBvToXivUyd480MzMzMxteABdKCuDHEXE8MDEiFgJExEJJG9d6oaSDgYMBJk6cyMDAQEsCmrHt8hG9buKajb22VXE2YunSpWP6fo0oU0w912ibMvP8ppafO2vPNkViZmZmZddsvQFcd+hjr4+IBblhdpGkWxt9YW7gHQ8wderUmDZtWksCOnAE+QupwXbs7AaaAbOXNb3uke4fAwMDtOpzaZUyxeTukWZmZjZmJM2VNFvS9ZKuydPGS7pI0u35/4adjtOsWkQsyP8XAWcD2wP3S9oEIP9f1LkIrZe50WZmZmZjzYM5WFeRtLakdSuPgV2AG4FzgQPyYgcA53QmQut1Pdc90szMzLrOdGBafnwyMAAc0algzGqYCJwtCVL9+bSI+IOkq4GzJB0E3APs3cEYrYe50WZmZmZjqeWDORQHCxjpwAzNaGRggjINYFDkuEYmIu4EXlFj+kPAzmMfkfWbUTXafJNB62bOXzOzjmj5YA7FwQJGOjBDM+buP23YZco0gEGR4zLrTq24ps390q2bOX+t63ggB+tmHszBzKx57RiIxDcZtG7m/LVu4QMO1nU8mIOZ2ciM9pq2tt5ksNEb/41Go/2ny9TXukyxQPniaUJb8reLP4+VzNh2eVP7Ydm3u5e+mxo8kIN1Aw/mYGY2AqNttLX1JoPfPfWcxm78NwqN9EuHcvW1LlMsUL54mtCW/O3iz2MlB848v/EbcNL4/tQpPfTdtPWAWa+r13hv9iBht312ZTho4cEczMxGZlQtomK/dEmD+qXnSoP7pVtpOX+ti7X1gFmvq9d4b3YAi7IfpKjWQwctzMz6zogbbbkv+nMiYkmhX/oXWdEvfRbul24l5fy1buYDDo2ZUqcRNmPb5WMywqCZmVmrjOZMm/ulWzdz/lpX8gEHMzOz/jPiRpv7pVs3c/62R70zG0OZO2vPNkTS03zAoUt5/+gdjXyXxTO6/h7NbLTaO8qHmZXKSCqNVi4+4GBmZtZ/2nGfNjMzMzMzM2sRN9rMzMzMzMxKrO+7RzbaXazSN9390s3MzMzMbCz1faPNzMzMzKzTfN25DcWNNjMzsxFwBcvMzMaKr2kzMzMzMzMrMTfazMzMzMzMSszdI83MzMxKpNmutx4kzaz3udFmZmZm1ka+/tHMRsuNNjMzMzMzawmfKW4PX9NmZmZmZmZWYj7T1qSRdHHwEQQzMzMzMxspN9rMzKz0fE2QmZn1M3ePNDMzMzMzKzGfaTOzjvIFy2ZmZmZDc6PNzMzMrIs1c/BrxrbLOXDm+T4AZtZl3D3SzMzMzMysxNxoMzMzMzMzKzF3jzTrYh5Rz8zMzKz3+UybmZmZmZlZibnRZmZmZmZmVmJutJmZmZmZmZWYr2kzM7NR8/32zMzM2sdn2szMzMzMzErMjTYzMzMzM7MSc/dIMzMbc75dhVl3cRdoa5dKbs3YdjkHNpBn/ZpbbrSZmZmZ9RkfOLFu1a8HENxoGwOtLhirj0T0SjL2O/+ANqZfC2szMzPrX21rtEnaDfg2MA74aUTMatd7WXPa3YgciTJVrJ271s1akb8+gGCd4LLXupnz19qtLY02SeOA7wNvBeYDV0s6NyJubsf7mbWKc9e6mfPXupVz17qZ87fcRnMgshUnJmoZycmKdp1p2x6YExF3Akg6A5gOOHmt7FqWuz5b0Z1G8r2V6Eyxy94e08pypFblw7lr7dJs7o6kcuz8tX7SrkbbJGBe4fl84LXFBSQdDBycny6VdFuN9UwAHmxLhE06rMSx6GsdDIbWfDZDbMPmo1nvCAybuzBs/pYmV1qhTLk/ElW51ZZt6ab8bbDs7WndntMjVWu7uyl3Ycj8Ld13WtY866W4uil/y1b2ljEP+immkeRuuxptqjEtBj2JOB44fsiVSNdExNRWBjZSjqW+ssUzSsPmLgydvz32efTU9vTSttTRkrK31/VBHtRU8u0eVdlbxm0rY0zguNqk68reMn7ejmlo7bq59nxgcuH5ZsCCNr2XWSs5d62bOX+tWzl3rZs5f63t2tVouxrYUtIWklYD9gXObdN7mbWSc9e6mfPXupVz17qZ89fari3dIyNiuaRDgQtIQ5+eGBE3jWBVpTmNjGMZStniGbEW5W7PfB5ZL21PL23LSlpY9va6ns6DIZR2u1uQu2XctjLGBI6r5bq07C3j5+2YhqCIlbqMm5mZmZmZWUm0q3ukmZmZmZmZtYAbbWZmZmZmZiVW2kabpN0k3SZpjqSZbX6vyZIukXSLpJskfSJPHy/pIkm35/8bFl5zZI7tNkm7tiGmcZL+Lum8EsSygaRfSbo1f0Y7dDKeMhvLvG0FSSdKWiTpxsK0rvxuy7gfW+dJmitptqTrJV2Tp9XNiW7WS/tzozpV5pa9vClTHaLwPq5LdEhZysEyllF1Yjpa0r3587pe0h5jGVNdEVG6P9JFnHcALwBWA24Atm7j+20CvCo/Xhf4J7A18HVgZp4+E/hafrx1jml1YIsc67gWx/TfwGnAefl5J2M5GfhQfrwasEEn4ynr31jnbYtifiPwKuDGwrSu/G7LuB/7r/N/wFxgQtW0mjnR7X+9tD83uL0dK3PLXt5QojpEISbXJTr0V5ZysIxlVJ2YjgY+WWPZjuZlWc+0bQ/MiYg7I+LfwBnA9Ha9WUQsjIjr8uMlwC2ku9tPJxUy5P975cfTgTMi4smIuAuYk2NuCUmbAXsCPy1M7lQs65ES+gSAiPh3RDzaqXhKbkzzthUi4jLg4arJXfndlm0/tlKrlxNdrZf25wZ1rMwtc3lTpjpEISbXJcpnzMvBMpZRdWKqp6N5WdZG2yRgXuH5/Dyt7SRNAV4JXAlMjIiFkApoYOMxiu844NPAM4VpnYrlBcADwM9yV4ufSlq7g/GUWa9se9d/tyXZj60cArhQ0rWSDs7T6uVEL+rl/C/FNpSwvDmO8tQhKlyX6Kwyl4NlzYFDJf0jd5+sdNnsaExlbbSpxrS235tA0jrAr4HDI2LxUIvWmNaS+CS9DVgUEdc2+pJ2xZKtQjpt/MOIeCWwjHT6ulPxlFmvb3tXbF8Z9mMrlddHxKuA3YFDJL2x0wGVRC/kf8e3oWzlTQnrEBWuS3RWN5aDncyBHwIvBLYDFgLHliCm0jba5gOTC883Axa08w0lrUoqeE+NiN/kyfdL2iTP3wRYNAbxvR54u6S5pK4eb5b0iw7FUln//Ii4Mj//Fang7VQ8ZdYr2961322J9mMriYhYkP8vAs4mdWWplxO9qJfzv6PbUNLypmx1iArXJTqo5OVg6XIgIu6PiKcj4hngJ6zoAtnRvCxro+1qYEtJW0haDdgXOLddbyZJpH7Wt0TENwuzzgUOyI8PAM4pTN9X0uqStgC2BK5qRSwRcWREbBYRU0jb/aeIeG8nYsnx3AfMk7RVnrQzcHOn4im5Mc3bNurK77ZM+7GVg6S1Ja1beQzsAtxI/ZzoRb2c/x0rc8ta3pStDlGIy3WJDumCcrB0OVBpRGbvIH1eHY0JKOfokZFGaNmDNBrTHcBn2vxeO5JOb/4DuD7/7QE8F7gYuD3/H194zWdybLcBu7cprmmsGPmpY7GQTg9fkz+f3wIbdvqzKevfWOZti+I9nXTq/ynSEaSDuvW7Let+7L+O5sQLSCN93QDcVNknh8qJbv7rpf25iW3uSJnbDeVNWeoQhfdxXaIDf2UqB8tYRtWJ6RRgds7Vc4FNypCXygGYmZmZmZlZCZW1e6SZmZmZmZnhRpuZmZmZmVmpudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm601SHpJElfbvWy7TRWcUgakPShdr+PrUzSGyTdVoI4SpHz1v0kLZX0ggaXDUkvatH7TsnrW6XGvOfnuMbl57+XdEAr3tfMzGwk+rLRlhsdj0havQ3rniZpfuH5JrliMLEw7TN1pv2h1fFYb4mIP0fEVqNdT4srv9MkPZMruUslzZd0lqTXtGL9w7y3JH1K0u2SHpd0j6RZ7di3bWQkzZV0v6S1C9M+JGkAICLWiYg7W/A+B0q6vGraZpJ+LelBSY9Jmi3pwOHWFRH35Liezs93j4iTRxujmZnZSPVdo03SFOANQABvb/f7RcRCYA7wxsLkNwK31ph2WbvjsXKrddS/SyyIiHWAdYHXkfL7z5J2bvP7fgc4GHh/fu/dgTcDZ7X5fa05qwCf6MD7ngLMAzYHnkvKk/s7EIeZmdmo9F2jjfSjfQVwEvBsdxdJr5R0naQlks4E1ijMq3UEd6UzFflI8u+BTQtnHTYlNcbemJcZB7wS+HbVtB3yckj6oKRb8tnACyRtXniPl0i6SNLDkm6TtE+tjZS0rqRLJH0nn42o+7rc1e37ks7P23+lpBcW5r9V0q35SPX3ADX8aRvw7NmGIyXdnL/Xn0lao3JmVtIRku4DfiZpdUnHSVqQ/46rnDmqcSZ303wm4QFJd0k6rDBvnKSjJN2Rv9drJU2WVDk4cEPO0ffk5d8m6XpJj0r6q6SXF9ZVd/8oimR+RHwO+CnwtcI6vi1pnqTFOZY35OnPk/QvSc8tLPvqvE2rSnqRpEtz/j2Y3x9JWwIfB/aPiL9FxPKIuAl4F7CbpDfn5U6S9KOc/0vyuhrap4bbN6xh/w/4pKQNqmcUy1JJz5X0vzlHrpb0ZVWVvcBblM6sPpK/G0l6KfAjYIec04/mZV8DnBQRy3J+/D0ifl8rQEnvyvvpy1TVdVKFLuHKvweSvpFjuEvS7oX1bCHpspwvf8wx/mK4D0jSLyXdl/P8MknbFOatKelYSXfn+ZdLWnO4dZqZWe/o10bbqflvV0kTJa0G/JZ0VHY88EtSxa8pEbGMdKR/Qe5as05ELKDQaCM12G4FLq6atipwlaS9gKOAdwIbAX8GTodnG4UXAacBGwP7AT8o/rjn5Z6b1/+XiDgMWKuB1+0HfAHYkHRm8Ji8rgnAr4HPAhOAO4DXN/vZGAD7A7sCLwReTPpMAZ5HyrvNSWeNPkM6W7Ud8Apg+8Kyz5L0HOB/gRuAScDOwOGSds2L/Dfpe90DWA/4IPCviKjk3Styjp4p6VXAicBHSGckfgycq9SAHOn+8RvgVVrRLe7qvE3jSbn4S0lrRMR9wABQPADxXuCMiHgK+BJwISk3NwO+m5fZGZgfEVcV3zQi5pEOzLy1MHn/vJ4JwPWk/b/RfarmvmFNuYb0HX9ymOW+Dywj7RMHUDiwVvA2UmPsFaSc2TUibgE+Cvwt5/QGedkrgO9L2lfS8+u9qaQPkA4wvCUibmxge14L3EbKp68DJ0iqHMw6DbiKtB8dDbyvgfVBOuC3JSkPryPnaPYN4NXAf5D2n08DzzS4XjMz6wF91WiTtCOpYnxWRFxLaoD8F6mCvCpwXEQ8FRG/IlUwW+VS4GWSNiR1zfxzRNwOTChMuyIi/k2qNH81Im6JiOXAV4Dt8pmBtwFzI+Jn+ajxdaQG1bsL77Vpfr9fRkSlot/I634TEVfl9zyVVLmGVOG/OSJ+lSvQxwH3tfCz6Sffi4h5EfEwqeK/X57+DPD5iHgyIh4nNTC+GBGLIuIBUoOhVsXvNcBGEfHFiPh3vi7oJ8C+ef6HgM9GxG35DNgNEfFQndg+DPw4Iq6MiKfz9TtPkvaNke4fC0hnZTcAiIhfRMRDOQePBVYHKtfnnUxqqFXOPO9HaiQCPEXabzeNiCcionLmZQKwsM57L8zzK86PiMsi4klSo3gHSZMZ3b5hzfkc8H8kbVRrZv7e30XaF/4VETeT8qLarIh4NCLuAS5h6O9jb9KBr/8B7lI6k1x9reXhwKeAaRExp8FtuTsifpKveTsZ2ASYmBuGrwE+l/fJy4FzG1lhRJwYEUtyjh4NvELS+vngzAeBT0TEvXn//GtezszM+kRfNdpIR20vjIgH8/PT8rRNgXsjIgrL3t2qN42IucB8YEfS2bU/51l/K0yrdFnbHPi2Uhe1R4GHSRXfSXneayvz8vz9SUelK/YE1iR1FaKwzuFeV2yI/QtYJz/elHRNSGVbovjcmlL83O4mfbYAD0TEE4V5mzI4/4rLFm1O6opb/F6PAioD3EwmHZhoxObAjKp1Tc7vO9L9YxLp2tFHASTNUOr2+1he//qsaFidA2ytNIrgW4HHCmfQPk3aB66SdJOkD+bpD5Iqy7VskudXFHN4KWm/2pTR7RvWhHwG6zxgZp1FNiJd+1bcT2qVNQ1/HxHxSETMjIhtSPvF9cBvC2fFIDXYvh8R82uto45nY4iIf+WH65By6uHCtHrbMIhSV+ZZSl2ZFwNz86wJ+W8NGt+XzcysB3XroAdNy/3/9wHGKV07BOlI/wako/KTJKlQMX0+K34kl5G6GFbWVazQVYs60/9MapztwIouP5VpOwLfy9PmAcdExKnVK8hn2y6NiLdWzyv4Cakb1+8k7Za7bM5r4HX1LCRV3isxqPjcmlL83J5POhMFK+fMAlJj4qYayxbNA+6KiC3rvN88UlfMRrp7VfJupa5/kt7E0PtHPe8ArouIZUrXrx1B6tJ4U0Q8I+kR8vWREfGEpLNIDaaXsOIsG7n75IdzLDsCf1S6Lu9PpK6M2xe7SOYzaK8jdYesKObwOqQuZgsY3b5hzfs8qevfsTXmPQAsJ3WB/Wee1kxZU6/sTTMjHpT0DVL5O74waxfgD5Lui4hfN/F+tSwExktaq9Bwa2Qb/guYDryF1GBbH6jsHw8CT5D25RtGGZ+ZmXWpfjrTthfwNLA1qTvNdsBLSQ2nvUiVhcMkrSLpnaTriCpuALaRtJ2kNUhdV+q5H3iupPWrpl9Gup5uQUQsztMuz9PWJ511g3SG7MjKNTW5e8zeed55wIslvU9pgIZVJb1G6SL8okNJ11uclxurjb6ulvPztr9T6aL8wxh8FsIad4jSEOTjSWfEzqyz3OnAZyVtlK8p/BxQayCDq4DFSoOYrJmP1r+s0P3rp8CXJG2p5OVaMdjH/UDx3lg/AT4q6bV52bUl7SlpXVJuDrV/PCu/dpKkz5O6Zx6VZ62b1/EAsIqkz5Gusyv6OXAgaVTXZ7dX0t6SNstPHyFVzp+OiH+S9pdTJb0ub/82pO6Nf4yIPxbWvYekHZWuz/sScGW+9m00+4Y1KXc/PJNUjlTPe5p0HeTRktaS9BJS+dio+4HN8ncMgKSv5X1ilZzLHwPmVHUTvgnYjXTt26hGFI6Iu0nX7x0taTVJOwD/2cBL1yV1R36IdIDwK4V1PkO63vSbSgMPjZO0g3xbCzOzvtJPjbYDgJ9Fuv/OfZU/0hmu/UgDfxxIqhS+h1R5ACBXDr8I/BG4ndTYqikibiVVuu/M3a0q3douJV1gXnzt9aSujNdWjspGxNmkC+LPyN1kbiQNbkJELCEdFd6XdJbgvrzsoB/vfDbkYNJZhHNI1wQN+7o62/Mg6bqQWaQKxZbAX4Z7ndV0GmlAjTvzX72bU3+ZVPH7BzCbdGZipWVzJfc/SQcg7iIdkf8p6SAA8P/bu98Yua7yjuO/Hw4gMKlKalhCEnUDsqCAwYm2ppUltAGVugTVIBUEMmnSBhmhuArSVq3hDYi+MVITiloa1fnTuCIhRIAbq0H5o4RVVV6ktoNbx3ECllnAsRM3QJs4EqBNHl6cs2Vsz252Zu+fM3O/H8mamTMze5977zPjee499xxdrzT0/X2SnpF0s1K+SenAw66cox+OiH1KZ7P+QekzcETp86BI11ou+vnIXm/7lKRTSte7rVO6Rui+/Py9SgMtfE+pa+XPdUa3sYj4jtL1fQ/nLsULflfSQ/nv71G6tucH+blteZ2/kpd9j9KAF2cOlHK70lmenyoN6LAlL3NZnylU6vOSVi/y3Dal/H1S6WzrV5WKmeV4UKkAe9L2QtfYV0rardRF96jSGeyzCrOI+C+l6xtvdM9IkEPaotSj4idKn9uv6cXX4V+UPhdPSHpUaQCVXn+p9F2wVymHv6Bu/f8NAJ3n0y9TAVAH23OSPn7G2Z9h/s67Jd0UEW940RePINsPSro9Im6q8G/eqjTK5FkjcKJstr8g6XUR0W8UyZHgNEXFYxHx2bZjAQCMLo7UAaPlbUpn1cZO7tZ5qRbvNoox5zRn3ttzN9sNkq5WOlM2MnL32jfafontTUrXqv1ry2EBAEZcZwYiAUad7S8pde0a2bMOi7G9S+na0mtzl0V007lKXSJfL+mk0oAld7Ua0eBep9R9+LeURg3+ZER81/YWpfkPz/TDPLolAACLonskAAAAABSM7pEAAAAAULAiukeuWbMmJicnW1n2c889p9WrFxvIrD3Elezfv//piHhNYwscQpv5W4VSc61OTa1z6fm7WO6WmhPENZiVxFV67gJA1xRRtE1OTmrfvn2tLHt2dlbT09OtLHspxJXY/mFjCxtSm/lbhVJzrU5NrXPp+btY7paaE8Q1mJXEVXruAkDX0D0SAAAAAApG0QYAAAAABSuie2SVJrffPdDrb91U3nUIQF36fT5m1s3rqkU+N3M7Lq87JBTo4BP/t2hOLIZcAQCgPpxpAwAAAICCUbQBAAAAQMEo2gAAAACgYBRtAAAAAFCwsRuIBEB1Bh3Yh8EoAAAAqseZNgAAAAAoGEUbAAAAABSMog0AAAAACtb5a9oGnUSWa3YAAAAANIkzbQAAAABQMIo2AAAAACgYRRsAAAAAFIyiDQAAAAAKRtEGAAAAAAWjaAMAAACAgnV+yH90l+05Sc9Kel7SfERM2T5P0tckTUqak/ThiPhZWzECAAAAnGlD110WEesjYio/3i7pgYhYK+mB/BgAAABoDWfagNNtljSd7++SNCvpr9sKZtRMDjBR/QImrAcAAFgaRRu6LCTdZzsk/VNE7JQ0EREnJCkiTth+bb832t4qaaskTUxMaHZ2tqGQV2Zm3fxZbROv6N/elDa23alTp0ZmnwEAAFC0DYgzCWNlY0Qcz4XZ/bYfW+4bc4G3U5KmpqZienq6phCrdVWf/J1ZN6/rDrb3VTC3ZbrxZc7OzmpU9hkAAADXtKGzIuJ4vj0pabekDZKesn2+JOXbk+1FCAAAAFC0oaNsr7Z97sJ9Se+V9IikPZKuzC+7UtJd7UQIAAAAJHSPRFdNSNptW0qfg9sj4h7beyXdaftqST+S9KEWYwQAAAAo2tBNEXFU0jv6tP9E0nuajwhYvhLnGBz0el+u9QUAYPnoHgkAo4k5BgEA6IgVFW2252wftH3A9r7cdp7t+21/P9++uppQAQBL2Kw0t6Dy7QfaCwUAAFSpiu6Rl0XE0z2PF4727rC9PT9mcmIAqE6tcww2MXffMPPklTq/HnEBAOpWxzVtmyVN5/u7JM2Kog0AqlTrHIN/f9tdtc/dN8z8fKXOr0dcAIC6rfR/5VqP9g5j0KPDHFEeTKlxAV3SO8eg7dPmGMzfu8wxCADAGFlp0Vbr0d5hXDXgCGYz6+Y5ojyAUuMCuiLPK/iSiHi2Z47Bz+vXcwzuEHMMAgAwVlZUrXC0FwAaxxyDAAB0zNBFG0d7AaB5zDEIAED3rORMG0d7AQAAAKBmQxdtHO0FAAAAgPqtaHJtAAAAAEC9KNoAAAAAoGAUbQAAAABQMIo2AAAAACgYRRsAAAAAFIyiDQAAAAAKRtEGAAAAAAWjaAMAAACAglG0AQAAAEDBKNrQSbYvsv1t24dtH7J9bW7/nO0nbB/I/97XdqwAAADotnPaDgBoybykmYh42Pa5kvbbvj8/98WI+NsWYwMAAAD+H0UbOikiTkg6ke8/a/uwpAvajQoAAAA4G0VbAya33z3Q6+d2XF5TJOjH9qSkSyQ9JGmjpG22/1TSPqWzcT/r856tkrZK0sTEhGZnZxuLdyVm1s2f1Tbxiv7tTWlj2506dWpk9hkAAABFGzrN9qskfUPSpyLiGds3SPobSZFvr5P052e+LyJ2StopSVNTUzE9Pd1YzL0GPSDQ7yM/s25e1x1s76tgbst048ucnZ1VW/sMAABgUAxEgs6y/VKlgu22iPimJEXEUxHxfES8IOlGSRvajBEAAACgaEMn2bakmyUdjojre9rP73nZByU90nRsAAAAQC+6R6KrNkq6QtJB2wdy22ckfdT2eqXukXOSPtFGcAAAAMACijZ0UkT8hyT3eepbTccCAAAALIXukQAAAABQMIo2AAAAACgYRRsAAAAAFIxr2gAAjRt0jsG5HZfXFAkAAOXjTBsAAAAAFIyiDQAAAAAKRtEGAAAAAAWjaAMAAACAgjEQCYBWMSAFAADA0jjTBgAAAAAFK/pM26BH4AEAAABg3BRdtAFdwkEKAAAA9EP3SAAAAAAoGGfaAADFm9x+t2bWzeuqAc5IM2gNAGBcULQVaJgfJ4PghwxGGaNNAgCArqF7JAAAAAAUjDNtQE0YWAQAAABV4EwbAAAAABSstqLN9ibbj9s+Ynt7XcsBqkbuYpSRvwAAjJ9aukfaXiXpy5L+QNIxSXtt74mIR+tYHgazkm57dQ2QUspgEeTu+OmX70vlcSm5OAzy93TjMGhN3d/XJa4zAOBsdV3TtkHSkYg4Kkm275C0WVInfzhgpJC7HTfMj+SCfviSvw1ayJXlHswqKE8AACPGEVH9H7X/RNKmiPh4fnyFpHdGxLae12yVtDU/fJOkxysPZHnWSHq6pWUvhbiS346I1zS1sOXkbm4vJX+rUGqu1ampdS4uf5eZu6XmBHENZiVxNZq7AICl1XWmzX3aTqsOI2KnpJ01LX/ZbO+LiKm24zgTcbXmRXNXKid/q9CBfXqWMV7nSr57S90+xDWYUuMCAAyuroFIjkm6qOfxhZKO17QsoErkLkYZ+QsAwBiqq2jbK2mt7Yttv0zSRyTtqWlZQJXIXYwy8hcAgDFUS/fIiJi3vU3SvZJWSbolIg7VsawKlNrFjbhaMGK5W5Wx3qeLGMt1rjB/S90+xDWYUuMCAAyoloFIAAAAAADVqG1ybQAAAADAylG0AQAAAEDBOle02Z6zfdD2Adv7ctt5tu+3/f18++oG4rjF9knbj/S0LRqH7U/bPmL7cdt/2HBcn7P9RN5mB2y/r+m4MLxSc60uti+y/W3bh20fsn1tbh/bda6S7U15Oxyxvb3B5Ra932yvsv1d2/9WSly2f9P2120/lrfb75cQFwCgep0r2rLLImJ9z/w12yU9EBFrJT2QH9ftVkmbzmjrG4fttyiNAvfW/J5/tL2qwbgk6Yt5m62PiG+1EBeGd6vKzLW6zEuaiYjfkfR7kq7J6zXO61yJvN5flvRHkt4i6aN5+zSh9P12raTDPY9LiOtLku6JiDdLekeOr4S4AAAV62rRdqbNknbl+7skfaDuBUbEv0v66TLj2Czpjoj4RUT8QNIRSRsajGsxjcWF4ZWaa3WJiBMR8XC+/6zSD9kLNMbrXKENko5ExNGI+KWkO5S2T+1K3m+2L5R0uaSbeppbjcv2b0h6l6SbJSkifhkR/9t2XACAenSxaAtJ99neb3trbpuIiBNS+uEg6bUtxbZYHBdI+nHP647ltiZts/3fuavdQnebEuLCcErOtcrYnpR0iaSH1JF1XqEitkWB++3vJP2VpBd62tqO6w2S/kfSP+dumzfZXl1AXACAGnSxaNsYEZcqdf+5xva72g5oGdynrcm5Gm6Q9EZJ6yWdkHRdbm87LlRvbPap7VdJ+oakT0XEM0u9tE/bSK5zBVrfFqXtN9vvl3QyIvYv9y192urYhudIulTSDRFxiaTntHTX/tb3LQBgeJ0r2iLieL49KWm3UveQp2yfL0n59mRL4S0WxzFJF/W87kJJx5sKKiKeiojnI+IFSTfq111qWo0LK1JkrlXF9kuVfvjfFhHfzM1jvc4VaXVbFLrfNkr6Y9tzSt1F3237KwXEdUzSsYh4KD/+ulIR13ZcAIAadKpos73a9rkL9yW9V9IjkvZIujK/7EpJd7UT4aJx7JH0Edsvt32xpLWS/rOpoBZ+AGQfVNpmrceFFSky16pg20rX+RyOiOt7nhrbda7QXklrbV9s+2VKA1fsaWLBpe63iPh0RFwYEZNK2+PBiPhYAXE9KenHtt+Um94j6dG24wIA1OOctgNo2ISk3em3gc6RdHtE3GN7r6Q7bV8t6UeSPlR3ILa/Kmla0hrbxyR9VtKOfnFExCHbdyr9hzwv6ZqIeL7BuKZtr1fqSjMn6RNNx4XhlZprNdoo6QpJB20fyG2f0XivcyUiYt72Nkn3Slol6ZaIONTQ4kdtv5UQ119Iui0X2Ecl/ZnSwdi24wIAVMwRdGkHAAAAgFJ1qnskAAAAAIwaijYAAAAAKBhFGwAAAAAUjKINAAAAAApG0QYAAAAABaNoAwAAAICCUbQBAAAAQMF+BTsjbWl3VcyYAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1849,19 +3699,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 149, "metadata": {}, "outputs": [], "source": [ "#Code task 29#\n", "#Use pandas' `read_html` method to read the table from the URL below\n", "states_url = 'https://simple.wikipedia.org/w/index.php?title=List_of_U.S._states&oldid=7168473'\n", - "usa_states = pd.___(___)" + "usa_states = pd.read_html(states_url)" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 150, "metadata": {}, "outputs": [ { @@ -1870,7 +3720,7 @@ "list" ] }, - "execution_count": 45, + "execution_count": 150, "metadata": {}, "output_type": "execute_result" } @@ -1881,7 +3731,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 151, "metadata": {}, "outputs": [ { @@ -1890,7 +3740,7 @@ "1" ] }, - "execution_count": 46, + "execution_count": 151, "metadata": {}, "output_type": "execute_result" } @@ -1901,7 +3751,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 152, "metadata": {}, "outputs": [ { @@ -1925,30 +3775,30 @@ " \n", " \n", " \n", - " Name &postal abbs. [1]\n", + " Name & postal abbs. [1]\n", " Cities\n", - " Established[upper-alpha 1]\n", - " Population[upper-alpha 2][3]\n", + " Established[A]\n", + " Population [B][3]\n", " Total area[4]\n", " Land area[4]\n", " Water area[4]\n", - " Numberof Reps.\n", + " Number of Reps.\n", " \n", " \n", " \n", - " Name &postal abbs. [1]\n", - " Name &postal abbs. [1].1\n", + " Name & postal abbs. [1]\n", + " Name & postal abbs. [1].1\n", " Capital\n", " Largest[5]\n", - " Established[upper-alpha 1]\n", - " Population[upper-alpha 2][3]\n", + " Established[A]\n", + " Population [B][3]\n", " mi2\n", " km2\n", " mi2\n", " km2\n", " mi2\n", " km2\n", - " Numberof Reps.\n", + " Number of Reps.\n", " \n", " \n", " \n", @@ -2037,32 +3887,32 @@ "" ], "text/plain": [ - " Name &postal abbs. [1] Cities \\\n", - " Name &postal abbs. [1] Name &postal abbs. [1].1 Capital Largest[5] \n", - "0 Alabama AL Montgomery Birmingham \n", - "1 Alaska AK Juneau Anchorage \n", - "2 Arizona AZ Phoenix Phoenix \n", - "3 Arkansas AR Little Rock Little Rock \n", - "4 California CA Sacramento Los Angeles \n", + " Name & postal abbs. [1] Cities \\\n", + " Name & postal abbs. [1] Name & postal abbs. [1].1 Capital Largest[5] \n", + "0 Alabama AL Montgomery Birmingham \n", + "1 Alaska AK Juneau Anchorage \n", + "2 Arizona AZ Phoenix Phoenix \n", + "3 Arkansas AR Little Rock Little Rock \n", + "4 California CA Sacramento Los Angeles \n", "\n", - " Established[upper-alpha 1] Population[upper-alpha 2][3] Total area[4] \\\n", - " Established[upper-alpha 1] Population[upper-alpha 2][3] mi2 \n", - "0 Dec 14, 1819 4903185 52420 \n", - "1 Jan 3, 1959 731545 665384 \n", - "2 Feb 14, 1912 7278717 113990 \n", - "3 Jun 15, 1836 3017804 53179 \n", - "4 Sep 9, 1850 39512223 163695 \n", + " Established[A] Population [B][3] Total area[4] Land area[4] \\\n", + " Established[A] Population [B][3] mi2 km2 mi2 \n", + "0 Dec 14, 1819 4903185 52420 135767 50645 \n", + "1 Jan 3, 1959 731545 665384 1723337 570641 \n", + "2 Feb 14, 1912 7278717 113990 295234 113594 \n", + "3 Jun 15, 1836 3017804 53179 137732 52035 \n", + "4 Sep 9, 1850 39512223 163695 423967 155779 \n", "\n", - " Land area[4] Water area[4] Numberof Reps. \n", - " km2 mi2 km2 mi2 km2 Numberof Reps. \n", - "0 135767 50645 131171 1775 4597 7 \n", - "1 1723337 570641 1477953 94743 245384 1 \n", - "2 295234 113594 294207 396 1026 9 \n", - "3 137732 52035 134771 1143 2961 4 \n", - "4 423967 155779 403466 7916 20501 53 " + " Water area[4] Number of Reps. \n", + " km2 mi2 km2 Number of Reps. \n", + "0 131171 1775 4597 7 \n", + "1 1477953 94743 245384 1 \n", + "2 294207 396 1026 9 \n", + "3 134771 1143 2961 4 \n", + "4 403466 7916 20501 53 " ] }, - "execution_count": 47, + "execution_count": 152, "metadata": {}, "output_type": "execute_result" } @@ -2081,19 +3931,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 154, "metadata": {}, "outputs": [], "source": [ "#Code task 30#\n", "#Use the iloc accessor to get the pandas Series for column number 4 from `usa_states`\n", "#It should be a column of dates\n", - "established = usa_sates.___[:, 4]" + "established = usa_states.iloc[:, 4]" ] }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 155, "metadata": {}, "outputs": [ { @@ -2149,37 +3999,112 @@ "47 Jun 20, 1863\n", "48 May 29, 1848\n", "49 Jul 10, 1890\n", - "Name: (Established[upper-alpha 1], Established[upper-alpha 1]), dtype: object" + "Name: (Established[A], Established[A]), dtype: object" + ] + }, + "execution_count": 155, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "established" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Extract the state name, population, and total area (square miles) columns." + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statestate_populationstate_area_sg_miles
0Alabama490318552420
1Alaska731545665384
2Arizona7278717113990
3Arkansas301780453179
4California39512223163695
\n", + "
" + ], + "text/plain": [ + " state state_population state_area_sg_miles\n", + "0 Alabama 4903185 52420\n", + "1 Alaska 731545 665384\n", + "2 Arizona 7278717 113990\n", + "3 Arkansas 3017804 53179\n", + "4 California 39512223 163695" ] }, - "execution_count": 49, + "execution_count": 163, "metadata": {}, "output_type": "execute_result" } ], - "source": [ - "established" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Extract the state name, population, and total area (square miles) columns." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], "source": [ "#Code task 31#\n", "#Now use the iloc accessor again to extract columns 0, 5, and 6 and the dataframe's `copy()` method\n", "#Set the names of these extracted columns to 'state', 'state_population', and 'state_area_sq_miles',\n", "#respectively.\n", - "usa_states_sub = usa_states.___[:, [___]].copy()\n", - "usa_states_sub.columns = [___]\n", + "usa_states_sub = usa_states.iloc[:, [0,5,6]].copy()\n", + "usa_states_sub.columns = ['state','state_population','state_area_sg_miles']\n", "usa_states_sub.head()" ] }, @@ -2192,14 +4117,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 164, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'Massachusetts', 'Pennsylvania', 'Rhode Island', 'Virginia'}" + ] + }, + "execution_count": 164, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 32#\n", "#Find the states in `state_summary` that are not in `usa_states_sub`\n", "#Hint: set(list1) - set(list2) is an easy way to get items in list1 that are not in list2\n", - "missing_states = ___(state_summary.state) - ___(usa_states_sub.state)\n", + "missing_states = set(state_summary.state) - set(usa_states_sub.state)\n", "missing_states" ] }, @@ -2219,21 +4155,21 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 165, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "20 Massachusetts[upper-alpha 3]\n", - "37 Pennsylvania[upper-alpha 3]\n", - "38 Rhode Island[upper-alpha 4]\n", - "45 Virginia[upper-alpha 3]\n", - "47 West Virginia\n", + "20 Massachusetts[C]\n", + "37 Pennsylvania[C]\n", + "38 Rhode Island[D]\n", + "45 Virginia[C]\n", + "47 West Virginia\n", "Name: state, dtype: object" ] }, - "execution_count": 52, + "execution_count": 165, "metadata": {}, "output_type": "execute_result" } @@ -2251,9 +4187,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 166, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "20 Massachusetts\n", + "37 Pennsylvania\n", + "38 Rhode Island\n", + "45 Virginia\n", + "47 West Virginia\n", + "Name: state, dtype: object" + ] + }, + "execution_count": 166, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 33#\n", "#Use pandas' Series' `replace()` method to replace anything within square brackets (including the brackets)\n", @@ -2262,20 +4214,31 @@ "#value='' #empty string as replacement\n", "#regex=True #we used a regex in our `to_replace` argument\n", "#inplace=True #Do this \"in place\"\n", - "usa_states_sub.state.___(to_replace=___, value=__, regex=___, inplace=___)\n", + "usa_states_sub.state.replace(to_replace='\\[.*\\]', value='', regex=True, inplace=True)\n", "usa_states_sub.state[usa_states_sub.state.str.contains('Massachusetts|Pennsylvania|Rhode Island|Virginia')]" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 168, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "set()" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 34#\n", "#And now verify none of our states are missing by checking that there are no states in\n", "#state_summary that are not in usa_states_sub (as earlier using `set()`)\n", - "missing_states = ___(state_summary.state) - ___(usa_states_sub.state)\n", + "missing_states = set(state_summary.state) - set(usa_states_sub.state)\n", "missing_states" ] }, @@ -2288,14 +4251,133 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 169, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
stateresorts_per_statestate_total_skiable_area_acstate_total_days_openstate_total_terrain_parksstate_total_nightskiing_acstate_populationstate_area_sg_miles
0Alaska32280.0345.04.0580.0731545665384
1Arizona21577.0237.06.080.07278717113990
2California2125948.02738.081.0587.039512223163695
3Colorado2243682.03258.074.0428.05758736104094
4Connecticut5358.0353.010.0256.035652785543
\n", + "
" + ], + "text/plain": [ + " state resorts_per_state state_total_skiable_area_ac \\\n", + "0 Alaska 3 2280.0 \n", + "1 Arizona 2 1577.0 \n", + "2 California 21 25948.0 \n", + "3 Colorado 22 43682.0 \n", + "4 Connecticut 5 358.0 \n", + "\n", + " state_total_days_open state_total_terrain_parks \\\n", + "0 345.0 4.0 \n", + "1 237.0 6.0 \n", + "2 2738.0 81.0 \n", + "3 3258.0 74.0 \n", + "4 353.0 10.0 \n", + "\n", + " state_total_nightskiing_ac state_population state_area_sg_miles \n", + "0 580.0 731545 665384 \n", + "1 80.0 7278717 113990 \n", + "2 587.0 39512223 163695 \n", + "3 428.0 5758736 104094 \n", + "4 256.0 3565278 5543 " + ] + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 35#\n", "#Use 'state_summary's `merge()` method to combine our new data in 'usa_states_sub'\n", "#specify the arguments how='left' and on='state'\n", - "state_summary = state_summary.___(usa_states_sub, ___=___, ___=___)\n", + "state_summary = state_summary.merge(usa_states_sub, how='left', on='state')\n", "state_summary.head()" ] }, @@ -2322,14 +4404,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 170, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAyt0lEQVR4nO3deZxcVZn/8c9T1UtCFghJCJCkTbAJTkAI0AOEmAyLigsQHZBhm6CiqD9B3CaAjjijowMyroM6ExEFZcBAlGRwQwGHLUQ60AkEhbQGSSeQpUkwDUmlu+v5/XFvVaqqb1VXd9fSy/f9esWuunXr1umirafOOc95jrk7IiIiALFqN0BERAYPBQUREUlTUBARkTQFBRERSVNQEBGRtJpqN2AgJk2a5DNmzKh2M0REhpTVq1dvd/fJUY8N6aAwY8YMmpubq90MEZEhxcz+ku8xDR+JiEiagoKIiKQpKIiISJqCgoiIpJUtKJjZzWa21cyezjg2x8weM7MWM2s2sxMyHrvGzFrN7FkzO6Nc7RIRkfzK2VP4IfC2nGNfAf7V3ecA14b3MbPZwPnAkeFzvmNm8TK2TURkyGrvSLBm407aOxIlv3bZUlLd/UEzm5F7GBgf3t4f2BzeXgjc4e4JYIOZtQInACvL1T4RkaFoecsmrlq2ltpYjM5kkq+cczRnz5lasutXep3Cx4Ffm9l/EPRSTg6PTwUeyzivLTzWg5ldBlwG0NDQULaGiogMNu0dCa5atpY9nUn2kARg8bK1zGucxMSx9SV5jUpPNH8E+IS7Twc+AXw/PG4R50Zu9ODuS9y9yd2bJk+OXJAnIjIste3YTW0s+2O7Nhajbcfukr1GpYPCJcBPw9t3EgwRQdAzmJ5x3jT2DS2JiAgwbcJoOpPJrGOdySTTJowu2WtUOihsBv4uvH0asD68vQI438zqzWwmcDjw+wq3TURkUJs4tp6vnHM0o2pjjKuvYVRtjK+cc3TJho6gjHMKZnY7cAowyczagM8DHwS+aWY1wB7CuQF3X2dmS4FngC7go+7eXa62iYgMVWfPmcq8xkm07djNtAmjSxoQAGwo79Hc1NTkKognItI3Zrba3ZuiHtOKZhERSVNQEBGRNAUFERFJU1AQEZE0BQURkQooZ72iUhrS23GKiAwF5a5XVErqKYiIlFFmvaJdiS72dCZZvGztoO0xKCiIiJRRJeoVlZKCgohIGVWiXlEpKSiIiJRRJeoVlZImmkVEyqzc9YpKSUFBRKQCJo6tH9TBIEXDRyIikqagICIiaQoKIiKSVragYGY3m9lWM3s65/gVZvasma0zs69kHL/GzFrDx84oV7tERCS/ck40/xC4Ebg1dcDMTgUWAke7e8LMDgqPzwbOB44EDgV+a2aztPuaiEhlla2n4O4PAi/nHP4IcJ27J8JztobHFwJ3uHvC3TcArcAJ5WqbiAxvQ6X43GBU6ZTUWcB8M/sSwR7Nn3b3x4GpwGMZ57WFx3ows8sI93ZuaGgob2tFZMgpVfG59o7EkFhXUGqVDgo1wATgJOBvgaVmdhhgEedGbh7t7kuAJRDs0VymdorIEJRZfG4PQWmJxcvWMq9xUp8+2IdSVdNSq3T2URvwUw/8HkgCk8Lj0zPOmwZsrnDbRGSIK0XxuaFW1bTUKh0U7gZOAzCzWUAdsB1YAZxvZvVmNhM4HPh9hdsmIkNcKYrPDbWqpqVWzpTU24GVwBFm1mZmlwI3A4eFaap3AJeEvYZ1wFLgGeBXwEeVeSQifVWK4nNDrappqZn70B2Wb2pq8ubm5mo3Q0QGmYFOEq9o2cTiYTynYGar3b0p6jEVxBORYWegxeeGUlXTUlNQEBGJMFSqmpaaah+JiEiagoKIiKQpKIiISJqCgoiIpCkoiIhImoKCiIikKSiIiEiagoKIiKQpKIiISJqCgoiIpCkoiIhImoKCiIikKSiIiEiagoKIiKSVc+e1m81sa7jLWu5jnzYzN7NJGceuMbNWM3vWzM4oV7tERCS/cvYUfgi8LfegmU0H3gK8kHFsNnA+cGT4nO+YWbyMbRORQai9I8GajTtp70hUuykjVtk22XH3B81sRsRDXwcWA8szji0E7nD3BLDBzFqBEwj2eBaREWB5yyauGsZbYA4VFZ1TMLOzgU3uvibnoanAxoz7beGxqGtcZmbNZta8bdu2MrVURCqpvSPBVcvWsqczya5EF3s6kyxetlY9hiqoWFAws/2AzwLXRj0cccyjruPuS9y9yd2bJk+eXMomikiVtO3YTW0s++OoNhajbcfuKrVo5KrkHs2vB2YCa8wMYBrwhJmdQNAzmJ5x7jRgcwXbJiJVNG3CaDqTyaxjnckk0yaMrlKLRq6K9RTc/Sl3P8jdZ7j7DIJAcJy7vwSsAM43s3ozmwkcDvy+Um0TkcrIN5E8cWw9XznnaEbVxhhXX8Oo2hhfOedoJo6tr1JLR66y9RTM7HbgFGCSmbUBn3f370ed6+7rzGwp8AzQBXzU3bvL1TYRqbzeJpLPnjOVeY2TaNuxm2kTRisgVIm5Rw7dDwlNTU3e3Nxc7WaISC/aOxLMu/5+9nTuGyIaVRvjkatO04d/FZjZandvinpMK5pFpOw0kTx0KCiISNlpInnoUFAQkbLTRPLQUcmUVBEZwTSRPDQoKIhIxUwcW69gMMhp+EhERNIUFEREJE1BQURE0hQUREQkTUFBRHrVumUXdzVvpHXLrmo3RcpM2UciUtC1dz/FrY+lN0pk0dwGvrDwjVVskZSTegoiklfrll1ZAQHg1pUvqMcwjOXtKZjZgYWe6O4vl745IjKYtGzcmfd445RxlW2MVESh4aPVBLufGdAA7AhvHwC8QLBhjogMY3OmH9Cn4zL05R0+cveZ7n4Y8GvgLHef5O4TgTOBn1aqgSJSPY1TxrFobkPWsUVzG9RLGMZ63U8hrLt9fM6x5ny1uDPOuZkggGx196PCYzcAZwF7gT8B73P3neFj1wCXAt3Ax9z91701XvspiFRG65ZdtGzcyZzpByggDAMD3U9hu5n9s5nNMLPXmdlngfYinvdD4G05x34DHOXuRwPPAdeEDZwNnA8cGT7nO2YWL+I1REaUfNtZ9kdf0kwbp4zj3KbpCggjQDEpqRcAnwd+Ft5/MDxWkLs/aGYzco7dm3H3MeDc8PZC4A53TwAbzKwVOAFYWUT7REaE3raz7AulmUo+vfYU3P1ld7/S3Y8N/11Zosyj9wO/DG9PBTZmPNYWHuvBzC4zs2Yza962bVsJmiEy+LV3JLhq2Vr2dCbZlehiT2eSxcvW9qvHoDRTKaTXoGBms8xsiZnda2b3p/4N5EXDIagu4LbUoYjTIic73H2Juze5e9PkyZMH0gyRIaOU21kWSjMVKWb46E7gv4CbCCaBB8TMLiGYgD7d981ytwHTM06bBmwe6GuJDBcD2c6yvSORtbGN0kylkGKCQpe7f7cUL2ZmbwOuAv7O3V/LeGgF8D9m9jXgUOBw4PeleE2R4SC1neXinDmFQhvWtHckuG3VC3z7gfXUxeNZ8xCL5jZw68rsOQVNIgsUl5L6L8BWgonm9ABmb/MKZnY7cAowCdhCMFl9DVDPvuylx9z9w+H5nyWYZ+gCPu7uv8y9Zi6lpMpIk/utP5/lLZtYfNdaEl3ZvYtRtTEeueo0Jo6tV5rpCFYoJbWYoLAh4rCHC9uqSkFBpKf2jgTzrr+fPZ3JHo+Nq6/hxx84kWM0VDSiFQoKvQ4fubvKWYgMIalJ6T30DArFzkPIyFVM9tF+4eK1JeH9w83szPI3TUT6I2pSGqC+xnqdhxApZkXzDwjKUpwc3m8D/q1sLRKRAUlNSo+qjTGuvob6mhifesssHr369H4vdpORo5jso9e7+z+Y2QUA7r7bzKLWFYhIhfQ24Xz2nKnMa5xU1KS0SKZigsJeMxtNuJjMzF5PRhaSiFRWseUuJo6tVzCQPitm+OjzwK+A6WZ2G3AfsLisrRKRSKUsdyESpZiewmrg74GTCMpRXAkoqVmkCqIyi1LlLtQrkFIopqfwv0Cnu//c3e8BJofHRKTCBlLuQqQYxQSFLwP/a2ZjzOx44C7g4vI2S0Si5GYWjaqNKc1USqqYxWs/N7Nagg1yxgHvcvf1ZW+ZiERSZpGUU96gYGb/SXb56vHAn4ErzAx3/1i5GycyEhVT30iZRVIuhXoKuUWFVpezISJS2t3VRPojb1Bw91tSt8N1Cg3u/mxFWiUyAmWmm6ayixYvW8u8xknqFUjFFFP76CyghWCtAmY2x8xWlLldIiNOKXdXE+mvYrKP/gU4AdgJ4O4tgCqnipSY0k1lMCgmKHS5+ys5xwpvwgCY2c1mttXMns44dqCZ/cbM1oc/J2Q8do2ZtZrZs2Z2RvG/gsjwoHRTGQyKWdH8tJldCMTN7HDgY8CjRTzvh8CNwK0Zx64G7nP368zs6vD+VWY2GzgfOJJgO87fmtksdx/wntAiQ4nSTaXaiukpXEHwYZ0A/gd4Bfh4b09y9weB3C07FwKpCexbgHdlHL/D3RPuvgFoJRiyEimb9o4EazbuzFs3qLfHi9W8oZ2v3fsszRvaez+ZoMdwzPQDFBCkKopZvPYa8Fkz+7K7vzrA15vi7i+G133RzA4Kj08FHss4ry08JlKUYvcuTukt9bNUqaEX3/QYD7cGweBb97cyv3EiP/rASX2+jkilFJN9dLKZPQP8Ibx/jJl9p8TtiNqfIXLewswuM7NmM2vetm1biZshQ9Hylk3Mu/5+Lr5pFfOuv58VLZsKnt9bpdFSVSJt3tCeDggpD7W2F91jEKmGYoaPvg6cAbQDuPsaYEE/X2+LmR0CEP7cGh5vA6ZnnDcN2Bx1AXdf4u5N7t40efLkfjZDhov+fID3lvpZqtTQB9dv79NxkcGgmKCAu2/MOdTfCeAVwCXh7UuA5RnHzzezejObCRwO/L6fryEjSH8+wHtL/RxIamjmPMSCwydFnpPvuMhgUExQ2GhmJwNuZnVm9mnCoaRCzOx2YCVwhJm1mdmlwHXAW8xsPfCW8D7uvg5YCjxDsEjuo8o8kmL05wM8lfpZF4f6eIy6OFmpn/1NDc0dxtr8yh7mN07MOmd+40SaZk7McwWR6jP3wksOzGwS8E3gzQRj//cCV7p71QdGm5qavLk5t0STjDQrWjaxuI+Twtfe/RS3PvZC+v6iuQ18YeEbs87py+R1e0eCedffz57OfQFqVG2MR646jQ3bOnhw/XYWHD5JAUEGBTNb7e5NUY8VqpK6HHiYYE3C+9x9b5naJzIgmbn9Y+rivLq3m/aOROQHeXtHgpV/as8KCAC3rnyBRSfNoHHKvk0F+1KJtNCOaE0z1TuQoaNQSur3gJOBLwFvNLNngUcIgsSj7r6lAu2TEawv39Qnjq3n4dbt6TTSvd1JLj+1kQtPbEg/N5Vm6snoa7Rs3JkVFPrSJpWokOGiUJXUe4B7AMwsDhwLnALcQFD7KF6B9skI1dd1AlEVRr/6m+e48YH13HDuMcxrnJR+PJ850w/od5tS8xC5w1hagCZDTcHFa+F8wsnhv5OAUcBvCSaQRcqiPyWko4ZvABJdzuJla1nyj8dHPp6yaG4DE8bUsWbjzsieSTFtUokKGQ4KzSmsJyhpsQz4NfBv7t5RqYbJyFVofD7fB23U8E3mc8F6PF4Xh8+84294U+Nk1r34V+Zdf39kL6C9I8EDf9xK3KzHdXPbpB3RZKgr1FO4maB3cA7wRuAoM1sJPKl0USmngaSZfmppC7kjRJ3JJEceOj5yeOfsOVPz9gKSySR3PL6RJ17YSV1NjFf3dve4ruYMZLgpNKfw76nbZjaLYAjpg8B8M9vm7n9XgfbJCNTf8fmlzRuzAoIBdTWWfm6+4Z2onsmeziQfX7o2fX9v976AMKYuTre75gxkWOq1IJ6ZHUZQsfREgp7DZODPZW6XjHB9HZ+PqjPkQO6IUtTwTqGhp1xj6uP861lHcuobDlJAkGEp74pmM/uZmb0I/BI4HVgNXODuk939zEo1UIanfGWpM4/3pYR0vnpCnUnvtRZSqmdSX9P7Av/upCsgyLBWqKfwA4Lhog5335P5gJnVu/vAiszLiJUvtXMg5aoXHD6Jb93fGvlYb5PUEPRMDtivjg//aDWvdUZPmdXFTUNGMuzl/Wrk7ivcfTvRu6wpJVX6pHXLLu5q3kjzhvbIqqatW3YNqFx108yJPeoMpeSbEE61qXXLLgCOPHQ8yTw7zTYcOIqV15zerz0VRIaSQimpBxNsdDPazI5l354H44H9KtA2GSZy6wzVxnumdrZs3NlrGmpvK5x/9IGTaN7Qzvce+jMPPLuN+pp43knqD93azK+f2bcoP1X7KHOCe09nN8e/bgIfnD+T02cfXJL3QmSwKzR8dAbwXoK9Db6WcXwX8JkytkmGkdYtu3rUGerszv423plMMmf6AQXTUIsdWkrVGcoXQNo7Ely4ZCXPbs3eRDBV+0gL0GSkK5SSegtwi5md4+7LKtgmGUZaNu6MPF4bN0ZlfJNvnDIubxpqf1Y4R2UZLW/ZxKcj1jFktrVxyjgtQJMRrdDw0Sejbqe4+9dyj4nkyldP6PYPnEhtTTzr23hf1hEUM3mcKRVYCpQ+6rX2kchIUGj4qHC5SJEiNE4Zx6K5Ddy6MnvvgnylpItdR1DsauL7nnmJe5/ZQuNBYwvWPnrbkVN6rZAqMhL0uslOWV7U7BPABwjWFz0FvI9g8vonwAzgeeA8d99R6DraZGfoaN2yi5aNO5kz/YB+ffj2dSOd5g3tXPajZl5+ravXax/fsD/L/t+b+twmkaGq0CY7xey89gPomafn7u/vZ2OmEmzeM9vdd5vZUuAXwGzgZXe/zsyuBia4+1WFrqWgUF192e+gN8UEjWJe7+4nNvKFe57JGwxqDEbX1bCns4vT3zCFD8yfqQ1wZMTp185rGe7JuD0KeDeweYBtqiFIde0k6CFsBq4h2K8B4Bbgd0DBoCDV0d6R4LZVL/DtB9ZTF48Xvd9Bvg/0YrbGLKZNb/3a/9H+WmfB88485hDeN+8wZRaJ5NFrUMjNPDKz2wn2VOgXd99kZv8BvADsBu5193vNbIq7vxie86KZHRT1fDO7DLgMoKGhob/NkH5a3rKJxXetJdEVjM0nuoJv5IWygQqlk0alrEZtjVnoGstbNvHJO1oopnTvWUcfyjGaUBbJq/diLz0dDvT709jMJgALCXZvOxQYY2YXF/t8d1/i7k3u3jR58uT+NkP6IZXBkwoImVLZQPmeE7WCec3GnTzcGl2zKDOVNd812jsStHckWHzXmqICwhFTxmgRmkgviqmSuotgTsHCny8xsGGdNwMb3H1beP2fEpTl3mJmh4S9hEOArQN4DSmDfLubQf5soKjneNJ5x38+TH08RqIr+uM8Mz20UErq/z23jURX4Xmxg8bV8e/vfqMCgkgRihk+KnWe3gvASWa2H8Hw0elAM/AqcAlwXfhzeYlfd8QYaKZPpsy5gHwlputrsgvF5T5nT84Hf6LbAWdv2OOIGSQzPtcXzW3IanfU6ya6uuns6ubbD0QXwQMYUxvjlvefoIlkkT4otHjtuEJPdPcn+vOC7r7KzO4CngC6gCeBJcBYYKmZXUoQON7Tn+uPdKWYtE2JGsfPXHW8tzvJ5ac2cuGJDemAkPucz505m94y3MbU1fDvf38UezqTkYEsVdr603e20J2EbodYzLjwplXEYtbjeq+fNIYrTns97zpuer9+b5GRLG9Kqpk9EN4cBTQBawiGkI4GVrl71RO7lZKarXXLLt789Qd7HP/tJxb0ucfQ3pFg3vX3sydjCfCo2hiPXHUaQN66QrnPqauJURuzHltZZkpdt1A2UG6wy6e+JsajVxe+lshIVygltVDp7FPd/VTgL8Bx4eTu8cCxQP4+u1RNvjpD+Y4XkhrHz5RZWiJq85uo58QM9uYMH9XEgg/vcfU1jKqN9bpHQfOG9rwBoT5u1GVc64Zztd+ByEAUs07hDe7+VOqOuz9tZnPK1yTpr3y1e/pT0yffOP6YuniPNQep+2Pq4j2es6czSW3cqIk5o2tr0sNQxVQiTa2H+NZ9z+Vtp8WMn1/+Jl7d2621ByIlUExQ+IOZ3QT8mCD76GLgmbK2SvolX52h/kw2p8bxFy9biyedRLcTixlv/9ZDuO/7gD/v+GksXd2WnkM4r2kaP3l8Y1ZGUGe3U18T41NvncWbGiel25M79JQKEjte3cvNjzzPnc0vFCxgVxcnXWFVREqjmDIXo4CPAPMJ5hSeAGa4+6Xlb15hmlPYJ/dDtVTZR80b2rngplU99kDIZ1RtjP849xgWL1vLaznzCPvVxkniPVY/Z05Ov7q3KysTKZ93HnUwX3jXUeoZiPTDgMpcuPuecNL5EOAfgAnAXaVtouRTTL2fqCyhc5sGnnmzvGUTn1raQsRatbxqYzHGj64lGfFlI7X3cebq56i9EgqpiRt3fOBEpZmKlEmhlNRZwPnABUA7QQVT3P2UirRMitptrD8b0BSjvSPBJ37SUtS39kydySRHHjo+PfQUM+vRY8icsG7bsZtEoTGiDPU1wUSyAoJI+RTqKfwReAg4y91bIV3yWiqgtw/7VA/ild2dRW9AU6jXkfvYyj9tjwwI8ZhhZMwpNE1jaXNbj93SUhvmrNv8Ch+8tTl7jiFj9fNTG3f0LMGbozYGHzt9VtZ6CBEpj0JB4RyCnsIDZvYr4A6COQWpgEKlHR5u3Z7uQeztTvaoRdSR6OpRcqLHorJ3zuaoqfszbcLorOulPthffnVvZLs++ebDOf+EhqwAcuXpsyKDzcSx9SyYdRA3hHMMmdcH+NZ96/nGb/JnFgGcNHMC377oeAUDkQoptEfzz4CfmdkY4F3AJ4ApZvZd4Gfufm9lmjgy5dttbExdvNcxeAd2vLo3q+xE7nM+e/fTjK2P09mdJOlBhlBmj+TH7z8h8tonzjywx+5ove1pnLvN5sOt2zn5uvsjC+tlOr5hf+740MkFzxGR0uq1Sqq7v+rut7n7mcA0oAW4utwNG07aOxKs2biT9o5E0ee37djN5945m1G12Yu8Xt3b3WOBWJQVazanXy9qURlAR6KbRJf3yCyqjcWorYmzaG52MdyamHHR93/PipZNRf0eUXa8ujdvpdWUifvVcNeHTtJuaCJVUMw6hTR3fxn47/CfFKGYyeJC53/uzNkcdej+WQvFoorS5fr+wxtY8tCf0wvFinlOSnrMP2ewvyvpdCWdT925pk8T2Zm/U6KrO7JeEUDc4KvvOVo1i0SqqD/7KUiRCu0DUOz5X7znmR5j9R89pZG6eOHpnVf3dqdfD4JFXvU1+Z9TF8/ukWzY1pG3tERnt7Nu8ytF9YBat+zin+5ck/6d9nZ7Vm2klPoa4+v/MEcBQaTK+tRTkL4pNFkc9S27t/Mzv3E7Tl08mGjed64Rj1vWh27q+WfPmcoB+9Vy6S3NkQvRPvOON3Bsw4T0mP/533us4O/26J/auexHqwv2gG577C98/n/X0ZXzevVxw82oj0dXWhWR6lFQKKN8k8VRm9H0dn70Iq/sc2MxyF0zlvl6Rx66f96VyanyE6nXKTQHHDf4wSPPk+iKTpdt3bKL7/6ulWVPRm/lrXpFIoOXho/KKFU/KHeyON+HYKHzoyaLe1YIPYYbzs3/ejvypJke37B/uhxGvknpXJYzEpXqkVx791O8+esP5g0IdXFL1yuKqrQqItVVlZ6CmR0A3AQcRTCd+X7gWYJV0zOA54Hz3H1HNdrXF72VochNx+ztQzDf+VG9iHzfuGcfMj6y9lG+EtprN/2V9o4EE8fWM23CaPZ2Z69AjhmYk94HuduhO2de4LXOLp7auKPgngc1ceMXH5uvAnYig1i1ho++CfzK3c81szpgP+AzwH3ufp2ZXU2Q9jqQvaDLrtjMot7y+Is5f+LYes5rmpZVAfW8pmk9PmALtSlfCe2YWXre4uHW7T2Gjox9ASElNS/QFa5z6E7CP68oXDz3X886UgFBZJCr+PCRmY0HFgDfB3D3ve6+E1gI3BKedgvBgrlBq6+ZRaV4vaXNbVnHlja30bplVzoDqLc2NU4Zx9nH9Ny8PtGVpLOrmwef28biu9bSnVPfImoawmLGeccdWlRtpNoYfOndR3HRSa8r/hcWkaqoRk/hMGAb8AMzOwZYDVwJTHH3FwHc/UUzOyjqyWZ2GXAZQENDQ9QpFdHXzKJyvJ4nnXd86yFq4jG6k87lpzbS1Z39Nb+rO5luU+uWXTz5l509rl0TgwtvWkVNLNbrKuP9auN0e5K4OT/+fVvBc0ElrkWGmmoEhRrgOOAKd19lZt+kDyuk3X0JsASC/RTK08Te9TWzqByvlwi/wqfmAL7x2+d6fKvvSkJnV3fBPY6DOOA95hJy1dfEuOTk1/G9h/5Moiv/ed8472i6kpRkPwcRqaxqZB+1AW3uviq8fxdBkNhiZocAhD+3VqFtRetrZlGpX682YvFavn1wVm14ueAEcG9/BPVxoy5unPnGg/n+wxsKpqvOb5zIu46bzrlN0xUQRIagivcU3P0lM9toZke4+7PA6QTbez4DXAJcF/5cXum29VVfM4tK+XobX36Ny29/siTXNSOrpEV9jfHV98xh/OhaDt1/FF/9zXP88umX8qaZplx56mF84oy/KUmbRKQ6qrVO4QrgNjNbC8wBvkwQDN5iZuuBt4T3B72JY+sL5tv3tRhesc97w8HjqMn5r1cTCzKSMi2a28AZR/acXM70hYVHZfV4bjj3GM485lAWzJrM05t28sunX+q1vYeMr1NAEBkGqpKS6u4tQNT+oKdXuCll1ddieKk1D09veoUv/vyZHs/Lvd6FJzbwk8c3ErcY3Z7khnOPwYG7n2zDiOEkaXrdgTROGceiuQ1Z6axGEES+et4czp4zlbcddXBWj6e9I8H7f/g4a9peiWxrfU2MZDLJEQeP4wNvmqmaRSLDhHnEXrpDRVNTkzc3N1e7GZHaOxLMu/7+rDpEo2pjPHLVaZG9itQHfk3M6EhkT/iOqo1xz+Vv4swbH+5xvXsyFq8Bka+ZOqezq5vn219jxsT9qK2J5x3yWt6yiX+6c21WXaVcN14wh7mvH9iWnyJSHWa22t2jvpir9lG59CVlNXN9QZTaWIyWjTt7XC+GsfmVPSyYNRmANRHnALzjWw9RXxNP9zqi9jhO9VJSm/gUCgiL5jZw5jH5ezwiMnQpKJRJX1JWowJI7vPmTD+gx/Ve6+zmg7c2c8O5wfDStAmj2d2ZnSuaCjR7u4PjmYXrUord7wCCdFMNFYkMXyqIVyZ9SVmNCiAAY+ri6ec1ThkXuSdCoit71bLlVqrLkeqtpOSugs633wHsSzcVkeFLPYUyKjZlNRVA/umutcRjRnfSufas7B3XUtc7YL9aPvzjJ3ht7755h8wP+lE1cTq7868sS/VW7n5iI/c89RJHHTq+Ry8lc7+DRFeSU4+YzAfnz4wcdhKR4UVBYYDyVUnNHKMvhqf+14NFA+Pqazgmo4Bd65ZdtGzcyYyJ+5HMSQ7IHJbKHT6KGdTGjbr4vjmFBdffx6udwTV++4eeawS134HIyKWgQO/lr/PJl3KaOg7BmH593LCY5U1JTQ3hJLqcVD3ST9+1ltmHjAfg2uXrePTP7enz5zdO5PG/7Mh63VQaqeWsRIvHjJ9fMT+dffSe/34sd+vl4Dxgv/qa9PW0GllkZBrxQaGvawlSonZCW7ws+CDPzSRKdDt0e+QkL8C6za8Qy5kL2NuV5M1ffzDytR9qbeeuD51EbU2cMXVxXt3bTXtHgnWbX6E2HqMzo4bRqJo4v3t2K3c8/gKt217L+/u8adYkPvmWI9QzEBnhRnRQyPfBHvXBnStfymlU6mjm47kpqctbNrH4rjVhL6F4z7e/Rm1NLB3Q9nR1k0x6j/pHHYku/u0Xf+z1eu+ec2jWcJWIjEwjOvsoauvJ3OycfPKlnEaljmY+npmSmj1s1DcT9qvNyhrq7O4ZEGpiFjlUlGtMrSmrSESAER4UeltLUKj+UL6U01Tq6KjaGKNqg7e3Lqwy+rl3zs7qJbTt2I0Xs0tNDgP++NKuXvdS7iri2jUG6774jj63QUSGpxE9fJT6YF+cM6cwcWx9UXMN+VJOM4+v+nM7N9z7LDUx4wv3rGPcqJr0dTq7utN7IvSFAzfc+xzxAovMenPA6DgfWfB6PnTq4f2+hogMP6p9RM/so77WLSp03RO//Nus/QdqYrDqM2/m4dbt/NOda9jbj6CQqb4mRl08Rkeiq6ihoinj67jt0pOUXSQygqn2US8mjq3vMazT3602MwPMus1/7bEhTVcS7l33Ep9bvq6o4Z3eXHTCdH617iV2FdoKLfRvZ8/m4pNnDvg1RWT4UlCI0N+tNnOHnN43b0bkef9899N5d0nrq5sf/UtR5y2a26CAICK9GtETzfn0Z6vN3BpCezqT3Pzwhj5tm1kTI73VZk2M9ET1QMyaPIbffmIBX1j4xgFfS0SGv6r1FMwsDjQDm9z9TDM7EPgJMAN4HjjP3XdUq31nz5nK7EPG07JxZ1Eb0EcNOdXF41y24DBufKCVeMzo6nYMj5xcronBr65ckLU3QqpMxi+ffokbH2glUWhz5BwHj6vjxguPU70iEemTag4fXQn8ARgf3r8auM/drzOzq8P7V1WrcX1d6ZxvyOntRx0cLgpz9quNc+FNq3o8ty4O//GeOT0CT6pncsWUccw+ZBwfvW01e7p7PL2HM448iP/+x7/t/UQRkRxVCQpmNg14J/Al4JPh4YXAKeHtW4DfUaWg0N+Vzh89pZEbH1hPXTzO3u5uTnvDZN75nw9RF4+zu7MLMwvSSLud+riBGZef2siFJzYUvO7FNz3Gw63teR9PmTV5DN+5+HhlFolIv1Wrp/ANYDGQ+ek1xd1fBHD3F83soKgnmtllwGUADQ0NZWlcX7OPMnsVYMw/fBL3/XErv3hqCwCJrlRmkNMZDh25Gb+44k29foA3b2gvGBBOO2ISR009gAWHT9JQkYgMWMWDgpmdCWx199Vmdkpfn+/uS4AlEKxTKG3rAoWyj6LWNOT2Kn7x9Eu9vkZ9PMare3sfC3pw/faCj1904us4ffbBvV5HRKQY1cg+mgecbWbPA3cAp5nZj4EtZnYIQPizZ6H/CsmXffRw63bmXX8/F9+0innX38+Klk2R9ZOKUUyKK8CCwyflfeyIKWMUEESkpCreU3D3a4BrAMKewqfd/WIzuwG4BLgu/Lm80m3LlFvCAkivcs6cZ/jx+08gUWCT+yj1NdEprqmNdDKznZpmTmR+40QeyhhCOmhsHf/+929UQBCRkhtMi9euA5aa2aXAC8B7qtyerJXOazbupCai1tCFN60idTS1ruC8pmksbW4jZpa1bSZAbQy+t6iJBbMmZx2/9u6nuPWxF9L3F81tSK8t+NEHTqJ5QzsPrt+uuQMRKauqBgV3/x1BlhHu3g6cXs32FPL0plfoSGR/wOducJ9MOr/42Hwap4zjytNnsfJP7Vx++5NZ53Qm4dD9R2Uda92yKysgANy68gUWnTQjq8egYCAi5aYVzUVo70jwxZ8/0+N4Xc5q5fqaeHryeOLYesaPjo65m1/J3q+hZePOyPPyHRcRKRcFhSJETSbvV9fzrcudPP7r7ugidU/8ZQdfu/dZmjcE8wRz8ux4lu+4iEi5KCgUISpFNenw+bOOLFgfKV9P4Rv3tfKt+1s5978f4x9veozGKeNYNDd7zcWiuQ1ahCYiFTeYJpoHncw1CVGb8Zw9ZypvO+rgHpvspBx56P7Uxi29YC3KQ63tNG9o5wsL38iik2YUXWtJRKQcFBTyiKp99MhVp/UIALl7MWSaOLaeC06Yzq0rX4h8POXB9dtpmjmRxinjFAxEpKo0fBQhqgz24mVrAThm+gFF777W3pFgaXNbr+cVWqAmIlJJCgoRoiaWU7WPBnqd3JUO8xuVaioig4eGjyL0d+e1Yq5TXxvj2xccy5q2V7QQTUQGHfUUIvRn57W+XOf02QfzybceoYAgIoOOuZel0GhFNDU1eXNzc9mun1sRtdTnFPNcEZFSM7PV7t4U9ZiGjwoolFkExe/OFnWdvu7sJiJSCRo+6qd8GUrtHYmyPldEpJwUFPppIBlKpcpuEhEpNQWFfhpIhlKpsptEREpNQaGfBpKhVKrsJhGRUqt49pGZTQduBQ4GksASd/+mmR0I/ASYATwPnOfuOwpdayDZR8Vk/kTthNaf6wykDSIipTbYso+6gE+5+xNmNg5YbWa/Ad4L3Ofu15nZ1cDVwFXlaEAxmT+FdkLL1FuGUiEDea6ISDlUfPjI3V909yfC27uAPwBTgYXALeFptwDvKsfrF5P5k28ntNYtu8rRJBGRQaOqcwpmNgM4FlgFTHH3FyEIHMBBeZ5zmZk1m1nztm3b+vyaxWT+aCc0ERmpqhYUzGwssAz4uLv/tdjnufsSd29y96bJkyf3+XWjMn/2dnfzyu696d6CdkITkZGqKkHBzGoJAsJt7v7T8PAWMzskfPwQYGs5Xjs386cmFuyi9tHbnmTe9fezomWTdkITkRGrGtlHRjBn8LK7fzzj+A1Ae8ZE84HuvrjQtQaafbRu81/54K3NJLr29RxG1cZ45KrTmDi2vqjsIxGRoWawZR/NA/4ReMrMWsJjnwGuA5aa2aXAC8B7ytmIiWPr2X90LXXxWFZQSM0vTBxbr53QRGTEqXhQcPeH6bnXTMrplWyLVhaLiGQb0SuatbJYRCTbiC+dffacqcxrnKSVxSIiKCgAWlksIpIyooePREQkm4KCiIikKSiIiEiagoKIiKQpKIiISFrFy1yUkpltA/5S7XYAk4Dt1W5EPwzVdsPQbftQbTcM3bar3T29zt0jK4oO6aAwWJhZc746IoPZUG03DN22D9V2w9Btu9rdNxo+EhGRNAUFERFJU1AojSXVbkA/DdV2w9Bt+1BtNwzdtqvdfaA5BRERSVNPQURE0hQUREQkTUGhD8xsupk9YGZ/MLN1ZnZlePxfzGyTmbWE/95R7bZGMbPnzeypsI3N4bEDzew3ZrY+/Dmh2u3MZGZHZLyvLWb2VzP7+GB9z83sZjPbamZPZxzL+x6b2TVm1mpmz5rZGdVpdd5232BmfzSztWb2MzM7IDw+w8x2Z7z3/1WtdoftiWp73r+PQf6e/ySjzc+ndqes6Hvu7vpX5D/gEOC48PY44DlgNvAvwKer3b4i2v88MCnn2FeAq8PbVwPXV7udBdofB14CXjdY33NgAXAc8HRv73H4t7MGqAdmAn8C4oOo3W8FasLb12e0e0bmedX+l6ftkX8fg/09z3n8q8C1lX7P1VPoA3d/0d2fCG/vAv4ATK1uqwZsIXBLePsW4F3Va0qvTgf+5O6DYRV7JHd/EHg553C+93ghcIe7J9x9A9AKnFCJduaKare73+vuXeHdx4BpFW9YEfK85/kM6vc8xcwMOA+4vaKNQsNH/WZmM4BjgVXhocvDbvbNg20IJoMD95rZajO7LDw2xd1fhCDoAQdVrXW9O5/s/5MMhfcc8r/HU4GNGee1MXi/ZLwf+GXG/Zlm9qSZ/Z+Zza9Wo3oR9fcxVN7z+cAWd1+fcawi77mCQj+Y2VhgGfBxd/8r8F3g9cAc4EWCbt9gNM/djwPeDnzUzBZUu0HFMrM64GzgzvDQUHnPC7GIY4MuR9zMPgt0AbeFh14EGtz9WOCTwP+Y2fhqtS+PfH8fQ+I9By4g+wtQxd5zBYU+MrNagoBwm7v/FMDdt7h7t7snge9Rpe5ob9x9c/hzK/AzgnZuMbNDAMKfW6vXwoLeDjzh7ltg6LznoXzvcRswPeO8acDmCretIDO7BDgTuMjDwe1w6KU9vL2aYFx+VvVa2VOBv4+h8J7XAH8P/CR1rJLvuYJCH4TjfN8H/uDuX8s4fkjGae8Gns59brWZ2RgzG5e6TTCJ+DSwArgkPO0SYHl1WtirrG9OQ+E9z5DvPV4BnG9m9WY2Ezgc+H0V2hfJzN4GXAWc7e6vZRyfbGbx8PZhBO3+c3VaGa3A38egfs9Dbwb+6O5tqQMVfc+rMes+VP8BbyLoaq4FWsJ/7wB+BDwVHl8BHFLttka0/TCCrIs1wDrgs+HxicB9wPrw54HVbmtE2/cD2oH9M44NyvecIHC9CHQSfCu9tNB7DHyW4Fvfs8DbB1m7WwnG31N/6/8VnntO+De0BngCOGsQvud5/z4G83seHv8h8OGccyv2nqvMhYiIpGn4SERE0hQUREQkTUFBRETSFBRERCRNQUFERNIUFGTYMbN3m5mb2RvyPP47Myu4IXpYZfPT4e33mtmh4e2FZnZ3xnnXmFlrxv2zzGxFP9r8XjO7sYjzOvp6bZG+UFCQ4egC4GGCWkml8F7g0PD2o8DcjMfmAn81s1Q9o5OBR0r0uiIVp6Agw0pYl2oewQKm88Njo83sjrA42k+A0Rnnd2TcPtfMfphzvXOBJuC2sLZ9B/CKmTWGp0wlKHtycnj/ZODRcAXqMjN7PPw3L7zemLBA2+NhcbOFEb/DO81spZlNMrOZ4e3HzeyLmb+nmd1nZk9YsEfGwvD4Fy3c5yO8/yUz+1i/3kwZkRQUZLh5F/Ard38OeNnMjgM+Arzm7kcDXwKOL/Zi7n4X0ExQ+2eOu+8m6C2cbGZHEKxSfiy8XwMcDTwOfBP4urv/LcFq1JvCS34WuD88fipwQ1h2BAiGvgj2XHiHu28Pr/Pd8PyXMpq2B3i3BwUOTwW+mlGG5ZLwWjGCwHgbIkWqqXYDRErsAuAb4e07wvuHA98CcPe1ZrZ2gK/xCEGPIA6sJKidcy1BKfVn3X2Pmb0ZmB18TgMwPqw99Vbg7NR8BTAKaAhvn0rQK3mrB9V3Iej1nBPe/hHBZjcQVPv8cljpNknQY5ni7s+bWbuZHQtMAZ70sJCaSDEUFGTYMLOJwGnAUWbmBB/aDjxJ/vLImcdHFflSjwJXhNf/nrvvMrNRwCnsm0+IAXPDnkVmGw04x92fzTl+IkGBs8MIql8252ljykXAZOB4d+80s+cz2n8TwTzIwcDNRf5OIoCGj2R4ORe41d1f5+4z3H06sIGggNhFAGZ2FMEQT8oWM/ubcKjl3Xmuu4tg+9WUZwgmnucTBBwICsZ9mCBgANwLXJ56gpnNCW/+GrgiDA6E3+hT/kJQMvlWMzsyPPYI+ybML8o4d39gaxgQTiXYojTlZ8DbgL8NX0+kaAoKMpxcQPCBmGkZwf62Y8Nho8Vkl0q+GrgHuJ+gYmWUHwL/ZcGG6aM9qCK5Ctju7p3hOSsJvuWngsLHgKZwcvsZgoAB8EWgFlhrwYbt6cljgLAHcRFwp5m9HriSYEOkxwkCQcpt4fWbw/P/mHGNvcADwFJ3787zO4lEUpVUkWEm7PU8AbzHs7dzFOmVegoiw4iZzSbYB+E+BQTpD/UUREQkTT0FERFJU1AQEZE0BQUREUlTUBARkTQFBRERSfv/xgpsJjgDGfkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "#Code task 36#\n", "#Use ski_data's `plot()` method to create a scatterplot (kind='scatter') with 'AdultWeekday' on the x-axis and\n", "#'AdultWeekend' on the y-axis\n", - "ski_data.___(x=___, y=___, kind=___);" + "ski_data.plot(x='AdultWeekday', y='AdultWeekend', kind='scatter');" ] }, { @@ -2341,13 +4436,118 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 171, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AdultWeekendAdultWeekday
14142.042.0
14263.063.0
14349.049.0
14448.048.0
14546.046.0
14639.039.0
14750.050.0
14867.067.0
14947.047.0
15039.039.0
15181.081.0
\n", + "
" + ], + "text/plain": [ + " AdultWeekend AdultWeekday\n", + "141 42.0 42.0\n", + "142 63.0 63.0\n", + "143 49.0 49.0\n", + "144 48.0 48.0\n", + "145 46.0 46.0\n", + "146 39.0 39.0\n", + "147 50.0 50.0\n", + "148 67.0 67.0\n", + "149 47.0 47.0\n", + "150 39.0 39.0\n", + "151 81.0 81.0" + ] + }, + "execution_count": 171, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 37#\n", "#Use the loc accessor on ski_data to print the 'AdultWeekend' and 'AdultWeekday' columns for Montana only\n", - "ski_data.___[ski_data.state == ___, [___, ___]]" + "ski_data.loc[ski_data.state == 'Montana', ['AdultWeekend', 'AdultWeekday']]" ] }, { @@ -2359,7 +4559,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 172, "metadata": {}, "outputs": [ { @@ -2370,7 +4570,7 @@ "dtype: int64" ] }, - "execution_count": 58, + "execution_count": 172, "metadata": {}, "output_type": "execute_result" } @@ -2388,12 +4588,35 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 177, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0 85.0\n", + "1 53.0\n", + "2 34.0\n", + "3 89.0\n", + "4 78.0\n", + " ... \n", + "323 48.0\n", + "326 42.0\n", + "327 59.0\n", + "328 49.0\n", + "329 49.0\n", + "Name: AdultWeekend, Length: 277, dtype: float64" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "ski_data.drop(columns='AdultWeekday', inplace=True)\n", - "ski_data.dropna(subset=['AdultWeekend'], inplace=True)" + "#ski_data.drop(columns='AdultWeekday', inplace=True)\n", + "ski_data.dropna(subset=['AdultWeekend'], inplace=True)\n", + "ski_data['AdultWeekend']" ] }, { @@ -2439,7 +4662,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 178, "metadata": {}, "outputs": [ { @@ -2536,7 +4759,7 @@ "39 4 16.0" ] }, - "execution_count": 61, + "execution_count": 178, "metadata": {}, "output_type": "execute_result" } @@ -2556,7 +4779,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 179, "metadata": {}, "outputs": [ { @@ -2565,7 +4788,7 @@ "array([ 0., 4., 8., 12., 16., 20.])" ] }, - "execution_count": 62, + "execution_count": 179, "metadata": {}, "output_type": "execute_result" } @@ -2583,7 +4806,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 180, "metadata": {}, "outputs": [ { @@ -2598,7 +4821,7 @@ "Name: %, dtype: int64" ] }, - "execution_count": 63, + "execution_count": 180, "metadata": {}, "output_type": "execute_result" } @@ -2616,7 +4839,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 181, "metadata": {}, "outputs": [ { @@ -2678,7 +4901,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 182, "metadata": {}, "outputs": [ { @@ -2687,7 +4910,7 @@ "(277, 25)" ] }, - "execution_count": 65, + "execution_count": 182, "metadata": {}, "output_type": "execute_result" } @@ -2705,9 +4928,18 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 183, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Directory ../data was created.\n", + "Writing file. \"../data/ski_data_cleaned.csv\"\n" + ] + } + ], "source": [ "# save the data to a new csv file\n", "datapath = '../data'\n", @@ -2716,9 +4948,17 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 184, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing file. \"../data/state_summary.csv\"\n" + ] + } + ], "source": [ "# save the state_summary separately.\n", "datapath = '../data'\n", @@ -2745,11 +4985,18 @@ "source": [ "**A: 3** Your answer here" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the data wrangling process, the data info is firstly inspected. " + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -2763,7 +5010,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.9.12" }, "toc": { "base_numbering": 1, From 655cf6cdc53073c06fa958f9143f82596e1b7de5 Mon Sep 17 00:00:00 2001 From: JIahui-01 <52976459+JIahui-01@users.noreply.github.com> Date: Tue, 25 Apr 2023 00:27:33 -0500 Subject: [PATCH 2/7] Delete 02_data_wrangling.ipynb For push file to orign --- Notebooks/02_data_wrangling.ipynb | 5060 ----------------------------- 1 file changed, 5060 deletions(-) delete mode 100644 Notebooks/02_data_wrangling.ipynb diff --git a/Notebooks/02_data_wrangling.ipynb b/Notebooks/02_data_wrangling.ipynb deleted file mode 100644 index 1cd389c10..000000000 --- a/Notebooks/02_data_wrangling.ipynb +++ /dev/null @@ -1,5060 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 2 Data wrangling" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.1 Contents\n", - "* [2 Data wrangling](#2_Data_wrangling)\n", - " * [2.1 Contents](#2.1_Contents)\n", - " * [2.2 Introduction](#2.2_Introduction)\n", - " * [2.2.1 Recap Of Data Science Problem](#2.2.1_Recap_Of_Data_Science_Problem)\n", - " * [2.2.2 Introduction To Notebook](#2.2.2_Introduction_To_Notebook)\n", - " * [2.3 Imports](#2.3_Imports)\n", - " * [2.4 Objectives](#2.4_Objectives)\n", - " * [2.5 Load The Ski Resort Data](#2.5_Load_The_Ski_Resort_Data)\n", - " * [2.6 Explore The Data](#2.6_Explore_The_Data)\n", - " * [2.6.1 Find Your Resort Of Interest](#2.6.1_Find_Your_Resort_Of_Interest)\n", - " * [2.6.2 Number Of Missing Values By Column](#2.6.2_Number_Of_Missing_Values_By_Column)\n", - " * [2.6.3 Categorical Features](#2.6.3_Categorical_Features)\n", - " * [2.6.3.1 Unique Resort Names](#2.6.3.1_Unique_Resort_Names)\n", - " * [2.6.3.2 Region And State](#2.6.3.2_Region_And_State)\n", - " * [2.6.3.3 Number of distinct regions and states](#2.6.3.3_Number_of_distinct_regions_and_states)\n", - " * [2.6.3.4 Distribution Of Resorts By Region And State](#2.6.3.4_Distribution_Of_Resorts_By_Region_And_State)\n", - " * [2.6.3.5 Distribution Of Ticket Price By State](#2.6.3.5_Distribution_Of_Ticket_Price_By_State)\n", - " * [2.6.3.5.1 Average weekend and weekday price by state](#2.6.3.5.1_Average_weekend_and_weekday_price_by_state)\n", - " * [2.6.3.5.2 Distribution of weekday and weekend price by state](#2.6.3.5.2_Distribution_of_weekday_and_weekend_price_by_state)\n", - " * [2.6.4 Numeric Features](#2.6.4_Numeric_Features)\n", - " * [2.6.4.1 Numeric data summary](#2.6.4.1_Numeric_data_summary)\n", - " * [2.6.4.2 Distributions Of Feature Values](#2.6.4.2_Distributions_Of_Feature_Values)\n", - " * [2.6.4.2.1 SkiableTerrain_ac](#2.6.4.2.1_SkiableTerrain_ac)\n", - " * [2.6.4.2.2 Snow Making_ac](#2.6.4.2.2_Snow_Making_ac)\n", - " * [2.6.4.2.3 fastEight](#2.6.4.2.3_fastEight)\n", - " * [2.6.4.2.4 fastSixes and Trams](#2.6.4.2.4_fastSixes_and_Trams)\n", - " * [2.7 Derive State-wide Summary Statistics For Our Market Segment](#2.7_Derive_State-wide_Summary_Statistics_For_Our_Market_Segment)\n", - " * [2.8 Drop Rows With No Price Data](#2.8_Drop_Rows_With_No_Price_Data)\n", - " * [2.9 Review distributions](#2.9_Review_distributions)\n", - " * [2.10 Population data](#2.10_Population_data)\n", - " * [2.11 Target Feature](#2.11_Target_Feature)\n", - " * [2.11.1 Number Of Missing Values By Row - Resort](#2.11.1_Number_Of_Missing_Values_By_Row_-_Resort)\n", - " * [2.12 Save data](#2.12_Save_data)\n", - " * [2.13 Summary](#2.13_Summary)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.2 Introduction" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This step focuses on collecting your data, organizing it, and making sure it's well defined. Paying attention to these tasks will pay off greatly later on. Some data cleaning can be done at this stage, but it's important not to be overzealous in your cleaning before you've explored the data to better understand it." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.2.1 Recap Of Data Science Problem" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The purpose of this data science project is to come up with a pricing model for ski resort tickets in our market segment. Big Mountain suspects it may not be maximizing its returns, relative to its position in the market. It also does not have a strong sense of what facilities matter most to visitors, particularly which ones they're most likely to pay more for. This project aims to build a predictive model for ticket price based on a number of facilities, or properties, boasted by resorts (*at the resorts).* \n", - "This model will be used to provide guidance for Big Mountain's pricing and future facility investment plans." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.2.2 Introduction To Notebook" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Notebooks grow organically as we explore our data. If you used paper notebooks, you could discover a mistake and cross out or revise some earlier work. Later work may give you a reason to revisit earlier work and explore it further. The great thing about Jupyter notebooks is that you can edit, add, and move cells around without needing to cross out figures or scrawl in the margin. However, this means you can lose track of your changes easily. If you worked in a regulated environment, the company may have a a policy of always dating entries and clearly crossing out any mistakes, with your initials and the date.\n", - "\n", - "**Best practice here is to commit your changes using a version control system such as Git.** Try to get into the habit of adding and committing your files to the Git repository you're working in after you save them. You're are working in a Git repository, right? If you make a significant change, save the notebook and commit it to Git. In fact, if you're about to make a significant change, it's a good idea to commit before as well. Then if the change is a mess, you've got the previous version to go back to.\n", - "\n", - "**Another best practice with notebooks is to try to keep them organized with helpful headings and comments.** Not only can a good structure, but associated headings help you keep track of what you've done and your current focus. Anyone reading your notebook will have a much easier time following the flow of work. Remember, that 'anyone' will most likely be you. Be kind to future you!\n", - "\n", - "In this notebook, note how we try to use well structured, helpful headings that frequently are self-explanatory, and we make a brief note after any results to highlight key takeaways. This is an immense help to anyone reading your notebook and it will greatly help you when you come to summarise your findings. **Top tip: jot down key findings in a final summary at the end of the notebook as they arise. You can tidy this up later.** This is a great way to ensure important results don't get lost in the middle of your notebooks." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this, and subsequent notebooks, there are coding tasks marked with `#Code task n#` with code to complete. The `___` will guide you to where you need to insert code." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.3 Imports" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Placing your imports all together at the start of your notebook means you only need to consult one place to check your notebook's dependencies. By all means import something 'in situ' later on when you're experimenting, but if the imported dependency ends up being kept, you should subsequently move the import statement here with the rest." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "#Code task 1#\n", - "#Import pandas, matplotlib.pyplot, and seaborn in the correct lines below\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "import os\n", - "\n", - "from library.sb_utils import save_file\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.4 Objectives" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There are some fundamental questions to resolve in this notebook before you move on.\n", - "\n", - "* Do you think you may have the data you need to tackle the desired question?\n", - " * Have you identified the required target value?\n", - " * Do you have potentially useful features?\n", - "* Do you have any fundamental issues with the data?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.5 Load The Ski Resort Data" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# the supplied CSV data file is the raw_data directory\n", - "ski_data = pd.read_csv('../raw_data/ski_resort_data.csv')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Good first steps in auditing the data are the info method and displaying the first few records with head." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 330 entries, 0 to 329\n", - "Data columns (total 27 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 Name 330 non-null object \n", - " 1 Region 330 non-null object \n", - " 2 state 330 non-null object \n", - " 3 summit_elev 330 non-null int64 \n", - " 4 vertical_drop 330 non-null int64 \n", - " 5 base_elev 330 non-null int64 \n", - " 6 trams 330 non-null int64 \n", - " 7 fastEight 164 non-null float64\n", - " 8 fastSixes 330 non-null int64 \n", - " 9 fastQuads 330 non-null int64 \n", - " 10 quad 330 non-null int64 \n", - " 11 triple 330 non-null int64 \n", - " 12 double 330 non-null int64 \n", - " 13 surface 330 non-null int64 \n", - " 14 total_chairs 330 non-null int64 \n", - " 15 Runs 326 non-null float64\n", - " 16 TerrainParks 279 non-null float64\n", - " 17 LongestRun_mi 325 non-null float64\n", - " 18 SkiableTerrain_ac 327 non-null float64\n", - " 19 Snow Making_ac 284 non-null float64\n", - " 20 daysOpenLastYear 279 non-null float64\n", - " 21 yearsOpen 329 non-null float64\n", - " 22 averageSnowfall 316 non-null float64\n", - " 23 AdultWeekday 276 non-null float64\n", - " 24 AdultWeekend 279 non-null float64\n", - " 25 projectedDaysOpen 283 non-null float64\n", - " 26 NightSkiing_ac 187 non-null float64\n", - "dtypes: float64(13), int64(11), object(3)\n", - "memory usage: 69.7+ KB\n" - ] - } - ], - "source": [ - "#Code task 2#\n", - "#Call the info method on ski_data to see a summary of the data\n", - "ski_data.info()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`AdultWeekday` is the price of an adult weekday ticket. `AdultWeekend` is the price of an adult weekend ticket. The other columns are potential features." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This immediately raises the question of what quantity will you want to model? You know you want to model the ticket price, but you realise there are two kinds of ticket price!" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
NameRegionstatesummit_elevvertical_dropbase_elevtramsfastEightfastSixesfastQuads...LongestRun_miSkiableTerrain_acSnow Making_acdaysOpenLastYearyearsOpenaverageSnowfallAdultWeekdayAdultWeekendprojectedDaysOpenNightSkiing_ac
0Alyeska ResortAlaskaAlaska3939250025010.002...1.01610.0113.0150.060.0669.065.085.0150.0550.0
1Eaglecrest Ski AreaAlaskaAlaska26001540120000.000...2.0640.060.045.044.0350.047.053.090.0NaN
2Hilltop Ski AreaAlaskaAlaska2090294179600.000...1.030.030.0150.036.069.030.034.0152.030.0
3Arizona SnowbowlArizonaArizona115002300920000.010...2.0777.0104.0122.081.0260.089.089.0122.0NaN
4Sunrise Park ResortArizonaArizona11100180092000NaN01...1.2800.080.0115.049.0250.074.078.0104.080.0
\n", - "

5 rows × 27 columns

\n", - "
" - ], - "text/plain": [ - " Name Region state summit_elev vertical_drop \\\n", - "0 Alyeska Resort Alaska Alaska 3939 2500 \n", - "1 Eaglecrest Ski Area Alaska Alaska 2600 1540 \n", - "2 Hilltop Ski Area Alaska Alaska 2090 294 \n", - "3 Arizona Snowbowl Arizona Arizona 11500 2300 \n", - "4 Sunrise Park Resort Arizona Arizona 11100 1800 \n", - "\n", - " base_elev trams fastEight fastSixes fastQuads ... LongestRun_mi \\\n", - "0 250 1 0.0 0 2 ... 1.0 \n", - "1 1200 0 0.0 0 0 ... 2.0 \n", - "2 1796 0 0.0 0 0 ... 1.0 \n", - "3 9200 0 0.0 1 0 ... 2.0 \n", - "4 9200 0 NaN 0 1 ... 1.2 \n", - "\n", - " SkiableTerrain_ac Snow Making_ac daysOpenLastYear yearsOpen \\\n", - "0 1610.0 113.0 150.0 60.0 \n", - "1 640.0 60.0 45.0 44.0 \n", - "2 30.0 30.0 150.0 36.0 \n", - "3 777.0 104.0 122.0 81.0 \n", - "4 800.0 80.0 115.0 49.0 \n", - "\n", - " averageSnowfall AdultWeekday AdultWeekend projectedDaysOpen \\\n", - "0 669.0 65.0 85.0 150.0 \n", - "1 350.0 47.0 53.0 90.0 \n", - "2 69.0 30.0 34.0 152.0 \n", - "3 260.0 89.0 89.0 122.0 \n", - "4 250.0 74.0 78.0 104.0 \n", - "\n", - " NightSkiing_ac \n", - "0 550.0 \n", - "1 NaN \n", - "2 30.0 \n", - "3 NaN \n", - "4 80.0 \n", - "\n", - "[5 rows x 27 columns]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 3#\n", - "#Call the head method on ski_data to print the first several rows of the data\n", - "ski_data.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The output above suggests you've made a good start getting the ski resort data organized. You have plausible column headings. You can already see you have a missing value in the `fastEight` column" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.6 Explore The Data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.6.1 Find Your Resort Of Interest" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Your resort of interest is called Big Mountain Resort. Check it's in the data:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
151
NameBig Mountain Resort
RegionMontana
stateMontana
summit_elev6817
vertical_drop2353
base_elev4464
trams0
fastEight0.0
fastSixes0
fastQuads3
quad2
triple6
double0
surface3
total_chairs14
Runs105.0
TerrainParks4.0
LongestRun_mi3.3
SkiableTerrain_ac3000.0
Snow Making_ac600.0
daysOpenLastYear123.0
yearsOpen72.0
averageSnowfall333.0
AdultWeekday81.0
AdultWeekend81.0
projectedDaysOpen123.0
NightSkiing_ac600.0
\n", - "
" - ], - "text/plain": [ - " 151\n", - "Name Big Mountain Resort\n", - "Region Montana\n", - "state Montana\n", - "summit_elev 6817\n", - "vertical_drop 2353\n", - "base_elev 4464\n", - "trams 0\n", - "fastEight 0.0\n", - "fastSixes 0\n", - "fastQuads 3\n", - "quad 2\n", - "triple 6\n", - "double 0\n", - "surface 3\n", - "total_chairs 14\n", - "Runs 105.0\n", - "TerrainParks 4.0\n", - "LongestRun_mi 3.3\n", - "SkiableTerrain_ac 3000.0\n", - "Snow Making_ac 600.0\n", - "daysOpenLastYear 123.0\n", - "yearsOpen 72.0\n", - "averageSnowfall 333.0\n", - "AdultWeekday 81.0\n", - "AdultWeekend 81.0\n", - "projectedDaysOpen 123.0\n", - "NightSkiing_ac 600.0" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 4#\n", - "#Filter the ski_data dataframe to display just the row for our resort with the name 'Big Mountain Resort'\n", - "#Hint: you will find that the transpose of the row will give a nicer output. DataFrame's do have a\n", - "#transpose method, but you can access this conveniently with the `T` property.\n", - "ski_data[ski_data.Name == \"Big Mountain Resort\"].T" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It's good that your resort doesn't appear to have any missing values." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.6.2 Number Of Missing Values By Column" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Count the number of missing values in each column and sort them." - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
count%
Name00.000000
total_chairs00.000000
double00.000000
triple00.000000
quad00.000000
fastQuads00.000000
fastSixes00.000000
surface00.000000
trams00.000000
base_elev00.000000
vertical_drop00.000000
summit_elev00.000000
state00.000000
Region00.000000
yearsOpen10.303030
SkiableTerrain_ac30.909091
Runs41.212121
LongestRun_mi51.515152
averageSnowfall144.242424
Snow Making_ac4613.939394
projectedDaysOpen4714.242424
TerrainParks5115.454545
daysOpenLastYear5115.454545
AdultWeekend5115.454545
AdultWeekday5416.363636
NightSkiing_ac14343.333333
fastEight16650.303030
\n", - "
" - ], - "text/plain": [ - " count %\n", - "Name 0 0.000000\n", - "total_chairs 0 0.000000\n", - "double 0 0.000000\n", - "triple 0 0.000000\n", - "quad 0 0.000000\n", - "fastQuads 0 0.000000\n", - "fastSixes 0 0.000000\n", - "surface 0 0.000000\n", - "trams 0 0.000000\n", - "base_elev 0 0.000000\n", - "vertical_drop 0 0.000000\n", - "summit_elev 0 0.000000\n", - "state 0 0.000000\n", - "Region 0 0.000000\n", - "yearsOpen 1 0.303030\n", - "SkiableTerrain_ac 3 0.909091\n", - "Runs 4 1.212121\n", - "LongestRun_mi 5 1.515152\n", - "averageSnowfall 14 4.242424\n", - "Snow Making_ac 46 13.939394\n", - "projectedDaysOpen 47 14.242424\n", - "TerrainParks 51 15.454545\n", - "daysOpenLastYear 51 15.454545\n", - "AdultWeekend 51 15.454545\n", - "AdultWeekday 54 16.363636\n", - "NightSkiing_ac 143 43.333333\n", - "fastEight 166 50.303030" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 5#\n", - "#Count (using `.sum()`) the number of missing values (`.isnull()`) in each column of \n", - "#ski_data as well as the percentages (using `.mean()` instead of `.sum()`).\n", - "#Order them (increasing or decreasing) using sort_values\n", - "#Call `pd.concat` to present these in a single table (DataFrame) with the helpful column names 'count' and '%'\n", - "missing = pd.concat([ski_data.isnull().sum(), 100 * ski_data.isnull().mean()], axis=1)\n", - "missing.columns=['count','%']\n", - "missing.sort_values(by='count')\n", - "#missing.columns=[___, ___]\n", - "#missing.___(by=___)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`fastEight` has the most missing values, at just over 50%. Unfortunately, you see you're also missing quite a few of your desired target quantity, the ticket price, which is missing 15-16% of values. `AdultWeekday` is missing in a few more records than `AdultWeekend`. What overlap is there in these missing values? This is a question you'll want to investigate. You should also point out that `isnull()` is not the only indicator of missing data. Sometimes 'missingness' can be encoded, perhaps by a -1 or 999. Such values are typically chosen because they are \"obviously\" not genuine values. If you were capturing data on people's heights and weights but missing someone's height, you could certainly encode that as a 0 because no one has a height of zero (in any units). Yet such entries would not be revealed by `isnull()`. Here, you need a data dictionary and/or to spot such values as part of looking for outliers. Someone with a height of zero should definitely show up as an outlier!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.6.3 Categorical Features" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So far you've examined only the numeric features. Now you inspect categorical ones such as resort name and state. These are discrete entities. 'Alaska' is a name. Although names can be sorted alphabetically, it makes no sense to take the average of 'Alaska' and 'Arizona'. Similarly, 'Alaska' is before 'Arizona' only lexicographically; it is neither 'less than' nor 'greater than' 'Arizona'. As such, they tend to require different handling than strictly numeric quantities. Note, a feature _can_ be numeric but also categorical. For example, instead of giving the number of `fastEight` lifts, a feature might be `has_fastEights` and have the value 0 or 1 to denote absence or presence of such a lift. In such a case it would not make sense to take an average of this or perform other mathematical calculations on it. Although you digress a little to make a point, month numbers are also, strictly speaking, categorical features. Yes, when a month is represented by its number (1 for January, 2 for Februrary etc.) it provides a convenient way to graph trends over a year. And, arguably, there is some logical interpretation of the average of 1 and 3 (January and March) being 2 (February). However, clearly December of one years precedes January of the next and yet 12 as a number is not less than 1. The numeric quantities in the section above are truly numeric; they are the number of feet in the drop, or acres or years open or the amount of snowfall etc." - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
NameRegionstate
0Alyeska ResortAlaskaAlaska
1Eaglecrest Ski AreaAlaskaAlaska
2Hilltop Ski AreaAlaskaAlaska
3Arizona SnowbowlArizonaArizona
4Sunrise Park ResortArizonaArizona
............
325Meadowlark Ski LodgeWyomingWyoming
326Sleeping Giant Ski ResortWyomingWyoming
327Snow King ResortWyomingWyoming
328Snowy Range Ski & Recreation AreaWyomingWyoming
329White Pine Ski AreaWyomingWyoming
\n", - "

330 rows × 3 columns

\n", - "
" - ], - "text/plain": [ - " Name Region state\n", - "0 Alyeska Resort Alaska Alaska\n", - "1 Eaglecrest Ski Area Alaska Alaska\n", - "2 Hilltop Ski Area Alaska Alaska\n", - "3 Arizona Snowbowl Arizona Arizona\n", - "4 Sunrise Park Resort Arizona Arizona\n", - ".. ... ... ...\n", - "325 Meadowlark Ski Lodge Wyoming Wyoming\n", - "326 Sleeping Giant Ski Resort Wyoming Wyoming\n", - "327 Snow King Resort Wyoming Wyoming\n", - "328 Snowy Range Ski & Recreation Area Wyoming Wyoming\n", - "329 White Pine Ski Area Wyoming Wyoming\n", - "\n", - "[330 rows x 3 columns]" - ] - }, - "execution_count": 48, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 6#\n", - "#Use ski_data's `select_dtypes` method to select columns of dtype 'object'\n", - "ski_data.select_dtypes(include='object')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You saw earlier on that these three columns had no missing values. But are there any other issues with these columns? Sensible questions to ask here include:\n", - "\n", - "* Is `Name` (or at least a combination of Name/Region/State) unique?\n", - "* Is `Region` always the same as `state`?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 2.6.3.1 Unique Resort Names" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Crystal Mountain 2\n", - "Alyeska Resort 1\n", - "Brandywine 1\n", - "Boston Mills 1\n", - "Alpine Valley 1\n", - "Name: Name, dtype: int64" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 7#\n", - "#Use pandas' Series method `value_counts` to find any duplicated resort names\n", - "ski_data['Name'].value_counts().head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You have a duplicated resort name: Crystal Mountain." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Q: 1** Is this resort duplicated if you take into account Region and/or state as well?" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Alyeska Resort, Alaska 1\n", - "Snow Trails, Ohio 1\n", - "Brandywine, Ohio 1\n", - "Boston Mills, Ohio 1\n", - "Alpine Valley, Ohio 1\n", - "dtype: int64" - ] - }, - "execution_count": 53, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 8#\n", - "#Concatenate the string columns 'Name' and 'Region' and count the values again (as above)\n", - "(ski_data['Name'] + ', ' + ski_data['Region']).value_counts().head()" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Alyeska Resort, Alaska 1\n", - "Snow Trails, Ohio 1\n", - "Brandywine, Ohio 1\n", - "Boston Mills, Ohio 1\n", - "Alpine Valley, Ohio 1\n", - "dtype: int64" - ] - }, - "execution_count": 55, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 9#\n", - "#Concatenate 'Name' and 'state' and count the values again (as above)\n", - "(ski_data['Name'] + ', ' + ski_data['state']).value_counts().head()" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (2636742558.py, line 1)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m Input \u001b[0;32mIn [56]\u001b[0;36m\u001b[0m\n\u001b[0;31m **NB** because you know `value_counts()` sorts descending, you can use the `head()` method and know the rest of the counts must be 1.\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "source": [ - "**NB** because you know `value_counts()` sorts descending, you can use the `head()` method and know the rest of the counts must be 1." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**A: 1** Your answer here" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
NameRegionstatesummit_elevvertical_dropbase_elevtramsfastEightfastSixesfastQuads...LongestRun_miSkiableTerrain_acSnow Making_acdaysOpenLastYearyearsOpenaverageSnowfallAdultWeekdayAdultWeekendprojectedDaysOpenNightSkiing_ac
104Crystal MountainMichiganMichigan113237575700.001...0.3102.096.0120.063.0132.054.064.0135.056.0
295Crystal MountainWashingtonWashington7012310044001NaN22...2.52600.010.0NaN57.0486.099.099.0NaNNaN
\n", - "

2 rows × 27 columns

\n", - "
" - ], - "text/plain": [ - " Name Region state summit_elev vertical_drop \\\n", - "104 Crystal Mountain Michigan Michigan 1132 375 \n", - "295 Crystal Mountain Washington Washington 7012 3100 \n", - "\n", - " base_elev trams fastEight fastSixes fastQuads ... LongestRun_mi \\\n", - "104 757 0 0.0 0 1 ... 0.3 \n", - "295 4400 1 NaN 2 2 ... 2.5 \n", - "\n", - " SkiableTerrain_ac Snow Making_ac daysOpenLastYear yearsOpen \\\n", - "104 102.0 96.0 120.0 63.0 \n", - "295 2600.0 10.0 NaN 57.0 \n", - "\n", - " averageSnowfall AdultWeekday AdultWeekend projectedDaysOpen \\\n", - "104 132.0 54.0 64.0 135.0 \n", - "295 486.0 99.0 99.0 NaN \n", - "\n", - " NightSkiing_ac \n", - "104 56.0 \n", - "295 NaN \n", - "\n", - "[2 rows x 27 columns]" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ski_data[ski_data['Name'] == 'Crystal Mountain']" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "So there are two Crystal Mountain resorts, but they are clearly two different resorts in two different states. This is a powerful signal that you have unique records on each row." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 2.6.3.2 Region And State" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What's the relationship between region and state?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You know they are the same in many cases (e.g. both the Region and the state are given as 'Michigan'). In how many cases do they differ?" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "297" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 10#\n", - "#Calculate the number of times Region does not equal state\n", - "(ski_data.Region == ski_data.state).sum()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You know what a state is. What is a region? You can tabulate the distinct values along with their respective frequencies using `value_counts()`." - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "New York 33\n", - "Michigan 29\n", - "Sierra Nevada 22\n", - "Colorado 22\n", - "Pennsylvania 19\n", - "Wisconsin 16\n", - "New Hampshire 16\n", - "Vermont 15\n", - "Minnesota 14\n", - "Idaho 12\n", - "Montana 12\n", - "Massachusetts 11\n", - "Washington 10\n", - "New Mexico 9\n", - "Maine 9\n", - "Wyoming 8\n", - "Utah 7\n", - "Salt Lake City 6\n", - "North Carolina 6\n", - "Oregon 6\n", - "Connecticut 5\n", - "Ohio 5\n", - "Virginia 4\n", - "West Virginia 4\n", - "Illinois 4\n", - "Mt. Hood 4\n", - "Alaska 3\n", - "Iowa 3\n", - "South Dakota 2\n", - "Arizona 2\n", - "Nevada 2\n", - "Missouri 2\n", - "Indiana 2\n", - "New Jersey 2\n", - "Rhode Island 1\n", - "Tennessee 1\n", - "Maryland 1\n", - "Northern California 1\n", - "Name: Region, dtype: int64" - ] - }, - "execution_count": 62, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ski_data['Region'].value_counts()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A casual inspection by eye reveals some non-state names such as Sierra Nevada, Salt Lake City, and Northern California. Tabulate the differences between Region and state. On a note regarding scaling to larger data sets, you might wonder how you could spot such cases when presented with millions of rows. This is an interesting point. Imagine you have access to a database with a Region and state column in a table and there are millions of rows. You wouldn't eyeball all the rows looking for differences! Bear in mind that our first interest lies in establishing the answer to the question \"Are they always the same?\" One approach might be to ask the database to return records where they differ, but limit the output to 10 rows. If there were differences, you'd only get up to 10 results, and so you wouldn't know whether you'd located all differences, but you'd know that there were 'a nonzero number' of differences. If you got an empty result set back, then you would know that the two columns always had the same value. At the risk of digressing, some values in one column only might be NULL (missing) and different databases treat NULL differently, so be aware that on many an occasion a seamingly 'simple' question gets very interesting to answer very quickly!" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "state Region \n", - "California Sierra Nevada 20\n", - " Northern California 1\n", - "Nevada Sierra Nevada 2\n", - "Oregon Mt. Hood 4\n", - "Utah Salt Lake City 6\n", - "Name: Region, dtype: int64" - ] - }, - "execution_count": 72, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 11#\n", - "#Filter the ski_data dataframe for rows where 'Region' and 'state' are different,\n", - "#group that by 'state' and perform `value_counts` on the 'Region'\n", - "(ski_data[ski_data.Region != ski_data.state]\n", - " .groupby(\"state\")['Region']\n", - " .value_counts())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The vast majority of the differences are in California, with most Regions being called Sierra Nevada and just one referred to as Northern California." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 2.6.3.3 Number of distinct regions and states" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Region 38\n", - "state 35\n", - "dtype: int64" - ] - }, - "execution_count": 75, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 12#\n", - "#Select the 'Region' and 'state' columns from ski_data and use the `nunique` method to calculate\n", - "#the number of unique values in each\n", - "ski_data[['Region', 'state']].nunique()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Because a few states are split across multiple named regions, there are slightly more unique regions than states." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 2.6.3.4 Distribution Of Resorts By Region And State" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If this is your first time using [matplotlib](https://matplotlib.org/3.2.2/index.html)'s [subplots](https://matplotlib.org/3.2.2/api/_as_gen/matplotlib.pyplot.subplots.html), you may find the online documentation useful." - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAHwCAYAAAAy11lrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACmHElEQVR4nOzdeZhdRZ3/8ffHgGyBoMIoIBB1QGQN0qCsBgZxQxHBAURlUREdzA8UHEZmMOq4siMoAwwEkE1WkV2BsG8dCAkgbhBHFpFFImGJED6/P6ouubnc3tLd6e7k83qefnJvnTp16jYP93Sdqvp+ZZuIiIiIiIi+eN1QdyAiIiIiIkaeDCQiIiIiIqLPMpCIiIiIiIg+y0AiIiIiIiL6LAOJiIiIiIjoswwkIiIiIiKizzKQiFjISFpN0ixJo4a6LxEREbHwykAiYghJmiHphfqH/18kTZI0uj9t2v4/26NtzxmofkZExMgmaaKkn/Wh/nhJDw9mn2Lky0AiYuh91PZoYBywIfAfQ9udiIiIiJ5lIBExTNj+C3AVZUCBpPdKukXSM5LukTS+UVfS2yTdIOlZSb+WdHzjSZOksZIsabH6fmVJl0h6WtIfJH2hqZ2Jkn4u6fTa1n2SOhbgx46IiAEm6d8lPVK/138r6SPAN4Bd6gz4PbXeXpJ+U+s9KOmLtXwZ4Apg5Vp/Vr2XvE7SwZL+KOmpev9449B90hhqGUhEDBOS3gp8CPiDpFWAy4D/Bt4IHAhcIGnFWv0s4A7gTcBE4DPdNH028DCwMrAz8D1J/9J0/GPAOcDywCXAcQPziSIiYkGT9E5gP2Bj28sCHwAeAL4HnFuXvm5Qq/8V2B5YDtgLOErSu20/R7kfPVrrj7b9KDAB+DjwPso95W/A8Qvu08Vwk4FExNC7WNKzwJ8pX+rfBD4NXG77ctuv2P4V0Al8WNJqwMbAobb/YfsmygDgNSStCmwB/LvtF21PBU5m3oHHTfU6c4AzgA1e21JERIwQc4AlgLUlLW57hu0/tqto+zLbf3RxPXA1sGU3bX8ROMT2w7ZnUx5k7dyYAY9FTwYSEUPv4/Wp0XhgLWAFYHXgk3VZ0zOSnqEMCFaiPAV62vbzTW38uYu2G3WfbSr7E7BK0/u/NL1+HlgyN4WIiJHJ9h+A/Sl/5P9V0jmSVm5XV9KHJN1Wl74+A3yYcg/qyurARU33pd9QBi5vHrhPECNJBhIRw0R9GjQJOJwyMDjD9vJNP8vY/gHwGPBGSUs3nb5qF80+Wusu21S2GvDIwH+CiIgYDmyfZXsLyh/+Bn5Y/32VpCWACyj3nDfbXh64HFCjmTZN/xn4UMu9aUnbuacsojKQiBhejgbeD9wEfFTSBySNkrRkDcX3Vtt/oixzmijp9ZI2BT7arjHbfwZuAb5f21gf+Bxw5gL5NBERsUBJeqekbepA4UXgBcqswePAWEmNv/1eT1kC9QTwsqQPAds1NfU48CZJY5rKTgC+K2n1eq0VJe0wuJ8ohrMMJCKGEdtPAKdTpqV3oETZeILyFOgg5v4/uzuwKfAUZUP2ucDsLprdDRhLmZ24CPhm3XMRERELnyWAHwBPUpau/hPlXnJePf6UpLvqktcJwM8pm6Y/RdN+O9sPUIJ1PFiXMq0MHFPrXF339t0GvGeBfKoYlmS3m7mKiJFE0rnAA7a/OdR9iYiIiEVDZiQiRiBJG0t6R43p/UHK7MXFQ9ytiIiIWIQkMkvEyPQW4EJKHomHgS/ZvntouxQRERGLkixtioiIiIiIPsvSpoiIiIiI6LMMJCIiIiIios+yR2IEWmGFFTx27Nih7kZEjABTpkx50vaKQ92PGF5yH4mI3uruPpKBxAg0duxYOjs7h7obETECSPrTUPchhp/cRyKit7q7j/S4tEmSJR3R9P5ASRP72IHxkjZrej9J0s59aWN+SfqspHsl3SfpfkkH9lB/YqOOpG9L2ra+3rK2MVXSUgPQr5Mlrd3fdiIiYvDVe+EZTe8Xk/SEpEsHqP3xA9jWnpKOG4i2IiK605sZidnAJyR93/aTfb2ApMWA8cAs4Ja+nt+mPVGiTb3Si7ofomQI3s72o5KWBD7T22vZPrTp7e7A4bZP7WU/R9me003bn+9tP1pNf2QmYw++rMvjM37wkfltOiIi2nsOWFfSUrZfAN4PPNKXBiQtZvvlQeldH+U+EhEDoTebrV8GTgQOaD0gaXVJ10iaVv9drZZPknSkpOuAc4F9gQPq0/wt6+lbSbpF0oPNsxOSDpJ0Z23zW7VsrKTfSPoJcBewZX1/Up0luLqLWYL/AA60/SiA7Rdtn1Tb/EK9zj2SLpC0dJvPN0nSzpI+D/wrcKikM1UcVmc6pkvapdYfL+k6SWcB0+v7yZLOl/RA49xad7Kkjvr6p5I662f5Vi/+m0RExIJ3BdD4C3s34OzGAUmb1Hva3fXfd9byPSWdJ+mXwNWSzpC0Q9N5Z0r6WPNFemjrQklXSvq9pB81nbOXpN9Juh7YfNB+AxERTXobtel4YHdJY1rKjwNOt70+cCZwbNOxNYFtbe8EnAAcZXuc7Rvr8ZWALYDtgR8ASNoOWAPYBBgHbCRpq1r/nfVaGwJ/qvWOt70O8AywU5t+rwtM6eIzXWh7Y9sbAL8BPtfVh7d9MnAJcJDt3YFP1P5tAGwLHCZppVp9E+AQ241lSxtSZkXWBt5O+y/4Q2x3AOsD75O0fld9iYiIIXMOsGud3V4fuL3p2APAVvUedSjwvaZjmwJ72N4GOBnYC6DeUzcDLm+5TndtjQN2AdYDdpG0ar3/fItyf3k/5X4TETHoerXZ2vbfJZ0OTABeaDq0KeWPaoAzgB81HTuvu6U9wMV1edL9kt5cy7arP40MvaMpA4b/A/5k+7am8x+yPbW+ngKM7c1nabKupP8Glq/XuaoP524BnF0/3+P1CdDGwN+BO2w/1FT3DtsPA0iaWvt5U0t7/yppH8p/j5UoN4FpzRXq8X0ARi2XACwREQua7WmSxlJmI1r/+B8DnCZpDcDA4k3HfmX76drG9ZKOl/RPlPvnBbZfrpPVvWnrGtszASTdD6wOrABMtv1ELT+X8jBvHrmPRMRA60seiaMpT+2X6aZOc5rs53pob3bTazX9+/06czHO9j/b/t8u2ms+fw7tB0X3ARt1cf1JwH6216M8yVmyh/42UzfH+tRPSW8DDgT+pc7sXNauL7ZPtN1hu2PU0q0TQxERsYBcAhxO07Km6jvAdbbXBT7KvN/jrfeFMyj77vYC2u27666tru4pzffftnIfiYiB1uuBRH2a8nPmXQJ0C7Brfb07r33S3vAssGwvLnMVsLek0QCSVqlPbebX94EfSXpLbW8JSRPqsWWBxyQtXvveFzdQppRHSVoR2Aq4Yz77uBzlJjOzzsx8aD7biYiIwXcK8G3b01vKxzB38/WePbQxibLkFdv3tTnel7agLLEaL+lN9Z72yV6cExHRb33NI3EEsF/T+wnAKZIOAp6grvts45fA+XWD2Ve6atz21ZLeBdxap3lnAZ+mPHXpM9uX1z/Of103OZtyEwD4L8qX75+A6fRuoNNwEWVZ1z21za/b/oukteajj/dIupsye/IgcHNP56y3yhg6E1EjImKBq0tVj2lz6EeU5UhfBa7toY3HJf0GuLiLKr1uq7b3mEpY9luBxyhBSUZ1d07uIxExEGT3OBsaw0xHR4eTSCgiekPSlBrMIYaJGiVwOvDuxn6HBS33kYjore7uI33ZIxERERH9oJLk9AHgx0M1iIiIGCh9XdoUERER88n2r4HVhrofEREDYZGYkZBkSWc0vV9M0hOSLh2g9scPYFt7SjpuINqKiIiIiBgsi8qMxHOUvBFL2X6BkrDnkR7OmYekxWy/PCi966Ppj8xk7MGXdXl8RjbQRURERMQgW1QGEgBXAB8BzqckEzob2BJA0iaUPBlLURLu7WX7t5L2rOcsCSwj6RHgfNu/qOedCZxLSURHL9r6GLA08A7gIttfr+fsBfwHJdrG75g3TnhERMwHSXMom5oXAx4CPmP7GUnjgQNtbz+f7fbp/JrE7tKaF6KrOrNsj56f/vT1WpAHUhExMBaJpU3VOcCukpYE1qeEfm14ANjK9obAocD3mo5tCuxhexvgZGqIW0ljgM14bXbT7toaB+wCrEfJQ7GqpJUoCfE2p8yUrN3/jxoREcALNbnpusDTwL8NdYciIhYmi8xAwvY0YCxlNqL1j/8xwHmS7gWOAtZpOvarmowP29cD/1yT5O0GXNBmuVN3bV1je6btF4H7gdWB9wCTbT9h+x+UGY7XkLSPpE5JnXOeT6CPiIg+uhVYpen9aEnnS3pA0pk11xCS/kXS3ZKmSzpF0hK1/IO17k3AJxqNSFqm1ruznrdDd52QtI6kOyRNlTRN0hotx0dLukbSXbUPO9TysZJ+I+kkSfdJulrSUvXYRpLukXQrGSxFxAK0yAwkqkuAwynLmpp9B7iuPrX6KGUpU8NzLXXPoGTC3gs4tc01umurecnSHOYuLesxmYftE2132O4YtfSYnqpHREQlaRTwL5R7QMOGlOzSawNvBzavM9aTgF1sr0f5jv5SLT+J8p2+JfCWpnYOAa61vTGwNXCYpGW66c6+wDG2xwEdwMMtx18EdrT97treEY1BDrAGcLztdYBngJ1q+anABNub9vjLiIgYQIvaQOIU4Nu2p7eUj2Hu5us9e2hjEuXmg+372hzvS1tQlliNl/QmSYsDn+zFORER0bOlJE0FngLeCPyq6dgdth+2/QowlTJj/U7gIdu/q3VOA7YC1qrlv3fJ4vqzpna2Aw6u15lMeXjUXXjXW4FvSPp3YPUaAKSZgO9Jmgb8mjKL8uZ67CHbU+vrKcDYusx2+TpjDuVhV1uZ2Y6IgbYobbbG9sPAMW0O/Qg4TdJXgWt7aONxSb8BLu6iSq/bqu09Jmki5ebyGHAXMKq7c9ZbZQyd2QgXEdGTF2yPq39sX0pZ9nNsPdZuhlh0rauZYwE72f5tbzpk+yxJt1MCeVwl6fO2m+8VuwMrAhvZfknSDObObLf2eal6/R5nteu1TwROBFhipTV6dU5ERHcWiYFEu0gYtidTnh5h+1ZgzabD/1XLJ1FmIF4laWnK9PKry6Pmp63maB+2T6X9MqmIiOgn2zMlTQB+Iemn3VR9gPKU/59t/wH4DHB9LX+bpHfY/iNlj1zDVcBXJH3FtiVtaPvuri4g6e3Ag7aPra/XZ96HTmOAv9ZBxNaUvXTdfbZnJM2UtIXtmygDkYiIBWKRGEgMFEnbUpZHHWk788IRESOE7bsl3QPsCvy5izov1nDc50laDLgTOMH2bEn7AJdJehK4CWiEV/0OJeT3tLqXYQbQXVjYXYBPS3oJ+Avw7ZbjZwK/lNRJWXL1QC8+3l7AKZKepwxsepSZ7YgYCCrLPWMk6ejocGdn51B3IyJGAElTbHcMdT9ieMl9JCJ6q7v7yKK22ToiIiIiIgbAQrO0SdKbgGvq27dQNqI9Ud9vUnM0RERERETEAFhoBhK2n6JkjqZGQZpl+/Ch7NNgmf7ITMYefFmXx2dk3WtEREREDLKFemlTzfZ5vaQpkq6StFItnyzphzW76O8kbVnL95R0oaQrJf1e0o+a2tpO0q012+h5kkbX8h9Iur9mKD28ln1S0r010+gNtWyUpMNq9tNpkr7Y1PZBTeXfWpC/o4iIKGo+n6n15y+SHml6//qh7l9ExHCz0MxItCHgx8AOtp+QtAvwXWDvenwx25tI+jDwTWDbWj6OkvF0NvBbST8GXgD+E9jW9nM1kdBXJR0H7AisVcP+LV/bOBT4gO1Hmso+B8y0vbGkJYCbJV1NCSW7BrBJ7fMlkrayfcNg/FIiIqK9zGzPlZntiOiNhXlGYglKeL5f1Yyj/wm8ten4hfXfKZSMpg3X2J5p+0XgfkoM7/cCa1P++J8K7FHL/w68CJws6RPA87WNm4FJkr7A3ORy2wGfreffDryJMoDYrv7cTUlGt1Ytn0cykkZELHiZ2Y6I6NrCPiNxn+1NuzjeyBDayGjaWt58TMCvbDcnISoXkTYB/oUSm3w/YBvb+0p6DyVz6VRJ42obX7F9Vcv5HwC+b/t/uvswyUgaEbHAZWY7IqIbC/NAYjawoqRNbd8qaXFgTdv3zUdbtwHHq2Y7Vclu/VbgUWBp25dLug34A4BK9tPbgdslfRRYlZIk6EuSrq0ZS9cEHqnl35F0pu1ZklYBXrL91646k0RCERELRPPMNpQZ5seajnc7sw0gqTGzvTxzZ7YBXg/cyrwz25cBl9Y2GjPbP2+6znbA+pJ2ru/H8NqZbYDRtXyegYRKUr19AEYtt2Jffg8REW0tzAOJV4CdgWMljaF81qOBPg8k6pOoPYGz61MgKE+WngV+IWlJylOgA+qxwyStUcuuAe4BplFuNHep3EWeAD5u+2pJ7wJurTeXWcCngS4HEhERsUBkZjsiohsL5UDC9sSmt1u1OT6+6fWT1CdJticBk5qObd/0+lpg4zaX26RN+59o1y3gG/Wntf4xwDFtzomIiKGz0M5sR0QMhIVyIBERETEAFtqZ7SyRjYiBIDuzmyNNR0eHOzs7h7obETECSJpiu2Oo+xHDS+4jEdFb3d1HhnX4V0lzVBIB3Svpl43IFZLGS7q0h9O7a7dP50saK+neHurMmt/+9PVaERERERFDbbgvbXrB9jgASacB/0YJvbdISyKhiIiIiBhqw3pGosWtwCpN70dLOl/SA5LOrOtFkfQvku6WNF3SKY21qJI+WOveBLy6GVrSMrXenfW8HbrrhKR1VBIQTa2Jf9ZoOT5a0jUqCYemN9qrMw2/kXSSpPskXS1pqXpsI5WkQ7dSBksREREREcPaiBhISBpFCY13SVPxhsD+lLjcbwc2r5vVJgG72F6PMuPypVp+EvBRYEvgLU3tHAJca3tjYGvKBrdluunOvsAxdaakA3i45fiLwI62313bO6IxyKHE9T7e9jrAM8BOtfxUYEI3IQYjIiIiIoaV4b60aSlJUylRKqYAv2o6dofthwGa6jwLPGT7d7VOYznU5Fr++1r/Z9SkPJQkPh+TdGB9vySwGvCbLvp0K3CIpLcCFzbabCLge5K2okT8WAV4cz32kO2p9fUUYGyNBLK87etr+RnAh1ovmkRCERG9I+kQ4FOUHA6vAF+soVT72s544B+2b6nvJwGX2j6/h/PmANOBxYGXKfeio22/0sO1DmwOO97DNfYHTrT9fG/qt+ppiWxPsoQ2ImD4z0g09kisTskC2rzsp6uEP13pKjyVgJ1sj6s/q9nuahCB7bOAjwEvAFdJ2qalyu7AisBGte+PUwYn3fW5x9BZtk+03WG7Y9TSY3qqHhGxSJK0KbA98G7b6wPbAn+ez+bGA5vNx3kv1PvJOsD7gQ8D35zPPnRlf2DpAW4zIqJPhvtAAgDbM4EJwIE1IVBXHqA85f/n+v4zwPW1/G2S3lHLmzOLXgV8pWmPxYbd9UXS24EHbR9LWWq1fkuVMcBfa7KgrSmDoO4+2zPATElb1KLdu6sfERHdWgl40vZsKElHbT8K3e6hmyFphfq6Q9JkSWMpS1kPqHvitqztbyXpFkkPStq5p87UpHD7APupGCvpxrqP7i5JrxmoSNq49vPt7fosaQKwMnCdpOvqOT+V1Fn34H2rn7/DiIheGe5Lm15l+25J9wC70sXTJdsvStoLOE/SYsCdwAm2Z9elQZdJehK4CVi3nvYdSoKhaXUwMYPyNKsruwCflvQS8Bfg2y3HzwR+KakTmEoZxPRkL+AUSc9TBjbdSiKhiIguXQ0cKul3wK+Bc21f37SH7l9s/07S6cCXKN//r2F7hqQTgFm2DweQ9DnKQGULYC3Kw6RulznVth6U9DrgnyhJ4t5f71drAGdT9ttRr7EZ8GNgh1r3+tY+2z5a0leBrW0/WU89xPbTdU/hNZLWtz2tuR9ZIhsRA21YDyRsj255/9Gmt5Obyvdren0NZSN2a1tXUr74W8tfAL7YQz9mUAcetr8PfL+rvtYv9a42Ta/bVP/wptdTgA2a6k3srj8REdGe7VmSNqIE1tgaOFfSwcDdtN9Dd3QfL3Fx3etwv6Q391h7rsbS28WB4ySNoyxxXbOpzruAE4HtbD8qaYM+9Plf60BhMcpgZ21KJuxX2T6xts8SK62RbLQR0W/DeiARERHRV7bnUB42TZY0HdiDMkPclZeZu9R3yW7qwbx73brblze3UlkSO4cyw/BNyt65Deo1X2yq+li9/obAo31o/23AgcDGtv9WN4X39DkiIvptROyRiIiI6A1J72zJ7zMO+BNd76GDsqR1o/p6p6ZznwWW7Wd/VgROAI6zbco+usfqrMZngFFN1Z8BPkKJ/De+hz4392054DnKfrs30ybyX0TEYMiMRERELExGAz+WtDxlpuEPwD5d7aGr53wL+F9J3wCaw8T+EjhfJbHoV/rQh0bo8kb41zOAI+uxnwAXSPokcB1lAPAq249L+ihwBbA3ZQ9duz6fCFwh6THbW0u6G7gPeBC4uacOZq9dRAwElQckI5ckA0fa/lp9fyAw2vbEAWp/LCVu+Lo91V1QOjo63NnZOdTdiIgRQNIU2x0914xFSe4jEdFb3d1HFoYZidnAJyR9vyl6xZCRNKquzx00SSQUEREREUNtYdgj8TJliveA1gOSVpR0gaQ768/mtXy6pOVrTO+nJH22lp8haduuLiRplKTDalvTJH2xlo+XdJ2ks4DpkpaRdJmkeyTdK2mXWm8jSddLmiLpKkkrSXqHpLuarrGGpCkD+huKiIiIiBhgC8NAAuB4YHdJrSmfjwGOsr0xZQPdybX8ZmBzYB3KetJGoqH3Ard1c53PATNrexsDX6jRMgA2ocTxXhv4IPCo7Q3qkqgrVRLp/RjY2fZGwCnAd23/kbJBblxtZy9KrPN5SNqnJhvqnPP8zJ5/IxERERERg2ihGEjY/jtwOiX7dbNtKfG6p1ISBy0naVngRmCr+vNTYD1JqwBP257VzaW2Az5b27sdeBPQiA5yh+2H6uvpwLaSfihpy5qZ+52UPBK/quf/J/DWWv9kYK+aSGgX4Kw2n/FE2x22O0Yt3TpeioiIBU2SJZ3R9H4xSU9IurS+/1jNYbGg+7VvY6Y9ImIwLQx7JBqOBu4CTm0qex2waU069ypJN1CS+qwGHALsCOxMGWB0R8BXbM+TfbqG6Xs18kbNQLoR8GHg+5KuBi4C7rPdLlndBZTY4tcCU2w/1UM/IiJi6D0HrCtpqXqfeT/wSOOg7UsoD7EWGEmL2T6hp3rZaxcRA2GhGUjYflrSzynLj06pxVcD+wGHAUgaZ3uq7T9LWgF4ve0HJd1ESeazX7u2m1wFfEnStbZfkrQmTTeNBkkrU2Y3fiZpFrAn8ANgRUmb2r61LnVa0/Z9NSzhVZTZkc/19FkTti8iYti4gpL74XxgN+Bs6nJZSXsCHbb3q+Fev0lJTDfT9laS1qE8/Ho95cHXTrZ/L+mrlNCvACfbPro1gmBzhEJJk4FbKEt2L6kz77NsHz74Hz8iFmULxdKmJkcAKzS9nwB01I3R9wP7Nh27HfhdfX0jsApwU5s2F2NuJtOTgfuBuyTdC/wP7Qdj6wF31CVMhwD/bfsflFmPH0q6h5JldbOmc84ETBn8RETEyHAOsKukJYH1mTcPRbNDgQ/Y3gD4WC3bFzjG9jigA3i4zmbvBbyHsm/vC5I27EU/lrf9PttHzP9HiYjomxE/I2F7dNPrx4Glm94/Sdlz0O68zzS9voWuB1XrAH+s9V4BvlF/mk2uP432rqLMXrRecyplX0Y7WwCnDHbo2IiIGDi2p9XZgt2Ay7upejMwqc6cX1jLbgUOkfRW4MI6G7EFcJHt5wAkXUiZ4ehpidS5PfVV0j7APgCjlluxp+oRET0a8QOJwSTp28AOlKVJg3mdi4B3ANsM5nUiImJQXAIcDoynBOF4Ddv7SnoPZRnU1LrU9ixJt9eyqyR9nrIXr52XmfeB15Itx5+jB7ZPpIRLZ4mV1hjZ2WgjYlhY2JY2DSjbh9YQrncP8nV2tL3+cEioFxERfXYK8G3b07uqIOkdtm+3fSjwJLCqpLcDD9o+ljIYWR+4Afi4pKUlLUMJBnIj8DjwT5LeJGkJYPtB/kwRET3KjEQlaVbzMqle1B8PHGh7e0kfA9a2/YPB6l9ERAxPth+m5C3qzmGS1qDMOFwD3AMcDHxa0kvAXyiDkaclTQLuqOed3HiYVWfJbwceAh7oT58TtCMiBoLszG5C/wYSg9apLiyx0hpeaY+j5/v8hO2LWHRImmK7Y6j7EcNLR0eHOzs7h7obETECdHcfydKmFpLGS5os6XxJD0g6U5LqsQ/WspuATzSds6ek4+rrj0q6XdLdkn4t6c21fKKkU2rbD0qa0HT+xZKmSLqvboaLiIiIiBjWMpBob0Ngf2Bt4O3A5jW030nARykRNN7Sxbk3Ae+1vSElLODXm46tBXwA2AT4Zs0lAbC37Y0o4f8mSGq7WS8iIiIiYrjIHon27qhrXqm5IMYCs4CHbP++lv+MGkavxVuBcyWtREky9FDTsctszwZmS/or8GbgYcrgYcdaZ1VgDWCe7NYJ2xcRERERw0lmJNqb3fR6DnMHXL3ZUPJj4Djb6wFfZN4Qfa9pt+612BbYtCYqupvXhvXD9om2O2x3jFp6TG8/R0RERETEoMiMRO89ALythvD7IyX5UDtjgEfq6z160e4Y4G+2n5e0FiWTaUREjEB1dvlC4F2220ZWknSL7c0WbM/mNf2RmYw9+LL5Pj9BOyICMpDoNdsv1uVFl0l6krIXYt02VScC50l6BLgNeFsPTV8J7CtpGvDbek63ErYvImLY2o1yf9iVcj94laRRtucM9SAiImKgJPzrCJSwfRHRWwn/uuBIGk15ILQ1cInttery1W8CjwHjbK/dCDde80J8rJ6+InC17b0kfRXYu5afbPtoSWOBKyiDlM0oM9872H5B0hcoe+heD/wB+Izt57vra8KIR0RvJfxrRETE4Ps4cKXt3wFPS3p3Ld8EOMT22s2VbR9qexzwPkqAjeMkbQTsBbyHstT1C5I2rKesARxvex3gGWCnWn6h7Y3rPrvfAJ9r1zlJ+0jqlNQ55/mZA/KBI2LRloFERETEwNiNEvab+m9jL90dth9qd0LNU3QmcJTtKcAWwEW2n7M9i7LfYsta/SHbU+vrKZSIggDrSrpR0nRgd2CddtdK0I6IGGjZIxEREdFPNf/PNpQ/6g2MokT6uxx4rptTJwIP2z610VQ3dVsj/y1VX08CPm77Hkl7AuP72P2IiPmyyA4k6hf9z2x/pr5fjLKG9Xbb20v6GLC27R8s4H7tCzxv+/Su6iTaRkTEsLMzcLrtLzYKJF1PmWFoS9L2wPuZ9w//G4BJkn5AGVTsCHymh2svCzxWk5zuztzIgV1K0I6IGAiL7ECC8oRoXUlL2X6B8mX+6pev7UuASxZkhyQtZvuEBXnNiIgYELsBrQ+eLgC+BPyxi3O+BqwM3FFWOHGJ7UMlTQLuqHVOtn133Wzdlf8Cbgf+BEynDCwiIgbdojyQgBIB4yPA+ZSbwNnUtah1erjD9n6SPkmJujEHmGl7K0nrAKdSomS8DtjJ9u+7ibZxqe11a9sHAqNtT5Q0GbgF2By4RNKywCzbhw/+x4+IiIFge3ybsmOBY9uUj67/bt1FW0cCR7aUzaAp5HjzPcL2T4Gfzl/PIyLm36K+2focYFdJSwLrU57otHMo8IEaEaMRqm9f4JgacaMDeLiHaBvdWd72+2wf0VWFRNuIiIiIiOFkkR5I2J5GiXqxG2VDXFdupqxZ/QJlAx3ArcA3JP07sHpdHtVdtI3unNuLvibaRkREREQMG4v0QKK6BDicsqypLdv7Av8JrApMlfQm22dRZideAK6StA1dR9t4mXl/10u2HO8uokdERERExLCzqO+RADiFsu9hes1A+hqS3mH7duB2SR8FVpU0BnjQ9rGS3k5ZGtVVtI3HgX+q4QFnAdsDV85vhxNtIyJi4NQofkfa/lp9/+o+tgFqfyxN++QiIhYWi/xAwvbDwDE9VDtM0hqUwcE1wD3AwcCnJb0E/AX4tu2n20XbAJD0bcoejIeABwb8g0RExPyaDXxC0vdtPznUnZE0yvacwbxGwohHxEBYZAcSjagZLWWTgcn19SRKkh9sf6JNE9+vP61tvCbaRi3vKnrH+Jb3E3vqe0REDKiXgROBA4BDmg9IWhE4AVitFu1v++aaRXpLYCbwJHCA7dMlnQGcZvvX7S4kaRQlTOx4YAngeNv/U2fEv0nJZzRO0sbAz4G3Uvbmfcf2uTWox5HA6HrdPYGlgfNsv7teYw3gHNsb9fP3EhHRreyRiIiIgOOB3euy1WbHAEfZ3hjYCTi5lt9MCdu9DvAgcwNrvBe4rZvrfI6ynHZjYGNKdL+31WObAIfYXhv4IPCo7Q3qkqgra8K5HwM710HCKcB3bf8RmClpXG1nL+qDsIiIwbTIzkhEREQ02P67pNOBCZQgGg3bAmvXhHEAy9V8PzcCW1GSwP0U2EfSKsDTNWpfV7YD1pe0c30/BlgD+Adwh+2Havl04HBJP6Tsr7hR0rqUXBK/qv0ZRZnBgDLA2avmMtqFMiiZh6R9gH0ARi23Yi9+KxER3cuMBGWjnaQjmt4fKGniIF9zhqQVBvMaERHRJ0dTZgyWaSp7HbCp7XH1ZxXbz1KCa2xZfyYDTwA7UwYY3RHwlab23mb76nrs1Qh+tn8HbEQZUHxf0qH13Puazl3P9nb1lAuAD1GCeUyx/VTrhRNGPCIGWmYkimG10a4n2SQXETHwasCMn1MGE6fU4quB/YDDACSNsz3V9p/rw6DX235Q0k3AgbVud64CviTpWtsvSVoTeKS1kqSVKbMbP5M0i7IX4gfAipI2tX1rXeq0pu37bL8o6SrK7Mjn+vmriIjolQwkij5ttKMko3sQGGf7mVrvD5T1sptQck68HngK2N324zX069nAipSoTmq6xsWUHBVLUrJlnzgInzEiInp2BPMOBiYAx0uaRrln3gDsW4/dztwkpTdSAnDc1KbNxSgPrKAsQRoL3KWyPukJ4ONtzlmPEjHwFeAl4Eu2/1GXRB1b93IsRplFua+ecybwCcrgp1sJIx4RAyEDibmOB6ZJ+lFLeWOj3U2SVgOusv0uSb+g5Ik4VdJ7gBl1wHAT8F7blvR54OvA1yjROG6y/W1JH6GuU632rk/ClgLulHRBu2npiIgYeM1R/Gw/TomC1Hj/JGXPQbvzPtP0+ha6Xi68DvDHWu8V4Bv1p9nk+tNo7yrK7EXrNadS9ma0swVwymCHjo2IaMhAopqPjXbnAocCpwK71vdQQvWdK2klyqxEY+PcVpQnRdi+TNLfmq4xQdKO9fWqlI138wwkskkuImLkqTmEdqAsTRrM61wEvAPYZjCvExHRLJut53U0vd9odyvwz3Xp08eBC2v9HwPH2V4P+CJluVKDWy9YY4dvW6+xAXB3yznlxGySi4gYcWwfWkO43j3I19nR9vojYZ9fRCw8MpBoYvtpSgKg5o1qjY12QNloV+sauIiSGOg3TUuRxjB349weTe3cAOxe2/gQ8Iam+n+z/byktSgxyCMiIiIihrUsbXqtvmy0Oxe4k3mnrCcC50l6hJKUqJFo6FvA2ZLuAq4H/q+WXwnsW9v/Ld0nMgKySS4iYjiSNKt5v0Uv6o8HDrS9vaSPAWvb/sFg9S8iYqCpPFiPkaSjo8OdnZ1D3Y2IGAEkTbHdMdT9WBT0ZyAxaJ3qwhIrreGV9jh6vs9PGPGIRUd395EsbYqIiBhAksZLmizpfEkPSDqzhnpF0gdr2U3UABy1fE9Jx9XXH5V0u6S7Jf1a0ptr+URJp9S2H5Q0oen8iyVNkXRfDc4RETHoMpCIiIgYeBtS8g6tDbwd2FzSksBJwEcpGbHf0sW5jTDiGwLnUMKIN6wFfICSs+ibNSkdlDDiGwEdlEiAbxrYjxMR8VoZSDSRtKMk103PXdW5ZUH2KSIiRqQ7bD9c80ZMpSShWwt4yPbva8COn3Vx7luBqyRNBw6i5KFouMz27Bqd6a/Am2v5BEn3UPbZNcKIz0PSPpI6JXXOeX5m/z9hRCzystl6XrtRngTtStk0/SpJo2zPsb3ZUHSs2fRHZjL24Mvm+/ysbY2IGHSzm17PYe79tjcbE38MHGn7krqPYmJ37baEEX9e0mS6CCMOnAhlj0Qv+hER0a3MSFSSRgObU0K/7lrLxku6TtJZwPRaNqv++21JU+vPI5JOreVflXRv/dm/lo2V9BtJJ9X1q1fXLNZI+oKkOyXdI+kCSUu/pnMREbEweAB4m6R31Pe7dVGvqzDiXUkY8YgYEpmRmOvjwJW2fyfpaUnvruWbAOvafqi5su1DgUMljQFuBI6TtBGwF/AeQMDtkq4H/kaZZt7N9hck/RzYiTKtfaHtkwAk/TdlIPPjQf6sERGxgNl+sW6EvkzSk5QZ8HXbVJ1I+zDiXUkY8YgYEhlIzLUbJbM1lM1tuwGXUda5PtTuhBqF40zgKNtTJP0/4CLbz9XjF1I21F1CWRc7tZ46hbJeFmDdOoBYHhgNXNXFtfYB9gEYtdyK8/sZIyJikDRCv9qeDExuKt+v6fWVlL0SredOAibV178AftGmzsSW982DkA/Nf88jIuZPBhJAjW6xDeWPegOjKOtYLwee6+bUicDDtk9tNNVN3dZ1rUvV15OAj9u+R9KewPh2J2dta0REREQMJ9kjUewMnG57ddtjba8KPARs0dUJkrYH3k/JfN1wA/BxSUtLWgbYkbLsqTvLAo/VEH679+dDREREREQsKJmRKHYDftBSdgHwJeCPXZzzNWBl4I6aZ+gS24dKmgTcUeucbPtuSWO7ufZ/AbcDf6Js6F62p85mbWtEREREDDWVUNYxknR0dLizs3OouxERI4CkKbY7hrofMbzkPhIRvdXdfSQzEhEREUNI0qzGRu0Fpb/5iLqTXEURi47skYiIiIiIiD7LQCIiImIYUHFYTWg6XdIutfwnkj5WX18k6ZT6+nM1fDiSLpY0pSY93WfoPkVELEqG3UBC0iH1i3BazRr9nvlsZ7ykzZreT5K0cy/Om1Ove1/NNv1VSd3+nuq1Lu1D3/ZPBuuIiGjxCWAcsAGwLXCYpJUoEQG3rHVWAdaur7dgbmTAvW1vBHQAE2pY84iIQTWs9khI2hTYHni37dmSVgBeP5/NjQdmAbf08bwXbI+r/fkn4CxgDPDN+exHO/tTslo/Pz8n93dta9avRkQMS1sAZ9ueAzwu6XpgY8pgYX9JawP3A2+oA4xNmRuCfIKkHevrVYE1gKeaG09i04gYaMNtRmIl4EnbswFsP2n7UQBJ/yLp7jrde4qkJWr5jDrgQFKHpMk13Oq+wAF1dqHxJGcrSbdIerA3sxO2/0r50t2vTjmPlXSjpLvqz2at50jauPbz7e36LGkCJWzsdZKuq+f8VFJnnQX5Vj9/hxERMTK1TWpq+xHgDcAHKbMTNwL/Csyy/ayk8ZQZjE1tbwDcDSzZpp0TbXfY7hi19JjB+QQRsUgZbgOJq4FVJf2urgl9H4CkJSkZoHexvR5lJuVLXTViewZwAnCU7XG2G1O/K1Ge+GzPa/NGdNXWg5Tf0z8BfwXeb/vdwC7Asc1168DiBGAH4NF2fbZ9bD22te2t66mH1LBa6wPvk7R+b/oWERELlRuAXSSNkrQisBVz8xLdSpnNbgwkDmTusqYxwN9sPy9pLeC9C7TXEbHIGlZLm2zPkrQRZS3o1sC5kg6mPF15yPbvatXTgH8Dju7jJS62/Qpwv6Q39+G8xlOixYHjJI0D5gBrNtV5F3AisJ3tRyVt0Ic+/2udcl6MMthZG5g2TwcyJR0RsbC7iLJc6R7AwNdt/6Ueu5Fyf/mDpD8Bb2TuQOJKYF9J04DfArf1dKEkNo2IgTCsBhIAdW3oZGCypOnAHsDUbk55mbkzK6+Zym0xu+l12ynkVpLeThk0/JWyT+Jxyka41wEvNlV9rF5/Q8qMQ2/bfxvlydLGtv9WM2O3nZKmDFRYYqU1kkUwImIh0cgh4ZIh9qD601rnf4H/ra9fApZpOjYb+NAC6WxERJNhtbRJ0jslrdFUNA74E/AAMFbSP9fyzwDX19czgI3q652azn0WWLaf/VmRslTpuPoFPwZ4rM5qfAYY1VT9GeAjwPfqetXu+tzct+WA54CZdZYkN4OIiIiIGPaG24zEaODHkpanzDT8AdjH9ouS9gLOk7QYcCflD3yAbwH/K+kbwO1Nbf0SOF/SDsBX+tCHpSRNpSxjehk4AziyHvsJcIGkTwLXUQYAr7L9uKSPAlcAewNd9flE4ApJj9neWtLdwH3Ag8DNPXUwU9IRERERMdRUHrTHSNLR0eHOzs6h7kZEjACSptRgDhGvyn0kInqru/vIsFraFBERsTCRtKMk12hK1DDi985nW7MGtncREf0z3JY2RURELEx2A24CdgUmDm1X5upvYtPuJOlpxKIjMxL9lCdEERHRjqTRwObA5ygDidbjbZOcSlpJ0g01oeq9TUlVG+etIOlWSR/pTaLUiIjBkhmJEWgwnyRBniZFRAyQjwNX2v6dpKclvRt4uul4I8npizVi4dlAB/Ap4Crb35U0Cli6cUKN7ncJ8J+2fyVp6S7aiIgYdJmRGCAqDqtPj6ZL2qWW/0TSx+rriySdUl9/TtJ/19cXS5oi6b6aeC4iIka+3YBz6utz6vtmiwMn1ZxJ51GSkUKJ8reXpInAerafbap/DSVR3a96aOM1JO0jqVNS55znZ/bvk0VEkBmJgfQJSt6LDYAVgDsl3QDcQMnUfQmwCiVzNcAWzL3B7G37aUlL1fMusP3Ugux8REQMHElvArYB1pVkSt4hU8KINxxAmySntm+QtBUlN9EZkg6zfTolJPkU4APMzUvUto12ktg0IgZaZiQGzhbA2bbn2H6c8iW/MXAjsKWktYH7gcclrQRsCtxSz50g6R7gNmBVYI3WxvMkKSJiRNkZON326rbH2l4VeAh4a1OdtklOJa0O/NX2SZRs1u+u9U3JUbSWpIO7ayMiYkHIjMTAUbtC249IegPwQcrsxBuBfwVm2X62ZsHeFtjU9vOSJgNLtmknT5IiIkaO3YAftJRdAHyj6X1XSU7HAwdJegmYBXy2cYLtOZJ2BX4p6e/dtNGtJDaNiIGQgcTAuQH4oqTTKIOFrYCD6rFbgf0p09xvAs6vP1CeJv2tDiLWAt67IDsdEREDz/b4NmXHAsc2vf89sH5Tlf+o5acBp7U5f3T99x+U5U0Nr2kjImJByEBi4FxEWa50D2X6+eu2/1KP3QhsZ/sPkv5EGWjcWI9dCewraRrwW8rypm7lSVJEREREDLUMJPqp6QmRKTMQB7Wp87+Uda7YfglYpunYbOBDC6SzEREREREDJJutIyIiIiKizzKQiIiIiIiIPsvSpoiIiH6o0fa+b/uqprL9gQnAibZbozd119bKwLG2d+6h3uXAp2w/Mz99nv7ITMYefNn8nNpvM7LHL2KhkRmJHkjaUZJrRCUkjZV073y2NWtgexcREcPA2cCuLWW7Anu0G0RI6vIhnu1HexpE1Hofnt9BRETEQMmMRM92A26i3BQmDm1XisF+kpSnRRERfXI+8N+SlrA9W9JYYGXgnyXtYns/SZOAp4ENgbsk/QQ4k5JA7grgq7ZH13Mvtb2upD2BjwFLA+8ALrL9dQBJM4AO209KupiSzHRJ4JiadygiYtBlRqIbkkYDmwOf47VPmxqzEzdKuqv+bFbLV5J0g6Spku6VtGXLeStIulXSR7pqIyIiRgbbTwF3UBKPQrlfnEsJBd5sTWBb218DjqH80b8x8Gg3zY8DdgHWA3aRtGqbOnvb3gjoACZIelO7hiTtI6lTUuec52f27sNFRHQjA4nufRy40vbvgKclvbvl+F+B99t+N+WLvpFo6FPAVbbHARsAUxsnSHozcBlwqO3LumkjIiJGjublTbvW963Osz2nvt4UOK++Pqubdq+xPdP2i8D9wOpt6kyQdA8lD9GqwBrtGrJ9ou0O2x2jlh7T/aeJiOiFLG3q3m7A0fX1OfX98U3HFweOkzQOmEN52gRwJ3CKpMWBi21Pbap/DfBvtq/voY15SNoH2Adg1HIr9vNjRUTEALsYOLI+cFrK9l2S1m+p89x8tDu76fUcWu7bksYD2wKb2n6+bvxecj6uExHRZxlIdKFODW8DrCvJlHWsBn7SVO0A4HHKrMPrgBcBbN8gaSvgI8AZkg6zfTrwMjAF+ABwfXdttKprXk8EWGKlNVqnyyMiYgjZnlX/iD+F9rMRrW4DdqIsgXrN0tk+GAP8rQ4i1gLe25uT1ltlDJ3ZDxcR/ZSBRNd2Bk63/cVGgaTrgbc21RkDPGz7FUl7UAYbSFodeMT2SZKWAd4NnE4ZiOwNnCfp4BrNo20b3ckNICJiWDobuJDeDQz2B34m6WuU5a7zu2nhSmBfSdOA31IGKBERC0QGEl3bDWgN23cB8I2m9z8BLpD0SeA65k5bjwcOkvQSMAv4bOME23Mk7Qr8UtLfu2kjIiJGENsXAWp6PwmYVF/v2VL9EeC9tl3vCZ213gxg3dbz6/vtm16PbWrrQwP0ESIi+kR2VsmMNB0dHe7s7BzqbkTECCBpiu2Ooe5HzKtG8zuOMvB4hhJ56Q8L6vq5j0REb3V3H8mMRERExAJm+0bK3riIiBEr4V8jIiIiIqLPFqmBhCRLOqPp/WKSnpB0aX0/vjcJ4WoSuXtbyiZKOnAA+viatiMiYmSSNKv+++p3e73XNO47H5N08Hy2vbKk8weutxERfbOoLW16jhLOdSnbLwDvp2x4axhP2Rx9yxD0rdemPzKTsQdfNiTXnpFoURERA8b2JcAl83nuo5QIg32W+0hEDIRFakaiuoKS3wFKZKazoTwtAvYFDpA0tW6Emy+Sxkm6TdI0SRdJekMP5RtJukfSrcC/9eOzRUTECCJpT0nH1deTJB0r6RZJD0rauZZL0mGS7pU0XdIutbx5lmMdSXfU+9c0SW2zW0dEDKRFcSBxDrCrpCWB9YHb4dWQeycAR9keVzfCdecd9Qt7qqSplEFIw+nAv9teH5gOfLOH8lOBCbY37feni4iIkWwlYAtge+aGIP8EMI6yOXtb4DBJK7Wcty9wjO1xQAfw8ILobEQs2ha5gYTtacBYymzE5f1o6o91wDGufnGfACBpDLC87Ubm6tOArfpQfgZtSNpHUqekzjnPz2/eooiIGOYutv2K7fuBN9eyLYCzbc+x/ThwPbBxy3m3At+Q9O/A6nX57jxyH4mIgbbIDSSqS4DDqcuahpgoGa+7ZftE2x22O0YtPWYBdCsiIobA7KbXavm3S7bPAj4GvABcJWmbNnVyH4mIAbWoDiROAb5te3pL+bPAsv1p2PZM4G9Neyw+A1zfTfkzwExJW9Ty3ftz/YiIWOjcAOwiaZSkFYGtgDuaK0h6O/Cg7WMpD8vWX/DdjIhFzaIWtQkA2w8Dx7Q59EvgfEk7AF8B3gB02D60j5fYAzhB0tLAg8BePZTvBZwi6Xngqp4aX2+VMXQm6kVExKLiImBT4B7KDPbXbf+lBglp2AX4tKSXgL8A3+6uwdxHImIgyO5xVU0MMx0dHe7s7BzqbkTECCBpiu2Ooe5HDC+5j0REb3V3H1lUlzZFREREREQ/ZCARERERERF9loFERERERET0WQYS3ZA0q/7bnD10vKRL6+uPSTp4PtteWdL5A9fbiIiIiIgFZ5GM2jRQbF9CCbM3P+c+Cuw8P+dOf2QmYw++bH5O7bcZifIREcOcpKOAP9k+ur6/Cviz7c/X90cAj9g+sg9tjgf+YfuWlvKxwE3AarZfaSqfCuxTf46sCeZ6e619gedtn95NnQ7gs7Yn9LbdZrmPRMRAyIxEP0jaU9Jx9fUkScdKukXSg5J2ruWSdJikeyVNl7RLLW+e5VhH0h2SpkqaJmmNoftUEREj3i3AZgCSXgesAKzTdHwz4OY+tjm+0WYz2zOAPwONHEFIWgtY1vYdtj/fbhAhaVRXF7J9QneDiFqnc34HERERAyUDiYG1ErAFsD3wg1r2CWAcsAGwLXCYpJVaztsXOMb2OKADeLi1YUn7SOqU1Dnn+ZmD0/uIiIXDzcz9o38d4F7gWUlvkLQE8C7gbkkbSbpe0hRJVzW+myVNkHR/fbBzTp112Bc4oD7w2bLlemcDuza937WWIWlynT1A0ixJ35Z0O7CppM9J+l2tc1LTg6mJkg5sOv+H9WHT7xrXbllmu0l9iHV3/fedA/vrjIhoL0ubBtbFdWr7fklvrmVbAGfbngM8Lul6YGNgWtN5twKHSHorcKHt37c2bPtE4ESAJVZaI8k/IiK6YPtRSS9LWo0yoLgVWIWS1G0m5fvXwI+BHWw/UWeLvwvsDRwMvM32bEnL235G0gnALNuHt7nkzykDk6/YfpmSHO6TbeotA9xr+1BJKwM/A94NPAtcS0k4185itjeR9GHgm5SHUs0eALay/bKkbYHvATu1NiKpsdSKUcut2MWlIiJ6LwOJgTW76bVa/u2S7bPqE6qPAFdJ+rztawejgxERi4jGrMRmwJGUgcRmlIHELcA7gXWBX0kCGAU8Vs+dBpwp6WLg4p4uVLNM3wf8i6THgZds39um6hzggvp6E+B6208DSDoPWLOLS1xY/50CjG1zfAxwWl0Wa2DxLvqZB1IRMaAykBh8NwBflHQa8EZgK+AgYMlGBUlvBx60fWx9vT7l6VRb660yhs5sVouI6E5jn8R6lKVNfwa+BvwdOIXykOc+25u2OfcjlO/qjwH/JWmdNnVaNZY3PV5ft/NinZ2GXjxkatJ4SDWH9vft7wDX2d6xLsOa3Ie2IyLmWwYSg+8iynT6PZQnRV+vT6/GNtXZBfi0pJeAvwDfXuC9jIhYuNxMGTg8WP94f1rS8pQ9E1+gDChWlLSp7VslLU6ZEfgNsKrt6yTdBHwKGE1ZfrRcN9e7gLKk6Hlgm1707w7gKElvqG3vBEzv+8cEyozEI/X1nr05IQ+kImIgZCDRDduj678zKFPg2J5MfdpjexIwqb7es4tzTZmBOKjleHOb3we+PxifISJiETWdEq3prJay0bafBKjR9Y6VNIZyPzwa+B3ws1om4Ki6R+KXwPmSdgC+YvvG5ovVOrcBb7b9UE+ds/2IpO8BtwOPAvdTll3Njx9RljZ9lW5msyMiBprK37kxknR0dLizs3OouxERI4CkKbY7hrof8VqSRtueJWkxyuz1KbYvWhDXzn0kInqru/tIwr9GREQMjYk1cd29wEP0YmN3RMRwMiwHEpKOkrR/0/urJJ3c9P6IOoXblzbHS3pNMqGaGO7hmrSouXxqjc19sqS1+3itfSV9toc6HZKO7Uu7ERGx8LB9oO1xtteyPcFZIhARI8xw3SNxCyUG99FNWUmbN7ltBuzfxzbHA7Nq26+yPUNSIyvp9TBvVlLKhrjXkDSqKfrGPGyf0FNnbHcC8zWvPP2RmYw9+LL5ObXfZmRzXkREREQwTGckSFbSZCWNiBhBJFnSEU3vD5Q0cZCvOUPSCoN5jYiI7gzLGYlkJW2flTQiIoat2cAnJH2/ERVqOMvMdkQMhGE5kKiSlbSJpH2AfQBGLbdiTx8pIiIWrJcpWaMPAA5pPiBpReAEYLVatD/lAdmDwDjbz9R6fwA2p9xf/hN4PfAUsLvtxyW9iTJbviJl2a2arnExsCol2ekxNYt1RMSgGq5Lm+C1WUlvo8xIbEYZZDSyko6rP+vZ3q6e+xHgeGAjYEoNrdeTxvKmV5c1tTHYWUnXBT5KU9brBtsn2u6w3TFq6TF9uHRERCwgxwO71xwUzY6h5KPYmDLbfLLtV4BfADsCSHoPMMP248BNwHttbwicA3y9tvNN4KZafglzByYAe9veCOgAJtRBR0TEoBrOA4mbge2Bp23PqU/+l6cMJm4FfkvNSgogaXFJ69TN2avavo7y5bs8c7OSLtvN9S4APkxZ1nROL/p3B/C+um9jMfq3FKnPWUkjImJ4sf134HRgQsuhbYHjaqjXS4DlJC0LnEu550B5iHVuff1W4CpJ0ynJTNep5VtRltRi+zLgb03XmCDpHspDt1WBNVr7J2kfSZ2SOuc8P7+57yIi5hrOS5uSlbQL660yhs6sMY2IGI6OBu4CTm0qex2wqe0XmitKuhX457r06ePAf9dDPwaOtH2JpPHAxKbTXhMittbZtl7jeUmT6WJmm7L8iiVWWiOhZiOi34btQKIuIVqupWzPlvdTKU9oWm3Rpr3fAev3cM0d2pSNb3o9uuXwWbZPbMpKenWtN7GL85+k7pGwPRmYXF/fyrz7K/6ru35GRMTwZPtpST8HPgecUouvBvYDDgOQNM72VNuWdBFlH+BvbD9V6zfPUu/R1PwNwO7Af0v6EPCGpvp/q4OItYD3DtLHi4iYx7AdSIwQE2uUpSUpN4qLh7Y7ERExDBxBGTg0TACOlzSNct+9gRKSHMpypjuZd1nrROA8SY9Qliq9rZZ/Czhb0l2UvEf/V8uvBPat7f+2ntOtzGxHxEDIQKIfbB841H2IiIih1zxjXTdML930/knm7oVoPa+TluAdtn9B2YjdWvcpYLumogOaXn9ovjoeEdEPw3mzdUREREREDFOL/IxE3ZT2fdtXNZXtT5mKPtH2D/rQ1srAsbZ37qHe5cCnGrHD+yqJhCIiIiJiqC3yAwnm5o+4qqlsV2CP1shOAJIWq9mvX8P2o0C3g4ha78Pz2deIiIiIiGEhS5vgfGB7SUsASBoLrEwJyXdcLZsk6UhJ1wE/lPQOSbdJulPStyXNapwr6d76ek9JF0q6UtLvJf2ocUFJMyStUF9fLGmKpPtq9uqIiBhEkt4i6RxJf5R0v6TLJa3Z85mD1p/9JS3d9P5yScvPRztjJX1qQDsXEdGNRX5GwvZTku4APkjZ3NZICtQaY3tNYFvbcyRdChxj+2xJ+9K1ccCGlMzWv5X0Y9t/bqmzdw0XuBRwp6QLmkIAvqoOMvYBGLXcin3/oBERgSRRwnWfZnvXWjYOeDMlD9FQ2J+SaO556Nes9VjgU8ybf6mtoVwi25MsoY0YOTIjUTSWN1H/PbtNnfNqbgso2bXPq6+7+8K+xvZM2y9SEtat3qZOj9lIoSQSst1hu2PU0mO6/zQREdGVrYGXbJ/QKKg5iW6SdJikeyVNl7QLlGRvkiZLOl/SA5LOrIORxuzytyTdVc9Zq5YvI+mUOmt9d02EiqRRkg6vdadJ+oqkCZRZ8OvqrHfrrPVna917JJ1RyybVhKzU97Pqyx8AW0qaKqk5olNExKBY5GckqouBIyW9G1jK9l2SWpPXPTcf7c5uej2Hlt93b7ORRkTEgFkXmNKm/BOUWeQNgBUoM8Q31GMbAusAjwI3A5sDN9VjT9p+t6QvAwcCnwcOAa61vXddonSHpF8Dn6XkhNjQ9suS3lhnpL8KbF3DxL5K0jq1rc1tPynpjT18toOBA21v39tfRkREf2QgAdieVf+IP4X2sxGtbgN2oiyB2rWHut2Zr2ykSSQUETHgtgDOrjPPj0u6HtgY+Dtwh+2HASRNpSwhagwkLqz/TqEMRqDkeviYpEauoSWB1SgPjk5oBOyw/XQPfdoGOL8xwOhF/W5liWxEDLQsbZrrbMqTqHN6UXd/4Kt1b8VKwMz5vOaVwGI1G+l36EU20oiI6Jf7gI3alKtNWUN3s8uz25QL2Mn2uPqzmu3f1PLW/Xfd6ar+y9T7d11m9freNJYlshEx0DKQqGxfZFu2H6jvJ9ner77e0/b5TdUfAd5rexPgt0BnrTfD9rqt59f329ueXF+Ptf2k7dm2P2R7fduftD2+USciIgbFtcASkr7QKJC0MfA3YJe6j2FFYCvgjvm8xlXAV5r2UmxYy68G9pW0WC1vLFV6Fli2TTvXAP8q6U0t9WcwdzC0A7B4D+1ERAyKLG2aPxsBx9WbxDPA3kPbnYiI6A3blrQjcLSkg4EXKX+Y7w+MBu6hzAJ83fZfGhuo++g7wNHAtHqfmAFsD5xMiQA4TdJLwEnAccCJwBWSHrO9dVNf75P0XeB6SXOAu4E963m/qLPi1zB3D9804OUawGOS7aO66mCWyEbEQJDdl1nWGA46Ojrc2dk51N2IiBFA0hTbHUPdjxhech+JiN7q7j6SpU0DQNJbJf2iJp77o6RjJL1eJSndcV2cM18JhyIiIiIihoMsbeqnOm19IfBT2ztIGkWZpv4uZVNfW/1IOJREQhEREREx5DIj0X/bAC/aPhWghg48gLJvYmlgZUlX1tmKHzVOakk49NWaBOleSfsv+I8QEREREdE3mZHov3VoSW5k+++S/o/y+x1HSWY0G/itpB/b/nOjrqSNgL2A91BC/d0u6Xrbdy+g/kdERERE9FkGEv3XVZzvRvk1tmcCSLofWB34c1O9LYCLbD9X61wIbEmJzjG3sSQSiohYaEl6K3A8sDZltcClwEHAp4CO5nDiTedcDnzK9jN9vV6WyEbEQMjSpv67D5hnJ7uk5YBVKQmKuktkBN0nQXpVEglFRCycmvbaXWx7DUqI2NGUvXZdsv3h+RlEREQMlAwk+u8aYGlJnwWom62PACYBz/fi/BuAj0taWtIywI7AjYPU14iIGH6y1y4iRqQsbeqnpuRGP5H0X5TB2eXAN4DdenH+XZImMTeD6sk97Y9IIqGIiIVK9tpFxIiUgcQAqF/oH21zaFL9adTbvun12KbXRwJHDloHIyJiOMteu4gYkbK0KSIiYmhlr11EjEgZSERERAyt7LWLiBFpxC1tkvQW4GhgY8pTmhnA/rZ/N0T92R840fbz9f18heOTNBbYzPZZA93HiIgYvrLXLiJGKtntlmUOTzVE3i3AabZPqGXjgGVtD8nTF0kzKDG+n+xnO+OBA5v3UXRliZXW8Ep7HN2fyw2axP+OGF4kTbHd0XPNWJR0dHS4s7NzqLsRESNAd/eRkba0aWvgpcYgAsD2VOAmSYfVsHfTJe0C5Y9zSZMlnS/pAUln1sFII2zetyTdVc9Zq5YvI+kUSXdKulvSDrV8lKTDa91pkr4iaQKwMnCdpOua2m2E4/tsrXuPpDNq2SRJOzf6L2lWffkDYEtJUyUdMKi/xYiIiIiIfhppS5vWpSVEXvUJSni8DYAVgDsl3VCPbUgJrfcocDOwOXBTPfak7XdL+jJwIPB54BDgWtt7S1oeuEPSr4HPAm8DNrT9sqQ32n5a0leBrVtnJCStU9va3PaTkt7Yw2c7mF7OSEREREREDLWRNiPRlS2As23Psf04cD1lDwXAHbYftv0KMBUY23TehfXfKU3l2wEHS5oKTAaWBFYDtgVOsP0ygO2ne+jTNsD5jQFGL+p3S9I+kjoldc55fmZ/moqIiIiI6LeRNpC4D9ioTXl3oe+6C5s3u025gJ1sj6s/q9n+DV3H+e5KV/Vfpv7e6zKr1/emsYTti4h4LUmWdETT+wMlTexjG+Mlbdb0fp4lqN2c9xZJ50j6o6T7JV0uac0+fYD27Y6VdG993SHp2P62GRExGEba0qZrge9J+oLtkwAkbQz8DdhF0mnAG4GtgIOAtebjGlcBX5H0lRpJY8Ma/eJqYF9Jk5uXNgHPAssCrZutrwEuknSU7aea6s+gDIZ+DuwALF7rN9qJiIjemw18QtL35yfohaTFgPHALEowj96eJ+AiSvCPXWvZOODNQI9RBOv5qrPlXbLdCQz4rujpj8xk7MGXDXSzC0SCekQMHyNqINEUIu9oSQcDL1LDvwKjgXsoswBft/2XxgbqPvoOJbzstPpFPwPYHjgZWLOWvwScBBwHnAhcIekx21s39fU+Sd8Frpc0h5JhdM963i8k3UEZbDxXT5kGvCzpHmCS7aO66mDC9kVEvOplyvfwAZR9aa+StDpwCrAi8ASwl+3/q6FSn6bsoXuasndujqRPA1+pp29V98C9hXJPOb/lul0F/0DSaOAXwBsoD4v+0/YvapjvK4DrgE0puR/2Az5EuXf9t+1zWz7DeOr+uTrTshrw9vrv0baPrfUupiSwWxI4xvaJvf0FRkTMrxEV/jWKhO2LiN5a2MO/1sh3K1MexmwAfAEYbXuipF9S9qqdJmlv4GO2P14HEisAO9ieU/9An2X78NrmJGAZYBfKzPYltv+55boTgLfZfk2UvTrLsbTtv9cofrcBawCrAw9ScgbdJmknYF/gg7U/dwLvAZYALrW9bpuBxHaUQcyywG+Bt9h+qSkAyFK1nffZfqqr39twDiPek8xIRCxY3d1HRtoeiYiIiHnY/jtwOjCh5dCmQCPJ5xmUwBwN59me002zF9t+xfb9lOVKfSHKMtxpwK+BVZra+JPt2+rr7gKFdOUy27PrMq6/NrU7oc5o30aZmVjjNZ1K0I6IGGAZSERExMLgaOBzlJmErjRPwT/XZa2iOVBHu4AeXQX/ANidspxqI9vjgMcpS45ar9tdoJDe9GsOsFidtdgW2NT2BpSltEu2npigHREx0DKQiIiIEa8Gs/g5ZTDRcAuwa329O3NzCLWan2AX1wJLSPpCo0DSxpLeB4wB/lqXHG1NWdLUzg2UQCGjJK1ICRRyRx/7Qb3e32w/X/cGvnc+2oiI6LMRtdl6sEl6K3A8sDZlkHUpcJDtfwxpxyIiojeOAPZrej8BOEXSQdTN1l2c90vgfEk7MHezdbd6CP5xH/BLSZ2U/EUPdNHMRZTlV62BQsb2pg9NrqREFZxG2TdxWw/1E7QjIgZENltXNULT7cBPbZ8qaRQlEsjTtg9qqrdYIyndUMkmuYjorYV9s3XMnwTtiIjeymbr3tkGeNH2qQB1E94BwN6SvizpvBoB5GpJy0g6RdKdku6uT7GQtLSkn0uaJulcSbdL6qjHdpM0XdK9kn7YuKikWZK+K+keSbdJ6uumvoiIiIiIBS4DibnWAaY0F9RIIP9HWQK2KbCH7W0oscqvtb0xJQzfYZKWAb5MWae6PiUfxUYAklYGfkgZrIwDNpb08XqZZYDb6ga5GyihCyMiIiIihrUMJOYS80b0aC3/Vd3MByWO98GSpgKTKdExVqOE8jsHwPa9lLjmUML5Tbb9RF0WdSZlUx3APyh7MaAMZMa27VzC9kVERETEMJLN1nPdB+zUXCBpOUo87jm8NmTfTrZ/21K/q1B+3YX4e8lzN6rMoYv/JjVL6YlQ9kh0015ERERExKDLQGKua4AfSPqs7dPrZusjgEnA8y11rwK+IukrNXLHhrbvpoQW/FfgOklrA+vV+rcDx9QMp38DdgN+PL8dTbSNiIgFR9JRlERyR9f3VwF/tv35+v4I4BHbRw7CtU8GjqyJ8QbM9EdmMvbgywayyREhAT8iBlaWNlV1VmBH4JOSfg/8jhLO7xttqn8HWByYJune+h7gJ8CKNQTfv1OWNs20/RjwH8B1lDB/d9n+xWB+noiIGDC3AJsBSHodsAJlX13DZsDNg3Fh258f6EFERMRAyYxEE9t/Bj7a5tCk+tOo9wLwxTb1XgQ+bftFSe+gzHL8qZ5zFnBWm2uObnp9PnD+/H+CiIgYBDcDR9XX6wD3AitJegNlxvpdlHwSX7I9FUDSzcCXgIeBU4C317r72J4maSLwNmAlYE3gq5REch8CHgE+WhPaTQYOtN0paRZwDLA98AKwg+3H6/3mTGAUcAXw1eZ7S0TEYMmMxMBaGrhJ0j2URENfSjK7iIiRzfajwMuSVqPMPtxKWbK6KdBBmX0+AdgTQNKawBK2pwHfAu6u0fy+AZze1PQ7gI8AOwA/A66zvR5lkNBuDU5XUf6OAY6pkQQf7epzJGhHRAy0DCQGkO1nbXfY3sD2+ravGOo+RUTEgLiZMohoDCRubXp/C3AesL2kxYG9mTuLvQVwBoDta4E3SRpTj11h+yVgOmU24cpaPp32Efy6ivK3ab0+tJn5brB9Yr1HdYxaekxX1SIiem1IBxKSXDepNd4fWKd7+9LGeEmbNb2fJGnnXpz3FknnSPqjpPslXV6fIvWLpLF13wSSOiQd2982IyJiyDX2SaxHWdp0G+UP+M2Am20/D/yKMrvwr8z9g75d1L5G5L3ZALZfYd4Ifq/Qfulxr6L8RUQsKEP9JTQb+ISk79t+sq8nS1oMGA/MonzJ9/Y8UZYenWZ711o2DngzZZN1b85X/fLvku1OoLO3/eqtkRxtIxEzImKEuhn4GvCg7TnA05KWp+yZaCwxOhn4JXBjU96hG4Ddge9IGg88afvvXUcLny+3UcKXnwvs2psTEv0vIgbCUC9tepmSG+GA1gOSVpd0jaRp9d/VavkkSUdKuo7ypbkvcICkqZK2rKdvJekWSQ92MTuxNeXJzgmNAttTbd8oaXS93l2SpkvaoV53rKTfSPoJcBewqqTDJN1b6+3S5jOMl3RpfT1R0imSJtd+TWiqd7GkKZLuk7TP/P0qIyJiEE2nRGu6raVsZuNBmO0pwN+BU5vqTAQ6ajS/HwB7DELf9ge+KukOyubtbICIiAViqGckAI6nhFH9UUv5ccDptk+TtDdwLPDxemxNYFvbc+pSqFm2DweQ9DnKF+kWwFrAJbw2EtK6lPWl7bwI7FifGK0A3CbpknrsncBetr8saSdgHLAB5eZyp6Qbevisa1EGMcsCv5X007o+dm/bT0taqrZzge2nemgrIiIWkDoLsVxL2Z7N7yWtTHlAd3VTnacpy51a25vY8n50u2O2x3dRpznK3yPAe2teo10ZhJnwiIh2hnpGAtt/p0SxmNByaFPmrjE9gzIwaDivfql35WLbr9TY22/uY5cEfK8+Pfo1sEpTG3+y3XgatQVwtu05th8Hrgc27qHty2zPrk+v/trU7oQa6ek2SibtNV7TqUTbiIgYtiR9lhLJ6ZCelr0Ogo2AqfW+9WXKEqyIiEE3HGYkAI6mLBc6tZs6bnr9XA/tzW563W4h6n1AVxuydwdWBDaqMbxnAEu2ue78LHBt7tccYLG6ZnZbYFPbz9eY4Uu2nmj7RMoyMJZYaQ23Ho+IiKFj+3TmDe26IK99I2V2PCJigRryGQl4der358DnmopvYe6msd2Bm7o4/VnKUqG+uBZYQlJjgxySNpb0PmAM8Nc6iNgaWL2LNm4AdpE0StKKwFbAHX3sB/V6f6uDiLUoCYkiIiIiIoa14TIjAXAEsF/T+wnAKZIOAp4A9urivF8C59dN0V/pzYXqOtIdKZlID6bsi5hB2bB2H/BLSZ3AVOCBLpq5iLL86h7KbMnXbf9F0tje9KHJlcC+dUr6t8y7ka+tRNuIiBhZJBn4me3P1PeLAY8Bt9vevpvzOoDP2m5d/hsRMeQ0NyR1jBQdHR3u7MxeuojomaQptjuGuh+LOkmzgN8Dm9l+QdKHgO8DD3c3kBgsS6y0hlfa4+gFfdlhLyHKI16ru/vIsFjaFBERsQi4Amj8pbobcHbjgKRNatjyu+u/76zlvQ0j/mlJd9RQ6P8jadQC/FwRsYjKQCIiImLBOAfYVdKSwPqUKE8NDwBb2d4QOBT4XhdtrAV8ANgE+KakxSW9C9gF2Nz2OEowj90H5yNERMw1nPZIRERELLRsT6v76HYDLm85PAY4TdIalH13i3fRzGW2ZwOzJTXCiP8LJQTsnTVj9lKUEOPzqAlP9wEYtdyK/f48ERHDakZC0iE1u/O0Oj37nh7qT2pkrpa0v6Slu6g3uW5Y600fXp1Gnh+SPluzXd8n6X5JB9byb0vatqe+RkTEQu0S4HCaljVV3wGus70u8FHahAGvXhNGnBKO/DTb4+rPO1sT3kEJI267w3bHqKXH9PdzREQMnxkJSZsC2wPvtj27ZpV+fR+a2B/4GfD8IHSvV+rmuf2B7Ww/WqevPwNg+9CmqvvTj75Of2QmYw++rH+dHSLZyBYRi7hTgJm2p9c8Qg1jKBmqAfbsY5vXAL+QdJTtv0p6I7Cs7T/1t7MREd0ZNgMJYCXgyTplS83+DICkQylPaJai5Jf4opvCTdUNZysD10l60vbWPV2sTi+fASxTi/azfUtLnY0pSeB2At4AHAmMBp4E9rT9WEuz/wEcaPvR+hleBE6qbU0CLq39fLWvlAHFurYPqPW+ALzL9ld7+gwRETGy2H4YOKbNoR9RljZ9lZLrqC9t3i/pP4GrJb0OeAn4N6DLgUTCiEfEQBhOS5uuBlaV9DtJP6nJ4RqOs71xnfJdijJz8SrbxwKPAlv3ZhBR/RV4v+13UzapHdt8UNJmwAnADsCfgR8DO9veiPJE6btt2lwXmNLdRdv09RzgY5Ia62H3ovsM3xERMcLYHt2mbHIj9KvtW22vaXtz2/9le2ybOhNtH950/rq2Z9TX59ZlTevb3sh2jzmJIiL6a9jMSNieJWkjYEtga+BcSQfbngRsLenrwNLAG6lJ4/p5ycWB4ySNo6wzXbPp2LsoMxGNJUrrUgYJv6ob2UZREgn1m+3nJF0LbC/pN8Ditqe31ssmuYiIiIgYTobNQALA9hxgMjBZ0nRgD0nnAD8BOmz/WdJEut6E1hcHAI8DG1BmZl5sOvZYvcaGlNkDAffZ3rSHNu+jRM7o07Q0cDLwDUr4v7azEbZPpAxuWGKlNZJFMCIiIiKG1LAZSNTkO6/Y/n0tGkdZ39kYNDwpaTSwM3B+myaeBZal7F/ojTGUjKKvSNqDMsvQ8AzwOcp60+co+zJWlLSp7VvrMqQ1bd/X0ub3gR9J2t72XyQtQdnPcWxLvXn6avt2SasC76bEFu9W1rZGRERExFAbTnskRlM2mt0vaRqwNjDR9jOUDcvTgYuBO7s4/0TgCknXdXH8MkkP15/zKLMce0i6jbKs6bnmyrYfp2zwPp4yM7Ez8ENJ9wBTgc1aL2D78lr/15Luo+yXaDdYa9fXnwM32/5bF/2PiIh+kmRJRzS9P7DOdA9U+2PrNb7TVLaCpJckHTefbb4aPjwiYjhRU/CjGEI1d8VRtq/pqW5HR4c7OzsXQK8iYqSTNMV2r/LoLAokvUhZvrqx7Sdrrp/R7fIuzGf7YynhWP9es1Qj6UvAF4GbbO83ENfpryVWWsMr7XH0UHdj2EmI8ojX6u4+MpxmJBZJkpaX9Dvghd4MIiIiol9epswKH9B6QNKKki6QdGf92byWT6/f1ZL0lKTP1vIzupgpeAH4TVMi1F0os849XecXTW1/UdKZ9XVz8tWNJd0i6R5Jd0haVtKSkk6t/bxbUm+jF0ZE9Muw2SOxqKpLt9bsqV5ERAyY44Fpkn7UUn4MZWb4JkmrAVdRovjdDGxO2bf3ICW64OnAe4EvdXGNc4BdJf2FEhnwUUoOoe6usw9ws6SHgK/V9l8l6fXAucAutu+UtBxl0PL/AGyvJ2ktyv6+NWsuo4iIQZOBRD/VaexLa46LRtlEYBZlM/XVjQR13bQxmZLILuuVIiIGme2/SzodmED5Q7xhW2DtGuYbYDlJywI3AltRBhI/BfaRtArwtO1ZXVzmSuA7lOiA57Yca3sd24+rJGC9DtjR9tMt570TeMz2nY3PASBpC0quI2w/IOlPlAdU05pPThjxiBhoGUgMrj2BeylPogbM9EdmMvbgywayyWEj61MjYgE5GriLeUNuvw7Y1Hbz4AJJN1AyRa8GHALsSAnAcWNXjdv+h6QplJmFdSjBO7q9TrUe8BRzZy/m6QrQbmOj2pS161PCiEfEgMoeicHVAZwpaaqkpSQdWtfD3ivpRDU9jgI+Wde7/k7SlkPV4YiIRUF92v9zSqjvhquBVzdD14Sl2P4zsAKwhu0HgZuAA+lmIFEdAfy77adaytteR9ImwIcokQIPlPS2lvMeAFaWtHGtv6ykxYAbgN1r2ZqUAc9ve+hbRES/ZUZicHXStGRJ0nG2v11fnwFsz9wM3YvZ3kTSh4FvUqa+IyJi8BxB0x/0lKVOx9cQ5I0/0Petx25nbr6hGyl5g27qrvGaa6g131Db60j6f5RQ53vZflTS14BTJG3T1N4/JO0C/FjSUpRlWdtSwpmfoJLI9WVgT9uzu+tb8hFFxEDIQKL/upoeble+taSvA0sDb6TcYBoDiQvrv1OAsa0nZm1rRET/2R7d9Ppxyvdx4/2TlAhL7c77TNPrW+hiRt/2DGDdNuWTgEk9XGeDpvqXAJfUt3s2ld9Jyybs1joREQtKljb131PAG1rK3khLhm1JS1KeGu1sez3Kk6clm6o0nh7Noc0Az/aJtjtsd4xaesxA9T0iIiIiYr5kINFPNWLHY5L+BUDSG4EPUqa8nwWWrVUbg4YnJY2mbNSLiIiIiBiRsrRpYHyWst71iPr+W7b/KGkSZd3qC8CmlFmI6cAM4M75vVjWtkZERETEUMtAYgDYvh94TSZR2xcAFzQV/Wf9aa03vun1k7TZIxERERERMZxkaVNERMQAkfRWSb+Q9HtJf5R0TM1IHRGx0MmMRERExACouYEuBH5qewdJoygJ4L4LHNRUbzHbLw9RN4GFO7HpYErS1Ih5ZUYiIiJiYGwDvGj7VADbc4ADgL0lfVnSeZJ+CVwtaRlJp9QkpXdL2gFA0tKSfi5pmqRzJd0uqaMe203S9JrU9IeNi0qaJem7ku6RdJukNy/4jx4Ri6KFfiAh6ShJ+ze9v0rSyU3vj5D01UG69smS1h6MtiMiYthZh5IL6FW2/w78H2UFwKbAHra3AQ4BrrW9MWWP3WGSlgG+DPzN9vrAd4CNACStDPyQMlgZB2ws6eP1MssAt9negJJE7wuD+BkjIl61KCxtugX4JHC0pNcBKwDLNR3fDNh/MC5s+/OD0e6iOiWdKeWIGOZE+2SkjfJf2X66lm0HfEzSgfX9ksBqwBbAMQC2763ZrwE2BibbfgJA0pnAVsDFwD+AS2u9KcD723YuiU0jYoAt9DMSwM2UwQKUp0X3As9KeoOkJYB3UQYZ4xonSLpZ0vqS3ijp4jrFfJuk9evxiZJOk3S1pBmSPiHpR3XK+UpJi9d6k5umpNtOPUt6R31/p6RvS5q1wH4zERExkO4DOpoLJC0HrEpJNvpc8yFgJ9vj6s9qtn9Ty9vpqhzgJduNAUzbpKaQxKYRMfAW+oGE7UeBlyWtRhlQ3ArcTpli7gCmAScAewJIWhNYwvY04FvA3XWK+RvA6U1NvwP4CLAD8DPgupqx+oVa3qqrqedjgGPq9PajXX0OSftI6pTUOef5mX3+PURExKC7Blha0mcB6mbrI4BJwPMtda8CvlI3aCNpw1p+E/CvtWxtYL1afjvwPkkr1HZ3A64fvI8SEdGzRWFpE8ydldgMOBJYpb6eSVn6dB7wX5IOAvamfOlDmWLeCcD2tZLeJKnxGOcK2y9Jmg6MAq6s5dNpnweiq6nnTYGP19dnAYe3+wC2T6RE/2CJldZoN3UeERFDyLYl7Qj8RNJ/UR7WXU55ELVbS/XvAEcD0+pgYgawPfAT4LS6pOluysOumbYfk/QfwHWU2YnLbf9ifvuaxKYRMRAWlYHELZSBw3qUpU1/Br4G/B04xfbzkn5FmV34V+ZOTbebSm78ET8bwPYrkpqnlV+h/e+1V1PPERExctn+M/DRNocmMfchFbZfAL7Ypt6LwKdtvyjpHZRZjj/Vc86iPHBqveboptfnA+fP/yeIiOi9ReWP2ZspA4cHazi+pyUtT9kz0VhidDLwS+DGps1wNwC7A9+RNB540vbf60z0QLmNMutxLrBrb07Ik6SIiIXW0sB1da+dgC/Z/scQ9ykioq1FZSAxnRKt6ayWstG2nwSwPUXS34FTm+pMBE6tU8zPA3sMQt/2B34m6WvAZZTlVhERsQiy/SwtG7YjIoarRWIgUWchlmsp27P5fY3R/Trg6qY6T1OWO7W2N7Hl/eh2x2yP76JO89TzI8B769raXYHO3n6uiIiIiIihstBHbeqNGmHjduAQ268s4MtvBEytsx5fpizBioiIQTLQiUprSPADuzh2Sz/6OV7SZj3XjIgYGovEjERPbJ/OvKFdF+S1bwQ2GIprR0QsohZYolLb/RkIjAdmUfo7oBbVxKb9lcSoEfPKjEQvSLKkM5reLybpCUmX9nBeh6RjB7+HERHRB71JVPqBmij0XkknNuV7mCDp/pqo9JymNteuSUgflDShUdhIMlpnFyZLOl/SA5LObGrzw7XsJknHSrpU0lhgX+AASVMlbSlpdUnX1GtfU/MjIWlSPe+Wev2dB/fXFxFRZEaid54D1pW0VA3Z937K3oZu2e5kEPY85ElSe3lSFBG9YftRSa2JSleh5PWZScndcJztbwPUB0nbUyL7HQy8zfbsGv2vYS1ga2BZ4LeSfmr7pZZLb0gZuDxKGcxsLqkT+B9gK9sPSTq79nGGpBOAWbYPr/34JXC67dMk7Q0cy9w8RCtRch+tBVxCQsBGxAKQGYneu4K5Gat3A85uHJC0SX0SdHf99521fHxj1qKuoT2liydWn5Z0R33q9D81a2lERAye5kSlt9afxvtbgK0l3V6Tjm5DGQBAGWScKenTwMtN7V1me3aNBPhX4M1trnmH7YfrXryplOSla1FCkz9U65zd5ryGTZkbffAMysCh4WLbr9i+v4trI2kfSZ2SOuc8nwCBEdF/GUj03jnArpKWBNanbM5ueIDyNGlD4FDge120sRbwAWAT4JuSFpf0LmAXYHPb4yjJ6nYfnI8QERFVa6LS2yh/qG9GGWT8BNjZ9nrAScCS9byPAMdTAmVMkdSY2Z/d1HZXSUfb1elPYiI3vW5uu22btk+03WG7Y9TSY/px2YiIIgOJXrI9jfL0aDfg8pbDY4DzJN0LHMXcJ1et2j2x+hfKDelOSVPr+7e3npgnSRERA+pmynKlp23PqeG+l6cMJm6tdZ6UNBrYGaBuzF7V9nXA12v90fTPA8Db654IKA+WGp6lLJVquIW5iUt3B27q57UjIvoleyT65hLgcEokjTc1lX8HuM72jvVmMLmL87t6GnWa7f/o7sK2TwROBFhipTXcXd2IiOhRt4lKJZ1U388A7qzHR1ESiI6hfHcfZfuZumd6vth+QdKXgSslPQnc0XT4l8D5knYAvgJMAE6RdBDwBLDX/F53vVXG0Jl9ZRHRTxlI9M0pwEzb0yWNbyofw9zN13v2sc1rgF9IOsr2XyW9EVjW9p/629mIiGivp0Sltv8T+M82p27RWtAmSem6Ta9H138n0/SQyfZ+TadcZ3utGsXpeGqQDtu/oyylbbZNm+vv2fK+v7MkERG9koFEH9h+GDimzaEfAafVBEbX9rHN+yX9J3B1nTZ/Cfg3oMuBRJ4kRUQsVL4gaQ/g9cDdlChOERHDnuyskhlpOjo63Nk54FFlI2IhJGmK7Y6h7kcML7mPRERvdXcfyWbriIiIiIjoswwkIiIiIiKiz7JHIiIiRhxJBn5m+zP1/WLAY8Dttrcfgv6MBw4crGvXLNqfsv2T+n4ssJnts7o7ryvTH5nJ2IMvG7gOBjOydzEWQSNuIFFvHkfa/lp9fyAlXN/EAWp/LPAQ8N+2/6uWrUC5Qf1PS6SN3rb5beAG278eiD7mBtBevsQjFinPAetKWsr2C8D7mRs9b2G0PPBlSqI8KHmNPsW84WsjIhaokbi0aTbwifrH/WB5kJKoqOGTwH3z25jtQwdqEBEREa+6gpJpGkqy0LMbByRtIukWSXfXf99Zy9eRdIekqZKmSVpD0jKSLpN0j6R7Je1S6x4q6c5admINz4qkf5b061r/LknvqJcdLel8SQ9IOrOp/ozGPUtSh6TJ9fX7aj+m1n4uW8sPqtedJulbte0fAO+odQ+r77es7w9o97kG7bceEVGNxIHEy5TEbAe0HpC0oqQL6hfwnZI2r+XTJS2v4ilJn63lZ0jats01XgB+I6mxQ30X4Oe9uM4vmtr+oqQz6+tJkhqZUTeuN7V76pf+spKWlHRq7efdkrYeqF9WRMRC7BxgV0lLUvIt3N507AFgK9sbAocC36vl+wLH2B4HdAAPAx8EHrW9Qc0BcWWte5ztjWvZUsx9wHQmcLztDYDNKDPWABsC+wNrA28HNu+h/wcC/1b7siXwgqTtgDWATYBxwEaStgIOBv5oe5ztg+r7G+v7o7r4XPOQtI+kTkmdc56f2UPXIiJ6NuKWNlXHA9Mk/ail/BhKptGbJK0GXAW8C7iZ8oX+J8psw5bA6cB7gS91cY3GDeovlCzUjwIr93CdfYCbJT0EfK22/ypJrwfOBXaxfaek5SiDlv8HYHs9SWtRckqsafvFpnP3qe0zarkVe/+biohYSNmeVpej7gZc3nJ4DCW/zxqAgcVr+a3AIZLeClxo+/eSpgOHS/ohcKntG2vdrSV9HVgaeCNwX51NWMX2RbUPLwLUyYc7ar4hJE2lLD+6qZuPcDNwZH3odKHth+tAYjtKPgmA0ZSBxf/18Ot4zedqrWD7RMqDOJZYaY3Efo+IfhuJMxLY/jtlIDCh5dC2wHH1C/wSYLk6VXwjsFX9+SmwnqRVgKdtz+riMldS1tzuRvnjv8fr2H6c8uTrOuBrtp9uOe+dwGO272x8DtsvUzKlnlHLHqAMeNZs+cwn2u6w3TFq6THd/n4iIhYhlwCH07SsqfoOJWP0usBHgSUB6ubkj1Ee4lwlaZuaQXojYDrw/bqkaUnKfoSdba8HnFTbUDd9md30eg5zH9a9zNz77ZKNCrZ/AHyeMttxW32QJOD7daZhnO1/tv2/Pf0S2n2uns6JiOivETmQqI4GPgcs01T2OmDTpi/gVWw/C9xAmYXYEpgMPAHsTBlgtGX7H8AUyszCBS2Hu7oOwHrAU8ydvWgmypOxduUREdF3pwDftj29pXwMczdf79kolPR24EHbx1IGIetLWhl43vbPKIOSdzP3D/4nJY2m3DMaD7IelvTx2t4SkpbuoY8zKAMVgJ2a+vIO29Nt/xDoBNaizHDvXa+JpFUk/RPwLLBsU5vzvG/3uXroU0REv43UpU3YflrSzymDiVNq8dXAfsBhAJLG2Z5q+891o9vrbT8o6SbK2tSeIjAdAVxv+6k6bd3Q9jqSNgE+RFkne72kq20/1HTeA8DKkjauS5uWpTw9ugHYHbhW0prAasBvu+rUequMoTMRiiIiqEuJjmlz6EeUpU1fBa5tKt8F+LSkl4C/AN8GNgYOk/QK8BLwJdvPSDqJMksxA7izqY3PAP+jEpHvJUpAju58C/hfSd9g3n0c+9c9cXOA+4ErbM+W9C7g1nrfmQV82vYfJd0s6V7KJvNvAC9LugeYRBn4tH6uLuU+EhEDQfbIWiYpaZbtxpOaN1NCtf7I9sQ6WDiesl9hMUrI1X1r3TOAUbY/JWkzyrrVFW0/1dL+WMoa2XVbyvcEOmzv1+46lH0OdwB72b5L0scoG8K3AU6tbZ4vaWPgx5Sp7Bcoy6ReBk6gPLF6Gfiq7eu6+h10dHS4s7NzPn57EbGokTTFdkfPNWNRkvtIRPRWd/eRETeQiNwAIqL3MpCIdnIfiYje6u4+MpL3SERERERExBDJQCIiIiIiIvpsxA0kJB0laf+m91dJOrnp/RF1c11v25so6cAujt3Sj36Or3sxIiJiISLJdd9d4/1ikp6QdOl8tre8pC8PXA8jIhaMkRi16RZKhIyjJb0OWAFYrun4ZpTMov1muz8DgfGUaBvzPRjpyvRHZjL24MsGutmF3oxEKImIgfEcsK6kpWy/QMk59EgP53RneeDLlLwVC0TuIwte7kGxMBpxMxKUTKCNP/DXAe4FnpX0BklLUCIpfUDSnZLulXSiagw9SRMk3S9pmqRzmtpcW9JkSQ9KejXJnaRZ9d/x9fj5kh6QdGZTmx+uZTdJOlbSpTXy077AAZKmStpS0uqSrqnXvkYlIzaSJtXzbqnX33lwf30RETEArgAafxnuRlNCPElvlHRx/b6/TdL6tXyipFPa3G9+ALyj3i8OkzS63ifukjRd0g71/LGSfiPpJEn3Sbpa0lL12Bfqfe8eSReo59wWERH9NuIGErYfpcTOXo0yoLiVEpd7U6ADmAYcZ3vjGsJ1KWD7evrBwIa216f8od+wFvABYBPgm5IWb3PpDSkzHWsDbwc2V8l8+j/Ah2xvAaxY+ziDEs71qJqw7kbgOOD0eu0zgWOb2l6Jkt16e8oNJSIihrdzgF3rfWB95s0P8S3g7vp9/w3g9KZj7e43BwN/rPeLg4AXgR1tvxvYGjii8fAKWAM43vY6wDPMTXB3Yb3vbQD8hpJjKSJiUI24gUTVmJVoDCRubXp/C7C1pNslTafkcVinnjcNOFPSpyn5Ghousz3b9pPAX4E3t7nmHbYftv0KMBUYS7khPNiUdO7sNuc1bAqcVV+fQRk4NFxs+xXb93dxbSTtI6lTUuec52d2c5mIiBhstqdR7gO7AZe3HN6C8j2P7WuBN0kaU4/15n4j4HuSpgG/BlZpqveQ7an19ZTaByhLrW6s973dmXvfm9to7iMRMcBG6kDiFsqgYT3K0qbbKH+ob0YZZPwE2Nn2esBJlIyfUKahj6ckfpsiqbFHZHZT23Nov3ekXR21qddbzQk8mttu26btE2132O4YtfSYdlUiImLBugQ4nNc+RGr3Pd74zu/N/WZ3ygz3RrbHAY8z9z7W1fmTgP3qfe9bTfXndiD3kYgYYCN1IHEzZRnQ07bn2H6aslltU8rsBMCTkkYDOwPUjdmr1ozRX6/1R/ezHw8Ab697IgB2aTr2LLBs0/tbgF3r690pmbUjImLkOgX4tu3pLeU3UL7nkTQeeNL237tpp/V+MQb4q+2XJG0NrN6LviwLPFaXSu3eu+5HRPTPSIzaBDCdEq3prJay0baflHRSfT8DuLMeHwX8rE4vi7J/4Zm5y077zvYLNWTflZKeBO5oOvxL4Py6Se4rwATgFEkHAU8Ae83vdddbZQydif4QETGkbD8MHNPm0ETg1Lo06Xlgjx7aeUrSzZLupWzi/iHwS0mdlKW0D/SiO/9F2afxJ8r9b9nuKuc+EhEDQbZ7rhVdkjTa9qy6Ee544Pe2jxrMa3Z0dLizs3MwLxERCwlJU2x3DHU/YnjJfSQiequ7+8hIXdo0nHxB0lTgPsp09P8MbXciIiIiIgbfSF3aNGzU2YdBnYGIiIiIiBhuhmRGQpIlndH0fjFJT0i6dIj6M34wry1p+bqXovF+rKRPDdb1IiIiIiIG21DNSDxHiXm9lO0XgPcDjwxRXxaE5YEvU8LSQon7/Snm3Szea9MfmcnYgy8bkI5FMSObDiMiIiL6ZCiXNl1ByetwPiWhz9nAlgCSNgGOpmSlfgHYy/ZvJa0DnAq8njKbshPwKPBz4K2UyEzfsX2upEOBj9Y2bgG+aNuS/pmSdXpFSgzuT9b+jJZ0PrAuJcnPp2v9GUBHjQbVARxue7yk9zE3WoeBrWw/W6My/SuwBHCR7W9SslW/o+6l+FX9nO+q708Drm79XLZ/PwC/44iIGEYkzbL9mtDjkiYBl9o+v5tzJwMH2u73Luk8kFrw8sAqFkZDudn6HGBXSUsC61PC1jU8QPnDfEPgUOB7tXxf4JiaoKcDeBj4IPCo7Q1srwtcWeseZ3vjWrYUJe8EwJnA8bY3oCSwe6yWbwjsD6wNvB3YvIf+Hwj8W+3LlsALkrYD1gA2AcYBG0naCjgY+KPtcbYPqu9vrO+P6uJzRUREREQMW0M2kLA9jbLEZzfg8pbDY4Dzakzto4B1avmtwDck/Tuwel0WNR3YVtIPJW1pe2atu7Wk2yVNB7YB1pG0LLCK7YtqH160/Xytf4fth22/QonbPbaHj3AzcKSkCcDytl8Gtqs/dwN3/f/27jzMrqpO9/j3NSAQA0GF1ohoFEFaBgMWXkXA0GK3diuIDQ00rcSrICrS6FUuT6uIOIACguBABxsDqIDIIIiKNhCZhwqEBBBQIV6mRhANRAQhvPePtQ7ZKU5NSaXOqar38zz11NlrT+scyFm19lrr9wM2pXQsBtPufS1H0n6SeiX1Ln1s8bOvEBERY4aKr0u6VdKFwN809h0q6XpJN0uareUTHu0u6TpJd0hqjeKvKek7khZKurEmsYuIWOU6Hf71fOBoyrSmps8Dl9bRhHcCawLY/j6wM2W600WS/s72HcDrKB2KI+oX8JqU9Qi72d4COKleY6Dsc080Xi9l2bSvp1j2Oa3ZOsD2kcAHKKMd10jatF7/iDrSMMP2q2z/12AfQrv31eaY2bZ7bPdMmjx1sEtGRER32xV4NbAFsC9lhLylvxF1gNVsv54ygv7ZWvYRgNre7QWcUtvB5eSBVESMtE53JE4GDre9sE/5VJYtvp7VKpT0SuBO28dTOiFbSnoJ8Jjt71I6JVuz7A/+hyRNAXYDsP0IcI+kd9XrrSFp8iB1XETpqEBZk9Gqy0a2F9r+MtBLGX24CPjf9Z5I2kDS3wCPsnyW0eW2272vQeoUERFj2w7A6baX2r4PuKSx71kj6o1959Tf81g2cr4dcBqA7dso2a036XvDPJCKiJHW0TwStu9h2YLlpq9Qnqh8nOW/XPcA/k3Sk8D/AIcD2wBHSXoaeBL4kO0/STqJMkqxCLi+cY33AP8p6fB6/O4M7HPAf0n6D5Zfx3FQHT5eCtwK/NT2E5L+Fri6jkQvoSza/q2kK+tUrZ8C/wE8JekmYA6l49P3ffVriw2m0ptFWxERY537FjRG1Hts3y3pMBqj4SwbPW+OnA802h4RscrIftb3WHS5np4e9/audNCOiJgAJM2z3dPpekTRitok6d3AB4F/pKyPuJUyxem/gdspow2TgGuAH9o+rBm1SdJ6QK/t6fWh22a23y9pE0p0wE1sP9H3/i1pRyJiqAZqR5LZOiIiYvSdS5m2tBC4A/glwCAj6v35JnBinQr1FDBroE5ERMRISUciIiJilLRySLhMBzign2M+DXy6TfnMxuuHqGskbD9OYz1hRMRo6fRi64iIiIiIGIMmXEdCkiWd1theTdKDkn68gtdbV9KHR66GERERERHdbyJObfozsLmktWrit7eyLNTsilgX+DBljuqoWHjvYqYfcuFo3S6ARYmSFREREbGcCTciUf0UaP1luBeNhHiSXiDpPEkLJF0jactafpikkyXNlXRnzWgNcCSwkaT5ko6SNEXSxZJuqFlGd6nnT5f0K0knSbpF0s8lrVX37VuzmN4k6ewh5LaIiIhxoLYNN/cpO0zSJyTNqrmSBrvGXEmJzBURo24ijkgAnAEcWqczbUlJjLd93fc54Ebb76oZpk8FZtR9mwI7UpLJ3S7pW8AhwOa2Z0CZKgXsavuRGp7vGknn1/M3Bvayva+kH1AS3H0XOMf2SfX8LwDvB05YZe8+IiLGglnAzcB9I33hjGx3n4x8x1g0IUckbC+gRLvYC/hJn93NDKGXAC+U1EoBeqHtJ2q0jN8DL2pzeQFfkrSAEg98g8Zxd9meX183s5JuLunyGrpvb5bPYlouKu0nqVdS79LHFg/zHUdExBjUA3yvjnivJenQOnp9s6TZqplPq90lXSfpDknb93fBiIiRNCE7EtX5wNE0pjVV7TKEtrL2NeNyN7OKNu0NrA+8ro5SPMCyrKT9nT8HOMD2FpQRkWYW01IBe7btHts9kyZP7bs7IiLGn15gb9sz6pq+r9vexvbmwFrAOxrHrmb79cBBwGdHv6oRMRFN1KlNUKYzLba9UNLMRvlllM7A52v5Q3WaUn/XeZQy1allKvB7209K2hF4+RDqsjZwv6TV670HXPy9xQZT6c0QaETEeOBhlO8o6WBgMvAC4BbggrrvnPq7Odq9HEn7AfsBTFpn/RWsbkTEMhO2I2H7HuBrbXYdBnynTk16DNhnkOv8QdKVdbHcT4EvAxdI6gXmA7cNoTqfAa4FfkfJZrr2wIdHRMQ48Qfg+X3KXgDc1SyQtCYlOmCP7bslHcbyo9etEe/+RsuxPRuYDbDGtI3768BERAzZhOtItLKK9imbC8ytrx8GdmlzzGF9tjdvvP7XPoe/sZ/bN885uvH6W8C3Bqt7RESML7aXSLpf0ltsXyzpBcDbKA+6dmPZg6VWp+EhSVPqvh+Ofo0jIpaZcB2JiIiILvNe4BuSjqnbn7P9W0lzgBMl/YXygOokyqj1IuD6lblhpshGxEhIRyIiIqKDbN9KCS3et/xs4OxG0afrT9/jZjZeP0Q/ayQiIkbaRI7atEIkLemnfI6k3QY5N0mDIiIiImJcyIjEGJREQqMviYIiIiIilpcRiRWk4uuSbpV0IfA3jX3DShokaU1J35G0UNKNNWxsRERERETXSkdixe0KvBrYAtgX2Laxb7hJgz4CUBPS7QWcUkP9RUTEKJNkSac1tleT9KCkH9ftnSUd0rkagqSZkrYd/MiIiFUnU5tW3A7A6baXAvdJuqSxb7hJg7YDTgCwfZuk3wGbAAtaF0wioYiIUfNnYHNJa9WM0m+lkSjU9vnA+Z2qXDUTWAJctSInZ4rs2JLptdGtMiKxcp6V0KeRNGi3OsJwEoMnDeo3bfYzN7Jn2+6x3TNp8tSVq3VERAzmp0Drr7e9gNNbOyTNkvT1+nqOpOMlXSXpzlbQjTpiMFfSDyXdJul7rWmukl4n6ZeS5km6SNK0Wn5gnS67QNIZtewFks6rZddI2lLSdGB/4GOS5kvaXtI7JV1bp8f+t6QXjdYHFRETVzoSK+4yYE9Jk2oj0FrX0C5p0FCutTeApE2AlwG3j3B9IyJi6M6gfMevCWwJXDvAsdMoI8vvAI5slG9Fmcb6GuCVwJskrU4Zgd7N9uuAk4Ev1uMPAbayvSWlowDwOeDGWvYfwKm2FwEnAsfanmH7cuAK4A22t6p1P3gl3ntExJBkatOKOxf4O0pyoDuAXwLY/pOk4SYN+iYl6dBC4Clglu0n+js4iYQiIlYt2wvqk/+9gJ8Mcvh5tp8Gbu0zEnCd7XsAJM2nTGf9E7A58Is6QDEJuL8evwD4nqTzgPNq2XbAP9c6XSLphZLaDUu/FDizPth6LnBX3wMyRTYiRlo6EsNke0r9beCAfo4ZVtIg248Ds0a8shERsTLOB46mrEd44QDHNR/8qJ/y1nRWAbfYfmOb6/wTZf3dzsBnJG1G+6mvz5pWSxnl+Krt8yXNBA571kn2bGA2wBrTNm53jYiIYcnUpoiIiPZOBg63vXAEr3k7sL6kNwJIWl3SZpKeA2xo+1LKtKR1gSksP/V1JvCQ7UeAR4G1G9edyrIF4fuMYH0jIvqVEYmIiIg26rSkr43wNf9aF2QfX6corQYcR5ki+91aJsr6hz9JOgz4jqQFwGMs6yRcAPxQ0i7ARykjEGdJuhe4BnjFQPXIFNmIGAkqM3RiLOnp6XFvb2+nqxERY4CkebZ7Ol2P6C5pRyJiqAZqR8bd1KYkEoqIiIiIWPXG49SmJBKKrpNkQhERETHejLsRiSqJhCIiIiIiVqHx2pFIIqGIiIiIiFVoXHYkbC+g5GgYciIh27cCz0okVJMMza/XezXLEgnNp+SKeGk9vpVI6N8oSeWgdFBOq3W6BBgokdBFNSHdJ4HN+h4gaT9JvZJ6lz62eJC3FBERq0odsf6HPmUHSfpmp+rUqMPkTtYhIiaW8bhGoiWJhCIiYlU4HdgTuKhRtiflQdCAJE2yvXQV1esg4LuUMLEDylq78SXr8KJTxnNH4mRgse2F9Y/zkfBMIiHbV9epTpsAv6ImEpJ0BfCvLJ9I6PPNREKSHgXWaVx3WImEEv87IqKjfgh8QdIatp+oa99eAkyWdDWwBvBb4H22l0haRGmT/h74uqQjge8DOwKrA/sBRwCvAo6yfWJdl/cV4O2UB1BfsH1m42HTQ5QR8nnAv1FySbwEuFTSQ7Z3XOWfQkRMeONyahOUREK2RzyRELAb8GVJN1GmPG0LTKIkEloI3EhNJET5su+piYSOZPlEQru2FluzLJHQ5ZTGISIiupTtPwDXAW+rRXsCFwOfAnayvTXQC3y8cdrjtrezfUbdvruObl8OzKG0LW8ADq/73w3MAF4L7AQc1QruQZs1fLaPB+4DdkwnIiJGy7gbkbA9pU3ZXGBufT2H8qWN7Vntzm0eX7cPaLyeT5nC1Nd2be77MLBLm/I7KIvAm37U5poREdGdWtObflR/nwO8E7iyBvl7LnB14/gz+5zfCkO+EJhi+1HgUUmPS1qX0qacXqdBPSDpl8A2wCPUNXwAdb3edErQjgFJ2o8y+sGkddYf3ruNiGhj3HUkIiIiRsF5wFclbQ2sRRmN/oXtvfo5/s99tlvr8J5m+TV5T7NsTV5/2q3hG1TW2kXESBu3U5siIiJWFdtLKCPXJ1NGJ66hhAl/FYCkyZI2WYlbXAbsIWmSpPUpI+HXDXLOo8DaK3HPiIhhmXAjEpLmAkfYvqhRdhCwie0Pd7BeBwGzbQ8abSMiIrrC6ZQpTXvaflDSLOB0SWvU/Z8G7ljBa58LvBG4ibLY+mDb/yNp0wHOmQ38VNL9g62TSNCOiBgJsifW6KakD1KSv72vUXYN8MmaHG6gc1dZ2L4a1aPH9qCLrdeYtrGn7XPcqqhGdEDC9sWqJGme7Z5O1yO6S09Pj3t7eztdjYgYAwZqRybi1KYfAu9oPTHqG7ZP0g2SzpI0pe5fJOnQGtZ197r9pXpsr6StJV0k6beS9q/nSNJRkm6WtFDSHrV8Zk1k9ENJt0n6Xj32QJaF7bu0A59JRERERMSwTLiORML2RURERESsvAnXkahaYfuov++i/GF/ZQ2ltw/w8sbxA4Xtu9b2o7YfBJ4Vts/2A0ArbB/UsH22n6bkoZg+lApL2q+OgPQufWzxkN9oRERERMSqMOEWW1fnkbB9ERHRhqRjgd/ZPq5uX0QZif5A3T4GWAz81faRHajfS4Djbe822veOiGiakB0J20tq9KZm2L5vSHqV7d9Imgy8tCaOWxGXAR+UdArwAkrYvk8CA0XbaIXtS2briIjOugrYHThO0nOA9YB1Gvu3BQ6yfW0nKmf7PsqU2hW28N7FTD/kwhGqUXS7BPWIVWVCdiSqhO2LiIh2rgSOra83A24Gpkl6PvAY8LfAayW9x/YBknYHPksZZV5sewdJk4AvA/9AaQdOsn2CpLcAR1Pa3+uBD9l+okbuO4WSHXt1YHfbt0l6M/C1WhdTHky9EPix7c1r27UzMBnYCDjX9sGr7JOJiGiYsB0J2+fSmIJk+xKWrWNoHje9v23bcyiLrdsd+8n60zx3LiWBUWv7gMbrE4AThvMeIiJi5Nm+T9JTkl5GGX24GtiA8oBoMbAA+GvjlEOBf7B9b10nB7Af8ApgK9tPSXqBpDUpbcZbbN8h6VTgQ8Bx9ZyHbG8t6cPAJ4AP1N8fsX1ljSb4eJsqz6AE8ngCuF3SCbbvHonPIiJiIBN1sXVERMRArqR0Ilodiasb21e1OXaOpH2BSbVsJ+BE208B2H4YeDVwV2Pa7CmUEYaWc+rveSwLxHElZU3fgcC6rev1cbHtxbYfB25l+WAhz0jQjogYaelIREREPNtVlE7DFpSpTddQRiS2pfxx/wzb+1Omw24IzJf0QsqId9/AGAMF4oBlwTieCcRRF3N/gBIY5Jp+psgOKYiH7dm2e2z3TJo8dZCqREQMLh2JiIiIZ7sSeAfwcA3l/TCwLqUzcXXzQEkb2b7W9qGUgBkbAj8H9pe0Wj3mBcBtwHRJr6qnvocSHrxf9doLbX+ZkuNooLV2ERGjalTWSEgy8FXb/6dufwKYYvuwEbr+dOrCs0bZYcAS20ePxD2GUZd+7yvpKtvbjmZ9IiJihSykRGv6fp+yKbYfkpYbXDhK0saUEYeLKYE2bgY2ARZIepKy2Prrkt4HnFU7GNcDJw5Sj4Mk7UgZabgV+CkwbeBTBpegHRExEmSv+pQEkh4H7ge2qV/AE7Ij0c/xk2wvHc491pi2saftc9wK1C7GooTti5UhaZ7tnk7XI7pLT0+Pe3t7O12NiBgDBmpHRmtq01OU8KYf67tD0vqSzpZ0ff15Uy1fKGldFX+Q9N5afpqknYZzc0n71mvfVO81uZbPkfQtSZdKulPSmyWdLOlXkuY0zl8i6RhJN0i6WNL6tfxASbdKWiDpjMYtXyNpbr3mgc3r1N8z6z2/DyyUNEnSUbWOCyR9cDjvLyIiIiJitI3mGolvAHtL6rvC62vAsba3Af4Z+HYtvxJ4EyWG953A9rX8DZRFb31tJGl+6wfYv7HvHNvb2H4t8Cvg/Y19zwf+jtLJuYASO3wzYAtJM+oxzwNusL01ZT7rZ2v5IZTQflv2ud+mlNjhrwc+K2n1NvV9PfAp26+p9VlcP4NtgH0lvaJ5cKJtREREREQ3GbU8ErYfqTGzDwT+0ti1E+UJfmt7HUlrA5dTwuL9DvgWsJ+kDSgL35a0ucVvbc9obdQpRi2bS/oCZaHcFOCixr4LbFvSQuAB2wvr+bdQwu/NB54GzqzHf5dlIfoWAN+TdB5wXuOaF9p+AnhC0u+BFwH39Knvdbbvqq//HthSUitT6VRgY6C1H9uzKaM6rDFt41U/Hy0iIiIiYgCjnZDuOOAG4DuNsucAb7Td7Fwg6TLgI8DLgE8BuwK7UToYwzUHeJftm2oW0JmNfa2weU+zfAi9p+n/82n9If9PlM7OzsBnJG3W55rQfyi+PzdeC/io7YvaHBcRERER0XVGtSNh+2FJP6BM5Tm5Fv8cOAA4CkDSDNvzbd8taT3gubbvlHQFJcPnAe2uPYi1gfvrFKO9gXuHef5zKJ2YM4B/Ba6Q9BxgQ9uX1rr9K2W0Y0VcBHxI0iW2n5S0CXCv7T+3OzjRNiJiIknkv2f2jVjkv4X3Lmb6IReOxKViDEjQjlhVOpFH4hhKSL2WA4Geusj4VpZfa3At0MoAejmwAXDFCtzzM/Vav6DE8R6uPwObSZpHWU9xOCV76XfrlKgbKes8/rQC14ayLuRW4AZJNwP/yeiPFkVEdKsngHfXh0sTVrtOhKRJ7Y6NiBgNoxL+dayTtMT2io42jLiE7YuIoRoP4V9rxLsvUkYhPtUckahR9E6kTIMFOMj2lfUhz/bAYkqSuI/ZPlXSacAptv+7cf3pDDAiIWlfYD/gucBvgPfYfqxG9/sLJcDGy4H3AftQktZda3tWo/7/CewI/BHY0/aDNarf/pTIhrfa3rPe92XAK+vv42wf37qO7SmSZlKCftwPzKBk3z6SMm13DeAbtv9zoM80YcQnloxIxMrohvCvERERKyOR/5Y3rMh/kOh/ETHyMn1mCLppNCIiYiJK5L+Vi/wHif4XESNvXI5ISDpW0kGN7YskfbuxfYykQyUd0qH6vUTSDztx74iIMew4ytP35zXKWpH/ZtSfDWw/ClxGGYXYHpgLPMjKRf47wPYWwOeANRv7Vjby3zeA1wHzJLWOX9HIf63P4BW2fz7wW4qIWHnjdUTiKmB34LgaXWk9YJ3G/m0p82iv7UTlbN9HadBWSKJtTCyZ2xpRJPJfv4YV+S8iYqSM147ElZR5qlDmqt4MTJP0fOAx4G+B10p6j+0DJO1OmbO6lDLPdIcaCePLlHmqBk6yfYKktwBHUz6764EP2X5C0iLgFOCdwOrA7rZvk/Rmyhxe6nV2AF5IXdhX81rsDEwGNgLOtX3wKvtkIiLGtmNYvjNwIPANSQso38uXsWy9wbWUCHtQRiKOYOUi//0OWEjpWAxHM/LfYmAPlkX+m0oZUTjW9p8aU7SG49uUaVQ3qFzgQeBdA52QMOIRMRLGbdSm+of9DsDbKV/SGwBXU77Ej6A8zeqpHYmFwNts3ytp3fpl/iHK3Ns9bD8l6QWUTsivgbfYvqPO173B9nH1fsfUzsaHga1tf0DSBcCRNYrIFOBx4KUs35E4FNiKMpx9O7Cd7bv7e2+JtjGxZEQiVsZ4iNo01nVb5D9I9L+IGLqJGrXpSsoUpm0pHYirG9tXtTl2Tg3x13p6tRNwou2noAypA68G7rLdym1xCqWz0tJaQDeP8nSode2v1jB/67au18fFthfbfpyST+LlfQ9ItI2IiIiI6CbjuSNxFaXTsAVlatM1lNje21L+uH+G7f2BTwMbAvMlvZAyitF3uGawMefWArlnFsfZPhL4ALAWcI2kTQc4b7lz+9Rxtu0e2z2TJveNfhgREd2q20YjIiJGynjuSFwJvIMS6m9pHVFYl9KZuLp5oKSNbF9r+1BK4qINKQv49m9F0ahTm24Dpkt6VT31PZSY4P2q115o+8tALyU+eERERETEmDZeF1tDWRC3HvD9PmVTbD/UZ0HbUZI2pow4XAzcRBnF2ARYIOlJymLrr0t6H3BW7WBcT8moOpCDJO1IGWm4FfgpMG1l3lgWyUVEDEzSUsp3/mqUJHL72H6sQ3WZRV2TN4LXfAlwvO0VjgAYEbGyxu1i6/Esi+QiYqgm6mLr5gJnSd8D5tn+aofqMosR7kisrATtiJGSgCDj30RdbB0REQEl9OurJD1P0smSrpd0o6RdoPyhL+kcST+T9GtJX2mdKGmJpC9KuknSNZJeVMt3l3RzLb+sll0uaUbj3CslbdnYnippUc0hgaTJku6WtLqkfWu9bpJ0tqTJ9Zg5ko6XdJWkO1vZqyVNl3Rz4/Xlkm6oP9uu6g80IgLSkYiIiHGsTkN9O2Wa06eAS2xvA+xImdbaypI9g5LfYQtgD0kb1vLnAdfYfi0lR8W+tfxQ4B9q+c617NvArHrfTYA1bC9o1cX2YsrU2TfXoncCF9l+EjjH9jb1er+iJN1rmQZsR1n3d2Sbt/l74K22t67v4fghf0ARESshHYmIiBiP1pI0nxLk4v8B/wX8PXBILZ8LrAm8rB7fXxjuvwI/rq/7hvbuGzb8LOAdNQP2/wbmtKnXmZQ/9gH2rNsAm9dRhYWU7NmbNc45z/bTtm8FXtTmmqsDJ9VzzwJe0+4DSRjxiBhpXbvYOgvl+rfw3sVMP+TCkapKTGCZ2xrj2F9sz2gW1KzP/2z79j7l/4v+w3A/6WWLCZuhvfev5/0TJWz4DNt/kPQLYBfgX4B2c4rPB46okQBfB1xSy+cA77J9U21zZjbOadatXRjyjwEPAK+lPCB8vM0x2J4NzIayRqLdMRERw9HNIxJ/sT3D9uaUJ0L7d7pCI8n2fYm2ERExqi4CPlo7FEjaakUv1E/YcCjTm44Hrq9hx5djewlwHfA14Me2l9ZdawP319GMvYdZnanA/bafpoQlnzTI8RERI6JrRyT6uBzYss5lPYEyh3U14DDbP6pPb3YGJgMbAefaPhjKQjnKF/Y7gL8Au9h+QNLuwGcpT5gW295B0uXAR23Pr+deCXyoVQlJUynzW19p++m6GO524JWUebH7Ac8FfgO8x/ZjkuYAj1CeTL0YONj2DyVNpzQim9fXp1Hm4gIcYLtv9u2IiFg5nweOo4T1FrCI0jasiHZhw7E9T9IjwHcGOPdMyhSkmY2yzwDXAr+jjMavPYy6fBM4u7ZrlwJ/HuyEhBGPiJHQteFfW6H76kK5s4GfUZ743Gr7u5LWpTzV2QrYnbLwbSvKEPDtwHa275ZkYGfbF9RIHI/Y/kKdS/o22/dKWtf2nyTtA2xl+6C6UO77tnuaU5sk/Qg4zvalkvagLHD7gKQX2v5DrfsXgAdsn1A7Es+jzIndFDjf9qv6dCQmA0/bfrw2TKf3DbMlaT9KR4VJ66z/upd+aKA2KmJoMrVp/Juo4V87pU5bnQtsWkcIulLCiEfEUI3V8K9ZKNdge7btHts9kyZPbXOJiIjoJEnvpYwqfKqbOxERESOlm6c2ZaFcRESMGbZPBU7tdD0iIkZLN3ck2mktlPuobUvayvaNK3Kh1kI54FpJ76RMm/oDZaHcBcDl/S2UkzSUhXL3DqM6U4F76rqLfRhkoVzmtkZEREREp421jkQWykVEREREdIGuXWzdKWNhoVwWyUXEUGWx9cqT9GLKQ6xtKFNVFwEH2b6jn+NbwUKWyxck6XTK+rnv2D52JevUA7zX9oErcv4a0zb2tH2OW5kqRIyIBP3ofgO1I2NtRGKVqgvlvgh8vFs7ERERMXrq6Pe5wCm296xlMyiBM9p2JFps3we0OhEvBra1/fKBzulz79VsP9XPtXspwUgiIjqmm6M2jTrbp9re0PZZna5LRER0hR0pQTtObBXUXEM3SrpY0g2SFkrape+JkqZLurlu/hz4G0nzJW0vaYakayQtkHSupOfXc+ZK+pKkXwL/Xre/LOk6SXdI2r4eN1PSj+vr10u6StKN9ferV+1HEhFRTLiOhKQXSzpD0m8l3SrpJzVnRLtjm43ASNfjMEmfWBXXjoiIEbM5JXR4X48Du9remtLZOKaVMbsfOwO/tT3D9uWU6E7/1/aWlHV1n20cu67tN9s+pm6vZvv1wEF9jmu5DdjB9laUnEpfalcBSftJ6pXUu/SxxQNUNSJiaCbU1KaVGaIe4vX7HYYeSQvvXcz0Qy5c1beJWGmZ+xrjmIAvSdoBeBrYgNKW/M+gJ0pTKZ2FX9aiUygBPFrO7HPKOfV3MxdS01TglBpAxJTcRM9iezYwG8oaicHqGRExmIk2ItHfEPUVko6SdHMdot6j74mS1pT0nbr/Rkk71vJZks6SdAHwc0lT+hvulvQpSbdL+m/g1Y3ytkPcERHRcbdQcgb1tTewPvC6mvPoAUqS1JHQN3JfKxdRM0dS0+eBS21vDrxzBOsRETGgCTUiQf9D1O8GZlASwq0HXC/psj7HfATA9haSNqV0GlpTot4IbGn7YUmrUYa7H5G0HnCNpPOBrSmZsLeifO43NOpyKvBR27+UdDhl6PqgkXjDERGxUi6hjDzsa/skAEnbAC8Hfm/7yfpgaciLqG0vlvRHSdvXaU7vAX452HkDmMqy3EWzhnJC8hFFxEiYaCMS/dkOON32UtsPUL7Qt2lzzGkAtm+j5ItodSR+0Uhe1xruXgD8N8uGu7cHzrX9mO1HKBmy+xvi3qFvBTO3NSJi9LnESN8VeGtdW3cLcBjwE6BHUi9ldOK2YV56H0o+owWUB1mHr0Q1vwIcIelKBkloGhExkibaiMQt1FB8fQy0QG4oxzSHoZvD3U9KWsSyYeYVnpOaua0REZ1Rw7j+S5tdb+zn+Cn19yLKSPhyr+v2fOANbc6d2d+27YeoayRsz6XkPML21Sx7sAUlQWpExCo30UYkLgHWkLRvq6AOUf8R2EPSJEnrU0YErutz7mWUTgJ1StPLgNvb3GMq7Ye7LwN2lbSWpLUp81ixvRj4YyukHys/xB0RERERscpNqBEJ25a0K3CcpEMo4fsWUdYjTAFuoowaHGz7fyRNb5z+TeBESQuBp4BZtp9oE+3ve8AFdbh7PnW42/YNks6sZb8DLm+cs0+99mTgTuB9A72PzG2NiIiIiE5Tmf4ZY0lPT497e5PQNCIGJ2me7Z5O1yO6S9qRiBiqgdqRiTa1KSIiYoUlqWlExDITampTRETEihovSU0hiU1jbEhS0+7XFSMSNVHbLTUh23xJ/6uWf1vSa0bh/rMkPS1py0bZzX3WSIz0PWdK+vGqun5ERIy4JDWNiGjo+IiEpDcC7wC2rouX1wOeC2D7A8O81iTbS/vbHsQ9wKeAZzUA3SZPkmKsyNOkGGeS1DQioqEbRiSmAQ/ZfgJKnOwasxtJcyX11Nd/L+nq+pTmLElTavkiSYdKugLYvc32vpKul3STpLNrZKR2fgxsJunVfXe0u7ekt0v6QeOYmfWJEpK+VZPH3SLpc41j3ibptlq3dzfKXy/pqvqU6qp2dYiIiK7V9UlN67FJbBoRI6obOhI/BzaUdIekb0p6c98D6lOZTwM72d4a6AU+3jjkcdvb2T6jzfY5trex/VrgV8D7+6nH05TsoP8xxHv/AniDpOfVQ/cAzqyvP1VXt28JvFnSlpLWBE6i5I/YHnhx4za3ATvY3go4FPhS/x9XRER0yC3A69qUr6qkpjOABxiBpKZQEpva7rHdM2ny1JW5VEQE0AUdCdtLKF/M+wEPAmdKmtXnsDcArwGulDSfknfh5Y39Z/Y5vrm9uaTLVfI/7A1sNkB1vk/pHLxisHvXBXE/A95Zh6L/CfhRPedfJN0A3Fjv9xpgU+Au2792ibn73cY9pgJn1egex7arY54kRUR0XJKaRkQ0dHyNBEBdxzAXmFv/4N8HmNM4RJSh3736ucSfB9ieA7zL9k21gzJzgHo8JekY4P8O8d5nUua9Pgxcb/vR2gn5BLCN7T9KmsPgT5M+D1xqe9e6wHtum7rNBmYDrDFt4yT/iIgYZeMlqSkksWlEjIyOdyTqeoCnbf+6Fs2gfEk2XQN8Q9KrbP+mflm+1PZQwu2tDdwvaXXK06B7Bzl+DnBwPW+we88F/gvYl2WjIOtQOjKLJb0IeHs97jbgFZI2sv1boNkxmdqo16whvKeIiOiAuobvX9rs+mT9aR67iLJAG9uP0+b73fYcGg/ObD9EWXzd7t5fBL7Ypnw+ZfQ8ImJUdbwjQXmKc4KkdSlPaX5Dmeb0DNsP1tGE0yWtUYs/zdDidn8GuJbSOVnIsg5CW7b/Kul44GuD3dv2UpUQrrMoT4SoIx83UubS3glcWcsfl7QfcKGkh4ArqA0MZW3GKZI+Thk6H1CeJEVEREREp6lM14+xpKenx729vZ2uRkSMAZLm1eAPEc9IOxIRQzVQO9LxxdYRERERETH2pCMRERExBJIs6bTG9mqSHqxTXJG0c12E3d/502t0vnb7Dpe008jXOiJi1emGNRIRERFjwZ8pIcXXsv0X4K00AnjYPp+aKG64bB86MlUcmoX3Lmb6IReO5i0jolo0jta5TpgRiTxJioiIEfBTSt4gKNH3Tm/tkDRL0tfr6xdJOlfSTfVn23rYJEknSbpF0s8lrVWPnyNpt/r6HyXdJukKScc32qnXS7pK0o3196sb9z1H0s8k/VrSV0bno4iIiW4ijUjkSVJEjIjx9DQphu0M4ND6x/2WwMnA9m2OOx74Zc0PNIkSofD5wMbAXrb3lfQD4J9pJCiVtCbwn8AOtu+SdHrjmrfV8qfqw6sv1fOhhE7fCngCuF3SCbbvHrF3HRHRxoQZkajyJCkiIlaY7QXAdEob8pMBDv074Fv1nKU1AzXAXTXvA8C8eq2mTYE7bd9Vt5sdianAWXV0/Fhgs8a+i20vrvkqbmVZRuxnSNpPUq+k3qWPLe67OyJi2CZaR+IMYM/6xGdLSn6JdlpPkl4LbE3JCQHlSdI3bG8G/IllT4KA5Z4kvd32dsD6jd2tJ0lbAYdSniS1zAD2ALYA9pC04Yq+wYiIWOXOB45m+T/yh+qJxuulPHtmwLNSXTd8HrjU9ubAO4E1h3FdbM+23WO7Z9LkqcOrdUREGxOqI5EnSRERMQJOBg63vXCAYy4GPgQgaZKkdYZ47duAV0qaXrf3aOybyrIpubOGXNuIiFVkIq2RaGk9SZoJvHCY5/Z94rNWn/1DeZK0a20g5g5w3bZPkoDZAGtM2zhZBCMiOsT2PcDXBjns34HZkt5P+V7/EHD/EK79F0kfBn4m6SHgusburwCnSPo4cMkKVb7aYoOp9GatT0SspInYkTgZWGx7oaSZ/RzTepJ0XF0k97whXvuZJ0m2F7GKniSlAYiIGH22p7Qpm0t9MGR7DjCnvn4A2KXNZTZvnHt04/WsxjGX2t5UkoBvAL31mKuBTRrHfabvfev2O4b8piIiVsKEmtoE5UmS7aE8SdpR0kLKFKbNBjm+de2/AK0nSVcADwCteUhfAY6QdCUwaYUqHxERE8G+kuZT1udNpay9i4joOrIzS2YkSZpie0njSdKvbR87kvfo6elxb2/vSF4yIsYpSfNs93S6HtFd0o5ExFAN1I5MuBGJUZAnSREREREx7k3ENRKrVB19GNERiIiIiIiIbjNhOhKSDHzV9v+p258Aptg+bASuvSYwH9i9FQ5Q0sHAK23vP4TzDwOWNBfeRUREdxlP7cjCexcz/ZALV7zCETEmLRrhYD0TpiNBCbH6bklH2H5oJC9s+3FJBwHflLQD8BLgg8Cg85IlDfu/QRqAiIlrpBuBGJZx045ERIyEibRG4ilKHoaP9d0haX1JZ0u6vv68qZYvlLSuij9Iem8tP03STs1r2P4ZJUb4eylTmw4D1pF0saQF9ffL6vlzJH1V0qXAl/vUZV9JP5XUN0dFRER0VtqRiIiGidSRgBJFaW9JU/uUfw041vY2wD8D367lVwJvooR/vRPYvpa/AbimzfUPAr4IrG/7NODrwKm2twS+BxzfOHYTYKfWEDmApAOAdwLvqqFkIyKiu6QdiYioJtRwqO1HJJ0KHAg0v2B3Al5TIrYC5QnQ2sDlwA7A74BvAftJ2gB42PaSNte/T9IlwI9r0RuBd9fXp1FySbScZXtpY/s9wD2UL/8n+15b0n7AfgCT1ll/6G86IiJGTNqRiIhlJtqIBMBxwPtZPlv1c4A32p5Rfzaw/ShwGeXp0faUzKUPArtRGob+PF1/2mkm7fhzn303A9OBl7Y90Z5tu8d2z6TJfR+ERUTEKDqOtCMREROvI2H7YeAHlEag5efAAa0NSTPqsXcD6wEb274TuAL4BAM3AE1XAXvW13vX8/tzI2Vh3fmSXjLE60dExChLOxIRUUyoqU0Nx9D4wqcMUX9D0gLKZ3IZ0Aq3dy0wqb6+HDiCgb/Imw4ETpb0ScpTqPcNdLDtK2o4wQslvbW/qCBbbDCV3kRuiYjopLQjETHhyfbgR0VX6enpcW9vb6erERFjgKR5tgcNIRoTS9qRiBiqgdqRCTe1KSIiIiIiVl5GJMYgSY8Ct3e6Hv1YDxjRRE0jqFvr1q31gtRtRXRbvV5uOyF6YjlpR1ZYt9atW+sF3Vu3bq0XdF/d+m1HJuoaibHu9m6dqiCpN3Ubnm6tF6RuK6Jb6xXRR9qRFdCtdevWekH31q1b6wXdXbe+MrUpIiIiIiKGLR2JiIiIiIgYtnQkxqbZna7AAFK34evWekHqtiK6tV4RTd38/2nqNnzdWi/o3rp1a72gu+u2nCy2joiIiIiIYcuIREREREREDFs6EmOMpLdJul3SbyQd0un6NElaJGmhpPmSOpbpSNLJkn4v6eZG2Qsk/ULSr+vv53dR3Q6TdG/93OZL+scO1GtDSZdK+pWkWyT9ey3v+Oc2QN264XNbU9J1km6qdftcLe/45xbRn25tR7qlDal1STsy/HqlHRl+vcZ8G5KpTWOIpEnAHcBbgXuA64G9bN/a0YpVkhYBPbY7GvtY0g7AEuBU25vXsq8AD9s+sjacz7f9f7ukbocBS2wfPdr1adRrGjDN9g2S1gbmAe8CZtHhz22Auv0Lnf/cBDzP9hJJqwNXAP8OvJsu+P8toq9ubke6pQ2pdUk7Mvx6pR0Zfr3GfBuSEYmx5fXAb2zfafuvwBnALh2uU9exfRnwcJ/iXYBT6utTKF8go66funWc7ftt31BfPwr8CtiALvjcBqhbx7lYUjdXrz+mCz63iH6kHRmCtCPDl3Zk+MZDG5KOxNiyAXB3Y/seuuAfQoOBn0uaJ2m/TlemjxfZvh/KFwrwNx2uT18HSFpQh6w7OoQpaTqwFXAtXfa59akbdMHnJmmSpPnA74Ff2O66zy2ioZvbkW5uQ6D7/113/PuwJe3IsOozptuQdCTGFrUp66a5aW+yvTXwduAjdfg1BvctYCNgBnA/cEynKiJpCnA2cJDtRzpVj3ba1K0rPjfbS23PAF4KvF7S5p2oR8QQdXM7kjZkxXXF9yGkHRmusd6GpCMxttwDbNjYfilwX4fq8iy276u/fw+cSxlC7xYP1DmSrbmSv+9wfZ5h+4H6RfI0cBId+tzq/Myzge/ZPqcWd8Xn1q5u3fK5tdj+EzAXeBtd8rlFtNG17UiXtyHQxf+uu+X7MO3IihurbUg6EmPL9cDGkl4h6bnAnsD5Ha4TAJKeVxcwIel5wN8DNw981qg6H9invt4H+FEH67Kc1pdFtSsd+Nzqgq//An5l+6uNXR3/3PqrW5d8butLWre+XgvYCbiNLvjcIvrRle3IGGhDoIv/XXfJ92HakeHXa8y3IYnaNMbU0GTHAZOAk21/sbM1KiS9kvIECWA14Pudqpuk04GZwHrAA8BngfOAHwAvA/4fsLvtUV+s1k/dZlKGVQ0sAj7Ymhs5ivXaDrgcWAg8XYv/gzKHtKOf2wB124vOf25bUhbCTaI8mPmB7cMlvZAu+P8top1ubEe6qQ2p9Uk7Mvx6pR0Zfr3GfBuSjkRERERERAxbpjZFRERERMSwpSMRERERERHDlo5EREREREQMWzoSERERERExbOlIRERERETEsKUjEdGFJL1Y0hmSfivpVkk/kbTJCF5/pqRtR+p6ERHRXdKOxGhIRyKiy9TEOecCc21vZPs1lHjXLxrB28wE0gBERIxDaUditKQjEdF9dgSetH1iq8D2fOAKSUdJulnSQkl7wDNPhX7cOlbS1yXNqq8XSfqcpBvqOZtKmg7sD3xM0nxJ24/ie4uIiFUv7UiMitU6XYGIeJbNgXltyt9NycD5WkpG0+slXTaE6z1ke2tJHwY+YfsDkk4Eltg+eqQqHRERXSPtSIyKjEhEjB3bAafbXmr7AeCXwDZDOO+c+nseMH0V1S0iIrpf2pEYUelIRHSfW4DXtSlXP8c/xfL/ltfss/+J+nspGYWMiJgI0o7EqEhHIqL7XAKsIWnfVoGkbYA/AntImiRpfWAH4Drgd8BrJK0haSrwliHc41Fg7ZGvekREdIG0IzEq0quM6DK2LWlX4DhJhwCPA4uAg4ApwE2AgYNt/w+ApB8AC4BfAzcO4TYXAD+UtAvwUduXj/T7iIiIzkg7EqNFtjtdh4iIiIiIGGMytSkiIiIiIoYtHYmIiIiIiBi2dCQiIiIiImLY0pGIiIiIiIhhS0ciIiIiIiKGLR2JiIiIiIgYtnQkIiIiIiJi2NKRiIiIiIiIYfv/rHq3AZjRydwAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "#Code task 13#\n", - "#Create two subplots on 1 row and 2 columns with a figsize of (12, 8)\n", - "fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12,8))\n", - "#Specify a horizontal barplot ('barh') as kind of plot (kind=)\n", - "ski_data.Region.value_counts().plot(kind='barh', ax=ax[0])\n", - "#Give the plot a helpful title of 'Region'\n", - "ax[0].set_title('Region')\n", - "#Label the xaxis 'Count'\n", - "ax[0].set_xlabel('Count')\n", - "#Specify a horizontal barplot ('barh') as kind of plot (kind=)\n", - "ski_data.state.value_counts().plot(kind='barh', ax=ax[1])\n", - "#Give the plot a helpful title of 'state'\n", - "ax[1].set_title('state')\n", - "#Label the xaxis 'Count'\n", - "ax[1].set_xlabel('Count')\n", - "#Give the subplots a little \"breathing room\" with a wspace of 0.5\n", - "plt.subplots_adjust(wspace=0.5);\n", - "#You're encouraged to explore a few different figure sizes, orientations, and spacing here\n", - "# as the importance of easy-to-read and informative figures is frequently understated\n", - "# and you will find the ability to tweak figures invaluable later on" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "How's your geography? Looking at the distribution of States, you see New York accounting for the majority of resorts. Our target resort is in Montana, which comes in at 13th place. You should think carefully about how, or whether, you use this information. Does New York command a premium because of its proximity to population? Even if a resort's State were a useful predictor of ticket price, your main interest lies in Montana. Would you want a model that is skewed for accuracy by New York? Should you just filter for Montana and create a Montana-specific model? This would slash your available data volume. Your problem task includes the contextual insight that the data are for resorts all belonging to the same market share. This suggests one might expect prices to be similar amongst them. You can look into this. A boxplot grouped by State is an ideal way to quickly compare prices. Another side note worth bringing up here is that, in reality, the best approach here definitely would include consulting with the client or other domain expert. They might know of good reasons for treating states equivalently or differently. The data scientist is rarely the final arbiter of such a decision. But here, you'll see if we can find any supporting evidence for treating states the same or differently." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 2.6.3.5 Distribution Of Ticket Price By State" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our primary focus is our Big Mountain resort, in Montana. Does the state give you any clues to help decide what your primary target response feature should be (weekend or weekday ticket prices)?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### 2.6.3.5.1 Average weekend and weekday price by state" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
AdultWeekdayAdultWeekend
state
Alaska47.33333357.333333
Arizona81.50000083.500000
California78.21428681.416667
Colorado90.71428690.714286
Connecticut47.80000056.800000
Idaho56.55555655.900000
Illinois35.00000043.333333
Indiana45.00000048.500000
Iowa35.66666741.666667
Maine51.50000061.000000
Maryland59.00000079.000000
Massachusetts40.90000057.200000
Michigan45.45833352.576923
Minnesota44.59571449.667143
Missouri43.00000048.000000
Montana51.90909151.909091
Nevada78.50000081.000000
New Hampshire65.57142976.500000
New Jersey79.99000079.990000
New Mexico65.66666765.666667
New York50.03225858.945455
North Carolina41.83333364.166667
Ohio42.20000045.400000
Oregon58.85714359.857143
Pennsylvania52.70588263.687500
Rhode IslandNaNNaN
South Dakota51.50000051.500000
Tennessee36.00000065.000000
Utah89.08333393.000000
Vermont83.50000087.900000
Virginia51.00000068.000000
Washington65.10714370.144286
West Virginia62.50000079.750000
Wisconsin46.42857154.266667
Wyoming57.60000056.166667
\n", - "
" - ], - "text/plain": [ - " AdultWeekday AdultWeekend\n", - "state \n", - "Alaska 47.333333 57.333333\n", - "Arizona 81.500000 83.500000\n", - "California 78.214286 81.416667\n", - "Colorado 90.714286 90.714286\n", - "Connecticut 47.800000 56.800000\n", - "Idaho 56.555556 55.900000\n", - "Illinois 35.000000 43.333333\n", - "Indiana 45.000000 48.500000\n", - "Iowa 35.666667 41.666667\n", - "Maine 51.500000 61.000000\n", - "Maryland 59.000000 79.000000\n", - "Massachusetts 40.900000 57.200000\n", - "Michigan 45.458333 52.576923\n", - "Minnesota 44.595714 49.667143\n", - "Missouri 43.000000 48.000000\n", - "Montana 51.909091 51.909091\n", - "Nevada 78.500000 81.000000\n", - "New Hampshire 65.571429 76.500000\n", - "New Jersey 79.990000 79.990000\n", - "New Mexico 65.666667 65.666667\n", - "New York 50.032258 58.945455\n", - "North Carolina 41.833333 64.166667\n", - "Ohio 42.200000 45.400000\n", - "Oregon 58.857143 59.857143\n", - "Pennsylvania 52.705882 63.687500\n", - "Rhode Island NaN NaN\n", - "South Dakota 51.500000 51.500000\n", - "Tennessee 36.000000 65.000000\n", - "Utah 89.083333 93.000000\n", - "Vermont 83.500000 87.900000\n", - "Virginia 51.000000 68.000000\n", - "Washington 65.107143 70.144286\n", - "West Virginia 62.500000 79.750000\n", - "Wisconsin 46.428571 54.266667\n", - "Wyoming 57.600000 56.166667" - ] - }, - "execution_count": 79, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 14#\n", - "# Calculate average weekday and weekend price by state and sort by the average of the two\n", - "# Hint: use the pattern dataframe.groupby()[].mean()\n", - "state_price_means = ski_data.groupby('state')[['AdultWeekday', 'AdultWeekend']].mean()\n", - "state_price_means" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqAAAAJcCAYAAAAmbBanAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB330lEQVR4nOzde5xVVf3/8de70bgIDKnkV/EyZngFQj2a4CU0s4vm3dSvZWhJWGlYVv7qq02mRaZ5QcuwBDVDE0URTU0FL4DCwOCAeCvFVEzxhmJAAp/fH3sNHMYzF2A4Z87M+/l4zOPsvdbaa3/2xu/j+2mtvfdSRGBmZmZmViwfKXUAZmZmZtaxOAE1MzMzs6JyAmpmZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyonoGZmbYykv0n6egvazZd0cDFiao6kqyWd28p9Vkv6c2v2aWZtgxNQMys7kiZLeltSp1LHsr4KJVkR8cWIuG4DnrPVE9eIGBYRv2jNPluTpP0kTZW0SNJbkqZI2ivVDZH06Fr0VSUpJG204SI2a9+cgJpZWZFUBewPBHD4BujfScVaklRR6hiaIqkHMBEYCWwK9AZ+DiwrZVxmHZkTUDMrNycDjwFjgK8DSOok6R1JfesbSeolaYmkj6f9wyTNTu2mSuqf13a+pB9LqgPel7SRpHMk/VPSe5LmSToqr32FpEskvSHpBUnfzR8Rk1Qp6U+SXpX0iqQLCiVpkr4A/AQ4XtJiSU+k8smSvpnX7jRJT+XFskeBvnZOsZzQ1PVKugHYFrgznfNHBfoaLOllST9J1zhf0kl59WMk/V7S3ZLeBw5MZRfktTkinf/ddB+/sDb3Jk9nSTena58l6VOpnx9KurVB3CMlXVagjx0BImJsRKyIiCURcV9E1EnaBbgaGJjuxzupr0Ml1ab4X5JUndffw+n3nXTMwHTMqenf6W1J90raronrMuvYIsJ//vOf/8rmD/gH8G1gT+ADYItUfi1wYV677wD3pO09gNeBTwMVZInrfKBTqp8PzAa2AbqksuOArcj+h/rxwPvAlqluGDAP2Br4GHA/2YjsRqn+duAPwCbAx4HpwLcauZ5q4M8NyiYD38yL4xVgL0DAJ4Ht8uI+OF3fv4DD1uJ6D27iHg8GlgO/BToBn0nXv1OqHwMsAvZN96dzKrsg1e+d6j+X6nsDO6/jvfkAOBbYGDgbeCFtb5li6pnabpSuec8C/fQA3gSuA74IfKxB/RDg0QL3oF+Kvz/wGnBkqqvK//dOZUeS/be5S4rl/4Cppf6/F//5r63+eQTUzMqGpP2A7YC/RsRM4J/A/6bqvwAn5jX/31QGcBrwh4h4PLIRsOvIpl/3yWt/RUS8FBFLACLilohYEBErI+Jm4DmyxArgK8DlEfFyRLwNjMiLcQuyJGd4RLwfEa8DlwInrONlfxO4KCJmROYfEfFiXv3+wATg6xExcS2utyXOjYhlEfEQcBfZdde7IyKmpPuztMFx3wCujYi/p/pXIuLpdbw3MyNiXER8QJYQdwb2iYhXyUYij0vtvgC8kf67WENEvAvsR5Y0XgMslDQhxVNQREyOiDkp/jpgLFki3phvAb+KiKciYjnwS2CAR0HNCnMCambl5OvAfRHxRtr/SyoDeBDoIunT6f/pDwDGp7rtgB+k6eh30jTrNmQjnPVeyj+RpJPzprDfAfoCm6fqrRq0z9/ejmyE7tW8Y/9ANtq3LrYhS7QbM4xspG1Sgxiau97mvB0R7+ftv0gT96uFMa/LvVl1nohYCbycF8d1wFfT9leBGxrrJCWGQyJia7J/y62Ayxprn/47miRpoaRFZPd588bap2u7PO+63iIbse7dxDFmHZYftjezsiCpC9kIXIWkf6fiTkBPSZ+KiCck/ZVsFPQ1YGJEvJfavUQ2PX9hE6eIvHNtRzZS9llgWkSskDSbLKEAeJVs+r3eNnnbL5GNNm6eRsKaE83UvwTs0ET9MODHki6NiLPyjmnqeps7J8DHJG2Sl4RuC8xtYR+Nxby29wby7q2kj5Dd9wWp6Hbg98qe/T0M+NDzrIWk0dgxZKOWUPha/gJcCXwxIpamZ0s3b6J9/T2/sSUxmHV0HgE1s3JxJLAC2JVsdHMA2fN2j5C9mARZ0nA8cBKrp98hSyaHpVEtSdokvWTSvZFzbUKWZCwEkHQK2ahZvb8C35PUW1JP4Mf1FWlq+D7gEkk9JH1E0g6SGpu+fQ2oSslVIX8Ezpa0Z4r9kw2mdd8jm34+QFL9owDNXe9rwCcaOV++n0v6qKT9yRK8W1pwDMCfgFMkfTZdf29JO6/DvQHYU9LRyl7wGk6WwD4GkKb+x5H9W0+PiH8V6kDZC1o/kLR12t+G7H+oPJaavAZsLemjeYd1B95KyeferH7UA7L/Llay5j28Gvh/knZL56iUdBxmVpATUDMrF18HRkfEvyLi3/V/ZKNUJ0naKCIeJ3sxZSvgb/UHRkQN2XORVwJvk70sMqSxE0XEPOASYBpZctIPmJLX5BqyRKoOqAXuJntpZ0WqPxn4KNmLSm+TJUlbNnK6+qTuTUmzCsRyC3AhWZL1Htmo36YN2rxD9sLPFyX9ogXX+yvg/9J08dmNxPXvdOwC4EZgWEQ83UjbhjFPB04he75zEfAQ2RQ1rN29AbiD7H9UvA18DTg6PQ9a7zqyf59Gp9/J7tungceVvbX/GNlo7g9S/YPAk8C/JdU/3vFt4HxJ7wHnkf2Pjvrr+w/Zv8mUdA/3iYjxwK+BmyS9m/r/YhMxmXVoimjJTIyZmTVG0heBqyOiXbxwImkw2Zv5WzfTtOQkbQs8DfxPetnIzMqAR0DNzNaSpC6SvqTse6G9gZ+x+oUnK5L02ML3gZucfJqVF7+EZGa29kS2ks7NwBKyTxSdV9KIOhhJm5A9HvEi2TOwZlZGPAVvZmZmZkXlKXgzMzMzKypPwZeRzTffPKqqqkodhpmZmVmzZs6c+UZE9CpU5wS0jFRVVVFTU1PqMMzMzMyaJenFxuo8BW9mZmZmReUE1MzMzMyKygmomZmZmRVVm3sGVNIKYA5ZbC8AX4uId9LKHGdHxGHr2O9aHS+pCpgYEX2baLM4IrqtSzxrey4zM7OO5IMPPuDll19m6dKlpQ7FmtG5c2e23nprNt544xYf0+YSUGBJRAwAkHQd8B2yNXfNzMysg3j55Zfp3r07VVVVSCp1ONaIiODNN9/k5ZdfZvvtt2/xcW19Cn4a0Dtvv5ukcZKelnSj0n+Rkj4rqVbSHEnXSuqUyr+Q2j4KHF3fiaRNUrsZ6bgjmgpC0m6SpkuaLalOUp8G9d0kPSBpVorhiFReJekpSddIelLSfZK6pLo9JT0haRpZkm1mZmbJ0qVL2WyzzZx8tnGS2GyzzdZ6pLrNJqCSKoDPAhPyincHhgO7Ap8A9pXUGRgDHB8R/chGdU9P5dcAXwb2B/4nr5+fAg9GxF7AgcBv0rJujRkGXJ5GZnPAyw3qlwJHRcQeqb9LtPr/YvoAV0XEbsA7wDGpfDRwZkQMbOY+DJVUI6lm4cKFTTU1MzNrV5x8lod1+XdqiwloF0mzgTeBTYG/59VNj4iXI2IlMBuoAnYCXoiIZ1Ob64ADgJ1T+XORrTf657x+DgHOSeeZDHQGtm0ipmnATyT9GNguIpY0qBfwS0l1wP1ko7ZbpLoXImJ22p4JVEmqBHpGxEOp/IbGThwRoyIiFxG5Xr0KfsvVzMzMrKy02WdAU5I2kWx6+opUtyyv3Qqy+JtKuxtb6F7AMRHxTEsCioi/SHocOBS4V9I3I+LBvCYnAb2APSPiA0nzyZLaQjF3SedvLDYzMzNroOqcu1q1v/kjDm1Ru/Hjx3P00Ufz1FNPsfPOO3+ofvDgwVx88cXkcrlG+6iurqZbt26cffbZjBkzhkMOOYStttqKO+64g9GjR3P77bcD8Ktf/Yo//elP/OMf/wDgzjvv5JprrmHChAmN9l3ImDFjqKmp4corr2yyXbdu3Vi8ePFa9d1a2uIIKAARsQg4EzhbUlOvVT1NNqr4ybT/NeChVL69pB1S+Yl5x9wLnJH3DOnuTcUi6RPA8xFxBdkjAf0bNKkEXk/J54HAds1c2zvAIkn7paKTmmpvZmZmpTF27Fj2228/brrpplbpb8yYMSxYsACAQYMGMW3atFV106ZNo0ePHrz++usATJ06lX333bdVztvWtNkEFCAiaoEngBOaaLMUOAW4RdIcYCVwdSofCtyVXkLKXw7qF8DGQJ2kuWm/KccDc9OU/c7A9Q3qbwRykmrIksmnW3B5pwBXpZeQGk7pm5mZWYktXryYKVOm8Kc//WlVArpkyRJOOOEE+vfvz/HHH8+SJav/X3i3bqu/zDhu3DiGDBmyRn/jxo2jpqaGk046iQEDBtCtWzcqKytXjXi+8sorHHPMMUydOhXIEtBBgwaxcOFCjjnmGPbaay/22msvpkyZAsD777/Pqaeeyl577cXuu+/OHXfc8aFruOuuuxg4cCBvvPEGL7zwAgMHDmSvvfbi3HPPXeM6P/vZz7LHHnvQr1+/Vf2ce+65XH755ava/fSnP+WKK6740DnWRZubgm/4Xc2I+HLe7uS88u/mbT9A9oJSw77uIUsYG5YvAb7VTBzzgb5p+1fArxqLNSLeABp7mahvXvuL87ZnAp/Ka1fdVDxmZmZWXLfffjtf+MIX2HHHHdl0002ZNWsWkydPpmvXrtTV1VFXV8cee+zR4v6OPfZYrrzyyjWm7AcNGsTUqVNZsWIFffr0YZ999uHee+/lsMMOo66ujr322otTTz2Vs846i/32249//etffP7zn+epp57iwgsv5KCDDuLaa6/lnXfeYe+99+bggw9edb7x48fz29/+lrvvvpuPfexjnHrqqZx++umcfPLJXHXVVavade7cmfHjx9OjRw/eeOMN9tlnHw4//HC+8Y1vcPTRR/O9732PlStXctNNNzF9+vRWubdtLgE1MzMzawvGjh3L8OHDATjhhBMYO3Yszz33HGeeeSYA/fv3p3//hk/lrZ199913VQI6cOBA9t57b84//3xqa2vZaaed6Ny5M/fffz/z5s1bdcy7777Le++9x3333ceECRO4+OJsfGvp0qX861//AmDSpEnU1NRw33330aNHDwCmTJnCrbfeCsDXvvY1fvzjHwPZtzx/8pOf8PDDD/ORj3yEV155hddee42qqio222wzamtree2119h9993ZbLPN1ut66zkBNTMzM2vgzTff5MEHH2Tu3LlIYsWKFUhi9913b/SzQ/nlLf0u5qBBgxg5ciQrVqzgtNNOo3v37ixdupTJkyevev5z5cqVTJs2jS5duqxxbERw6623stNOO61R/vjjj/OJT3yC559/nmeffXaNF6QKxX7jjTeycOFCZs6cycYbb0xVVdWq+L/5zW8yZswY/v3vf3Pqqae26Jpaok0/A2pmZmZWCuPGjePkk0/mxRdfZP78+bz00ktsv/327LHHHtx4440AzJ07l7q6ulXHbLHFFjz11FOsXLmS8ePHF+y3e/fuvPfee6v2d911VxYsWMAjjzzC7rtnTxMOGDCAq6++mkGDBgFwyCGHrPFG++zZswH4/Oc/z8iRI8m+Ngm1tbWr2my33XbcdtttnHzyyTz55JNANtpa/yxr/TUALFq0iI9//ONsvPHGTJo0iRdfXP3azFFHHcU999zDjBkz+PznP7+Wd7FxHgE1MzOzNq+ln01qLWPHjuWcc85Zo+yYY46htraWJUuW0L9/fwYMGMDee++9qn7EiBEcdthhbLPNNvTt27fgJ46GDBnCsGHD6NKly6pRzU9/+tMsWrRo1VrqAwcOZNSoUasS0CuuuILvfOc79O/fn+XLl3PAAQdw9dVXc+655zJ8+HD69+9PRFBVVcXEiRNXnWunnXbixhtv5LjjjuPOO+/k8ssv53//93+5/PLLOeaYY1a1O+mkk/jyl79MLpdjwIABa3xu6qMf/SgHHnggPXv2pKKionVuLqD6rNnavlwuFzU1NaUOw8zMbIN76qmn2GWXXUodRoe3cuVK9thjD2655Rb69OnTaLtC/16SZkZEwQ+kegrezMzMzD5k3rx5fPKTn+Szn/1sk8nnuvAU/DqStLjhJ6M2uAW1UF1Z1FOa2XqqXlTqCMzM1smuu+7K888/v0H69giomZmZmRWVE9D1pMxvJM2VNEfS8an8d5IOT9vjJV2btr8h6YK0fbukmZKelDS0dFdhZmZmVjyegl9/RwMDyFY12hyYIelh4GFgf7K143sDW6b2+wH1C8qeGhFvSeqSjrs1It7M7zwlpkMBKnr0omrp6A18OWbtQ7HfmDUzs5bzCOj62w8YGxErIuI14CFgL+ARYH9JuwLzgNckbUm2ZOfUdOyZkp4AHgO2AT70hG9EjIqIXETkKrr6+U8zMzMrfx4BXX8Fl0OIiFckfQz4Atlo6KbAV4DFEfGepMHAwcDAiPiPpMlA56JEbGZmVm5a+yXcFr4gOH78eI4++mieeuqpNb6PWW/w4MFrrO1e8FTV1XTr1o2zzz6bMWPGcMghh7DVVltxxx13MHr0aG6//XYAfvWrX/GnP/2Jf/zjHwDceeedXHPNNUyYMGGtLm3MmDHU1NSs8fH61lBVVUVNTQ2bb775evflEdD19zBwvKQKSb2AA4DpqW4aMDy1eQQ4O/0CVAJvp+RzZ2CfokZtZmZmzRo7diz77bffqhWE1teYMWNYsGABkC3DOW3atFV106ZNo0ePHrz++usATJ06ddVynO2NR0DX33iyafUngAB+FBH/TnWPAIdExD8kvUg2ClqfgN4DDJNUBzxDNg3fpH69K6nxc21mZmZFsXjxYqZMmcKkSZM4/PDDqa6uZsmSJZxyyinMmzePXXbZhSVLlqxq361bt1WrH40bN46JEycyZsyYVfXjxo2jpqaGk046adVKSJWVlfzjH//gk5/8JK+88grHHHMMU6dO5cgjj2Tq1KlccMEFLFy4kGHDhvGvf/0LgMsuu4x9992X999/nzPOOIM5c+awfPlyqqurOeKII9a4hrvuuosLLriAO++8k1mzZvGzn/2MZcuWscMOOzB69Gi6detGVVUVX//617nzzjv54IMPuOWWW9h555158803OfHEE1m4cCF77703rbl4kUdA11H9N0Aj88OI6BsR/SLi5rw2f4qIrdL2BxGxSUTclvaXRcQXI6J/RBwXEYMjYnJJLsbMzMw+5Pbbb+cLX/gCO+64I5tuuimzZs3i97//PV27dqWuro6f/vSnzJw5s8X9HXvsseRyOW688UZmz55Nly5dGDRoEFOnTuWZZ56hT58+7LPPPkydOpXly5dTV1fHXnvtxfe+9z3OOussZsyYwa233so3v/lNAC688EIOOuggZsyYwaRJk/jhD3/I+++/v+p848ePZ8SIEdx9990AXHDBBdx///3MmjWLXC7Hb3/721VtN998c2bNmsXpp5/OxRdfDMDPf/5z9ttvP2prazn88MNXJcCtwSOgZmZmZgWMHTuW4cOHA3DCCScwduxYnnvuOc4880wA+vfvT//+/dfrHPvuuy9Tp05lxYoVDBw4kL333pvzzz+f2tpadtppJzp37sz999/PvHnzVh3z7rvv8t5773HfffcxYcKEVQnj0qVLVyWJkyZNoqamhvvuu48ePXowceJE5s2bt2pK/7///S8DBw5c1efRRx8NwJ577sltt90GwMMPP7xq+9BDD+VjH/vYel1rPiegZmZmZg28+eabPPjgg8ydOxdJrFixAknsvvvuSAXfP16jfOnSpS06z6BBgxg5ciQrVqzgtNNOo3v37ixdupTJkyevShZXrlzJtGnT6NKlyxrHRgS33norO+200xrljz/+OJ/4xCd4/vnnefbZZ8nlckQEn/vc5xg7dmzBODp16gRARUUFy5cvL3hNrclT8GZmZmYNjBs3jpNPPpkXX3yR+fPn89JLL7H99tuzxx57cOONNwIwd+5c6urqVh2zxRZb8NRTT7Fy5UrGjx9fsN/u3bvz3nvvrdrfddddWbBgAY888gi77747AAMGDODqq69m0KBBABxyyCFrvNE+e/ZsAD7/+c8zcuTIVc9m1tbWrmqz3Xbbcdttt3HyySfz5JNPss8++zBlypRVb9j/5z//4dlnn23yHhxwwAGrrvVvf/sbb7/9dvM3roU8AmpmZmZtXws/m9Raxo4dyznnnLNG2THHHENtbS1Lliyhf//+DBgwgL333ntV/YgRIzjssMPYZptt6Nu376oXkvINGTKEYcOGrXoJqUuXLnz6059m0aJFbLzxxgAMHDiQUaNGrUpAr7jiCr7zne/Qv39/li9fzgEHHMDVV1/Nueeey/Dhw+nfvz8RQVVVFRMnTlx1rp122okbb7yR4447jjvvvJMxY8Zw4oknsmzZMiB7JnTHHXds9B787Gc/48QTT2SPPfbgM5/5DNtuu+2639AG1JpvNNmGlcvloqamptRhmJmZbXBPPfUUu+yyS6nDsBYq9O8laWZEFPxAqqfgzczMzKyoPAVfThbUtv5KEGbWNhR5etHMrJQ8AlqApMXpt0rS3LQ9WNLEtH24pHOa6qOJvreSNK71ojUzM2uf/JhgeViXfycnoOsgIiZExIh1PHZBRBzb2jGZmZm1J507d+bNN990EtrGRQRvvvkmnTt3XqvjPAW/DiQNAXIR8V1JY4B3gRzwP2RLcY5T9uGsi4Avki3ReUFE3CypCpgYEX0l7QaMBj5K9j8GjomI54p+QWZmZm3M1ltvzcsvv8zChQtLHYo1o3Pnzmy99dZrdYwT0NaxJbAfsDMwARgHHA0MAD4FbA7MkPRwg+OGAZdHxI2SPgpUNOxY0lBgKEBFj15ULR29oa7BrKzNH3FoqUMws1a08cYbs/3225c6DNtAPAXfOm6PiJURMQ/YIpXtB4yNiBUR8RrwELBXg+OmAT+R9GNgu4hY0rDjiBgVEbmIyFV09QtIZmZmVv6cgLaOZXnbavDbqIj4C3A4sAS4V9JBGyA2MzMzszbFCeiG8zBwvKQKSb2AA4Dp+Q0kfQJ4PiKuIJu671/8MM3MzMyKy8+AbjjjgYHAE2QvIf0oIv6dXkKqdzzwVUkfAP8Gzm+qw369K6nxc25mZmZW5rwUZxnxUpxmZmZWLrwUp5mZmZm1GU5AzczMzKyonICamZmZWVE5ATUzMzOzonICamZmZmZF5QTUzMzMzIrK3wEtJwtqodrLcZoZUL2o1BGYma0zj4CuB0lbS7pD0nOS/inpckkflTRE0pWNHHO3pJ5FDtXMzMyszXACuo4kCbgNuD0i+gA7At2AC5s6LiK+FBHvbPgIzczMzNomJ6Dr7iBgaUSMBoiIFcBZwKlAV2ArSfek0dGL6g+SNF/S5mn7+5Lmpr/hxb8EMzMzs+LzM6DrbjdgZn5BRLwr6V9k93UAsDuwDHhG0siIeKm+raQ9gVOATwMCHpf0UETU5vcpaSgwFKCiRy+qlo7ecFdkZhvU/BGHljoEM7M2wSOg605ANFH+QEQsioilwDxguwbt9gPGR8T7EbGYbDp//4adRcSoiMhFRK6iq19AMjMzs/LnBHTdPQnk8gsk9QC2AVaQjXzWW8GHR5u1QaMzMzMza6M8Bb/uHgBGSDo5Iq6XVAFcAowB/tOC4x8GxkgaQZaMHgV8rakD+vWupMZTeGZmZlbmPAK6jiIiyJLG4yQ9BzwLLAV+0sLjZ5Elq9OBx4E/Nnz+08zMzKw9UpZHWTnI5XJRU1NT6jDMzMzMmiVpZkTkCtV5BNTMzMzMisoJqJmZmZkVlRNQMzMzMysqJ6BmZmZmVlROQM3MzMysqPwd0HKyoBaqvRqSma2H6kWljsDMrOONgEoKSTfk7W8kaaGkiWn/cEnnlCCuYZJOLvZ5zczMzIqtI46Avg/0ldQlIpYAnwNeqa+MiAnAhGIGJGmjiLi6mOc0MzMzK5UONwKa/A2oX9PyRGBsfYWkIZKuTNvHSZor6QlJD6ey3SRNlzRbUp2kPqn8+6ntXEnDU1mVpLl5fZ8tqTptT5b0S0kPAd+TVC3p7A1/6WZmZmal1RFHQAFuAs5L0+79gWuB/Qu0Ow/4fES8IqlnKhsGXB4RN0r6KFAhaU/gFODTZOu6P54Sy7ebiaNnRHwGoD4xbUjSUGAoQEWPXlQtHd3yqzSzNm/+iEObb2Rm1s50yBHQiKgDqshGP+9uoukUYIyk04CKVDYN+ImkHwPbpWn8/YDxEfF+RCwGbqNwQtvQzS2IdVRE5CIiV9HVLyCZmZlZ+euQCWgyAbiYvOn3hiJiGPB/wDbAbEmbRcRfgMOBJcC9kg4iG/UsZDlr3uPODerfX8fYzczMzMpWR05ArwXOj4g5jTWQtENEPB4R5wFvANtI+gTwfERcQZbE9gceBo6U1FXSJsBRwCPAa8DHJW0mqRNw2Aa+JjMzM7M2r6M+A0pEvAxc3kyz36SXjAQ8ADwBnAN8VdIHwL/Jkti3JI0Bpqfj/hgRtQCSzgceB14Anl6fmPv1rqTGz4uZmZlZmVNElDoGa6FcLhc1NTWlDsPMzMysWZJmRkSuUF1HnoI3MzMzsxJwAmpmZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyonoGZmZmZWVB32O6BlaUEtVHs5TjNrJdWLSh2BmXVQHX4EVNLitWw/WNLEtH24pHM2TGRmZmZm7ZNHQNdDREwgW47TzMzMzFqow4+A1ksjm5MljZP0tKQbJSnVfSGVPQocnXfMEElXpu0vS3pcUq2k+yVtkcqrJV2b+n5e0pl5x98uaaakJyUNLfIlm5mZmZWER0DXtDuwG7AAmALsK6kGuAY4CPgHcHMjxz4K7BMRIembwI+AH6S6nYEDge7AM5J+HxEfAKemdeS7ADMk3RoRb+Z3mhLToQAVPXpRtXR0K16umZWT+SMOLXUIZmatwgnomqZHxMsAkmYDVcBi4IWIeC6V/5mUEDawNXCzpC2BjwIv5NXdFRHLgGWSXge2AF4GzpR0VGqzDdAHWCMBjYhRwCiATlv2iVa4RjMzM7OS8hT8mpblba9gdYLeksRvJHBlRPQDvgV0bqpfSYOBg4GBEfEpoLbBMWZmZmbtkhPQ5j0NbC9ph7R/YiPtKoFX0vbXW9BvJfB2RPxH0s7APusXppmZmVl58BR8MyJiaXoO8y5Jb5A969m3QNNq4BZJrwCPAds30/U9wDBJdcAz6Zgm9etdSY2fATMzM7Mypwg/Vlgucrlc1NTUlDoMMzMzs2ZJmhkRuUJ1noI3MzMzs6JyAmpmZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyp/hqmcLKiF6spSR2FmHUH1olJHYGbtWLsYAZUUkm7I299I0kJJE9P+4ZLOKV2EIGmwpEGljMHMzMysLWgvI6DvA30ldYmIJcDnWL0qERExAZhQquCSwWTryk8tcRxmZmZmJdUuRkCTvwH1ywSdCIytr5A0RNKVaXuMpCskTZX0vKRjU/lgSZMljZP0tKQbJSnV7SnpIUkzJd0ractUfqakeZLqJN2UyjaVdHsqe0xSf0lVwDDgLEmzJe0v6cuSHpdUK+l+SVsU60aZmZmZlVJ7GQEFuAk4L0279weuBfZvpO2WwH7AzmQjo+NS+e7AbsACYAqwr6THgZHAERGxUNLxwIXAqcA5wPYRsUxSz9THz4HaiDhS0kHA9RExQNLVwOKIuBhA0seAfSIiJH0T+BHwg4aBpmVAhwJU9OhF1dLR63h7zKxczfcSvGbWzrSbBDQi6tJI44nA3c00vz0iVgLzGow8To+IlwEkzQaqgHfI1n7/exoQrQBeTe3rgBsl3Q7cnsr2A45JMT0oaTNJhd4c2hq4OY2mfhR4oZHrGgWMAui0ZR+vm2pmZmZlrz1NwUM2mnkxedPvjViWt61GyleQJegCnoyIAemvX0QcktocClwF7AnMlLRRg/7qFUocRwJXRkQ/4FtA52ZiNjMzM2sX2lsCei1wfkTMacU+nwF6SRoIIGljSbtJ+giwTURMIps+7wl0Ax4GTkptBwNvRMS7wHtA97x+K1n9otTXWzFeMzMzszat3UzBA6Tp88tbuc//pheVrkhT6RsBlwHPAn9OZQIujYh3JFUDoyXVAf9hdXJ5JzBO0hHAGUA1cIukV4DHgO2bi6Vf70pq/CyYmZmZlTlF+LHCcpHL5aKmpqbUYZiZmZk1S9LMiMgVqmtvU/BmZmZm1sY5ATUzMzOzonICamZmZmZF5QTUzMzMzIrKCaiZmZmZFZUTUDMzMzMrqnb1HdB2b0EtVBda1dPMrA2qXlTqCMysjWr3I6CSQtINefsbSVooaWLaP1zSOU0cXyVpbiN150s6uPWjNjMzM2u/OsII6PtAX0ldImIJ8DlWL4FJREwgW0N+rUXEea0TopmZmVnH0e5HQJO/AfVrWJ4IjK2vkDRE0pVpewtJ4yU9kf4GpWYVkq6R9KSk+yR1Se3HpGU6kfQlSU9LelTSFXkjrHtLmiqpNv3ulHfe2yTdI+k5SRcV51aYmZmZlVZHGAEFuAk4LyWF/YFrgf0LtLsCeCgijpJUAXQDPgb0AU6MiNMk/RU4Bvhz/UGSOgN/AA6IiBckjc3r8+lUvjxN1/8yHQ8wANgdWAY8I2lkRLyUH5CkocBQgIoevahaOnp97oOZtRPzRxzafCMzszaqQ4yARkQdUEU2+nl3E00PAn6fjlkREfVP0L8QEbPT9szUV76dgecj4oW0n5+AVgK3pOdILwV2y6t7ICIWRcRSYB6wXYHYR0VELiJyFV39ApKZmZmVvw6RgCYTgItZMzlsqWV52yv48Mixmjj2F8CkiOgLfBnovBb9mpmZmbU7HSkBvRY4PyLmNNHmAeB0AEkVknq0sO+ngU9Iqkr7x+fVVbL6pachLY7WzMzMrJ3qMCNuEfEycHkzzb4HjJL0DbIRydOBV1vQ9xJJ3wbukfQGMD2v+iLgOknfBx5cp+CTfr0rqfFzX2ZmZlbmFBGljqFdkNQtIhZLEnAV8FxEXNqa58jlclFTU9OaXZqZmZltEJJmRkSuUF1HmoLf0E6TNBt4kmza/Q+lDcfMzMysbeowU/AbWhrtbNURTzMzM7P2yCOgZmZmZlZUTkDNzMzMrKicgJqZmZlZUfkZ0HKyoBaqvRqSmdkaqhc138bM2pSijoBKCkk35O1vJGlhWqO96CQN3pDnltQzfR+0fr9K0v9uqPOZmZmZlYNiT8G/D/SV1CXtf47VqwS1Rz2Bb+ftVwFOQM3MzKxDK8UzoH8D6pfzOZG8tdkl7S1pqqTa9LtTKt9N0nRJsyXVSeojaRNJd0l6QtJcScentudJmpHKRqUPwyPpk5LuT+1nSdohnbabpHGSnpZ0Y177+ZI2T9s5SZPT9mdSHLNTnN1T+Q/Teesk/Tz1PQLYIbX9TdrfP+2fVei6NthdNzMzM2sjSvEM6E3AeWnquz/ZGu37p7qngQMiYrmkg4FfAscAw4DLI+JGSR8FKoAvAQsi4lAASfUPR14ZEeenshuAw4A7gRuBERExXlJnsuR7G2B3YDdgATAF2Bd4tIn4zwa+ExFTJHUDlko6BOgD7A0ImCDpAOAcoG9EDEjxDAbOjojD0v7IAte1BklDgaEAFT16UbV0dHP318xKaL6XyzUza1bRR0Ajoo5sKvpE4O4G1ZXALZLmkn3UfbdUPg34iaQfA9tFxBJgDnCwpF9L2j8i6p9CP1DS45LmAAcBu6VRyt4RMT7FsDQi/pPaT4+IlyNiJTA7xdaUKcBvJZ0J9IyI5cAh6a8WmAXsTJaQNqfQda0hIkZFRC4ichVd/QKSmZmZlb9SfYZpAnAxedPvyS+ASRHRF/gy0BkgIv4CHA4sAe6VdFBEPAvsSZaI/ipNvXcGfgccGxH9gGtSH2oilmV52ytYPSq8nNX3p3N9g4gYAXwT6AI8Jmnn1P+vImJA+vtkRPypuZtQ6LqaO8bMzMys3JUqAb0WOD8i5jQor2T1S0lD6gslfQJ4PiKuIEte+0vaCvhPRPyZLJndg9WJ4htpevxYgIh4F3hZ0pGpv06SujYT43yyBBeyxwDqY9khIuZExK+BGrLRznuBU9M5kdRb0seB94DueX2usV/oupqJyczMzKzsleQ7oBHxMnB5gaqLgOskfR94MK/8eOCrkj4A/g2cD+wF/EbSSuAD4PSIeEfSNWSjovOBGXl9fA34g6TzU/vjmgnz58CfJP0EeDyvfLikA8lGS+cBf4uIZZJ2Aaald5gWA1+NiH9KmpIeKfgb8BNguaQngDFkCXPD62pUv96V1Pj5MjMzMytziohSx2AtlMvloqamptRhmJmZmTVL0syIyBWq81KcZmZmZlZUTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OicgJqZmZmZkXlBNTMzMzMiqok3wG1dbSgFqq9HKeZtSPVi5pvY2btTrsZAZV0qaThefv3Svpj3v4labnOc0oU31aSxpXi3GZmZmZtSbtJQIGpwCAASR8BNgd2y6sfBNyb1nIvuohYEBHHluLcZmZmZm1Je0pAp5ASULLEcy7wnqSPSeoE7AJ8StKVAJKOkzRX0hOSHk5lFZIuljRHUp2kM1L5ZyXVpvJrU39Imi/p55JmpbqdU/lnJM1Of7WSukuqSktyImmIpNsk3SPpOUkXFfNGmZmZmZVSu3kGNCIWSFouaVuyRHQa0BsYCCwC6oD/5h1yHvD5iHhFUs9UNhTYHtg9IpZL2lRSZ7J12z8bEc9Kuh44HbgsHfNGROwh6dvA2cA30+93ImKKpG7A0gIhDwB2B5YBz0gaGREvNWwkaWiKi4oevahaOnod7o6ZdQTzRxxa6hDMzFqkPY2AwupR0PoEdFre/tQCbcdIOg2oSGUHA1dHxHKAiHgL2Al4ISKeTW2uAw7I6+e29DsTqMrr+7eSzgR61vfXwAMRsSgilgLzgO0KXVBEjIqIXETkKrr6BSQzMzMrf+0tAa1/DrQf2RT8Y2QjoIPIksJVImIY8H/ANsBsSZsBAqJBn2rmnMvS7wrSiHJ6zvSbQBfgsfqp+UaOW+NYMzMzs/auvSWgU4DDgLciYkUawexJloROy28oaYeIeDwizgPeIEtE7wOGSdootdkUeBqokvTJdOjXgIeaCiL1PScifg3UAIUSUDMzM7MOqb2Nus0he/v9Lw3KukXEG9Iag5m/kdSHbITzAeAJslHTHYE6SR8A10TElZJOAW5JiekM4Opm4hgu6UCykc15wN+ALdf34vr1rqTGz3iZmZlZmVNEwxlna6tyuVzU1NSUOgwzMzOzZkmaGRG5QnXtbQrezMzMzNo4J6BmZmZmVlROQM3MzMysqJyAmpmZmVlROQE1MzMzs6Jqb59hat8W1EK1V0MyMyt71YtKHYFZSZV9AppWMHog7f4P2bc3F6b9vSPivwUPNDMzM7OSKPsENCLeBAYASKoGFkfExaWMyczMzMwa1y6fAZW0p6SHJM2UdK+kLVP5ZEm/ljRd0rOS9k/lQyTdJukeSc9Juiivr0MkTZM0S9Itkrql8hGS5kmqk3RxKjtO0lxJT0h6OJVVSPqNpBmp7bfy+v5hXvnPi3mPzMzMzEql7EdACxAwEjgiIhZKOh64EDg11W8UEXtL+hLwM+DgVD4A2B1YBjwjaSSwBPg/4OCIeF/Sj4HvS7oSOArYOSJCUs/Ux3nA5yPilbyybwCLImIvSZ2AKZLuA/qkv71TzBMkHRARD69xMdJQYChARY9eVC0d3Uq3yaxjmO/la83M2pz2mIB2AvoCf09rv1cAr+bV35Z+ZwJVeeUPRMQiAEnzgO2AnsCuZEkjwEeBacC7wFLgj5LuAiamPqYAYyT9Ne88hwD9JR2b9ivJEs9D0l9tKu+WytdIQCNiFDAKoNOWfbxuqpmZmZW99piACngyIgY2Ur8s/a5gzetflrddXyfg7xFx4odOIu0NfBY4AfgucFBEDJP0aeBQYLakAamPMyLi3gbHfx74VUT8YS2vz8zMzKystcdnQJcBvSQNBJC0saTd1rGvx4B9JX0y9dVV0o7pOdDKiLgbGM7ql6B2iIjHI+I84A1gG+Be4HRJG6c2O0raJJWfmvdMaW9JH1/HOM3MzMzKRnscAV0JHAtcIamS7BovA55c247SM6RDgLHp+U3Ingl9D7hDUmeyEc6zUt1vJPVJZQ8ATwB1ZFP9s5TN4y8EjoyI+yTtAkxL0/uLga8CrzcWT7/eldT4eTYzMzMrc4rwY4XlIpfLRU1NTanDMDMzM2uWpJkRkStU1x6n4M3MzMysDXMCamZmZmZF5QTUzMzMzIrKCaiZmZmZFZUTUDMzMzMrKiegZmZmZlZU7fE7oO3Xglqorix1FGZmq1UvKnUEZlaG2swIqKSfSnpSUp2k2WlJy3XpZ7CkQXn7Y/LWYW/quBXpvE9KekLS9yU1eX/SuSY21aZB++GSura0vZmZmVl71CZGQNOymYcBe0TEMkmbAx9dx+4Gk60qNHUtj1sSEQNSPB8H/gJUAj9bxzgKGQ78GfhPK/ZpZmZmVlbaygjolsAbEbEMICLeiIgFAJI+K6lW0hxJ19YviSlpfkpUkZSTNFlSFTAMOCuNZu6f+j9A0lRJz7dkNDQiXgeGAt9VpkrSI5Jmpb9BDY+RtFeK8xOFYpZ0JrAVMEnSpHTM7yXVpFHXn6/nPTQzMzMrC21iBBS4DzhP0rPA/cDNEfFQWmt9DPDZiHhW0vXA6WRru39IRMyXdDWwOCIuBpD0DbIEdz9gZ2ACMK65gCLi+TQF/3Gy9dk/FxFL01rvY4FVS0ulhHQkcERq+1DDmCPiMknfBw6MiDfSoT+NiLckVQAPSOofEXX5cUgaSpYMU9GjF1VLRzcXuplZ0cwvdQBmVpbaxAhoRCwG9iRLtBYCN0saAuwEvBARz6am1wEHrMMpbo+IlRExD9hiLY5T+t0YuEbSHOAWYNe8NrsAo4AvR8S/1jLmr0iaBdQCuzXoF4CIGBURuYjIVXT1C0hmZmZW/trKCCgRsQKYDExOid7XgdlNHLKc1Ql052a6X5a3rUZb5TeSPgGsIBvR/BnwGvCpdM6leU1fTeffHViwFv1vD5wN7BURb0saQ/PXYWZmZlb22sQIqKSd0tR2vQHAi8DTQJWkT6byr5FNb0M287Nn2j4m79j3gO7rGU8v4GrgyogIspeRXo2IlSmGirzm7wCHAr+UNLiZmPNj6wG8DyyStAXwxfWJ2czMzKxctJUR0G7ASEk9yUY2/wEMTc9cngLcImkjYAZZYgjwc+BPkn4CPJ7X153AOElHAGesRQxdJM0mm25fDtwA/DbV/Q64VdJxwCSyxHGViHhN0peBvwGnAo3FPAr4m6RXI+JASbXAk8DzwJTmAuzXu5KaEYeuxSWZmZmZtT3KBvisHORyuaipqSl1GGZmZmbNkjQzInKF6trEFLyZmZmZdRxOQM3MzMysqJyAmpmZmVlROQE1MzMzs6JyAmpmZmZmRdVWPsNkLbGgFqq9GpKZtVHVi0odgZmViQ4zAiopJN2Qt7+RpIWSJq5jfz0lfbv1IjQzMzPrGDpMAkr28fi+krqk/c8Br6xHfz0BJ6BmZmZma6kjJaCQrVRUv5TQicDY+gpJm0q6XVKdpMck9U/l1ZKulTRZ0vOSzkyHjAB2kDRb0m8kdZP0gKRZkuaklZiQVCXpKUnXSHpS0n31SbCk0yTNkPSEpFsldS3anTAzMzMrkY72DOhNwHlp2r0/cC2wf6r7OVAbEUdKOgi4nmxNeoCdgQPJ1nF/RtLvgXOAvhExALIpfeCoiHhX0ubAY5ImpOP7ACdGxGmS/kq2dv2fgdsi4pp0/AXAN4CR+QFLGgoMBajo0YuqpaNb836YmbWa+aUOwMzKRodKQCOiTlIV2ejn3Q2q9yNLDImIByVtJqn+jZ+7ImIZsEzS68AWBboX8EtJBwArgd557V6IiNlpeyZQlbb7psSzJ9ANuLdAzKPI1pCn05Z9vG6qmZmZlb0OlYAmE4CLgcHAZnnlKtC2PuFblle2gsL37SSgF7BnRHwgaT7QuZHj659DHQMcGRFPSBqSYjIzMzNr1zraM6CQTbufHxFzGpQ/TJZEImkw8EZEvNtEP++RTcnXqwReT8nngcB2LYilO/CqpI3rz21mZmbW3nW4EdCIeBm4vEBVNTBaUh3wH+DrzfTzpqQpkuaSvdz0a+BOSTXAbODpFoRzLvA48CIwhzUT2g/p17uSmhGHNtXEzMzMrM1ThB8rLBe5XC5qampKHYaZmZlZsyTNjIhcobqOOAVvZmZmZiXkBNTMzMzMisoJqJmZmZkVlRNQMzMzMysqJ6BmZmZmVlROQM3MzMysqDrcd0DL2oJaqK5svp2ZWUdQvajUEZjZOiqbEVBJ/yPpJkn/lDRP0t2SdixhPMMldc3bv1tSz3Xop0rS/7ZqcGZmZmZtWFkkoJIEjAcmR8QOEbEr8BNgixKGNRxYlYBGxJci4p116KcKcAJqZmZmHUZZJKDAgcAHEXF1fUFEzAYelfQbSXMlzZF0PGRruUuaLGmcpKcl3ZiSWCTNl/RzSbPSMTun8k0kXStphqRaSUek8gpJF6e2dZLOkHQmsBUwSdKkvH43T9snp7ZPSLohlY2RdGx9/JIWp80RwP6SZks6a4PeRTMzM7M2oFyeAe0LzCxQfjQwAPgUsDkwQ9LDqW53YDdgATAF2Bd4NNW9ERF7SPo2cDbwTeCnwIMRcWqaSp8u6X7gZGB7YPeIWC5p04h4S9L3gQMj4o38gCTtlvraNyLekLRpM9d2DnB2RBxWqFLSUGAoQEWPXlQtHd1Md2Zmhc0fcWipQzAzA8pnBLQx+wFjI2JFRLwGPATsleqmR8TLEbESmE021V3vtvQ7M6/8EOAcSbOByUBnYFvgYODqiFgOEBFvNRPTQcC4+sS0Be2bFBGjIiIXEbmKrn4ByczMzMpfuYyAPgkcW6BcTRyzLG97BWte67IC5QKOiYhn1jhBNnUfaxFrY+2XkxL+1OdH16JPMzMzs3ajXEZAHwQ6STqtvkDSXsDbwPHpOc1ewAHA9HU8x73AGXnPiu6eyu8DhknaKJXXT6m/B3Qv0M8DwFckbdag/Xxgz7R9BLBxM/2YmZmZtUtlMQIaESHpKOAySecAS8kSuuFAN+AJslHHH0XEv+tfLFpLvwAuA+pSEjofOAz4I7BjKv8AuAa4EhgF/E3SqxFxYF6sT0q6EHhI0gqgFhiSjrtD0nSyJPX9dEgdsFzSE8CYiLi0sQD79a6kxs9wmZmZWZlTxNrMLlsp5XK5qKmpKXUYZmZmZs2SNDMicoXqymUK3szMzMzaCSegZmZmZlZUTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OicgJqZmZmZkVVFt8BLbb0zdHbgF0i4mlJVcDEiOi7Dn0tjohurRLYglqo9nKcZmYfUr2o1BGY2VrwCGhhJwKPAieUOhAzMzOz9sYJaAOSugH7At+gQAIqqUrSI5Jmpb9BqXxLSQ9Lmi1prqT9Gxy3uaRpkg5trA8zMzOzjsBT8B92JHBPRDwr6S1JewBv5dW/DnwuIpZK6gOMBXLA/wL3RsSFkiqArvUHSNoCmAD8X0T8XVLXRvr4EElDgaEAFT16UbV0dGtfr5m1c/O9hK+ZtTFOQD/sRLI14QFuSvtX5dVvDFwpaQCwgmydeIAZwLWSNgZuj4jZee0fAL4TEQ8108eHRMQosnXn6bRlH6+bamZmZmXPCWgeSZsBBwF9JQVQAQTwu7xmZwGvAZ8ie4RhKUBEPCzpAOBQ4AZJv4mI64HlwEzg88BDTfVhZmZm1hH4GdA1HQtcHxHbRURVRGwDvABsndemEng1IlYCXyNLUpG0HfB6RFwD/AnYI7UP4FRgZ0nnNNWHmZmZWUfgEdA1nQiMaFB2K/CTvP3fAbdKOg6YBLyfygcDP5T0AbAYOLn+gIhYIekE4E5J7zbRR5P69a6kxs9ymZmZWZlThB8rLBe5XC5qampKHYaZmZlZsyTNjIiCL1l7Ct7MzMzMisoJqJmZmZkVlRNQMzMzMysqJ6BmZmZmVlROQM3MzMysqJyAmpmZmVlR+Tug5WRBLVRXljoKMzNbG9WLSh2BWZtTkhFQSSHpkrz9syVVr2UfgyUNytsfI+nYFhz3P5JukvRPSfMk3S2p0bXY1yKeKklz03ZO0hXr26eZmZlZe1SqKfhlwNGSNl+XgyVtRLby0KBmmjY8TsB4YHJE7BARu5KtcrRFS4+X1Ow9i4iaiDhzbWIzMzMz6yhKlYAuB0YBZzWskLSdpAck1aXfbVP5GEm/lTQJuBkYBpwlabak/dPhB0iaKun5RkZDDwQ+iIir6wsiYnZEPCKpWzrfLElzJB2Rzlsl6SlJvwNmAdtI+o2kuand8QWuYbCkiWm7WtK1kianuM7Ma3e7pJmSnpQ0dN1upZmZmVl5KeUzoFcBdZIualB+JXB9RFwn6VTgCuDIVLcjcHBaW70aWBwRFwNI+gawJbAfsDMwARjXoO++wMxG4lkKHBUR76aR2cckTUh1OwGnRMS3JR0DDAA+BWwOzJD0cDPXujNZ8tsdeEbS7yPiA+DUiHhLUpfUz60R8Wb+gSkxHQpQ0aMXVUtHN3MqM2tr5o84tNQhmJm1KSV7Cz4i3gWuBxpOVQ8E/pK2byBLKOvdEhErmuj29ohYGRHzaOG0eh4Bv5RUB9wP9M7r48WIeCxt7weMjYgVEfEa8BCwVzN93xURyyLiDeD1vH7PlPQE8BiwDdCn4YERMSoichGRq+jqF5DMzMys/JX6M0yXAd8ANmmiTeRtv99Mf8vytlWg/klgz0aOPQnoBewZEQOA14DOBc5bqN/m5Me1AthI0mDgYGBgRHwKqM07n5mZmVm7VdIENCLeAv5KloTWmwqckLZPAh5t5PD3yKa018aDQCdJp9UXSNpL0meASuD1iPhA0oHAdo308TBwvKQKSb2AA4DpaxkH6XxvR8R/JO0M7LMOfZiZmZmVnbbwHdBLgO/m7Z8JXCvph8BC4JRGjrsTGJdeFjqjJSeKiJB0FHCZpHPInvucDwwnGx29U1INMBt4upFuxpM9JvAE2ejsjyLi35KqWhJDnnuAYWnK/xmyafgm9etdSY2fJTMzM7Myp4hovpW1CblcLmpqakodhpmZmVmzJM2MiFyhulI/A2pmZmZmHYwTUDMzMzMrKiegZmZmZlZUTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OiagvfAd2gJAXw24j4Qdo/G+gWEdWt0Hdnsm+GHhcRc1LZj4BPRMSwFhxfTd569s1aUAvVXo7TzGydVC8qdQRmlnSEEdBlwNGSNm/tjiNiKdlH7H+nTG/gW8D/a+5YSe0++TczMzMrpCMkoMuBUcBZDSsk9ZJ0q6QZ6W/fVD5HUs+UVL4p6eRUfoOkg/P7iIh7gFeBk4FLgWqgh6QHJNWl323T8WMk/VbSJODXDWI5TdLfJHVp9TtgZmZm1oZ0lFG4q4A6SRc1KL8cuDQiHk1J4r3ALsAUYF/gReB5YH/gerL12k8v0P9wsvXgn4uIGyTdCVwfEddJOhW4Ajgytd0RODgiVqQpeCR9FzgEODIiluV3LGkoMBSgokcvqpaOXuebYGa2tuZ7+V8z2wA6RAIaEe9Kup5snfkleVUHA7tKqt/vIak78AhwAFkC+ntgaJpefysiFhfof4GkB4GJqWggcHTavgHIT3xviYgVeftfA14mSz4/KND3KLIRXDpt2cfrppqZmVnZ6whT8PUuA74BbJJX9hFgYEQMSH+9I+I94GGyUc/9gcnAQuBYssS0MSvTXyH5ieP7DermAlXA1i26CjMzM7My12ES0Ih4C/grWRJa7z7gu/U7kgakti8BmwN9IuJ54FHgbJpOQPNNBU5I2yel4xtTS/bi0gRJW7WwfzMzM7Oy1SGm4PNcQl7CSTYlf5WkOrJ78TBQ//mkx4GKtP0I8CuaTiTznQlcK+mHZKOnpzTVOD2DejZwl6TPRcQbhdr1611JjZ/HMjMzszKnCD9WWC5yuVzU1NSUOgwzMzOzZkmaGRG5QnUdZgrezMzMzNqGFiWgkrpKOlfSNWm/j6TDNmxoZmZmZtYetXQEdDTZikID0/7LwAUbJCIzMzMza9damoDuEBEXAR8ARMQSQE0fYmZmZmb2YS1NQP+blogMAEk7kI2ImpmZmZmtlZZ+hqkauAfYRtKNZMtUNvlpITMzMzOzQlr8GSZJm5GthS7gsca+VWkbTm6riqgZ2q3UYZiZFV/1olJHYGZrab0/wyTpgYh4MyLuioiJEfGGpAdaN8y2S9KH1n9P5WMkHdvMsZMlFbz5ZmZmZh1Rk1PwkjoDXYHNJX2M1S8e9QC8bKSZmZmZrbXmRkC/BcwEdk6/9X93AFdt2NDaHmWulDRP0l3Ax/PqzpM0Q9JcSaMk5X8l4DhJ0yU9K2n/1L6zpNGS5kiqlXRgsa/HzMzMrBSaHAGNiMuByyWdEREjixRTW3YUsBPQD9gCmAdcm+qujIjzASTdABwG3JnqNoqIvSV9CfgZcDDwHYCI6CdpZ+A+STtGxNL8E0oaCgwFqOjRi6qlozfk9ZmZtU3n3LVqc/6IQ0sYiJm1hha9BR8RIyX1BXYFOueVX7+hAmujDgDGRsQKYIGkB/PqDpT0I7JHFjYFnmR1Anpb+p0JVKXt/YCRABHxtKQXgR2BuvwTRsQoYBRApy37tOyNMTMzM7M2rEUJqKSfAYPJEtC7gS8CjwIdLQGF9C3UfOlZ2d8BuYh4SVI1eYk6q7+ZuoLV99wf8jczM7MOqaUfoj8W+Czw74g4BfgU0GmDRdV2PQycIKlC0pZA/XOb9cnmG5K6kd2vlvR1EoCkHYFtgWdaOV4zMzOzNqelH6JfEhErJS2X1AN4HfjEBoyrrRoPHATMAZ4FHgKIiHckXZPK5wMzWtDX74CrJc0BlgNDIqLJ1aX69a6kxs8+mZmZWZlraQJaI6kncA3Zc4yLgekbKqi2JiK6pd8AvttIm/8D/q9A+eC87TdIz4Cml42GtHqwZmZmZm1cS19C+nbavFrSPUCPiKhr6hgzMzMzs0JavBJS/XZEzI+Iuo60EpKZmZmZtR6vhGRmZmZmRdXcFPy3gOFkyeZMsgQ0gPeAKzdoZGZmZmbWLjU5BR8Rl0fE9sCFwIC0PRp4HphWhPjMzMzMrJ1p8XdAI+JdSfsBnwPGAL/fYFGZmZmZWbvV0s8wrUi/hwJXR8QdabUfK6YFtVBdWeoozMw6hupFpY7ArN1q6QjoK5L+AHwFuFtSp7U4tmxJCkk35O1vJGmhpInNHJeTdMWGj9DMzMys/LQ0ifwKcC/whYh4B9gU+OGGCqoNeR/oK6lL2v8c8EpzB0VETUScuUEjMzMzMytTLUpAI+I/EXFbRDyX9l+NiPs2bGhtxt/IHj0AOBEYW18haW9JUyXVpt+dUvng+lFSSdWSrpU0WdLzks7MO/6rkqZLmi3pD5IqinhdZmZmZiXR0mdAO7KbgPNSQtkfuBbYP9U9DRwQEcslHQz8EjimQB87AwcC3YFnJP0e+CRwPLBvRHwg6XfAScD1+QdKGgoMBajo0YuqpaNb+/rMzNbZ/BGHNt/IzKwBJ6DNSKs+VZGNft7doLoSuE5SH7Lvo27cSDd3RcQyYJmk14EtgM8CewIzJAF0AV4vcP5RwCiATlv2ifW+IDMzM7MScwLaMhOAi4HBwGZ55b8AJkXEUSlJndzI8cvytleQ3XcB10XE/2vtYM3MzMzaMiegLXMtsCgi5kganFdeyeqXkoasZZ8PAHdIujQiXpe0KdA9Il5s7IB+vSup8XSXmZmZlbl2/yml1hARL0fE5QWqLgJ+JWkKsFYvEEXEPOD/gPsk1QF/B7Zc72DNzMzM2jhF+LHCcpHL5aKmpqbUYZiZmZk1S9LMiMgVqvMIqJmZmZkVlRNQMzMzMysqJ6BmZmZmVlROQM3MzMysqJyAmpmZmVlR+Tug5WRBLVRXljoKM7PSqF5U6gjMrJW02xFQSZdKGp63f6+kP+btXyLp+xvo3H+UtOuG6NvMzMys3LXbBBSYCgwCkPQRYHNgt7z6QcCUDXHiiPhm+tC8mZmZmTXQnhPQKaQElCzxnAu8J+ljkjoBuwCXSRpQf4CkKZL6S9pU0u2S6iQ9Jql/qq+WdJ2k+yTNl3S0pIskzZF0j6SNU7vJknJpe7GkCyU9kfraIpXvkPZnSDpf0uKi3RkzMzOzEmq3z4BGxAJJyyVtS5aITgN6AwOBRUAd8CeyNdyHS9oR6BQRdZJGArURcaSkg4DrgQGp6x2AA4FdU5/HRMSPJI0HDgVubxDKJsBjEfFTSRcBpwEXAJcDl0fEWEnDGrsOSUOBoQAVPXpRtXT0+twWM7Pydc5dTVbPH3FokQIxs/XVnkdAYfUoaH0COi1vfypwC3BYGrk8FRiTjtsPuAEgIh4ENpNU//bP3yLiA2AO2frv96TyOUBVgRj+C0xM2zPz2gxM5wf4S2MXEBGjIiIXEbmKrn4ByczMzMpfux0BTeqfA+1HNgX/EvAD4F3g2oj4j6S/A0cAXwHq1ytVgb4i/S4DiIiVkj6IiPrylRS+n/ltVjTSxszMzKzD6AgjoIcBb0XEioh4C+hJNvo4LbX5I3AFMCPVAzwMnAQgaTDwRkS828qxPQYck7ZPaOW+zczMzNqs9j4aN4fs7fe/NCjrFhFvAETETEnvAvkPV1YDoyXVAf8Bvr4BYhsO/FnSD4C7yJ5LbVK/3pXU+BknMzMzK3NaPTvcMUnaCpgM7BwRK4t43q7AkogISScAJ0bEEU0dk8vloqampjgBmpmZma0HSTMjIleorr2PgDZJ0snAhcD3i5l8JnsCV0oS8A7ZS1BmZmZm7V6HTkAj4nqyTyyV4tyPAJ8qxbnNzMzMSqm9v4RkZmZmZm2ME1AzMzMzKyonoGZmZmZWVE5AzczMzKyoOvRLSGVnQS1UezlOM7M2r7rZTzubdWhtagRU0gpJsyXNlXRL+lZmqWIZIunKVu5zK0njWrNPMzMzs3LTphJQsg+zD4iIvsB/gWGlDqg1RcSCiDi21HGYmZmZlVJbS0DzPQJ8UtImkq6VNENSraQjYNUI5W2S7pH0nKSL6g+UtFjShZKekPSYpC1S+XFpdPUJSQ+nskckDcg7doqk/nn7lZLmS/pI2u8q6SVJG0s6LcX1hKRb60dsJY2RdIWkqZKel3RsKq+SNDdv+xFJs9LfoA19Q83MzMzagjb5DKikjYAvAvcAPwUejIhTJfUEpku6PzUdAOwOLAOekTQyIl4CNgEei4ifpsT0NOAC4Dzg8xHxSuoL4I/AEGC4pB2BThFRJ2kPgIhYJOkJ4DPAJODLwL0R8YGk2yLimhTzBcA3gJGp3y2B/YCdgQlAw6n314HPRcRSSX2AscCHlquSNBQYClDRoxdVS0c3bGJm1ibNH3FoqUMwszaqrY2AdpE0G6gB/gX8CTgEOCeVTwY6A9um9g9ExKKIWArMA7ZL5f8FJqbtmUBV2p4CjJF0GlCRym4BDpO0MdlymGMKxHUzcHzaPiHtA/RNo5hzgJOA3fKOuT0iVkbEPGCLAn1uDFyTjr0F2LXQDYmIURGRi4hcRVe/gGRmZmblr62NgC6JiAH5BWmt9GMi4pkG5Z8mG/mst4LV1/NBRETD8ogYlo47FJgtaUBEvCnp78ARwFcoMApJNoL5K0mbkq3h/mAqHwMcGRFPSBoCDM47Jj82FejzLOA1suU4PwIsLdDGzMzMrN1pawloIfcCZ0g6IyJC0u4RUbsuHUnaISIeBx6X9GVgG+BNsmn4O4FHIuKthsdFxGJJ04HLgYkRsSJVdQdeTaOnJwGvrEU4lcDLEbFS0tdZPSLbqH69K6nxlJaZmZmVuXJIQH8BXAbUpdHQ+cBh69jXb9LzlgIeAJ4AiIiZkt4FmnrA8mayqfLBeWXnAo8DLwJzyBLSlvodcKuk48ieLX1/LY41MzMzK1taPVPdcUnaiuz50p0jYmWJw2lULpeLmpqaUodhZmZm1ixJMyOi0KONbe4lpKKTdDLZKOZP23LyaWZmZtZelMMU/AYVEdcD15c6DjMzM7OOosOPgJqZmZlZcTkBNTMzM7OicgJqZmZmZkXV4Z8BLSsLaqHaqyGZmbWa6kWljsCsQ/IIKCBpa0l3SHpO0j8lXS7po6WOy8zMzKw96vAJaPq4/W1ka7f3AXYEugEXNmjn0WIzMzOzVtDhE1DgIGBpRIwGSMtsngWcKunbkm6RdCdwn6RNJF0raYakWklHAEjqKumvkuok3SzpcUm5VHeipDmS5kr6df1JJS2WdKGkJyQ9JmmL4l+6mZmZWfF5VA92A2bmF0TEu5L+RXZ/BgL9I+ItSb8EHoyIUyX1BKZLuh84HXg7IvpL6gvMhlUrLP0a2BN4myyJPTIibgc2AR6LiJ9Kugg4DbigYXCShgJDASp69KJqaVOrhZqZWSHzRxxa6hDMLI9HQLN14QutR1pf/veIeCuVHQKcI2k22dKdnYFtgf2AmwAiYi5Ql9rvBUyOiIURsRy4ETgg1f0XmJi2ZwJVhYKLiFERkYuIXEVXv4BkZmZm5c8joPAkcEx+gaQewDbACuD9/CrgmIh4pkF7NdJ3Y+UAH0REfeK7Av9bmJmZWQfhEVB4AOia1oRHUgVwCTAG+E+DtvcCZ9QnnJJ2T+WPAl9JZbsC/VL548BnJG2e+j0ReGjDXYqZmZlZ29fhR90iIiQdBfxO0rlkSfndwE/IEsZ8vwAuA+pSEjofOAz4HXCdpDqglmwKflFEvCrp/wGTyEZD746IO9Y11n69K6nxc0xmZmZW5rR6FtjWVRrd3DgilkragWxUdceI+G9rnieXy0VNTU1rdmlmZma2QUiaGRG5QnUdfgS0lXQFJknamGyk8/TWTj7NzMzM2gsnoK0gIt4DCmb4ZmZmZrYmv4RkZmZmZkXlBNTMzMzMisoJqJmZmZkVlRNQMzMzMysqv4RUThbUQrWX4zQzM6B6UakjMFtnHXYEVNJkSZ9vUDZc0vOSzlnLvraSNK4F7e6W1HMtQzUzMzNrVzryCOhY4ASy5TXrnQB8PSIeadhY0kYRsbxQRxGxADi2uRNGxJfWMVYzMzOzdqPDjoAC44DDJHUCkFQFbAV8UtKVqWyMpN9KmgT8WtIOkh6TNEPS+ZIW1x8raW7aHiLpNkn3SHpO0kX1J5Q0X9Lmaft2STMlPSlpaFGv3MzMzKyEOuwIaES8KWk68AXgDrLRz5uBhmuT7ggcHBErJE0ELo+IsZKGNdH9AGB3YBnwjKSREfFSgzanRsRbkroAMyTdGhFvNuwoJadDASp69KJq6ei1v1gzs1Y2f8ShpQ7BzMpYRx4BhdXT8KTfsQXa3BIRK9L2QOCWtP2XJvp9ICIWRcRSYB6wXYE2Z0p6AngM2AboU6ijiBgVEbmIyFV09QtIZmZmVv46egJ6O/BZSXsAXSJiVoE2769Dv8vytlfQYKRZ0mDgYGBgRHwKqAU6r8N5zMzMzMpOh05AI2IxMBm4lsKjnw09BhyTtk9oqmEzKoG3I+I/knYG9lmPvszMzMzKSod9BjTPWOA2WpZQDgf+LOkHwF3Aun6E7R5gmKQ64BmyxLZZ/XpXUuPnrszMzKzMKaLhOzfWGEldgSUREZJOAE6MiCOKdf5cLhc1NTXFOp2ZmZnZOpM0MyJyheo8Arp29gSulCTgHeDU0oZjZmZmVn6cgK6F9IH6T5U6DjMzM7Ny1qFfQjIzMzOz4nMCamZmZmZF5QTUzMzMzIrKz4CWkwW1UO3VkMzM2pXqdf2in1n5KosRUEkh6ZK8/bMlVbdi/1XpHL/IK9tc0geSrlzHPs+XdHBrxWhmZmbWXpRFAkq2tOXRkjbfgOd4Hjgsb/844Ml17SwizouI+9c7KjMzM7N2plwS0OXAKOCshhWSekm6VdKM9LdvKp8jqacyb0o6OZXf0MjI5BLgKUn1H0w9HvhrC85zR17f35J0Y9oeI+nYtL2XpKmSnpA0XVJ3SZ0ljU5x1ko6sLVulpmZmVlbVk7PgF4F1Em6qEH55cClEfGopG2Be4FdgCnAvsCLZKOb+wPXk627fnoj57gJOEHSv4EVwAJgq2bOMxSYIukF4Ac0WNdd0keBm4HjI2KGpB5kye73ACKiX1oP/j5JO0bE0gbHD03noKJHL6qWjm7Z3TIzs7Iwv9QBmJVA2SSgEfGupOuBM8kSuHoHA7tmixMB0ENSd+AR4ACyBPT3wFBJvYG3ImJxI6e5B/gF8BpZ0piv4Hki4jVJ5wGTgKMi4q0Gx+0EvBoRM+qvA0DSfsDIVPa0pBeBHYG6Btc9imz0l05b9vG6qWZmZlb2yiYBTS4DZgH5w4AfAQZGRH5SiqSHge8A2wI/BY4CjiVLTAuKiP9Kmkk2krkb8OXmzpP0A95k9WjpGqEAhRJHFSgzMzMza/fK5RlQANLo4l+Bb+QV3wd8t35H0oDU9iVgc6BPRDwPPAqcTRMJaHIJ8OOIeLNBecHzSNob+CKwO3C2pO0bHPc0sJWkvVL77pI2Ah4GTkplO5Ilys80E5uZmZlZ2Su3EVDIEsTv5u2fCVwlqY7seh4GhqW6x4GKtP0I8CuyRLRREfEkhd9+/9B5JH0PuAY4JSIWSPoBcK2kg/L6+6+k44GRkrqQPT5wMPA74GpJc8heshoSEcuaiq1f70pqRhzaVBMzMzOzNk8RfqywXORyuaipqSl1GGZmZmbNkjQzInKF6spqCt7MzMzMyp8TUDMzMzMrKiegZmZmZlZUTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OiKsfvgHZcC2qhurLUUZiZWTmqXlTqCMxWKZsRUEmXShqet3+vpD/m7V8i6ftr0V+1pLMbqZu6HnEOljRoXY83MzMza+/KJgEFpgKDACR9hGyZzd3y6gcBU1rjRBGxPgnk4BSLmZmZmRVQTgnoFFYndrsBc4H3JH1MUidgF+DzkmZImitplCQBSDpT0jxJdZJuyutzV0mTJT0v6cz6QkmL0+/gVD9O0tOSbszr80up7FFJV0iaKKmKbBnQsyTNlrS/pO0kPZDO/YCkbdPxY9JxU9P5j92wt8/MzMysbSibZ0DTWuvLUwI3CJgG9AYGAouAOuDKiDgfQNINwGHAncA5wPYRsUxSz7xudwYOBLoDz0j6fUR80ODUu5MlvAvIkuB9JdUAfwAOiIgXJI1NMc6XdDWwOCIuTnHcCVwfEddJOhW4Ajgy9b0lsF+KYwIwruF1SxoKDAWo6NGLqqWj1/7mmZlZmzJ/xKGlDsGspMppBBRWj4LWJ6DT8vanAgdKelzSHOAgVk/R1wE3SvoqsDyvv7siYllEvAG8DmxR4JzTI+LliFgJzAaqyBLG5yPihdRmbBMxDwT+krZvIEs4690eESsjYl4j5yYiRkVELiJyFV39ApKZmZmVv3JLQOufA+1HNgX/GFmCV//85++AYyOiH3AN0DkddyhwFbAnMFNS/cjvsry+V1B4RLhQG63HNUQjfa9Pn2ZmZmZlo9wS0Clk0+pvRcSKiHgL6EmWhE5Lbd6Q1A04Fla9sLRNREwCfpTad1vPOJ4GPpGe+QQ4Pq/uPbIp/XpTgRPS9knAo+t5bjMzM7OyVjbPgCZzyN5+/0uDsm4R8Yaka9L+fGBGqq8A/iypkmyU8dKIeCe9S7ROImKJpG8D90h6A5ieV30nME7SEcAZwJnAtZJ+CCwETlnX8/brXUmNnxsyMzOzMqeIaL6VfYikbhGxOL0VfxXwXERcuiHPmcvloqamZkOewszMzKxVSJoZEblCdeU2Bd+WnCZpNvAkUEn2VryZmZmZNaPcpuDbjDTauUFHPM3MzMzaI4+AmpmZmVlROQE1MzMzs6JyAmpmZmZmReVnQMvJglqo9mpIZmbWwVUvKnUEtp7a9QiopEhrwtfvbyRpoaSJrdT/4Fbsa4ikK1ujLzMzM7O2rF0noMD7QF9JXdL+54BX1qaDvGU7zczMzKwVtPcEFOBvZGvBA5wIjK2vkLS3pKmSatPvTql8iKRbJN0J3CfphrSyUf1xN0o6PP8kzfR1m6R7JD0n6aK8Y06R9Kykh4B9N9gdMDMzM2tDOsLo3k3AeWmqvD9wLbB/qnsaOCAilks6GPglcEyqGwj0j4i3JH0GOAu4Iy3pOQj4OrBf3nma6msAsDuwDHhG0khgOfBzYE9gETAJqG0YvKShwFCAih69qFo6ej1vh5lZxzTfSxmbtRntPgGNiDpJVWSjn3c3qK4ErpPUBwhg47y6v0fEW6mPhyRdJenjwNHArSnRbGlfD0TEIgBJ84DtyNa0nxwRC1P5zcCOBeIfBYwC6LRlH6+bamZmZmWvI0zBA0wALiZv+j35BTApIvoCXwY659W936DtDcBJwClAoWHIpvpalre9gtWJvxNKMzMz63A6SgJ6LXB+RMxpUF7J6peShjTTxxhgOEBEPFmgfm36AngcGCxpM0kbA8e14BgzMzOzstfup+ABIuJl4PICVReRTZt/H3iwmT5ek/QUcHsjTVrcV+rvVUnVwDTgVWAWUNHUMf16V1LjZ5jMzMyszCnCs8AtIakrMAfYo/55zmLL5XJRU1NTilObmZmZrRVJMyMiV6iuo0zBr5f0VvvTwMhSJZ9mZmZm7UWHmIJfXxFxP7BtqeMwMzMzaw88AmpmZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyq/hFROFtRCdWWpozAzM1t/1f6oTEe2wUZAJYWkS/L2z04fXm+t/qskzW1QVi3p7NY6x1rE0uh5JU0tdjxmZmZmbdmGnIJfBhwtafMNeI42LyIGNSyT1OSKR2ZmZmbt2YZMQJcDo4CzGlZI6iXpVkkz0t++qXyOpJ7KvCnp5FR+Q/oYfItJOi31/UQ6V9dUPkbS7yVNkvS8pM9IulbSU5LG5B2/WNIlkmZJekBSr1R+pqR5kuok3ZR3yl0lTU59npnfT/odnM75F2COpApJv0kx1kn61tpcn5mZmVm52tDPgF4F1Em6qEH55cClEfGopG2Be4FdgCnAvsCLwPPA/sD1wD7A6QX630HS7Lz9/wEuTtu3RcQ1AJIuAL4BjEx1HwMOAg4H7kzn/CYwQ9KAiJgNbALMiogfSDoP+BnwXeAcYPuIWCapZ965dwYOBLoDz0j6fUR80CDevYG+EfGCpKHAoojYS1InYIqk+yLihfwDUruhABU9elG1dHSB22BmZuVq/ohDSx2CWdFt0AQ0It6VdD1wJrAkr+pgshHD+v0ekroDjwAHkCWgvweGSuoNvBURiwuc4p8RMaB+p8Ezpn1T4tkT6EaW5Na7MyJC0hzgtYiYk45/EqgCZgMrgZtT+z8Dt6XtOuBGSbcDt+f1eVdELAOWSXod2AJ4uUG80/MSzEOA/pKOTfuVQB9gjQQ0IkaRjSTTacs+UeAemJmZmZWVYrwFfxkwC8gfuvsIMDAi8pNSJD0MfIds2cufAkcBx5IlpmtrDHBkRDwhaQgwOK9uWfpdmbddv9/YPalP/g4lS5IPB86VtFuDPgFWNNLP+3nbAs6IiHsLtDMzMzNrtzb4d0Aj4i3gr2RT4PXuI5vOBkDSgNT2JWBzoE9EPA88CpzNuiWg3YFXJW0MnLQOx3+ELPkF+F/gUUkfAbaJiEnAj1g9urou7gVOT/EhaUdJm6xjX2ZmZmZlo1jfAb2EvISTbEr+Kkl1KYaHgWGp7nGg/i3xR4BfkSWia+vc1NeLwByyhHRtvA/sJmkmsAg4PsX1Z0mVZCOYl0bEO3mPEqyNP5JN989S1sFC4MimDujXu5IaPytkZmZmZU4RfqywEEmLI2JdRzc3iFwuFzU1NaUOw8zMzKxZkmZGRK5QnZfiNDMzM7OicgLaiLY2+mlmZmbWXjgBNTMzM7OicgJqZmZmZkXlBNTMzMzMiqpYn2Gy1rCgFqorSx2FmZlZ21K9qNQR2FpqMyOgki6VNDxv/15Jf8zbv0TS99eyz8GSBhUor5L0cvqwfH75bEl7S/qjpF3X8lzDJJ3cTJucpCvWpl8zMzOz9qYtjYBOBY4DLkuJ4eZAj7z6QcDwtexzMLA49b1KRMyX9BKwP/AQgKSdge4RMR2YXqgzSRURsaJQXURc3VwwEVED+EOeZmZm1qG1mRFQYApZkgmwGzAXeE/SxyR1AnYBaiXtKekhSTPTKOmWAJLOlDRPUp2kmyRVka2udFYa2dy/wfnGAifk7Z+QypA0WVIubS+WdL6kx4GBkr4h6dnU5hpJV6Z21ZLOzjv+15Kmp7b7p/LBkiam7b0lTZVUm353at3baWZmZtY2tZkR0IhYIGm5pG3JEtFpQG9gINlSmHVAACOBIyJioaTjgQuBU4FzgO0jYpmknmmJzKuBxRFxcYFT/pUsoT0jIpaTLbV5XIF2mwBzI+I8SVsBfwb2AN4DHgSeaOSSNoqIvSV9CfgZcHCD+qeBAyJiuaSDgV8CxzTsRNJQYChARY9eVC0d3cjpzMysmOZ7aWSzddZmEtCkfhR0EPBbsgR0EFkCOhXYCegL/D2tv14BvJqOrQNulHQ7cHtzJ4qIf0t6EvispNeADyJiboGmK4Bb0/bewEMR8RaApFuAHRs5xW3pdybZmu8NVQLXSepDllhv3Eico4BRAJ227ON1U83MzKzstbUEdCpZwtmPbAr+JeAHwLvAtYCAJyNiYIFjDwUOAA4HzpW0WwvOVz8N/1raLmRp3nOfauF1ACxLvysofJ9/AUyKiKPS4wKT16JvMzMzs7LVlp4BhWwE9DDgrYhYkUYae5JNw08DngF6SRoIIGljSbull5a2iYhJwI/SMd3Ipsm7N3G+W4EvkU2/39SC+KYDn0nPpW5EgSnztVAJvJK2h6xHP2ZmZmZlpa2NgM4he/v9Lw3KukXEGwCSjgWukFRJFv9lwLPAn1OZgEvTM6B3AuMkHQGcERGP5J8stXkM2CIiXmguuIh4RdIvgceBBcA8sscD1sVFZFPw3yd7lrRZ/XpXUuNnjszMzKzMKcKPFa4NSd0iYnEaAR0PXBsR44tx7lwuFzU1/oqTmZmZtX2SZkZErlBdW5uCLwfVkmaTPaP6Ai144cnMzMzMVmtrU/BtXkScXeoYzMzMzMqZR0DNzMzMrKicgJqZmZlZUTkBNTMzM7OicgJqZmZmZkXll5DKyYJaqK4sdRRmZmblo3pdP9dtG1KHHgGVFJIuyds/W1L1Bj7nfEmbb8hzmJmZmbVlHToBJVuv/WgnhGZmZmbF09ET0OXAKOCshhWSekm6VdKM9LevpI+kEcyeee3+IWkLSV+W9LikWkn3S9oi1W8m6b5U/geypULrj71d0kxJT0oauuEv18zMzKz0/AwoXAXUSbqoQfnlZGvKPyppW+DeiNhF0h3AUcBoSZ8G5kfEa5IeBfaJiJD0TeBHwA+AnwGPRsT5kg4F8hPNUyPiLUldgBmSbo2IN/ODSInpUICKHr2oWjq69e+AmZlZGzd/xKGlDsFaUYdPQCPiXUnXA2cCS/KqDgZ2lVYNWPaQ1B24GTgPGA2ckPYBtgZulrQl8FGyZToBDgCOTue6S9Lbeec4U9JRaXsboA+wRgIaEaPIRmnptGWfWL+rNTMzMyu9jj4FX+8y4BvAJnllHwEGRsSA9Nc7It4DpgGflNQLOBK4LbUfCVwZEf2AbwGd8/r6UOIoaTBZkjswIj4F1DY4xszMzKxdcgIKRMRbwF/JktB69wHfrd+RNCC1DWA88Fvgqbwp80rglbT99bx+HgZOSn18EfhYXvu3I+I/knYG9mnFSzIzMzNrszr8FHyeS8hLOMmm5K+SVEd2nx4GhqW6m4EZwJC89tXALZJeAR4Dtk/lPwfGSpoFPAT8K5XfAwxL/T+TjmlSv96V1PgZGDMzMytzygb0rBzkcrmoqakpdRhmZmZmzZI0MyJyheo8BW9mZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyonoGZmZmZWVP4MUzlZUAvVlaWOwszMrPxULyp1BJan3Y6ASvofSTdJ+qekeZLulrRjE+0Xp9+tJI3LKx8rqU7SWa0QU07SFevbj5mZmVk5a5cjoMoWcB8PXBcRJ6SyAcAWwLNNHRsRC4Bj0zH/AwyKiO3W4twbRcTyRvquAfwhTzMzM+vQ2usI6IHABxFxdX1BRMwGaiU9IGmWpDmSjmh4oKQqSXPT7n3AxyXNlrS/pAGSHksjouMlfSwdM1nSLyU9BHwv7f9a0nRJz0raP7UbLGli2t5b0lRJtel3pw17S8zMzMzahnY5Agr0BWYWKF8KHBUR70raHHhM0oRofDmow4GJETEAIC2beUZEPCTpfOBnwPDUtmdEfCa1+zKwUUTsLelLqd3BDfp+GjggIpZLOhj4JXBMwwAkDQWGAlT06EXV0tEtuwNmZmbtwHwvQd0utdcEtDECfinpAGAl0JtsWv7fzR4oVZIlmQ+louuAW/Ka3NzgkNvS70ygqkCXlcB1kvoAAWxc6LwRMQoYBdBpyz5eN9XMzMzKXnudgn8S2LNA+UlAL2DPNKr5GtC5lc75foP9Zel3BYUT/V8AkyKiL/DlVozDzMzMrE1rrwnog0AnSafVF0jaC9gOeD0iPpB0YNpvkYhYBLxd/zwn8DXgoSYOaU4l8EraHrIe/ZiZmZmVlXY5BR8RIeko4DJJ55A9+zkfqAaukFQDzCZ7DnNtfB24WlJX4HnglPUI8yKyKfjvkyXMzerXu5IaPwtjZmZmZU6Nv39jbU0ul4uaGn/FyczMzNo+STMjIleorr1OwZuZmZlZG+UE1MzMzMyKygmomZmZmRWVE1AzMzMzKyonoGZmZmZWVE5AzczMzKyo2uV3QNutBbVQXVnqKMzMzNqe6kWljsDWQtmOgEoKSZfk7Z8tqboV+6+SNLe1+jMzMzOzTNkmoGRrrR8tafNSBwIgqaLUMZiZmZmVg3JOQJcDo4CzGlZI6iXpVkkz0t++qXyOpJ7KvCnp5FR+g6SDGzuRpApJv0l91Un6ViofLGmSpL8AcyRtIukuSU9Imivp+NRuT0kPSZop6V5JW0raQdKsvHP0kTSzVe+QmZmZWRtU7s+AXgXUSbqoQfnlwKUR8aikbYF7gV2AKcC+wItka7nvD1wP7AOc3sR5vgEsioi9JHUCpki6L9XtDfSNiBckHQMsiIhDASRVStoYGAkcERELU1J6YUScKmmRpAERMZtsXfkxDU8saSgwFKCiRy+qlo5eqxtkZmbWEcwvdQC2Vso6AY2IdyVdD5wJLMmrOhjYVVL9fg9J3YFHgAPIEtDfA0Ml9QbeiojFTZzqEKC/pGPTfiXQB/gvMD0iXkjlc4CLJf0amBgRj0jqC/QF/p7iqQBeTe3/CJwi6fvA8WTJbMNrHEU20kunLftEC26LmZmZWZtW1glochkwC8gfGvwIMDAi8pNSJD0MfAfYFvgpcBRwLFli2hQBZ0TEvQ36Gwy8X78fEc9K2hP4EvCrNEo6HngyIgYW6PdW4GfAg8DMiHizmTjMzMzMyl45PwMKQES8BfyVbJq83n3Ad+t3JA1IbV8CNgf6RMTzwKPA2TSfgN4LnJ6m05G0o6RNGjaStBXwn4j4M3AxsAfwDNBL0sDUZmNJu6V4lqa+f8+aCbSZmZlZu9UeRkABLiEv4SSbkr9KUh3ZNT4MDEt1j5NNg0OWeP6KLBFtaCOyN+0hmyqvAmYpm0dfCBxZ4Jh+wG8krQQ+AE6PiP+mqfsrJFWmfi8DnkzH3AgcTZY0N6lf70pqRhzaXDMzMzOzNk0RfqywEElHACdFxFc28HnOBioj4tzm2uZyuaipqdmQ4ZiZmZm1CkkzIyJXqK69jIC2KknnA0cAQzbwecYDOwAHbcjzmJmZmbUlTkALiIjzgPOKcJ6jNvQ5zMzMzNqasn8JyczMzMzKixNQMzMzMysqJ6BmZmZmVlROQM3MzMysqPwSEiDpKOA2YJeIeLqRNlMjYlBxI2tgQS1UV5Y0BDMzsw6helGpI2jXPAKaOZHsY/QnNKyQVAFQ8uTTzMzMrJ3o8AmopG7AvmRLeZ6QygZLmiTpL8CcVLY4/Z4vaXb6e0XS6FT+fUlz09/wVFYl6SlJ10h6UtJ9krqkutMkzZD0hKRbJXUt+sWbmZmZlUCHXwlJ0leBAyPiG5Kmki3p2QO4C+gbES+kdosjolvecZVkS3mekorGAPsAIlvu86vA28A/gFxEzJb0V2BCRPxZ0mYR8Wbq6wLgtYgYWSC+ocBQgIoevfbc+nQvGW9mZrYu5ns566JqaiWkDj8CSjb9flPavintA0yvTz4bSuvB3whcGhEzgf2A8RHxfkQsJnuedP/U/IWImJ22Z5KtKQ/QV9IjkuYAJwG7FTpXRIyKiFxE5Cq6+vlPMzMzK38d+iUkSZuRLYPZV1IAFUAAdwPvN3FoNfByRNQPR6qJtsvytlcAXdL2GODIiHhC0hBg8FqGb2ZmZlaWOvoI6LHA9RGxXURURcQ2wAtkI5oFSToM+BxwZl7xw8CRkrpK2gQ4imx6vindgVclbUw2AmpmZmbWIXToEVCy6fYRDcpuBU4H/tnIMT8AtgKmZzPxTIiI8ySNAaanNn+MiFpJVU2c+1yyZ0VfJHvRqXtzwfbrXUmNn18xMzOzMtfhX0IqJ7lcLmpqakodhpmZmVmz/BKSmZmZmbUZTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OicgJqZmZmZkXlBNTMzMzMiqqjfwe0vCyohWovx2lm9v/bu/dgu8ryjuPfXw9iiOEWoBaCECsqIpSAB5TrcJspCC3olAEHW6CXlKlTjZZS1A5GZmSYobXaqRTjJVBLo4VyCR1F7gS0XE5IMEGIykWhhJsohEsAw9M/9sqwOT1JDrnsnXXO9/PP3utd71rrOfuZc84z7/uuvaQxYeYz/Y6gb8bNCGiSm5L8/rC2GUnO71dMXTFM7GcMkiRJvTRuClBgDnDisLYTm/bVSjKwQSLqmAFYgEqSpHFjPBWglwLHJHkzQPOYzB2AiUn+J8ldSS5JMqnZ/1CSs5LcChzfbJ/T9B1KsneS7ye5P8lpzTFJcl6SxUkWJTmhaT+kGYG9NMl9SS5u+n68ieHGJDf24TORJEnquXGzBrSqfpnkDuBI4Eo6o5/XA58Fjqiq55P8HfAp4OzmsOVVdSBAknOBh6tqvyT/BFwIHABMAO4BLgA+DEwD9gS2Be5MMq85117Ae4FHgR8AB1TVPyf5FHBoVT01UtxJpgPTAQa22I6py2evp09EkiStykPnHt3vEMa08TQCCq+fhj8ReBDYDfhBkoXAycDOXf2/M+z4uc3rIuD2qlpWVU8Cy5NsBRwIzKmqFVX1OHAzsE9zzB1V9UhVvQosBKaOJuCqmlVVg1U1ODDRG5AkSVL7jZsR0MYVwBeT7A1sBiwArq2qj6yi//PDtl9qXl/ter9yexMgq7l2d/8VjL/PXpIkCRhnI6BV9RxwE/BNOqOhtwEHJNkFIMnEJO9ah0vMA05IMpBkO+Bg4I41HLMM2HwdrilJktQq43EUbg5wGXBiVT2Z5BRgzsqbk4C/B36ylue+HNgPuBso4IyqeizJrqs5ZhbwvSRLq+rQ1Z18jylbMuSaFEmS1HKpqn7HoFEaHBysoaGhfochSZK0RknmV9XgSPvG1RS8JEmS+s8CVJIkST1lASpJkqSesgCVJElST1mASpIkqacsQCVJktRT4/F7QNvr0QUw08dxSpIkYOYz/Y5grY2LEdAkv5Pk20nuT/LjJN9d1ROPkkxNsngDxTEzyekb4tySJEltMeYL0CSh84Sim6rqHVW1G/AZ4K3r6fyOIkuSJL0BY74ABQ4FXqmqC1Y2VNVC4NYk5yVZnGRRkhOGH5hkQpLZzf4FSQ5t2k9JckmSq4BrkkxKcn2Su5q+x3ad47NJliS5Dnh3V/u0JLcl+VGSy5NsvQE/A0mSpI3GeBi92x2YP0L7h4FpwJ7AtsCdSeYN6/MxgKrao3me+zVdU/f7Ab9XVU83o6Afqqpnk2wL3JZkLrA3cCKwF53P+q6uWP4N+OuqujnJ2cDngBnDg0wyHZgOMLDFdkxdPnstPgJJkjTWPNTvANbBeBgBXZUDgTlVtaKqHgduBvYZoc+3AKrqPuDnwMoC9Nqqerp5H+CcJD8CrgOm0JniPwi4vKpeqKpngbkASbYEtqqqm5vjLwIOHinIqppVVYNVNTgw0RuQJElS+42HAvQe4H0jtGcUx66uz/Nd708CtgPeV1XTgMeBCc2+GsV1JEmSxo3xMAV/A53Ryb+oqq8BJNkH+BVwQpKLgMl0RiD/ltcKR4B5dIrLG5qp952AJXSm1rttCTxRVa8060R37jr+wiTn0vms/wD4alU9k+RXSQ6qqluAP6YzArtae0zZkqFzj16Lj0CSJGnjMeYL0KqqJB8CvpTkTGA5nWUTM4BJwN10RinPqKrHkkztOvx84IIki4DfAKdU1UudG+tf52LgqiRDwELgvubadyX5TtP2c+CWrmNObs49EXgAOHU9/ciSJEkbtVQ5Q9wWg4ODNTQ01O8wJEmS1ijJ/KoaHGnfeFgDKkmSpI2IBagkSZJ6ygJUkiRJPWUBKkmSpJ6yAJUkSVJPjfmvYRpTHl0AM30akiRJWgczn+l3BI6Aro0kU5MsHtY2M8npSU5JssMoznFTkhG/mkCSJGksswBd/04B1liASpIkjVcWoOvfIHBxkoVJNktyVpI7kyxOMiuvf4zS8UnuSPKTJAf1K2BJkqRecg3o+jcEnF5VQwBJ/qWqzm7efws4Briq6btJVe2b5IPA54Ajhp8syXRgOsDAFtsxdfnsHvwIkiSpnx469+h+h7BBOQK6dlb1/NKR2g9NcnvzPPnDgPd27buseZ0PTB3xhFWzqmqwqgYHJnoDkiRJaj9HQNfOL4Gth7VNBh7sbkgyATgfGKyqh5PMBCZ0dXmpeV2BuZAkSeOEI6BroaqeA5YmORwgyWTgSOBWYBmwedN1ZbH5VJJJwB/1OlZJkqSNjaNua+9PgK8k+cdm+/NVdX+SC4ELkrwI7Ad8DVgEPATcuS4X3GPKlgyN8TUhkiRp7EvVqpYzamMzODhYQ0ND/Q5DkiRpjZLMr6oRv/PcKXhJkiT1lAWoJEmSesop+BZJsgxY0u84tM62BZ7qdxBaL8zl2GAexwbzuPHZuaq2G2mHNyG1y5JVraVQeyQZMo9jg7kcG8zj2GAe28UpeEmSJPWUBagkSZJ6ygK0XWb1OwCtF+Zx7DCXY4N5HBvMY4t4E5IkSZJ6yhFQSZIk9ZQFqCRJknrKArQlkhyZZEmSnyU5s9/xaHSSvC3JjUnuTXJPkk807ZOTXJvkp83r1v2OVWuWZCDJgiT/3Wybx5ZJslWSS5Pc1/xe7mce2yfJJ5u/qYuTzEkywTy2iwVoCyQZAL4CHAXsBnwkyW79jUqj9Bvgb6rqPcAHgI81uTsTuL6q3glc32xr4/cJ4N6ubfPYPl8Grq6qXYE96eTTPLZIkinAx4HBqtodGABOxDy2igVoO+wL/KyqHqiql4FvA8f2OSaNQlUtraq7mvfL6Pyzm0Infxc13S4CjutLgBq1JDsCRwNf72o2jy2SZAvgYOAbAFX1clX9GvPYRpsAmyXZBJgIPIp5bBUL0HaYAjzctf1I06YWSTIV2Au4HXhrVS2FTpEK/HYfQ9PofAk4A3i1q808tsvvAk8Cs5ulFF9P8hbMY6tU1f8C/wD8AlgKPFNV12AeW8UCtB0yQpvfn9UiSSYB/wXMqKpn+x2P3pgkxwBPVNX8fseidbIJsDfwr1W1F/A8TtO2TrO281jg7cAOwFuSfLS/UemNsgBth0eAt3Vt70hnukEtkORNdIrPi6vqsqb58STbN/u3B57oV3walQOAP0zyEJ0lMIcl+XfMY9s8AjxSVbc325fSKUjNY7scATxYVU9W1SvAZcD+mMdWsQBthzuBdyZ5e5JN6Sy2ntvnmDQKSUJnvdm9VfXFrl1zgZOb9ycDV/Y6No1eVX26qnasqql0fv9uqKqPYh5bpaoeAx5O8u6m6XDgx5jHtvkF8IEkE5u/sYfTWV9vHlvEJyG1RJIP0lmDNgB8s6q+0N+INBpJDgRuARbx2trBz9BZB/qfwE50/pgeX1VP9yVIvSFJDgFOr6pjkmyDeWyVJNPo3Ei2KfAAcCqdwRjz2CJJPg+cQOebRhYAfw5Mwjy2hgWoJEmSesopeEmSJPWUBagkSZJ6ygJUkiRJPWUBKkmSpJ6yAJUkSVJPWYBKUsskWZFkYZLFSS5JMnEV/X64nq53XJKzhrXNHLa9aZJ5zbO5JWm1LEAlqX1erKppVbU78DJwWvfOJAMAVbX/erreGcD5zbl3SPI94K+aIviTzbVeBq6n892MkrRaFqCS1G63ALskOSTJjUn+g86DD0jy3MpOSc5IsijJ3UnObdrekeTqJPOT3JJk1+EnT/Iu4KWqeqppmgHMp1OQ7gNc3dX9CuCk9f8jShprnCqRpJZqpruP4rUicF9g96p6cFi/o4DjgPdX1QtJJje7ZgGnVdVPk7yfTlF52LDLHADc1bX9MrAN8HTzHO57u/YtplOUStJqOQIqSe2zWZKFwBCdRw5+o2m/Y3jx2TgCmF1VLwBU1dNJJgH7A5c05/oqsP0Ix24PPNm1fR6d/x1/meT65tGkNOddAbycZPO1/9EkjQeOgEpS+7xYVdO6G5IAPL+K/gGGP3f5t4BfDz/PSNcCtly5UVXP0Ck+lwLfB65MslNVLW+6vBlY/v9PI0mvcQRUksa+a4A/XXm3fJLJVfUs8GCS45u2JNlzhGPvBXZZuZHkPUlW/u9YBLwKvKnZtw3wZDM1L0mrZAEqSWNcVV0NzAWGmun205tdJwF/luRu4B7g2BEOnwfslWaIlc6a0B8CpwK3A1+oqmXNvkOB726QH0LSmJKq4bMykiS9JsmXgauq6rqutplVNXNYv8uAT1fVkh6HKKllHAGVJK3JOcDwL7u/qXsjyabAFRafkkbDEVBJkiT1lCOgkiRJ6ikLUEmSJPWUBagkSZJ6ygJUkiRJPWUBKkmSpJ76Pyu+o3rlO50YAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# The next bit simply reorders the index by increasing average of weekday and weekend prices\n", - "# Compare the index order you get from\n", - "# state_price_means.index\n", - "# with\n", - "# state_price_means.mean(axis=1).sort_values(ascending=False).index\n", - "# See how this expression simply sits within the reindex()\n", - "(state_price_means.reindex(index=state_price_means.mean(axis=1)\n", - " .sort_values(ascending=False)\n", - " .index)\n", - " .plot(kind='barh', figsize=(10, 10), title='Average ticket price by State'))\n", - "plt.xlabel('Price ($)');" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "The figure above represents a dataframe with two columns, one for the average prices of each kind of ticket. This tells you how the average ticket price varies from state to state. But can you get more insight into the difference in the distributions between states?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### 2.6.3.5.2 Distribution of weekday and weekend price by state" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next, you can transform the data into a single column for price with a new categorical column that represents the ticket type." - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [], - "source": [ - "#Code task 15#\n", - "#Use the pd.melt function, pass in the ski_data columns 'state', 'AdultWeekday', and 'Adultweekend' only,\n", - "#specify 'state' for `id_vars`\n", - "#gather the ticket prices from the 'Adultweekday' and 'AdultWeekend' columns using the `value_vars` argument,\n", - "#call the resultant price column 'Price' via the `value_name` argument,\n", - "#name the weekday/weekend indicator column 'Ticket' via the `var_name` argument\n", - "ticket_prices = pd.melt(ski_data[['state', 'AdultWeekday', 'AdultWeekend']], \n", - " id_vars= 'state', var_name='Ticket',\n", - " value_vars=['AdultWeekday', 'AdultWeekend'],value_name='Price' )\n", - "#var_name='state', value_name='Ticket'" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
stateTicketPrice
0AlaskaAdultWeekday65.0
1AlaskaAdultWeekday47.0
2AlaskaAdultWeekday30.0
3ArizonaAdultWeekday89.0
4ArizonaAdultWeekday74.0
\n", - "
" - ], - "text/plain": [ - " state Ticket Price\n", - "0 Alaska AdultWeekday 65.0\n", - "1 Alaska AdultWeekday 47.0\n", - "2 Alaska AdultWeekday 30.0\n", - "3 Arizona AdultWeekday 89.0\n", - "4 Arizona AdultWeekday 74.0" - ] - }, - "execution_count": 90, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ticket_prices.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is now in a format we can pass to [seaborn](https://seaborn.pydata.org/)'s [boxplot](https://seaborn.pydata.org/generated/seaborn.boxplot.html) function to create boxplots of the ticket price distributions for each ticket type for each state." - ] - }, - { - "cell_type": "code", - "execution_count": 91, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtQAAAIlCAYAAAD1429MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACLH0lEQVR4nO3deXzcVb3/8denSaEpbVlSrFiBAgUEoRYoyKYIthIVWUS9Itq4cvFqW3D5eVW8FMQr170tKnKv2laxqCxqpUZaZS+CpdSWTYlYkIAsYSu0lCb5/P4430kn6WQm32UyS97Px6OPdOY7c3IymXy/nznncz7H3B0REREREUlmRKU7ICIiIiJSyxRQi4iIiIikoIBaRERERCQFBdQiIiIiIikooBYRERERSUEBtYiIiIhICo2V7kAa48eP90mTJlW6GyIiIiJS5+68886n3H3XQsdqOqCeNGkSq1atqnQ3RERERKTOmdlDAx1TyoeIiIiISAoKqEVEREREUlBALSIiIiKSQk3nUIuIiIjUgi1btvDII4/w0ksvVborUsKoUaN49atfzciRIwf9HAXUIiIiImX2yCOPMHbsWCZNmoSZVbo7MgB3p7Ozk0ceeYS99tpr0M9TyoeIiIhImb300ks0NzcrmK5yZkZzc3PsmQQF1CIiIiJDQMF0bUjye1JALSIiIjKMdXZ2MnXqVKZOncorX/lKJk6cyNSpUxkzZgz/8R//UfS5Y8aMGfT3ueGGG1i5cmXa7lYl5VCLiIiIDGPNzc2sWbMGgLlz5zJmzBg+85nPZP59brjhBsaMGcPRRx+deduVphFqEREREdnGDTfcwEknnQTACy+8wIc+9CEOPvhgpkyZwlVXXdXnsU899RRHHXUU1157LU8++SSnn346hx9+OIcffji33nor69ev59JLL+Xb3/42U6dO5eabb67Ej1Q2GqEWERERkaK+/OUvs+OOO7Ju3ToAnnnmmd5jjz/+OCeffDIXXXQRM2bM4H3vex/nnnsuxx57LA8//DAnnngi9913H2effXbZRr8rTQG1iIiIiBS1YsUKrrjiit7bO++8MxDqa7/5zW/mu9/9Lscdd1zvY++9997exz7//PNs2LBhaDs8xBRQi4iIiEhR7l6w+kVjYyOHHXYYv//973sD6p6eHm677TaampqGupsVoxxqERERESnqLW95C5dccknv7VzKh5nxox/9iPvvv5+LL7644GNzCx7Hjh1btyPVCqhrUGdnJ7Nnz6azszPRcREREZE4zjvvPJ555hkOOuggXve613H99df3HmtoaOCKK67g+uuv53vf+x7z589n1apVTJkyhQMPPJBLL70UgHe84x1cc801dbko0dy90n1IbNq0ab5q1apKd2PIfetb32Lp0qWcfPLJnHvuubGPi4iIyNC67777OOCAAyrdDRmkQr8vM7vT3acVerxGqGtMZ2cnbW1tuDttbW3bjEKXOi4iIiIi2VJAXWMWLVpET08PAN3d3SxevDjWcRERERHJlgLqGrNixQq6uroA6OrqYvny5bGOi4iIiEi2FFDXmOnTp9PYGKodNjY2MmPGjFjHRURERCRbCqhrTGtrKyNGhF9bQ0MDM2fOjHVcRERERLKlgLrGNDc309LSgpnR0tJCc3NzrOMiIiIiki0F1DWotbWVgw8+eMDR51LHRUREZHi65pprMDPuv//+gsff9KY3Uaok8dy5c/nGN74BwMKFC3n00UcB+PWvf82pp57a+7ivfvWrTJ48ufd2rqRvXAsXLuSTn/xkyceNGTMmdttZ0dbjNai5uZn58+cnPi4iIiKV9clPfZYnnno6s/ZeMX4XLvnW10s+bsmSJRx77LFcccUVzJ07N/X3XbhwIQcddBCvetWrOProoznrrLN6j912222MGzeOJ554gle84hWsXLmSY445JvX3rEZlC6jN7EfAScAT7n5QdN/Pgf2jh+wEPOvuU81sEnAf8Nfo2J/c/exy9U1ERESkkp546mn+PuG47Bp8/MaSD3nhhRe49dZbuf766zn55JOZO3cumzZt4kMf+hD33nsvBxxwAJs2bep9/JgxY3jhhRcAuPLKK/ntb3/LwoULe49feeWVrFq1ijPPPJOmpiZuu+02dtxxR9rb25k8eTIdHR2cfvrprFy5klNPPZWVK1dy0UUX8eSTT3L22Wfz8MMPA/Cd73yHY445hhdffJFZs2axbt06urq6mDt3Lqecckqfn+Haa6/loosuYunSpWzYsIH3ve99dHV10dLS0ufnPOWUU3jmmWfYsmULF110Eaeccgpf+tKXGD9+PHPmzAHgi1/8IhMmTGD27NmJX/acco5QLwQuAXoLIbv7v+X+b2bfBJ7Le/zf3X1qGfsjIiIiMmz96le/oqWlhf32249ddtmF1atXc8MNNzB69GjWrl3L2rVrOfTQQwfd3rve9S4uueQSvvGNbzBtWthA8Oijj2blypV0d3ez7777cuSRR/L73/+ek046ibVr13L44Yfz4Q9/mHPPPZdjjz2Whx9+mBNPPJH77ruPr3zlK5xwwgn86Ec/4tlnn+WII45g+vTpvd/vmmuu4Vvf+hbLli1j55135sMf/jAf//jHmTlzJt/97nd7Hzdq1CiuueYaxo0bx1NPPcWRRx7JySefzEc+8hHe+c53MmfOHHp6erjiiiu44447MnltyxZQu/tN0cjzNszMgPcAJ5Tr+4uIiIjIVkuWLOGcc84B4L3vfS9LlizhgQce6B2hnTJlClOmTEn1PY455pjegPqoo47iiCOO4MILL+Suu+5i//33Z9SoUaxYsYJ777239znPP/88GzZs4LrrruM3v/lNb372Sy+91DuKff3117Nq1Squu+46xo0bB8Ctt97KVVddBcAHPvABPve5zwHg7nzhC1/gpptuYsSIEXR0dPD4448zadIkmpubueuuu3j88cc55JBDMiveUKkc6jcAj7v7A3n37WVmdwHPA+e5+82FnmhmZwFnAeyxxx5l76iIiIhIrevs7OSPf/wjd999N2ZGd3c3ZsYhhxxCGOfcVv79L7300qC+z9FHH82CBQvo7u7mYx/7GGPHjuWll17ihhtu6M2f7unp4bbbbqOpqanPc92dq666iv3337/P/bfffjt77703Dz74IH/72996R8P79zHn8ssv58knn+TOO+9k5MiRTJo0qbf/H/3oR1m4cCH/+te/+PCHPzyon2kwKlXl4wxgSd7tx4A93P0Q4FPAz8xsXKEnuvtl7j7N3aftuuuuQ9BVERERkdp25ZVXMnPmTB566CHWr1/PP//5T/baay8OPfRQLr/8cgDuvvtu1q5d2/ucCRMmcN9999HT08M111xTsN2xY8eyYcOG3tsHHnggjz76KDfffDOHHHIIAFOnTuXSSy/l6KOPBuAtb3kLl1xySe9z1qxZA8CJJ57IggULcHcA7rrrrt7H7Lnnnlx99dXMnDmTe+65Bwij4VdccQVA788A8Nxzz/GKV7yCkSNHcv311/PQQw/1HjvttNNoa2vjz3/+MyeeeGLMV3FgQx5Qm1kj8E7g57n73H2zu3dG/78T+Duw31D3TURERKQeLVmyhNNOO63Pfaeffjrr16/nhRdeYMqUKXzta1/jiCOO6D1+8cUXc9JJJ3HCCSew2267FWz3gx/8IGeffTZTp05l06ZNmBmvf/3rGT9+PCNHjgTgqKOO4sEHH+wNqOfPn8+qVauYMmUKBx54IJdeeikAX/rSl9iyZQtTpkzhoIMO4ktf+lKf77X//vtz+eWX8+53v5u///3vzJs3j+9+97scfvjhPPfc1mV5Z555JqtWrWLatGlcfvnlvOY1r+k9tt1223H88cfznve8h4aGhhSvaF+W+xRQDlEO9W9zVT6i+1qAz7v7cXn37Qo87e7dZrY3cDNwsLsXrSczbdo0L1UrUURERKTS7rvvPg444IDe25Uqmzfc9fT0cOihh/LLX/6Sfffdd8DH9f99AZjZne4+rdDjy1k2bwnwJmC8mT0CnO/uPwTeS990D4A3AheaWRfQDZxdKpgWERERqVUKfofevffey0knncRpp51WNJhOopxVPs4Y4P4PFrjvKuCqcvVFRERERIa3Aw88kAcffLAsbWvrcRERERGRFBRQi4iIiIikoIBaRERERCQFBdQiIiIiIikooBYREREZJq655hrMjPvvv7/g8Te96U2UKkk8d+7c3u3BFy5cyKOPPgrAr3/9a0499dTex331q19l8uTJvbeXLl3KySefHLvPCxcu5JOf/GTs55UyadIknnrqqUzaqtTW4yIiIiLD1hc+/Umee+rxzNrbcfwE/vubl5R83JIlSzj22GO54oormDt3burvu3DhQg466CBe9apXcfTRR3PWWWf1HrvtttsYN24cTzzxBK94xStYuXJl7/bj9UYBtYiIiMgQe+6px/ncPoVHiZP4n7+XfswLL7zArbfeyvXXX8/JJ5/M3Llz2bRpEx/60Ie49957OeCAA9i0aVPv48eMGcMLL7wAhK3Lf/vb37Jw4cLe41deeSWrVq3izDPPpKmpidtuu40dd9yR9vZ2Jk+eTEdHB6effjorV67k1FNPZeXKlVx00UU8+eSTnH322Tz88MMAfOc73+GYY47hxRdfZNasWaxbt46uri7mzp3LKaec0udnuPbaa7noootYunQpq1ev5vzzz2fz5s3ss88+/PjHP2bMmDFMmjSJ1tZWli5dypYtW/jlL3/Ja17zGjo7OznjjDN48sknOeKII8hyc0OlfIiIiIgMA7/61a9oaWlhv/32Y5dddmH16tV8//vfZ/To0axdu5YvfvGL3HnnnYNu713velfv9t5r1qyhqamJo48+mpUrV/LXv/6VfffdlyOPPJKVK1fS1dXF2rVrOfzww5kzZw7nnnsuf/7zn7nqqqv46Ec/CsBXvvIVTjjhBP785z9z/fXX89nPfpYXX3yx9/tdc801XHzxxSxbtgyAiy66iBUrVrB69WqmTZvGt771rd7Hjh8/ntWrV/Pxj3+8Nz3lggsu4Nhjj+Wuu+7i5JNP7g3os6ARahEREZEBLFiwgPb2djo6OgCYOHEikydPZtasWb3Hb7zxxoLHqs2SJUs455xzAHjve9/LkiVLeOCBB5g9ezYAU6ZMYcqUKam+xzHHHMPKlSvp7u7mqKOO4ogjjuDCCy/krrvuYv/992fUqFGsWLGCe++9t/c5zz//PBs2bOC6667jN7/5TW8A/NJLL/UGvddffz2rVq3iuuuuY9y4cfz2t7/l3nvv7U0hefnllznqqKN623znO98JwGGHHcbVV18NwE033dT7/7e//e3svPPOqX7WfAqoRURERErIT4WIc6xadHZ28sc//pG7774bM6O7uxsz45BDDsHMCj4n//6XXnppUN/n6KOPZsGCBXR3d/Oxj32MsWPH8tJLL3HDDTf0Br89PT3cdtttNDU19Xmuu3PVVVex//7797n/9ttvZ++99+bBBx/kb3/7G9OmTcPdmTFjBkuWLCnYj+233x6AhoYGurq6Cv5MWVLKh4iIiMgAZs2axbx585g8eTKTJ09m3rx5fUagZ82aNeCxanLllVcyc+ZMHnroIdavX88///lP9tprLw499FAuv/xyAO6++27Wrl3b+5wJEyZw33330dPTwzXXXFOw3bFjx7Jhw4be2wceeCCPPvooN998M4cccggAU6dO5dJLL+Xoo48G4C1veQuXXLJ1AeWaNWsAOPHEE1mwYEFvbvNdd93V+5g999yTq6++mpkzZ3LPPfdw5JFHcuutt9Le3g7Axo0b+dvf/lb0NXjjG9/Y+7P+7ne/45lnnin9wg2SAmoRERGROrdkyRJOO+20PvedfvrprF+/nhdeeIEpU6bwta99jSOOOKL3+MUXX8xJJ53ECSecwG677Vaw3Q9+8IOcffbZTJ06lU2bNmFmvP71r2f8+PGMHDkSgKOOOooHH3ywN6CeP38+q1atYsqUKRx44IFceumlAHzpS19iy5YtTJkyhYMOOogvfelLfb7X/vvvz+WXX8673/1unn/+eRYuXMgZZ5zBlClTOPLIIwcsBZhz/vnnc9NNN3HooYdy3XXXsccee8R7EYuwLFc4DrVp06Z5qVqJIiIiImnNmTMHgHnz5sU6lnPfffdxwAEH9N6uVNk8GZz+vy8AM7vT3acVerxyqEVERESGmILf+qKUDxERERGRFBRQi4iIiIikoIBaREREZAjU8rq14STJ70kBtYiIiEiZjRo1is7OTgXVVc7d6ezsZNSoUbGep0WJIiIiImX26le/mkceeYQnn3yy0l2REkaNGsWrX/3qWM9RQC0iIiJSZiNHjmSvvfaqdDekTJTyISIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJQQG1iIiIiEgKCqhFRERERFJQQC0iIiIikoIC6irR2dnJ7Nmz6ezsrHRXRERERCQGBdRVYtGiRaxbt47FixdXuisiIiIiEoMC6irQ2dlJW1sb7k5bW1vJUepSo9ka7RYREREZOgqoq8CiRYvo6ekBoLu7u+QodanRbI12i4iIiAwdBdRVYMWKFXR1dQHQ1dXF8uXLB3xsqdHsuKPdIiIiIpKOAuoqMH36dBobGwFobGxkxowZAz621Gh23NFuEREREUlHAXUVaG1tZcSI8KtoaGhg5syZAz621Gh2nNFuEREREUlPAXUVaG5upqWlBTOjpaWF5ubmAR9bajQ7zmi3iIiIiKSngLpKtLa2cvDBBxcdnc49rthodpzRbhERERFJTwF1lWhubmb+/PlFR6dzjys2mh1ntFtERERE0musdAckvtbWVtavXz/g6HOp4yIiIiKSHQXUNSg3mp30uIiIiIhkRykfIiIiIiIpKKAWEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJoWwBtZn9yMyeMLO78+6ba2YdZrYm+ve2vGOfN7N2M/urmZ1Yrn6JiIiIiGSpnCPUC4GWAvd/292nRv+WAZjZgcB7gddGz/memTWUsW8iIiIiIpkoW0Dt7jcBTw/y4acAV7j7Znf/B9AOHFGuvlVCZ2cns2fPprOzs9JdEREREZEMVSKH+pNmtjZKCdk5um8i8M+8xzwS3Vc3Fi1axLp161i8eHGluyIiIiIiGRrqgPr7wD7AVOAx4JvR/VbgsV6oATM7y8xWmdmqJ598siydzFpnZydtbW24O21tbRqlFhEREakjQxpQu/vj7t7t7j3A/7I1reMRYPe8h74aeHSANi5z92nuPm3XXXctb4czsmjRInp6egDo7u7WKLWIiIhIHRnSgNrMdsu7eRqQqwDyG+C9Zra9me0F7AvcMZR9K6cVK1bQ1dUFQFdXF8uXL69wj0REREQkK+Usm7cEuA3Y38weMbOPAF8zs3VmthY4HjgXwN3vAX4B3Au0AZ9w9+5y9W2oTZ8+ncbGRgAaGxuZMWNGhXskIiIiIllpLFfD7n5Ggbt/WOTxXwG+Uq7+VFJrayttbW0ANDQ0MHPmzAr3SERERESyop0Sh0BzczMtLS2YGS0tLTQ3N1e6SyIiIiKSkbKNUEtfra2trF+/XqPTIiIiInVGAfUQaW5uZv78+ZXuhoiIiIhkTCkfIiIiIiIpKKAWEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJQQG1iIiIiEgKCqhFRERERFJQQC0iIiIikoICahERERGRFBRQ16DOzk5mz55NZ2dnouMiIiIikh0F1DVo0aJFrFu3jsWLFyc6LiIiIiLZUUBdYzo7O2lra8PdaWtr22YUutRxEREREcmWAuoas2jRInp6egDo7u7eZhS61HERERERyZYC6hqzYsUKurq6AOjq6mL58uWxjouIiIhIthRQ15jp06fT2NgIQGNjIzNmzIh1XERERESypYC6xrS2tjJiRPi1NTQ0MHPmzFjHRURERCRbCqhrTHNzMy0tLZgZLS0tNDc3xzouIiIiItlqrHQHJL7W1lbWr18/4OhzqeMiIiIikh0F1DWoubmZ+fPnJz4uIiIiItlRyoeIiIiISAoKqEVEREREUlBALSIiIiKSgnKoRUSqxIIFC2hvb6ejowOAiRMnMnnyZGbNmjWo4yIiUhkKqEVEqsymTZtSHRcRkaGlgFpEpErkRprnzJkDwLx582IdFxGRylAOtYiIiIhICgqoRURERERSUEAtIiIiIpKCAmoRERERkRQUUIuIiIiIpKCAWkREREQkBQXUIiIiIiIpKKAWEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJQQG1iIiIiEgKCqhFRERERFIoW0BtZj8ysyfM7O68+75uZveb2Vozu8bMdorun2Rmm8xsTfTv0nL1q1p1dnYye/ZsOjs7K90VEREREYmhnCPUC4GWfvctBw5y9ynA34DP5x37u7tPjf6dXcZ+VaVFixaxbt06Fi9eXOmuiIiIiEgMZQuo3f0m4Ol+913n7l3RzT8Bry7X968lnZ2dtLW14e60tbVplFpERESkhjRW8Ht/GPh53u29zOwu4HngPHe/uTLdytaCBQtob2+no6MDgIkTJzJ58mRmzZrV+5hFixbR09MDQHd3N4sXL+bcc8+tSH9FREREJJ6KLEo0sy8CXcDl0V2PAXu4+yHAp4Cfmdm4AZ57lpmtMrNVTz755NB0OAObNm1i06ZNBY+tWLGCrq4wcN/V1cXy5cuHsmsiIiIiksKQj1CbWStwEvBmd3cAd98MbI7+f6eZ/R3YD1jV//nufhlwGcC0adN8qPqdVG4kes6cOQDMmzdvm8dMnz6dZcuW0dXVRWNjIzNmzBjSPoqIiIhIckM6Qm1mLcDngJPdfWPe/buaWUP0/72BfYEHh7JvldTa2sqIEeFX0dDQwMyZMyvcIxEREREZrHKWzVsC3Absb2aPmNlHgEuAscDyfuXx3gisNbO/AFcCZ7v70wUbrkPNzc20tLRgZrS0tNDc3FzpLomIiIjIIJUt5cPdzyhw9w8HeOxVwFXl6kstaG1tZf369RqdFhEREakxlazyIXmam5uZP39+pbshIiIiIjFp63ERERERkRQUUIuIiIiIpKCAWkREREQkBQXUIiIiIiIpKKAWERERGULt7e28/e1vp729PdFxqT4KqEVERESG0EUXXcSLL77IRRddlOi4VB8F1CIiIiJDpL29nfXr1wOwfv36bUahSx2X6qSAWkRERGSI9B91jntbqpMCahEREZEhkht9TnpbqpMCahEREZEhMmnSpFS3pTopoBYREREZIuedd16q21KdFFCLiIiIDJHJkyf3jjpPmjSJyZMnxzou1UkBtYiIiMgQOu+889hhhx0GHH0udVyqT2OlOyAiIiJSaxYsWNBb0i73dc6cOb3HJ0+ezKxZswo+d/LkyVx77bUDtl3quFQfBdQiIiIiMbW3t/PAPXexx5huttsSJvw3P7QKgIdfaKhk16QCFFCLiIiIJLDHmG6+cOjz29z/36vHVaA3UkkKqEVERET6yU/pgG3TOjo6OhhfkZ5JNVJALSIiItJPe3s7a+6+j+7RuwAw4mUH4M4HH6dh49OMGTUSRlayh1JNFFCLiIiIFNA9ehc2veZt29zfdP8y6NlQgR5JtVLZPBERERGRFBRQi4iIiIikoIBaRERERCQFBdQiIiIiIikooBYRERERSUEBtYiIiIhICgqoRURERERSUEAtIiIiIpKCAmoRERERkRQUUIuIiIiIpKCtx0VEZEgtWLCA9vZ2Ojo6ADjuuOOYNWtWwWMTJ05k8uTJvcdFRKqRAmoREamITZs2JTomIlJtFFCLiMiQyo02z5kzp8/tQsfmzZs3xL0TEYlPOdQiIiIiIikooBYRERERSUEpHyIiVS63UC8n9/9cWgSghXsiIhWkgFpEpMq1t7fzwD13sceYbgC22xImFzc/tAqAh19oqFjfREREAbWISE3YY0w3Xzj0+YLH/nv1uCHujYiI5FMOtYiIiIhICgqoRURERERSUEAtIiIiIpKCAmoRERERkRS0KFGkAnJl0Do6OgCYOHFin7JnpY6LiIhI9YgVUJvZDsBL7t5dpv6IDCubNm1KdVxEREQqr2hAbWYjgPcCZwKHA5uB7c3sSWAZcJm7P1D2XorUmdxIc25jjnnz5sU6LiIiItWjVA719cA+wOeBV7r77u7+CuANwJ+Ai83s/WXuo4iIiIhI1SqV8jHd3bf0v9PdnwauAq4ys5Fl6ZmIiIiISA0oOkJdKJg2s+2iXOoBHyMiIiIiMlyULJtnZnPMbP/o/8cB/wQeMLP/KHfnRERERESq3WDqULcC7dH/zwNOBvYFPl6uTomIiIiI1IpSVT7OB14FfNHMtgOmAicCLcBYM/sv4AZ3v6ncHRURERERqUalcqgvAFYTAu9dgKvc/ULgy8Bj7n7hQMG0mf3IzJ4ws7vz7tvFzJab2QPR153zjn3ezNrN7K9mdmIWP5yIiIiISLkNJuXjI8D2QCfw2ei+/YD/K/G8hYSR7Hz/CfzB3fcF/hDdxswOJNS7fm30nO+ZWcMg+iYiIiIiUlEld0p098eAz/W7737g/hLPu8nMJvW7+xTgTdH/FwE3RG2fAlzh7puBf5hZO3AEcFvJn0BEpMbltprPyf0/t7FPe3s7u6tAqYhI1So6Qm1m55nZLkWOn2BmJ8X4fhOiAD0XqL8iun8ioXpIziPRfSIida+9vZ01d9/HnQ8+zp0PPs6Gl50NL3vv7Rde3FjpLkoV6OzsZPbs2XR2diY6LiLlU2qEeh2w1MxeIuRSPwmMIlT5mAqsAP47g35Ygfu84APNzgLOAthjjz0y+NYiIpXXPXoXNr3mbQWPjVn9E+Dloe2QVJ1Fixaxbt06Fi9ezLnnnhv7uIiUT6lFib9292OAs4F7gAbgeeCnwBHufq67Pxnj+z1uZrsBRF+fiO5/BNg973GvBh4doE+Xufs0d5+26667xvjWIlKNNKomUlpnZydtbW24O21tbdv8vZQ6LiLlVTKHGsDdHwAeyOD7/YZQ1/ri6Ouv8+7/mZl9i1Cmb1/gjgy+n4hUOY2qVUYub7ujowOAiRMnMnnyZGbNmlXhnkkhixYtoqenB4Du7u5t/l5KHRcpptT5QOeL0gZT5SMRM1tCWFS4v5k9YmYfIQTSM8zsAWBGdBt3vwf4BXAv0AZ8wt27y9U3EakOGlWrvE2bNrFp06ZKd0NKWLFiBV1dXQB0dXWxfPnyWMdFBqPU+UDni4ENaoQ6CXc/Y4BDbx7g8V8BvlKu/ohI9dGoWuXkRpZylUTmzZtXye5ICdOnT2fZsmV0dXXR2NjIjBkzYh0XKabU+UDni9LKNkItIlKKRtVEBqe1tZURI8Ilu6GhgZkzZ8Y6LiLlNaiA2sz2M7M/5HY9NLMpZnZeebsmIvVu+vTpNDaGiTKNqkka9b64tbm5mZaWFsyMlpYWmpubYx0XkfIa7Aj1/wKfB7YAuPtaws6GIiKJaVRNspK/uLVetba2cvDBBw/4d1LquIiUz2AD6tHu3r/qRlfWnRGR4UWjapKF4bK4tbm5mfnz5w/4d1LquIiUz2AXJT5lZvsQbbZiZu8CHitbr0Rk2GhtbWX9+vUaVZPEBlrcqlJfIjJUBjtC/QngB8BrzKwDOAf4eLk6JSLDh0bVJK1Si1tV6ktEym2wG7s8CEw3sx2AEe6+obzdEhERGZyBSsap1JeIDJXBVvn4bzPbyd1fdPcNZrazmV1U7s6JiIiUosWtIlJpg035eKu7P5u74e7PAG8rS49ERERi0OJWEam0wS5KbDCz7d19M4CZNQHbl69bIiIig6fFrSJSSYMNqH8K/MHMfkyo9PFhYFHZeiUiIhJDbnGriEglDCrlw92/BnwFOAB4LfDl6D4RERERkbKphZ1QB5tDjbv/zt0/4+6fdvffl7NTIiIiIiJQGzuhFg2ozeyW6OsGM3s+798GM3t+aLooIiIiIsNRreyEWjSH2t2Pjb6OHZruiIiIiEi9iruD6UA7oSZpq5xKLko0sxHAWnc/aAj6IyIiZZS7AOXk/p/b/ATQ9twiUnaD3b200E6ouYA6bls5nZ2dXHDBBZx//vnblNksdqyYkgG1u/eY2V/MbA93fzhWj0VEpKq0t7fzwD13sceYbgC22xIy/zY/tAqAh19oqFjfRIa7/iOuxx13XN19uI27g+lAO6EmaSsnPye7f3Be7Fgxgy2btxtwj5ndAbyYu9PdTx70dxIRkaqwx5huvnBo4WUw/7163BD3RkTyA+lNmzb1jrjeeOONtLe3D+tZo9bWVtra2oBsdkLtn5M9c+bM3pHoYsdKGWyVjwuAk4ALgW/m/RMRERGRFHIzR+O7HmP3kc+yY+MWdmzcwviux3jgnrv6pGkNN1nvhFooJ3swx0opOkJtZqOAs4HJwDrgh+7eFbfzIiIiIjKwgWaONGuU7U6oxXKyB5OvPZBSI9SLgGmEYPqtaFRaRERERIZQbifUtKPTEHKyGxvDeHL/nOxix0oplUN9oLsfDGBmPwTuiNft2lSqDEslyrT0z6/KaWpq6vO4/itdm5qaKlpGRkRERIKB4gcZOsVystPka5cKqLfk/uPuXWYWo8u1r1QZlrhlWtJob29nzd334SMasZ7eXwsbXnZsyyZ2aOxm+xFOT3ff31H3lud54NknhqyfIiIi0tdAiw43bdrUe9/uIyvcyWEil5O9dOnSbXKyix0rpVRA/bq8HRENaIpuG+DuXpeJPaXKsCQt05JW9+hd2PSat21z/5jVP2GPMS9r1b6IiGQiaS1eKSw3KNY9ehcYMZYRDQ7AcyPG8txmaHhxI+xU2T6WWzXVwC+Wk500X7vUTokqSCoiIjLMJK3FKwMbaFAMwsAYvDy0HRpi1VQDP5eTHfdYMYOtQy0iIiLDQJpavCLF1HMN/MHWoRYREZFhIE0tXpHhSiPUMVRT/o+IiEg5pKnFW086Ojpo2PgcTfcv2+ZYw8ZONvZ08dCIhoIjqw9taGCHqJKHDA8KqGOopvwfERGRcpg+fTrLli2jq6srdi1ekeFKAXVM9Zz/IyIikqYWbz2ZOHEi/9rcWHAhYdP9yxjTs4HdRz474O6G20+cOBTdlCoxbALqwWzGUiqlo729XXUiRTJSjg2SVOprq+GygUQlNtqqd2lq8YoMV8MmoM4pthlLnzqRwIiXQ53IOx98HBgedSJFhlqWGySp1Ne2hnIDqkoaLj/nUElai1dkuBo2AfVgN2MZ7nUiRYZK1hsk1XWpr55uHtpQePETFF4ANdDrm7+Iuh5UaqOtepe0Fq/IcDVsAupKyE8hGagiSO6YpitFiis1tV+o1JdGqUVEZCgooI4j5ihRfgrJNukjG58GtgbVmq4UGZyB/lbqutTXiAb2HLu56IJoLYASEakcBdRlNlAKyQ5rruizADJfe3s7c+bM0Ui1SJ5SU/sq9SUiIpWigDqODEeJrGcLvnlzbw1r1bQWSUelvkREpFK09XgF5Wpaf+HQ55l37LPMO/bZ3tu5zWNEZHBypb7MrCKlvjo7O5k9ezadnZ2JjouISO3SCLWI1I1KlvoqVbJPJf1EpNaU2p8DUHpqRAF1no6ODho2PkfT/csKP6C7i8c3VmZQv2jfurfQ/lxjrJJaIvWoUqW+SpXsq6aSfh0dHbwYswSfiAxP7e3tPHDPXb2z5kpPHZgCaslEsZJm2sls8KphNKD/7+u4447r/X76XRZWqmSfSvqJSK3KpacWMtAH8+FIAXWeiRMn8q/NjUU3dtnc0937BsqNVk8YHS6UD7/QwL4V6NuY1T9h8tiNVVFSq1j5P5UGLK2aRgP0uxy8UiX7qqmk38SJE9nc9VhVnC9EROqFAuoYfMRIbLvt2H7PUDv65Wj0MHd7X7bWlR5uipU0005m8VR6NKD/7yt/9Fm/y8JKleyr5ZJ+CxYsoK2tjY0bN+LuvfebGQ0N4QNed3d3n2O546NHj6alpWXYz2CIlE4pHTh1U2lYtUEBdQw9o8Yxee8J22zhq6BCZHgrVbJPJf1EROqbAmoRkZRyJfuWLl1asGRfqePVvCB61qxZGmEWSWkwKaUDpW7WSxpWvS+IVkAtUqcGmqoHTceXQ6mSfUNZ0i9/cWv/ha3t7e3sPrLsXSjZr1xfIPQtf6Fr/2M5WgArItVKAbWISAZKlewrdnwwo1cTRr886L60t7ez5u776B69CyNeDh+m7nzwcQAaXtwIOw26qUzl9wvo07eGDZ3s0NjN5q7HAJXnEqk39b4gWgF1ArlRlvwRFI2cSLWphql6ldmrnO7RuwxYFQgGH5xnrVi/9hjzsspziUhNUkDdT8PGp3vzGEe8FE7sPaPG9R6DCb2PbWpqGvL+idQildkTEZF6poA6T/+Sd+3tG8L9e+eC6AkaXROJQWX2RERkOFBAnad/oKwgQEREhhOlaQ0vpXbnreQi5lqjgLpSerp5qI7Lx4hI5RQtw1fBEnxSO5SmNTwUWygMlV3EXGuGPKA2s/2Bn+fdtTfwX4Rf2ceAJ6P7v+DuAxRlFRERkawpTatyHn5h6yBb7kPvhNE9PPxCA/uW8fsOtFAYKr+IuZYMeUDt7n8FpgKYWQPQAVwDfAj4trt/Y6j7VBEjGthz7Oa6LR8jIpVTrAxf3BJ8IlJ+PmIktt12bL9nWMv1cpR6sf2ek9mXbdd4SfWpdMrHm4G/u/tDZlbhroiIiIgMvZ5R45i894TeGQHNENSeSgfU7wWW5N3+pJnNBFYBn3b3ZyrTLRERkb4WLFjAjTfeCGixnoj0VbGVKWa2HXAy8Mvoru8D+xDSQR4DvjnA884ys1VmturJJ58s9BAREZGy2LRpkxbsicg2KjlC/VZgtbs/DpD7CmBm/wv8ttCT3P0y4DKAadOmeTk6pp0QRUSyV7z6yBban2us6spHs2bN6r0uaCpeRPJVsnbSGeSle5jZbnnHTgPuHvIe9dPU1KTdEEVERESkqIqMUJvZaGAG8O95d3/NzKYCDqzvd2xIaSRaRCR7paqPTB67UZWPpG41bHy6d3ZmxEvhfd4zalzvMZiwzQz5ggULFJPUiIoE1O6+EWjud98HKtEXERERkXLqX/auvX1DuH/vCdE9E/o8RrPjtafSVT5ERERE6lr/UWaVxas/CqjLSNv/ioiIyHCSS1vpiBYR50pM1jsF1CIiIiKSqeFWXlIBdRllvf1vbkFD/8UMdHfx8AsNveWmciPfE0b3APDwCw3sm/SHEBERERmkXHpL/7SWOXPm1HWsooC6RuRPl/RfzNDR0QXQuwL+5Wh18PZ7hufsy7YLIkRERESylEv3APrs5QEhDXb0Tq+o21hFAXWNyF/QUGoxgxY7iIhIHPmBEGwbDAHa4ExKam9vZ83d99E9ehdGvBz23rvzwbBvX8PG55l60AF9RqyhfmIVBdSSSqmTsE7AIiLpDLTIK3duLXV8MNrb23ngnrvYY0w3ANttCdPxmx9aBYTpeJHB6B69S8FU14IFGuqIAmpJJf/TKNDnE2koVC8iUtuKTWPD0A0clFrklXYR2B5juoturCMiA6v7gFojqOU3XD+Nikj1yjIIzh+9rcTI7UCLvAZ7PN9wLWlWLfrvhDhnzhzFIXWi7gPqYtNYmsIqv46Ojt6TvHLyRGSoZB0EDzR6W6sjt8OtpFm10U6I9afuA2qovxNhLdm0aVNFR3ZEZPjSuX9bxUqaSfkNxQDSggULaGtrY+PGjbh7n2Nmxjvf+c6KDmTV6yj9sAiopbJ0URMREZF89TZKr4BaREREpE7MmjWrqkd7q7lvaSigFhFJYShKmomISHVTQF1B9bwFp8hwU+6SZlI5HR0dvLihoWCa2kMbGtgh+rAkIsOXAuoK8REjse22691ys9624JTCSpVxbG9vZ/eRFelaUdpFbWBZljQTEZHapIC6QnpGjWPy3hPqdgtOKazYRjgADS9uhJ0q1buBaRc1Gc4mTpzI5q7HBlxcvf3EiRXolYhUEwXUIkNsoI1wAMas/gnw8tB2aJC0i5qIiEhhdRNQa/enbGkhlYhIZZVKtco/Pxc6HuecXSxPHOonV3zBggVcffXVBeszjx49mpaWFl3nJJG6CahztPAnW3o9RUS2LiIfygXkJVPENnSyQ2M3m7seA7QTsAwf1biup24Cau3+lC0tpBIRCXKznR0dHTzX9TQAL29poqmpiX1fW97Z0FIpYnuMeTmTjbOK5Ynn2quHXPFqr9Esg1ON63rqJqAWEREph/ya4jfeeCOgNDiRSqu2dT0KqEVERAahlkc3a7Vkp9SWjo4OGjY+R9P9y7Y51rCxk46Orgr0amgooBaRIZd/ca+G3DeRelerJTtFaoUCahEZcvn5b9WQ+yYyHNRqyU6pHRMnTuRfmxsLvs+a7l/GxIkTKtCroaGAehjrXxrvuOOOA6i6lbNSnwbKf1NNaxGRoVEsRQOA7i20P9dY9+UUs6CAWvqUxqvGlbMikq1cCThgSMvASXXT+0IkOQXUw1j/0nizZs1izpw5VbdyVkSy4yNGYtttx/Z7hlJvL0ezULnb+4I2xRqG9L4YnoqlaEBIBZo8dmPdl1PMggJqEZFhpGfUOCbvPWGbWv2qNT+86X0hks6ISndARERERKSWaYR6GCpWj/See+5hpDdoAYLUHG26IZJe7vqQf13Q39LAKrEl/XBT6NxejRRQD0PF6pE2dHUxUusOpUblL7CV+lZqo5KOjg7GV6Rn9aGpqanSXah6TU1NTJxc/znn1bBYtRbO7Qqoh6mB6pGOWf0T9tQChJqxYMEC2tra2LhxI+7ee7+ZMXr0aFpaWobNyNKsWbN6gyrlfda/ogMDG59mpPXw4gCzbbUy05ampFnSn3G4nC+yMHHixIrmnPcvfVuOmblqWKxa6NyeX8p3MPJfq/zgvKmpqc+od5rXUwG1iNQ07bo4fA00MNB0/zJGbnqqAj0SGXrlHL2tl8WquQ/gPqIR69nSe/+Gl50nn7kP2PrBIOnrqYBapIbNmjVr2AeL2nVRCtl+++3ZfeSmATcPqoWZtjQlzWrlZ5Tk+pe+rbUgd6gV+wAO6V9PBdQiUvO066JI7Su2sHgo0htE0lBALSJSBRo2Pt07UjLipfDhoGdU9IGgu6sqFgaJlFup6fZaWJwmw5MCakml2KKZho2dbDaHkRXomEgN6b+op719Q7h/7wkAdHR0AfRO4ddzRQEZvootLFZ6g1Q7BdQiUlJHRwcvblB98nyDKdsGYWq60PH86er+09alggYFFSIi2Rjx0vO0t2/oPa8mXdxe8wF1qYtae3s7u9fRCGn+z9u/4H4lCvIXWzTTdP8yxvRsADRFJ/WnWNk2gIYNnezQ2M3mrscA+iyY1GJJEZHiilVwyjK2s54t+ObNvYvZky5ur/mAuuRF7cWNsFOlelcepQruqyC/ZG3ixIls7npM9cn7GWjVOIQKDHuMeVmLJUVEEsiP78od2w20sB0Gf76u+YAaSl/U4OWh7VAZFSuTptXOIiIiUi+KbUJXbbFdXQTU1Sy3cr//qv2GjU8DEyrYs4E9/EIDc27ZiZe6rc/9oxqczT1W8WoC/csnHXfccfowUceGW1qXSDmU2nWxYWNn7+LXoVZsar/UWgQYfps3lTonQmVfk1qMe7KggLqM8lfd91+1DxOqclV+bpvRhqYmRvQrT9TQ1MS+eVt0DsbmzZt56KXybP+r8knDw3BM6xIZTopO7RdZiwDDc/OmkufEjU9XrG+1GPdkRQF1GeV/OqyVVfn9txmtRv3LJw2nkYnhajildYmUQ6ldF5vuX8bEiZUbPSw2tT/QWgQYvusRip0TB5qFGApDFvf0dPNQlVWeUkAtZVUP2/+KiIiIFKOAWkREpEI6Ozu54IILOP/882lubq50d0Rqw4gG9hy7uaoqT9V/QF1kWmA4bkYhIiLVY9GiRaxbt47Fixdz7rnnVro7IpJQ/QfUIjLkBrOL4PiK9EykenR2dtLW1oa709bWxsyZMzVKLVKj6j+gLjItoBze+te/xN7EqEpJ/90lBzo+5KpwoUUSxVahN2x8mjGjRoJK3ckwt2jRInp6egDo7u7WKLXUhUrs2lwN6j+gFqF0iT2V4MveQKvQm+5fBj0bKtAjkeqyYsUKurpC7eeuri6WL18+LAPqojWyu7fQ/lxjzQ8yDEfDbdfmigTUZrYe2AB0A13uPs3MdgF+DkwC1gPvcfdnKtE/qR/9S+z1L99T6viQq8KFFlKbhuvmCrVk+vTpLFu2jK6uLhobG5kxY0aluyQ1oJo36YHhW8q2kiPUx7v7U3m3/xP4g7tfbGb/Gd3+XGW6JiJSu4bz5gq1pLW1lba2NgAaGhqYOXNmhXtUGcVqZI9Z/RMmj92oQQapetWU8nEK8Kbo/4uAG1BALWVSatHccMj3kvpVi5tKDUfNzc20tLSwdOlSWlpatCBRBqXaN+kZrioVUDtwnZk58AN3vwyY4O6PAbj7Y2b2igr1TYaB9vZ2HrjnLvYY0w303c52OG5lKyKV0drayvr164dkdDqXBgQoFShD+QM0w2UBnmyrUgH1Me7+aBQ0Lzez+wf7RDM7CzgLYI899ihX/2QY2GNM94DVX0REhkJzczPz588v+/fpn+ajVKBs1fICvGr9oFV8sWoXj28cMfSdKqIiAbW7Pxp9fcLMrgGOAB43s92i0endgCcGeO5lwGUA06ZN86Hqs4gMXrETYcPGTjb2dPHQiMptuBS3nOJxxx2nEaeMDHjx7u7i4Re2vidyF8sJo0NZuYdfaGDfvHZKvcc2m6s0Y57+71+lAmVn1qxZNXt+GC4ftIaiksyQB9RmtgMwwt03RP9/C3Ah8BugFbg4+vrroe6b1I9SOdL33HMPI107aA53/csl5gfSmzZt6j1+44030t7erqnclIpdvHNVCXILzF6O/ma33zM8Z98Czxcpt4E+ANZLikw1f9AqtVh1wuiXK9CrgVVihHoCcI2Z5b7/z9y9zcz+DPzCzD4CPAy8uwJ9kzpRbGMRgIauLkYqVbpsip0Im+5fxpieDew+8tmKbbg0ULnEOXPmbM2tHwmPR7n147se44F7Ck6aSQxxLt6lLuyDeY+B6svXioHKPMaduchS8dHb+hi5HS5KBefb2ebe2/3fY2bh+aUMeUDt7g8Crytwfyfw5qHuj9SvgTYWgfAHtOcApZiGaxmmYqP67e3t7D4Mps87OjrwvESy3AkVwJ3eFJDcY4vVgi02jahZEJGtipV5rOTMRTWP3kp8A6ab9XRjo8f2vqeSvseqqWyeSFEqdVdeRbcLf3Ej7FTBzhVTZLv2JIHr5m7joQ1h+mJLjwEwcoSzudvYIX1vRaSfOGUeFdRKEoOZbUi70VvNB9SlR4kquxK01J72w3XP+yRU6q78BhrVH7P6J0B15auVw3HHHdcnh7onyqHeYedd2C9auJhTqhZssQ0phussiIhkY6grc9R6rDIUsw01H1DXilIldWq55M5QyrLU3UB5eeXMyZMyKLJde9zAVVU+RKTaVbIyh2KVgdV8QD2YUaJKrgQtdRHWRboyfMRIbLvtCuZMJc3JK1WKrdZVamFQlkqlDYFSh+pJ7j1bq+/XwSjXwEBnZycXXHAB559/vnZwLIM0r28lcrt1Tiyt5gNqkSR6Ro1j8t4T+lR3gGxOSP1LsdWDYh9AoHZKmpWs/rLx6Yr1TbLV1NTExMm1/X4tpRwDAzmLFi1i3bp1LF68mHPPPTeL7koevb71RwG1SEbSLmioZuX8ADLUilV/GXAthtSciRMn1sX7tZhy/V12dnbS1taGu/O73/2OmTNnapQ6Q/mvb1tbm17fhKpt1lQB9TBUaoexXJmiWlZqsWru56z1hRa1bDhMx1czvfe3Ve9pW4O1aNEitmzZAsCWLVuGbBQ1PyWrnhfwL1q0iJ6ecL7r7u7WKHUC1ThrqoBaBC20GGpxpuOrvZJPrdN7f1v1mLYVx/Lly/GoILu7c9111w1ZwDccFvCvWLGCrq4wcNXV1cXy5csVUMdUjbOmCqiHoVI7jE2cGK/cTtGtWUeNrMhIZKnFqrmfsxZHN+pB1tPxG7aMqMhod7HSVcV2eKuGUXi997c1mLStUovJ+m9fny8XDD777LN0d3f3Bq0AZsbo0aNpaWmp+O9mwoQJrF+/vs/toTBr1qwBf/ZKvyZZmj59OsuWLaOrq4vGxkZmzJhR6S5JBoZFQF3NF7VaV6pY+osvvsgOO1TPlIzUnlIfjnZYcwXbb2dsv+fkIX2PlSpdVWyHN733a1epxWS5ha8+ohHr2dLn2IaXHet6iQbbtt384LrSHn/88aK3JZ3W1lba2toAaGhoYObMmRXukWSh7gPqcq6CHg5KjcbEKd9TDVMyUn/yp/6G8j0Wt3SV3v+1b7CLyUotfJ0avV87Ozs544wzePnll9l+++1ZvHhxVSxOmzFjBkuXLsXdMTPe8pa3VLpLdaW5uZmWlhaWLl1KS0tLVfzOJb26D6irMc+mlqi0T2mqbVw7BrtYVYaXwf4Nb9mypeRisjjvsWpdnNba2srvfvc7tmzZwsiRIzWCWgatra2sX78+1WtbTws160HdB9SSnEr7DE6xLdEBbYsuUuUGW5/8gQceyHQx2WAWpw31FtMQRlDf+ta3snTpUt761rfqvF8Gzc3NzJ8/P5O26mGhZj1QQD1MFV1IGJ2gq3X0pBoNtCU6JNsWXcpjsItVZfgZTH3ywSwmi/MeK9VeJbeYzmIEtV5U60hwlt+/Wn/GrPX/ORcsWJBZaUYF1MNQqYWEueO1XtqnEiM7IlJ7Bpum8V//9V+ZLiYrtTitEltM52Q5glovhsNI8HD4GaH4z5n0NVBAPQwN9iRdy6V9KjmyIyL1abCLyQb7YV6L02pDvY3SFjIcfkYo/nOmfQ0UUMuAarm0TyVHdkSktsRJ0yiVChH3w7xSK0TqgwJqGZBGTypjoLrpuWOqnS6SvTijysVSIeJ+mFdqhUh9UEAtRQ3l6MlHP/pRHnvsMTZv3ty7GDJnxIgRIfXEGgsu8ntoQwM7dHSUtX/5O6BBGNWaPHkyHR0dvLihYcDFh3H6VqxuOlR+M5x6WLii3HrpL/c3ldvdcFP3SwA09RhNTU1M3PuAukkRq4e/YZFqpIBaihrK0ZNnn32WF17cCGbQb9ewbu8Z4FlDr/92wgCbu42HNoTyeFt6wjZoI0d477EdBtl2rdRNr9WFK8qtl0L6r/Lv/6G5HoPNWv0bFqlWCqilapTKYxyz+idMHruxYHm6/149rneL56z13/QhX+7+XcbvCoRguycKuEeMaqKpqYn9ootyPaj1wKIcufWlRvw0Ilg7qrUMWZbvMb3vRMpDAbVICaU3fXieqQeFKeHhMrol2yo14qcRweEpy9+73mMi1asuAmrlREq5DWbTh1oPnIvV4tWW3AMr9Xuv9feFJJPl713vMZHqV/MBtXIipZgspl0Hu+mDiAytwez4KiIyFGo+oFa94eFloJJypcrJaSq0tGI57NqSW6rNYHd8FREZCjUfUMvwUayk3EDl5LKYCo2z6YPUBi0UrH0aTBGRaqKAWmpGrZSUk9qhmQsREcmCAmoRGXY0Ei0iIllSQC0iIiJ1YcGCBbS1tbFx40Y8b4MwM2P06NG0tLToA7WUxYhKd0BEJAv5edFz5sxhwYIFle6SiIgMExqhlprTf0HZggULNOJQhSpR0kw50SLD26xZs3Q9kIpQQC01S8FT9apESTNdSEVEpFKGTUCtMln1Q7+z6pd1STPthioytDo7O7ngggs4//zzaW5urnR3RKresAmoczSqKVJbtBuqyNBbtGgR69atY/HixZx77rmV7o5I1Rs2AbVGNSUNjZBWjjbwEBlanZ2dtLW14e60tbUxc+ZMjVKLlDBsAmqRpDRCKiLDyaJFi+jp6QGgu7tbo9RSMbnBrFoYyFJALVWlGkeCsxwh7ejooGHjc70/Y38NGzvp6OiK30kRkYysWLGCrq5wHurq6mL58uUKqGXI5Q9U1cJAlgJqyUSxRZ+DXRCqkWARkcqbPn06y5Yto6uri8bGRmbMmFHpLskwlB8j1EKqnwJqyVSxRZ+lFoQOh1zZiRMn8q/NjWx6zdsKHm+6fxkTJ1bXNJaIDC+tra20tbUB0NDQwMyZMyvcI5Hqp4BaMlFs0acWhIqIVJfcjqLz5s3bZuavubmZlpYWli5dSktLixYkigyCth4XEREZZi666CJefPFFLrroooLHW1tbOfjggzU6LTJICqhFRESGkfb2dtavXw/A+vXre9e35Gtubmb+/PkanRYZpLpJ+dBOiPH1f80WLFig16tK6P0saek9pNdgIP1HpS+66CIWLlxYmc6I1Im6CahztBNifHrNhlac0oD63Uhaeg/pNegvNzo90G0Ria9uAurhPuKQhF6zeLIY7cot/uno6GDTpk1s6n4JgKYeo6mpiYl7H6ARNMmE3kN6DQYyadKkPkH0pEmTKtYXkXpRNwG1yFBJM9qVu8DngvOOjg4glNNTIC0iQ+G8887jox/9aJ/bIpKOAmqRQcoy2FXgLCKVMnny5N5R6kmTJmnDLJEMqMqHiIjIMHPeeeexww47aHRaJCMaoRYRERlmJk+ezLXXXlvpbojUDY1Qi4iIiIikoIBaRERERCSFIQ+ozWx3M7vezO4zs3vMbE50/1wz6zCzNdG/tw1132pFZ2cns2fPprOzM9FxEREREclOJUaou4BPu/sBwJHAJ8zswOjYt919avRvWQX6VhMWLVrEunXrWLx4caLjIiIiIpKdIQ+o3f0xd18d/X8DcB8wcaj7Uas6Oztpa2vD3Wlra9tmFLrUcRERERHJVkWrfJjZJOAQ4HbgGOCTZjYTWEUYxX6mgt2rSosWLaKnpweA7u5uFi9ezLnnnjvo47Ugix0JJZmBtkXvvyW6iIhIpVVTvFCxRYlmNga4CjjH3Z8Hvg/sA0wFHgO+OcDzzjKzVWa26sknnxyq7laNFStW0NXVBUBXVxfLly+PdbyWNDU1pdqVUOKZPHkyUw86gMP2nsBhe09g7HbG2O2Mw/aewNSDDtDmDyIiUpWqIV6oyAi1mY0kBNOXu/vVAO7+eN7x/wV+W+i57n4ZcBnAtGnTvPy9rS7Tp09n2bJldHV10djYyIwZM2IdrwUaia6M/q/7nDlzAJg3b14luiMiIlJUNcULlajyYcAPgfvc/Vt59++W97DTgLuHum+1oLW1lREjwq+toaGBmTNnxjouIiIiItmqRMrHMcAHgBP6lcj7mpmtM7O1wPFAbSX+DpHm5mZaWlowM1paWmhubo51XERERESyNeQpH+5+C2AFDqlM3iC1trayfv36AUefSx0XERERkexUtMqHJNPc3Mz8+fMTHxcRERGR7GjrcRERERGRFBRQi4iIiIikoIBaRERERCQFBdQiIiIiIikooBYRERERSUFVPkSkjwULFtDe3k57e3vv7XLsRtX/+8yZM4fJkydX1c5XQ63Ua1Ivr1mx91jcn7FeXhMRqW0KqEWkoKamprr6PrWk1GtSL69ZsZ8j7s9YL6+JiNQmBdQi0sdQjexpBHFbpV6TennNiv0ccX/GenlNRKS2KYdaRERERCQFBdQiUjc6OzuZPXs2nZ2dle6KiIgMIwqoRaRuLFq0iHXr1rF48eJKd0VERIYRBdQiUhc6Oztpa2vD3Wlra9MotYiIDBkF1CJSExYsWMCcOXN6S6TNmTOHBQsW9B5ftGgRPT09AHR3d2uUWkSkDuSXxux/3q8mCqhFpKY0NTUVLJG2YsUKurq6AOjq6mL58uVD3TURESmDgc771URl80SkJpQqjzZ9+nSWLVtGV1cXjY2NzJgxY4h6JiIi5TJr1qyaKI+pEWoRqQutra2MGBFOaQ0NDcycObPCPRIRkeFCAbWI1IXm5mZaWlowM1paWmhubq50l0REZJhQyoeIlE3+YhKAOXPmMHny5LJN37W2trJ+/XqNTouIyJBSQC0iZTdUi0mam5uZP3/+kHwvERGRHAXUIlI2tbCQREREJC3lUIuIiIiIpKCAWkREREQkBQXUIiIiIiIpKKAWEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJQQG1iIiIiEgKCqhFRERERFJQQC0iIiIikoICahERERGRFBRQi4iIiIikoIBaRERERCQFc/dK9yExM3sSeGgQDx0PPJXRt1VblW1PbamtcrentuqjrazbU1tqq9ztqa3qb2tPd9+10IGaDqgHy8xWufs0tTX0bWXdntpSW+VuT23VR1tZt6e21Fa521Nbtd2WUj5ERERERFJQQC0iIiIiksJwCagvU1sVayvr9tSW2ip3e2qrPtrKuj21pbbK3Z7aquG2hkUOtYiIiIhIuQyXEWoRERERkbJQQC0iInXBzLYvcN8uleiLiAwvSvkQERkGzGxPYF93X2FmTUCju29I0M4q4MfAz9z9mQz6tR2wX3Tzr+6+JUVb1wKn5tows92A37r7YQnb2xnYFxiVu8/db0raPxk8MzsIOJC+r/3ihG0dS3jv/9jMdgXGuPs/sumpSNBY6Q5Icma2IzAXeEN0143Ahe7+XIK25rj7vFL3xWwzkwulme0DPOLum83sTcAUYLG7P5uwvcwuklm1ZWYGnAns7e4XmtkewCvd/Y4k/cpKGV77icCe5J17KhmgmNn73f2nZvapQsfd/VtD3af+sniPmdnHgLOAXYB9gFcDlwJvTtCl9wIfAv6cF1xf5wlGZ6L31CJgPWDA7mbWmuI98Svgl2Z2OrA78BvgM0kaMrOPAnMIr9Ua4EjgNuCEhO29jq3n6pvd/S9J2qk2ZrYOGPB37+5TErR5PvAmQkC9DHgrcAsQO6CO2poG7E94r44EfgocE7etrJnZH9z9zaXui9Fe1X0ANLN9ga+y7YejvVO0WVXXkZy6DKjN7EhgAXAAsB3QALzo7uMStDUK+AjwWvq+GT6csG9Zvrl+BNwNvCe6/QHCCeOdCdpqBfoHzx8scN+gZHyhvAqYZmaTgR8SLpI/A96WoF+ZXSQzvuB+D+iJnnshsIHwcx8eoz8LKH5hm52gX1m+9v8D/BtwL9Cd6xaQ9MPMrsDn2PZvKc7rv0P0dWySPgzQr8zOGRm+xz4BHAHcHvXlATN7Rdz+RM9tB75oZl8CTiKch3rM7EfAPHd/OkZz3wTe4u5/BTCz/YAlQKIRZXf/3+iD/K+AScC/u/vKJG0RXvfDgT+5+/Fm9hrggiQNmdkc4GPA1dFdPzWzy9x9QYK2do3amkTfgCLpNSnt9fKk6Osnoq8/ib6eCWxM0ifgXcDrgLvc/UNmNgH4v4RtnQYcAqwGcPdHzSzx37uZHUMYyMoFdBaaHfw1PDpHjAbGR0GwRYfGAa9K2K8sr23vBP4HeEXUt9zPGDuGIsQk5wPfBo4nfBi3os8o3rfMriNmtoFtr5nPAauAT7v7g3Haq8uAGriEMIryS8In05nA5IRt/QS4HziREOicCdyXom9Zvrn2cffT825fYGZr4jRgZmcA7wP2MrPf5B0aC3Qm7Bdke6HscfcuMzsN+I67LzCzuxL2K7OLZMZtvd7dD839XO7+TBQYxLEq+noMIcj8eXT73cCdCfuV5Wt/KrC/u29O+Pz+Lif8jG8HziZ8KHwyTgPu/gMzawCed/dvZ9SvLM8ZWb3HNrv7y2EiBMyskSIfvkoxsymEc9fbCB+6LgeOBf4ITI3R1MjcOQLA3f9mZiMT9Cd/hsEIo9NrgCPN7MiEMw0vuftLZoaZbe/u95vZ/gnagfAB6/Xu/mLU3/8hBDuxA2rg18DNwAq2BhRppLpeuvtDEAJNd88f9f1PM7uV8DcQ1yZ37zGzLjMbBzwBJB3RfNnd3cw86ucOpZ5Qwg+Bcwnn1KSv/78D5xCC5zvZGgM8D3w3YZtZXo++BrzD3dPEOjlN7v4HM7PovTLXzG4mxEFJnEp215FvAY8SBomM8HfwSuCvhIGCN8VprF4Daty93cwa3L0b+LGZJR2lmOzu7zazU9x9kZn9DPh9iq5l+ebaZGbHuvst0PvJeVPMNlYCjxH2sf9m3v0bgLUJ+pSTyYUysiUK/FuBd+TaT9hWlhfJLNvaEgV2uZP+roQR60Fz90XRcz8IHJ+XR3opcF2KfmX12j8YPTergLrZ3X8YpSbdCNxoZjfGbcTdu83sZMKH3Cxkec7I6j12o5l9AWgysxnAfwBLk3TIzO4EniUEFv+Zd2G7PToHxbHKzH5I31HNJB/++o84XjPA/XE8YmY7EUa7l5vZM4SLbxJG3+Crm+QDKaPd/XMJn1tQRtfLHfpdj45m6wxQXKui1/5/Ce+HF4Ck6W+/MLMfADtZSH36cNRuUs+5++9SPJ8olXKemc1KMksxgCyvR49nFEwDvGRmI4AHzOyTQAdh5DupLK8jLe7++rzbl5nZn6K0yy/EbaxeA+qN0ejeGjP7GiFgTPqHncv7fdbCIol/EabaksryzfVxYJGFXGoDniakaQxaFNQ/BByVsA8DyepCCWEk7GzgK+7+DzPbi5ADl0SWF8ks25pPCAJeYWZfIUx5npewrVcRAonc1PsYEk4jku1rv5HwN/kH8k6GCVNRYOvf5mNm9nbCa//qhG2tNLNLCCPeL+b1bXWKfmVxzsjqPfY54KPAOsLo2DKST6G/e6CpUHePm272cUKqwGzCOewmQvpTLO5+QfSB9GJ3/2zc5w/Q5mnRf+ea2fXAjkBbwuZ+TPjAkQv0TyV8IEnit2b2NndflvD5/WV1vfwI8KPoegThQ1eiNBR3/4/ov5eaWRswzt0TDfC4+zeiD5HPE/Ko/8vdl8dtx8wOjf57vZl9nZC+k38ei32uiGb8jmbb9J0kiy+zvB6tMrOfR23l/4xXD/iMgZ1DSG+ZDXyZkILSmrBfkO11pMfM3gNcGd1+V96x+GtCEqwjqXoWVrM/TsgHO5dwIvyuu/89QVsfJUxpTiGcFMcQ/iAvTdi3wwnTvzsR3lw7Al9z9z8laS9qcxyAuz+foo38XKLtCJ8AE+WdR+1tT7hQHkvehTLD6f7UzOw4oouku79c6baiKbo3E16vPyQdITCzDxFy/K6P7joOmJsbwY7Z1hzPaLGqmRU8iSbpV9TeSYSp790JU+fjCD9n7JHXKGAq0LVY+di5tjI9Z+S1m+g9Fn2AX+vuB6X5/nntTQD+G3iVu7/VzA4EjnL32AFiNP3+UjQyShQUb+/uiXJvLcWCrgHaawAm0DfYeThhW4eSdz5090SpU9G5egfgZbZ+eEua35q7Xj5BOOfnrpff85Arn6S9cYTYIvbi+Lw2sl6sl1/hZjTQ4DEr3AxwjshJeq74CWGR8Bry8oFTDDLk2k11PTKzHxe42z1hnn6WsryOmNnehHViRxHinz8R/gY6gMNysy2Dbq9OA+q39p+SMbOz017QqoUNUJEgJ2G+YP/vcSpwhLvHnvbIipn9wt3fY9uuIs8tkIi9ejxqN5OLpJldSAjoVuZyI9PI+OL9SiA3lXW7u/8rYTur3f3Qfvfd5e6HJGkvSxZyNm8tdV8tshK1kz3ewj/M7HLg80nfT/3a+h3hg8IX3f11FvKx73L3gxO09Sdguru/EN0eQ6gYcnTCvn2TUOXgl/SdaYg9smZmswipeI+zNf0q1nnHzMa5+/MD/T7j/h6rWTSIcjrbjrYOOofati7Wu56Qv5q/WO937n5Agn71Vrhx930sFAa4NMsPXkmZ2X3AgZ4iEKvW95iZfcfdzzGzpRQY7XX3kyvQrbKq15SPL5nZZnf/I4CZ/T/CAsDYAXUWJ4monSzfXLm8wP0JixByiwnfQcKKCQX68ysz+8+kz7dtV0Ln2o2zsGRO9PWkoo+K16+CF0nCaGJc64EzgPnRqNHNhJGnX6fsVy6/Mmm/IKzUf5Lw2u9nZvt5jAorVobFqpZ9+aQFwKGDuG8wffuvQvfH/TuP2srinHEn4fdvwB7AM9H/dwIeBvaK2a3dgHvM7A76BppJLmrj3f0XZvb5qI0uM0u6OGtULpiO2nohGkFMahfC+zN/tNDZWl0jjjmExU9pFmf/jHD+yv0+c3J/34ne+xZy/t8Y3bzB3X+boI2BBiyAROXufk2okHAnyfNb8xfr5adQpFmsl1mFm5woxax/FZ8kiy/vJiyCeyxFd/q/x/Jz8xO9x8zs1YRz6TFRG7cAc9z9kRjN5NI9vxH3+w/Qp8wH2Czjijn1GlCfTMgz+yzQArwmui+JLE4SkOGby90vADCz64BDc1NXZjaXMDITm4UyOTkjCKu900xfpF4J7e6PRV8fiqaZcyXk7nD3JxL2K4uLZK5/PyLkDL6SULrwM4SRkCQLoTLrl20tK3QPfT80xPmwVY7FqplUuDGzo4CjgV37zdaMI3yQSCJ/hmEU4QKVdFFO6nOGu+8FvQtKf+NRvqyZvRWYnqDJpKv9C3nRzJrZuoD2SMLPm7StQ3P5p2Z2GPEXVvdy9w8lfW4B/yT5zwWAu58UfY37AWhAZnYx4Vx4eXTXHAuLAeMOgGQ9YPFqd29J04CXZ7Fe1hVuLiWMoh9PWIfwLpIvmBwP3Bt90M3PBx50vFKO9xjRxk2EClEA74/umxGjX3dGX2MvFB9A5gNsZFwxpy5TPgCiT6ArCBe1DyedUjGzu7PKPcyamd0PvM6jvORoZOwv7v6aBG3l50x1EUZf/zdp4Gpmt3vf1bOJWVg08HXgBkIA9gbgs+5+ZbHnDdDW9cAMd+/KoF//RxhtfZzwR3kLsDpJ2xn366/AFM8gX93M/sf7VRQodN8g27rT3Q8zs3W59AAzu9nd31Dquf3aOY4wHXw2fWedNgBL3f2BuH0r8D22JwSyJyZ4bmbnjNxr1u++Ve4+LYv2E/bpUMLo1UGEEbZdgXd5gkVjFtaUXMHWxVO7Af+WuxgnaC+LkbVcWz8kzAJeS99gJ1FKnWW0GYWZrQWmuntPdLuBkHKTdDYrE2Z2GbDA3ddl0NZ2hL/v3lF44AeeYHMwCwstnyWUA5xFqHBzr7t/MWHf1rr7lLyvY4Cr3f0tCdo6rtD9SYPQDN9ja9x9aqn7BtlW6rrd/drbga1lFfcjDJj+LuF7I9HPNJC6GqG2rQvrctNp2xGmO95lZu7JFm2sNLODszhJRH3M8s31E+AOCyvHnVDAPtHWrFmN7FgZVkIDXwQOzwX30TTNCrauzI3jQeAGC1sUp71INhNGRJ8lVNR4KkVAnGW/siwrNINQISLfWwvcNxiZVLjxrSXyFkazF2PD3VtTBzIwmuR1b7M8ZzxlZucRKqs4YaRo0LMYZnaLux9r225gkHijBndfHQUC+0ftJN4F1d3/bGExbq6t+5O2FUk9spbn4ejfdtG/xCzjTY0IqT+53NgdizxuMH3LahOPY4EPmtk/COeeNGtdvkc4h+UqvnwA+D6hUk1c/0moQJJFhRvYOoOy0cxeRfh7TDQ67O43ZjX7mvF77Ckzez9h7wgIqY1JZ0+zqNud7ybgDRY2xPkDYf+FfyNUEosr04o5dTtCnRUzu5dQ5D6Lk0RuVHmbN1fSqf5oivTY6GaaleOLCCM5z0a3dwa+GTeXyMqzErp3RDO6PYIwEp9kEVTBet+5NJokzOwAwiYe5xJWj8cu3ZZlv8zsKsIuY4nLCpnZxwkjOfsA+av9xwK3uvv7E/Qr0wo3FkrS/YSQNwvwFNDq7ncnaCs/L6+BMOp6obtfkqCtzM4ZFhYanc/WkbqbgAu8govZzOzdhOoBG6Jg/1Dgojgfls3sBHf/Y79Us16erDxXpiNrWcp41ugM4GLCwj0jvDc+7+5XJGyvnQw28bBQSWMbHm38ErOtv7j760rdl6DdXQipKYn3WLCwQ+gCQkWm7xLOG//n7l9K0FaWs69Zvsf2IGz4k6t+sRKY7ckW72c2Wx21t9rDJmizCPt6fM0SLpS3rRVzNhMq5qTZEbK+RqhzolHgNe7+YvQp61DCLm9JVri/NdvepS8Kn8/d7zSzfxItjjCzPRL+nFNywXTU7jNmFvsN6u7HJ/jepbSZ2e/Z+mn53wijDLGlCZz7s1C27Q2EC9rOhF3ibq50vwiLVH9T8lHF/Qz4HWERYX5u5oakwZy7/zn67wuE/Om0LgM+5e7XA5jZm6L7klSIyM/L6yJsbJB0tiGzc0b0Ws8p+cBBsOyqyHzJ3X9pZscSPkh+gzB6GOeieRzh7+UdBY4lXUQIGYysWXmqE2Q2a+TuS8zsBsKopgGf84RVfCKZbOLhW3dMfAV5i/US6jazfTwqdWuhvFmi0c3otTqZ8L5fAzxpZje6e9FqWUV8LQparzKz3xJ+1pcStpX17GtWM5O793+fR3FVkvNFlrPVUVfsKMKI9Eei+xLFsu6eZuOnbdTlCHWUY/Y6QoWEnxCmHN7p7gXzlQbR3usIgRPAze7+lxR9u5gwApb6zWVhpfc3CSuinyBUA7jf3V+boK2/AG9y92ei27sANyYZBc5rM6uV0JjZ6YS8yFwN12tKPGWgdnYF/l+BfiUZOf8uYcTwZndPVEC/TBfvTEWB077u/mMzGw+Mdfd/JGin0M/4HGHK7gfuHuuilPUoVr+/85vSjGJF7fUJLBKO7mTyfrUMSsDltXWXux9iZl8F1rn7z5KOEGXFzL5H+OC3E9uOrM2JM0pqZodFAxWp81vNbEHUj4mknDXKa7NQFZvngIeSfAg0s3mEShO/IsUmHgWuR3sC9yW8Hr2ZkKrzIOGcvyfwodyH55ht5d6vHyUEiudblP8ct62ovUKlRLe5b5BtZTn7mnpmMq+tLH/GzGr8R+29kVAA4FZ3/5/ow9Y5MWdgX+NhJ8mCP0/SYL8uR6iBLnd3MzsFmOdhe+KCxcBLMbM5hLIquZPLT83sMk++Ajk3ipO/qMjpW+ZpsL4MHAmsiE4YxxNGZJL4JiH3M/fJ+N3AVxK2hWW7Ehp3v4qwWUZalxN2wzuJsOillVBeLkmfPpHLf4v+MJPkv2VaWgjAMixPF6WiTCPkuP6YkEv6U8KHm7geJKRS5M80PA7sR9gK+ANx24umX3Ov4fsJaRaxFfg7vzzp3/lAgQUhKI4rq/drZlVkgA4LWzlPB/7HwgLOEUkasrCxxSc92gQkShv4kcevEbyekEZ3ftoPoZ5tdYJV0dd7CdP6PYSR1sSVTAh5xYcSqu0YYXHoWqDZwn4L18Vsbxxh97n8RXVJZgmyvB79nVBPvDe3nuQlRBvNbDdCJaZECxEBLFRzmgg09QvExhGudUkUmn1NOoOdembSylBBKetZaw+LLG/Ku/0gYRfGOD5FqMj1zQLHksZj4O519w+4Efg88DfCJ+8GwkhKkrbWAjvk3d6BsOtYkrYagHMz/DlXRV//AoyI/n9HivYOBD5JWAl9YMq+re33NbdhQ5K23gk8QBiFeZ5QzeH5hG3dmd+v3PslYVvvJmzbvoiwGPQfhGoHZXtvD7JftxDy+9YSgrm5hLzbJG2tIVzQ7ur/u03Q1k0D3Qfck6C9nQlbtq8G7gK+A+ycsG9Z/p3/hbBg9a7o9vHAZQnbyuT9Ssi3bczo/TU6+pvcN7q9G/CWhG39OyFYehvhA83fCPm8SdqaSPjwsYLwAf6duX8x21kXvR/6/1sX9z1BmIL/GiG/P/c+fYqQNzsy4c95BfDavNsHEj7s7k1IdUz9O07Yr8yuR4QPRxPzbr+R5Nfwd0e/v+9Ft/cGrkrQTmv0d7SBkK6U+/fruO+xfu2eDnyLUE70tEr9/qK+HEeYyXos+pr796nc33uMtt4fff1UoX8p+rgfIbXvuvzfQyVft9y/eh2h/jfCphQfcfd/RQn2X0/YltE3dyu36UZs7t4djV59O2Ff+nvWQsmemwgjak8Q8j8HzfrusvQvQu5s7tgunnzxU2YroQkXpNSLZiK5CgKPRSkpjwKxFxFGziOj/LcsR5UJCzX+YGbmYap7rpndTDgxxvWyu7uZedTPHRK0kbNrfo5/9Hc5Pvd94jbmIT1pdtRWAyEgfj5h3zL7Owe2uHunmY0wsxHufr2FFfiJ2oq+Jnq/5o0yZVJFJpqSvsPzygJ6qBefaGMKd/+Bmd1DCFSeAg7xhPnA7t4R/XxfIeRm59dgjzPammWd268RBhP28q37BYwjzEh9nbCJSVyvcfd7cjfc/V4zO8TdHzSL/5a1sDvhR9g2rSju5hapr0d5zgZ+ZWGdymGEre7flqQhd/8lefszeBjRPD1BU+OB30b/ILyvngRu8QQpcHn9ucrMlhNlDMS97lqGG/R4vwpKg33eAHLXikzzlAm/y0sJM9+pqoZE1423s+3GLolKY9ZlQB2dkL+Vd/thEpaTI3zyv91CaTqAU4EfpejeSjO7hDCSkr9jWZKcnVMIgeu5hAT9HYG4Ocpl2cmLUI5mJ8JFY3XUVtJSRZksmolcZGY7Ap8mrNQeR3j9khjhfVM8Okk49U1Gm55EMilPF/lFNL2/k4UtfD9MSM9I4tPALWb2d8LPthfwH1GQvihuY2b2M8KFt5vw/t3RzL7l7kk+POf/nRvhb+uHCdqBbAOLtO/X3MUskxJwHmq//sWSL37uw8w+AHyJUCN4CrDMzD7kMdepmNlrCQsjHwWOiIL8RPIDCUtf0uwkYD+Phtai9p+3UEXnfpIF1H81s+8TRqohDCD9LUq9SVJy8CdRX04kXD/OJNmmRqcQFueluR4BveUUZwPLozZnuHui1DwLdagvIlwr2wh5xue4+09jNjWmwH17Al80s7meoMqKmf074TXaRPgAmOS6Oyf6muUHwUtygyh5Yq13cfcfRF+zXHAPIaX3+xm1tZTw/lrH1g/gidXrosQjCRefAwgXjwbgBXffMWF7hxJK0+UWxN2Vom+ZJOhHn6x+7+5Jdk0bUtGJfpRHeZIJnp/JopmsWVi5PIW++W9rvYKbnkTPy7o83QxCfqUR3nPLk7QTtbU9oRB/ruZw0tXxveXQzOxMwijW5wgpEkkXG2Xydx59QNhE+HCVCyx+mmS2x8x2TRpIFGlzBDAm6Wi+mf2REGSm3sbczH4FnJU3y3MEIT1masx27iMsPoybP1yszdQlzczsb+6+X9xjJdpsIpS0zL1XbyHkVb8EjPaY9dht66K93EYlIwl/58nySFOwbRcuH0iY/XgGEr/HcueJ0wgDYucC13vKEnx57e9CyBtPsmDvAeAod38qi75kJbrm9l/v8i+gCRjn7oNe72Jm8wvc/RwhRejXCfo2l7A25Rr6xgNJzq+JF6cWUpcj1IRV3u8lTA1MI4x+7JukIQu7ZS1w9/l5981197lJ2vOMEvSj9JGNZrZj0kA1n5n9wfstBCp03yDaKVhXNjqWNAhOvWjGzP6fh3qVuVX3fXiCldDu/lnrW33kMk9YfYQMR5U9w/J0UXD4R3dfbmb7A/ub2UiPsfmGDVxzeO8U7wmAkdHF/1TgEnffUmBUZbB93IeQx73aQvm9N5jZPzyvlGQM/xV9qOohGnmPUj6SbIaz0sJGGT8n7Mb2TII2sh7Nz2zEyd1Pjfq3g7u/6O53REF1XFM9g/q7/WRR0uxeM5vp7n1mSC2U9rs/SafcfZOFqia/dfe/9jucZHOj3N/ysxZqu/+LMAU+KLbthmq9h4hf0zezxdl5RkZf3wYscfenk6TGDCRqL2mDfydc21KzbTdvgq2jyp+OUl0G6xB3f2Pe7aVmdpO7vzFK0YpjFGEQJZd2czpwD/ARMzve3c+J2V5r9PWzefclnU3/nZm9JasP4vUaUOPu7WbW4O7dwI/NbGXCpk4EDosuPrmT4smEhV6xRdO357N1o4YbCRtIJAmKXwLWRflX+SNFccrHjCIsMhpvYTOX3IlhHKFKQVy5urKvIKwW/mN0+3jCSE/s4Mmz2cUxN4W5quijYvLsqo+cQ/g9zCaMKp/A1hPHoBQY3ekjyegOfXelWkGyXamOozw1h39AqO7wF+AmCxUikuZQXwVMM7PJhNSkpYR0qCR5m5ntLunu+0YB5nsJU8v3AlckmK4+MEo1OJNQw/1zhMA6dkDtYXe3PQmLlFaY2WgSVgCwUFXgh4Tp9D0slC78d8IIbJw+ZR1MQzYpXZ8ArjazD7M1re5wwkjfaUk6ZWEdztcJs697mdlUwjUkaXWTy6K/7y8RqkSMif4/KJ5hLV/PprJKf0stbKi2iZBitivJ60Zvw8xOIBpBT+DzhA/Nt5Oy1B0hzfVRwnnLCOeMVwJ/JaSpvilGW1mud5kMnOBRSccoXek6wnky9m6y7p50LVYhfwKuiQazUm/sUq8pHzcRSjr9H+HT9mPAB5NM8ZjZasIb8XJCDuIc4M+esOaqhVqRd7M1Z/QDwOvcfcCR3SJtFQy43H3Q+agWyoWdQwieO9gaUD8P/K8n2Ckuave3wMc8ymW0ULbou3F+znKMKmdhgJEASPnHmJYNUDc3J8nFyjLclWoomFmjJ6vFm/s5/x+wyd0XxP05bevuknsTRp5yEu8u2a/98YSL5pnuHiuAjUaVphIutpdEQXGimt0WcunPAnZx930sLKi9NO5sVtTW7YSKHL/JvdZmdrfnLXqsFMs2pesEwqI/I8yE/CFFv+4kfOC+Ie81S1NXOTfwlEo0y/OIu2+OZnmmAIuTzPJY4bTNFxMHOuEDw/PRzO4OhFr6sRa/WuFFf7sQgtiZ7h57xsHM7iCk7PTJ4Y1zDc9ra5sdCc3sT+5+ZNy/dTN7G2HhX5/1LoRBsY+5+3ditPVXwrqGXGnMHYHb3f01Sa4l0azkx9k6KHkDIa879voBM3uQMMO5zjMIhut1hPoDhD/ATxLypXYn2apeCB86ngfeEeXu3EjIiUxqH3fP78sFZrYmSUPuvsjMtiOUkQH4a9w3lbvPA+aZ2SxPXlu7kEned2FQrt5wHJmNKmc5epvliIyZFa0bGrNfN0ZtngQsc/fUiyxCc9nsSmUhf/p0tl1RnXSznwmE1f+vcve3mtmBhA09kiwm3GJhS+eZbB1JH1nk8YVkvrukhYoQpxFGm/Yh5A0mSYnIcjT/E1Efbgdw9wcsbGKTiLv/s9+MeeLgLgpc/+TuqabRoyn8+YTR5FyucuKULnfPlffKQpe7P5dh2sI/zKyNkFb0xxSBRf4szw8Jo91JZ3myTNscTXjP7kH4IPgqQn3r3xZ7XgH9F/050OnuLxZ68CB1efIdG/vrsZD3n0tJelfesVi/U3dfFn1QLrTe5Tsx+/U1YI2FHSuNEAj/d/TBZkXMtiAsPh5JWDcAId77PvDRBG09ANydRTANdRpQ+9ZV2ptIn+/XG/C4+1wzW0Woo5jUJjM71t1vAbCwnWeiIv/RKMAiwoXSgN3NrNVD4fO4esxsp9xoQvSJ/gx3/17xpw3oBttasN4JJ8dCCzIH5O5Lo6+xP60XkMvNeydhGiw3ZX4G4fWrlKOAfxJep9shcWWPfO8lfEi6Cvixp6uQcg5hWvIad7/Hwq5UsX6PeX5NyOm7k2y2x11IqM6R26zhb4SgIElA/SFCjvFX3P0fZrYXW98jgxKNwDwHnGF9t/keY2ZjPFlVjL8QFuNe6O63JXh+rm/zCQFizkMWNt5IYrO7v5wL6MyskZgX7Dz/NLOjAY8GB2aTrMJEzgeBS82sE7g5+neLx8w9d3c3s1+5+2EkT0kql7vN7H1AQxT0zCbsCJnU/oQPkZ8AfhQNPlyRu0bF0OPuXRYW/30nN8uTtFOeXdrmjwnnnKOj248QAvVYAbWnLyNXyPVmdhYhxSzVAjvCoMc8QqDphHSG91tYxPrJBO0dxtbBjykW1rvEqpYWpVLcR3jtjyBc377gW3cW/uxAzy3i8H6j7X+0sNNzEo8RYpXfkaKcaE5dpXwMMCWT40mmN7NmIUdwMVtHuZ8BWj3BNsfR1N/7PFqYYmb7ERZdHJagrTXeb2V92ql9C4vQ8rdyjjW6k+Wocl6bN3nfxRYF7xsqUeA1gxDYTwGuJfwO4y786N/uuKjNDxFewx9H7W5I1+NUfcp0Kt/M/uzuh+e/Twu9jxO0uzNhi+LYf5PR8z9JWGORxTbfFgV3O6QZCTOzZsLajWMJ74dbCEF67J0TLZQhe5YwajiLMBV8r7vH3oUuSmOZR0jRM0Ju5Zwk/erX7qsII3SfIcxgxB48MrPvAgt96yLfqhCNuH6RrYu0fw9c5Ckq5uS1vTPh95Ekreh2wujlFwn7Bvwj6d+8ZZu2ucrdp/U7TyRKd8qahQXH/bnH3H8guo5c7O5JAtRC7f2EMCO2hq0zRu7JtjG/zd2PyqJfUXurgXe7+9+j23sDV3qyKisF92bwhKX+6m2EulAdRiNshPCFOA2Z2S3ufqxtmy+bKE/WzOZE6RVj3P11UcCDJ9+IAsJOW72rvN39b1F+URIjchfvqL8NpKhXG/XnatKN7pRjxfeuZra3Ryueo5HIXcvwfQYlGn1pI2xBuz0hCL7BzC5Mk4LjYQHaVYTFT+cQ0gY+a2bz47Rrocxjofz1JCW1VprZwe4eeyHKAF6MAsXce/ZIwghxbNF05MmEc+Ia4EkzuzHhdOw5ZLfN95EWKg31WbTn7rEW7RFqFt/E1tS3Mwmj+UnKbv4nIf1nHWEB4TIS1pj3UC4szgLXoixUz3gDcDBho5hLCKPUSRwP/LuZPURY9J0792dWZiuu6Lz8Gw/lUhNvo12g3eMIOeJvBf5M2KY7rtSzPHk+QFgAmkXa5svRKG3uPLEP2cyQpRKN3v6nu/88bVsecsNjD6QVMY2wkDmLEdfrLFTDujqj9j5LGNl/kPA3uScJq1nlAmczGxtuxis52V9djVDns7Dy+X2EE8M/CFuNJlpgl1F/crUwVyf5JDVAmz8inCR+Et11JmF74dhvLgsLcCYRFiI44cT4T3f/dMx2qnLBXm8nzFoI25bmSghNIgQov69gn7Yn7NZ0RtSf3wA/cveOhO2dTDjB7EN4byxy9yeika373H3PGG3ln6RHES5qXe7+/2K0kZs5aiTkQT5IuKClClAs1I1eABxEWOi7K2Hr9ySzPXd5qMX7UcLo9PmWcKFX9CFkhidYHFmgrUwW7VlU57zffavcfVraPiZhhWvT9koyEha1+xRhIdWlhFrD65O0E7VV8O+kTFP/g2Zh3cUHPINyqVF7/yB8iPwF4X2WJic4MxaqceAp67BbqKN/HqGm9XWEMqcfdPcb0vYxrSxnR83sm4Tz6y/pW/Ur9qCWmf0SmO0pNkjKa2sDYdfELkJ1ldSxQHTN3J+t+d2JPiBZKBP5E8LiUggfwmcmnSGuqxHqKOXhvYTApJMwAmOesPZz9AlybUbT1PeZ2XrCCGn+BT9NUPFxQt7b7Kidm9iaqB/X5wijTR9n69Rr7FEnz3bBXrEUnlhbquY9p822LraAFH+MWTCzRYSA8HfABe5+dwbNng582/vl0rv7RgvluwbN3e/sd9etZha3WkiWO3j18lAz+ji2nlhjL8rN02ihEs17SD/yl8k233nPy2LR3vVm9l5C0AQhSL82TgMl/h43EwLZr/rgdjk8m/Ah6BeEKgmZrLBz9/EWdk18I/CV6G/9rx5jI4q8th4CsLDgclSJhw+l1OVS+3ldmpnSLM/TFt7o5xNGpo0wc9pF2Asi6a6Ly6M0gSOjNud49WykstzMPsO2OycnyaHehRD35M8eJi1LOp5QQ/0O+p7DYqdZZhkTAJjZJ4DLcwMnZrazmX3Ek633ugz4lLtfH7X1JsJOwEcXec7AfaunEWoz6yFM733E3duj+x6Mm4/Ur83Lgc97NtvsvpKQ77bNm7LSox4A0bTYHr7tZgEVMdAIUU7S18zCIqhJ9K00kXRr+lSi92zuRJpFalGmO2ha2AUsZwRhocp8d98/QVtHEkqGbYhujyVMK96eon+Z/C7N7N2E2ru3uPt/RHl5X/e+FXkG21ZmeXlmdiWhVN4lhIBgNjDN3d8bs53cKFEup3sEee+7wbzPSvw9NhI+GM71Qay7iFJ13k1IM+giBBRXecKNa/LaHUcYgTyOkPoxnlD1I1ZN96itk4FvEqpCPEGYWr7P3V+bpo9pWSjP2Ej4XXYTLWr3mIu3bYBypDmDDdCzPE+b2bmEqiBnufs/ovv2JlRxaHP3bw+2rX7tTiT8/vLPE0kW72fKMsqhzpoNUILVY5ReNbPXuPv90UxiobZWJ+xbZuu9rEAufaH7Bt1enQXUufJSRxPyUq8A/s9TFAK3wtvsurufkrK7iZVj5NbyNgtw970s/WYBVckyXGxRrbKcEo5O+Lld0LoI6VMXevwKAFhY8X+oe2+e/gjC9rOJUqCq/XeZRV6elWnRXrmY2QXuXvADRZHnTCTMKn4K+Jy7/6TEU4q1tZaw4PIWwkLoR1K09RfCaN+KKB3oeELlo7OStpmGhWoq/w18GHiI8KFod8KC4y/EnZ2xAfYxyIkboGchOkfM6D+CHKV/XJcwaPofwge3e+i7SLgurm1Wvfs1XObuZ0UpcP25J9zaPvobf13edaSBkEkQ+4OumV0DrGZr2uz7CQMWpybqWz0F1DkW6hueSjhJn0AoLXeNJ9hest8nNSOskj8j7i/PzH7h7u8pEAzHTvkox8itZbxZQBasDPnYZnYf2S22qEpm9gvCaGZWU8KZGGBkIc2GFKl/l+W4GGWdl5cVM5vCtqP5FS0JF41enUGodHMn8E13vzeDdlNVRYnayFWH+AthK+YeM7vD3ZPUAU/NzL5N2CTo3LxZnnGExdsbPf4Wzrl2D/JsUs1SsyLrA4odK9HmX4EpXsHUvoFYWNfyKcLM8FlRitL+7j7okn5m9ne21ukudA6Ls9FbZsUYzGyau2e6M3HUbibrvaK2diaUVj42uusmQuplopmyusqhzolOpJcDl0dT1u8mrEyPHVB72FFsKn0XOF6aoFtzoq+p80nzA2YLm1scHt28w/tulRtH1psFpOYZ515F7ibUoU692KKKXUvM/NhiMkyRedDMZhOmbyGUW3uwyONLyeJ3WY4t6VPn5ZnZfxU57O7+5TgdsrCAeQr9RumoUI1lM7uAcC68jzCT+HnPZhFnwa3MPX5VFIBnzWwM4SJ7uZk9QZilqZSTgP3yP0B6qObzceB+QnWZJC61UAN8IfAzT7CzYYaKbWsdd8vrnAcJG4FUXUBNNjWyFxA+VO1GSJ1a4u5rknTG3Y+NvmZx7f3f6O9nSdSnNPXl832OsEFPqvVekYlZDjTV5Qh1FqzwAsfPeIwKCeVmYVekrxO23jRCzuBn3f3KYs8boK0fAn8gfPA4nZCrOdLdz86sw1Ugmn6aSkjhSbXYYjjIMq3CwuKu+YSZECe8385J+iGwWn+XWeTlmVmh0ZYdCOXqmt19TMw+3evuB8Z5TpG2Uu9GGK0deJCtm1rlLkRpK79ktpV5NNO5iZBacSZh74DLK5VuY2Z/c/eCu80WOzbItvclpJK8m/D3tDDhjG6qdThm1k3erFr+IWCUu8cuC2uhfOjrCOeb/PNExVPDLMMa2dHM9Xujf6PYGsg+kLBv+ZtTAeAx15KZ2f5Rf/6N8IFoCWHToEzWjEUDpq/25HsG3EIoD5zbp+HZVP1RQF2YZbzAsUzpC38h5Js9Ed3elZDvl+SPMX+zACMsnvyyZ7BZQDWxDBZbVLvo4vhVQpmo3uoESd671Zwik8Xv0jLc+j2vzWzz8kIu9hxCMP0LQlpErA8h0QfmrNIpFhNSihLvRliOtLWo3dvd/fVpAhQLW2dPcPdb+93/RqDDow0lhpqZ/YpQy3dxv/vfD7wn7QfJKIA6lfCh93no3dVuULMYZvYOwkhpVa3DGShXPE4qRLlY2P3xzcCt7n6ohRrZS9KmFZnZIcCPCKkusTboiZ4/i1BtJfXmVHltvo4QXL8H+Je7H5OwnRvot2cAkHTPgNzg6YfY+mHyx+6+PElbdZnykZHTibbLNrPcAsfE+RBlSl8Y0e/C2kkYTYktGm36IhluFlCN6ilwLuLHhJPht4HjCSeLpO/d1GkV5Vo0k9Hvshxbv3+YkJd3ddTeTSTYeCAaffkUYXR0EWFBZ9IqGIuA28zsX6SsAe7uM6P+5XYj/C6hEsagrydZjVAVkMVW5t+h8EZgG6Nj70jTwRQ+AVxtofTlnYS/pcMJmzedlrTRKLf+Q4Ra+MsJuxyujn6/tzH4tKC5hO2lbwBw9zVmNilpv7JSDYFzf2Z2CeGcM5dQQGF3CxXFjgE+mLDNkUALIW55M3Aj4TyUxByy25wqtwD9FYQR7x0IQXBSO0apTh8lBL/nW99SxLF42BDvPELa33zgEAu5r4P+MJmjgHoAHrbJvsa2LnA8F5hgZt8n4QLHfNavtmncqZRIm5n9nvCHCWFaZVnC/uxH2KZ3En2neBKtxK025ZghqGJN7v4HM7MocJlrZjcTguxBsa3bvo8lfT3ScuQpY2Fr+/8hnKiNZL/LV7J16/f3kcHW71HQm2o6OVp4805CPvbBnnIHL8Jo1QcIuxv2lHhsqb5luRth1s4mVEWZSMhHvY4QiMYxqdAUsruvqmSA6GGjp9dHKTevJbzff+fuf0jZ9CWEHP8vuHsuBQd3fzQKNAar6tbhAJjZMYTANVc2L3eeqGRpugfYmvf8R8IHmbtIUCPbwsY1ZxA+EN1BGPw7y9Mtyv0nCXed7de3N0R9O5UwOHMFYVFtmrYz2zMgww+Tob0qnMmtWrZ1geO/JQ00LYPapvlTklFQcSzhJPEMIccv9pRklD5yKWHko3fjCN92Yw+pcmZ2KyHguZJwsu4ALvYYtaMHSqfIqYaRfjNrJ5wAM1nsYlu3fv86Yao61tbvWaaPRClnmwmL4LKoT/7HrD4cW4a7EVYjM2t398lxj9UDC1UPdk+Sk1qt63DM7H7CgFj/a1vFS08WyHv+GfBzd/9bjDauj553lSfbECa/rVzaxGsJG2Yl3pzKzP4JPEwIon/h7o+n6Vteu6n3DDCzc4BbCTNOlwJX5n+YjB7zAY9ZwlMB9RCzDGqbmtlvCaMJa/vdPw04391jT0laga2JpTaZ2eGEUeGdgC8TFlN9zd3/lKCtvYDHcrn00aKjCXGCqHLkKUft3po0D69fO5ls/W5mT1IkfaSSH0LM7HuE98NS+l4gE1X5sK27ER5LKNeVaDdCy2CBY9ROZlVRzGwJ8Ed3/99+938EeIu7/1vCblalrHJSq3UdTi6vvpJ9GIy0ec8Z9aHoLKbH2JzKzPYsY2pXKmb2DUJllQOAvwArCQH2bWk+lCigHmKWQW1TK16rc527H5ygX3MJI+bX0PeCm+oTr9Q2M1sFHO3uL0e3tyMsoDm8+DP7tFGWQNPM5hFSNn5FwiDR+m79foWnqMcbLerKTb9OIYP0kayY2Y8L3O3uHmsr+qitLHcjTL3AMWons6ooFkqRXkOoSpCboZtGqAZwmrv/K07fqp1FCzijnNTdczmpSfLrM+xTFulcubYuBhoI0/f554lEO/VlaYC85yXu/qtK9itflP88xlNsT59RP8qxZ8B2hL/townraY4CnvWEFZGUQz30nrX0tU1HFTnWlLBfuYvhZ/Puc6CiW6DK4JVpJLgxF0xHbbwcnYTiyDxPOTKOsFDsLXn3xa2t/AFCma79gNl5+Z+xL+Du3k1YYNSWlz5yg5nFTh/JmrvHXhRZxC15/y7xFLsRegYLHKN2vpn7v22tivIhwnTzNwd63gBtPQ4cHc0e5gYurnX3P8Zpp4akyknNW29RUMLzztfILp0rNzo9Le8+J8wUV0SZ8p4zY2Y/I6xH6CZ8qNzRzL7l7l+vYLe2j2Zf/0L4sJtFsn4T4TqyY/TvUcI6k0QUUA+RXN4zcAqhtum5hNX7ewKzYjb3ZzP72ABTkolynj3F9uxSNcpRseJJMzvZ3X8DYGanEBaiDVq5As0sgkR3T1QVZyAF0kfmU6HNU/KZ2SjCaO1r6bsYOvYIdW7k0rLZjTCzBY6WbVUUPGzMU2jb5HpzISE94xZ3/3OUkxqndvE3oq/vJHx4/ml0+wxgfcI+PZ7V2gh3Pz6LdjL2BULe82eqdBb4QA+VNM4kFDr4HCG2iB1Qm9kxvm0Jym3uG4QdCQuOU6dpmNllhHPhBsK1ciXwrTTnC1DKx5DJMu+5XFOSlt2OeFIB5Ug5sFAX9XLCqKERAvaZHtVmj9FOJnnKUVtlKcOXVpbpI1kzs18SdtN7HyGAOpOwGHpO0ScWbqt3N0J3T7UbYVYLHK1vVZTvevqqKBKTmd3k7m8sdV+JNt4Z/fc4UqZz5bU5Afhv4FXu/lYzOxA4yt1/GLet4cLM7iFsmvUzwizUjZZ8w5nV7n5oqftitJc6TcNCKeTxhMojKwkVPe72lAGxAuohUqa85/wpyXvSTElahjviSeVZyooVBdobQzhfbEjw3EwDTTN7h7svtSrbsMFCZY7ciG3qyhxZysuTXevuU6Lczd97gsofluFuhNFzUy9wtIyrogwnFjYE+xjbDqbEmr2wsAnU2939wej2XsAydz8gRhuFcv3zupQo5/93hNr8X3T315lZI3BXkmvucGFmswmj0n8hDITsAfzU3d8Qo42jCEHvOYQ9EXLGEQb+YgfnUbs7EoLoY6KvOwHr4s5YWsjve23Ux6MJ16inCSPegy4xm08pH0Mn87znjKckp1GlO+LJ4JUj5cDM3k6UKpDLMXb3C2M0kVmecvS9l0Zfq2rDhqzTRzK2Jfr6rJkdBPyL8P5IxN3/aX3rDXcP9NhiogWOexBS3yYRpnVj18mu8te+2v2akGazgoS/x8i5hFSuB6Pbk4BBV6+CrWlcA6UJxGnLzBrdvQsY7+6/MLPPR9+jy8IW5zIAd59PuHbkPBQN4MWxHTCGEGfmb2z3POEDeSxZp2lEsc7dZvYsoeb2c8BJhM2JFFBXuczznjOWekc8qax+I8EXZJFyYGaXAqOB44H/I5wI74jTRhnylMtShq/OXWahxvCXCOk2Y4BipeaKyWI3wpzMFjhmLctKE1VutLt/Lm0j7t5mZvsCr4nuut/dNxd7ThELgP4pAYXuK+aO6PEvmlkz0cyFmR1JBpuW1Lv8gZS8uwc9kOKhetONZrbQo/J5KSuG7AFsT8jv7yBs3PRsgnZyI/BHE0a5txDlYhPKFiZelKiUjyFSrrznrFgoDj+VcBJKuiOeVFA5Ug7yUgRyX8cAV7v7W0o+uUysius9DwdmNp6wOGg64bW/jrDDW+KNMrJY4Jg1y3jjoGplZhcBK9090S67ee2MBD5OSN+BsAX5D9x9y4BP2raNzNIE8tKcDiUE4wcRBo52Bd7Vfz2TbDXQQIq7fyRBW9tUDCGMLCdZ4JhJmoaZfYtoUaO7ZzaIqIB6iGWZ95wlG2BnPAUnw5tFmyKY2Z8Ii746CYs39q1gn6q23nO1sa07nxXkMXY+K4csFzhmzTLaOKjamdkGQs3uzYTRuqS7cf4fMJJQYQVCqle3u380RhvHAW8iBGCX5h3aACx190FXHzGzR4Dc+3sEYXTTCD9nd6Xf+9Usy4EUM1vj7lMtVAw5jKhiiKeoc25mryaMLh9NSNNodvedkraXFaV8DLGM854zE63inQDkNuy4w92fqGSfpCr81sx2IixuXE0Y+f6/SnbIq7jecxXKz138d+AHSRuyDHcjzPMd4ERCGgru/hczG3RViHLIqzSxysx+TgaVJqqZu48t/ahBObzfCPIfLWxgFqcv26QJpNBASG3qXz50dMp2h4Pc7pYbLdSI7wSSltYdGc1enEpI69piZrFHcsuVppElBdQCgJm9hxA03UA4AS0ws8+6+5UV7ZhUVF6QdJWF0o+j3L3i+YflWHxZjzxvq2AzO9VjbB1cQKGUjN7dCAnb3MeW1QLHDOWXME27cVBNMLOJhIWh+VU+borZTLeZ7ePuf4/a3Jvkv8uFhYKumFVpHou5eHrYM7NzCIHqb6KBlK+RfiDlB4R65H8BbjKzPQkLE+OaBFwJnJtlmkaWFFBLzhcJIwxPQG8ppRWEN7AMU2b2bqDNQ7m8zwKHmtmX3f2uCvYp88WXw0Sq/D7PcDfCPFkucMxElpUmaoGZ/Q/wb8C95JVMJezmG8dngeujKh9GCNCTbr70mbz/jwJOJ/6OwllsbDXcvJqtm6dMJ+QZf5SQo5xojURGFUNw96Lpa9VAOdQCbFsLO1qN+xfV6hze8nLojgW+StgV7Qvu/voSTy1nn6q23nM1sxSbKeS10X83wnlJy1ZF7WW+wDErhV6vLF7DamNmfwWmpKjIkd/W9sD+hN9lmiofhdq+0d0LrvUZ4PG7eHXuQlj1LIPNU/LaGjYb62iEWnLazOz3hMoJEEYsUq36lrqQG7F6O/B9d/+1mc2tYH9UczgGM1vH1g8dk80sV9kg9+Fj0AuDrO9uhAd7BrsRuvtThOC8auRVmti136LOcYS83HrzIGExYRbB72Fs3SDmdWaWaLfd6INbzoio3VfGaUPBdCpNhPf7jtG/R0mep7yQaGOd6PbfgJ8TFiPXFQXUw5yZTQYmuPtno8U4xxIutrcRtpyW4a3DzH5AGEH8n2gESgFt7Tgpw7Y+TQi6zgO+aCk26CnTAsesZLohRQ3YCKwxsz/Qd/FlrF1ybYDddoHYATWhvJoT3ltdwD8IufpSRpbx5imRYbOxjgJq+Q7wBehdvX41gJlNi469Y6AnyrDwHqAF+Ia7P2tmuxFyJaUGZFApIb+tLD9IlWWBYxaiike3EEbh0yzirBW/if6lldluu+6etKKEpJPZ5il5hs3GOsqhHubM7G53P2iAY33yqmX4MbN9gEfcfbOZvYlQ93mxuz9byX5J/chb4PgR4BfAN6uhZKeZ/TFmVYmaZWZNwB7u/tcUbfwSmJ1FBYYsNomRZLLaPCWvvcMIixLrfmMdBdTDnJm1u/vkuMdkeDCzNYSRp0nA7wkjWfu7+9sq2C2pA1kvcMyamX0T2Bf4JXkj6vVWh9rM3kFYbLydu+9lZlOBC32Qu+Sa2VLC6ONYMtptN4tNYiSdtJun5JXgy1WEyi1W/Wu9fjBSyof82cw+5u7/m3+nmX2ErVuky/DVE+W8vRP4jrsvMLOKlcyTZMzsBOBP7r6x0n2B8ixwLINdCBta5I9S12Md6rnAEYRRYNx9jZnFSbn4Rhn6lHqTGIkv481TciX4XgOsJdrqm7DAsS4XjGqEepiLStpcA7zM1gB6GmFhzmnu/q9K9U0qz8xuJ+TSfxF4h7v/o1iakFQnM1sMHEkIEG+O/t1SqRHhqPThZsKCM5U+rCAzu93dX29md7n7IdF9a9NsDR210QC8191jL243s9XAu/ttEnNlvZUsrDZm9i2iwDerzVOyLMFX7TRCPcy5++PA0VGh9VyQdK27/7GC3ZLq8SHgbOArUTC9F/DTCvdJYnL3mQDRNsLvAr4LvIoKXQNqofRhNOW9gDBa58AthBrZj1S0Y9m728zeBzSY2b6EzXVWDvbJZjYO+AQwkZAStjy6/VlCxY8k1aKy3CRGBqlMm6dkWYKvqmmEWkSkzpnZ+4E3AAcDTxGCw5vd/baKdqyKmdly4GfAT6K73g+c6e4zKter7JnZaMIMVG6L9d8DF7n7S4N8/q+BZwipAW8GdibMcM5x9zUp+lW2TWKk/AqU4PsTIe2satZJZE0BtYgMKBqx+ipwIGELYADcfe+KdUpiM7OngL8DlwLXu/v6yvao+pnZGnefWuq+WmVmowizT5MJI4Y/dPe423v3qQYVpXk8RagYsiFBW4cD/8ylGprZTMK24w8Bc7VZS+0wszZgPKGyx0rCB667syirWK2qftpNRCrqx8D3CbmuxxM2afhJ0WdI1XH38cCHCR+KvmJmd0QbccjAnjKz95tZQ/Tv/YQc9HqxiJDbug54K8kXF/ZWbHD3buAfSYLpyA8I63kwszcCFxPOOc8RFrBKjXD3FuBwtr6vPk0ognCdmdVlfXeNUIvIgMzsTnc/rN8o1M3u/oZK900GL8pzPQY4jpD6MZ4w/dpa0Y5VMTPbA7iEsIjKCaNsc7LcLKeS+v1NNwJ3JFn0F+16lysraISc2Y0k20HzL7nqHmb2XeBJd58b3a6b2YHhJm0JvlqhRYkiUsxLZjYCeMDMPknYPesVFe6TxHdL3r9L6nBhXebc/WEgdg3lGpI/styVt5V8LO7ekFmPwsLIxij15M3AWXnHFK/UkIxL8NUEvUFFpJhzgNGElf9fJtTk1ahmjcmVQDOzHdy90LbfEjGz/ypy2N29YtuiZ+x1ZvZ89H8DmqLblSxduAS4Mcr530Qo74iZTaZOt6uuY5OAK4FzsyrBV+2U8iEiUufM7Cjgh8AYd9/DzF4H/Lu7/0eFu1Z1zOzTBe7egbA1erO7jxniLg0rZnYksBtwXe7Dn5ntR3jvrq5o50SKUEAtItsws98UO55kO2GpnGiDnncBv8nbvEMb9JRgZmOBOYRg+hfAN939icr2SkSqkVI+RKSQo4B/EqZgbydMA0sNc/d/9suT7a5UX6qdme0CfAo4k1AN49B6rp8rIukpoBaRQl4JzADOAN4HXAsscfd7KtorSeqfZnY04NFWwLOB+yrcp6pkZl8H3kko03awu79Q4S6JSA1QyoeIFBXtWHYG8HXgQndfUOEuSUxmNh6YB0wnzDZcRygBV091lTNhZj3AZkLt9fwLZCUX64lIlVNALSIFRYH02wnB9CTgN8CP3L2jkv0SERGpNgqoRWQbZrYIOAj4HXCFu99d4S5JAsOoBJyISEUpoBaRbUTT3rl6xZr2rlEqASciMjQUUIuIDAMqASciUj6q8iEiUsdUAk5EpPwUUIuI1CmVgBMRGRpK+RARqVMqASciMjQUUIuIiIiIpDCi0h0QEREREallCqhFRERERFJQQC0iIiIikoICahGROmBmXzSze8xsrZmtMbPXm9k5ZjZ6EM8d1ONERKQwLUoUEalxZnYU8C3gTe6+2czGA9sBK4Fp7v5UieevH8zjRESkMI1Qi4jUvt2Ap9x9M0AUGL8LeBVwvZldD2Bm3zezVdFI9gXRfbMLPO4tZnabma02s1+ambYoFxEpQiPUIiI1Lgp4bwFGAyuAn7v7jf1Hns1sF3d/2swagD8As919bf7jotHtq4G3uvuLZvY5YHt3v7ACP5qISE3QTokiIjXO3V8ws8OANwDHAz83s/8s8ND3mNlZhHP/bsCBwNp+jzkyuv9WM4OQOnJbufouIlIPFFCLiNQBd+8GbgBuMLN1QGv+cTPbC/gMcLi7P2NmC4FRBZoyYLm7n1HeHouI1A/lUIuI1Dgz29/M9s27ayrwELABGBvdNw54EXjOzCYAb817fP7j/gQcY2aTo7ZHm9l+Zey+iEjN0wi1iEjtGwMsMLOdgC6gHTgLOAP4nZk95u7Hm9ldwD3Ag8Ctec+/rN/jPggsMbPto+PnAX8bmh9FRKT2aFGiiIiIiEgKSvkQEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKfx/K56ceUfEFXAAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "#Code task 16#\n", - "#Create a seaborn boxplot of the ticket price dataframe we created above,\n", - "#with 'state' on the x-axis, 'Price' as the y-value, and a hue that indicates 'Ticket'\n", - "#This will use boxplot's x, y, hue, and data arguments.\n", - "plt.subplots(figsize=(12, 8))\n", - "sns.boxplot(x='state', y='Price', hue='Ticket', data=ticket_prices)\n", - "plt.xticks(rotation='vertical')\n", - "plt.ylabel('Price ($)')\n", - "plt.xlabel('State');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Aside from some relatively expensive ticket prices in California, Colorado, and Utah, most prices appear to lie in a broad band from around 25 to over 100 dollars. Some States show more variability than others. Montana and South Dakota, for example, both show fairly small variability as well as matching weekend and weekday ticket prices. Nevada and Utah, on the other hand, show the most range in prices. Some States, notably North Carolina and Virginia, have weekend prices far higher than weekday prices. You could be inspired from this exploration to consider a few potential groupings of resorts, those with low spread, those with lower averages, and those that charge a premium for weekend tickets. However, you're told that you are taking all resorts to be part of the same market share, you could argue against further segment the resorts. Nevertheless, ways to consider using the State information in your modelling include:\n", - "\n", - "* disregard State completely\n", - "* retain all State information\n", - "* retain State in the form of Montana vs not Montana, as our target resort is in Montana\n", - "\n", - "You've also noted another effect above: some States show a marked difference between weekday and weekend ticket prices. It may make sense to allow a model to take into account not just State but also weekend vs weekday." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Thus we currently have two main questions you want to resolve:\n", - "\n", - "* What do you do about the two types of ticket price?\n", - "* What do you do about the state information?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.6.4 Numeric Features" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "Having decided to reserve judgement on how exactly you utilize the State, turn your attention to cleaning the numeric features." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 2.6.4.1 Numeric data summary" - ] - }, - { - "cell_type": "code", - "execution_count": 93, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
countmeanstdmin25%50%75%max
summit_elev330.04591.8181823735.535934315.01403.753127.57806.0013487.0
vertical_drop330.01215.427273947.86455760.0461.25964.51800.004425.0
base_elev330.03374.0000003117.12162170.0869.001561.56325.2510800.0
trams330.00.1727270.5599460.00.000.00.004.0
fastEight164.00.0060980.0780870.00.000.00.001.0
fastSixes330.00.1848480.6516850.00.000.00.006.0
fastQuads330.01.0181822.1982940.00.000.01.0015.0
quad330.00.9333331.3122450.00.000.01.008.0
triple330.01.5000001.6191300.00.001.02.008.0
double330.01.8333331.8150280.01.001.03.0014.0
surface330.02.6212122.0596360.01.002.03.0015.0
total_chairs330.08.2666675.7986830.05.007.010.0041.0
Runs326.048.21472446.3640773.019.0033.060.00341.0
TerrainParks279.02.8207892.0081131.01.002.04.0014.0
LongestRun_mi325.01.4332311.1561710.00.501.02.006.0
SkiableTerrain_ac327.0739.8012231816.1674418.085.00200.0690.0026819.0
Snow Making_ac284.0174.873239261.3361252.050.00100.0200.503379.0
daysOpenLastYear279.0115.10394335.0632513.097.00114.0135.00305.0
yearsOpen329.063.656535109.4299286.050.0058.069.002019.0
averageSnowfall316.0185.316456136.35684218.069.00150.0300.00669.0
AdultWeekday276.057.91695726.14012615.040.0050.071.00179.0
AdultWeekend279.064.16681024.55458417.047.0060.077.50179.0
projectedDaysOpen283.0120.05300431.04596330.0100.00120.0139.50305.0
NightSkiing_ac187.0100.395722105.1696202.040.0072.0114.00650.0
\n", - "
" - ], - "text/plain": [ - " count mean std min 25% 50% \\\n", - "summit_elev 330.0 4591.818182 3735.535934 315.0 1403.75 3127.5 \n", - "vertical_drop 330.0 1215.427273 947.864557 60.0 461.25 964.5 \n", - "base_elev 330.0 3374.000000 3117.121621 70.0 869.00 1561.5 \n", - "trams 330.0 0.172727 0.559946 0.0 0.00 0.0 \n", - "fastEight 164.0 0.006098 0.078087 0.0 0.00 0.0 \n", - "fastSixes 330.0 0.184848 0.651685 0.0 0.00 0.0 \n", - "fastQuads 330.0 1.018182 2.198294 0.0 0.00 0.0 \n", - "quad 330.0 0.933333 1.312245 0.0 0.00 0.0 \n", - "triple 330.0 1.500000 1.619130 0.0 0.00 1.0 \n", - "double 330.0 1.833333 1.815028 0.0 1.00 1.0 \n", - "surface 330.0 2.621212 2.059636 0.0 1.00 2.0 \n", - "total_chairs 330.0 8.266667 5.798683 0.0 5.00 7.0 \n", - "Runs 326.0 48.214724 46.364077 3.0 19.00 33.0 \n", - "TerrainParks 279.0 2.820789 2.008113 1.0 1.00 2.0 \n", - "LongestRun_mi 325.0 1.433231 1.156171 0.0 0.50 1.0 \n", - "SkiableTerrain_ac 327.0 739.801223 1816.167441 8.0 85.00 200.0 \n", - "Snow Making_ac 284.0 174.873239 261.336125 2.0 50.00 100.0 \n", - "daysOpenLastYear 279.0 115.103943 35.063251 3.0 97.00 114.0 \n", - "yearsOpen 329.0 63.656535 109.429928 6.0 50.00 58.0 \n", - "averageSnowfall 316.0 185.316456 136.356842 18.0 69.00 150.0 \n", - "AdultWeekday 276.0 57.916957 26.140126 15.0 40.00 50.0 \n", - "AdultWeekend 279.0 64.166810 24.554584 17.0 47.00 60.0 \n", - "projectedDaysOpen 283.0 120.053004 31.045963 30.0 100.00 120.0 \n", - "NightSkiing_ac 187.0 100.395722 105.169620 2.0 40.00 72.0 \n", - "\n", - " 75% max \n", - "summit_elev 7806.00 13487.0 \n", - "vertical_drop 1800.00 4425.0 \n", - "base_elev 6325.25 10800.0 \n", - "trams 0.00 4.0 \n", - "fastEight 0.00 1.0 \n", - "fastSixes 0.00 6.0 \n", - "fastQuads 1.00 15.0 \n", - "quad 1.00 8.0 \n", - "triple 2.00 8.0 \n", - "double 3.00 14.0 \n", - "surface 3.00 15.0 \n", - "total_chairs 10.00 41.0 \n", - "Runs 60.00 341.0 \n", - "TerrainParks 4.00 14.0 \n", - "LongestRun_mi 2.00 6.0 \n", - "SkiableTerrain_ac 690.00 26819.0 \n", - "Snow Making_ac 200.50 3379.0 \n", - "daysOpenLastYear 135.00 305.0 \n", - "yearsOpen 69.00 2019.0 \n", - "averageSnowfall 300.00 669.0 \n", - "AdultWeekday 71.00 179.0 \n", - "AdultWeekend 77.50 179.0 \n", - "projectedDaysOpen 139.50 305.0 \n", - "NightSkiing_ac 114.00 650.0 " - ] - }, - "execution_count": 93, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 17#\n", - "#Call ski_data's `describe` method for a statistical summary of the numerical columns\n", - "#Hint: there are fewer summary stat columns than features, so displaying the transpose\n", - "#will be useful again\n", - "ski_data.describe().T" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Recall you're missing the ticket prices for some 16% of resorts. This is a fundamental problem that means you simply lack the required data for those resorts and will have to drop those records. But you may have a weekend price and not a weekday price, or vice versa. You want to keep any price you have." - ] - }, - { - "cell_type": "code", - "execution_count": 106, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 82.424242\n", - "2 14.242424\n", - "1 3.333333\n", - "dtype: float64" - ] - }, - "execution_count": 106, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "missing_price = ski_data[['AdultWeekend', 'AdultWeekday']].isnull().sum(axis=1)\n", - "missing_price.value_counts()/len(missing_price) * 100" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just over 82% of resorts have no missing ticket price, 3% are missing one value, and 14% are missing both. You will definitely want to drop the records for which you have no price information, however you will not do so just yet. There may still be useful information about the distributions of other features in that 14% of the data." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### 2.6.4.2 Distributions Of Feature Values" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that, although we are still in the 'data wrangling and cleaning' phase rather than exploratory data analysis, looking at distributions of features is immensely useful in getting a feel for whether the values look sensible and whether there are any obvious outliers to investigate. Some exploratory data analysis belongs here, and data wrangling will inevitably occur later on. It's more a matter of emphasis. Here, we're interesting in focusing on whether distributions look plausible or wrong. Later on, we're more interested in relationships and patterns." - ] - }, - { - "cell_type": "code", - "execution_count": 108, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA28AAAJOCAYAAAAgSD/bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACQeklEQVR4nOzdebwcVZn/8c/XsO9gJEKIBDWiIIqKCOMWQWRzhHFEQURwcNARBplBJaijuKDR36AouKEgKGsUEUaUReCKqCyCILsECCQkEHYIIhp4fn+c06Rup/ve7nt7qer7fb9e/brdVdVVT/V9+vQ5VadOKSIwMzMzMzOzcntOvwMwMzMzMzOz0bnxZmZmZmZmVgFuvJmZmZmZmVWAG29mZmZmZmYV4MabmZmZmZlZBbjxZmZmZmZmVgFuvJnZciR9V9L/jHMdMyUtGMP7TpT0xfFs28zMzMZH0qaS/iTpcUkH92ibn5T0gxaXPULSyd2OqWzceCsZSXtLuqAL650n6a2dXq9Vn6T9JF1WnBYRH46IL/QrJrMqlFk+0GCdUoV8twnpE8BQRKwZEd8cywokDUn6YN20kPSEpCWFxycAIuJLEfHBxmtre9sD+b1aod8B2HARcQpwSu21pABmRMTc/kVlg0pSpcoASStExNJ+x2Fm1isu96yPNgZO79K6X+m67dj4zJtZBUmaJemnddO+IembktaWdLykRZLukfRFSZPyMvtJ+p2kr0t6CDgD+C6wbT7y9UhebtgZBUm7SbpW0mOSbpe0U57+AUk35y4Vd0j60Bj25VWSrsnrOANYpTBvpqQFkg6TdC/wQ0krSzpa0sL8OFrSynXLf1LSA/mo297txmRm1iuSfgy8APi/2hmIfGZif0l3Axfn5X4i6V5Jj0q6VNLmhXWcKOnbkn6V1/E7Sc/P5ePDkm6R9KrC8ofl34fHJd0qafue77iVmqSLgbcAx+ac+mjuQvmYpPmSjigsu4qkkyU9KOkRSVdJmiLpSOCNhXUc28J2h3WFlPR+SXfldf9Pg7NpK0n6Uc7lGyVtld+33PeqM59M/034xlujAqxBxXXYtTs5cT4u6c9Kp32Pz0n6q7yeX0taNy87PRfCH8jJ/rCkD0t6bX7/I8VkVqELm6RL8+TrcuK9Z5R9eXuuYD8i6feSXtFkuecoVf5vz1+GOZLWy/POk3RQ3fLXSXpnmx+tdddpwC6S1gJQapy9GzgVOAlYCrwYeBXwNqDYBeF1wB3A+sD7gA8Df4iINSJinfoNSdoa+BHwcWAd4E3AvDx7MfB2YC3gA8DXJb261Z2QtBLwc+DHwHrAT4B/rVvs+XnexsABwKeAbYAtgVcCWwOfrlt+MjAV2Bc4TtKmrcZkpfJaSTflcvOHuYKwrqRfSLo/T/+FpI1qb8hl6B25LL5Thca7pH9TOtjwsKTzJW08WgCSXirpQkkP5d+Id4+wbMMyWCMcbBnbx2KDJCL2Ae4G/jki1gDm5FlvBl4G7Jhf/wqYQSq7r6HQSyd7N6ksnAw8BfwhLzcZ+CnwNUjXMQEHAa+NiDXz+ud1YdeswiJiO+C3wEE5L68D3k+qB+wK/Iek3fPi+wJrA9OA55LqFU9GxKeK64iIYfXL0UjaDPg2sDewQd7G1LrF3kE6O7gOcA5wbI5/2PcqIr7azrbLbEI33sZZgP0rsAPwEuCfSYXqJ0mF5HOA+gs7X0cqdN8DHE2qgL4V2Bx4t6Q3128gIt6Un74yJ94ZI+zLq4ETgA+RvjjfA85RPiNR52Bgd9IPw4bAw8C38rxTgb0K692MVGk+t9m2rfci4i7Sj/LuedJ2wF+BO4GdgUMi4omIWAx8Hdiz8PaFEXFMRCyNiCdb2Nz+wAkRcWFEPBMR90TELTmOcyPi9kh+A1xAOsrWqm2AFYGjI+IfEfFT4Kq6ZZ4BPhsRT+V49wY+HxGLI+J+4HPAPnXv+Z+8/G9Iudu0wm2ltjepXH4Rqaz9NKl8/SGpXHoB8CT5x1rS6sA3gZ1zmf5PwLV53u6kMvqdwPNIFYrTRtp4Xt+FpHJxfVLZ+G0VzngUlh2pDB7pYItZM0fkcvxJgIg4ISIej4ingCOAV0pau7D8WRFxdUT8DTgL+FtE/Cginib1sqideXsaWBnYTNKKETEvIm7v2V5ZJUXEUERcn+sBfyaVa7W66z9I5d6LI+LpnIePjbLKa/KBrtpjxwbLvAv4v4i4LCL+DnwGiLplLouIX+Y8/zHpoO5Am9CNN8ZXgB0TEfdFxD2kSsAVEfGnXKiexbJCsuYLEfG3iLgAeAI4LVc+a++vX75d/w58LyKuyF+ck0hH3rZpsOyHgE9FxILCj8C7lK5/OgvYsnBEem/gZ3k5K5diQ/u9+fXGpMbQolqBSKpErl943/w2tzMNaPi9kLSzpMvzWYlHgF1IBzBatSFwT0QUC+O76pa5P1dGiu+5q275DQuvH46IJ0aYb9VxbETMj4iHgCOBvSLiwYg4MyL+GhGP5+nFg1/PAC+XtGpELIqIG/P0DwFfjoib8/VDX2J4WdfI24F5EfHDfLDjGuBMUoWiXtMyuNnBloi4fAyfiU0cz5bVkiZJmp17zDzGsgPNxfL2vsLzJxu8XgMgX2d0COm3f7Gk0yW5jLQRSXqdpEtyr4dHSWfXavn3Y+B84HSlyxm+KmnFUVb56ohYp/A4v8EyG1L4HkTEX4EH65a5t/D8r8Aqqtj1/O2a0I23cRZgLRWS41i+XRsDhxaPYpAq3Y32Z2PgrMJyN5MaslNyZehclp2p2ZPlu2ZYOfwEmJm7jP0LqfE2n1RhnFwoENeKiOKZgvqjVvWv680nnfkYJp9ROBP4X1LurAP8ElAb+7AImCqp+J4XjBLfQlIOF5dfWHi9bj5j0my+VUfxQMNdwIaSVpP0PaVrIB4DLgXWkTQpN9rfQ6pULJJ0rqSX5vdvDHyjUO49RMrV+i44RRsDr6srV/cmdc1ttOxIZXCjgy1mNY3K4eK09wK7kXrsrA1Mz9PbKW+XrTji1Ih4AylvA/jKWNZjE8qppG6J0yJibdL18gLIPWc+FxGbkXo8vJ3UxRJGr2OMZBFQ7Ba/KukMX6vGs+3SmtCNN2hagD0BrFZYrNEPddnMB46sO4qxWkQ06hY0n9StqLjsKvksIKRT4XtJ2hZYFbikR/tgbchdBodIXcjuzGcUFpG6Lh4laS2l6xtf1KhbbsF9wEb5+rNGjgc+oHQ96HMkTc0V4pVIZ67vB5ZK2pl0fV07/kC6Pu9gSSsoXVu59SjvOQ34tKTnSZpM6kZRf5+Xz0laSdIbST8iP2kzLiuHaYXntUb4ocCmwOsiYi3SNZiwrBJxfkTsQLo+4hbg+3n+fOBDdeXeqhHx+xG2Px/4Td171oiI/2iy7EhlcKODLWY19wEvHGH+mqQDcw+S6idfGuuGlO7dtV0+APc30gHkp8e6Ppsw1gQeioi/KV0L/97aDElvkbRF7hL+GKkbZS2nRsvtkfwU+GdJ/5TrKJ+jvQMW49l2aU3oxtsIBdi1pOsT1pP0fNLZuX5pNfG+D3w4n9aWpNUl7SppzQbLfhc4stZdKFeCdyvM/yWpMft54IyIeGac+2DdcyrpSGyxIvh+UsPqJtL1jD8lVWSbuRi4EbhX0gP1MyPiSvJgJMCjwG+AjfNZ2oNJF9c/TCrIz2kn+NyH/Z3Afnkd7wF+Nsrbvgj8EfgzcD2pO1rxXlv35nUtJJ01/nDka/Sscg6UtJHSgEqfJF23syaprH4kT/9sbWGlgaPekc+8PgUsYVkF4rvA4bXr1ZRGZd1jlO3/AniJpH0krZgfr5X0sgbLjlgGNzrYMqZPxAbVl0kHpR6hcbfcH5HOPt9DKtvH0+V2ZWA28ACpvFyf9P0yG8lHgM9Lepx00HROYd7zSXWNx0i9uX7DsoOq3yBdmvOwhg/SdJ2G3+ft6PoN5m7v/0kakGQR8DhpoLRWL+V59nsl6WMtvqf8ImLCPoBXAFeSkuEh0g/1hqShys8gJeGfgf8CFhTeNw94a+H1yaQLi2uvPwj8Oj+fTjqjt0Jh/gJgZt37P52f70e6+LI278OkhH0EePco+7MTabCHR/J7fgKsWR8zqdH+38Cted9vB75Ut67jc9yv7ff/yQ8/Wn0AM4vfVT+q+8hl1uGkiuojpFFUV8tl9BCpYfYX0rVsQbpv6QakSsOj+T1DwGaFde5DavA/RjpTdkILcWxK6kp+P+msx8XAlnneicAXC8s2LYML2w/g4/3+fP3www8/qvYgXWK0FNik37H086H8YZiZVZ6kmcDJEbHRKIuamZlZyUn6Z+AiUnfJo0ijt786JnADZkJ3mzSz7pP0grquEcVH/eAkZmZmZjW7kS6DWEi65daeE7nhBvjMW5VI+iSN+6X/NiJ27nU8ZmZVlwe1+VWjeZFuTGtmZlYabryZmZmZmZlVQCluYjd58uSYPn36s6+feOIJVl999eZvKKmqxg3ljf3qq69+ICKe1+84RjIo+duOQd/HTu1f2fO3PndrBv3/C97H0ZQ9d2Fi52+9ibjP0Hy/y56/zt3hJuJ+jyt3+z1iSkTwmte8JoouueSSqKKqxh1R3tiBP0YJcnSkx6DkbzsGfR87tX9lz9/63O30/peZ93FkZc/dmOD5W28i7nNE8/0ue/46d4ebiPs9ntwddcASSSdIWizphsK09SRdKOm2/HfdwrzDJc2VdKukHVtugpqZmZmZmVlTrYw2eSLp3jVFs4CLImIGafjOWQCSNgP2BDbP7/l2vtu6mZmZmZmZjcOo17xFxKWSptdN3o10M1xIN04dAg7L00+PiKeAOyXNBbYG/jCW4KbPOrft98ybvetYNmXWce3mr3PXyuL6ex5lP+evVVS7+evctbJw2WutGOuAJVMiYhFARCyStH6ePhW4vLDcgjxtOZIOAA4AmDJlCkNDQ8/OW7JkCUNDQxy6xdK2Ayuup9dqcVdRlWM3MzMzM5sIOj3apBpMa3gvgog4DjgOYKuttoqZM2c+O29oaIiZM2e2ffQBYN7eM0ddpltqcVdRlWM3MzMzM5sIWrnmrZH7JG0AkP8uztMXANMKy21EuiO6mZmZmZmZjcNYG2/nAPvm5/sCZxem7ylpZUmbADOAK8cXopmZmZmZmY3abVLSaaTBSSZLWgB8FpgNzJG0P3A3sAdARNwoaQ5wE7AUODAinu5S7GZmZmZmZhNGK6NN7tVk1vZNlj8SOHI8QZmZmZmZmdlwY+02aWZmZmZmZj3kxpuZWQlJOkHSYkk3FKatJ+lCSbflv+sW5h0uaa6kWyXt2J+ozczMrJvceDMzK6cTgZ3qps0CLoqIGcBF+TWSNgP2BDbP7/m2pEm9C9XMzMx6wY03M7MSiohLgYfqJu8GnJSfnwTsXph+ekQ8FRF3AnOBrXsRp5mZmfVOp2/SbWZm3TMlIhYBRMQiSevn6VOBywvLLcjTliPpAOAAgClTpjA0NLT8RlaFQ7dY2lZgjdZTZkuWLKlczO2aCPtoZjbRuPFmZlZ9ajAtGi0YEccBxwFstdVWMXPmzOWWOeaUsznq+vZ+Hubtvfx6ymxoaIhG+z5IJsI+mplNNG68mZXE9Fnntv2eebN37UIkVmL3Sdogn3XbAFicpy8AphWW2whY2PPozMzMrKt8zZuZWXWcA+ybn+8LnF2YvqeklSVtAswAruxDfGZmZtZFPvNmZlZCkk4DZgKTJS0APgvMBuZI2h+4G9gDICJulDQHuAlYChwYEU/3JXAzMzPrGjfezMxKKCL2ajJr+ybLHwkc2b2IzMzMrN/cbdLMzMzMzKwC3HgzMzMzMzOrADfezMzMzMzMKsCNNzMzM+sYSdMkXSLpZkk3Svponr6epAsl3Zb/rlt4z+GS5kq6VdKO/YvezKzc3HgzMzOzTloKHBoRLwO2AQ6UtBkwC7goImYAF+XX5Hl7ApsDOwHfljSpL5GbmZWcG29mZmbWMRGxKCKuyc8fB24GpgK7ASflxU4Cds/PdwNOj4inIuJOYC6wdU+DNjOrCN8qwMzMzLpC0nTgVcAVwJSIWASpgSdp/bzYVODywtsW5GmN1ncAcADAlClTGBoaWm6ZKavCoVssbTnGRuuomiVLlgzEfrRrou63TWxuvJmZmVnHSVoDOBM4JCIek9R00QbTotGCEXEccBzAVlttFTNnzlxumWNOOZujrm+9ejNv7+XXUTVDQ0M0+iwG3UTdb5vY3G3SzMzMOkrSiqSG2ykR8bM8+T5JG+T5GwCL8/QFwLTC2zcCFvYqVrMiSSdIWizphsI0D7ZjpeHGm5mZmXWM0im244GbI+JrhVnnAPvm5/sCZxem7ylpZUmbADOAK3sVr1mdE0kD5xR5sB0rDTfezMzMrJNeD+wDbCfp2vzYBZgN7CDpNmCH/JqIuBGYA9wEnAccGBFP9yd0m+gi4lLgobrJHmzHSsPXvJmZmVnHRMRlNL6ODWD7Ju85Ejiya0GZjU8pB9sBD7hTVePZZzfebMKSNA94HHgaWBoRW0laDzgDmA7MA94dEQ/3K0YzMzMrrb4OtgMecKeqxrPPbrzZRPeWiHig8LrWr322pFn59WH9Cc2sOqbPOret5efN3rVLkZiZddx9kjbIZ9082I711cA13lyBsHHaDZiZn58EDOHGm5mZ2URWG2xnNssPtnOqpK8BG+LBdqwHBq7xZtaGAC6QFMD3cpeGZv3ahxmp73qtH3O7/dbHol99xAe9f/qg75+ZmTUm6TTSQdzJkhYAnyU12uZI2h+4G9gD0mA7kmqD7SzFg+1YD7jxZhPZ6yNiYW6gXSjpllbfOFLf9Vo/5v3aPAs8Fv3q6z7o/dMHff/MzKyxiNirySwPtmOlMK7Gmwd8sCqLiIX572JJZ5GG923Wr72U3E3YzMzMbOLoxH3e3hIRW0bEVvl1wxsZmpWJpNUlrVl7DrwNuIHmN5E1MzMzM+urbnSb9IAPVgVTgLMkQfoenBoR50m6igb92s3MzMzM+m28jTcP+FBQ5UEOqhz7WETEHcArG0x/kCb92s3MzMzM+mm8jTcP+FBQ5UEOqhy7tc7XyJmZmZlV17iueSsO+AAMG/ABoAoDPpiZmZmZmVXBmBtvHvDBzKw/JM2TdL2kayX9MU9bT9KFkm7Lf9ftd5xmZmbWWeM58zYFuEzSdaS7yZ8bEeeRbmS4g6TbgB3yazMz6yyP9GtmZjbBjPmaNw/4YGZWKh7p18zMbMB141YBZmbWXV0Z6bdmyqp0fbTffo9uOxFG2J0I+2hmNtG48WZmVj1dGem35phTzuao67v789DJkX7HYiKMsDsR9tHMbKKZ8I03D51uZlVTHOlX0rCRfvNZN4/0a2ZmNoDGdasAMzPrLY/0a2ZmNnFN+DNvZmYVMwU4SxKkMvzUiDhP0lXAHEn7A3cDe/QxRjMzM+sCN97MzCrEI/2amZlNXO42aWZmZmZmVgFuvJmZmZmZmVWAu02aWVPNRmM9dIul7NdgnkdjNTMzM+seN95KyLcvMDMzMzOzeu42aWZmZmZmVgFuvJmZmZmZmVWAu02aWce02+UX3O3XzMzMrFVuvA0AXyNnZtZ7LnvNzKzX3HgzMzNjbGeOzczMesmNtwmoUQWl2dDvNT5ibGZmZmbWXx6wxMzMzMzMrALceDMzMzMzM6sAd5vsgUG4jsIX5puZmZmZ9Zcbb2ZmZj3QiwN5PnBmZjbY3G3SzMzMzMysAnzmzcz6yl1yrVtGyq3RRtg1MzMrIzfe2uTKgFl/ubFnZmZmE5Ubb2Zm1nODMJCTmZlZr7nxZl3hsyNmZmZmZp3lxpuZmZlZG3yA0sz6xY03MzOzAVFsVLRyHbYbFWZm1eLGm5lZwfRZ57Y9+JArwGZmZtYLXbvPm6SdJN0qaa6kWd3ajlmnOXetypy/VlXOXasy56/1SlfOvEmaBHwL2AFYAFwl6ZyIuKkb2zPrFOfu4JlIoxo6f62qnLvjc/09j7Z9qyL3GOgc56/1Ure6TW4NzI2IOwAknQ7sBjiJreycu1Zlzl+rKuduyXmQlhE5fye4dr8fJ+60+pi31a3G21RgfuH1AuB1xQUkHQAckF8ukXRrYfZk4IEuxdY1B1c0buh/7PpK01kb9zAMaCF3YTDztx39zpdua3f/qpS/o+RuzUD/f2Hwcxha28cq5S50J39H+Aw6pgfbaDufux1TLz5Xmu936fK3W2Vvjz7nbhv48rjeW74y9tztVuNNDabFsBcRxwHHNXyz9MeI2KobgXVTVeOGasfeYaPmLgxm/rZj0Pexwvs3rrL32ZVUd/9b5n0snXGXvc+uqFr73RETcZ+hVPvtsnccJuJ+j2efuzVgyQJgWuH1RsDCLm3LrJOcu1Zlzl+rKueuVZnz13qmW423q4AZkjaRtBKwJ3BOl7Zl1knOXasy569VlXPXqsz5az3TlW6TEbFU0kHA+cAk4ISIuLGNVYx4WrnEqho3VDv2julA7sLE+CwHfR8ruX8dyl+o6P63yftYIh3MXajQfnfQRNxnKMl+u+wdt4m432PeZ0Us16XczMzMzMzMSqZrN+k2MzMzMzOzznHjzczMzMzMrAJK1XiTtJOkWyXNlTSr3/EASJon6XpJ10r6Y562nqQLJd2W/65bWP7wHP+tknYsTH9NXs9cSd+U1GhY2fHGeoKkxZJuKEzrWKySVpZ0Rp5+haTpnd6HqitjDrdC0jRJl0i6WdKNkj6ap5cy18dC0iRJf5L0i/x6YPatU6qavzVVKq9b5XK9dVXP37FoVnZPBPVlepWMlqtKvpnn/1nSq/sRZye1sM8zJT2ay+9rJX2mH3F2UqPyu27+2P7PEVGKB+kCz9uBFwIrAdcBm5UgrnnA5LppXwVm5eezgK/k55vluFcGNsn7MynPuxLYlnQvkF8BO3ch1jcBrwZu6EaswEeA7+bnewJn9Pv/U6ZHWXO4xdg3AF6dn68J/CXnSClzfYz7+N/AqcAv8uuB2bcOfT6Vzd/CPlSmvG5jn1yut/Y5VT5/x7jfDcvufsfVo30fVqZX5dFKrgK75O+pgG2AK/oddw/2eWbV/pct7Pdy5Xcn/s9lOvO2NTA3Iu6IiL8DpwO79TmmZnYDTsrPTwJ2L0w/PSKeiog7gbnA1pI2ANaKiD9E+m/9qPCejomIS4GHuhhrcV0/BbYftDMP41SlHB4mIhZFxDX5+ePAzcBUSprr7ZK0EbAr8IPC5IHYtw6qbP6OotL/Z5frLRvU/B3RCGX3QGtSpldFK7m6G/CjSC4H1snf46qaqN/PRuV30Zj+z2VqvE0F5hdeL6AcBVAAF0i6WtIBedqUiFgEqeAE1s/Tm+3D1Py8fnovdDLWZ98TEUuBR4Hndi3y6ilrDrcld5t6FXAF1cr1kRwNfAJ4pjBtUPatUwYhf6teXrfK5fryBiF/x6Wu7B50R7N8mV4VreTqoOVzq/uzraTrJP1K0ua9Ca2vxvR/7sp93sao0ZG+MtzH4PURsVDS+sCFkm4ZYdlm+1DGfRtLrGXcjzKp/OcjaQ3gTOCQiHhshAPwlcl1SW8HFkfE1ZJmtvKWBtNKuW8dNgj7N6jldasmcrk+KPsxJvVld7/j6aYxlOll00quDlo+t7I/1wAbR8QSSbsAPwdmdDuwPhvT/7lMZ94WANMKrzcCFvYplmdFxML8dzFwFunU732105r57+K8eLN9WJCf10/vhU7G+ux7JK0ArM3Ip4MnmlLmcKskrUj68T8lIn6WJ1cp15t5PfAOSfNIXTW2k3Qyg7FvnVTp/IWBKK9b5XJ9eZXP37FqUnYPsmZlelW0kquDls+j7k9EPBYRS/LzXwIrSprcuxD7Ykz/5zI13q4CZkjaRNJKpAunz+lnQJJWl7Rm7TnwNuCGHNe+ebF9gbPz83OAPfPoXZuQjhhcmbu1PC5pm3wtwfsL7+m2TsZaXNe7gIvz9ROWlC6HW5X/18cDN0fE1wqzqpTrDUXE4RGxUURMJ/1PLo6I9zEA+9Zhlc1fGJjyulUu15dX6fwdqxHK7oE1QpleFa3k6jnA+/NohNsAj9a6SlfUqPss6fm1620lbU1qozzY80h7a2z/51ZGNenVgzTqyl9II9J8qgTxvJA0Is51wI21mEjXA1wE3Jb/rld4z6dy/LdSGKEM2IpUkbgdOBZQF+I9DVgE/IPUmt+/k7ECqwA/IV0EfyXwwn7/j8r2KFsOtxH3G0in6v8MXJsfu5Q118exnzNZNtrkQO1bhz6fSuZvjr1S5XUb++VyvfXPqrL5O459blh29zuuHu7/s2V6lR6NchX4MPDh/FzAt/L864Gt+h1zD/b5oFx2XwdcDvxTv2PuwD43Kr/H/X+uFd5mZmZmZmZWYmXqNmlmZmZmZmZNuPFmZmZmZmZWAW68mZmZmZmZVYAbb2ZmZmZmZhXgxpuZmZmZmVkFuPFmZmZmZmZWAW68mZmZmZmZVYAbb22QtKmkP0l6XNLBPdrmJyX9oBfbssHSj3ztBkkzJS3odxxm9STNk/TWfsdhE4ekF0haImlSC8tOlxSSVuhFbDaxSTpR0hfHuY79JF02wvwhSR8czzYGgRtv7fkEMBQRa0bEN8eygkaJJ2k3SddKekzSA5IukjQdICK+FBETPlFtTLqVr5L0cUm3SXpS0t2SviRppY5EbWY2QY12QCAi7o6INSLi6V7GZWbl4cZbezYGbuzkCiW9GPgRcCiwNrAJ8G3gmU5uxyakjudr9k3gAOD9wJrAzsBbgdO7sC0zMwN8Bs3MwI23lkm6GHgLcGzusvDR3CXtMUnzJR1RWHYVSSdLelDSI5KukjRF0pHAGwvrOBbYErgzIi6K5PGIODMi7s7rOkLSyfn5eyTdIWmt/HpnSfdKel5+/W+Sbpb0sKTzJW2cp0vS1yUtlvSopD9LennvPj3rtW7lq6QZwEeAvSPiDxGxNCJuBP4V2FXSm/M6h52xq+8KIekbOY7HJF0t6Y2Feavm7hcPS7oJeG3dvh0m6Z7cHfRWSdt34zO06pL0KknX5Bw5Q9Lpkr7YqEtO7lb24vx812bfkzx/H0l35e/Kp3q4SzYBSPox8ALg/3KZ+4mcn/tLuhu4WHVdIXNZ+2VJV+bf97Mlrddk/WtLOl7SolyGflEtdL80a6S+nAVWKcz7d0lzJT0k6RxJG+bpy3Xlra8vpEk6JufzLSP9xjer9w46N95aFBHbAb8FDoqINYDrSGce1gF2Bf5D0u558X1JZ9GmAc8FPgw8GRGfKq4jIg4CrgFemhtXb5G0xggxnAH8AfimpOcCxwMfjIj787Y/CbwTeF7ezmn5rW8D3gS8JMf7HuDB8X4mVl5dzNftgQURcWXd9uYDl5NyrRVXkQ5crAecCvxEUq3g/yzwovzYMccHpOv4gIOA10bEmnn+vBa3aROAUvfdnwM/JuXXT0gHF1rxBE2+J5I2A74D7ANsSPqubNS5yG2ii4h9gLuBf87l9pw8683Ay0jlXSPvB/6NlJdLSb0jGjkpz38x8CpSee3LMqxtI5WzkrYDvgy8G9gAuIv2eua8DrgDmEyqD/ys0QGJUeq9A82NtzGKiKGIuD4inomIP5MS5s159j9IP+wvjoinI+LqiHisyXruAGYCU0kF9QP5rEOzRtyBwHbAEPB/EfGLPP1DwJcj4uaIWAp8CdgyH4X4B6l720sB5WUWjesDsErpVL6SCtNmubOIVIC2Es/JEfFgPnN3FLAysGme/W7gyIh4KDcKixWRp/Oym0laMSLmRcTtrWzTJoxtgBWBoyPiHxHxU9LBglGN8j15F/CLiLg0Ip4C/gd3b7feOCIinoiIJ5vM/3FE3BART5Dy8t31Z9QkTSF1cT8kr2sx8HVgz65GboNqpHJ2b+CEiLgml5WHA9sqj+XQgsWF9Z4B3Eo6mFZvpHrvQHPjbYwkvU7SJZLul/Qo6WzF5Dz7x8D5wOmSFkr6qqQVm60rIi6PiHdHxPNI3dTeBDTskhMRj5COcLwcOKowa2PgG0rd3h4BHgIETI2Ii4FjgW8B90k6TrnrpU0MHczXB0hH0hrZALi/xXgOzV0dHs35unYhng2B+YXF76o9iYi5wCHAEcDi3B1uw1a2aRPGhsA9ERGFaXc1W7holO/JsLzMFWX3YLBemN/G/LtIlerJdctsnKcvKtQTvges36kgbUIZqZzdkOG/20tIZeXUFtfdaL2Nfueb1ntb3E5lufE2dqcC5wDTImJt4LukpCEfLfhcRGwG/BPwdlK3BoBotLKaiLgK+BmpcbYcSVuSukecxvAzEvOBD0XEOoXHqhHx+7zeb0bEa4DNSd0nPz6Gfbbq6lS+XgxMk7R1caKkaaQjcb/Jk54AViss8vzCsm8EDiOdYVs3ItYBHq3FQzqDN63w3hcUtxURp0bEG0gFdwBfaWH/beJYBEyVpMK0Wg4Ny0tJz2e4pt8T6vJS0mqkM9ZmndSojjBivYHly8t/kA60Fc0HngImF+oIa0XE5mMP1SawkcrZhaTfZwAkrU4qK+8hlcHQpH6QNVrvwgYxjFjvHWRuvI3dmsBDEfG3XJF9b21GvnZti9xt4TFSQVob1vc+4IWFZd+QL+xcP79+KfAO0vVDw+Rrgk4m9fH9ACnBP5Jnfxc4XNLmedm1Je2Rn782H1FekfTF+VshHpsYOpKvEfEXUq6dImkbSZNyzp0J/B74dV70WuCdklZTGgxi/7pYlpLO0q0g6TNA8UzwHFIurytpI+A/C7FuKmk7SSuT8vhJnMs23B9I+XWwpBUkvROoHWy4Dthc0pa5PD2i7r1NvyfAT4G35zJ7JeDz+DfUOm9Ymdui90naLB9Q+Dzw0/pbCeRLJS4AjpK0lqTnSHqR8iBTZm0aqZw9FfhALmdXJnVnvCJf5nA/qRH3vlx/+DfS9e1F6+f1rpjrsS8Dftkghqb13kHnH56x+wjweUmPA59h2YXFkI4i/JRUEb6ZdDbi5DzvG8C7lEbG+SbwCKmxdr2kJcB5wFnAVxts88ukwSK+k/sRvw/4oqQZEXEW6QzE6ZIeA24g9W+HVDH+PvAw6fTzg8D/jv8jsArpVL5CGjDkB3mZv5Jy7S5g94ioXQP0deDvpIrIScAphe2dD/wK+Et+398Y3u3nc3n6naTKxo8L81YGZpOOKt9LKuQ/2d5HYYMsIv5OuoB9P1KZ9x5Sb4bawYfPkw4y3AbU3wy26fckj6p6IKlisiiv2zePt077MvDp3A3sXS2+58fAiaQycRXg4CbLvR9YCbiJlL8/pXk3eLOmRilnLyJde3kmqax8EcOvrfx3Uu+vB0m9werPlF0BzCD9zh8JvCsiluuiPkq9d6BpeLdSM7P2SPo8sDvwpnxNplmpSDqRdODr0/2OxayTJA0BJ0fED/odi5n1hm/4aGbjEhGfkbSYdM3bef2Ox8zMzGxQufFmZuMWEcf2OwYzMzOzQeduk2ZmZmZmZhXgAUvMzMzMzMwqoBTdJidPnhzTp09fbvoTTzzB6quv3vuA2uAYO6NZjFdfffUD+eblpeX87a4qx1j2/K1i7pY1trLGBWOLrey5C9XL37LGBeWNbaxxlT1/q5a7zTjezmspdyOi74/XvOY10cgll1zScHqZOMbOaBYj8McoQY6O9HD+dleVYyx7/lYxd8saW1njihhbbGXP3ahg/pY1rojyxjbWuMqev1XL3WYcb+e1krvuNmlmZmZmZlYBpeg22cz19zzKfrPObes982bv2qVozNrTbv46d60sXPZalbnstapy2Wut8Jk3MzMzMzOzCnDjzczMzDpK0gmSFku6oTBtPUkXSrot/123MO9wSXMl3Sppx/5EbWZWfm68mZmZWaedCOxUN20WcFFEzAAuyq+RtBmwJ7B5fs+3JU3qXahmZtXhxpuZmZl1VERcCjxUN3k34KT8/CRg98L00yPiqYi4E5gLbN2LOM3MqqbUA5aYmZnZwJgSEYsAImKRpPXz9KnA5YXlFuRpy5F0AHAAwJQpUxgaGlp+I6vCoVssbTmoY045u+Vla7aYunbb71myZEnDeMugrLGVNS6zfnLjzczMzPpJDaZFowUj4jjgOICtttoqZs6cudwyx5xyNkdd393qzby9l9/uaIaGhmgUbxmUNbayxmXWT+42aWZmZr1wn6QNAPLfxXn6AmBaYbmNgIU9js3MrBLceDMzM7NeOAfYNz/fFzi7MH1PSStL2gSYAVzZh/jMzErP3SbNzMysoySdBswEJktaAHwWmA3MkbQ/cDewB0BE3ChpDnATsBQ4MCKe7kvgZmYl58abmZmZdVRE7NVk1vZNlj8SOLJ7EZmZDQZ3mzQzMzMzM6sAN97MzMzMzMwqwI03MzMzMzOzCnDjzQaWpGmSLpF0s6QbJX00T19P0oWSbst/1y2853BJcyXdKmnH/kVvZmZmZjacG282yJYCh0bEy4BtgAMlbQbMAi6KiBnARfk1ed6ewObATsC3JU3qS+RmZmZmZnXceLOBFRGLIuKa/Pxx4GZgKrAbcFJe7CRg9/x8N+D0iHgqIu4E5gJb9zRoMzMzM7MmfKsAmxAkTQdeBVwBTImIRZAaeJLWz4tNBS4vvG1BntZofQcABwBMmTKFoaGh5ZaZsiocusXSlmNstI5uW7JkSV+22w7HaGZmZpa48WYDT9IawJnAIRHxmKSmizaYFo0WjIjjgOMAttpqq5g5c+ZyyxxzytkcdX3rX7F5ey+/jm4bGhqiUexl4hjNzMzMEnebtIEmaUVSw+2UiPhZnnyfpA3y/A2AxXn6AmBa4e0bAQt7FauZmZmZ2UjceLOBpXSK7Xjg5oj4WmHWOcC++fm+wNmF6XtKWlnSJsAM4MpexWtmZmZmNpJRG28ebt0q7PXAPsB2kq7Nj12A2cAOkm4DdsiviYgbgTnATcB5wIER8XR/QjczMzMzG66VC3Jqw61fI2lN4GpJFwL7kYZbny1pFmm49cPqhlvfEPi1pJe4Emy9FhGX0fg6NoDtm7znSODIrgVlZmZmZjZGo55583DrZmZmZmZm/dfWaJOdHG69G0OtQ++HW6/CEOGO0czMzMys+lpuvHV6uPVuDLUOvR9uvQpDhDtGMzMzM7Pqa2m0SQ+3bmZmZmZm1l+tjDbp4dbNzMzMzMz6rJUzbx5u3cysxySdIGmxpBsK03yLFjOzLnLZa2XXymiTl0WEIuIVEbFlfvwyIh6MiO0jYkb++1DhPUdGxIsiYtOI+FV3d8HMbCCdCOxUN20W6RYtM4CL8mvqbtGyE/BtSZN6F6qZ2cA4EZe9VmItXfNmZma9FRGXAg/VTfYtWszMushlr5Vde0M5mplZP43rFi1Q/du0lPW2ImWNC8odm1lFTPiyt5GqlS1Vi7cZN97MzKqvpVu0QPVv01LW24qUNS4od2xmFTdhyt5Gqla2VC3eZtxt0sysOnyLFjOz3nPZa6XhxpuZWXX4Fi1mZr3nstdKw90mzcxKSNJpwExgsqQFwGdJt2SZI2l/4G5gD0i3aJFUu0XLUnyLFjOzMXHZa2XnxpuZWQlFxF5NZm3fZPkjgSO7F5FZZ0iaBzwOPA0sjYitJK0HnAFMB+YB746Ih/sVo01cLnut7Nx4MzMzs157S0Q8UHhdu4/WbEmz8uvD+hPa6KbPOret5efN3rVLkZjZRONr3szMzKzfmt1Hy8zMCnzmzczMzHopgAskBfC9PIR6s/toDdOte2V129DQUKnvMVXW2Moal1k/ufFmZmZmvfT6iFiYG2gXSrql1Td2615Z3TZv75mlvsdUWWMra1xm/VSu0s3MzCrJ1wBZqyJiYf67WNJZwNbk+2jls27F+2iZmVmBr3kzMzOznpC0uqQ1a8+BtwE30Pw+WmZmVuDGmw00SSdIWizphsK09SRdKOm2/HfdwrzDJc2VdKukHfsTtZnZwJoCXCbpOtLNjM+NiPNI99HaQdJtwA75tZmZ1XG3SRt0JwLHAj8qTGs4JLWkzYA9gc2BDYFfS3qJb7hpZtYZEXEH8MoG0x+kyX20zKw5d1mfeHzmzQZaRFwKPFQ3udmQ1LsBp0fEUxFxJzCXdC2GmZmZmVnf+cybTUTNhqSeClxeWG5BnracbgxX3Y/hkKswDLNjNDMzM0vceDNbRg2mRaMFuzFc9by9l19Ht1VhGGbHaGZmZpa426RNRPfloaipG5J6ATCtsNxGwMIex2ZmZmZm1pDPvNlEVBuSejbDh6Q+BzhV0tdIA5bMII2GZmZmNmbTZ53LoVssZb8WB5fwoBLWLR7gpPrceLOBJuk0YCYwWdIC4LOkRtscSfsDdwN7AETEjZLmADcBS4EDPdKkmZmZmZWFG2820CJiryazGg5JHRFHAkd2LyIzMzMzs7HxNW9mZmZmZmYV4MabmZmZmZlZBbjxZmZmZmZmVgFuvJmZmZmZmVWABywxM7Oe83DVZmZm7fOZNzMzMzMzswpw483MzMzMzKwC3HgzMzMzMzOrADfezMzMzMzMKsCNNzMzMzMzswpw483MzMzMzKwC3HgzMzMzMzOrADfezMzMzMzMKsA36TYzs9Kr3dT70C2Wsl+LN/j2jb1tomj3pvfg74e1ZqTcalYeO7e6y403s5Lwj6+ZmZmZjcTdJs3MzMzMzCrAZ97MKqzds3U+U2dmZjD896OV7sj+/TArh4FrvLkya2ZmZtZZrl+ZlYO7TZqZmZmZmVVA1868SdoJ+AYwCfhBRMzu1rbMOsm5a1Xm/B07n1noL+euVZnz13qlK403SZOAbwE7AAuAqySdExE3dWN7vVT/4+5+4oNlkHN3LFyZrRbnb2/5mqHOce4Onon0++H8HW4i/e/7oVtn3rYG5kbEHQCSTgd2AyZkElulDHTujuXgQ7eNVsjXx+hCfkQDnb82ukbfp5G+5yX6Pjl3rcqcv9YziojOr1R6F7BTRHwwv94HeF1EHFRY5gDggPxyU+DWBquaDDzQ8QA7yzF2RrMYN46I5/UqiFZyN093/vZOlWMsXf4OQO6WNbayxgVji610uZunVzl/yxoXlDe2scZVuvyteO4243g7b9Tc7daZNzWYNqyVGBHHAceNuBLpjxGxVScD6zTH2BklinHU3AXnby85xrYMfNlb1tjKGheUO7aCgS97yxoXlDe2ssbVwMCXvY043v7o1miTC4BphdcbAQu7tC2zTnLuWpU5f62qnLtWZc5f65luNd6uAmZI2kTSSsCewDld2pZZJzl3rcqcv1ZVzl2rMuev9UxXuk1GxFJJBwHnk4ZMPSEibhzDqkY8vVwSjrEzShFjB3MXSrJPo3CMnVGKGCdI2VvW2MoaF5Q7NmDClL1ljQvKG1tZ4xpmgpS9jTjePujKgCVmZmZmZmbWWd3qNmlmZmZmZmYd5MabmZmZmZlZBZS28SZpJ0m3SporaVa/46knaZqkSyTdLOlGSR/td0zNSJok6U+SftHvWBqRtI6kn0q6JX+e2/Y7pvEoe+4CSJon6XpJ10r6Y7/jqZF0gqTFkm4oTFtP0oWSbst/1y1ZfEdIuid/ltdK2qVf8bVrtFxV8s08/8+SXt2juEYtXyXNlPRo4XP/TI9iG/G704/PTNKmhc/hWkmPSTqkbpm+fF7dVMb8de6OKa4Jmb/1qlB3KCprPaKm7PWJcYmI0j1IF3veDrwQWAm4Dtis33HVxbgB8Or8fE3gL2WLsRDrfwOnAr/odyxN4jsJ+GB+vhKwTr9jGse+lD53c5zzgMn9jqNBXG8CXg3cUJj2VWBWfj4L+ErJ4jsC+Fi/P7sx7MuouQrsAvyKdA+jbYArehTbqOUrMLMfZdpo351+fWZ1/9d7STd67fvn1eX9LF3+Onc78n8d+Pxtst+lrzvUxVzKekQhvlLXJ8bzKOuZt62BuRFxR0T8HTgd2K3PMQ0TEYsi4pr8/HHgZmBqf6NanqSNgF2BH/Q7lkYkrUX6gh0PEBF/j4hH+hrU+JQ+d8ssIi4FHqqbvBupgU/+u3svYypqEl9VtZKruwE/iuRyYB1JG3Q7sKqUr0305TMr2B64PSLu6uE2+6GU+evcHbeJkr/1XHfosLLXJ8ajrI23qcD8wusFlLjwkzQdeBVwRZ9DaeRo4BPAM32Oo5kXAvcDP1Tq2vkDSav3O6hxqEruBnCBpKslHdDvYEYxJSIWQaoYAev3OZ5GDsrdjE6oUDeMVnK17/k8Svm6raTrJP1K0uY9Cmm0706/P7M9gdOazOvH59Utpc9f5+6YTJT8rVeGz75dVapH1FShPjGqsjbe1GBaKe9pIGkN4EzgkIh4rN/xFEl6O7A4Iq7udywjWIF0Wvs7EfEq4AnSqeyqqkruvj4iXg3sDBwo6U39DqjCvgO8CNgSWAQc1ddoWtdKrvY1n0cpX68hda16JXAM8PMehTXad6dvn5nSzYHfAfykwex+fV7dUur8de62b4Llb72q1B2KXI/ok7I23hYA0wqvNwIW9imWpiStSCqcT4mIn/U7ngZeD7xD0jzSKfjtJJ3c35CWswBYEBG1I5M/JTXmqqoSuRsRC/PfxcBZpC4bZXVfretO/ru4z/EMExH3RcTTEfEM8H3K/VkWtZKrfcvn0crXiHgsIpbk578EVpQ0udtxtfDd6WcZsDNwTUTcVz+jX59XF5U2f527YzaR8rdevz/7tlWsHlFT6vpEq8raeLsKmCFpk3wkZk/gnD7HNIwkka7TujkivtbveBqJiMMjYqOImE76DC+OiPf1OaxhIuJeYL6kTfOk7YGb+hjSeFUhd1eXtGbtOfA24IaR39VX5wD75uf7Amf3MZbl1F0T8i+U+7MsaiVXzwHen0eh2wZ4tNblpJtaKV8lPT8vh6StSb9nD3Y5rla+O335zLK9aNLlrB+fV5eVMn+du+MykfK3XunrDkUVrEfUlLo+0aoV+h1AIxGxVNJBwPmkEXhOiIgb+xxWvdcD+wDXS7o2T/tkPiJk7flP4JRcYN0BfKDP8YxZRXJ3CnBW/h1cATg1Is7rb0iJpNNIo4pNlrQA+CwwG5gjaX/gbmCPksU3U9KWpC4u84AP9Su+djTLVUkfzvO/C/ySNALdXOCv9O672bB8BV5QiO1dwH9IWgo8CewZEd3uZtTwu1OGz0zSasAOFPKvLq5+fF5dU+L8de6OwUTL33oVqTsUlbYeUVP2+sR4aIBy38zMzMzMbGCVtdukmZmZmZmZFbjxZmZmZmZmVgFuvJmZmZmZmVWAG29mZmZmZmYV4MabmZmZmZlZBbjxZmZmZmZmVgFuvJmZmZmZmVWAG28lIWlTSX+S9Likg/sdj5mZmZWPpBslzezDdockfbDX2zUrC0m/krRvv+Nw4608PgEMRcSaEfHNfgdjViTpRElfHMf7x/yjL+m7kv5nrNu2iUfSPElPSloi6d6cv2v0Oy4bHDm3ao9nCvm2RNLe3dx2RGweEUMtxln8Ltwn6Yf+Lgy2/D9/a7/jGImkmZIW1E07QtI/cq4+Iun3krbtV4yNRMTOEXFSv+Nw463PJK2Qn24M3NjPWKza2imwq1C410TEhyPiC/2OwyrnnyNiDWBL4FXA4f0NxwZJRKxRewB3k/MtP05pZR2F3/8Rp3VA7bvwauC1wKfbebMS1xetF87IuToZuAT4SZ/jKSV/GcdJ0mGS7sndHW+VtH39WYr6Iwy54nyYpD8DT0i6GHgLcGw+4vASSbvmbpSPSZov6Yi67b4hH5V4JM/fL09fWdL/Sro7H2X7rqRVe/JhmPVYlyo6NkAi4l7gfGDLJkd7nz2QkY/8zpH0o1ym3yhpq8Kyy5X3vd0bKztJz5E0S9Ltkh7M+bRenjddUkjaX9LdwMWS9pP0O0lfl/QQcISkF0m6OL//AUmnSFqnsI2Wc7YoIu4BfgW8XNK6kn4h6X5JD+fnGxW2MSTpSEm/A/4KvLBuPzeQ9GdJH8uv95N0R47hzm6ffbT25Lrh0ZIW5sfRklbO82ZKWiDpUEmLJS2S9IHCe58r6f9yffQqSV+UdFlh/kslXSjpoVwuvrswbxdJN+W8uEfSxyStTsrDDbXsbPWGxXgjYilwCjBV0vPyuoYddM65f3J+Xvtu7Zvrvw9I+lQLn8sRkn4i6eQc4/W5Dn54/izmS3pbYflSdB12420cJG0KHAS8NiLWBHYE5rX49r2AXYF1ImI74LfAQfmo3V+AJ4D3A+vk5f5D0u55uy8gJf4xwPNIR5avzev9CvCSPO3FwFTgM2PeSasEST8GXgD8Xy4IPyHpHfmH/JFc4Lys2bJ5+k+Uupg9KulSSZuPIY7dJF2bC/nbJe1UmL1xrqQ8LukCSZML72u6bRUOhhR+ZA6TdC/wQ0mTc8Xjkfzj8Vv5KLFluUK6MzC3xbe8AzidVPaeAxyb1zOe8t4mjoOB3YE3AxsCDwPfqlvmzcDLSDkE8DrgDmB94EhAwJfz+18GTAOOGGGbDXO2nqRpwC7An0j1vx+Sev28AHiywfv2AQ4A1gTuKqxnOvAb4NiI+N9cGf8msHP+bvwTy+okVg6fArYh1Q1fCWzN8DOwzwfWJtUZ9we+JWndPO9bpDrp84F98wOA/L+/EDiVlL97Ad8u/IYfD3wo58XLgYsj4glSmbywcLZ6YTFYSSuR6sAPkr5DrXoDsCmwPfCZWr1nFP8M/BhYl/TdOJ/0/ZgKfB74Xhvb7wlXcMbnaWBlYDNJK0bEvIi4vcX3fjMi5kfEk41mRsRQRFwfEc9ExJ+B00gFPsDewK8j4rSI+EdEPBgR10oS8O/Af0XEQxHxOPAlYM9x7aWVXkTsQ6HrDvBzUs4cQmrg/5LUWFupftmI+Gpeza+AGaQC+BrSUa+WSdoa+BHwcVIl4k0Mr9y+F/hAXv9KwMcK89rZ9vOB9UiVjgOAQ4EFeT+nAJ8Eop3YbSD9XNLjwHxgMfDZFt93WUT8MiKeJv2gvzJPH095bxPHh4BPRcSCiHiK1Oh6l4b3EjgiIp4o/P4vjIhjImJpRDwZEXMj4sKIeCoi7ge+xrLf/0aa5WzNzyU9AlxGanR9KdcbzoyIv+a6wpENtnFiRNyY4/pHnrYZMAR8NiKOKyz7DOmM3qoRsSgifBlIuewNfD4iFuec+hypcV7zjzz/HxHxS2AJsKmkScC/kv7ff42Im4DiNV9vB+ZFxA9znlwDnAm8q7DezSStFREP5/kjeXfO1SdJ9dl35bNwrfpc/g5dB1zH8t+FRn4bEefn7fyEVJeYnXP+dGC6Cme+y8CNt3GIiLmkyvERwGJJp9ef+h3B/JFmSnqdpEuUujQ8CnyY1AcY0lG4RpWG5wGrAVfnsxCPAOfl6TaxvAc4N1cA/gH8L7Aq6YhoQxFxQkQ8XqhwvFLS2m1sc3/ghLzNZyLinoi4pTD/hxHxl1xhmUM6AjiWbT9D+iF5Kq/rH8AGwMb5h+e3EeHGm+2ej/bOBF7KsvJzNPcWnv8VWEXSCuMs723i2Bg4q/AbfDOp4T+lsEz97/+w15LWz/l1j6THgJMZOX8b5mxh2u4RsU5EbBwRH4mIJyWtJul7ku7K27gUWCdX1pvFCakRcA/w09qEfCblPaR6yiJJ50p66QjxWu9tSOHsaX5eLL8erGsk/RVYg1R/XIHhuVB8vjHwulq+55zfm3SQFVLDbxfgLkm/0egDkMyJiHVI35cbgNe0sG9F9d+FVgbnua/w/EnggXwgpPaaFtfTM268jVNEnBoRbyAlcJC6LT5BakTVPL/RW0dZ9amk7g/TImJt4LukrhSQvjgvavCeB0iJtnkuqNeJiLXzmRibWIYV1BHxDClvpjZaWNIkSbNzV8fHWHbGrNUKLzQ/qFDTsFAdw7bvj4i/FV7/P1KXuAuUrrmY1UbMNuAi4jfAiaQDGMPK5lxRbfngVpPy3qxoPqn74DqFxyqRrjerqf/9r3/95TztFRGxFvA+lv3+d8qhpO5lr8vbeFOeXtxOo3rKEaS6xqnFhl4+c7ED6UDaLcD3Oxyvjc9CUrlV84I8bTT3A0uBjQrTphWezwd+U5fva0TEfwBExFURsRupV83PSQduYZQ6cEQ8QDqLfYSkDfLkVurWE4Ibb+OgdG+27ZQu+vwbqeH0NKmv9y6S1pP0fNLR2natCTwUEX/L3dHeW5h3CvBWSe+WtILSxaRb5gr694GvS1o/xzhV0o7Lr94GULEwHFZQ5y6100hHTOuXhZRfuwFvJfV7n157axvbb3ZQYTTtbntY7PmM3aER8UJS3/X/lgeSsOGOBnYg/fCvojQg1Iqkaz5WbmUFI5T3ZkXfBY6UtDGApOdJ2q3NdaxJ6rb2iKSppK7onbYmKYcfURpQpdVuxf8A9gBWB36sNEDLFKVrrFcHnsqx+7vRXytKWqX2IF1G8emcj5NJYyGcPNpK8hmon5EaUavlM6rvLyzyC+AlkvaRtGJ+vFbSyyStJGlvSWvnHkCPsSwv7gOeO1Lvntxz53zSrbQg1a33zNvYimVdMyccN97GZ2VgNuko1L2kIwufJPU5v450BuEC4IwxrPsjwOfzNRufYdnRCiLibtJp6EOBh0gJXevXexjpLMTl+SzGr0lH12zw3ceyEcHmALsqjX66IilXngJ+32BZSD/kT5EuDl6NdK1ku44HPpC3+Zx84KCVrjPj2rakt0t6cW6g1n4cXHGwZ+VrPH5EGkziI8APSAcyniBdL9mKZuW9WdE3SL1mLsi/35eTBiRpx+dIw/o/CpxLqjx32tGkrvQPkGI8r9U3RsTfgXeSvgMnkLrVHUo6aPgQ6dq5j3Q2XGvTL0mN89pjFeCPwJ+B60nXlrd679aDSAdW7yXVb08j/WaTr5d8G2lshYV5ma+w7KDYPsC8XB/9MOkscq1hdhpwR+5u2awL+v8DDsgnJP6HdID4YdJ35NQW4x848qUhZoMhH909BliLVCjfTroIfSqpgf+R2kXkDZb9LumM7nakH9//IV2UPCMi5ko6EVgQESPeH0jSv5AK1U1IDcQDI+J8SUPAyRHxg7zcfsAHI+INSjeMbWnbkmbm9RSHtP4v4KOk7m8PA98L3xfOzMys4yR9BXh+ROw76sLWFW68mZmZmZnZcnIPmpVIZ+xeSzqr98GI+Hk/45rI3G3SzMzMzMwaWZPUdfcJ0iUZRwFn9zWiNkj6lZbdDLz4qGy3d595M7OW5cKuUYH324jYudfxmJmZmU0kbryZmZmZmZlVwAqjLSDpBNId1BdHxMvztPVIIyhOJ42o+O6IeDjPO5x0s96ngYMj4vzRtjF58uSYPn36ctOfeOIJVl999RZ3pT8cY2c0i/Hqq69+ICJKfZPxKudvJ3l/l1f2/G2Uu2X8P5YtpokQT9lzF5qXvWVVtrxpR9ViL3v+Vrne4Bg7Y1z13ogY8UG6ceOrgRsK074KzMrPZwFfyc83Iw2RvzJptLnbgUmjbeM1r3lNNHLJJZc0nF4mjrEzmsUI/DFGyZ9+P6qcv53k/V1e2fO3Ue6W8f9YtpgmQjxlz90Yoewtq7LlTTuqFnvZ87fK9QbH2BnjqfeOOmBJRFxKGr67aDfSUN7kv7sXpp8eEU9FxJ2k+41tPdo2zMzMzMzMbGSjdptsYkpELAKIiEX55nmQ7id1eWG5BXnaciQdABwAMGXKFIaGhpZbZsmSJQ2nl4lj7IwqxGhmZmZm1k9jbbw1owbTGo6IEhHHAccBbLXVVjFz5szlljnmlLM56rIn2gpg3uxd21p+vIaGhmgUe5k4xmqYPuvctt/T63y3icG5aFXWbv46d63KnO8Tz1gbb/dJ2iCfddsAWJynLwCmFZbbCFg4ngDb5SQ2MzMzM7NBNNabdJ8D7Juf78uym/WdA+wpaWVJmwAzgCvHF6KZmZmZmZm1cquA04CZwGRJC4DPArOBOZL2B+4G9gCIiBslzQFuApYCB0bE012K3czMzMzMbMIYtfEWEXs1mbV9k+WPBI4cT1BmZmZmZmY23Fi7TZqZmZmZmVkPdXq0STMzMzMza9P19zzKfmMY7dcmFp95MzMzMzMzqwA33szMzMzMzCrAjTczMzMzM7MKcOPNzMzMzMysAtx4MzMzMzMzq4AJP9rk9DZH9Zk3e9cuRWJmZmZmZtacz7yZmZmZmZlVgBtvZmZmZmZmFeDGm5mZmZmZWQW48WZmZmZmZlYBbryZmZmZmZlVgBtvZmZmZmZmFeDGm5mZmZmZWQW48WYDTdIJkhZLuqEwbT1JF0q6Lf9dtzDvcElzJd0qacf+RG1mZmZmtjw33mzQnQjsVDdtFnBRRMwALsqvkbQZsCeweX7PtyVN6l2oZmZmZmbNufFmAy0iLgUeqpu8G3BSfn4SsHth+ukR8VRE3AnMBbbuRZxmZmZmZqNZod8BmPXBlIhYBBARiyStn6dPBS4vLLcgT1uOpAOAAwCmTJnC0NDQcsssWbKk4fRmDt1iacvL1rSz/m5rd3+rbqLtr5mZmfWfG29my6jBtGi0YEQcBxwHsNVWW8XMmTOXW2ZoaIhG05vZb9a5LS9bM2/v1tffbe3ub9VNtP01a4ekE4C3A4sj4uV52nrAGcB0YB7w7oh4OM87HNgfeBo4OCLO70PYZmal526TNhHdJ2kDgPx3cZ6+AJhWWG4jYGGPYzMzGwQn4uuNzcw6zo03m4jOAfbNz/cFzi5M31PSypI2AWYAV/YhPjOzSvP1xmZm3eFukzbQJJ0GzAQmS1oAfBaYDcyRtD9wN7AHQETcKGkOcBOwFDgwIp7uS+BmZoOnJ9cbt3v9cK+uXa3ydbJVjt1s0LjxZgMtIvZqMmv7JssfCRzZvYjMzKxOR683bvf64V5dO1zl62SrHLsNN73d78fsXbsUiY2Vu02amZWQbzBvA8jXG1ulSZon6XpJ10r6Y57WtFw26wY33szMyulEPOCDDRZfb2yD4C0RsWVEbJVfNyyXzbrFjTczsxLygA9WZfl64z8Am0pakK8xng3sIOk2YIf8moi4Eahdb3wevt7YqqVZuWzWFb7mzcysOro+4MOSJUs4dIv2683dHMygbIMlOJ7R+XpjG1ABXCApgO/lazCblcvDtDLYzpRV2x9wp9sa/UaUrbypN+gxjqvxJmke8DjppppLI2KrkW7CaWZmXdGxAR+GhoY46rIn2g6gm4M+lG2wBMdjNmG9PiIW5gbahZJuafWNrQy2c8wpZ3PU9eU6r1JftlehvBn0GDvRbdJ9f83MesMDPpiZ9UlELMx/FwNnkbqnNyuXzbqiG9e8ue+vmVl3eMAHM7M+kLS6pDVrz4G3ATfQvFw264rxnpt1398B71fbK1WI0ayXfIN5M7NSmQKcJQlS/fnUiDhP0lU0KJfNumW8jTf3/R3wfrW9UoUY23X9PY+2fbNYs5qqDfjgG7+a2SCLiDuAVzaY/iBNymWzbhhXt0n3/TUzMzMzM+uNMZ/Wyv19nxMRjxf6/n6eZX1/Z+O+v2Zd5bMdZmZmZhPHePokuu+vmZmZmZlZj4y58ea+v2ZmZmZmZr3TjVsFmJmZmZmZWYe58WZmZmZmZlYBbryZmZmZmZlVQLluomZmZmZmZqVQP6r1oVssHfUeth7Zurt85s3MzMzMzKwC3HgzMzMzMzOrADfezMzMzMzMKsCNNzMzMzMzswpw483MzMzMzKwCPNqkmZmZmZn1Rf2IlqOZ6KNZuvFmZmZmE1a7FUdw5dHM+sfdJs3MzMzMzCrAjTczMzMzM7MKcOPNzMzMzMysAnzNm5mZmZmZdcRYriO11rnx1qb6hDx0i6XsN0qS+sJmMzMzMzMbL3ebNDMzMzMzqwCfeTMzMzNrg+9LZWb94sabmZmZWRdNn3VuS5dZ1LixZ2bNuPHWAz5CZ2ZmZmZm4+XGm9kE4gMJZmZmZtXlxpuZmfVcOwcSDt1iKTO7F4qZmVlleLRJMzMzMzOzCnDjzczMzMzMrALcbdLMzEqv3es1wddsmpnZ4PGZNzMzMzMzswpw483MzMzMzKwC3G3SzMwGkm+NYWZmg8aNtwEwWgXl0C2Wsl9hGVdQrFUezt3MzMzKZKLXe7vWeJO0E/ANYBLwg4iY3a1tDZqxXJhvnePcHTsPKtF/zl+rKufuMr04a+yDc53l/C2vMtarT9xp9TG/tyuNN0mTgG8BOwALgKsknRMRN3Vje2ad4tztPXdt6xznr1WVc3d8ylg5nUicv9ZL3TrztjUwNyLuAJB0OrAb4CSuqG7/MIznCESHOXdLriyVlGK3jBI1KJ2/49BqbtX+9yX6vz+rwgdDnLsTXMV7bjh/rWcUEZ1fqfQuYKeI+GB+vQ/wuog4qLDMAcAB+eWmwK0NVjUZeKDjAXaWY+yMZjFuHBHP61UQreRunj4o+dtJ3t/llS5/W8jdMv4fyxbTRIindLmbp7dS9pZV2fKmHVWLvXT5O0D1BsfYGWOu93brzJsaTBvWSoyI44DjRlyJ9MeI2KqTgXWaY+yMEsU4au7C4ORvJ3l/S2HcZW8Z96tsMTmeruhY2VtWVf4/VTn2HnG9t0QGPcZu3edtATCt8HojYGGXtmXWSc5dqzLnr1WVc9eqzPlrPdOtxttVwAxJm0haCdgTOKdL2zLrJOeuVZnz16rKuWtV5vy1nulKt8mIWCrpIOB80pCpJ0TEjWNYVRW6RjjGzihFjB3MXSjJPvWQ97fPOpS/pdsvyheT4+mwDpe9ZVXl/1OVY+8613tLZ6Bj7MqAJWZmZmZmZtZZ3eo2aWZmZmZmZh3kxpuZmZmZmVkFlLbxJmknSbdKmitpVr/jaUTSPEnXS7pW0h/7HQ+ApBMkLZZ0Q2HaepIulHRb/rtuCWM8QtI9+bO8VtIu/YxxPKqQu+MhaZqkSyTdLOlGSR/N00uVZ50maZKkP0n6RX49cPvbj9xtt8ySdHiO71ZJO3Yhnrbzu5sxSVpF0pWSrsvxfK6f8Vj7ylhXGEkV6hGDqOx1h2ZlYxnV/16XjaR1JP1U0i3589y2nfeXsvEmaRLwLWBnYDNgL0mb9Teqpt4SEVuW6H4SJwI71U2bBVwUETOAi/LrfjqR5WME+Hr+LLeMiF/2OKaOqFjujtVS4NCIeBmwDXBg3sey5VmnfRS4ufB6oPa3j7l7Ii2WWTmePYHN83u+nePupLbyuwcxPQVsFxGvBLYEdpK0TR/jsbEpW11hJCdS/nrEQKlI3aFZ2VhG9b/XZfMN4LyIeCnwStqMtZSNN2BrYG5E3BERfwdOB3brc0yVEBGXAg/VTd4NOCk/PwnYvZcx1WsS46AY+NyNiEURcU1+/jip0JlKyfKskyRtBOwK/KAwedD2ty+522aZtRtwekQ8FRF3AnNz3J2Mp9387mpMkSzJL1fMj+hXPDb4qlCPGEClrzuMUDaWSpPf69KQtBbwJuB4gIj4e0Q80s46ytp4mwrML7xeQAkThPQDeoGkqyUd0O9gRjAlIhZB+vIB6/c5nmYOkvTn3GWjql0yqpK7HSFpOvAq4Aqqk2djcTTwCeCZwrRB298y5W6zz7anMbaY312PKXcBuhZYDFwYEX2Nx9pWlbrCSAatvCubSn1v68rGsjma5X+vy+SFwP3AD3PXzh9IWr2dFZS18aYG08p4T4PXR8SrSae5D5T0pn4HVGHfAV5E6ha0CDiqr9GMXVVyd9wkrQGcCRwSEY/1O55ukfR2YHFEXN3vWLqsCrnbsxjbyO+uxxQRT0fElsBGwNaSXt7PeKxtrivYaCrzvS3zb39Ffq9XAF4NfCciXgU8QZvdkMvaeFsATCu83ghY2KdYmoqIhfnvYuAsyts15T5JGwDkv4v7HM9yIuK+XEF5Bvg+5f0sR1OJ3B0vSSuSCu9TIuJneXLp82yMXg+8Q9I8UleW7SSdzODtb5lyt9ln25MY28zvnn1uuWvNEOl6pL7HY62pUF1hJINW3pVNJb63TcrGMmn2e10mC4AFuQcFwE9JjbmWlbXxdhUwQ9ImklYiXXx9Tp9jGkbS6pLWrD0H3gbcMPK7+uYcYN/8fF/g7D7G0lDtRyH7F8r7WY6m9Lk7XpJE6qt9c0R8rTCr9Hk2FhFxeERsFBHTSf/PiyPifQze/pYpd5t9tucAe0paWdImwAzgyk5ueAz53dWYJD1P0jr5+arAW4Fb+hWPtadidYWRDFp5VzZlKn8bGqFsLI0Rfq9LIyLuBeZL2jRP2h64qZ11rNDxqDogIpZKOgg4H5gEnBARN/Y5rHpTgLNSLrMCcGpEnNffkEDSacBMYLKkBcBngdnAHEn7A3cDe/QvwqYxzpS0JambwDzgQ/2Kbzwqkrvj9XpgH+D6fB0OwCcpWZ71wEDtb79yt50yKyJulDSH9EO3FDgwIp7ucEht5XcPYtoAOCmPRvccYE5E/ELSH/oUj7WnlHWFkVShHjFoKlJ3aFg2VnV08D77T+CU3FC/A/hAO29WRCm71JqZmZmZmVlBWbtNmpmZmZmZWYEbb2ZmZmZmZhXgxpuZmZmZmVkFuPFmZmZmZmZWAW68mZmZmZmZVYAbb2ZmZmZmZhXgxpuZmZmZmVkFuPFmZl0nKSS9uMm8JZJe2OuYrHMknSjpi/2Ow8zMrF2S/kXS/FwfedUoy+4n6bLC66b1m24Z+MZb/YdcN29vSRe0uJ4jJJ08wvx5kt461ji7TdILclJO6ncs1pykN0j6vaRHJT0k6XeSXtvHeIZywfTKuuk/z9NnjncbEbFGRNwx3vXY4JK0jqTvSLpX0l8lXS/pAz3a9kxJCzq8ziFJH8zPJelSSZ+pW2ZfSbdLWq2T27bBJmkzSefk35DHJV0i6Z/6HZdZM5JWknSUpAW5nnqnpK/3OIz/BQ7K9ZE/9XjbbRuYxttYKr0RcUpEvK2HMb4xJ+YSSU/kyu+SwuMF3dp2RNydk/Lpbm3DxkfSWsAvgGOA9YCpwOeAp/oZF/AX4P21F5KeC2wD3N+3iGzCkLQS8GtgY2BbYG3g48BsSf/dz9g6ISIC2B/4b0mbA0h6Hqky8cGI+GsntiNphU6sx/pntP+hpBcBvwOuBzYBNgTOAi6QtG33I7RB1IOy43BgK2BrYE3gLUCvG1AbAzf2eJtjNhCNtxJXeoeJiN/mBtQawOZ58jq1aRFxdyvrafRF8hm1gfASgIg4LSKejognI+KCiPgzLDuLLOl/JT2cj07tXHuzpA3zEdeHJM2V9O95+iqSnpQ0Ob/+tKSl+XuDpC9KOnqEuE4B3lPIsb1IFYK/F7a9taQ/SHpE0iJJx+ZK93LygZb5kt6SXz/b5SB3v/uWpHPzUeMrcoWk9t63Sbo1H6T5tqTf1M5gNCPpRZIulvSgpAcknSJpncL8aZJ+Jun+vMyxI63PQNKrJF2T/0dnAKvk6etK+kX+LB/OzzfK8/aQdHXdeg6V9PP8fBdJN+V13iPpY3mxfYAXAHtExJ0R8Y+IOA84GPh8IY/nSTo8r+NhST+UtEphW2+XdG3O0d9LekVh3jxJH5P055xbZxTfO8LnsKukP0l6LOf0EYV5q0g6OefUI5KukjRF0pHAG4Fj80G7YyPiNuBI4HhJzwG+CZwZEZeMEvcspbNzj+f9/pfCvP2UDmJ+XdJDwLOxWedJ+rikM+umHSPpaElrSzo+l4335DJ3Ul5mtPJpnqTDJP0ZeELSCvn1Pfn/fquk7fPiRwB/iIhPRcRDEfF4RHwT+DHwlby+6bnMPUDSwhzToYXtPaeQVw9KmiNpvbr37ivp7hzvp7r4sVoLGpUDklbOZcbLC8s9T6kusH5+PVqZWJ93I5U3k5TOnj2gVDc5KOfKCnl+0+8A8FrgrIhYGMm8iPhRXSxNy2dJ/65U53lIqQ60YZ7+OUnH5OcrKp00+Wp+vaqkv+UyeQkwCbhO0u3NPtMO/9vGJyIq/yC12B9pMm8/4LLC6/8HXEY6els/7xvAfOAx4GrgjYV5RwA/Bc4AHgeuAV5ZmD8PeGt+/hxgFnA78CAwB1ivLq7pQAAr5NdrA8cDi4B7gC8Ckwr78Dvg68BDed6JwHeAXwJPAG8FdiUdrXgs78cRI2xvCPhCXu/jwAXA5BY+658A9wKPApcCmxfmrQocBdyV518GrNrv/KjKA1gr58tJwM7Aug1y+R/Av5MKmv8AFgLK838DfJtUkd6SdGZs+zzvUuBf8/MLcm7uXJj3L01iGgI+mN9TW/5K0hmQBcDMPO01pLNxK+Rcuxk4pLCeAF4M7Jhzc+v6efn5iTnHt87rOgU4Pc+bnHP7nXneR/Pn8cFRPtcXAzsAKwPPy/t7dJ43Cbguf7dWz5/dG/qdC2V+ACvl7/h/ASsC78r/hy8CzwX+FViNdAT1J8DP8/tWzv/blxXW9adCXi4il7nAusCr8/PTgZMaxLECsBTYMb+eB9wATCMdxPsd8MU879XAYuB1+X++b15+5cJ7rySdqVgv5++H87yZwIImn8VMYAtSmf8K4D5g9zzvQ8D/5c9iUv6OrFX8XtWtaxJwBfAz4O78+Y0W9x455ucA7yH9FmxQKC+WAv+ZPyuXxd39XmyQP/91Cvm5OP/ffw58L5cx6+dc+1Bermn5VMjNa3NerwpsSipDN8zzpwMvys/vBT7QILa3AE/nXJxOKnNPy/FsQfqtqNVfDgEuBzbKMX0POK2wrQC+n2N5Jekg+cs6/Xn60VbuNSwHgBOAIwvLHQicl5+3UiY+m3cjbSfP+zBwU86bdUm9JYp1zpG+A58mlXkfyfmouv2bR/PyeTvggbw/K5NO4lxamHd9fv5PpHrPFYV51xW28Ww9pIV93Y/hbYdh7+3J/7zfSdehxG1a6a19yPkf8H3gfGC1Jv+A95EqHysAh5IKwlXyvCNIFZR3kSosHwPuBFYsJNeohV9hW9PbSOz9qPsRJlVyHwVen/dtFUauSNRvbygn8kvy+oaA2S181v9GqlSsDBwNXFuY9628nqmkwuCfyAWBHy3n8svy/3ZB/p+fA0wp5MHcwrKr5f/p80kF7NPAmoX5XwZOzM+/QDqav0LO648Cs3PePEmThjvLGm/vI/3Ybwr8Jc97tvHW4H2HkI6k1V4HqWvEXcAWdcvWN95+UJi3C3BLfv5+0lHl2jyRKjEjNt4axLY78Kf8fFtSxWWFfv/vq/IA3kThoEGe9ntyQ6lu2S2Bhwuvv0OuTJB6HzzMssrC3aQGz1p16/h1s7Ip5/Le+fk88g96IXduL2z3C3XvvRV4c+G97yvM+yrw3fx8Jk0abw3iORr4en7+b/lzeUWD5YYa5W3+TALYrZW4G7z/2sJ79wPu7ne+TKQH8Cvg3/Pzt5Mqs1NIDZxVC8vtBVzSZB3Plk/59Tzg3wqvX0yqdL+VXP8ozFsK7NRgnS/NeTWVZXWBlxbmfxU4Pj+/mXzQL7/egFT3WaHw3o0K868E9uz3Z+/HsP/3tcBuOUfuKEz/HfD+/LyVMvHfWtlOfn4xuc6aX78158oKo30HSPXFA3N8T5F+X/YtLDuP5uXz8cBXC/PWyPk6nVS3/RupXj8L+CSp3rIGqXfeNwvvG7EBxvJla18bbwPRbTIiHgPewLIjQvfnU6dT8iIrkiqe6wH/HE2uIYiIkyPiwYhYGhFHkRoomxYWuToifhoR/wC+Rqr4btNgVR8CPhURCyLiKVLD711q0m84x7kz6UzFExGxmHQmYM/CYgsj4pgc25N52tkR8buIeCYi/hYRQxFxfX7957zPbx7ho/thRPwlr28OqaI1oog4IVJXjNp+vTKfDn8OqbLy0Yi4J1K3v9/n5axFEXFzROwXERsBLycd+Tm6sMi9hWVrebxGXu6hiHi8sOxdpB9rSGflZpKOTl0PXEjKjW1IDcIHRgntZ6QjVf9J6oIzjKSXKHWRu1fSY8CXSGfKig4B5kTE9aNs697C87/m/YO0j/NrMyKVmqMOJCFpfUmn564ajwEnF2KbBtwVEUtHW489a0Pgnvz519wFIGk1Sd+TdFf+rC8F1il0jzkJeK8kkbpDzimUEf9KanDdpdQdtnaNzgOkCuQwuTydnOfXzC88vyvHCul6hkNz96BHJD1C+t9vWFi+Wd41Jel1SgNC3C/pUdLR51pu/Zh0sPD03D3tq5JWHGl9EVG75qL2d8S4Jb2/0O3pEVKZUfzeFT8P676TSAe6yH9/TPofrggsKvyfvkc6SDta+VRTLPfmksrSI4DF+b21PG74XcnTniEdLFlunSz/XTmrEOvNpAODUwrLt/1dse4ZoRy4GFg1l1Mbk+p4Z+W3tVImDis/RilvNqxbvvh8xO9Ari9+KyJeD6xD6kJ+gqSXFdYxUr3grtqMiFhCOpkzNddt/0iq67yJVA/6Pemkx5vz64ZaKFv7aiAabzBqpffFpKMQn4uIvzdZRe36i5tzn9pHSF0ZG/4QRsQzpIrjhiyvlcKvfvmmiV2/7WbTRqlINNJWAazUp3l27gf8GOloCHkbk0mN2dtHWoe1LiJuIZ2Jevkoi0I6UrWepDUL015A6oILqcDaFPgX4DcRcVOevysjFGCFWP5KOqr8HzRovJGO4t0CzIiItUhHuFS3zB7A7pIOaWF/GllEOpsNpFH6iq9H8GXSgZ1X5NjeV4htPvCCZgdWrKFFwNT8+dfUBls6lJRnr8uf9ZvydAFExOWkayXfCLyXQi5FxFURsRup3Ps56YASpDNvO0tavS6OfyUdpb28MG1aXUwL8/P5pDN+6xQeq0XEaW3t+fJOJZ0dnxYRawPfLezrPyLicxGxGakXwttZNvBPNFpZA03jzpWx7wMHAc+NiHVI3UaL/5dWt2Od8XPgFUrXGb2d1O17PilPJxf+h2tFRO2695HKp5ph/8eIODUi3kCqOwT5ejbSd2WPBnG9m9RroXjgeqTvys51ObdKRNyDlc5I5UCup84hneV6L/CLwgHeVsrEaGU7eZFhv88Mz6/RvgPLNpiu9f8W6UDDZi18BAtJ34NanKuTzrTV8vU3pAPPrwKuyq93JF2acWmjFbZYtvbVwDTeihpUem8GPgD8StKmjd4j6Y3AYaRCbt38z3qU4f+saYXln0NK1IUsr93Cr5XEbvQjXD+taUWiQ97LslPxa5NOS5O38QDp9PSLGr7TRiXppfkAQm2Ah2mkQvfykd8JETGf1ED7stJACa8gjWB3Sp7/V9J1nAeyrLH2e9JZ4lEbb9knSV0q5jWYtybperQlkl5KauTVWwhsDxws6SMtbrPoXGALSbvnxtaBpC6jo1kTWAI8ImkqaaTCmitJPzqzJa2eP7vXjyG2ieQPpO5ZBytdxP5O0g8hpM/6SdJnvR7w2Qbv/xFwLLA0Ii6DZ4eK3lvS2rlnw2OkA16QGngLgJ8oDZiwoqQdSd2Aj4iIRwvrPlDSRnnbnyRdowzph/jD+QCX8v9617qDHSPKuVF8KO/vQxHxN0lbk8rI2vJvkbSF0lnHx0hdeWr7dB/Qyr0NR4p7ddJvwP15ex+gtQM91iUR8TfStfGnAldGGuV5Eema4aMkraU0IMiLJNV6xYxUPi1H0qaStpO0Muk390mW5dXngH+SdKSk9SStKek/SQcNDqtb1f8onSnfnFQ/qn1XvgscmSuwtUEudhvzh2LdNlo5cCrpmq298/OadsvE0bYzB/iopKlKA+48m2+jfQckHaJ0S5ZV82/KvqTvxZ9a2P9TgQ9I2jJ/J75Euq5tXp7/G1L+35RP3gyRLgW5MyKajZhd+rJ1IBpvrVR689GETwK/VmH0uoI1SRWS+4EVlO65s1bdMq+R9M5ccTyE5Y/61rRV+LVQuLeqaUWiQ9Yk7fODpOutvlSbkY/wnAB8TWnUw0mSts1fJmvN46SLh6+Q9AQpt24gnc1oxV6kBvVCUteIz0bEhYX5vyGd4b2y8HpNmhx9qhdpJKiG90wkXQP63rwP32dZRaB+HXeTGnCHaZRRIhu89wHSUeWvknJwM1KXiNG65n6O1F30UVID8GeFdT4N/DPp7PzdpEbCe9qJa6LJP4DvJPX7f5j0edU+06NJ1xk8QMrf8xqs4sekH8L6M7j7APOUzup/mNz9LHerfCvpINcVpIbQ10hd0/9f3TpOJZWld+THF/M6/kga6OfYHPPcHH+rppIqycXHi0gX2H9e0uPAZ1h2thDSgYWf5nhvJn3favcK/QapK/3Dkr7ZbKMjxZ3Pnh9FakzfR7re+Xdt7JN1x0mk/0Uxv99PGujnJtL/8acs697YtHxqYmXS9coPkHrPrE+q2xBp1NI3kAYSmUc6MPWvpEF96nPjN6R8ugj434io3fP2G6SDwBfkvL6c9LtkJTRaORARV5AG29iQ1HumNr2tMrGF8ub7pLL3z6RG1y9JderagYWRvgNP5nXfS8rrA0kDWY16/9eIuAj4H+BMUr6/iOGXHP2e9JtUq+fcRDro0bTeU4myNUpwceV4H6Qf1jmk06RP5L/fIzW+9mP4hYX/TuofO704j3TB5PGkH9pFwCcYPgjJEQwfbfJP5NHQYtkFlcXRJv+bdPHn46SuhF+qi3k6y482+R1S5fHRvP49o8HFkXnaidQNEEAaTOWuvM1fkL6UJzfZ3hCFC+YbbaPB57wGcHZe/12kL+OzF2qSviBH58+/NhqlRzjzoyuP/D1bCLyl37H40db/bdVchszo8HqfLYP98KNfD1IXxL9SN/BOWR71dQE//OjGgzSOw139jmNQH7Uhxs3MSi93l7uCdKTu46QjdC+MZYP4WMkp3Vj77RGxXYfXO490QOrXnVyvWavy5RRfIzXc/q3f8TQiaTrLRsr2QE3WEZJWJd2S4gLS+A5nApdHxCH9jGtQ+SJ9M6uSbUld42rdL3aPiCclfZdlo7wVnRwRH+5lgNZcbmCJNBy62cBQGijhPlKvlJ36HI5Zr4nUBfgM0sHVc0ldya0LfObNhpG0N6nLab27osHIQGZmZmZm1htuvJmZmZmZmVVAKbpNTp48OaZPn77c9CeeeILVV6+/tU/5Oe7Oufrqqx+IiOf1O46RVCV/yxYPlC+mTsdT9vxtlLtl+5804hjHb7T4yp67UJ2ytxe8z8OVPX+LuVvW/10Z4ypjTNDZuFrK3X6PmBIRvOY1r4lGLrnkkobTy85xdw7wxyhBjo70qEr+li2eiPLF1Ol4yp6/jXK3bP+TRhzj+I0WX9lzNypU9vaC93m4sudvMXfL+r8rY1xljCmis3G1krsDcZ83MzMzMzOzQVeKbpPNXH/Po+w369y23jNv9q5disasPe3mr3PXrLnphe/SoVssbem75e/UxOSy16pqept1XnD+TkQ+82ZmZmZmZlYBbryZmZmZmZlVgBtvZmZmZmZmFeDGm5mZmZmZWQW48WZmZmZmZlYBbryZmZmZmZlVgBtvZmZmZmZmFeDGm5mZmZmZWQW48WZmVkKSTpC0WNINhWnrSbpQ0m3577qFeYdLmivpVkk79idqMzMz6yY33szMyulEYKe6abOAiyJiBnBRfo2kzYA9gc3ze74taVLvQjUzM7NecOPNzKyEIuJS4KG6ybsBJ+XnJwG7F6afHhFPRcSdwFxg617EaWZmZr2zQr8DMOsWSdOAHwHPB54BjouIb0haDzgDmA7MA94dEQ/n9xwO7A88DRwcEef3IXSzZqZExCKAiFgkaf08fSpweWG5BXnaciQdABwAMGXKFIaGhobNX7JkyXLTyuDQLZY++3zKqsNfN9PP/Sjr51hT9vjMzKwxN95skC0FDo2IayStCVwt6UJgP1LXs9mSZpG6nh1W1/VsQ+DXkl4SEU/3KX6zVqnBtGi0YEQcBxwHsNVWW8XMmTOHzR8aGqJ+WhnsN+vcZ58fusVSjrp+9J+veXvP7GJEIyvr51hT9vjMzKwxd5u0gRURiyLimvz8ceBm0tkIdz2zqrpP0gYA+e/iPH0BMK2w3EbAwh7HZmZmZl3mM282IUiaDrwKuIIedD2D1rt21XS7C1MZu0mVLaayxdPAOcC+wOz89+zC9FMlfY101ngGcGVfIjQzM7OucePNBp6kNYAzgUMi4jGpUQ+ztGiDaWPqegZwzClnt9S1q6bbXbzK2E2qbDGVKR5JpwEzgcmSFgCfJTXa5kjaH7gb2AMgIm6UNAe4idRd+EB39zUzMxs8brzZQJO0IqnhdkpE/CxPvk/SBvmsm7ueWSlFxF5NZm3fZPkjgSO7F5GZmZn1m695s4GldIrteODmiPhaYVat6xks3/VsT0krS9oEdz0zMzMzsxLxmTcbZK8H9gGul3RtnvZJ3PXMzMzMzCrIjTcbWBFxGY2vYwN3PTMzMzOzinG3STMzMzMzswpw483MzMzMzKwC3HgzMzMzMzOrgFEbb5KmSbpE0s2SbpT00Tx9PUkXSrot/1238J7DJc2VdKukHbu5A2ZmZmZmZhNBK2felgKHRsTLgG2AAyVtBswCLoqIGcBF+TV53p7A5sBOwLclTepG8GZmZmZmZhPFqI23iFgUEdfk548DNwNTgd2Ak/JiJwG75+e7AadHxFMRcScwF9i6w3GbmZlZCbnHjplZ97R1qwBJ04FXAVcAUyJiEaQGnqT182JTgcsLb1uQp9Wv6wDgAIApU6YwNDS03PamrAqHbrG0nRAbrqfXlixZUoo42lXVuM3MrFRqPXaukbQmcLWkC4H9SD12ZkuaReqxc1hdj50NgV9Leonvs2lmtryWG2+S1gDOBA6JiMekZrfPanhfrVhuQsRxwHEAW221VcycOXO5Nx1zytkcdX17t6Kbt/fy6+m1oaEhGu1P2VU1bjMzK498YLd2cPdxScUeOzPzYicBQ8BhFHrsAHdKqvXY+UNvIzernumzzm1r+Xmzd+1SJNYrLbWMJK1IaridEhE/y5Pvk7RBPuu2AbA4T18ATCu8fSNgYacCNjMzs2roZI+dvL6O99oZhB4nE7HnzETcZzNoofGmdIrteODmiPhaYdY5wL7A7Pz37ML0UyV9jdT9YQZwZSeDNjMzs3LrdI8d6E6vnTL02BmvidhzZiLusxm0dubt9cA+wPWSrs3TPklqtM2RtD9wN7AHQETcKGkOcBOp3/uB7rduZma95u5E/eMeO2Zm3TFq4y0iLqPxUTGA7Zu850jgyHHEZWZmZhXkHjs2qCTNAx4HngaWRsRWktYDzgCmA/OAd0fEw/2K0QZfK/d5MzMzM2tVrcfOdpKuzY9dSI22HSTdBuyQXxMRNwK1Hjvn4R47Vm5viYgtI2Kr/LrhfY/NuqW9oRzNzMzMRuAeOzbBNBtF1awr3HgzMzMzMxtdABdICuB7eQCdZqOoDtNspNTiqJnt3tt4LFodobOMo3mWMSbofVxuvJmZmZmZje71EbEwN9AulHRLq29sNlJqcdTM/docZGksWh1dtYyjeZYxJuh9XL7mzczMzMxsFBGxMP9dDJxFupn8fXn0VOpGUTXrCp95MzMzMzMbgaTVgedExOP5+duAz9N8FNVSavUWKodusZT9Zp3rW6iUkBtvZmZmZmYjmwKclW82vwJwakScJ+kqGtz32Kxb3HgzM6sY32vIzKy3IuIO4JUNpj9Ik1FUzbrB17yZmVWT7zVkZmY2wbjxZgNN0gmSFku6oTBtPUkXSrot/123MO9wSXMl3Sppx/5EbTYmu5HuMUT+u3v/QjEzM7NucLdJG3QnAscCPypMq52hmC1pVn59mKTNgD2BzYENgV9LeklEPN3jmM1G0/F7DdWU9T46xfsfTVm1O/dD6uR+l/VzrCl7fGZm1pgbbzbQIuJSSdPrJu8GzMzPTwKGgMPy9NMj4ingTklzScMA/6EnwZq1ruP3Gqop6310ivc/OnSLpRx1fed/vlq9/1Eryvo51pQ9PjMza8yNN5uImp2hmApcXlhuQZ62nNHOXkD7Zwe6fRS8jEfayxZT2eJppnivIUnD7jWUc9r3GjIzMxtAbryZLaMG06LRgqOdvQA45pSz2zo70Mmj/o2U8Uh72WIqWzyNTLR7DZmZmdkybrzZRNTsDMUCYFphuY2AhT2PzmxkvteQmZnZBOXGm01Ezc5QnAOcKulrpAFLZgBX9iVCsyZ8ryEzMyuzdntWzJu9a5ciGUxuvNlAk3QaaXCSyZIWAJ8lNdqWO0MRETdKmgPcBCwFDvRIk2ZmZjZRuYt7+bjxZgMtIvZqMqvhGYqIOBI4snsRmZmZmZmNjW/SbWZmZmZmVgFuvJmZmZmZmVWAu02amZmZmVlftHpd3aFbLGW/WedO+AFOfObNzMzMzMysAtx4MzMzMzMzqwA33szMzMzMzCrAjTczMzMzM7MKcOPNzMzMzMysAtx4MzMzMzMzqwA33szMzMzMzCrAjTczMzMzM7MK8E26zczMaP1GsTUT/UaxZmbWez7zZmZmZmZmVgFuvJmZmZmZmVWAG29mZmZmZmYV4GvezEqi3ettwNfcWHmMJX/NzMysPW68mZmZmZlZJUz0waXceDMzMzMzs4E0aD2bfM2bmZmZmZlZBbjxZmZmZmZmVgFd6zYpaSfgG8Ak4AcRMbtb2yqa6P1gbfz6lbtmneD87Z2Rfm8O3WIp+9XN9+/NyJy7VmXOX+uVrjTeJE0CvgXsACwArpJ0TkTc1I3tmXWKc9eqrFP565Ejrddc9lqVOX+tl7p15m1rYG5E3AEg6XRgN8BJbGVXqdxtp5J96BZLmdm9UKwcKpW/E82gXTTfYc5dqzLn74Bpt35V39NiNOMp27vVeJsKzC+8XgC8rriApAOAA/LLJZJubbCeycADXYmwFsdXurLarsfdJWWMe+Meb2/U3IXy5G87DobJB7+vPPFkpfqM6Hw8pcvfFnK3bP+T5Rw8gWLs0m8UjB5f6XIXulP2dvEz7qXSfye6YKR9Ll3+jpC7pfzflbGcLWNMMLa4Rih3Rs3dbjXe1GBaDHsRcRxw3Igrkf4YEVt1MrBecNyVNmruQjXzt2zxQPliKls8YzDusrcKn4FjHL8SxjewZW8veJ/7bsxlb8n241lljKuMMUHv4+rWaJMLgGmF1xsBC7u0LbNOcu5alTl/raqcu1Zlzl/rmW413q4CZkjaRNJKwJ7AOV3allknOXetypy/VlXOXasy56/1TFe6TUbEUkkHAeeThkw9ISJuHMOqRuwaUWKOu6I6mLtQvs+zbPFA+WIqWzxt6VD+VuEzcIzjV6r4Brzs7QXvcx+NM39Lsx91yhhXGWOCHseliOW6lJuZmZmZmVnJdKvbpJmZmZmZmXWQG29mZmZmZmYVUNrGm6SdJN0qaa6kWX3Y/gmSFku6oTBtPUkXSrot/123MO/wHOutknYsTH+NpOvzvG9KUp6+sqQz8vQrJE3vUNzTJF0i6WZJN0r6aFViHxS9zN1u5+kY4ul6/rUZzyqSrpR0XY7nc/3+jMqs3+VujqEjOd3lGDuW512Kr2N5XyVlyN9OKVvZ3gtl+/3ohX7lbJnLMEmTJP1J0i9KFNM6kn4q6Zb8mW3b17gionQP0sWetwMvBFYCrgM263EMbwJeDdxQmPZVYFZ+Pgv4Sn6+WY5xZWCTHPukPO9KYFvSPUB+Beycp38E+G5+vidwRofi3gB4dX6+JvCXHF/pYx+ER69zt9t5Wsb8azMeAWvk5ysCVwDb9PMzKuuj17nb7Zzucowdy/MuxdexvK/Koyz528H9KVXZ3qN9LtXvRw/2t285W+YyDPhv4FTgF/l1GWI6Cfhgfr4SsE4/4+p78jb5kLYFzi+8Phw4vA9xTK8rOG8FNsjPNwBubRQfabShbfMytxSm7wV8r7hMfr4C6c7s6sI+nA3sUMXYq/joR+52M0/LmH/jiGU14BrgdWWIp2yPspS7edvjyuk+xDumPO9RbGPO+37l4hj3szT528F9Km3Z3qP9L83vR5f2rzQ5W5YyjHR/vIuA7VjWeOt3TGsBd1JXz+1nXGXtNjkVmF94vSBP67cpEbEIIP9dP09vFu/U/Lx++rD3RMRS4FHguZ0MVqk746tIR10rFXuFlSF3O/m/HrMu5l+7cUySdC2wGLgwIvoaT4mVIXebaff/1TPjzPNuxtWJvK+SQdiH0UyYcqssvx9dVoqcLVkZdjTwCeCZwrR+x/RC4H7gh7k75w8krd7PuMraeGvUNzl6HkXrmsU70n50dR8lrQGcCRwSEY+NtGiTOPoWe8WV+bMZy/96bBvqbv61JSKejogtSUf0tpb08n7GU2JV3Me+xtyBPO+aDuV9lQzCPozVQJVbZfr96LK+x1mmMkzS24HFEXF1q29pMK0bn98KpC7M34mIVwFPkLpJ9i2usjbeFgDTCq83Ahb2KZai+yRtAJD/Ls7Tm8W7ID+vnz7sPZJWANYGHupEkJJWJH0ZT4mIn1Up9gFQhtzt5P+6bT3IvzGJiEeAIWCnMsRTQmXI3Wba/X91XYfyvOvGmfdVMgj7MJqBL7fK+vvRJX3N2RKWYa8H3iFpHnA6sJ2kk/scU207C3LvBYCfkhpzfYurrI23q4AZkjaRtBJpUIxz+hwTpBj2zc/3JfURrk3fU2kUxk2AGcCV+TTq45K2ySMdvb/uPbV1vQu4OHLn2PHI2zkeuDkivlal2AdEGXK3k//rtvQo/9qJ53mS1snPVwXeCtzSr3hKrgy520xb/69uB9OpPO9ifB3J+27F1yVlzt9OGehyq2y/Hz3Qt5wtYxkWEYdHxEYRMZ30WVwcEe/rZ0w5rnuB+ZI2zZO2B27qa1ydvrCvUw9gF9LoN7cDn+rD9k8DFgH/ILWi9ydd13URcFv+u15h+U/lWG+lMKoRsBVwQ553LPmCR2AV4CfA3PxPfWGH4n4D6fTsn4Fr82OXKsQ+KI9e5m6387SM+ddmPK8A/pTjuQH4TJ7et8+ozI9e5m63c7rLMXYsz7sUX8fyvkqPMuRvB/elVGV7j/a5VL8fPdrnvuRsBcqwmSwbsKTvMQFbAn/Mn9fPgXX7GVetMm5mZmZmZmYlVtZuk2ZmZmZmZlbgxpuZmZmZmVkFuPFmZmZmZmZWAW68mZmZmZmZVYAbb2ZmZmZmZhXgxpuZmZmZmVkFuPFmZmZmZmZWAW68NSHpRElf7PSy3dRmzPtJuqzbMVnvDXrujnM7Q5I+2O3tWGOS3ijp1hLEUYq8t2qTtETSC1tcNiS9uEPbnZ7Xt0KDeS/IcU3Kr38lad9ObNfMymFCNt5yBe5hSSt3Yd0zJS0ovN4gF7JTCtM+1WTaeZ2OxwaLc9eqLCJ+GxGbjnc9Ha4Iz5T0TK7wLpG0QNIcSa/txPpH2bYkfVzSbZKelHS3pNnd+H5b+yTNk3SfpNUL0z4oaQggItaIiDs6sJ3lDqZK2kjSmZIekPSopOsl7TfauiLi7hzX0/n1zhFx0nhjNLPymHCNN0nTgTcCAbyj29uLiEXAXOBNhclvAm5pMO3Sbsdj1eXctbJrdCagIhZGxBrAmsA2pBz/raTtu7zdbwIHAO/P294Z2A6Y0+XtWutWAD7ah+3+GJgPbAw8l5Qj9/UhDjMrmQnXeCMVgJcDJwLPdiWQ9CpJ10h6XNIZwCqFeY2Oii135DcfnfsVsGHhKO6GpIrtm/Iyk4BXAd+om7ZtXg5J/ybp5nyG5XxJGxe28VJJF0p6SNKtkt7daCclrSnpEknfzEd3nyvpHEmPSboSeFHd8t+QND/Pv1rSG/P050v6q6TnFpZ9jaT7Ja3YwudtnTNRc7fp+5S6v31L0rl5/6+Q9KLC/B0k3ZKPXB8LqOVP256Vz0AcLumm/L/9oaRVlM/WSjpM0r3ADyWtLOloSQvz42jlM0la/uzuhvnswv2S7pR0cGHeJEmflHR7/t9eLWmapNqBgutynr4nL/92SddKekTS7yW9orCupt+RokgWRMRngB8AXymsY0xlpKQXS/pNzsEH8vaRNAP4CLB3RPwhIpZGxI3AvwI7SdouL3eipO/m78DjeV0tfa9G+35YS/4f8DFJ69TPKJalSr+x/5fz4ypJX9Tylya8Veks68P5/yJJLwO+C2yb8/mRvOxrgRMj4omcG3+KiF81ClDSv+bv6MtV16VSha7iyr8Hkv43x3CnpJ0L69lE0qU5V36dYzx5tA9I0k8k3Ztz/FJJmxfmrSrpKEl35fmXSVp1tHWaWXMTtfF2Sn7sKGmKpJWAn5OOdK0H/IT0A9qWiHiCdOR0Ye62sEZELKRQASZVfm8BLqqbtiJwpaTdgU8C7wSeB/wWOA2erWBfCJwKrA/sBXy7WFDm5Z6b1/+7iDg4IgL4FvA3YAPg3/Kj6Cpgy7z/pwI/kbRKRNwLDAHFivb7gNMj4h/tfkY2LhMud4HVWnjfXsDngHVJZwqPzOuaDJwJfBqYDNwOvL7dz8aetTewI+nAz0tInyvA80m5tzHpLNKnSGevtgReCWxdWPZZkp4D/B9wHTAV2B44RNKOeZH/Jv1vdwHWIpVZf42IWu69MufpGZJeDZwAfIh0luJ7wDlKDcmxfkd+Brxay7rMjbWM/AJwASk/NwKOyctsDyyIiCuLG42I+aSDNDsUJu+d1zMZuJZUBrT6vWr4/bCW/ZH0//3YKMt9C3iC9H3Yl8IBtoK3kxplryTly44RcTPwYeAPOZ/XycteDnxL0p6SXtBso5I+QDrI8NaIuKGF/XkdcCspl74KHC+pdlDrVOBK0nfoCGCfFtYH6cDfDFIOXkPOz+x/gdcA/0T67nwCeKbF9ZpZIxExYR7AG4B/AJPz61uA/yJVRBcCKiz7e+CL+fl+wGV16wrgxfn5iYVlZ5J+kIvLTgeeJv14/hdwZJ5+T2HaJXnar4D9C+99DvBXUsXoPcBv69b9PeCzhThOAG4APl5YZlLe75cWpn2pfp/q1vswqXJE3u7vCuu6F9i63//PifSYwLnbyvt+UJi3C3BLfv5+4PLCPAELgA/2+/9ZtQcwD/hw3ed8e86ZvwOrFObdDuxSeL0jMK8+x0iVyLvrtnM48MP8/FZgtybxPJvD+fV3gC/ULXMr8OYWviPL5X2e/tK8nalNYmipjAR+BBwHbFT3/k8X87Nu3unA92NZjp9emLdG/k5OG8/3w4+W8/6twMuBR0kHpT4IDBXzkGW/sZsW3vtFCmVvXvYNhddzgFn5+X4sX06vC8wGbsz/72uB1+Z50/P6PgbcVMytwrwV8ushcpmXtzO3sOxqednnAy8AlgKrFeafDJzc5me2Tl7n2qTfgCdr3xM//PCjM4+JduZtX+CCiHggvz41T9sQuCciorDsXZ3aaETMI1Ua30CqSPw2z/pDYVqtK9DGwDeUuv48AjxEqnROzfNeV5uX5+9NKnhrdgVWJXXDqHkeqd/+/MK0Yfsn6VCl7m6P5vWuTToyB3A2sJnSqFo7AI9G3dFi67qJmrutvO/ewvO/kiq3kD6bZ3M+f0bF74C1p7782DA/vz8i/laYtyHDc7C4bNHGpG66xf/tJ4HaYDjTSA3BVmwMHFq3rml5u2P9jkwlVUIfgXGVkZ8gfQ+ulHSjpFqvhwdIPSEa2SDPrynm8RLSd2tDxvf9sBZFOqP1C2BWk0Ua/cY2Kmta/l9ExMMRMSsiNid9J64Ffl44SwbwceBbEbGg0TqaeDaGiPhrfroGKZ8eKkxrtg/DKHVvnq3UvfkxUoMX0ndjMqmLcqvfYzNrQVUvLm9b7mP9bmCS0rUZACuTjhItAqZKUuEH/gUsK3CeIB2hqq2r+MNYL5pM/y2porsty7pT1Ka9ATg2T5tPOrtxSv0KlK5z+E1E7FA/r+D7pCN2v5S0U6TucPeTjqhNI52xqe1fbb1vBA4jdeO5MSKekfQw+fqgiPibpDmkSsFLSd2PrEcmeO7Ob+F9zSwi5XwtBhVfW9uKn90LSGezYPm8WUhqVNzYYNmi+cCdETGjyfbmk7pottIVrJZ7y3UJlPRmRv6ONPMvwDUR8cR4yshI3Sr/PcfyBuDXStftXUzq4rh18WCYpGmkbqdfKMRSzOM1SN3PFjK+74e157OkLoFHNZhX+43dCPhLntZOWdOs7E0zIx6Q9L+k8ne9wqy3AedJujcizmxje40sAtaTtFqhAdfKPrwX2I10hnIe6aBG7bvxAOlyjReRukebWQdMpDNvu5O6HmxGum5hS+BlpEro7qSC92BJK0h6J+k6jZrrgM0lbSlpFVJf8GbuA54rae266ZeSunEtjIjH8rTL8rS1SWcyIJ11OLx2zYKktSXtkef9AniJpH2ULoRfUdJrlS54LjqI1GXoF5JWjTRk8M+AIyStJmkzhvfHXzPv//3ACpI+Q7rGpOhHpC4X7yB1pbDe2Z0JmrttvK+Rc/O+v1Pp4v2DGX5GwtpzoNLw5euRzpCd0WS504BPS3qe0nWHn6FxmXEl8JjSYCer5iP4L9eyIfp/AHxB0gwlr9CyQUHuA4r31/o+8GFJr8vLri5pV0lrkvJzpO/Is/J7p0r6LKl73CfzrDGXkZL2kLRRfvkwqaL+dET8hfSdOUXSNnn/Nyddp/nriPh1Yd27SHqD0vV7XwCuiHRt3Hi+H9aGiJhLyvmDG8yr/419Kal8bNV9wEb5/wuApK/k78MKOY//g9Tl8cHC+24EdiJdGzeuEYgj4i7S9X1HSFpJ0rbAP7fw1jWBp4AHSQcKv1RY5zOk7vBfUxqcaJKkbeVbYZiNy0RqvO1Lupbi7oi4t/YgnTXYizTIwn6kH9f3kApiAPKP7OeBXwO3kSquDUXELaTKyx1K3Vhq3YV+Q7qYt/jea0ndxK6uHemKiLNIFx+frtQF4QbSQBJExOOkI217ko663puXHVYQ5qPLB5COyp6dK+0HkbpG3Eu6DuKHhbecT7pe6S+k7kR/o667RET8jnSR8TW5K531zoTNXdJ1JKO+r8n+PADsQbpu5EHSBfW/G+191tSppIE37siPZje5/iKpEvhn4HrS2Yrlls0V3n8mHYy4k3SU/gekAwIAXyNdF3QB8BhwPCnnIB2EOCnn6bsj4o+ks1vHkr4Hc0nfCSLi74zwHck2lLQEWEIamGQLYGZEXJDnj6eMfC1wRV7/OcBHI+LOPO+gvM8n522fR7pGqX5AlVNJZ34eIg3+sHfeZkvfK+uYzwOrN5l3ECl37yWdeT2N1KhpxcWkhti9kmrdZVcDziJ1272DdDZ7uQZaRFxHGgjl+yqMHDlGe5N6WDxI+s6ewej78CPSd+Ie0vV3l9fN/xipHLiKlL9fYWLVPc06TsMvAzBrTtLFwKkR8YN+x2JmvSNpHmnQg1+Ptuwo69mONIDGC0dduIK6UUZKOpE0oMpyI3ZaeUn6CvD8iNh31IVLSv+/vfsPlew+6zj+frJNatlGknTTdekGb1pCoTQ1DcuqRMqt1brNSreClUCVBFIWxEDFiN5S0Opfq1BRRIqx1i7aNko1zdKANqRe/M9m12yymyYx23hrN7tmjT9qsn9Yt33845zb3Cz3x/w653y/d94vGO7Mydydz8w8Ocxzv88503ytxdOZ+ZtDZ5H0Cv/6oZG0o0y3svGolCRt5e00q2zbjvvI+RbN9+29ox293Q/cTbNyVo125PYtEXFFRBygOZbtiwPHknSZuTlhiSYXEUdpjq36SDumI0ljiYg/oBn7qnYlYiPuI0Vz7Nfnac7aeIHmxCYPDppofD9AM1L8BpqzDP9iZj4WER+i+QqKy32jPRumpB45NilJkiRJFXBsUpIkSZIqUMTY5K5du3JhYWHQDBcvXmTnzo1OIjUMM8GJEydezMzre3vACQxZvyXWCJhrVen1W8K+dz2l1s9GassLW2cuvXZh4/ot8f0oMRNs31w11K80qSKat4WFBY4fPz5ohuXlZRYXFwfNcDkzQUR8o7cHm9CQ9VtijYC5VpVevyXse9dTav1spLa8sHXm0msXNq7fEt+PEjPB9s1VQ/1Kk3JsUpIkSZIqYPMmSZIkSRUoYmxylhaWHhrr/itHDnaURBrPuLUL8JkD5R2rIHVhkv8/3L/Pp1PPf4u7xqgX60RSTbZd8yZJKt9mzdi9N18a68O3JEnzwrFJSZIkSaqAzZskSZIkVWDuxyZXR3dGHdNxNl6SJEnSEFx5kyRJkqQK2LxJkiRJUgVs3iRJkiSpAjZvkiRJklSBuT9hiVQzv4xWkiRpfrjyJkmSJEkVsHmTJEmSpArYvEmSJElSBWzeJEmSJKkCNm+SJEmSVAGbN0mSJEmqgM2bJEmSJFXA5k2SJEmSKmDzJkmSJEkVsHmTJEmSpAq8ZugAkvqzsPTQWPdfOXKwoySSJEkalytvkiRJklQBmzdJkiRJqoDNmyRJkiRVYKpj3iJiBXgJ+A5wKTP3RcR1wF8CC8AK8HOZ+V/TxZQkSZq9cY8FBo8HljScWay8vTszb8nMfe3tJeCRzLwJeKS9LUmSJEmaQhdjk4eAo+31o8AHOngMaWoRsRIRpyLiZEQcb7ddFxEPR8Sz7c9rh84pSZIkwfRfFZDAlyMigT/OzPuA3Zl5HiAzz0fEG9f7xYg4DBwG2L17N8vLy1NGadx786WJfm/360b73VnlHMXLL7/c6+ONosRMU3p3Zr645vbqyvGRiFhqb//6MNEkTcOvxpAkbTfTNm+3Zea5tkF7OCKeHvUX20bvPoB9+/bl4uLilFEad00wuw5N4/aJUyO8HKcujv1vT/qBYHl5mVm9LrNSYqYZOwQsttePAsvYvEnSzHi8vCRNbqrmLTPPtT8vRMQDwH7ghYjY06667QEuzCCn1IWiVo4nWTUedcV4UpM+r1JXaEvNJc0hpx4kaQITN28RsRO4IjNfaq+/F/ht4BhwJ3Ck/fngLIJKHShq5XiSVeORV4wntPKhxYl+r9QV2lJzSXLqQZJGMc2nvt3AAxGx+u98LjP/NiIeBf4qIu4G/hX44PQxpdlz5Vi1cuxMlet06qHriQQYfyqh1FV/c0n1mbh5y8zngB9aZ/t/AO+ZJpTUNVeOtQ04dqZadTr18IeffbDTiQQYfyqh1FV/c0n16XbvJpXLlWNtN46dqQpOPUjS5GzeNJdcOVblijrZziQ2G2vrY+xtPdvtBD2bGSqzUw+SNB2bN0mqT1En25nEZifo6fpEPBvZbifo2cyAmZ16kKQp2LxJUmUcO1OtnHqQpOlcMXQASdLoImJnRFy9ep1m7Ow0r4ydgWNnkiRtS668SVJdHDuTJGlO2bxJUkUcO5MkaX45NilJkiRJFbB5kyRJkqQK2LxJkiRJUgVs3iRJkiSpAjZvkiRJklQBmzdJkiRJqkDRXxWwsPTQ0BEkSZIkqQhFN2+ShjXuH1BWjhzsKIkkSZIcm5QkSZKkCti8SZIkSVIFbN4kSZIkqQIe89YDjxuSJEmSNC1X3iRJkiSpAjZvkiRJklQBmzdJkiRJqoDNmyRJkiRVwBOWSJIkjWHcE5F95sDOjpJImjeuvEmSJElSBWzeJEmSJKkCjk1KkqY27hiZJEkanytvkiRJklQBmzdJkiRJqoDNmyRJkiRVwGPepI54DJAkSZJmyZU3SZIkSaqAzZskSZIkVcCxSUmSpA6dev5b3DXGKP3KkYMdppFUM5u3Aq0eK3XvzZdG2tm7k1cpxq1dsH5VjnGPU7V2JUl9s3nbBvzAoZpZv5IkSaOxeZMkvYpnSpUkqUw2b5IkSQVxIkHSRjo722REHIiIZyLiTEQsdfU40qxZu6qZ9ataWbuStLVOVt4iYgfwR8BPAmeBRyPiWGZ+rYvH03imGYka50QU4yjlr4bWbvms341Zv6qVtdu/haWHOj25VB/76lL2vVKfuhqb3A+cycznACLifuAQ4E5YpbN2VTPrt0eTnF11XF19YF7NXNCHX2u3cB4LK5UhMnP2/2jEzwIHMvPD7e1fAH44M+9Zc5/DwOH25luBZ2YeZDy7gBcHznA5M8EPZub1fT3YKLXbbi+lfkusETDXquLqt6Da3Uyp9bOR2vLC1pmLq912+yj1W+L7UWIm2L65eq1fqU9drbzFOtte1SVm5n3AfR09/tgi4nhm7hs6x1pmGsSWtQvl1G+p74e5BlPdvnc9tb1PteWFIjPPbN9b4HMrMhOYS6pRVycsOQvcsOb2XuBcR48lzZK1q5pZv6qVtStJI+iqeXsUuCkiboyIq4A7gGMdPZY0S9auamb9qlbWriSNoJOxycy8FBH3AH8H7AA+nZlPdvFYM1TiGJGZelZh7Zb6fphrABXW70Zqe59qywuFZZ5x7Rb13FolZgJzSdXp5IQlkiRJkqTZ6uxLuiVJkiRJs2PzJkmSJEkVmMvmLSJWIuJURJyMiOPttusi4uGIeLb9eW0POT4dERci4vSabRvmiIiPRsSZiHgmIn6qx0wfj4jn29frZETc3mcmNazbiXJZu4UptX62yHxDRPx9RDwVEU9GxEdKzh0R3xcRX42Ix9u8v1Vy3lmJiANt/jMRsdTzYxdbIxGxIyIei4gvFZTpmoj4QkQ83b5mP1pCLqkKmTl3F2AF2HXZtt8FltrrS8Dv9JDjXcCtwOmtcgBvAx4HXgvcCHwd2NFTpo8Dv7rOfXvJ5OV7r7d1O34ua7ewS6n1s0XmPcCt7fWrgX9usxWZm+Y7017fXr8S+EfgR0rNO6PnvKPN/Wbgqvb5vM0aSYBfAT4HfKm9XUKmo8CH2+tXAdeUkMuLlxouc7nytoFDNDsT2p8f6PoBM/MfgP8cMcch4P7M/N/M/BfgDLC/p0wb6SWTNmXdbp5rI9buQEqtn81k5vnM/Kf2+kvAU8CbKDR3Nl5ub17ZXrLUvDOyHziTmc9l5reB+2meVy9KrZGI2AscBD61ZvPQmb6f5o84fwqQmd/OzP8eOpdUi3lt3hL4ckSciIjD7bbdmXkemp0w8MaBsm2U403AN9fc72y7rS/3RMQT7cjT6ijD0JnmjXU7GWu3fCXXz6tExALwTprVrGJzt6NyJ4ELwMOZWXTeGSjmORRWI78P/Brw3TXbhs70ZuDfgT9rxzk/FRE7C8glVWFem7fbMvNW4H3AL0XEu4YONIJYZ1tf3/PwSeAtwC3AeeATBWSaR9bt+KzduhX1PkXE64G/Bn45M/9ns7uus63X3Jn5ncy8BdgL7I+It29y98HzzkARz6GkGomInwYuZOaJUX9lnW1dvIavoRmd/mRmvhO4SDMmOXQuqQpz2bxl5rn25wXgAZrl9xciYg9A+/PCQPE2ynEWuGHN/fYC5/oIlJkvtB8Evgv8Ca+MKwyWaR5Zt+OzdqtRZP2sFRFX0nwo/2xm/k27ufjc7TjaMnCACvJOYfDnUGCN3Aa8PyJWaMZIfzwi/mLgTKuPc7ZdDQb4Ak0zN3QuqQpz17xFxM6IuHr1OvBe4DRwDLizvdudwIPDJNwwxzHgjoh4bUTcCNwEfLWPQKs709bP0Lxeg2aaN9btZKzdahRZP6siImiOz3kqM39vzX8qMndEXB8R17TXXwf8BPB0qXln5FHgpoi4MSKuAu6geV69KLFGMvOjmbk3MxdoXo+vZObPD5mpzfVvwDcj4q3tpvcAXxs6l1SNoc+Y0veFZtb68fbyJPCxdvsbgEeAZ9uf1/WQ5fM0o1z/R/OXpbs3ywF8jOYsS88A7+sx058Dp4AnaHaie/rM5MW6nSKXtVvYpdT62SLzj9GMaT0BnGwvt5eaG3gH8Fib9zTwG+32IvPO8HnfTnOWx6+v7iOtke891iKvnG1y8Ew0o+zH29fri8C1JeTy4qWGS2Q6NixJkiRJpZu7sUlJkiRJqpHNmyRJkiRVwOZNkiRJkipg8yZJkiRJFbB5kyRJkqQK2LxJkiRJUgVs3iRJkiSpAv8P2vUGp/NbpuEAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "#Code task 18#\n", - "#Call ski_data's `hist` method to plot histograms of each of the numeric features\n", - "#Try passing it an argument figsize=(15,10)\n", - "#Try calling plt.subplots_adjust() with an argument hspace=0.5 to adjust the spacing\n", - "#It's important you create legible and easy-to-read plots\n", - "ski_data.hist(figsize=(15,10))\n", - "plt.subplots_adjust(hspace=0.5);\n", - "#Hint: notice how the terminating ';' \"swallows\" some messy output and leads to a tidier notebook" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What features do we have possible cause for concern about and why?\n", - "\n", - "* SkiableTerrain_ac because values are clustered down the low end,\n", - "* Snow Making_ac for the same reason,\n", - "* fastEight because all but one value is 0 so it has very little variance, and half the values are missing,\n", - "* fastSixes raises an amber flag; it has more variability, but still mostly 0,\n", - "* trams also may get an amber flag for the same reason,\n", - "* yearsOpen because most values are low but it has a maximum of 2019, which strongly suggests someone recorded calendar year rather than number of years." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### 2.6.4.2.1 SkiableTerrain_ac" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "39 26819.0\n", - "Name: SkiableTerrain_ac, dtype: float64" - ] - }, - "execution_count": 116, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 19#\n", - "#Filter the 'SkiableTerrain_ac' column to print the values greater than 10000\n", - "ski_data.SkiableTerrain_ac[ski_data.SkiableTerrain_ac > 10000]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Q: 2** One resort has an incredibly large skiable terrain area! Which is it?" - ] - }, - { - "cell_type": "code", - "execution_count": 117, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
39
NameSilverton Mountain
RegionColorado
stateColorado
summit_elev13487
vertical_drop3087
base_elev10400
trams0
fastEight0.0
fastSixes0
fastQuads0
quad0
triple0
double1
surface0
total_chairs1
RunsNaN
TerrainParksNaN
LongestRun_mi1.5
SkiableTerrain_ac26819.0
Snow Making_acNaN
daysOpenLastYear175.0
yearsOpen17.0
averageSnowfall400.0
AdultWeekday79.0
AdultWeekend79.0
projectedDaysOpen181.0
NightSkiing_acNaN
\n", - "
" - ], - "text/plain": [ - " 39\n", - "Name Silverton Mountain\n", - "Region Colorado\n", - "state Colorado\n", - "summit_elev 13487\n", - "vertical_drop 3087\n", - "base_elev 10400\n", - "trams 0\n", - "fastEight 0.0\n", - "fastSixes 0\n", - "fastQuads 0\n", - "quad 0\n", - "triple 0\n", - "double 1\n", - "surface 0\n", - "total_chairs 1\n", - "Runs NaN\n", - "TerrainParks NaN\n", - "LongestRun_mi 1.5\n", - "SkiableTerrain_ac 26819.0\n", - "Snow Making_ac NaN\n", - "daysOpenLastYear 175.0\n", - "yearsOpen 17.0\n", - "averageSnowfall 400.0\n", - "AdultWeekday 79.0\n", - "AdultWeekend 79.0\n", - "projectedDaysOpen 181.0\n", - "NightSkiing_ac NaN" - ] - }, - "execution_count": 117, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 20#\n", - "#Now you know there's only one, print the whole row to investigate all values, including seeing the resort name\n", - "#Hint: don't forget the transpose will be helpful here\n", - "ski_data[ski_data.SkiableTerrain_ac> 10000].T" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**A: 2** Your answer here" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "But what can you do when you have one record that seems highly suspicious?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can see if your data are correct. Search for \"silverton mountain skiable area\". If you do this, you get some [useful information](https://www.google.com/search?q=silverton+mountain+skiable+area)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![Silverton Mountain information](images/silverton_mountain_info.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can spot check data. You see your top and base elevation values agree, but the skiable area is very different. Your suspect value is 26819, but the value you've just looked up is 1819. The last three digits agree. This sort of error could have occured in transmission or some editing or transcription stage. You could plausibly replace the suspect value with the one you've just obtained. Another cautionary note to make here is that although you're doing this in order to progress with your analysis, this is most definitely an issue that should have been raised and fed back to the client or data originator as a query. You should view this \"data correction\" step as a means to continue (documenting it carefully as you do in this notebook) rather than an ultimate decision as to what is correct." - ] - }, - { - "cell_type": "code", - "execution_count": 118, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "26819.0" - ] - }, - "execution_count": 118, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 21#\n", - "#Use the .loc accessor to print the 'SkiableTerrain_ac' value only for this resort\n", - "ski_data.loc[39, 'SkiableTerrain_ac']" - ] - }, - { - "cell_type": "code", - "execution_count": 120, - "metadata": {}, - "outputs": [], - "source": [ - "#Code task 22#\n", - "#Use the .loc accessor again to modify this value with the correct value of 1819\n", - "ski_data.loc[39, 'SkiableTerrain_ac'] = 1819" - ] - }, - { - "cell_type": "code", - "execution_count": 121, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1819.0" - ] - }, - "execution_count": 121, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 23#\n", - "#Use the .loc accessor a final time to verify that the value has been modified\n", - "ski_data.loc[39, 'SkiableTerrain_ac']" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**NB whilst you may become suspicious about your data quality, and you know you have missing values, you will not here dive down the rabbit hole of checking all values or web scraping to replace missing values.**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What does the distribution of skiable area look like now?" - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEXCAYAAADm5+DTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmT0lEQVR4nO3de5gcZZn+8e9NwikknDY4G0JI4GdATooygIqHiaAcFfXyEBYRVjSw6ioKKqdV1GWXVQF31wU2CgvIISBn0FWQpUUUhATDMYBAAgmEcA4MKpj4/P543yGVprunpzM9XZO5P9fV13S/VfXWU09X9dNVXVOliMDMzKws1uh0AGZmZkUuTGZmViouTGZmViouTGZmViouTGZmViouTGZmViptL0ySzpD0T4PU1+aSeiWNyq8rkj49GH3n/v5X0sGD1d8A5vvPkp6W9MQAp1sgaY86w+6R1NNkPyHp9XWGHSLppoHEVRaSDpP0/U7H0UfSKZIOX4Xp15V0taSlkn4ymLG1S6N1dAB9HCvpR4MVk606SVPy58bodvS/Sp1KWgB0AcuA5cC9wLnAzIj4K0BENLUh5r4+HRG/rDdORDwKjF2VmAvzOwF4fUR8otD/3oPR9wDjmAQcCUyOiCcHq9+I2G6w+hqOJK0FHA+8tdOxFHwXuFXSWRHxSgvTf4S0vf1NRCyTdDawKCKOH8wgyyYi/qXTMdjQGow9pvdHxDhgMnAS8DXgzEHodyXtqswlMBl4ZjCL0nDUhvd3f+C+iHhsMDtdlTgjYjFwH/CBFruYDDwQEctajaGomWXpOzphr83FavyZ1HkR0fIDWADsUdW2C/BXYPv8+mzgn/Pz8cA1wPPAs8CvScXxx3maPwG9wFeBKUAAhwKPAjcW2kbn/irAvwK3AkuBK4GN87Ae0rfJ18QL7AW8Avwlz++OQn+fzs/XIH3jfgR4krQnuEEe1hfHwTm2p4HjGuRpgzz9U7m/43P/e+Rl/muO4+wa09bMWXX+gTcA84HpNYbtAtyc+1gM/ABYqzCPAL4APJyX5buFeRwC3FQY9w3AdTmW+4GPNVjuvwfmAS/mvg8rDOsBFpG+yDyR14E1gKOBh4BngIv73s88zU/yuEvz+rBdg3mfBRxf1VZ3emBd4OT8/iwFbsptfe/1q+thHv9TedmeA35B2uMFEHBqXmeWAneSt4U8/DjgfxrEXTNG4JusvM4elp+/kl9fncfbFLiUtK7NB75Q6PsE4BLgPOAF8rpeNf+zgdOBnwEvkdbRZvq8KL/PtwNvqvUZQf/r4XasWLeWAMcW5nFeM9tefs/Oye/LPNJnyaIG+a67PtfJxQLSOnsn8DLpqNMHgHvyclWAbaqW/6g8/tKcp3UKw/cD5uZpfwu8sTBsm9zf87n/DxSGVYrvH4XtlH7WwcI004HZVW1fAq7Kz/cFfk9aVxYCJxTG63sfRheWc4/C8Fffs/z6rXn5ngfuAHoa1pZGA/t7VAdTaH8U+IfCm9tXmP4VOANYMz/eCajOgvUt+LnAeqz8IVEsTI8B2+dxLmXFCtxDncJUK3HVbzbpg+dBYEvS4cPLgB9XxfbDHNebSCvpNnXydC6paI7L0z4AHFovzqpp+80Z8Jac8/3qLOtOecUYnec/DziiMG4ANwAbA5vn+PrycAgrVvj1SCvo3+e+3kL6YKhZIEgr9v8jbSjvBv4IvKWw3MuAfwPWznk8ArgF2Cy3/TdwYaG/T+Ucrg18H5jbIG+3AR+taqs7PfBf+f2fCIwC3p7H63uvi+vhB/O6sU3Ow/HAb3M/ewJzgA3zcm8DTCjM58PA7Q3ibhTjCay8sZ9N3rby6zXyvL8OrEVadx8G9ixM/5cc/xrAujXmfzbpw2y3PM6YJvv8CGn9PIpUvNYcyHqYl3kx6bD2Ovn1rtXLTT/bHumoza+AjUjr0Z3U2b7oZ32ukYt18vLMBSbl+W9FKlrvzcv/VdK6sVZh+W8lFfeN8zIfnoe9hVQ8diWtcwfn8dfOfT0IHJvz/h5S4d+6+rOqxnbacB0sTDMm9zm1arvp+3LbA+yQl/2NpC8LH6x6H/otTKRt6hlgn9zXe/PrTepuBwMtRvU+6KvabyF/i2HlwvQt0gf06/vrq7DgW9ZoKxamkwrDtyV9gxzFqhem64HPFoZtTdoA+zaqADYrDL+17w2t6nMUacPZttB2GFApvPmNClN/Ofsmac9jWjPvTR52BHB54XUAexVefxa4vsYK/3Hg11V9/TfwjSbXlyuALxaW+xVW/vY4D9i98HpCX85r9LVhjnuDOvP6Q3GZGk1P2lj+ROGbfj/r4f+Sv1jk12uQiu5k0gfIA6QP4DVq9Pde4OEm87XSMlavs7y2MO0KPFrVxzHkPbQ8/Y39zPNs4NwB9nlLVS4WA+8cyHoIHAD8vs54ry43/Wx7FIpmfv1p6hemhutzdS4Ky/Opwut/Ai6uWv7HyHsEefxPFIZ/BzgjPz8d+HZV//eTvsS9k7TnvEZh2IXkvRYaF6aG62DV/M4Dvp6fTyUVqjF1xv0+cGrV+9BMYfoa+Ut9YfgvgIPrxdWus/ImknaNq32X9C3gWkkPSzq6ib4WDmD4I6RvGuObirKxTXN/xb5Hk3587lM8i+6P1D4xYzzpG091XxObjKO/nB1O+rZ+Q70OJG0l6RpJT0h6AfgXXpuj6jxuWqOrycCukp7vewAHAn9bZ757S7pF0rN53H2q5vtURPy5qv/LC33PI51U0yVplKSTJD2Ul2FBnqbee/0c6Vt3XyyNph9P+jb8UJ2+YOX8TAb+vRDns6RvphMj4v9Ih6j+C1giaaak9QvTjiMdzniNFpax2mRg06r351hWXmf7256qxxlQn5FOelpEjfWnn/VwEo3zX63etrdpVfyNlreZ9bnW9MW2lT4n8vIvZOXtu16sk4Ejq+Y/Kfe5KbAw99enqc+NJtbBogtIXwoA/g64IiL+CCBpV0k3SHpK0lLSZ00rn62TgY9WLec7SF88axr0wiRpZ1LyXnOKcUS8GBFHRsSWwPuBL0vavW9wnS7rtfeZVHi+Oekb9tOk3esxhbhGAZsMoN/HSQkt9r2MtDs7EE/nmKr7aupH+X5yBmll2VzSqQ26OZ30o/vUiFif9MGiqnGq8/h4jX4WAr+KiA0Lj7ER8Q/VI0pam3Ro9XtAV0RsSDpWX5xv9XuwENi7qv91Ip3A8HekExr2IO3lTOmbVZ1lvpN0mKVPo+mfBv5MOuxYTzHWhaTfy4pxrhsRvwWIiP+IiJ1Iv5lsBXylMO02pGPstQx0GWvlb35VXOMiYp8G0/TXbzN9vrruSFqDdAit1vrTaD1cSOP8N2txnv9rYquhmfW5Vr6KbSt9TkhSnmcz2/dC4MSq+Y+JiAtzv5NyPvsUPzdW+nyj6sthP+tg0bXAeEk7kgrUBYVhFwBXAZMiYgPSTwr11sVG8Swk7TEVl3O9iDipTl+DV5gkrS9pP2AWaRfurhrj7Cfp9fnNe4H0bXh5HryEdPx6oD4haVtJY0iHvS6JiOWkXdl1JO0raU3S7wBrF6ZbAkypeuOLLgS+JGkLSWNJ3+4uigGeEZVjuRg4UdI4SZOBL5N2ofvVT84g7XrvBbxLUr03elyetlfSG4DXFBLgK5I2yqevf5H0I221a4CtJB0kac382FnSNjXGXYuU76eAZZL2Bt7Xz+KeQcrT5Lzsm0jav7AML5OOTY8hvR+N/Ix0SKRP3enzt9KzgFMkbZr3XN6Wi2u9OI+RtF2OcwNJH83Pd87fNNckbax/ZuX3692kQ4G1DHQZq7eZW4EXJH1N6X+eRknaPn9ZbFUzfe4k6cP5LLUj8jLcUqOvRuvhNcDfSjpC0tp5W9m1hXgvJr03G0maCHy+wbgDWZ8bzW9fSbvn9/xI0vL/tolpfwgcntcXSVovf16NA35HWn++muPqIX0xnZWnnQt8WNIYpf9BPLSv0ybWwVflz7NLSEdmNiadCNJnHPBsRPxZ0i6kL071zAWm51i7Sb859jkPeL+kPfP6s46kHkmb1eyJwSlMV0t6kVQVjwNOIf2YWMtU4Jeks4huBk6LiEoe9q/A8XlX76gBzP/HpGPBT5AOx3wBICKWkn4r+RHpW8ZLpEMMffr+QfEZSbfX6Pes3PeNpB9z/wz84wDiKvrHPP+HSXuSF+T+m9EoZwBExPOk3y72lvTtGn0cRVqpXiRtDLWKzpWkH0znAj+lxin/EfEiqbhMJ32je4IVJy/UGvcLpA33uTz/qxovKv+ex7k2r1O3kH7jgHTywSOk9/Jean/wFV0NvEFS3yGl/qY/CriL9OPvs3m5am4fEXF5Hj5L6ZDU3UDf/8CtT8rxc3l+z5D2GpE0gfQ76BV1Yh7oMp4JbJu3mSvyl6D3AzuS1tmnSev/Bv30U1eTfV5J+r3mOeAg4MMR8Zca3dVdD/P68t48rydIvxFOayHkb5G28/mk7eYSUqGotWxNr8/1RMT9wCeA/yTl5v2kf6Hp9//UImI28BnSYbfnSIfsD8nDXiGd7bd37vc04JMRcV+e/FTSb7RLSGchnl/ouu46WMcFpL30n1R98f4s8K28LX6dtC3X80+kPd7nSL97v7rnFRELSUcCjiV9UV1I2oOrW3/6zu4yW+1ImkE66eSITscCIOlk4KGIOK3TsQwW1fhH9TKR9A+kEyPe3e/IVhr+BzFbbUXEzE7HUBQRR3Y6htVd3ivdknR0YSrp0NoPOhqUDZgLk5mtTtYinfK9Bensx1mkw2A2jPhQnpmZlYpve2FmZqUyrA/ljR8/PqZMmdLStC+99BLrrbfe4Aa0GnF+GnN+GnN+Gut0fubMmfN0RGzS/5idMawL05QpU5g9e3ZL01YqFXp6egY3oNWI89OY89OY89NYp/Mj6ZH+x+ocH8ozM7NSaVthkjRJ6TpL85TupvrF3L6xpOsk/SH/3agwzTGSHpR0v6Q92xWbmZmVVzv3mJYBR0bENqSr3H5O0rak++1cHxFTSVfwPhogD5tOurbTXsBp8k3KzMxGnLYVpohYHBG35+cvkq4UPZF0aYpz8mjnkO4NQ26fFREvR8R80uU5dmlXfGZmVk5D8huTpCnAm0kXJuyKdItp8t/X5dEmsvLl5BfR/K0hzMxsNdH2s/LylbkvJd2p8oV0kezao9Zoe81//+brn80A6OrqolKptBRXb29vy9OOBM5PY85PY85PY85PY20tTPmy65cC50fEZbl5iaQJEbE4X9fqydy+iJXvnVLzni75+mczAbq7u6PVUy47fbpm2Tk/jTk/jTk/jTk/jbXzrDyRLss/LyJOKQy6inRve/LfKwvt0/O9WLYgXYDx1nbFZ2Zm5dTOPabdSPdmuUvS3Nx2LHAScLGkQ4FHgY8CRMQ9ki4m3YdmGfC5fC8YMzMbQdpWmCLiJurfhnf3Wo0RcSJwYrtiqjbl6J82Nd6Ck/ZtcyRmZtbHV34wM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NSaVthknSWpCcl3V1ou0jS3PxYIGlubp8i6U+FYWe0Ky4zMyu30W3s+2zgB8C5fQ0R8fG+55JOBpYWxn8oInZsYzxmZjYMtK0wRcSNkqbUGiZJwMeA97Rr/mZmNjwpItrXeSpM10TE9lXt7wJOiYjuwnj3AA8ALwDHR8Sv6/Q5A5gB0NXVtdOsWbNaiq23t5f5S5c3Ne4OEzdoaR7DWW9vL2PHju10GKXl/DTm/DTW6fxMmzZtTt/nbxm181BeIwcAFxZeLwY2j4hnJO0EXCFpu4h4oXrCiJgJzATo7u6Onp6elgKoVCqcfNNLTY274MDW5jGcVSoVWs3tSOD8NOb8NOb8NDbkZ+VJGg18GLiory0iXo6IZ/LzOcBDwFZDHZuZmXVeJ04X3wO4LyIW9TVI2kTSqPx8S2Aq8HAHYjMzsw5r5+niFwI3A1tLWiTp0DxoOisfxgN4F3CnpDuAS4DDI+LZdsVmZmbl1c6z8g6o035IjbZLgUvbFYuZmQ0fvvKDmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmVSjtvrX6WpCcl3V1oO0HSY5Lm5sc+hWHHSHpQ0v2S9mxXXGZmVm7t3GM6G9irRvupEbFjfvwMQNK2wHRguzzNaZJGtTE2MzMrqbYVpoi4EXi2ydH3B2ZFxMsRMR94ENilXbGZmVl5je7APD8v6ZPAbODIiHgOmAjcUhhnUW57DUkzgBkAXV1dVCqVloLo7e3lyB2WNzVuq/MYznp7e0fkcjfL+WnM+WnM+WlsqAvT6cC3gch/TwY+BajGuFGrg4iYCcwE6O7ujp6enpYCqVQqnHzTS02Nu+DA1uYxnFUqFVrN7Ujg/DTm/DTm/DQ2pGflRcSSiFgeEX8FfsiKw3WLgEmFUTcDHh/K2MzMrByGtDBJmlB4+SGg74y9q4DpktaWtAUwFbh1KGMzM7NyaNuhPEkXAj3AeEmLgG8APZJ2JB2mWwAcBhAR90i6GLgXWAZ8LiKa+wHIzMxWK20rTBFxQI3mMxuMfyJwYrviMTOz4cFXfjAzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JpW2GSdJakJyXdXWj7rqT7JN0p6XJJG+b2KZL+JGlufpzRrrjMzKzc2rnHdDawV1XbdcD2EfFG4AHgmMKwhyJix/w4vI1xmZlZibWtMEXEjcCzVW3XRsSy/PIWYLN2zd/MzIYnRUT7OpemANdExPY1hl0NXBQR5+Xx7iHtRb0AHB8Rv67T5wxgBkBXV9dOs2bNaim23t5e5i9d3tS4O0zcoKV5DGe9vb2MHTu202GUlvPTmPPTWKfzM23atDkR0d2xAPoxuhMzlXQcsAw4PzctBjaPiGck7QRcIWm7iHihetqImAnMBOju7o6enp6WYqhUKpx800tNjbvgwNbmMZxVKhVaze1I4Pw05vw05vw0NuRn5Uk6GNgPODDy7lpEvBwRz+Tnc4CHgK2GOjYzM+u8IS1MkvYCvgZ8ICL+WGjfRNKo/HxLYCrw8FDGZmZm5dC2Q3mSLgR6gPGSFgHfIJ2FtzZwnSSAW/IZeO8CviVpGbAcODwinq3ZsZmZrdbaVpgi4oAazWfWGfdS4NJ2xWJmZsOHr/xgZmal4sJkZmal4sJkZmal4sJkZmal4sJkZmal0lRhkrRbM21mZmarqtk9pv9sss3MzGyVNPw/JklvA94ObCLpy4VB6wOj2hmYmZmNTP39g+1awNg83rhC+wvAR9oVlJmZjVwNC1NE/Ar4laSzI+KRIYrJzMxGsGYvSbS2pJnAlOI0EfGedgRlZmYjV7OF6SfAGcCPSBdZNTMza4tmC9OyiDi9rZGYmZnR/OniV0v6rKQJkjbue7Q1MjMzG5Ga3WM6OP/9SqEtgC0HNxwzMxvpmipMEbFFuwMxMzODJguTpE/Wao+Icwc3HDMzG+ma/Y1p58LjncAJwAcaTSDpLElPSrq70LaxpOsk/SH/3agw7BhJD0q6X9KeA14SMzNbLTRVmCLiHwuPzwBvJl0VopGzgb2q2o4Gro+IqcD1+TWStgWmA9vlaU6T5EsemZmNQK3e9uKPwNRGI0TEjcCzVc37A+fk5+cAHyy0z4qIlyNiPvAgsEuLsZmZ2TDW7G9MV5POwoN08dZtgItbmF9XRCwGiIjFkl6X2ycCtxTGW5TbasUyA5gB0NXVRaVSaSEM6O3t5cgdmvtf4VbnMZz19vaOyOVulvPTmPPTmPPTWLOni3+v8HwZ8EhELBrEOFSjLWq0EREzgZkA3d3d0dPT09IMK5UKJ9/0UlPjLjiwtXkMZ5VKhVZzOxI4P405P405P401+xvTr4D7SFcY3wh4pcX5LZE0ASD/fTK3LwImFcbbDHi8xXmYmdkw1uwdbD8G3Ap8FPgY8DtJrdz24ipW/LPuwcCVhfbpktaWtAXp96tbW+jfzMyGuWYP5R0H7BwRTwJI2gT4JXBJvQkkXQj0AOMlLQK+AZwEXCzpUOBRUqEjIu6RdDFwL+lQ4eciwheLNTMbgZotTGv0FaXsGfrZ24qIA+oM2r3O+CcCJzYZj5mZraaaLUw/l/QL4ML8+uPAz9oTkpmZjWQNC5Ok15NO8f6KpA8D7yCdQXczcP4QxGdmZiNMfyc/fB94ESAiLouIL0fEl0h7S99vb2hmZjYS9VeYpkTEndWNETGbdJt1MzOzQdVfYVqnwbB1BzMQMzMz6L8w3SbpM9WN+XTvOe0JyczMRrL+zso7Arhc0oGsKETdpCuLf6iNcZmZ2QjVsDBFxBLg7ZKmAdvn5p9GxP+1PTIzMxuRmr21+g3ADW2OxczMrOX7MZmZmbWFC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZVKszcKHDSStgYuKjRtCXwd2BD4DPBUbj82InwzQjOzEWbIC1NE3A/sCCBpFPAYcDnw98CpEfG9oY7JzMzKo9OH8nYHHoqIRzoch5mZlUSnC9N04MLC689LulPSWZI26lRQZmbWOYqIzsxYWgt4HNguIpZI6gKeBgL4NjAhIj5VY7oZwAyArq6unWbNmtXS/Ht7e5m/dHlT4+4wcYOW5jGc9fb2Mnbs2E6HUVrOT2POT2Odzs+0adPmRER3xwLoRycL0/7A5yLifTWGTQGuiYjtXzNhQXd3d8yePbul+VcqFQ75+UtNjbvgpH1bmsdwVqlU6Onp6XQYpeX8NOb8NNbp/EgqdWHq5KG8AygcxpM0oTDsQ8DdQx6RmZl13JCflQcgaQzwXuCwQvN3JO1IOpS3oGqYmZmNEB0pTBHxR+BvqtoO6kQsZmZWLp0+K8/MzGwlLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqHbm1uqQFwIvAcmBZRHRL2hi4CJgCLAA+FhHPdSI+MzPrnE7uMU2LiB0joju/Phq4PiKmAtfn12ZmNsKU6VDe/sA5+fk5wAc7F4qZmXWKImLoZyrNB54DAvjviJgp6fmI2LAwznMRsVGNaWcAMwC6urp2mjVrVksx9Pb2Mn/p8qbG3WHiBi3NYzjr7e1l7NixnQ6jtJyfxpyfxjqdn2nTps0pHK0qnY78xgTsFhGPS3odcJ2k+5qdMCJmAjMBuru7o6enp6UAKpUKJ9/0UlPjLjiwtXkMZ5VKhVZzOxI4P405P405P4115FBeRDye/z4JXA7sAiyRNAEg/32yE7GZmVlnDXlhkrSepHF9z4H3AXcDVwEH59EOBq4c6tjMzKzzOnEorwu4XFLf/C+IiJ9Lug24WNKhwKPARzsQm5mZddiQF6aIeBh4U432Z4DdhzoeMzMrlzKdLm5mZubCZGZm5eLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpdKp+zENK1OO/mlT4y04ad82R2JmtvrzHpOZmZWKC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZXKkBcmSZMk3SBpnqR7JH0xt58g6TFJc/Njn6GOzczMOq8Tp4svA46MiNsljQPmSLouDzs1Ir7XgZjMzKwkhrwwRcRiYHF+/qKkecDEoY7DzMzKSRHRuZlLU4Abge2BLwOHAC8As0l7Vc/VmGYGMAOgq6trp1mzZrU0797eXuYvXd7StPXsMHGDQe2vk3p7exk7dmynwygt56cx56exTudn2rRpcyKiu2MB9KNjhUnSWOBXwIkRcZmkLuBpIIBvAxMi4lON+uju7o7Zs2e3NP9KpcIhP3+ppWnrWZ2u/FCpVOjp6el0GKXl/DTm/DTW6fxIKnVh6sgliSStCVwKnB8RlwFExJLC8B8C13QitlXhSxeZma26TpyVJ+BMYF5EnFJon1AY7UPA3UMdm5mZdV4n9ph2Aw4C7pI0N7cdCxwgaUfSobwFwGEdiM3MzDqsE2fl3QSoxqCfDXUsZmZWPr7yg5mZlYoLk5mZlYoLk5mZlYoLk5mZlYoLk5mZlYoLk5mZlYoLk5mZlUpHLklkg8uXQjKz1YkLUwe4kJiZ1edDeWZmViouTGZmViouTGZmVir+janEmv0tqh3uemwphzQxf/8OZmaDzXtMZmZWKi5MZmZWKj6UN4IM5NDgkTsMbp/NHvLzqfRm5j0mMzMrFe8x2ZDo5IkcZja8lG6PSdJeku6X9KCkozsdj5mZDa1S7TFJGgX8F/BeYBFwm6SrIuLezkZmZePfosxWX6UqTMAuwIMR8TCApFnA/oALk7WkkwWsUyeGdFLZvwgMhy80wyHGdlNEdDqGV0n6CLBXRHw6vz4I2DUiPl8YZwYwI7/cGri/xdmNB55ehXBXd85PY85PY85PY53Oz+SI2KSD82+obHtMqtG2UuWMiJnAzFWekTQ7IrpXtZ/VlfPTmPPTmPPTmPPTWNlOflgETCq83gx4vEOxmJlZB5StMN0GTJW0haS1gOnAVR2OyczMhlCpDuVFxDJJnwd+AYwCzoqIe9o0u1U+HLiac34ac34ac34ac34aKNXJD2ZmZmU7lGdmZiOcC5OZmZXKiCxMI/GyR5ImSbpB0jxJ90j6Ym7fWNJ1kv6Q/25UmOaYnKP7Je1ZaN9J0l152H9IqnWa/7AkaZSk30u6Jr92fjJJG0q6RNJ9eT16m/OzgqQv5W3rbkkXSlrH+WlRRIyoB+mkioeALYG1gDuAbTsd1xAs9wTgLfn5OOABYFvgO8DRuf1o4N/y821zbtYGtsg5G5WH3Qq8jfR/Z/8L7N3p5RvEPH0ZuAC4Jr92flbk5hzg0/n5WsCGzs+ruZkIzAfWza8vBg5xflp7jMQ9plcvexQRrwB9lz1arUXE4oi4PT9/EZhH2pj2J33gkP9+MD/fH5gVES9HxHzgQWAXSROA9SPi5khb0bmFaYY1SZsB+wI/KjQ7P4Ck9YF3AWcCRMQrEfE8zk/RaGBdSaOBMaT/wXR+WjASC9NEYGHh9aLcNmJImgK8Gfgd0BURiyEVL+B1ebR6eZqYn1e3rw6+D3wV+GuhzflJtgSeAv4nH+r8kaT1cH4AiIjHgO8BjwKLgaURcS3OT0tGYmHq97JHqzNJY4FLgSMi4oVGo9Zoiwbtw5qk/YAnI2JOs5PUaFtt80PaG3gLcHpEvBl4iXRoqp4RlZ/829H+pMNymwLrSfpEo0lqtK22+RmokViYRuxljyStSSpK50fEZbl5ST58QP77ZG6vl6dF+Xl1+3C3G/ABSQtIh3ffI+k8nJ8+i4BFEfG7/PoSUqFyfpI9gPkR8VRE/AW4DHg7zk9LRmJhGpGXPcpn9pwJzIuIUwqDrgIOzs8PBq4stE+XtLakLYCpwK35cMSLkt6a+/xkYZphKyKOiYjNImIKaZ34v4j4BM4PABHxBLBQ0ta5aXfS7Wicn+RR4K2SxuTl2p30O67z04pOn33RiQewD+mstIeA4zodzxAt8ztIhwTuBObmxz7A3wDXA3/IfzcuTHNcztH9FM4MArqBu/OwH5CvILK6PIAeVpyV5/ysWK4dgdl5HboC2Mj5WSk/3wTuy8v2Y9IZd85PCw9fksjMzEplJB7KMzOzEnNhMjOzUnFhMjOzUnFhMjOzUnFhMjOzUnFhMjOzUnFhsmFH0nH59gJ3SporaVdJCySNrzHub/vpa4qku+sMq0jqbjDt5Xn+D0pamp/PlfT2gS9V3XlsKumSwerPbDgY3ekAzAZC0tuA/Ui38Hg5F6O16o0fEYNWJGr0/aEcUw9wVETs18x0kkZHxLJ6r6vm8TjwkVWP1mz48B6TDTcTgKcj4mWAiHg6f3gDIGldST+X9Jn8ujf/HSvpekm355uwFW91MlrSOXkP7BJJY6pnKul9km7O0/8kXwz3NSRtIulSSbflx265/QRJMyVdC5xb4/UUSb/O/d/et9dV3KOTdIiky/Ly/UHSdxolStLpkmbnvctvFtp3lvRbSXdIulXSuGYSbzZkOn3pCT/8GMgDGEu6nNIDwGnAu3P7AmAK8Evgk4Xxe/Pf0aT73ACMJ93/RnmaAHbLw84i7f0AVEiXhxkP3Aisl9u/Bny9MI8eVlzC6ALgHfn55qRrEwKcAMxhxY3kql+PAdbJz6cCs/PzKcDd+fkhwMPABsA6wCPApAa52jj/HZWX5Y2kvcuHgZ3zsPWB0Z1+X/3wo/jwoTwbViKiV9JOwDuBacBFkvpuv3Al8J2IOL/GpAL+RdK7SPdbmgh05WELI+I3+fl5wBdI99bp81bSHUd/k66ryVrAzXVC3APYVivuhr1+YY/kqoj4U2Hc4us1gR9I2hFYDmxVp//rI2IpgKR7gcmsfF+foo9JmkEqyhPyMgSwOCJuA4jGtz4x6wgXJht2ImI5aQ+gIukuVly9+TfA3pIuiIjqi0AeCGwC7BQRf8m3t1inr8vqWVS9FnBdRBzQRHhrAG+rKkDkQvVS1bjF118ClgBvyn38uU7/LxeeL6fONpyvWH0Uac/oOUlnk5ZXjMD7+9jw4t+YbFiRtLWkqYWmHUmHtAC+DjxDOsRXbQPSjQD/ImkaaU+jz+b5pAqAA4Cbqqa9BdhN0utzDGMk1dujuRb4fCHeHftdqBXxLY6IvwIHkQ6/rYr1SYVvqaQuYO/cfh+wqaSdc3zjlG4FblYaLkw23IwFzpF0r6Q7SYenTigMPwJYp8aJAecD3ZJmk/ae7isMmwccnPvbGDi9OGFEPEX6fefCPM4twBvqxPeFPJ8786G2w5tcrtNyDLeQDuNV710NSETcAfweuIf0u9lvcvsrwMeB/5R0B3AdK/YczUrBt70wM7NS8R6TmZmVio8tmw1zkn5Hultq0UERcVcn4jFbVT6UZ2ZmpeJDeWZmViouTGZmViouTGZmViouTGZmVir/HwaoGE7VjUXwAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ski_data.SkiableTerrain_ac.hist(bins=30)\n", - "plt.xlabel('SkiableTerrain_ac')\n", - "plt.ylabel('Count')\n", - "plt.title('Distribution of skiable area (acres) after replacing erroneous value');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You now see a rather long tailed distribution. You may wonder about the now most extreme value that is above 8000, but similarly you may also wonder about the value around 7000. If you wanted to spend more time manually checking values you could, but leave this for now. The above distribution is plausible." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### 2.6.4.2.2 Snow Making_ac" - ] - }, - { - "cell_type": "code", - "execution_count": 123, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "11 3379.0\n", - "18 1500.0\n", - "Name: Snow Making_ac, dtype: float64" - ] - }, - "execution_count": 123, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ski_data['Snow Making_ac'][ski_data['Snow Making_ac'] > 1000]" - ] - }, - { - "cell_type": "code", - "execution_count": 124, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
11
NameHeavenly Mountain Resort
RegionSierra Nevada
stateCalifornia
summit_elev10067
vertical_drop3500
base_elev7170
trams2
fastEight0.0
fastSixes2
fastQuads7
quad1
triple5
double3
surface8
total_chairs28
Runs97.0
TerrainParks3.0
LongestRun_mi5.5
SkiableTerrain_ac4800.0
Snow Making_ac3379.0
daysOpenLastYear155.0
yearsOpen64.0
averageSnowfall360.0
AdultWeekdayNaN
AdultWeekendNaN
projectedDaysOpen157.0
NightSkiing_acNaN
\n", - "
" - ], - "text/plain": [ - " 11\n", - "Name Heavenly Mountain Resort\n", - "Region Sierra Nevada\n", - "state California\n", - "summit_elev 10067\n", - "vertical_drop 3500\n", - "base_elev 7170\n", - "trams 2\n", - "fastEight 0.0\n", - "fastSixes 2\n", - "fastQuads 7\n", - "quad 1\n", - "triple 5\n", - "double 3\n", - "surface 8\n", - "total_chairs 28\n", - "Runs 97.0\n", - "TerrainParks 3.0\n", - "LongestRun_mi 5.5\n", - "SkiableTerrain_ac 4800.0\n", - "Snow Making_ac 3379.0\n", - "daysOpenLastYear 155.0\n", - "yearsOpen 64.0\n", - "averageSnowfall 360.0\n", - "AdultWeekday NaN\n", - "AdultWeekend NaN\n", - "projectedDaysOpen 157.0\n", - "NightSkiing_ac NaN" - ] - }, - "execution_count": 124, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ski_data[ski_data['Snow Making_ac'] > 3000].T" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You can adopt a similar approach as for the suspect skiable area value and do some spot checking. To save time, here is a link to the website for [Heavenly Mountain Resort](https://www.skiheavenly.com/the-mountain/about-the-mountain/mountain-info.aspx). From this you can glean that you have values for skiable terrain that agree. Furthermore, you can read that snowmaking covers 60% of the trails." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What, then, is your rough guess for the area covered by snowmaking?" - ] - }, - { - "cell_type": "code", - "execution_count": 125, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2880.0" - ] - }, - "execution_count": 125, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - ".6 * 4800" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is less than the value of 3379 in your data so you may have a judgement call to make. However, notice something else. You have no ticket pricing information at all for this resort. Any further effort spent worrying about values for this resort will be wasted. You'll simply be dropping the entire row!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### 2.6.4.2.3 fastEight" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Look at the different fastEight values more closely:" - ] - }, - { - "cell_type": "code", - "execution_count": 126, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.0 163\n", - "1.0 1\n", - "Name: fastEight, dtype: int64" - ] - }, - "execution_count": 126, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ski_data.fastEight.value_counts()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Drop the fastEight column in its entirety; half the values are missing and all but the others are the value zero. There is essentially no information in this column." - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "metadata": {}, - "outputs": [], - "source": [ - "#Code task 24#\n", - "#Drop the 'fastEight' column from ski_data. Use inplace=True\n", - "ski_data.drop(columns='fastEight', inplace=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What about yearsOpen? How many resorts have purportedly been open for more than 100 years?" - ] - }, - { - "cell_type": "code", - "execution_count": 128, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "34 104.0\n", - "115 2019.0\n", - "Name: yearsOpen, dtype: float64" - ] - }, - "execution_count": 128, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 25#\n", - "#Filter the 'yearsOpen' column for values greater than 100\n", - "ski_data.yearsOpen[ski_data.yearsOpen > 100]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Okay, one seems to have been open for 104 years. But beyond that, one is down as having been open for 2019 years. This is wrong! What shall you do about this?" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "What does the distribution of yearsOpen look like if you exclude just the obviously wrong one?" - ] - }, - { - "cell_type": "code", - "execution_count": 130, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeG0lEQVR4nO3de5hcVZnv8e/PcAnQJAHBnhiQBo0XDhGEVhxQT8eIgoDBR7k4wARFcxiV0THqxCt4hTmDnvHoKEZUIjgERBwiKMpEG/TIcImoQQFRCBDARDCJNCAYeM8fazXsVPpSSfeu6u71+zxPP1177du7dtV+a9Xau1YpIjAzs3I8rd0BmJlZaznxm5kVxonfzKwwTvxmZoVx4jczK4wTv5lZYZz4W0zS2ZI+MkrbepakPkmT8nSvpLeOxrbz9r4vad5obW8z9vtJSfdL+kOr920bG8lrStLpks7Pjzd6rVp7OfGPIkkrJT0i6UFJ6yT9TNIpkp48zhFxSkR8osltvWqoZSLirojoiIjHRyH2J0/SyvYPi4jFI932ZsaxO7AA2Dsi/qaV+7b6jOZrtZGk90m6KZ93d0h6X8P8Lkk/lvSwpFuq55Wk6ZKWSrpXUkjqalh3hqRLJf1J0ipJp4x2/O3gxD/6joyIHYE9gDOBfwa+Oto7kbTVaG9zjNgDeCAi1rQziAl8fCciAX8P7AQcCrxT0nGV+RcANwJPBz4EXCxp1zzvCeAK4A2DbPt84A6gEzgc+LSk2aNeg1aLCP+N0h+wEnhVQ9lLSC+uffL0ucAn8+NdgMuAdcCfgJ+Q3ozPy+s8AvQB7we6gABOBu4Crq6UbZW31wucAVwHrAcuBXbO83qAVQPFSzpZHgP+mvf3y8r23pofPw34MHAnsAb4BjA1z+uPY16O7X7gQ0Mcp6l5/T/m7X04b/9Vuc5P5DjOHWDdm0hvrv3TW+f97ZenXwr8LB/TXwI9lWXfDNwMPAjcDvyvyrweYBXpjfoP+TkY8PkZpE4HAdfn4349cFBl3qDPSxMx9wKfAP5fjvuHwC5DHNsjgF/kbf0MeGEuPzbXeUqePizXc9c8PTev92fg98ChA7wGTgfOr+yr/3nvf/3tCVyV47wS+EL/8gMsO2S9SIn8TuAB4CMMcG4NcQz+L/D5/Pi5wKPAjpX5PwFOaVhnqxxfV6WsI5ftWilbBJzX7lwz4lzV7gAm0t9gL05SMvyH/Phcnkr8ZwBnk5LX1sDLAQ20rcqJ8w1gB2C7QU6me4B98jLfrpx4PQyS+PPjjU7qyvb6T/q3AL8D9sonxCX9J0Aljq/kuPbNJ9sLBjlO3yAlvx3zur8FTh4szoZ13w9cWJmeC6zIj2fkRPFa0hvJIXm6P7kdDjyb1EL8n8DDwP6V/W4A/gXYNtdj0OenIaadgbXAiaQE8qY8/fQmnpfhYu4lJeLn5ph6gTMHOTb7k96UDwQmkd6IVwLb5vnfJL3+ng7cCxyRy19CekM6JMcwA3j+AK+B0xk68V8DfDYfv1eQEvpQiX/AegF7k974XwZsA5xFapQMm/jzc3sjObEDrwdubljmC+Q3hkrZQIl/x1z2jErZV4Ab251rRvrnrp7WuJeUHBr9FZgO7BERf42In0R+dQ3h9Ih4KCIeGWT+eRFxU0Q8RGopHTNKF9SOBz4bEbdHRB/wAeC4hi6Rj0XEIxHxS1LLdd/GjeRYjgU+EBEPRsRK4DOkpNmM84HXSpqSp08ktc4BTgC+FxHfi4gnIuJK4AZSUiUiLo+I30dyFamV+fLKtp8ATouIR/Pxbfb5ORy4LSLOi4gNEXEBcAtwZGWZwZ6XIWPOvh4Rv80xXQTsN8ixeRvw5Yi4NiIej3R95lHSJwqAdwCvJCXZ70bEZbn8ZOBrEXFljuGeiLhlkH0MSNKzgBcDH8nH72rgu8OsNli93pjj+2lEPAZ8lJSAm3E66c3r63m6g/SmVrWelNSHFBEPkj6RfETSZEn7k7qEtm8yljHLib81ZpC6Chr9K6kV/UNJt0ta2MS27t6M+XeSWqq7NBXl0J6Zt1fd9lakvs9+1btwHiaddI12IbXiGrc1o5kgIuJe0sn4BknTSF0W38yz9wCOzhfW10laR2o1TgeQdJik/84X6taRkmv12PwxIv5SmW72+Wk8NgPVabDnZciYs2aOK3lbCxq2tXuOj4hYB3yL9MnjM5X1die1vkfimcDa/MbWr/GYNBqsXs+kcrwi4mHSp6AhSXonqYvo8Ih4NBf3AVMaFp1C+jTSjONJXVh3A18ivdZWNbnumOXEXzNJLyYlgJ82zsst3gURsRepdfgeSXP6Zw+yyeFaPrtXHj+L1Gq9H3iISksltzZ3rSw73HbvJSWW6rY3AKuHWa/R/Tmmxm3dsxnbWExqKR8NXBMR/eveTWpZT6v87RARZ0raltTFchbQGRHTgO+Rugb6bXQMhnl+qhqPzUB1Gux5GTTmZg9Gxd3Apxq2tX3+BIKk/UhddheQ+sGr6z27ie1v9BoCqndd3QfsJGmHStmztqAO/dvarX9C0nak7qlBSXoLsBCYExHVxPxrYC9J1Rb+vrl8WBFxZ0QcERG7RsSBOY7rmqvG2OXEXxNJUyQdASwh9XOuGGCZIyQ9R5JIF9Uez3+QEupeW7DrEyTtLWl74OPAxZFuofstMFnS4ZK2Jl1Q3bay3mqgq3rraYMLgH+StKekDuDTpL72DZsTXI7lIuBTknaUtAfwHlIXTrP+k9Sf/S7S9YJ+5wNHSnqNpEn543mPpN1InzK2JV1Q3iDpMODVQ+1kmOen6nvAcyX9naStJB1L6qe+rLLMYM/LUDFvrq8Ap0g6UMkO+fneUdLkvK8Pki5yz5D09rzeV4E3S5oj6Wn5FsbnD7D9XwCvULonfyqpuw9ICZLURfUxSdtIehkbd3VtjotJx+QgSdsAH2PjN+iNSDqe9Ho8JCJur86LiN/muE/Lx/b1wAtJjYD+9Sfz1LmwbZ7un/eCfPy2kXQC6TXz2S2s15jhxD/6vivpQVIr6kOkF8mbB1l2JvBfpI+j1wBfjIjePO8M4MP5I/t7N2P/55Eu4P0BmAz8I0BErAfeDpxDaok+xMYfWb+V/z8g6ecDbPdredtXk25v+wtw6mbEVXVq3v/tpE9C/5G335TcJ/xt0kfwSyrld5Mu9n6QlODvBt5HuhPnQdKxuIh04fXvgKXD7Gqo56cazwOku2kWkLok3k+6cHp/ZbHBnpdBY27iUDTGcQOpn/8LuY6/A07Ks88gXTT/Uu4GOQH4pKSZEXEd6TX6f0j931ex6ScY8vWHC4FfAcvZ+I0N0jE9kNSteRobvylvTj1+TXqNLCG1/h8kXbR+dJBVPklqiV+v9CWxPklnV+YfB3STjsmZwBsj4o+V+f13z0G6NlO9fvYa0ut0LXAK6W6n6rrjUv8dJGbjiqSPAs+NiBPaHctwJPWSPvWd0+5YxqP8CXMdMDMi7mhzOBOCW/w27kjamXQnyqJ2x2L1kHSkpO3zNYOzgBWkW1NtFDjx27gi6W2k7pDv51sGbWKaS7pofi+py+24Jm51tia5q8fMrDBu8ZuZFWZcDES1yy67RFdXV7vDaImHHnqIHXbYYfgFJxjXuyyud2ssX778/ojYtbF8XCT+rq4ubrjhhnaH0RK9vb309PS0O4yWc73L4nq3hqQBvz3trh4zs8I48ZuZFcaJ38ysME78ZmaFceI3MyuME7+ZWWGc+M3MCuPEb2ZWGCd+M7PC1PrN3fybqOeQfuMzSD/7divpxxy6SMOsHhMRa+uMw6wuXQsvb2q5lWceXnMkZs2ru8X/OeCKiHg+6Xcubyb9LuayiJgJLMvTZmbWIrUlfklTgFeQfs+TiHgsItaRxtlenBdbDBxVVwxmZrap2sbjl7Qf6ReSfkNq7S8n/Tj2PRExrbLc2ojYaYD15wPzATo7Ow9YsmRJLXGONX19fXR0dLQ7jJYbr/Vecc/6ppabNWPqgOXjtd4j5Xq3xuzZs5dHRHdjeZ2Jvxv4b+DgiLhW0ueAPwOnNpP4q7q7u8Ojc05s47XeI+3jH6/1HinXuzUkDZj46+zjXwWsiohr8/TFwP7AaknTc1DTgTU1xmBmZg1qS/wR8QfgbknPy0VzSN0+S4F5uWwecGldMZiZ2abq/iGWU4FvStoGuB14M+nN5iJJJwN3AUfXHIOZmVXUmvgj4hfAJv1LpNa/mZm1gb+5a2ZWGCd+M7PCOPGbmRXGid/MrDBO/GZmhXHiNzMrjBO/mVlhnPjNzArjxG9mVhgnfjOzwjjxm5kVxonfzKwwTvxmZoVx4jczK4wTv5lZYZz4zcwK48RvZlYYJ34zs8I48ZuZFcaJ38ysME78ZmaFceI3MyuME7+ZWWGc+M3MCuPEb2ZWmK3q3LiklcCDwOPAhojolrQzcCHQBawEjomItXXGYWZmT2lFi392ROwXEd15eiGwLCJmAsvytJmZtUg7unrmAovz48XAUW2IwcysWIqI+jYu3QGsBQL4ckQskrQuIqZVllkbETsNsO58YD5AZ2fnAUuWLKktzrGkr6+Pjo6OdofRcuO13ivuWd/UcrNmTB2wfLzWe6Rc79aYPXv28kpvy5Nq7eMHDo6IeyU9A7hS0i3NrhgRi4BFAN3d3dHT01NTiGNLb28vpdS1arzW+6SFlze13MrjewYsH6/1HinXu71q7eqJiHvz/zXAd4CXAKslTQfI/9fUGYOZmW2stsQvaQdJO/Y/Bl4N3AQsBeblxeYBl9YVg5mZbarOrp5O4DuS+vfzHxFxhaTrgYsknQzcBRxdYwxmZtagtsQfEbcD+w5Q/gAwp679mpnZ0PzNXTOzwjjxm5kVxonfzKwwTvxmZoVx4jczK4wTv5lZYZz4zcwK48RvZlYYJ34zs8I48ZuZFcaJ38ysME78ZmaFceI3MyuME7+ZWWGc+M3MCuPEb2ZWGCd+M7PCOPGbmRXGid/MrDBO/GZmhXHiNzMrjBO/mVlhnPjNzArjxG9mVhgnfjOzwtSe+CVNknSjpMvy9M6SrpR0W/6/U90xmJnZU1rR4n8XcHNleiGwLCJmAsvytJmZtUitiV/SbsDhwDmV4rnA4vx4MXBUnTGYmdnGFBH1bVy6GDgD2BF4b0QcIWldREyrLLM2Ijbp7pE0H5gP0NnZecCSJUtqi3Ms6evro6Ojo91htNx4rfeKe9Y3tdysGVMHLB+v9R4p17s1Zs+evTwiuhvLt6prh5KOANZExHJJPZu7fkQsAhYBdHd3R0/PZm9iXOrt7aWUulaN13qftPDyppZbeXzPgOXjtd4j5Xq3V22JHzgYeJ2k1wKTgSmSzgdWS5oeEfdJmg6sqTEGMzNrUFsff0R8ICJ2i4gu4DjgRxFxArAUmJcXmwdcWlcMZma2qXbcx38mcIik24BD8rSZmbVInV09T4qIXqA3P34AmNOK/ZqZ2ab8zV0zs8I48ZuZFcaJ38ysME78ZmaFceI3MyuME7+ZWWGc+M3MCuPEb2ZWGCd+M7PCNJX4JR3cTJmZmY19zbb4P99kmZmZjXFDjtUj6W+Bg4BdJb2nMmsKMKnOwMzMrB7DDdK2DdCRl9uxUv5n4I11BWVmZvUZMvFHxFXAVZLOjYg7WxSTmZnVqNlhmbeVtAjoqq4TEa+sIygzM6tPs4n/W8DZwDnA4/WFY2ZmdWs28W+IiC/VGomZmbVEs7dzflfS2yVNl7Rz/1+tkZmZWS2abfH3/zj6+yplAew1uuGYmVndmkr8EbFn3YGYmVlrNJX4Jf39QOUR8Y3RDcfMzOrWbFfPiyuPJwNzgJ8DTvxmTehaePmA5QtmbeCkhnkrzzy8FSFZwZrt6jm1Oi1pKnBeLRGZmVmttnRY5oeBmaMZiJmZtUazffzfJd3FA2lwthcAF9UVlJmZ1afZPv6zKo83AHdGxKqhVpA0Gbga2Dbv5+KIOC3f/38hafiHlcAxEbF2M+M2M7Mt1FRXTx6s7RbSCJ07AY81sdqjwCsjYl9gP+BQSS8FFgLLImImsCxPm5lZizT7C1zHANcBRwPHANdKGnJY5kj68uTW+S+AucDiXL4YOGrzwzYzsy2liBh+IemXwCERsSZP7wr8V27ND7XeJGA58Bzg3yPinyWti4hplWXWRsROA6w7H5gP0NnZecCSJUuar9U41tfXR0dHR7vDaLnxWu8V96wf0fqd28HqRzYumzVj6oi2OR6M1+d7pFpd79mzZy+PiO7G8mb7+J/Wn/SzB2ji00JEPA7sJ2ka8B1J+zS5PyJiEbAIoLu7O3p6eppddVzr7e2llLpWjdd6N96Dv7kWzNrAZ1ZsfBquPL5nRNscD8br8z1SY6XezSb+KyT9ALggTx8LfK/ZnUTEOkm9wKHAaknTI+I+SdOBNUOvbWZmo2nIVruk50g6OCLeB3wZeCGwL3ANuTU+xLq75pY+krYDXkW6QLyUpwZ9mwdcOpIKmJnZ5hmuxf9vwAcBIuIS4BIASd153pFDrDsdWJz7+Z8GXBQRl0m6BrhI0snAXaQLxmZm1iLDJf6uiPhVY2FE3CCpa6gV83ovGqD8AdJYP2Zm1gbDXaCdPMS87UYzEDMza43hWvzXS3pbRHylWpi7aZbXF5ZZew02mqbZRDBc4n836TbM43kq0XcD2wCvrzEuMzOryZCJPyJWAwdJmg3034N/eUT8qPbIzMysFs2Ox/9j4Mc1x2JmZi2wpePxm5nZOOXEb2ZWGCd+M7PCNDtWj5lZbZq9fdY/RD863OI3MyuME7+ZWWGc+M3MCuPEb2ZWGCd+M7PCOPGbmRXGid/MrDBO/GZmhXHiNzMrjBO/mVlhnPjNzArjxG9mVhgP0mZmtRhq4LUFszZwkn/XuG3c4jczK4wTv5lZYZz4zcwKU1sfv6TdgW8AfwM8ASyKiM9J2hm4EOgCVgLHRMTauuIwG2/8oyRWtzpb/BuABRHxAuClwDsk7Q0sBJZFxExgWZ42M7MWqS3xR8R9EfHz/PhB4GZgBjAXWJwXWwwcVVcMZma2KUVE/TuRuoCrgX2AuyJiWmXe2ojYaYB15gPzATo7Ow9YsmRJ7XGOBX19fXR0dLQ7jJYbab1X3LO+qeVmzZg6qtsbqc7tYPUjW7Zus3Vpl6GO4ZbWe6zXeTitPr9nz569PCK6G8trT/ySOoCrgE9FxCWS1jWT+Ku6u7vjhhtuqDXOsaK3t5eenp52h9FyI633aPeLN7u9kVowawOfWbFll9rGeh//cPfxb0m9x3qdh9Pq81vSgIm/1rt6JG0NfBv4ZkRckotXS5qe508H1tQZg5mZbay2xC9JwFeBmyPis5VZS4F5+fE84NK6YjAzs03VOWTDwcCJwApJv8hlHwTOBC6SdDJwF3B0jTGYmVmD2hJ/RPwU0CCz59S1XzMzG5q/uWtmVhgnfjOzwjjxm5kVxonfzKwwTvxmZoVx4jczK4wTv5lZYZz4zcwK48RvZlYYJ34zs8I48ZuZFabOQdrMbAzwb/haI7f4zcwK48RvZlYYd/VYUVr1k4qtMJHqYq3lFr+ZWWGc+M3MCuPEb2ZWGCd+M7PCOPGbmRXGid/MrDC+ndPGNN+y2Dr+hm853OI3MyuME7+ZWWGc+M3MClNb4pf0NUlrJN1UKdtZ0pWSbsv/d6pr/2ZmNrA6W/znAoc2lC0ElkXETGBZnjYzsxaqLfFHxNXAnxqK5wKL8+PFwFF17d/MzAamiKhv41IXcFlE7JOn10XEtMr8tRExYHePpPnAfIDOzs4DlixZUlucdVlxz/qmlps1Y+qTj/v6+ujo6KgrpDFrsHo3ewzHq87tYPUj7Y5i81Rfr0MZ6rnb0no3u++xqtXn9+zZs5dHRHdj+Zi9jz8iFgGLALq7u6Onp6e9AW2Bk5q9L/r4nicf9/b2Mh7rOlKD1bvZYzheLZi1gc+sGLOn4YCqr9ehDPXcbWm9m933WDVWzu9W39WzWtJ0gPx/TYv3b2ZWvFYn/qXAvPx4HnBpi/dvZla8Om/nvAC4BniepFWSTgbOBA6RdBtwSJ42M7MWqq1zMSLeNMisOXXt08zMhudv7pqZFWZ83U5gY9rmjKTpER7N2sctfjOzwjjxm5kVxl091haN3UILZm2Y8F/WMhsr3OI3MyuME7+ZWWHc1WPD8u/emk0sbvGbmRXGid/MrDBO/GZmhXHiNzMrjBO/mVlhnPjNzArjxG9mVhgnfjOzwjjxm5kVxonfzKwwE37IhmaHG/APg5iNfT6fR4db/GZmhXHiNzMrzITv6hltdYxUWd1mK3+QxB+HbUt4tNbxzy1+M7PCOPGbmRXGXT1ZiR9fS6yz2ZYY7buJNufcq6NLti0tfkmHSrpV0u8kLWxHDGZmpWp54pc0Cfh34DBgb+BNkvZudRxmZqVqR4v/JcDvIuL2iHgMWALMbUMcZmZFUkS0dofSG4FDI+KtefpE4MCIeGfDcvOB+XnyecCtLQ20fXYB7m93EG3gepfF9W6NPSJi18bCdlzc1QBlm7z7RMQiYFH94Ywtkm6IiO52x9FqrndZXO/2akdXzypg98r0bsC9bYjDzKxI7Uj81wMzJe0paRvgOGBpG+IwMytSy7t6ImKDpHcCPwAmAV+LiF+3Oo4xrLjurcz1Lovr3UYtv7hrZmbt5SEbzMwK48RvZlYYJ/42kbS7pB9LulnSryW9K5fvLOlKSbfl/zu1O9Y6SJok6UZJl+XpCV9vSdMkXSzplvy8/20h9f6n/Bq/SdIFkiZP1HpL+pqkNZJuqpQNWldJH8hD19wq6TWtitOJv302AAsi4gXAS4F35KErFgLLImImsCxPT0TvAm6uTJdQ788BV0TE84F9SfWf0PWWNAP4R6A7IvYh3dBxHBO33ucChzaUDVjXfL4fB/yPvM4X85A2tXPib5OIuC8ifp4fP0hKAjNIw1cszostBo5qS4A1krQbcDhwTqV4Qtdb0hTgFcBXASLisYhYxwSvd7YVsJ2krYDtSd/bmZD1joirgT81FA9W17nAkoh4NCLuAH5HGtKmdk78Y4CkLuBFwLVAZ0TcB+nNAXhGG0Ory78B7weeqJRN9HrvBfwR+Hru4jpH0g5M8HpHxD3AWcBdwH3A+oj4IRO83g0Gq+sM4O7KcqtyWe2c+NtMUgfwbeDdEfHndsdTN0lHAGsiYnm7Y2mxrYD9gS9FxIuAh5g43RuDyv3Zc4E9gWcCO0g6ob1RjRlNDV9TByf+NpK0NSnpfzMiLsnFqyVNz/OnA2vaFV9NDgZeJ2klaWTWV0o6n4lf71XAqoi4Nk9fTHojmOj1fhVwR0T8MSL+ClwCHMTEr3fVYHVt2/A1TvxtIkmk/t6bI+KzlVlLgXn58Tzg0lbHVqeI+EBE7BYRXaQLWz+KiBOY+PX+A3C3pOflojnAb5jg9SZ18bxU0vb5NT+HdD1rote7arC6LgWOk7StpD2BmcB1rQjI39xtE0kvA34CrOCpvu4Pkvr5LwKeRTppjo6IxotFE4KkHuC9EXGEpKczwestaT/SBe1tgNuBN5MaXxO93h8DjiXdyXYj8FaggwlYb0kXAD2k4ZdXA6cB/8kgdZX0IeAtpGPz7oj4fkvidOI3MyuLu3rMzArjxG9mVhgnfjOzwjjxm5kVxonfzKwwTvw24Sj5qaTDKmXHSLqinXGZjRW+ndMmJEn7AN8ijYE0CfgFcGhE/H4LtjUpIh4f3QjN2seJ3yYsSf+bNCbODvn/HsAs0rg5p0fEpXmAvPPyMgDvjIif5S+XnUYaWGw/4MWkL+HsRnoj+UREXNiwv/2As0kjUP4eeEtErJXUS3rjeQkwJZdflwdp+/wAMZ0EvC5v59nAdyLi/aN3ZKx0Tvw2YeXE+nPgMeAy4NcRcb6kaaSvxr+INCjWExHxF0kzgQsiojsn/suBfSLiDklvIH1ieFve9tSIWN+wv18Bp0bEVZI+DkyJiHfnxH9bRLxN0iuAL0bEPpI+DfxmgJiOBj6aHz8K3Aq8LCKqIzmabbGt2h2AWV0i4iFJFwJ9wDHAkZLem2dPJn2F/l7gC7m1/jjw3MomrsvjpEMaWuMsSf8CXBYRP6nuS9JUYFpEXJWLFpO6mvpdkGO6WtKUnOhfTRqwrjEmSD/csT5v+zekTytO/DYqnPhtonsi/wl4Q0TcWp0p6XTSmCr7km52+Etl9kP9DyLit5IOAF4LnCHphxHx8c2Io/GjdQwR04Gkln6/x/G5aqPId/VYKX4AnJpHiETSi3L5VOC+iHgCOJHUf78JSc8EHo6I80k/LLJ/dX5una+V9PJcdCJwVWWRY/N2Xkb6MZL1Q8RkViu3IqwUnyD98tevcqJdCRwBfBH4tqSjgR9TaeU3mAX8q6QngL8C/zDAMvOAsyVtz1Ojb/ZbK+ln5Iu7w8RkVitf3DWrWb64+96IuKHdsZiBu3rMzIrjFr+ZWWHc4jczK4wTv5lZYZz4zcwK48RvZlYYJ34zs8L8f4RWK25Xye/sAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "#Code task 26#\n", - "#Call the hist method on 'yearsOpen' after filtering for values under 1000\n", - "#Pass the argument bins=30 to hist(), but feel free to explore other values\n", - "ski_data.yearsOpen[ski_data.yearsOpen < 1000].hist(bins=30)\n", - "plt.xlabel('Years open')\n", - "plt.ylabel('Count')\n", - "plt.title('Distribution of years open excluding 2019');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The above distribution of years seems entirely plausible, including the 104 year value. You can certainly state that no resort will have been open for 2019 years! It likely means the resort opened in 2019. It could also mean the resort is due to open in 2019. You don't know when these data were gathered!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's review the summary statistics for the years under 1000." - ] - }, - { - "cell_type": "code", - "execution_count": 131, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "count 328.000000\n", - "mean 57.695122\n", - "std 16.841182\n", - "min 6.000000\n", - "25% 50.000000\n", - "50% 58.000000\n", - "75% 68.250000\n", - "max 104.000000\n", - "Name: yearsOpen, dtype: float64" - ] - }, - "execution_count": 131, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ski_data.yearsOpen[ski_data.yearsOpen < 1000].describe()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The smallest number of years open otherwise is 6. You can't be sure whether this resort in question has been open zero years or one year and even whether the numbers are projections or actual. In any case, you would be adding a new youngest resort so it feels best to simply drop this row." - ] - }, - { - "cell_type": "code", - "execution_count": 132, - "metadata": {}, - "outputs": [], - "source": [ - "ski_data = ski_data[ski_data.yearsOpen < 1000]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### 2.6.4.2.4 fastSixes and Trams" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The other features you had mild concern over, you will not investigate further. Perhaps take some care when using these features." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.7 Derive State-wide Summary Statistics For Our Market Segment" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You have, by this point removed one row, but it was for a resort that may not have opened yet, or perhaps in its first season. Using your business knowledge, you know that state-wide supply and demand of certain skiing resources may well factor into pricing strategies. Does a resort dominate the available night skiing in a state? Or does it account for a large proportion of the total skiable terrain or days open?\n", - "\n", - "If you want to add any features to your data that captures the state-wide market size, you should do this now, before dropping any more rows. In the next section, you'll drop rows with missing price information. Although you don't know what those resorts charge for their tickets, you do know the resorts exists and have been open for at least six years. Thus, you'll now calculate some state-wide summary statistics for later use." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Many features in your data pertain to chairlifts, that is for getting people around each resort. These aren't relevant, nor are the features relating to altitudes. Features that you may be interested in are:\n", - "\n", - "* TerrainParks\n", - "* SkiableTerrain_ac\n", - "* daysOpenLastYear\n", - "* NightSkiing_ac\n", - "\n", - "When you think about it, these are features it makes sense to sum: the total number of terrain parks, the total skiable area, the total number of days open, and the total area available for night skiing. You might consider the total number of ski runs, but understand that the skiable area is more informative than just a number of runs." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A fairly new groupby behaviour is [named aggregation](https://pandas-docs.github.io/pandas-docs-travis/whatsnew/v0.25.0.html). This allows us to clearly perform the aggregations you want whilst also creating informative output column names." - ] - }, - { - "cell_type": "code", - "execution_count": 142, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
stateresorts_per_statestate_total_skiable_area_acstate_total_days_openstate_total_terrain_parksstate_total_nightskiing_ac
0Alaska32280.0345.04.0580.0
1Arizona21577.0237.06.080.0
2California2125948.02738.081.0587.0
3Colorado2243682.03258.074.0428.0
4Connecticut5358.0353.010.0256.0
\n", - "
" - ], - "text/plain": [ - " state resorts_per_state state_total_skiable_area_ac \\\n", - "0 Alaska 3 2280.0 \n", - "1 Arizona 2 1577.0 \n", - "2 California 21 25948.0 \n", - "3 Colorado 22 43682.0 \n", - "4 Connecticut 5 358.0 \n", - "\n", - " state_total_days_open state_total_terrain_parks \\\n", - "0 345.0 4.0 \n", - "1 237.0 6.0 \n", - "2 2738.0 81.0 \n", - "3 3258.0 74.0 \n", - "4 353.0 10.0 \n", - "\n", - " state_total_nightskiing_ac \n", - "0 580.0 \n", - "1 80.0 \n", - "2 587.0 \n", - "3 428.0 \n", - "4 256.0 " - ] - }, - "execution_count": 142, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 27#\n", - "#Add named aggregations for the sum of 'daysOpenLastYear', 'TerrainParks', and 'NightSkiing_ac'\n", - "#call them 'state_total_days_open', 'state_total_terrain_parks', and 'state_total_nightskiing_ac',\n", - "#respectively\n", - "#Finally, add a call to the reset_index() method (we recommend you experiment with and without this to see\n", - "#what it does)\n", - "state_summary = ski_data.groupby('state').agg(\n", - " resorts_per_state=pd.NamedAgg(column='Name', aggfunc='size'), #could pick any column here\n", - " state_total_skiable_area_ac=pd.NamedAgg(column='SkiableTerrain_ac', aggfunc='sum'),\n", - " state_total_days_open=pd.NamedAgg(column='daysOpenLastYear', aggfunc='sum'),\n", - " state_total_terrain_parks=pd.NamedAgg(column='TerrainParks', aggfunc='sum'),\n", - " state_total_nightskiing_ac=pd.NamedAgg(column='NightSkiing_ac', aggfunc='sum')\n", - ").reset_index()\n", - "state_summary.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.8 Drop Rows With No Price Data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "You know there are two columns that refer to price: 'AdultWeekend' and 'AdultWeekday'. You can calculate the number of price values missing per row. This will obviously have to be either 0, 1, or 2, where 0 denotes no price values are missing and 2 denotes that both are missing." - ] - }, - { - "cell_type": "code", - "execution_count": 145, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 0\n", - "1 0\n", - "2 0\n", - "3 0\n", - "4 0\n", - " ..\n", - "323 0\n", - "326 0\n", - "327 0\n", - "328 0\n", - "329 1\n", - "Length: 281, dtype: int64" - ] - }, - "execution_count": 145, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "missing_price = ski_data[['AdultWeekend', 'AdultWeekday']].isnull().sum(axis=1)\n", - "missing_price.value_counts()/len(missing_price) * 100\n", - "missing_price" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "About 14% of the rows have no price data. As the price is your target, these rows are of no use. Time to lose them." - ] - }, - { - "cell_type": "code", - "execution_count": 147, - "metadata": {}, - "outputs": [], - "source": [ - "#Code task 28#\n", - "#Use `missing_price` to remove rows from ski_data where both price values are missing\n", - "ski_data = ski_data[missing_price != 2]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.9 Review distributions" - ] - }, - { - "cell_type": "code", - "execution_count": 148, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAJOCAYAAAAkve/mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACTk0lEQVR4nOzdebgcVbnv8e/PMM/EQIQQCSqiIIoaUY6oQZTRY3AA4aCCojjARe6JSkCP4oBGryjOioIgMjogHFABkQ2iMguGUQIEEhIIcwYBCbz3j7Wa1O507929d/fu6u7f53n2s7urqqvf6n5r9VpVq1YpIjAzMzMzM7Nyek6nAzAzMzMzM7P63GgzMzMzMzMrMTfazMzMzMzMSsyNNjMzMzMzsxJzo83MzMzMzKzE3GgzMzMzMzMrMTfazGwlkn4k6X9GuY5pkuaP4HUnSfryaN7bzMzMRkfSVpL+LmmJpMPG6D2PkvTTsXivbuNGW8lI2l/ShW1Y71xJb2n1eq37STpQ0uXFaRHx0Yj4UqdiMuuGMssHGKxVuiHfrS99GhiIiHUj4jsjWYGkAUkfqpo2XdL1khZLelDSxZKmAETEVyLiQzVX1ufcaCuZiDg1InapPJcUkl7UyZisd0lapdMxNKPb4jUzGy2Xe9ZBmwM3tXKFuU77c2AGsD6wBfAD4JlWvk8vcqPNrAtJminpV1XTvi3pO5LWl3SCpIWS7pX0ZUnj8jIHSvqLpG9Jehg4E/gRsIOkpZIezcsNOoNQdVTsDkm75ekfkHRL7jpxp6SPjGBbXinpuryOM4E1CvOmSZov6QhJ9wE/k7S6pOMkLch/x0lavWr5o/LRu7mS9m82JjOzsSLpFOD5wP/mcvjT+YDtQZLuAf6Ul/ulpPskPSbpMknbFNZxkqQfSPp9XsdfJD0vl4+PSLpV0isLyx+Rfx+WSLpN0s5jvuFWapL+BOwEfC/n1CdyV8nFkuZJOrqw7BqSfiHpIUmPSrpa0kRJxwBvKKzje8B2wF0RcXEkSyLi1xFxT17X0ZJ+kR+/J9ct1svPd8/7wEb5+QdzHeQRSRdI2jxPV67nLMr7yz8kvWzsPr326PtGW62Cq0aFddC1Obki+KmcBMtyBXliLiyXSPqjpA3zslNy4fuBnOSPSPqopNfk1z+ak7iy7me7qkm6LE++ISf7e4bZlrcpVawflfRXSS+vs9xzlCr9d+Qd7CxJ4/O8P0g6tGr5GyS9s8mP1trrdGCPQkE2DtgHOA04GVgOvAh4JbALUOxq8FrgTmBj4L3AR4G/RcQ6EbFB9RtJ2p50VOxTwAbAG4G5efYi4G3AesAHgG9JelWjGyFpNeC3wCnAeOCXwLuqFntenrc5cDDwGeB1pIL/FcD2wGerlp8ATAIOAI6XtFWjMVmpvEbSzbnc/FmuGGwo6TxJD+Tp50narPKCXIbemcviu1RotNf7gR+KpJdIukjSw/k3Yp8hlq1ZBmuIgywj+1isl0TE+4B7gP+MiHWAs/KsNwEvBXbNz38PbEkqu68DTq1a1T6ksnAC8CTwt7zcBOBXwDchXacEHAq8JiLWzeuf24ZNsy4WEW8G/gwcmvPyBuD9pHrAnsDHJO2VFz+AdNZsMvBcUr3i8Yj4THEdEXEoKSdfkhtVO0laZ4gYziTl8XckPRc4AfhQRDyQ3/so4J3ARvl9Ts8v3YVUV3lxjvc9wEOj/Uw6ra8bbaMsuN4FvJWUEP9JKkyPIhWOzwGqL9h8LamwfQ9wHKni+RZgG2AfSW+qfoOIeGN++Iqc7GcOsS2vAk4EPkLaYX4MnKt8BqLKYcBepB+ETYFHgO/neacB+xXWuzWpsnx+vfe2sRcRd5MKvr3ypDcD/wLuAnYHDo+IZRGxCPgWsG/h5Qsi4rsRsTwiHm/g7Q4CToyIiyLimYi4NyJuzXGcHxF35KNllwIXko6qNep1wKrAcRHxVET8Cri6aplngM9HxJM53v2BL0bEooh4APgC8L6q1/xPXv5SUu7WrWhbqe1PKpdfSCprP0sqX39GKpeeDzwOfA9A0trAd4Ddc5n+H8D1ed5e1P+Brymv7yJSubgxqWz8gQpnOArLDlUGD3WQxayeo3M5/jhARJyYz0o8CRwNvELS+oXlz46IayPiCeBs4ImI+HlEPE3qVVE50/Y0sDqwtaRVI2JuRNwxZltlXSkiBiJidq4H/INUrlXqrk+Ryr0XRcTTOQ8X11nPncA00oHVs4AH88mSeo23Q0h1nAHgfyPivDz9I8BXI+KWiFgOfAXYLh+MewpYF3gJoLzMwlF9ACXQ1402RldwfTci7o+Ie0k//ldGxN9zYXo2KwrHii9FxBMRcSGwDDg9Vzorr69evlkfBn4cEVfmHeZk0pG219VY9iPAZyJifqHwf7dSv/mzWZH0kCpNv8nLWbkUG9j/lZ9vTmoELcxH+x8lVR43LrxuXpPvMxmouV8odVW4Ip+FeBTYg3TgolGbAvdGRBSm3V21zAO5ElJ8zd1Vy29aeP5IRCwbYr51j+9FxLyIeBg4BtgvIh7KXWn+FRFL8vTiQa9ngJdJWjMiFkZE5XqMoX7g63kbMDcifpYPclwH/Bp4d41l65bB9Q6yRMQVI/hMrH88W1ZLGidpVu4hs5gVB5iL5e39hceP13i+DkBEzAEOJ/32L5J0hiSXkTYkSa+VdEnu5fAY6WxaJf9OAS4AzlC6bOHrklatt66IuCIi9omIjUgHet9IOplRa9lHSb1wXgYcW5i1OfDtQl3nYUDApIj4E+lg3veB+yUdXzlo1s36utE2yoKrocJxFMs3a3NgRiV5cwJPpnZldXPg7MJyt5AasBNzJeh8VpyZ2ZeVu2BYOfwSmJa7hr2D1GibR6ooToiIDfLfehFRPDMQVeupfl5tHulMxyD5DMKvgW+QcmcD4HekQrNRC4FJkoqvef4w8S0g5XBx+QWF5xvmMyT15lv3KB5guBvYVNJakn4s6e5ceb0M2EDSuNxYfw+pMrFQ0vmSXpJfX/cHfoj33xx4bVW5uj+pC26tZYcqg2sdZDGrqFUOF6f9FzCd1ENnfWBKnt5MebtixRGnRcSOpLwN4GsjWY/1ldOAc4HJEbE+6Xp4AeSeMl+IiK1JPRzeRupKCcPUMSLiauA3pEbZSiRtB3yQdGav2KV8HvCRQl1ng4hYMyL+mtf7nYh4NalH24tJl3h0tb5utEHdgmsZsFZhsVo/0GUzDzimKnnXioha3X/mkboPFZddI5/1g7Rj7CdpB2BN4JIx2gZrQu4aOEDqKnZX4fT/hcCxktZTun7xhbW63xbcD2ymdH1ZLScAH1C63vM5kiblivBqpDPVDwDLJe1O6kfejL+Rrr87TNIqStdObj/Ma04HPitpI0kTgM8Bv6ha5guSVpP0BtKPxy+bjMvKYXLhcaXxPQPYCnhtRKxHOkILKyoPF0TEW4FNgFuBn+T5Q/7A1zEPuLTqNetExMfqLDtUGVzrIItZxf3AC4aYvy7pgNxDpPrJV0b6Rkr33npzPvD2BOnA8dMjXZ/1jXWBhyPiCaVr3f+rMiNfm7Zt7vq9mNQ9sZJTg3Jb0o6SPixp4/z8JcDbgZV6Hkhag/T7fhTpuvlJkj6eZ/8IOLLSXV1pELa98+PX5DODq5Lq9E/QAzne1422IQqu60nXH4yX9DzS2bhOGa4gr/gJ8NGcpJK0tqQ9Ja1bY9kfAcdoxSg7G0maXpj/O1Ij9ovAmRHhYVjL6zTSkddiBfD9pAbVzaTrFX9FqsDW8yfSkL73SXqwemZEXEUeZAR4DLgU2DyflT2M1Cf9EVIBfm4zwUfEv0nXGB2Y1/Ee0hG3oXwZuAb4BzCb1O2seK+s+/K6FpDOEn808jV41nUOkbSZ0kBJR5Guy1mXVFY/mqd/vrKw0oBQb89nWp8ElrLih7ruD/wQzgNeLOl9klbNf6+R9NIayw5ZBtc6yDKiT8R61VdJB6MepXb325+TzjbfSyrbR9O1dnVgFvAgqbzcmLR/mQ3l48AXJS0hHSw9qzDveaS6xmJS761LWXEw9dukS3AeURp86VFSI222pKXAH0iX5ny9xnt+FZgfET/Ml+m8F/iypC0j4mzSiZYzcq+LG0nX9EMaHO0npLrA3aSDHd8Y/UfQYRHRt3/Ay4GrgCWkrjLnkbqyrEGqHCwmVQz/LylpKq+bC7yl8PwXpAuGK88/BPwxP55COoO3SmH+fGBa1es/mx8fCFxemPdRUheyR4F9htme3UiDODyaX/NLYN3qmEmN9f8Gbsvbfgfwlap1nZDjfk2nvyf/+a/RP9LFzfM7HYf/WvJdzgWOJFVQHyWNirpWLqMHSA2yf5KuVQtgFdLBiUtJBxcezcttXVjn+0gN/cWkM2MnNhDHVqQu4w+Qfvj/BGyX550EfLmwbN0yuPD+AXyq05+v//znP//5r7v+FDHc5SxmZt1B0jTgFxGx2TCLmpmZmXWNVTodgJn1NknPJ50tqWXryDfUNDMzM7Pahr2mTdKJSncUv7EwbbzSzUZvz/83LMw7UtIcpZuQ7lp7rTYSko5Susl29d/vOx2bWT0RcU+kwRtq/bW0wRbpPjI+y2YNk/SGOuXq0k7HZmZmVjFs90hJbyRdO/DziHhZnvZ10ggysyTNBDaMiCOUbsR8Omn0t02BPwIvjnRjRzMzMzMzM2vSsN0jI+IySVOqJk8nXfAP6eLwAeCIPP2MSCO83CVpDqkB97eh3mPChAkxZcoUli1bxtprrz3UoqXl2Nvj2muvfTDSzRdLq5K/FWX+PFul17exVdtX9vytzl3o/e+2oh+2czTbWPbchdr5C93x3TrG1qgXY9nzt5tztx36cbtHkrsjvaZtYqT7QRERCyv3WiDdpLQ4DO186ty4VNLBwMEAEydO5Bvf+AZLly5lnXVGe4/pznDs7bHTTjvd3ekYhjNlyhSuueaaZ58PDAwwbdq0zgU0Bnp9G1u1fZJKnb/VuQu9/91W9MN2jmYby567UDt/oTu+W8fYGvViLHv+dnPutkM/bvdIcrfVA5GoxrSa/S8j4njgeICpU6fGtGnTuvpLc+xmZmZmZtYOI7259v2SNgHI/xfl6fOByYXlNiPd4NbMzMzMzMxGYKRn2s4FDgBm5f/nFKafJumbpIFItiTdvHpEpsw8v+nXzJ2150jfzqylms1f566Vhcte62az732MA5vIYeeulUWzuQvO334ybKNN0umkQUcmSJoPfJ7UWDtL0kHAPcDeABFxk6SzSPdkWg4c4pEjzczMzMzMRq6R0SP3qzNr5zrLHwMcM5qgzMzMzMzMLBnpNW1mZmZmZmY2BtxoMzMrIUknSlok6cbCtPGSLpJ0e/6/YWHekZLmSLpN0q6didrMzMzawY02M7NyOgnYrWraTODiiNgSuDg/R9LWwL7ANvk1P5A0buxCNTMzs3Zyo83MrIQi4jLg4arJ04GT8+OTgb0K08+IiCcj4i5gDrD9WMRpZmZm7dfqm2ubmVn7TIyIhQARsVDSxnn6JOCKwnLz87SVSDoYOBhg4sSJDAwMDJq/dOlSZmzb/KC/1espu6VLl3ZdzM3qh200M+sXbrSZmXU/1ZgWtRaMiOOB4wGmTp0a06ZNGzR/YGCAYy9f1nQAc/efNuwyZTIwMED1tveafthGM7N+4UabWUn4hsbWgPslbZLPsm0CLMrT5wOTC8ttBiwY8+jMzMysLXxNm5lZ9zgXOCA/PgA4pzB9X0mrS9oC2BK4qgPxmZmZWRv4TJuZWQlJOh2YBkyQNB/4PDALOEvSQcA9wN4AEXGTpLOAm4HlwCER0fyFaWZmZlZKbrSZmZVQROxXZ9bOdZY/BjimfRGZmZlZp7h7pJmZmZmZWYm50WZmZmYtI2mypEsk3SLpJkmfyNPHS7pI0u35/4aF1xwpaY6k2yTt2rnord85f62s3GgzMzOzVloOzIiIlwKvAw6RtDUwE7g4IrYELs7PyfP2BbYBdgN+IGlcRyI3c/5aSbnRZmZmZi0TEQsj4rr8eAlwC+lm79OBk/NiJwN75cfTgTMi4smIuAuYA2w/pkGbZc5fKysPRGJmZmZtIWkK8ErgSmBiRCyEVDGWtHFebBJwReFl8/O0Wus7GDgYYOLEiQwMDKy0zMQ1Yca2yxuOsdY62m3p0qUded9mOMbW5m87chc6k7+t1g251moj2WY32szMzKzlJK0D/Bo4PCIWS6q7aI1pUWvBiDgeOB5g6tSpMW3atJWW+e6p53Ds7MarN3P3X3kd7TYwMECt2Muk32Nsdf62I3ehM/nbat2Qa602km1290gzMzNrKUmrkiq8p0bEb/Lk+yVtkudvAizK0+cDkwsv3wxYMFaxmlVz/loZudFmZmZmLaN0SuIE4JaI+GZh1rnAAfnxAcA5hen7Slpd0hbAlsBVYxWvWZHz18rK3SPNzMyslV4PvA+YLen6PO0oYBZwlqSDgHuAvQEi4iZJZwE3k0buOyQinh7zqM0S56+VkhttZmZm1jIRcTm1r/MB2LnOa44BjmlbUGYNcv5aWbnRZn1L0lxgCfA0sDwipkoaD5wJTAHmAvtExCOditHMzMzMzNe0Wb/bKSK2i4ip+XnNm2eamZmZmXWKG21mg9W7eaaZmZmZWUe4e6T1swAulBTAj/M9VOrdPHOQoW6SWblhYrM3yByJTt2MstdvhNnr22dmZmbdxY0262evj4gFuWF2kaRbG33hUDfJrNww8cCZ57c63pV06qaavX4jzF7fPjMzM+su7h5pfSsiFuT/i4Czge2pf/NMMzMzM7OOcKPN+pKktSWtW3kM7ALcSP2bZ5qZmZmZdYS7R1q/mgicLQnSfnBaRPxB0tXUuHmmmZmZmVmnuNFmfSki7gReUWP6Q9S5eaaZmZmZWSeMqtHmmxObmZmZmZm1VyvOtO0UEQ8WnlduTjxL0sz8/IgWvI+ZVZnS5AiVc2ft2aZIzMzMzKxd2jEQiW9ObGZmZmZm1iKjPdPW0psTV9/QdiQ3J/7uqc0N9rftpPWbfo9auvlmvN0cu5mZmZlZrxtto62lNyeuvqFtN92cuJtvxtvNsZtZObirrpmZWfuMqtFWvDmxpEE3J85n2XxzYrMSccW6N3gQKDMzs/4y4mvafHNiM7OO2ikitouIqfl5ZRCoLYGL83MzMzPrAaM50+abE5uZlcd0YFp+fDIwgEfuNTMz6wkjbrT55sRmZh3T0kGgipYuXcqMbZ9uZ+wAHR/8qB8GYOqHbTQz6xetuE+bmZmNrZYOAlU0MDDAsZcva2WsNbVqEKiR6ocBmPphG83M+kU77tNmZmZtVBwEChg0CBSAB4GyTpN0oqRFkm4sTBsv6SJJt+f/GxbmHSlpjqTbJO3amajNnLtWXm60mZl1EQ8CZV3iJGC3qmk1B8uRtDWwL7BNfs0PJI0bu1DNBjkJ566VkBttZmbdZSJwuaQbgKuA8yPiD8As4K2Sbgfemp+bdUREXAY8XDV5OmmQHPL/vQrTz4iIJyPiLmAO6eyx2Zhz7lpZ+Zo2M7Mu4kGgrIvVGyxnEnBFYbn5edpKhhtIB2DimjBj2+UNB9WJwVq6YZAYxzhIKXMXOj+oUyt0Q6612ki22Y02MzMz6yTVmBa1FhxuIB2A7556DsfObrx604lBcbphkBjH2JCO5i50flCnVijB9zjmRrLN7h5pZmZmY6HeYDnzgcmF5TYDFoxxbGZDce5ax/X9mbYpM89vavm5s/ZsUyRmZmY9rTJYziwGD5ZzLnCapG8CmwJbkq7XNCsL5651XN832szMzKy1JJ0OTAMmSJoPfJ5U4T1L0kHAPcDeABFxk6SzgJuB5cAhEdH+O7yb1eDctbJyo83MzMxaKiL2qzOr5mA5EXEMcEz7IjJrjHPXysrXtJmZmZmZmZWYz7SVkK+zMzMzMzOzCp9pMzMzMzMzKzGfaTOzuuqd9Z2x7XIOrDHPZ33NzMzMWs9n2szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxHxNm5m1TLMjn4KvgzMzMzMbjhttZmZm+HYrZmZWXm60mZmZjYAbeWZmNlbcaOsBrjiYmZmZmfUuD0RiZmZmZmZWYj7TNgZGMjhDO1XHU+9GyUU+O2dmZmZm1hlutJmZmY2BsTiA5wNsZma9yY02a4ivm7N2cW5ZuwyVW430MDAzMysLN9rMzKz0ytbN3MzMbCy50dakehUHH7U1M2ucG2FmZmaNc6PN2sJd3szMxl6x7PUgU2ZmvcONNjMzM7M2anbUZjemzayaG21m1lV8FtfMzKx3zL73saYuMerX3/W23Vxb0m6SbpM0R9LMdr2PWas5d62bOX+tWzl3rZs5f63d2nKmTdI44PvAW4H5wNWSzo2Im9vxfmat4ty1KTPPb3pgobIc9XP+Wrdy7lo3c/5as72ATtpt7abfo13dI7cH5kTEnQCSzgCmA05eKzvnrnUz5691K+dunxvJiLIjqfi2ifPX2q5djbZJwLzC8/nAa4sLSDoYODg/XSrpNmAC8GCbYmqrwxz7qOhrdWdtPoZhQAO5C3Xzt6Ljn2e7lSFnGjVEbtXV7PZ1U/4Ok7vQRd/taHRTDo9UI9vYTbkLDeUvtG7/bZvhvptOxFRD6feRnb5WN8bS5W87chdKkyujVfp9ttVGkrvtarSpxrQY9CTieOD4QS+SromIqW2Kqa0ce88YNnehdv4+u4I++Dx7fRu7ePtGVPYOWkH3bntT+mE7u2wbR132PruiLthux9gaJYpx1GUvlGp7xlQ/bvdItrldA5HMByYXnm8GLGjTe5m1knPXupnz17qVc9e6mfPX2q5djbargS0lbSFpNWBf4Nw2vZdZKzl3rZs5f61bOXetmzl/re3a0j0yIpZLOhS4ABgHnBgRNzXw0iFPG5ecY+8Bo8jdon74PHt9G7ty+5y/TemH7eyabWxR7lZ0w3Y7xtYoRYwtzN9SbE8H9ON2N73Nilipy7iZmZmZmZmVRNturm1mZmZmZmaj50abmZmZmZlZiZWm0SZpN0m3SZojaWan4wGQNFfSbEnXS7omTxsv6SJJt+f/GxaWPzLHf5ukXQvTX53XM0fSdyTVGhq2FfGeKGmRpBsL01oWr6TVJZ2Zp18paUo7tqOblTGPGyFpsqRLJN0i6SZJn8jTS5vvzZI0TtLfJZ2Xn/fMtrVKt+ZvRbeV2Y1wud64bsjfWt9nmdT7LSgTSWtIukrSDTnGL3Q6plbohvxttbLvD+0wqn0sIjr+R7po8w7gBcBqwA3A1iWIay4woWra14GZ+fFM4Gv58dY57tWBLfL2jMvzrgJ2IN3H4/fA7m2K943Aq4Ab2xEv8HHgR/nxvsCZnf6OyvRX1jxuMPZNgFflx+sC/8w5Utp8H8E2/jdwGnBeft4z29aiz6dr87ewDV1VZje4TS7XG/ucuiJ/a32fZfqr91vQ6biqYhSwTn68KnAl8LpOxzXKbeqK/G3Ddpd6f2jTNo94HyvLmbbtgTkRcWdE/Bs4A5je4ZjqmQ6cnB+fDOxVmH5GRDwZEXcBc4DtJW0CrBcRf4v0Df288JqWiojLgIfbGG9xXb8Cdu61Mw2j1E15PEhELIyI6/LjJcAtwCRKnO/NkLQZsCfw08Lknti2Fura/B1GV3/PLtcb1hX5W+f7LI0hfgtKI5Kl+emq+a/bR9XrivxttbLvD+0wmn2sLI22ScC8wvP5lKOQCOBCSddKOjhPmxgRCyF98MDGeXq9bZiUH1dPHyutjPfZ10TEcuAx4Llti7z7lDWPm5K7R72SdPSy2/K9nuOATwPPFKb1yra1Si/kby+U2Y1wub6yXsjfUqn6LSiV3N39emARcFFElC7GJjl/+1Cz+1hb7tM2ArWO6pXhqMnrI2KBpI2BiyTdOsSy9bahrNs2knjLui1l0fWfj6R1gF8Dh0fE4iEOuHdNvkt6G7AoIq6VNK2Rl9SYVspta7Fe2L5eLrMb0c/leq9sRylU/xZ0Op5qEfE0sJ2kDYCzJb0sIrr5uijnb58ZyT5WljNt84HJheebAQs6FMuzImJB/r8IOJt0+vr+3NWE/H9RXrzeNszPj6unj5VWxvvsayStAqxPn53WHkYp87hRklYlFSCnRsRv8uRuy/daXg+8XdJcUpeTN0v6Bb2xba3U1fkLPVNmN8Ll+sq6Pn/Los5vQSlFxKPAALBbZyMZNedvHxnpPlaWRtvVwJaStpC0Guli6HM7GZCktSWtW3kM7ALcmOM6IC92AHBOfnwusG8eiWsLYEvgqtx1ZYmk1+XrBN5feM1YaGW8xXW9G/hTvj7CktLlcaPyd30CcEtEfLMwq9vyfSURcWREbBYRU0jfyZ8i4r30wLa1WNfmL/RUmd0Il+sr6+r8LYshfgtKQ9JG+QwbktYE3gIMdVa9Gzh/+8So9rFmRz1p1x+wB2kElTuAz5QgnheQRu+5AbipEhOpr//FwO35//jCaz6T47+NwmhjwFRS5eEO4HuA2hTz6cBC4CnSUZuDWhkvsAbwS9LF7VcBL+j091S2v7LlcRNx70jqivEP4Pr8t0eZ832E2zmNFaNH9tS2tejz6cr8zbF3XZnd4Ha5XG/8syp9/tb6PjsdU1V8NX8LOh1XVYwvB/6eY7wR+FynY2rRdpU+f9uwzaXeH9q0zSPexyqFtpmZmZmZmZVQWbpHmpmZmZmZWQ1utJmZmZmZmZWYG21mZmZmZmYl5kabmZmZmZlZibnRZmZmZmZmVmJutJmZmZmZmZWYG21mZmZmZmYl5kbbECRtJenvkpZIOqzT8YyUpGmS5nc6DrNaJM2V9JZOx2H9QdLzJS2VNK6BZadICkmrjEVsZpJOkvTlUa7jQEmXDzF/QNKHRvMeZqPVK3XsseRG29A+DQxExLoR8Z2RrKBW4ajkU5Jul/S4pHskfUXSai2J2sysTw13ECAi7omIdSLi6bGMy8zMBhl1HbvfuNE2tM2Bm9qw3u8ABwPvB9YFdgfeApzRhvcyMzPAZ8zMzDqrUA63q47ds9xoq0PSn4CdgO/lrjSfyKdxF0uaJ+nowrJrSPqFpIckPSrpakkTJR0DvKGwju9J2hL4OLB/RPwtIpZHxE3Au4A9Jb0pr3PQGbrq7g6Svp3jWCzpWklvKMxbM3exeETSzcBrqrbtCEn35lPSt0nauR2foXU3Sa+UdF3OkzMlnSHpy7W63uQuZC/Kj/est6/k+e+TdHfeXz4zhptkPU7SKcDzgf/NZe6nc24eJOke4E/VXR5zWftVSVdJekzSOZLG11n/+pJOkLQwl6FfbqSbpVk91eUssEZh3oclzZH0sKRzJW2ap6/UbbdGrx5J+m7O6VuH+p2X9EFJt+Q6wwWSNm/HtlpvqFWHVFW3XlVdlpN7QBwh6R/Ashp17Bc3UHfYUdJfcz17nqQD8/TVJX1Dqdfa/ZJ+JGnNMfkwxpgbbXVExJuBPwOHRsQ6wA2kM2MbAHsCH5O0V178AGB9YDLwXOCjwOMR8ZniOiLiUGBnYH5EXFX1fvOAK4BdGgzxamA7YDxwGvBLSZXC/vPAC/Pfrjk+IPUhBg4FXhMR6+b5cxt8T+sTSl11fwucQsqxX5IOLDRiGXX2FUlbAz8E3gdsStpfNmtd5NbPIuJ9wD3Af+Zy+6w8603AS0nlXS3vBz5IysnlpN4QtZyc578IeCWpvPa1QTYiQ5Wzkt4MfBXYB9gEuJvmeuO8FrgTmECqE/ym1sGIXDYfBbwT2IhUZzl9JNtjvW+Udcj9SHWCDarr2BHxT4auOzwf+D3wXVKebgdcn9f7NeDFedqLgEnA50a8kSXmRluDImIgImZHxDMR8Q9SofamPPspUuXzRRHxdERcGxGL66xqArCwzryFpGRsJJ5fRMRD+UzdscDqwFZ59j7AMRHxcG4MFisgT+dlt5a0akTMjYg7GnlP6yuvA1YFjouIpyLiV6QDBcMaZl95N3BeRFwWEU8C/wM804b4zYqOjohlEfF4nfmnRMSNEbGMlJP7VJ9BkzSR1JX98LyuRcC3gH3bGrn1sqHK2f2BEyPiulxWHgnsIGlKg+teVFjvmcBtpIpwtY8AX42IWyJiOfAVYDufbbM6RlOH/E5EzKtXDg9Td9gf+GNEnJ5z+qGIuF6SgA8D/zfXeZeQcrgny2U32hok6bWSLpH0gKTHSGfTJuTZpwAXAGdIWiDp65JWrbOqB0lHzWrZBHigwXhm5O4Mj0l6lHSmrxLPpsC8wuJ3Vx5ExBzgcOBoYJFSl7dNG3lP6yubAvdGRBSm3V1v4aJh9pVBuZkryQ+1KGazeuY1Mf9uUkV6QtUym+fpC3P3nEeBHwMbtypI6ztDlbObMvi3eymprJzU4LprrbfWb/3mwLcLOf0woCbex/rIKOuQQ5bDw9QdJgO1GocbAWsB1xZy+A80eAKk27jR1rjTgHOByRGxPvAjUsFGbvV/ISK2Bv4DeBvpFC9AVK3nT8BkSdsXJ0qaTDrqdmmetIyUiBXPKyz7BuAI0hm1DSNiA+CxSjykM3aTC699fvG9IuK0iNiRVFgH6dSyWdFCYFI+ilVRyaNBuSnpeQxWd1+hKjclrUU6S23WKtVlbr1pRdXl5VOkA2xF84AngQkRsUH+Wy8ithl5qNbnhipnF5B+owGQtDaprLyXVAZDnTpCVmu9C2rEMA/4SCGnN4iINSPir81vjvWDOnXIunXW4kuHWfVQdYd5pEt+qj0IPA5sU8jf9XP3+J7jRlvj1gUejogncoPrvyozJO0kadvcnWYx6Qe/Mpz0/cALKsvmfrs/Ak6V9DpJ4yRtA/wa+Cvwx7zo9cA7Ja2lNMDDQVWxLCedlVtF0ueA9QrzzwKOlLShpM2A/1OIdStJb5a0OvAEKdk99LVV+xspxw6TtIqkdwKVAw03ANtI2i5fR3l01Wvr7ivAr4C35QuKVwO+iMsha61BZW6D3itp63wQ4YvAr6pvCRARC4ELgWMlrSfpOZJeqDx4lNkIDFXOngZ8IJezq5O6fF2Zu6M9QGq8vTfXIT7IyhXajfN6V5W0N+mazt/ViOFHpPrCNvDsYDt7t3pDrTcMUYe8HthD0vh8IPfwEax+qLrDqcBbJO2T95XnStouIp4BfgJ8S9LGOcZJkupdv9zVXFlq3MeBL0paQrrA8azCvOeRKqOLgVtIZ8t+ked9G3i30qhMlWvLDgV+mpf5F3AjqevCXjkBIV0r8W9SBeRkUsJWXEC6IPOf+XVPMPi08xfy9LtIlYxTCvNWB2aRjk7cRyrYj2ruo7BeFxH/Jl2YfiDwCPAe4Dd53j9JFds/ArcD1Tdxrbuv5JFSDyFVSBbmdfvG79ZKXwU+m7vJvLvB15wCnEQqE9cA6t3o9f3AasDNpNz9FfW7u5sNaZhy9mLS9ZW/JpWVL2TwdTofBj5F6jK5Demgb9GVwJak3/pjgHdHxEpd0SPibNKZkjMkLSbVR3ZvyQZaL6pXhzyFdEB3LqneeeYI1j1U3eEeYA9gBqkL7/XAK/LsI4A5wBU5h//IijEeeooGd3m2TpD0RWAv4I0R8WhnozGrTdJJpJFPP9vpWMxaRdIA8IuI+GmnYzEzM6vHNxotgYj4nKRFpGva/tDpeMzMzMzMrDzcaCuJiPhep2MwMzMzM7PycfdIMzMzMzOzEvNAJGZmZmZmZiVWiu6REyZMiClTpqw0fdmyZay99tpjH1ATHGNr1Ivx2muvfTAiSn2TxG7L37LGBeWNbaRxlT1/uy13obyxlTUuGFlsZc9d6M78rcXxtl7Z87cbcrcssfRbHEPmbkR0/O/Vr3511HLJJZfUnF4mjrE16sUIXBMlyNGh/rotf8saV0R5YxtpXGXP327L3YjyxlbWuCJGFlvZcze6NH9rcbytV/b87YbcLUss/RbHULnr7pFmZmZmZmYlVorukfXMvvcxDpx5flOvmTtrzzZFY9acZvPXuWtl4bLXupnLXrP6pjS4b8zYdjkHzjzf+0eJ+EybmZmZmZlZibnRZmZmZmZmVmJutJmZmZmZmZWYG21mZmZmZmYl5kabmZmZmZlZibnRZmZmZmZmVmLDDvkvaTLwc+B5wDPA8RHxbUnjgTOBKcBcYJ+IeCS/5kjgIOBp4LCIuKAt0ZuZWSk0Oox0hYeRNjMza1wjZ9qWAzMi4qXA64BDJG0NzAQujogtgYvzc/K8fYFtgN2AH0ga147gzczMzMzMet2wjbaIWBgR1+XHS4BbgEnAdODkvNjJwF758XTgjIh4MiLuAuYA27c4bjMzMzMzs74wbPfIIklTgFcCVwITI2IhpIadpI3zYpOAKwovm5+nVa/rYOBggIkTJzIwMLDS+01cM92RvRm11tNOS5cuHfP3bJZjNDMzMzPrXg032iStA/waODwiFkuqu2iNabHShIjjgeMBpk6dGtOmTVvpRd899RyOnd1Uu5K5+6+8nnYaGBigVuxl4hjNzMzMzLpXQ6NHSlqV1GA7NSJ+kyffL2mTPH8TYFGePh+YXHj5ZsCC1oRrZmZmZmbWX4ZttCmdUjsBuCUivlmYdS5wQH58AHBOYfq+klaXtAWwJXBV60I2MzMzMzPrH430PXw98D5gtqTr87SjgFnAWZIOAu4B9gaIiJsknQXcTBp58pCIeLrVgZuZmZmZmfWDYRttEXE5ta9TA9i5zmuOAY4ZRVxmZmZmZmZGg9e0mZmZmZmZWWe40WZmZmZmZlZibrSZmZmZmZmVmBtt1tMknShpkaQbC9PGS7pI0u35/4aFeUdKmiPpNkm7diZqMzMzM7MVmrtztVn3OQn4HvDzwrSZwMURMUvSzPz8CElbA/sC2wCbAn+U9GKPfmpmZmZlNGXm+Z0OwcaIz7RZT4uIy4CHqyZPB07Oj08G9ipMPyMinoyIu4A5wPZjEaeZmZmZWT0+02b9aGJELASIiIWSNs7TJwFXFJabn6etRNLBwMEAEydOZGBgYOU3WRNmbLu84aBqraMdli5dOmbv1ayyxlbWuMzMzKw/uNFmtkKt+xFGrQUj4njgeICpU6fGtGnTVlrmu6eew7GzG9/F5u6/8jraYWBggFrxlkFZYytrXGZlJelE4G3Aooh4WZ42HjgTmALMBfaJiEfyvCOBg4CngcMi4oIOhG1mVlruHmn96H5JmwDk/4vy9PnA5MJymwELxjg2M7NecBKwW9W0yvXEWwIX5+dUXU+8G/ADSePGLlQzs/Jzo8360bnAAfnxAcA5hen7Slpd0hbAlsBVHYjPzKyr+XpiM7PWcvdI62mSTgemARMkzQc+D8wCzpJ0EHAPsDdARNwk6SzgZmA5cIhHjjQza5m+vp64nm67Zrbb4jXrFW60WU+LiP3qzNq5zvLHAMe0LyIzM6vSF9cT19Nt18x2W7xmvcLdI83MzGws+Hpi62qS5kqaLel6SdfkaeMlXSTp9vx/w07Hab3JjTYzMzMbC76e2HrBThGxXURMzc9rDrBj1mruHmlmZmYt5euJrY9MJ+U6pAF2BoAjOhVMq02ZeX7Tr5k7a882RGJutJmZdRlJc4ElpHtaLY+IqUPdA8tsrPl6YutRAVwoKYAf52ss6w2wM0gjg+iMZJCXZgbdaUazA/oUtXKgmrIMfFOGONxoMzPrTjtFxIOF55UuOrMkzczPe+Zor5lZCbw+IhbkhtlFkm5t9IWNDKIzkkFeDhzBmbBGzNh2eVMD+hS1cnCfsgx8U4Y4fE2bmVlvqHcPLDMza4GIWJD/LwLOJt1PsN4AO2Yt5TNtZmbdp61ddEbTLaZRI+1mUoYuKrWUNS4od2xm3ULS2sBzImJJfrwL8EVWDLAzi8ED7Ji1lBttZmbdp61ddJq9z9VIjLT7TBm6qNRS1rig3LGZdZGJwNmSINWfT4uIP0i6mhoD7Ji1mhttZmZdpthFR9KgLjr5LJu76JiZtVBE3Am8osb0h6gzwI5ZK7nRZmbWRXqli06zw0h7CGkzM+tnbrSZmXUXd9ExMzPrM8M22iSdCLwNWBQRL8vT6t4PSNKRwEGk+wcdFhEXtCVysx7jG1haI9xFx8zMrP80MuT/ScBuVdMq9wPaErg4P0fS1sC+wDb5NT+QNK5l0ZqZmZmZmfWZYRttEXEZ8HDV5Hr3A5oOnBERT0bEXcAc0gXyZmZmZmZmNgIjvaat3v2AJgFXFJabn6etpF33Chrre9F0w/1vHKOZmZmZWfdq9UAkqjEtai3YrnsFjfTePyPVDfe/cYxmZmZmZt2rkWvaark/3weIqvsBzQcmF5bbDFgw8vDMzMzMzMz620gbbZX7AcHg+wGdC+wraXVJWwBbAleNLkSz9pA0V9JsSddLuiZPGy/pIkm35/8bdjpOMzMzM+tvjQz5fzowDZggaT7wedLNW1e6H1BE3CTpLOBmYDlwSEQ83abYzVphp4h4sPC8MjLqLEkz8/MjOhOamZm1m2+3YmbdYNhGW0TsV2dWzfsBRcQxwDGjCcqsg6aTDlJAGhl1ADfazMzMzKyDWj0QiVk3CeBCSQH8OA+OU29k1EHaNfpps0Yy4maZR+osa2xljaufVM6GzNh2OQc2eGbEZ0PMzKxXuNFm/ez1EbEgN8wuknRroy9s1+inzRrJaKllHqmzrLGVNS4zMzPrDyMdiMSs60XEgvx/EXA26Ubw9UZGNTMzMzPrCDfarC9JWlvSupXHwC7AjdQfGdXMzMzMrCPcPdL61UTgbEmQ9oPTIuIPkq6mxsioZmZmFc2OOOnrK81stNxos74UEXcCr6gx/SHqjIxqZmZmZtYJbrSZdTEf7TUzM+sNs+99rOHRca3/uNFmZmZmZmYt4QPK7eGBSMzMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxHxNm5mZmZmZdcRQ18DN2Hb5SoOz9Os1cD7TZmZmZmZmVmJutJmZmZmZmZWYG21mZmZmZmYl5kabmZmZmZlZiXkgErM+MmXm+TUv6q2nXy/2NTMzMysTN9rMzMwYegSzWnxQw8zMxkrPNdr8o2tmZmZl4iHNzWy0eq7RZmZmZmZmvalfT9B4IBIzMzMzM7MS6/szbf3aWjczMzMzs+7Q9402MzOzkSge9GtmVNZm+EChmZlBGxttknYDvg2MA34aEbPa9V5mreTctW7m/LVu5dy1bub8La9me9VBOQ+YtaXRJmkc8H3grcB84GpJ50bEze14P7NWce6OzkgKxqJGzlaUsSAtC+evdSvn7mC+dKO7OH9tLPbZdp1p2x6YExF3Akg6A5gOdH3yVn8prmT2nJ7NXWtMrYJ3uP28RPu487fH9FHl3blr3cz522NGUt9vt3Y12iYB8wrP5wOvLS4g6WDg4Px0qaTbaqxnAvBgWyJskcMaiFFfG6Ng6iv950j9GDcf4ziGzV3o7vxtJGcrxjp3y7o/DRfXEDGVLn+7OXehvPnbTFztVGebRxJb6XIXuj9/a2lF7oxxudgNn2/p8rfbcrcsZVqvxjGSekO7Gm2qMS0GPYk4Hjh+yJVI10TE1FYG1mqOsTVKFOOwuQvdnb9ljQvKG1tZ46qh58vessZW1rig3LEV9HzZW4/j7Qk9V/aWJRbHsUK77tM2H5hceL4ZsKBN72XWSs5d62bOX+tWzl3rZs5fa7t2NdquBraUtIWk1YB9gXPb9F5mreTctW7m/LVu5dy1bub8tbZrS/fIiFgu6VDgAtLQpydGxE0jWNWQp5FLwjG2RilibGHuQkm2qYayxgXlja2scQ3SJ2VvWWMra1xQ7tiAvil763G8Xa5Hy96yxOI4MkWs1GXczMzMzMzMSqJd3SPNzMzMzMysBdxoMzMzMzMzK7HSNtok7SbpNklzJM3sdDy1SJorabak6yVd0+l4ACSdKGmRpBsL08ZLukjS7fn/hiWM8WhJ9+bP8npJe3QyxmYMl6tKvpPn/0PSq8YgpsmSLpF0i6SbJH2ixjLTJD1W+Mw/1+648vsOud904vPK77tV4bO4XtJiSYdXLdORz6xdypi7+X2dv83F1He5W0s31BuKyliHKOqG+kS3KkPZW6ZytizlaunL0ogo3R/pIs47gBcAqwE3AFt3Oq4acc4FJnQ6jqqY3gi8CrixMO3rwMz8eCbwtRLGeDTwyU5/fiPYlmFzFdgD+D3pPi6vA64cg7g2AV6VH68L/LNGXNOA8zrwmQ2533Ti86rzvd4HbF6Gz6yN21i63M3v6/wd3ffa07k7xHaXvt5QFXPp6hBV8ZW+PtGNf2Upe8tUzpaxXC1jWVrWM23bA3Mi4s6I+DdwBjC9wzF1hYi4DHi4avJ04OT8+GRgr7GMqVqdGLtVI7k6Hfh5JFcAG0japJ1BRcTCiLguP14C3AJMaud7ttCYf1417AzcERF3j/H7jqVS5i44f0epH3K3FtcbWqwb6hNdqhRlb5eVs50oV0tXlpa10TYJmFd4Pp9yJlIAF0q6VtLBnQ5mCBMjYiGknRTYuMPx1HNoPu19Yhd1uWgkVzuaz5KmAK8ErqwxewdJN0j6vaRtxiik4fabMuz/+wKn15nXic+sHUqfu+D8HYF+yN1aOv25j0S31CGKuqU+UWalK3tLUM6WsVwtXVnalvu0tYBqTCvjvQleHxELJG0MXCTp1nxkypr3Q+BLpO/5S8CxwAc7GlFjGsnVjuWzpHWAXwOHR8TiqtnXkU77L1W6hvC3wJZjENZw+01H93+lG6O+HTiyxuxOfWbtUOrcBedvs/ood2vplnpDkesQ/alUZW9JytlSlatlLUvLeqZtPjC58HwzYEGHYqkrIhbk/4uAs0mnvMvo/spp5Px/UYfjWUlE3B8RT0fEM8BPKO9nWa2RXO1IPktalVQQnxoRv6meHxGLI2Jpfvw7YFVJE9odVwP7Taf3/92B6yLi/uoZnfrM2qS0uQvO3xHql9ytpdPlRtO6qA5RVPr6RBcoTdlblnK2hOVqKcvSsjbarga2lLRFbu3uC5zb4ZgGkbS2pHUrj4FdgBuHflXHnAsckB8fAJzTwVhqquqb/A7K+1lWayRXzwXen0c/eh3wWKV7SbtIEnACcEtEfLPOMs/LyyFpe1J58FCb42pkvxnzz6vKftTpEtGJz6yNSpm74PwdhX7J3VpKX28o6rI6RFHp6xNdoBRlb1nK2ZKWq6UsS0vZPTIilks6FLiANHrLiRFxU4fDqjYRODt/b6sAp0XEHzobEkg6nTSyzQRJ84HPA7OAsyQdBNwD7N25COvGOE3SdqTT3XOBj3QqvmbUy1VJH83zfwT8jjTy0RzgX8AHxiC01wPvA2ZLuj5POwp4fiGudwMfk7QceBzYNyLa3Z2o5n5Tgs8LAElrAW+lkH9VsXXiM2uLEucuOH+b1k+5W0uX1BuKSlmHKOqG+kQ3KlHZW5ZytlTlapnLUvVQmW1mZmZmZtZzyto90szMzMzMzHCjzczMzMzMrNTcaDMzMzMzMysxN9rMzMzMzMxKzI02MzMzMzOzEnOjzczMzMzMrMTcaDMzMzMzMysxN9rMzKyvSLpJ0rQOvO+ApA+N9fualYmk30s6oNNxmHUbN9rGiKSTJH15FK8f8Y+9pB9J+p+Rvrf1J0lzJT0uaamk+3IOr9PpuKw35Lyq/D1TyLWlkvZv53tHxDYRMdBgnMX94H5JP/N+0Pvy9/6WTscxFEnTJM2vmna0pKdyvj4q6a+SduhUjLVExO4RcXKn4+hVkg6UdHmdeftLurDB9Rwt6RdDzC/1PiLp+Xk/GNfpWFrFjbaCZhKw7MlaFBEfjYgvdToO60r/GRHrANsBrwSO7Gw41isiYp3KH3APOdfy36mNrEPSKo1Ma4HKfvAq4DXAZ5t5sRL/3tpYOTPn6wTgEuCXHY7H2kDSjrlR/pikhyX9RdJrhnpNRJwaEbuMYYxvKByMWyYpqg7YPb9d7x0R9+Tfk6fb9R5jzT8ifa5NFRzrMRFxH3ABsF2do7vPHsTIR+fOkvRzSUtyV7SphWWPkHRvnnebpJ3HdmuszCQ9R9JMSXdIeijn0vg8b0r+0T9I0j3An/JR5b9I+pakh4GjJb1Q0p/y6x+UdKqkDQrv0XC+FkXEvcDvgZdJ2lDSeZIekPRIfrxZ4T0GJB0j6S/Av4AXVG3nJpL+IemT+fmBku7MMdzV7rON1jxJq0s6TtKC/HecpNXzvGmS5kuaIWmRpIWSPlB47XMl/a+kxZKulvTl4tkQSS+RdFGufN8maZ/CvD0k3Zxz415Jn5S0NikXNy1UgDctxhsRy4FTgUmSNsrrGnTAWYWzKYX96wBJ9+R95zMNfC5HS/qlpF/kGGdLerGkI/NnMU/SLoXl3U14lCStB5wHfBcYD0wCvgA82cm4qkXEnwsH57bJkzcoHKC7p5H11KqrqofOoDXKjbZM0inA84H/zYXfpyW9Pf+AP5oLmZfWWzZP/6VSN7LHJF0maZv671g3jumSrs8F+x2SdivM3jxXTpZIulDShMLr6r63Cl0zCz8sR0i6D/iZpAm5wvFo/sH4s3xU2ApyZXR3YE6DL3k7cAawAXAu8L28nq2AQ4HXRMS6wK7A3BaHa93tMGAv4E3ApsAjwPerlnkT8FJS/gC8FrgT2Bg4BhDw1fz6lwKTgaOHeM+a+VpN0mRgD+DvpN/PnwGbk34PHq/xuvcBBwPrAncX1jMFuBT4XkR8I1fAvwPsnveL/wCuHyJe64zPAK8j9Tx4BbA9g8+6Pg9Yn1SBPgj4vqQN87zvA8vyMgfkPwDy938RcBoph/cDflD4HT8B+EjOjZcBf4qIZaQyeUGhArygGKyk1YD3Aw+R9qNG7QhsBewMfK5S9xnGfwKnABuS9o8LSPvIJOCLwI+beH8b3osBIuL0iHg6Ih6PiAsj4h/VC0r6f5Iul7S+qrpOSvp2blQvlnStpDdUvXwNSWfmeud1kl5RKxgNcbCtnhzPCfkAx735QMa4PK/WwbiTJP1Q0u8kLQN2krSnpL/n+OdJOrqw/spBiFXy8wFJX6pXjx4izqHq12tKOlbS3Xn+5ZLWHG6dI+WKeRYR76PQRQf4LXA6cDiwEfA7UiNtteplI+LreTW/B7YkFbrXkY5wNUzS9sDPgU+RKg9vZHCF9r+AD+T1rwZ8sjCvmfd+HunIzOakCsUMYH7ezonAUUA0E7v1rN9KWgLMAxYBn2/wdZdHxO9yt4RTSBUcgKeB1YGtJa0aEXMj4o6WR23d7CPAZyJifkQ8SWpsvbvqSOvREbEsIh7PzxdExHcjYnmuvMyJiIsi4smIeAD4JqmhV0+9fK34raRHgctJja2vRMRDEfHriPhXRCwhNRar3+OkiLgpx/VUnrY1MAB8PiKOLyz7DOkM3poRsTAibhr2k7Kxtj/wxYhYlPPqC6SGecVTef5TEfE7YCmwVa6Ivov0nf8rIm4Gitd0vQ2YGxE/y7lyHfBr4N2F9W4tab2IeCTPH8o+OV8fBz4MvDufdWvUF/J+dANwAyvvD7X8OSIuyO/zS1J9YlbO+zOAKSqc7bZR+yfwtKSTJe1eODjwrNyQ+gnwcmCXiHisxnquJh2EGE86aPBLSWsU5k8nfZ+V+b+VtGqN9TRysK3aycBy4EWkyy92AYpnYKsPxkGqBx9DOhB2OelAyPtJdeY9gY9J2muI9xyqHl3PUPXrbwCvJh1oGw98mlSWt4UbbfW9Bzg///A/Rfpi1iR9MTVFxIkRsaRQ0XiFpPWbeM+DgBPzez4TEfdGxK2F+T+LiH/mispZpB1tJO/9DOnH48m8rqeATYDN84/NnyPCjTYD2Csf3Z0GvIR0jUQj7is8/hfpaN0qETGHdCDkaGCRpDNU1aXH+t7mwNn5zP+jwC2kxv7EwjLzql4z6LmkjXNu3StpMfALhs7dmvlamLZXRGwQEZtHxMcj4nFJa0n6cT7Cuhi4DNhAg7vsVMcJqeJ/L/CryoR81uQ9wEeBhZLOl/SSIeK1ztiUwhnT/LhYfj1U1Tj6F7AOqQGzCoPzofh4c+C1lZzPeb8/6QArpAbfHsDdki7V8AOLnBURG5D2mRtJlcpmVO8PjQy8c3/h8ePAg4VriSoHVzyAT4tExGLSGdEAfgI8IOlcSZVyclXSiYfxpBMM/6qznl/kA1DLI+JY0kHVrQqLXBsRv8r14G8Ca5DONldr5GDbs3KcuwOH5wNwi4BvAfsWFht0MC5POyci/pLryE9ExEBEzM7P/5G3eagDdHXr0fXUq1/nHmkfBD6R6+tPR8Rf83Jt4UZbfYMK54h4hlTITqq1sKRxkmblU8OLWXGGrNFKLqQuPEOddahZkI7gvR+IiCcKz/8fqdvbhUrXVMxsImbrAxFxKXAS6eDFMmCtyrxcSd2oiXWdFhE7kioqAXytpcFat5tH6ia4QeFvjUjXk1VUH1Sqfv7VPO3lEbEe8F5Sl8lWmkGq3Lw2v8cb8/Ti+9Q6+HU08CBwWrGBl89SvJV0AO1WUkXMymUBqdyqeH6eNpwHSGcUNitMm1x4PA+4tCrn14mIjwFExNURMZ10pP+3pMomDNMjJiIeJFWmj5a0SZ48qPxmRcPQukxE3BIRB0bEZqRus5sCx+XZLyKdJftCRPy73jqUrsG8JXfte5TUvbdYd3z24EKuB89n8IGKikYOtlUvvyrpIFXlNT8m5fhK711vmqTXSrpE6drix0gHvpo5QDfkgYRh6tcTSI3YMest5EbbYMUCcFDhLEmkQvbeGstCOuU6HXgLKemnVF7axPvPA17YxPIjfe9BsecjCDMi4gWkfun/LQ8OYSs7Dngr6Qd/jdyXfFXSNR2rN7ICSVtJerPSxftPkI7A9szITtYSPwKOkbQ5gKSNJE1vch3rkrqmPSppEqnLeautS8rfR5Wu3Wi06/BTwN7A2sApuQvTRKVrqNcmDSSwFO8XZbCqpDUqf6Sj+J/NOTkB+BzpLO6Q8hmn35AaT2vls6jvLyxyHvBiSe+TtGr+e42kl0paTWmY9vXz2Y7FrMiN+4HnDtWjJ/fWuYDUbQvStZL75veYyooumNbF8vd8EqnxBqnR9AHg90rXkq9E6fq1I4B9gA3z2dnHGFx3nFxY/jmkAw+1DlQ0crCtevkngQmF5deLiOJYELUOSlRPO410HfLkiFif9PvRygN0Q9WvHyTVY0ZSbx8RN9oGu58VI3ydBewpaedcMZ1BSrC/1lgW0g/4k6QLftcCvjKC9z8B+EB+z+dImtRgF5lRvbekt0l6UW6YVn4QXGGwQSJdw/FzUt/1jwM/JR3EWEY6+taI1YFZpMLuPtJRtaNaHqx1s2+TfoQvVLqe8grStQ3N+AJpeP7HgPNJFeZWO47UZf5BUox/aPSF+cj3O0n5fyKp69wMUmXoYVL3no+3Nlwbgd+RGuaVvzWAa4B/ALNJ17c0ev/VQ0mVvvtI102eTh7pL9I1kbuQuoYtyMt8jRUHw94HzM1H+j9KOnNcqaifDtyZz1bU62r+/4CDJW0M/A+pkvkIaT85rcH4rUSURhudoTxirdIgSfuRyiIgDVJC+n39o6RaDYt1SWeAHwBWkfQ5YL2qZV4t6Z25m+PhpJy9gpU1dbAtIhYCFwLHSlov13lfKGmoro21rAs8HBFPKI0L8V9Nvr6R9desX+czjycC35S0aT4rt0M+KN0eEeG//EdqTd8DPEq6OPEdwM2kH/5LgW2GWHYd4BxgCalb5ftJRwRelJc/CfhyAzG8g/SDsITUZXHXPH0A+FBhuQNJF8/TzHuTrk2aX/We/5d0yrdS+f6fTn8X/vOf//znP//16h+pUXZyp+PwX3f+kS7VOYsVB07vJXUvXK9YP8zLfjjXDadU1R3HkU4WLAYWks7GzgXekucfTbr29sxcv/w78KrCeovLPgf4b+C2vOwdpAGbijFPyXXTVfLz9YEf5nrnY3n9++Z5g7YhT1upHk06U3x3fs/zSCP4/qLO+9WtRw/xOQ9Xv16TdADv3rwNlwFrtut7V35TMzMzM2uD3GtmNdIZuteQzuJ9KCJ+28m4zKx7uHukmZmZWXutS+qmu4x0huRY0hH8riDp91pxE+/in7u3m40Rn2kbY7mAq1XI/Tkidh/reMzMzMzM+pGk/al98/e7Y/DAKB3nRpuZmZmZmVmJ1bzp3VibMGFCTJkyZaXpy5YtY+211x77gDqsH7e73jZfe+21D0ZEw/cA64Ra+VvG79AxDa/V8ZQ9f+uVve1Qlu/acTQWR9lzF7q77uAYW6Nb87ebcrdsMfV6PEPmbqdHwIkIXv3qV0ctl1xySc3pva4ft7veNgPXRAlydKi/Wvlbxu/QMQ2v1fGUPX/rlb3tUJbv2nEM1mtl71DbVCaOsTW6NX+7KXfLFlOvxzNU7nogEjMzMzMzsxJzo83MzMzMzKzESnFNWytNmXl+U8vPnbVnmyKxfudctG7VbO6C89e6l/PdymL2vY9xoOsOVofPtJmZmZmZmZVYz51pMzOzsTfc2YoZ2y4fdATZR4fNzMwa5zNtZmZmZmZmJeZGm5mZmZmZWYm5e6SZmZn1jJEM5mBWIWky8HPgecAzwPER8W1J44EzgSnAXGCfiHgkv+ZI4CDgaeCwiLigA6Fbj/OZNjMzMzOzZDkwIyJeCrwOOETS1sBM4OKI2BK4OD8nz9sX2AbYDfiBpHEdidx6mhttZmZmZmZARCyMiOvy4yXALcAkYDpwcl7sZGCv/Hg6cEZEPBkRdwFzgO3HNGjrC+4eaWZmZmZWRdIU4JXAlcDEiFgIqWEnaeO82CTgisLL5udp1es6GDgYYOLEiQwMDKz0fhPXTCPtNqPWelpp6dKlbX+PZvRzPG60mZmZmZkVSFoH+DVweEQsllR30RrTYqUJEccDxwNMnTo1pk2bttKLvnvqORw7u7mq+dz9V15PKw0MDFAr1k7p53jcPdLMzMzMLJO0KqnBdmpE/CZPvl/SJnn+JsCiPH0+MLnw8s2ABWMVq/UPN9rMzMzMzAClU2onALdExDcLs84FDsiPDwDOKUzfV9LqkrYAtgSuGqt4rX+4e6SZmZmZWfJ64H3AbEnX52lHAbOAsyQdBNwD7A0QETdJOgu4mTTy5CER8fSYR209z402MzMzMzMgIi6n9nVqADvXec0xwDFtC8oMd480MzMzMzMrtWEbbZJOlLRI0o2FaeMlXSTp9vx/w8K8IyXNkXSbpF3bFbiZmZmZmVk/aORM20mkO7wX+a7wZmZmZmZmY2DYRltEXAY8XDXZd4U3MzMzMzMbAyMdiGRUd4WHxu4MP5K7jJftTvIjUba7vY+FftxmMzMzM7NGtHr0yIbuCg+N3Rl+JHcZP3Dm+U0t3+47yY9E2e72Phb6cZvNzMzMzBox0tEjfVd4M7MOkTRX0mxJ10u6Jk+rO0CUmZmZdbeRNtp8V3gzs87aKSK2i4ip+XnNAaLMzMys+zUy5P/pwN+ArSTNz3eCnwW8VdLtwFvzcyLiJqByV/g/4LvCm5mNlXoDRJmZmVmXG/aatojYr84s3xXezKwzArhQUgA/ztcI1xsgapBGBoFqdkCnRkxcc/B6OzXwUFkGPernOCTNBZYATwPLI2KqpPHAmcAUYC6wT0Q8MqaBmZmVWKsHIjErFUknAm8DFkXEy/K0upUDSUcCB5EqE4dFxAUdCNtsOK+PiAW5YXaRpFsbfWEjg0A1O6BTI2Zsu5xjZ6/4yenUIFBlGfTIcbBTRDxYeF7p3jtL0sz8/IhOBGZmVkYjvabNrFuchG8Obz0mIhbk/4uAs0n3w6w3QJRZN3D3XjOzIfhMm/W0iLhM0pSqydOBafnxycAA6YjuszeHB+6SVLk5/N/GJFizBkhaG3hORCzJj3cBvsiKAaJmMXiAKLOyaWv33uquuO0w2i6lZekeOxTHaFYubrRZP2r7zeGXLl3KjG2bG4On3T88ZfxxK1tMZYunjonA2ZIgleGnRcQfJF0NnJUHi7oH2LuDMZoNpa3de7976jmDuuK2w2i795ale+xQHKNZubjRZrZCy24OPzAwwLGXL2vqzdt9jU8Zf9zKFlPZ4qklIu4EXlFj+kPUGSDKrEyK3XslDeremw+klb5775Qmr/ucO2vPNkViZv3C17RZP/LN4c3MOkDS2pLWrTwmde+9kfr3fzUzM9xos/7km8ObmXXGROBySTeQytfzI+IP1Ln/q5mZJe4eaT0t3xx+GjBB0nzg86TKwErX/kTETZIqN4dfjm8Ob2bWUu7ea2Y2Mn3faHO/9N7mm8ObmZmZWbdz90gzMzMzM7MSc6PNzMzMzMysxPq+e6SZmY09d003MzNrnM+0mZmZmZmZlZjPtJmVRLNnHsBnH8zMzMz6gc+0mZmZmZkBkk6UtEjSjYVp4yVdJOn2/H/DwrwjJc2RdJukXTsTtfUDN9rMzMzMzJKTgN2qps0ELo6ILYGL83MkbQ3sC2yTX/MDSePGLlTrJ260mZmZmZkBEXEZ8HDV5OnAyfnxycBehelnRMSTEXEXMAfYfizitP7ja9rMzMzMzOqbGBELASJioaSN8/RJwBWF5ebnaSuRdDBwMMDEiRMZGBhY+U3WhBnbLm8qsFrraaWlS5e2/T2a0c/xuNFmZmZmZtY81ZgWtRaMiOOB4wGmTp0a06ZNW2mZ7556DsfObq5qPnf/ldfTSgMDA9SKtVP6OZ5RNdokzQWWAE8DyyNiqqTxwJnAFGAusE9EPDK6MM3MzMy6U/XowDO2Xc6BQ4wY7JGBS+d+SZvks2ybAIvy9PnA5MJymwELxjw66wutuKZtp4jYLiKm5uc1L9Y0MzMzM+tC5wIH5McHAOcUpu8raXVJWwBbAld1ID7rA+0YiKTexZpmZmZmZqUl6XTgb8BWkuZLOgiYBbxV0u3AW/NzIuIm4CzgZuAPwCER8XRnIrdeN9pr2gK4UFIAP879detdrDlIIxdkjuTivmYv4GzWWFxsWLaLLMdCP26zmZmZlUtE7Fdn1s51lj8GOKZ9EZklo220vT4iFuSG2UWSbm30hY1ckDmSi/uG6iPeCu2+4BPKd5HlWOjHbTYzMzMza8SoukdGxIL8fxFwNuneFPfnizSpuljTzMzMzMzMmjTiM22S1gaeExFL8uNdgC+y4mLNWQy+WNPMzGxEqkffa4RH4DMzs14xmu6RE4GzJVXWc1pE/EHS1cBZ+cLNe4C9Rx+mmZmZmZlZfxpxoy0i7gReUWP6Q9S5WNPMzMzMzMya044h/83MzMzMzKxF3GgzMzMzMzMrMTfazMzMzMzMSsyNNjMzMzMzsxIb7c2122r2vY+1/WbZZmZmZmZmZVbqRpuZmZlZvxnJfQmb5fsYmnUXN9qa5Bu8mpl1h1rl9Yxtl9ftweGy2szMysrXtJmZmZmZmZWYG21mZmZmZmYl5kabmZmZmZlZibnRZmZmZmZmVmJutJmZmZmZmZWYR48062LNjGY6Y9vlTGtfKGZmZmbWJm60mZmZmZl1oWZvReVbm3QvN9rMzMxw5cfMzMrL17SZmZmZmZmVmM+0mfURn0kwMzMz6z5utJmZmZmZ9YFmD96etNvabYrEmuXukWZmZmZmZiXWtjNtknYDvg2MA34aEbPa9V5l56Ma3cW5u4K7U3Yf5+/Y8f7RWs5d62bOX2u3tjTaJI0Dvg+8FZgPXC3p3Ii4uR3v12tm3/sYBzZZGWiGKw71OXetmzl/rVs5d8fecAcdZmy7vK11kVYoy0HuXs7fkdRJXc9sj3adadsemBMRdwJIOgOYDnR98lpjuvjsonN3FJr93st4w+9mtwFK9QPl/C2xYm6VpULsstesJZy/1nbtarRNAuYVns8HXltcQNLBwMH56VJJt9VYzwTgwbZEWGKHtXm79bV2rXnkdvpa3W3efIxDGTZ3oaH8LV3utjuvRuIwmHDYe0sV04g+oyH2qdLlb4Nlb8uVJf8cx2A9WPZCST7boZTl+x9KN8TYTfnbrbk7kjxocz2zbJ9Rq+Opm7vtarSpxrQY9CTieOD4IVciXRMRU1sZWDfox+0u0TYPm7swfP6WaHue5ZiGV7Z4RqAlZW87lOWzdRzljIMWlb1Qqm2qyzG2Roli7Nl6b9li6ud42jV65HxgcuH5ZsCCNr2XWSs5d62bOX+tWzl3rZs5f63t2tVouxrYUtIWklYD9gXObdN7mbWSc9e6mfPXupVz17qZ89fari3dIyNiuaRDgQtIQ5+eGBE3jWBVY96FpyT6cbtLsc09nruOaXhli6cpLczfdijLZ+s4BitFHC3O3VJs0zAcY2uUIkbXHcZU38ajiJW6jJuZmZmZmVlJtKt7pJmZmZmZmbWAG21mZmZmZmYlVtpGm6TdJN0maY6kmZ2Opx0kTZZ0iaRbJN0k6RN5+nhJF0m6Pf/fsNOxtpqkcZL+Lum8/LwntrlTeSvpREmLJN1YmFb3M5V0ZI7xNkm7timmpvO73XFJWkPSVZJuyDF9odMx9ZJ633nVMtMkPSbp+vz3uTbFMlfS7Pwe19SYL0nfyd/tPyS9qg0xbFXYzuslLZZ0eNUybfk8mi0Tql7blb+/ZY+7kf2jLKp/o8tG0gaSfiXp1vx57tDpmEZrrPJ3iN/moyXdWyiL9ii8pubvoKRX53J2Ti5Pa936oJGYViqvR/K73Ip46pXbnfx8nhURpfsjXcR5B/ACYDXgBmDrTsfVhu3cBHhVfrwu8E9ga+DrwMw8fSbwtU7H2oZt/2/gNOC8/Lzrt7mTeQu8EXgVcGNhWs3PNOfYDcDqwBY55nFtiKmp/B6LuEj30lknP14VuBJ4Xac/q175q/edVy0zrbLftzmWucCEIebvAfw+58TrgCvbHM844D5g87H4PJopE2rE2XW/v90QdyP7R1n+qPqNLtsfcDLwofx4NWCDTsc0yu0Zs/wd4rf5aOCTNZav+zsIXAXskMvR3wO7jzCmlcrrkfwutyqequ/lPtINrzv2+VT+ynqmbXtgTkTcGRH/Bs4Apnc4ppaLiIURcV1+vAS4BZhE2taT82InA3t1JMA2kbQZsCfw08LkXtjmjuVtRFwGPFw1ud5nOh04IyKejIi7gDmk2FsdU7P53fa4Ilman66a/6KTMfWSIb7zMpoO/DznxBXABpI2aeP77QzcERF3t/E9ntVkmVDUrb+/pY+7W/aPOr/RpSFpPdJBiRMAIuLfEfFoR4MavTHL3xHkYc3fwVxerhcRf4vUQvk5ra27NfW73KZ4Gim3xyyesjbaJgHzCs/nU8KCrZUkTQFeSTryPzEiFkLauYCNOxhaOxwHfBp4pjCtF7a5bHlb7zMd8zgbzO8xiSt3+7keWARcFBEdj6kXVX3n1XZQ6qL6e0nbtCmEAC6UdK2kg2vMH+vvdl/g9DrzxuLzgMbK2W7N+a6Ke5j9o9OOY+Xf6DJ5AfAA8LPchfOnktbudFCj1JH8rZGHhyp1Fz+x0B2xXmyT8uPq6SNRq7xu9ne5lfFUVJfbnfp8gPI22mr1+ezZexNIWgf4NXB4RCzudDztJOltwKKIuLbTsbRBt+TtmMbZRH6PSVwR8XREbAdsRjoa9rJOx9RrhvnOryN1EXwF8F3gt20K4/UR8Spgd+AQSW+sDrPGa9ry3SrdbPftwC9rzB6rz6NR3ZrzXRN3mX/zu+Q3ehVS198fRsQrgWWk7nPdbMzzt0Ye/hB4IbAdsBA4dpjYWhnzcOX1oNDHIJ5a5XYnPx+gvI22+cDkwvPNgAUdiqWtJK1K2mlOjYjf5Mn3V7rp5P+LOhVfG7weeLukuaTT/2+W9At6Y5vLlrf1PtMxi7PJ/B7Tzy93pxkAditLTL2gznf+rIhYXOmiGhG/A1aVNKHVcUTEgvx/EXA2K3drHcvvdnfguoi4v0acY/J5ZI2Us92a810R93D7RwnU+40uk/nA/NxLAuBXpEZcNxvT/K2VhxFxfz6o+QzwE1aUmfVim58fjzrmOuV1s7/LLYsnG1Rud/LzqShro+1qYEtJW+SW7r7AuR2OqeXyKDInALdExDcLs84FDsiPDwDOGevY2iUijoyIzSJiCul7/VNEvJfe2Oay5W29z/RcYF9Jq0vaAtiSdLFsS40gv9sel6SNJG2QH68JvAW4tZMx9ZIhvvPiMs+rjKAlaXvS79BDLY5jbUnrVh4DuwA3Vi12LvB+Ja8DHqt0xWmD/ajTNXIsPo+CRsrZspVjjSp93I3sH502xG90aUTEfcA8SVvlSTsDN3cwpFYYs/ytl4dV1/S+gxVlZs3fwVxeLpH0urzO9zOCutsQ5XVTv8utiqdgULndqc9nkCjBqDm1/kgje/2TNArLZzodT5u2cUfSqdJ/ANfnvz2A5wIXA7fn/+M7HWubtn8aK0aP7Ilt7lTe5oJlIfAU6ejOQUN9psBncoy3McrRjIaIqen8bndcwMuBv+eYbgQ+N1z+jcVn1St/Q3znHwU+mpc5FLiJNNrWFcB/tCGOF+T135Df6zN5ejEOAd/P3+1sYGqbPpO1SI2w9QvT2v55NFMmAJsCvyu8tit/f8sed739o9NxDRHvNMo7euR2wDX5s/wtsGGnY2rBNo1J/g5RTp+Sy8J/kBoimxReU/N3EJhK+i29A/geoBHEU6+8bvp3uRXx5PXUKrc78vkU/5RXamZmZmZmZiVU1u6RZmZmZmZmhhttZmZmZmZmpeZGm5mZmZmZWYm50WZmZmZmZlZibrSZmZmZmZmVmBttZmZmZmZmJeZGm5mZmZmZWYm50dYlJIWkF9WZt1TSC8Y6JmsdSSdJ+nKn4zAzMxsJSe+QNC/XSV45zLIHSrq88LxuHcfGRjP1kLLUWZqMeVDOdaOea7RJ2lHSXyU9JulhSX+R9JoOxjOQC6NXVE3/bZ4+bbTvERHrRMSdo12P9S5JG0j6oaT7JP1L0mxJHxij954maX6L1zkg6UP5sSRdJulzVcscIOkOSWu18r2tt0naWtK5+TdkiaRLJP1Hp+MyG4qk1SQdK2l+bjTdJelbYxzGN4BDc53k72P83jaE/Jv5iKTV27DuQb/xkjbJ9duJhWmfqTPtD62Op5f1VKNN0nrAecB3gfHAJOALwJOdjAv4J/D+yhNJzwVeBzzQsYisb0haDfgjsDmwA7A+8ClglqT/7mRsrRARARwE/LekbQAkbUSqQHwoIv7ViveRtEor1mOdM9x3KOmFwF+A2cAWwKbA2cCFknZof4TWq8ag/DgSmApsD6wL7ASMdcNpc+CmMX5PG4akKcAbgADe3u73i4iFwBzgjYXJbwRurTHtsnbH00t6qtEGvBggIk6PiKcj4vGIuDAi/gErTo1K+kY+4nCXpN0rL5a0aT7C+rCkOZI+nKevIelxSRPy889KWp4biUj6sqTjhojrVOA9ksbl5/uRKgL/Lrz39pL+JulRSQslfS9XtleSzybOk7RTfv5st4J8qvj7ks7PR4mvzBWRymt3kXRbPor8A0mXVs5Y1CPphZL+JOkhSQ9KOlXSBoX5kyX9RtIDeZnvDbU+A0mvlHRd/o7OBNbI0zeUdF7+LB/JjzfL8/aWdG3VemZI+m1+vIekm/M675X0ybzY+4DnA3tHxF0R8VRE/AE4DPhiIY/nSjoyr+MRST+TtEbhvd4m6fqco3+V9PLCvLmSPinpHzm3ziy+dojPYU9Jf5e0OOf00YV5a0j6Rc6pRyVdLWmipGNIP0DfUzqi/L2IuB04BjhB0nOA7wC/johLhol7ptLZuCV5u99RmHeg0pn6b0l6GHg2Nms9SZ+S9Ouqad+VdJyk9SWdkMvGe3OZOy4vM1z5NFfSEZL+ASyTtEp+fm/+3m+TtHNe/GjgbxHxmYh4OCKWRMR3gFOAr+X1Tcll7sGSFuSYZhTe7zmFvHpI0lmSxle99gBJ9+R4P9PGj9UaVKsskLR6LjdeVlhuI6X6wMb5+XDlYnXuDVXmjFM6W/agUv3k0Jwvq+T5dfcD4DXA2RGxIJK5EfHzqljqltGSPqxU73lYqR60aZ7+BUnfzY9XlbRM0tfz8zUlPZHL5aXAOOAGSXfU+0xb/LVZY94PXAGcBBxQmag69ZA8b6WuhKrRhVXS2sDvgU2Vfo+X5ty5jNxAyzn6SuDbVdN2yMsh6YOSblGqe1wgafPCe7xE0kU5N2+TtE+tjZS0rlLPiO8oeW7O5cWSrgJeWLX8t5XqHYslXSvpDXn685R6JD23sOyrleplqzbwebdPRPTMH7Ae8BBwMrA7sGHV/AOBp4APkwqXjwELAOX5lwI/ICXudqQzYTvneZcB78qPLwTuAHYvzHtHnZgGgA/l11SWv4qUrPOBaXnaq0ln31YBpgC3AIcX1hPAi4BdgXnA9tXz8uOTgIdJR9tWITUYz8jzJgCLgXfmeZ/In8eHhvlcXwS8FVgd2Chv73F53jjgBuBbwNr5s9ux07lQ5j9gNeBu4P8CqwLvzt/Dl4HnAu8C1iIdLf0l8Nv8utXzd/vSwrr+XsjLhcAb8uMNgVflx2cAJ9eIYxVgObBrfj4XuBGYTDpT/Rfgy3neq4BFwGvzd35AXn71wmuvIp2ZGJ/z96N53jRgfp3PYhqwLekA0suB+4G98ryPAP+bP4txeR9Zr7hfVa1rHHAl8Bvgnvz5DRf33jnm5wDvAZYBmxTKi+XA/8mf1Zqdzp1e/gM2yZ//BoX8XJS/998CP85lzMY51z6Sl6tbPhVy8/qc12sCW5HK0E3z/CnAC/Pj+4AP1IhtJ+DpnItTSGXu6TmebUm/FW/Jyx5OqiBtlmP6MXB64b0C+EmO5RWkniAvbfXn6b+m869mWQCcCBxTWO4Q4A/5cSPl4rO5N9T75HkfBW7OubMhqYdEAKvk+UPtB58llXsfzzmpqu2bS/0y+s3Ag3l7Vif1VrqsMG92fvwfpLrPlYV5NxTe49m6SAPbeiBweb3X+q+luT0n58WrSXWNiQxRD6n1/VR/R6S6ZmXZaVT9xud94Yb8eCqpXN6yatrjOY69cowvJZX7nwX+mpdbm1RefyDPe1XO1W2KcZDqTldVYsrzzgDOyut4GXBvVc69N79uFWAGqfxfI8/7HfCxwrLfAr7b8e+y0wG0ITlfmr/E+aQK17nAxEISziksu1ZOwueRCtWngXUL878KnJQff4l09H6V/MV+AphFaqQ8DkyoE88AqdH2XtKP/FbAP/O8ZxttNV53OOmoWXFnOTLvZNsOsyP9tDBvD+DW/Pj9pKPIlXnKO8OQjbYase0F/D0/3oFUYVml0999t/yRjjQ9e7AgT/trsbApTN8OeKTw/IfkCgSwDfAIKyoI95AaOutVreOPwKw6sdwH7J8fzyX/iBdy547C+36p6rW3AW8qvPa9hXlfB36UH0+jTqOtRjzHAd/Kjz+YP5eX11huoFbe5s8kgOmNxF3j9dcXXnsgcE+n86Wf/khHbD+cH7+NVIGdSGrYrFlYbj/gkjrreLZ8ys/nAh8sPH8RqaL9FmDVqtcuB3arsc6X5LyaxIqG10sK878OnJAf30I+2Jefb0KqDK1SeO1mhflXAft2+rP330rf+fXA9Jwndxam/wV4f37cSLn4wUbeJz/+E7kRlp+/JefLKsPtB6RG4yE5vidJvzEHFJadS/0y+gTg64V56+ScnUI6uPAEqXI7EziKVHdZh3T5yXcKrxuy4cXK5asbbe3P4x3zdzkhP7+V1FAbsh5S/f1Uf0cM32ibQqpTb5jfr1JvubcwrZK7vwcOKrz2OcC/SN1t3wP8uWrdPwY+X4jjRNIB508VlhmXt7tYTn+lepuq1vsI8Ir8+D3AXwrruo/CyZJO/fVa90gi4paIODAiNiO1rDclVQQr7issW7nWZZ283MMRsaSw7N2kH2lIZ+GmkVr5s4GLgDeRzo7NiYgHhwntN6SjUv+H1NVmEEkvVuoKd5+kxaTkmlC12OHAWRExe5j3uq/w+F95+yBt47zKjEjZOOwAEZI2lnRG7o6xGPhFIbbJwN0RsXy49dizNgXuzZ9/xd0AktaS9GNJd+fP+jJgg0IXmJOB/5IkUrfHsyKics3mu0gNrbuVur1WrsF5kFRxHCR3uZmQ51fMKzy+O8cKqfCckbsAPSrpUdJ3v2lh+Xp5V5ek1+buDA9Ieox0pLmSW6cAFwBnKHVD+/pwXRMionI9ReX/kHFLer9WdG16lFRmFPe74udh7Xcy6QAX+f8ppO9wVWBh4Xv6MelMw3DlU0Wx3JtDKkuPBhbl11byuOa+kqc9Q/pRX2mdrLyvnF2I9RZS5WViYfmm9xVrryHKgj8Ba+ayanPSgbSz88saKRcHlSHDlDmbVi1ffDzkfhDpkpDvR8TrgQ1I3cVPlPTSwjqGqhvcXZkREUtJvZYmRcTjwDWk+s4bSXWhvwKvz9MupY4GyldrvwOACwt11NPytLr1kFaIiLmk+uWOpLz5c571t8K0yvVsmwPfLuTJw6STCpPyvNdW7WP7k062VOxJOrjwo8K0jUgHO6rL6WcpXV5yi1J34UdJ1/tX8vMcYGulkdnfCjwWEVc1/0m0Vs812ooi4lZSK/xlwywK6YjDeEnrFqY9n3RUAFIhtRXwDuDSiLg5z9+TIQqtQiz/Ih1N+Bg1Gm2kI3a3AltGxHqko1mqWmZvYC9JhzewPbUsJHW7ANKoe8XnQ/gq6QjLy3Ns7y3ENg94vjxIQzMWApPy51/x/Px/BinPXps/68pFuwKIiCtI10K+AfgvCrkUEVdHxHTSj/hvSd0CIJ1p2z33PS96F+mI7BWFaZOrYlqQH88jHSnboPC3VkSc3tSWr+w00tnwyRGxPqnQrWzrUxHxhYjYmtQt522sGNAnaq2shrpx5wrYT4BDgedGxAako3XF76XR97HW+C3wcqVriN5G6t49j5SnEwrf4XoRsU1+zVDlU8Wg7zEiTouIHUkVgiBfr0baV/auEdc+pF4KxUFthtpXdq/KuTUi4l6slIYqCyLiGVJZuh+pzD2vcHC3kXIxGnmfvMig32gG59hw+8GKN0zX83+fdJBh6wY+ggWkfaES59qkM2uVnL2UdND5lcDV+fmupMswag4k0WD5am0kaU1S2fWmfELgPtIZrlcwdD0EUlfWtQrrKjaSqtX7nfwzqQ6zA6kOXZy2IytyZx7pDHNxP1ozIv6a511aNW+diPhY4X1+AvwB+F2hnvMAqedEdTld2Z43AEeQPp8Nc34+xor6xxOk/X5/0gHyWvX2MddTjTalixVnaMXADZNJBe0VQ78SImIeKam+qjQAwstJI9Kdmuf/C7iW1P2g0kj7K6k72rCNtuwoUreJuTXmrUu63myppJeQGnfVFgA7A4dJ+niD71l0PrCtpL1yI+sQBh+tqGddYCnwqKRJpJEHK64i7fyzJK2dP7vXjyC2fvI3UmFymNKF6e8k/fhB+qwfJ33W44HP13j9z4HvAcsj4nJ4drjn/SWtHxFPkXLp6bz8KaQjXr9UGghhVUm7krr7Hh0RjxXWfYikzfJ7HwWcmaf/BPhoPtqs/F3vWXWQY0g5N4p/ytv7cEQ8IWl7UqWosvxOkrZVOsu4mNTVobJN9wON3JtwqLjXJv3YPJDf7wM0doDH2iT/UP6K1Ji/KiLuiTQS2YXAsZLWUxro44WS3pRfNlT5tBJJW0l6s9LQ10+Q9rdKXn0B+A9Jx0gar3Rh+/8hHSw4ompV/6N0Znwb0vUWlX3lR8AxudJaGbhi+og/FBsLw5UFp5G6S+2fH1c0Wy4O9z5nAZ+QNElpMJ1nc264/UDS4UpDr6+Zf1cOIO0bf29g+08DPiBpu7xffIV03drcPP9S0j5wc0T8mxWXfdwVEfVGwXb52nl7kcq2rUlniLcjXUL05zyvXj0E0lgF2+ScWIOhB+K6H3iupPWrpl9GypsFEbE4T7s8T1ufVBeCVGYeqRWjP68vqXLw7DzgxZLel+suq0p6jQafQYZ0cOA24DxJa0bE06QebkfncnprCoOwkPaN5eTLe5RuGbRe1Tp/Tuom+nZSD46O66lGG7CEdEHwlZKWkRprN5LOXjRiP1I/3AWk7g+fj4iLCvMvJXVPuKrwfF0aHLI00qhO9W7s90lShXUJ6YfgzFoLRcQ9pIbbERpm1Mcar32QdBT566SuD1uTuj0Md0uEL5C6hT5Gavj9prDOp4H/JF0ncg+pcfCeZuLqN/lH752kwuAR0udV+UyPI53mf5CUv7XuYXIK6cev+sjP+4C5Sl3EPkruZpa7T76FdMTqSlID6JvAZyLi/1Wt4zRSxeDO/PflvI5rSAP4fC/HPCfH36hJpMpx8e+FpIujvyhpCfA5VpwdhHRA4Vc53ltI+1ul4Pw28G6lkaa+U+9Nh4o7ny0/lvTDcT/p4v2/NLFN1h4nk76LYn6/n3TB+s2k7/FXrOjGWLd8qmN10vXID5K6i21MOkBBpFFIdyQdiZ5LOiD1LtJgPdW5cSkpny4GvhERF+bp3yadPb4w5/UVpN8lK6nhyoKIuJJ05mFTUo+ZyvSmysUGypyfkMrff5AaW78jVSwrBxWG2g8ez+u+j5Tbh5AGqRr2Hq4RcTHwP8CvSTn/QmDfwiJ/Jf0uVeo6N5MOeNSt+7h8LYUDgJ/lg1/3Vf5I+bof9eshRMQ/gS+Seh/cTmps1ZR7tZ0O3KnUhbHSPfhSUvlafO31pFy6ttJzISLOJvV2OCPXX24kDSZIPqu9CykfF5Dy+2ukcrwYQwAHk+o55+SG5qGkLsD3kXrd/azwkgtI+/I/Sd0mn6CqK3Mu858BrqtzsmXMVUZNtD6kNDT6fNJAFJd0Oh5rjFKXh0Wk0SFvb+F655IG9/hjq9Zp1ixJzyd1FX9e4ehsaSjd8+gu0iAmvpbX2kbplkQ/iojNh13YzFpO0p+A0yLip52OBXrvTJsNQ9KukjbIXSAq180N233USuVjwNWtbLCZlUE+kPTfpNuUlK7BZtZOuWvjHrm72iRS9/izh3udmbWepNeQenHU7PnWCcM22iSdKGmRpBsL08Yr3eju9vx/w8K8I5Vu0Hib0nUzVi47kO6z8iCpW+NeEfG4pB9pxY0Ri38/Gnp15dZr+ZvPhn2Cxrv8mnUFpQvIF5NG6qp1LadZrxOpu+8jpO6Rt5C6jZvZGJJ0Mqlr6OExeFT5jhq2e6SkN5Iu8v55RLwsT/s6afCAWZJmkkZeOSJf6Hc66WLGTUkb/OJ83ZPZmHP+mpmZmVm3G/ZMW0RcRrpnQtF00sXi5P97FaafERFPRsRdpItyt8esQ5y/1q167SyxmZmZjdxI7601MQ8/S0QslLRxnj6JwddHzWfFzakHkXQwaaQX1lxzzVdPnjx5pWWeeeYZnvOcclx251jqa2c8//znPx+MiI1avNq25m/Zvp/R6qXtGettGWX+nkQa5evnhWkzgYsLZ4lnkkaS3Zo0utY25LPEkoY9SzxhwoSYMmXKCMPrXsuWLWPttatvW9j7mtnua6+9th1lb0sV87eM32kZY4L+iKvs+VuGsreMeeCYhsndiBj2jzQM/o2F549WzX8k//8+8N7C9BNIQ84Ouf5Xv/rVUcsll1xSc3onOJb62hkPcE00kKND/Y11/pbt+xmtXtqesd6W0eZvjdy9DdgkP94EuC0/PhI4srDcBcAOw62/Xtnb63opp5vRzHa3ouxt918xf8v4nZYxpoj+iKvs+VuGsreMeeCYhs7dkZ5pu1/SJpHOUmxCGn4c0pmJ4imzzUj3VTArE+evdauWniWeOHEiAwMD7Yu2pJYuXertNjOzrjLSRtu5pJv2zcr/zylMP03SN0lddLZkxY2omzb73sc4cOb5Tb1m7qw9R/p21j/GJH97wZSZ5zNj2+UN74fe/zpGNabVHGUqIo4HjgeYOnVqTJs2rY1hldPAwAC1tntKj//e1NvuXtPr36NZkfO9fwzbaJN0OjANmCBpPmko5lnAWZIOAu4B9gaIiJsknQXcDCwHDgmPvGcd5Py1HuOzxGZmZn1o2EZbROxXZ9bOdZY/BjhmNEGZtYrz13qMzxKbmZn1oZF2jzQzszbyWWIzMzOrcKPNzKyEfJbYzMxarXINXKPXq/sauPLojZsvmZmZmZmZ9Sg32szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSW6XTAZiZmZmZlZ2kucAS4GlgeURMlTQeOBOYAswF9omIRzoVo/Uun2kzMzMzM2vMThGxXURMzc9nAhdHxJbAxfm5Wcu50WZmZmZmNjLTgZPz45OBvToXivUyd480MzMzMxteABdKCuDHEXE8MDEiFgJExEJJG9d6oaSDgYMBJk6cyMDAQEsCmrHt8hG9buKajb22VXE2YunSpWP6fo0oU0w912ibMvP8ppafO2vPNkViZmZmZddsvQFcd+hjr4+IBblhdpGkWxt9YW7gHQ8wderUmDZtWksCOnAE+QupwXbs7AaaAbOXNb3uke4fAwMDtOpzaZUyxeTukWZmZjZmJM2VNFvS9ZKuydPGS7pI0u35/4adjtOsWkQsyP8XAWcD2wP3S9oEIP9f1LkIrZe50WZmZmZjzYM5WFeRtLakdSuPgV2AG4FzgQPyYgcA53QmQut1Pdc90szMzLrOdGBafnwyMAAc0algzGqYCJwtCVL9+bSI+IOkq4GzJB0E3APs3cEYrYe50WZmZmZjqeWDORQHCxjpwAzNaGRggjINYFDkuEYmIu4EXlFj+kPAzmMfkfWbUTXafJNB62bOXzOzjmj5YA7FwQJGOjBDM+buP23YZco0gEGR4zLrTq24ps390q2bOX+t63ggB+tmHszBzKx57RiIxDcZtG7m/LVu4QMO1nU8mIOZ2ciM9pq2tt5ksNEb/41Go/2ny9TXukyxQPniaUJb8reLP4+VzNh2eVP7Ydm3u5e+mxo8kIN1Aw/mYGY2AqNttLX1JoPfPfWcxm78NwqN9EuHcvW1LlMsUL54mtCW/O3iz2MlB848v/EbcNL4/tQpPfTdtPWAWa+r13hv9iBht312ZTho4cEczMxGZlQtomK/dEmD+qXnSoP7pVtpOX+ti7X1gFmvq9d4b3YAi7IfpKjWQwctzMz6zogbbbkv+nMiYkmhX/oXWdEvfRbul24l5fy1buYDDo2ZUqcRNmPb5WMywqCZmVmrjOZMm/ulWzdz/lpX8gEHMzOz/jPiRpv7pVs3c/62R70zG0OZO2vPNkTS03zAoUt5/+gdjXyXxTO6/h7NbLTaO8qHmZXKSCqNVi4+4GBmZtZ/2nGfNjMzMzMzM2sRN9rMzMzMzMxKrO+7RzbaXazSN9390s3MzMzMbCz1faPNzMzMzKzTfN25DcWNNjMzsxFwBcvMzMaKr2kzMzMzMzMrMTfazMzMzMzMSszdI83MzMxKpNmutx4kzaz3udFmZmZm1ka+/tHMRsuNNjMzMzMzawmfKW4PX9NmZmZmZmZWYj7T1qSRdHHwEQQzMzMzMxspN9rMzKz0fE2QmZn1M3ePNDMzMzMzKzGfaTOzjvIFy2ZmZmZDc6PNzMzMrIs1c/BrxrbLOXDm+T4AZtZl3D3SzMzMzMysxNxoMzMzMzMzKzF3jzTrYh5Rz8zMzKz3+UybmZmZmZlZibnRZmZmZmZmVmJutJmZmZmZmZWYr2kzM7NR8/32zMzM2sdn2szMzMzMzErMjTYzMzMzM7MSc/dIMzMbc75dhVl3cRdoa5dKbs3YdjkHNpBn/ZpbbrSZmZmZ9RkfOLFu1a8HENxoGwOtLhirj0T0SjL2O/+ANqZfC2szMzPrX21rtEnaDfg2MA74aUTMatd7WXPa3YgciTJVrJ271s1akb8+gGCd4LLXupnz19qtLY02SeOA7wNvBeYDV0s6NyJubsf7mbWKc9e6mfPXupVz17qZ87fcRnMgshUnJmoZycmKdp1p2x6YExF3Akg6A5gOOHmt7FqWuz5b0Z1G8r2V6Eyxy94e08pypFblw7lr7dJs7o6kcuz8tX7SrkbbJGBe4fl84LXFBSQdDBycny6VdFuN9UwAHmxLhE06rMSx6GsdDIbWfDZDbMPmo1nvCAybuzBs/pYmV1qhTLk/ElW51ZZt6ab8bbDs7WndntMjVWu7uyl3Ycj8Ld13WtY866W4uil/y1b2ljEP+immkeRuuxptqjEtBj2JOB44fsiVSNdExNRWBjZSjqW+ssUzSsPmLgydvz32efTU9vTSttTRkrK31/VBHtRU8u0eVdlbxm0rY0zguNqk68reMn7ejmlo7bq59nxgcuH5ZsCCNr2XWSs5d62bOX+tWzl3rZs5f63t2tVouxrYUtIWklYD9gXObdN7mbWSc9e6mfPXupVz17qZ89fari3dIyNiuaRDgQtIQ5+eGBE3jWBVpTmNjGMZStniGbEW5W7PfB5ZL21PL23LSlpY9va6ns6DIZR2u1uQu2XctjLGBI6r5bq07C3j5+2YhqCIlbqMm5mZmZmZWUm0q3ukmZmZmZmZtYAbbWZmZmZmZiVW2kabpN0k3SZpjqSZbX6vyZIukXSLpJskfSJPHy/pIkm35/8bFl5zZI7tNkm7tiGmcZL+Lum8EsSygaRfSbo1f0Y7dDKeMhvLvG0FSSdKWiTpxsK0rvxuy7gfW+dJmitptqTrJV2Tp9XNiW7WS/tzozpV5pa9vClTHaLwPq5LdEhZysEyllF1Yjpa0r3587pe0h5jGVNdEVG6P9JFnHcALwBWA24Atm7j+20CvCo/Xhf4J7A18HVgZp4+E/hafrx1jml1YIsc67gWx/TfwGnAefl5J2M5GfhQfrwasEEn4ynr31jnbYtifiPwKuDGwrSu/G7LuB/7r/N/wFxgQtW0mjnR7X+9tD83uL0dK3PLXt5QojpEISbXJTr0V5ZysIxlVJ2YjgY+WWPZjuZlWc+0bQ/MiYg7I+LfwBnA9Ha9WUQsjIjr8uMlwC2ku9tPJxUy5P975cfTgTMi4smIuAuYk2NuCUmbAXsCPy1M7lQs65ES+gSAiPh3RDzaqXhKbkzzthUi4jLg4arJXfndlm0/tlKrlxNdrZf25wZ1rMwtc3lTpjpEISbXJcpnzMvBMpZRdWKqp6N5WdZG2yRgXuH5/Dyt7SRNAV4JXAlMjIiFkApoYOMxiu844NPAM4VpnYrlBcADwM9yV4ufSlq7g/GUWa9se9d/tyXZj60cArhQ0rWSDs7T6uVEL+rl/C/FNpSwvDmO8tQhKlyX6Kwyl4NlzYFDJf0jd5+sdNnsaExlbbSpxrS235tA0jrAr4HDI2LxUIvWmNaS+CS9DVgUEdc2+pJ2xZKtQjpt/MOIeCWwjHT6ulPxlFmvb3tXbF8Z9mMrlddHxKuA3YFDJL2x0wGVRC/kf8e3oWzlTQnrEBWuS3RWN5aDncyBHwIvBLYDFgLHliCm0jba5gOTC883Axa08w0lrUoqeE+NiN/kyfdL2iTP3wRYNAbxvR54u6S5pK4eb5b0iw7FUln//Ii4Mj//Fang7VQ8ZdYr2961322J9mMriYhYkP8vAs4mdWWplxO9qJfzv6PbUNLypmx1iArXJTqo5OVg6XIgIu6PiKcj4hngJ6zoAtnRvCxro+1qYEtJW0haDdgXOLddbyZJpH7Wt0TENwuzzgUOyI8PAM4pTN9X0uqStgC2BK5qRSwRcWREbBYRU0jb/aeIeG8nYsnx3AfMk7RVnrQzcHOn4im5Mc3bNurK77ZM+7GVg6S1Ja1beQzsAtxI/ZzoRb2c/x0rc8ta3pStDlGIy3WJDumCcrB0OVBpRGbvIH1eHY0JKOfokZFGaNmDNBrTHcBn2vxeO5JOb/4DuD7/7QE8F7gYuD3/H194zWdybLcBu7cprmmsGPmpY7GQTg9fkz+f3wIbdvqzKevfWOZti+I9nXTq/ynSEaSDuvW7Let+7L+O5sQLSCN93QDcVNknh8qJbv7rpf25iW3uSJnbDeVNWeoQhfdxXaIDf2UqB8tYRtWJ6RRgds7Vc4FNypCXygGYmZmZmZlZCZW1e6SZmZmZmZnhRpuZmZmZmVmpudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm601SHpJElfbvWy7TRWcUgakPShdr+PrUzSGyTdVoI4SpHz1v0kLZX0ggaXDUkvatH7TsnrW6XGvOfnuMbl57+XdEAr3tfMzGwk+rLRlhsdj0havQ3rniZpfuH5JrliMLEw7TN1pv2h1fFYb4mIP0fEVqNdT4srv9MkPZMruUslzZd0lqTXtGL9w7y3JH1K0u2SHpd0j6RZ7di3bWQkzZV0v6S1C9M+JGkAICLWiYg7W/A+B0q6vGraZpJ+LelBSY9Jmi3pwOHWFRH35Liezs93j4iTRxujmZnZSPVdo03SFOANQABvb/f7RcRCYA7wxsLkNwK31ph2WbvjsXKrddS/SyyIiHWAdYHXkfL7z5J2bvP7fgc4GHh/fu/dgTcDZ7X5fa05qwCf6MD7ngLMAzYHnkvKk/s7EIeZmdmo9F2jjfSjfQVwEvBsdxdJr5R0naQlks4E1ijMq3UEd6UzFflI8u+BTQtnHTYlNcbemJcZB7wS+HbVtB3yckj6oKRb8tnACyRtXniPl0i6SNLDkm6TtE+tjZS0rqRLJH0nn42o+7rc1e37ks7P23+lpBcW5r9V0q35SPX3ADX8aRvw7NmGIyXdnL/Xn0lao3JmVtIRku4DfiZpdUnHSVqQ/46rnDmqcSZ303wm4QFJd0k6rDBvnKSjJN2Rv9drJU2WVDk4cEPO0ffk5d8m6XpJj0r6q6SXF9ZVd/8oimR+RHwO+CnwtcI6vi1pnqTFOZY35OnPk/QvSc8tLPvqvE2rSnqRpEtz/j2Y3x9JWwIfB/aPiL9FxPKIuAl4F7CbpDfn5U6S9KOc/0vyuhrap4bbN6xh/w/4pKQNqmcUy1JJz5X0vzlHrpb0ZVWVvcBblM6sPpK/G0l6KfAjYIec04/mZV8DnBQRy3J+/D0ifl8rQEnvyvvpy1TVdVKFLuHKvweSvpFjuEvS7oX1bCHpspwvf8wx/mK4D0jSLyXdl/P8MknbFOatKelYSXfn+ZdLWnO4dZqZWe/o10bbqflvV0kTJa0G/JZ0VHY88EtSxa8pEbGMdKR/Qe5as05ELKDQaCM12G4FLq6atipwlaS9gKOAdwIbAX8GTodnG4UXAacBGwP7AT8o/rjn5Z6b1/+XiDgMWKuB1+0HfAHYkHRm8Ji8rgnAr4HPAhOAO4DXN/vZGAD7A7sCLwReTPpMAZ5HyrvNSWeNPkM6W7Ud8Apg+8Kyz5L0HOB/gRuAScDOwOGSds2L/Dfpe90DWA/4IPCviKjk3Styjp4p6VXAicBHSGckfgycq9SAHOn+8RvgVVrRLe7qvE3jSbn4S0lrRMR9wABQPADxXuCMiHgK+BJwISk3NwO+m5fZGZgfEVcV3zQi5pEOzLy1MHn/vJ4JwPWk/b/RfarmvmFNuYb0HX9ymOW+Dywj7RMHUDiwVvA2UmPsFaSc2TUibgE+Cvwt5/QGedkrgO9L2lfS8+u9qaQPkA4wvCUibmxge14L3EbKp68DJ0iqHMw6DbiKtB8dDbyvgfVBOuC3JSkPryPnaPYN4NXAf5D2n08DzzS4XjMz6wF91WiTtCOpYnxWRFxLaoD8F6mCvCpwXEQ8FRG/IlUwW+VS4GWSNiR1zfxzRNwOTChMuyIi/k2qNH81Im6JiOXAV4Dt8pmBtwFzI+Jn+ajxdaQG1bsL77Vpfr9fRkSlot/I634TEVfl9zyVVLmGVOG/OSJ+lSvQxwH3tfCz6Sffi4h5EfEwqeK/X57+DPD5iHgyIh4nNTC+GBGLIuIBUoOhVsXvNcBGEfHFiPh3vi7oJ8C+ef6HgM9GxG35DNgNEfFQndg+DPw4Iq6MiKfz9TtPkvaNke4fC0hnZTcAiIhfRMRDOQePBVYHKtfnnUxqqFXOPO9HaiQCPEXabzeNiCcionLmZQKwsM57L8zzK86PiMsi4klSo3gHSZMZ3b5hzfkc8H8kbVRrZv7e30XaF/4VETeT8qLarIh4NCLuAS5h6O9jb9KBr/8B7lI6k1x9reXhwKeAaRExp8FtuTsifpKveTsZ2ASYmBuGrwE+l/fJy4FzG1lhRJwYEUtyjh4NvELS+vngzAeBT0TEvXn//GtezszM+kRfNdpIR20vjIgH8/PT8rRNgXsjIgrL3t2qN42IucB8YEfS2bU/51l/K0yrdFnbHPi2Uhe1R4GHSRXfSXneayvz8vz9SUelK/YE1iR1FaKwzuFeV2yI/QtYJz/elHRNSGVbovjcmlL83O4mfbYAD0TEE4V5mzI4/4rLFm1O6opb/F6PAioD3EwmHZhoxObAjKp1Tc7vO9L9YxLp2tFHASTNUOr2+1he//qsaFidA2ytNIrgW4HHCmfQPk3aB66SdJOkD+bpD5Iqy7VskudXFHN4KWm/2pTR7RvWhHwG6zxgZp1FNiJd+1bcT2qVNQ1/HxHxSETMjIhtSPvF9cBvC2fFIDXYvh8R82uto45nY4iIf+WH65By6uHCtHrbMIhSV+ZZSl2ZFwNz86wJ+W8NGt+XzcysB3XroAdNy/3/9wHGKV07BOlI/wako/KTJKlQMX0+K34kl5G6GFbWVazQVYs60/9MapztwIouP5VpOwLfy9PmAcdExKnVK8hn2y6NiLdWzyv4Cakb1+8k7Za7bM5r4HX1LCRV3isxqPjcmlL83J5POhMFK+fMAlJj4qYayxbNA+6KiC3rvN88UlfMRrp7VfJupa5/kt7E0PtHPe8ArouIZUrXrx1B6tJ4U0Q8I+kR8vWREfGEpLNIDaaXsOIsG7n75IdzLDsCf1S6Lu9PpK6M2xe7SOYzaK8jdYesKObwOqQuZgsY3b5hzfs8qevfsTXmPQAsJ3WB/Wee1kxZU6/sTTMjHpT0DVL5O74waxfgD5Lui4hfN/F+tSwExktaq9Bwa2Qb/guYDryF1GBbH6jsHw8CT5D25RtGGZ+ZmXWpfjrTthfwNLA1qTvNdsBLSQ2nvUiVhcMkrSLpnaTriCpuALaRtJ2kNUhdV+q5H3iupPWrpl9Gup5uQUQsztMuz9PWJ511g3SG7MjKNTW5e8zeed55wIslvU9pgIZVJb1G6SL8okNJ11uclxurjb6ulvPztr9T6aL8wxh8FsIad4jSEOTjSWfEzqyz3OnAZyVtlK8p/BxQayCDq4DFSoOYrJmP1r+s0P3rp8CXJG2p5OVaMdjH/UDx3lg/AT4q6bV52bUl7SlpXVJuDrV/PCu/dpKkz5O6Zx6VZ62b1/EAsIqkz5Gusyv6OXAgaVTXZ7dX0t6SNstPHyFVzp+OiH+S9pdTJb0ub/82pO6Nf4yIPxbWvYekHZWuz/sScGW+9m00+4Y1KXc/PJNUjlTPe5p0HeTRktaS9BJS+dio+4HN8ncMgKSv5X1ilZzLHwPmVHUTvgnYjXTt26hGFI6Iu0nX7x0taTVJOwD/2cBL1yV1R36IdIDwK4V1PkO63vSbSgMPjZO0g3xbCzOzvtJPjbYDgJ9Fuv/OfZU/0hmu/UgDfxxIqhS+h1R5ACBXDr8I/BG4ndTYqikibiVVuu/M3a0q3douJV1gXnzt9aSujNdWjspGxNmkC+LPyN1kbiQNbkJELCEdFd6XdJbgvrzsoB/vfDbkYNJZhHNI1wQN+7o62/Mg6bqQWaQKxZbAX4Z7ndV0GmlAjTvzX72bU3+ZVPH7BzCbdGZipWVzJfc/SQcg7iIdkf8p6SAA8P/bu98Yua7yjuO/Hw4gMKlKalhCEnUDsqCAwYm2ppUltAGVugTVIBUEMmnSBhmhuArSVq3hDYi+MVITiloa1fnTuCIhRIAbq0H5o4RVVV6ktoNbx3ECllnAsRM3QJs4EqBNHl6cs2Vsz252Zu+fM3O/H8mamTMze5977zPjee499xxdrzT0/X2SnpF0s1K+SenAw66cox+OiH1KZ7P+QekzcETp86BI11ou+vnIXm/7lKRTSte7rVO6Rui+/Py9SgMtfE+pa+XPdUa3sYj4jtL1fQ/nLsULflfSQ/nv71G6tucH+blteZ2/kpd9j9KAF2cOlHK70lmenyoN6LAlL3NZnylU6vOSVi/y3Dal/H1S6WzrV5WKmeV4UKkAe9L2QtfYV0rardRF96jSGeyzCrOI+C+l6xtvdM9IkEPaotSj4idKn9uv6cXX4V+UPhdPSHpUaQCVXn+p9F2wVymHv6Bu/f8NAJ3n0y9TAVAH23OSPn7G2Z9h/s67Jd0UEW940RePINsPSro9Im6q8G/eqjTK5FkjcKJstr8g6XUR0W8UyZHgNEXFYxHx2bZjAQCMLo7UAaPlbUpn1cZO7tZ5qRbvNoox5zRn3ttzN9sNkq5WOlM2MnL32jfafontTUrXqv1ry2EBAEZcZwYiAUad7S8pde0a2bMOi7G9S+na0mtzl0V007lKXSJfL+mk0oAld7Ua0eBep9R9+LeURg3+ZER81/YWpfkPz/TDPLolAACLonskAAAAABSM7pEAAAAAULAiukeuWbMmJicnW1n2c889p9WrFxvIrD3Elezfv//piHhNYwscQpv5W4VSc61OTa1z6fm7WO6WmhPENZiVxFV67gJA1xRRtE1OTmrfvn2tLHt2dlbT09OtLHspxJXY/mFjCxtSm/lbhVJzrU5NrXPp+btY7paaE8Q1mJXEVXruAkDX0D0SAAAAAApG0QYAAAAABSuie2SVJrffPdDrb91U3nUIQF36fT5m1s3rqkU+N3M7Lq87JBTo4BP/t2hOLIZcAQCgPpxpAwAAAICCUbQBAAAAQMEo2gAAAACgYBRtAAAAAFCwsRuIBEB1Bh3Yh8EoAAAAqseZNgAAAAAoGEUbAAAAABSMog0AAAAACtb5a9oGnUSWa3YAAAAANIkzbQAAAABQMIo2AAAAACgYRRsAAAAAFIyiDQAAAAAKRtEGAAAAAAWjaAMAAACAgnV+yH90l+05Sc9Kel7SfERM2T5P0tckTUqak/ThiPhZWzECAAAAnGlD110WEesjYio/3i7pgYhYK+mB/BgAAABoDWfagNNtljSd7++SNCvpr9sKZtRMDjBR/QImrAcAAFgaRRu6LCTdZzsk/VNE7JQ0EREnJCkiTth+bb832t4qaaskTUxMaHZ2tqGQV2Zm3fxZbROv6N/elDa23alTp0ZmnwEAAFC0DYgzCWNlY0Qcz4XZ/bYfW+4bc4G3U5KmpqZienq6phCrdVWf/J1ZN6/rDrb3VTC3ZbrxZc7OzmpU9hkAAADXtKGzIuJ4vj0pabekDZKesn2+JOXbk+1FCAAAAFC0oaNsr7Z97sJ9Se+V9IikPZKuzC+7UtJd7UQIAAAAJHSPRFdNSNptW0qfg9sj4h7beyXdaftqST+S9KEWYwQAAAAo2tBNEXFU0jv6tP9E0nuajwhYvhLnGBz0el+u9QUAYPnoHgkAo4k5BgEA6IgVFW2252wftH3A9r7cdp7t+21/P9++uppQAQBL2Kw0t6Dy7QfaCwUAAFSpiu6Rl0XE0z2PF4727rC9PT9mcmIAqE6tcww2MXffMPPklTq/HnEBAOpWxzVtmyVN5/u7JM2Kog0AqlTrHIN/f9tdtc/dN8z8fKXOr0dcAIC6rfR/5VqP9g5j0KPDHFEeTKlxAV3SO8eg7dPmGMzfu8wxCADAGFlp0Vbr0d5hXDXgCGYz6+Y5ojyAUuMCuiLPK/iSiHi2Z47Bz+vXcwzuEHMMAgAwVlZUrXC0FwAaxxyDAAB0zNBFG0d7AaB5zDEIAED3rORMG0d7AQAAAKBmQxdtHO0FAAAAgPqtaHJtAAAAAEC9KNoAAAAAoGAUbQAAAABQMIo2AAAAACgYRRsAAAAAFIyiDQAAAAAKRtEGAAAAAAWjaAMAAACAglG0AQAAAEDBKNrQSbYvsv1t24dtH7J9bW7/nO0nbB/I/97XdqwAAADotnPaDgBoybykmYh42Pa5kvbbvj8/98WI+NsWYwMAAAD+H0UbOikiTkg6ke8/a/uwpAvajQoAAAA4G0VbAya33z3Q6+d2XF5TJOjH9qSkSyQ9JGmjpG22/1TSPqWzcT/r856tkrZK0sTEhGZnZxuLdyVm1s2f1Tbxiv7tTWlj2506dWpk9hkAAABFGzrN9qskfUPSpyLiGds3SPobSZFvr5P052e+LyJ2StopSVNTUzE9Pd1YzL0GPSDQ7yM/s25e1x1s76tgbst048ucnZ1VW/sMAABgUAxEgs6y/VKlgu22iPimJEXEUxHxfES8IOlGSRvajBEAAACgaEMn2bakmyUdjojre9rP73nZByU90nRsAAAAQC+6R6KrNkq6QtJB2wdy22ckfdT2eqXukXOSPtFGcAAAAMACijZ0UkT8hyT3eepbTccCAAAALIXukQAAAABQMIo2AAAAACgYRRsAAAAAFIxr2gAAjRt0jsG5HZfXFAkAAOXjTBsAAAAAFIyiDQAAAAAKRtEGAAAAAAWjaAMAAACAgjEQCYBWMSAFAADA0jjTBgAAAAAFK/pM26BH4AEAAABg3BRdtAFdwkEKAAAA9EP3SAAAAAAoGGfaAADFm9x+t2bWzeuqAc5IM2gNAGBcULQVaJgfJ4PghwxGGaNNAgCArqF7JAAAAAAUjDNtQE0YWAQAAABV4EwbAAAAABSstqLN9ibbj9s+Ynt7XcsBqkbuYpSRvwAAjJ9aukfaXiXpy5L+QNIxSXtt74mIR+tYHgazkm57dQ2QUspgEeTu+OmX70vlcSm5OAzy93TjMGhN3d/XJa4zAOBsdV3TtkHSkYg4Kkm275C0WVInfzhgpJC7HTfMj+SCfviSvw1ayJXlHswqKE8AACPGEVH9H7X/RNKmiPh4fnyFpHdGxLae12yVtDU/fJOkxysPZHnWSHq6pWUvhbiS346I1zS1sOXkbm4vJX+rUGqu1ampdS4uf5eZu6XmBHENZiVxNZq7AICl1XWmzX3aTqsOI2KnpJ01LX/ZbO+LiKm24zgTcbXmRXNXKid/q9CBfXqWMV7nSr57S90+xDWYUuMCAAyuroFIjkm6qOfxhZKO17QsoErkLkYZ+QsAwBiqq2jbK2mt7Yttv0zSRyTtqWlZQJXIXYwy8hcAgDFUS/fIiJi3vU3SvZJWSbolIg7VsawKlNrFjbhaMGK5W5Wx3qeLGMt1rjB/S90+xDWYUuMCAAyoloFIAAAAAADVqG1ybQAAAADAylG0AQAAAEDBOle02Z6zfdD2Adv7ctt5tu+3/f18++oG4rjF9knbj/S0LRqH7U/bPmL7cdt/2HBcn7P9RN5mB2y/r+m4MLxSc60uti+y/W3bh20fsn1tbh/bda6S7U15Oxyxvb3B5Ra932yvsv1d2/9WSly2f9P2120/lrfb75cQFwCgep0r2rLLImJ9z/w12yU9EBFrJT2QH9ftVkmbzmjrG4fttyiNAvfW/J5/tL2qwbgk6Yt5m62PiG+1EBeGd6vKzLW6zEuaiYjfkfR7kq7J6zXO61yJvN5flvRHkt4i6aN5+zSh9P12raTDPY9LiOtLku6JiDdLekeOr4S4AAAV62rRdqbNknbl+7skfaDuBUbEv0v66TLj2Czpjoj4RUT8QNIRSRsajGsxjcWF4ZWaa3WJiBMR8XC+/6zSD9kLNMbrXKENko5ExNGI+KWkO5S2T+1K3m+2L5R0uaSbeppbjcv2b0h6l6SbJSkifhkR/9t2XACAenSxaAtJ99neb3trbpuIiBNS+uEg6bUtxbZYHBdI+nHP647ltiZts/3fuavdQnebEuLCcErOtcrYnpR0iaSH1JF1XqEitkWB++3vJP2VpBd62tqO6w2S/kfSP+dumzfZXl1AXACAGnSxaNsYEZcqdf+5xva72g5oGdynrcm5Gm6Q9EZJ6yWdkHRdbm87LlRvbPap7VdJ+oakT0XEM0u9tE/bSK5zBVrfFqXtN9vvl3QyIvYv9y192urYhudIulTSDRFxiaTntHTX/tb3LQBgeJ0r2iLieL49KWm3UveQp2yfL0n59mRL4S0WxzFJF/W87kJJx5sKKiKeiojnI+IFSTfq111qWo0LK1JkrlXF9kuVfvjfFhHfzM1jvc4VaXVbFLrfNkr6Y9tzSt1F3237KwXEdUzSsYh4KD/+ulIR13ZcAIAadKpos73a9rkL9yW9V9IjkvZIujK/7EpJd7UT4aJx7JH0Edsvt32xpLWS/rOpoBZ+AGQfVNpmrceFFSky16pg20rX+RyOiOt7nhrbda7QXklrbV9s+2VKA1fsaWLBpe63iPh0RFwYEZNK2+PBiPhYAXE9KenHtt+Um94j6dG24wIA1OOctgNo2ISk3em3gc6RdHtE3GN7r6Q7bV8t6UeSPlR3ILa/Kmla0hrbxyR9VtKOfnFExCHbdyr9hzwv6ZqIeL7BuKZtr1fqSjMn6RNNx4XhlZprNdoo6QpJB20fyG2f0XivcyUiYt72Nkn3Slol6ZaIONTQ4kdtv5UQ119Iui0X2Ecl/ZnSwdi24wIAVMwRdGkHAAAAgFJ1qnskAAAAAIwaijYAAAAAKBhFGwAAAAAUjKINAAAAAApG0QYAAAAABaNoAwAAAICCUbQBAAAAQMF+BTsjbWl3VcyYAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ski_data.hist(figsize=(15, 10))\n", - "plt.subplots_adjust(hspace=0.5);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These distributions are much better. There are clearly some skewed distributions, so keep an eye on `fastQuads`, `fastSixes`, and perhaps `trams`. These lack much variance away from 0 and may have a small number of relatively extreme values. Models failing to rate a feature as important when domain knowledge tells you it should be is an issue to look out for, as is a model being overly influenced by some extreme values. If you build a good machine learning pipeline, hopefully it will be robust to such issues, but you may also wish to consider nonlinear transformations of features." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.10 Population data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Population and area data for the US states can be obtained from [wikipedia](https://simple.wikipedia.org/wiki/List_of_U.S._states). Listen, you should have a healthy concern about using data you \"found on the Internet\". Make sure it comes from a reputable source. This table of data is useful because it allows you to easily pull and incorporate an external data set. It also allows you to proceed with an analysis that includes state sizes and populations for your 'first cut' model. Be explicit about your source (we documented it here in this workflow) and ensure it is open to inspection. All steps are subject to review, and it may be that a client has a specific source of data they trust that you should use to rerun the analysis." - ] - }, - { - "cell_type": "code", - "execution_count": 149, - "metadata": {}, - "outputs": [], - "source": [ - "#Code task 29#\n", - "#Use pandas' `read_html` method to read the table from the URL below\n", - "states_url = 'https://simple.wikipedia.org/w/index.php?title=List_of_U.S._states&oldid=7168473'\n", - "usa_states = pd.read_html(states_url)" - ] - }, - { - "cell_type": "code", - "execution_count": 150, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "list" - ] - }, - "execution_count": 150, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(usa_states)" - ] - }, - { - "cell_type": "code", - "execution_count": 151, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1" - ] - }, - "execution_count": 151, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(usa_states)" - ] - }, - { - "cell_type": "code", - "execution_count": 152, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Name & postal abbs. [1]CitiesEstablished[A]Population [B][3]Total area[4]Land area[4]Water area[4]Number of Reps.
Name & postal abbs. [1]Name & postal abbs. [1].1CapitalLargest[5]Established[A]Population [B][3]mi2km2mi2km2mi2km2Number of Reps.
0AlabamaALMontgomeryBirminghamDec 14, 181949031855242013576750645131171177545977
1AlaskaAKJuneauAnchorageJan 3, 195973154566538417233375706411477953947432453841
2ArizonaAZPhoenixPhoenixFeb 14, 1912727871711399029523411359429420739610269
3ArkansasARLittle RockLittle RockJun 15, 183630178045317913773252035134771114329614
4CaliforniaCASacramentoLos AngelesSep 9, 18503951222316369542396715577940346679162050153
\n", - "
" - ], - "text/plain": [ - " Name & postal abbs. [1] Cities \\\n", - " Name & postal abbs. [1] Name & postal abbs. [1].1 Capital Largest[5] \n", - "0 Alabama AL Montgomery Birmingham \n", - "1 Alaska AK Juneau Anchorage \n", - "2 Arizona AZ Phoenix Phoenix \n", - "3 Arkansas AR Little Rock Little Rock \n", - "4 California CA Sacramento Los Angeles \n", - "\n", - " Established[A] Population [B][3] Total area[4] Land area[4] \\\n", - " Established[A] Population [B][3] mi2 km2 mi2 \n", - "0 Dec 14, 1819 4903185 52420 135767 50645 \n", - "1 Jan 3, 1959 731545 665384 1723337 570641 \n", - "2 Feb 14, 1912 7278717 113990 295234 113594 \n", - "3 Jun 15, 1836 3017804 53179 137732 52035 \n", - "4 Sep 9, 1850 39512223 163695 423967 155779 \n", - "\n", - " Water area[4] Number of Reps. \n", - " km2 mi2 km2 Number of Reps. \n", - "0 131171 1775 4597 7 \n", - "1 1477953 94743 245384 1 \n", - "2 294207 396 1026 9 \n", - "3 134771 1143 2961 4 \n", - "4 403466 7916 20501 53 " - ] - }, - "execution_count": 152, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "usa_states = usa_states[0]\n", - "usa_states.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note, in even the last year, the capability of `pd.read_html()` has improved. The merged cells you see in the web table are now handled much more conveniently, with 'Phoenix' now being duplicated so the subsequent columns remain aligned. But check this anyway. If you extract the established date column, you should just get dates. Recall previously you used the `.loc` accessor, because you were using labels. Now you want to refer to a column by its index position and so use `.iloc`. For a discussion on the difference use cases of `.loc` and `.iloc` refer to the [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html)." - ] - }, - { - "cell_type": "code", - "execution_count": 154, - "metadata": {}, - "outputs": [], - "source": [ - "#Code task 30#\n", - "#Use the iloc accessor to get the pandas Series for column number 4 from `usa_states`\n", - "#It should be a column of dates\n", - "established = usa_states.iloc[:, 4]" - ] - }, - { - "cell_type": "code", - "execution_count": 155, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 Dec 14, 1819\n", - "1 Jan 3, 1959\n", - "2 Feb 14, 1912\n", - "3 Jun 15, 1836\n", - "4 Sep 9, 1850\n", - "5 Aug 1, 1876\n", - "6 Jan 9, 1788\n", - "7 Dec 7, 1787\n", - "8 Mar 3, 1845\n", - "9 Jan 2, 1788\n", - "10 Aug 21, 1959\n", - "11 Jul 3, 1890\n", - "12 Dec 3, 1818\n", - "13 Dec 11, 1816\n", - "14 Dec 28, 1846\n", - "15 Jan 29, 1861\n", - "16 Jun 1, 1792\n", - "17 Apr 30, 1812\n", - "18 Mar 15, 1820\n", - "19 Apr 28, 1788\n", - "20 Feb 6, 1788\n", - "21 Jan 26, 1837\n", - "22 May 11, 1858\n", - "23 Dec 10, 1817\n", - "24 Aug 10, 1821\n", - "25 Nov 8, 1889\n", - "26 Mar 1, 1867\n", - "27 Oct 31, 1864\n", - "28 Jun 21, 1788\n", - "29 Dec 18, 1787\n", - "30 Jan 6, 1912\n", - "31 Jul 26, 1788\n", - "32 Nov 21, 1789\n", - "33 Nov 2, 1889\n", - "34 Mar 1, 1803\n", - "35 Nov 16, 1907\n", - "36 Feb 14, 1859\n", - "37 Dec 12, 1787\n", - "38 May 29, 1790\n", - "39 May 23, 1788\n", - "40 Nov 2, 1889\n", - "41 Jun 1, 1796\n", - "42 Dec 29, 1845\n", - "43 Jan 4, 1896\n", - "44 Mar 4, 1791\n", - "45 Jun 25, 1788\n", - "46 Nov 11, 1889\n", - "47 Jun 20, 1863\n", - "48 May 29, 1848\n", - "49 Jul 10, 1890\n", - "Name: (Established[A], Established[A]), dtype: object" - ] - }, - "execution_count": 155, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "established" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Extract the state name, population, and total area (square miles) columns." - ] - }, - { - "cell_type": "code", - "execution_count": 163, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
statestate_populationstate_area_sg_miles
0Alabama490318552420
1Alaska731545665384
2Arizona7278717113990
3Arkansas301780453179
4California39512223163695
\n", - "
" - ], - "text/plain": [ - " state state_population state_area_sg_miles\n", - "0 Alabama 4903185 52420\n", - "1 Alaska 731545 665384\n", - "2 Arizona 7278717 113990\n", - "3 Arkansas 3017804 53179\n", - "4 California 39512223 163695" - ] - }, - "execution_count": 163, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 31#\n", - "#Now use the iloc accessor again to extract columns 0, 5, and 6 and the dataframe's `copy()` method\n", - "#Set the names of these extracted columns to 'state', 'state_population', and 'state_area_sq_miles',\n", - "#respectively.\n", - "usa_states_sub = usa_states.iloc[:, [0,5,6]].copy()\n", - "usa_states_sub.columns = ['state','state_population','state_area_sg_miles']\n", - "usa_states_sub.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Do you have all the ski data states accounted for?" - ] - }, - { - "cell_type": "code", - "execution_count": 164, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'Massachusetts', 'Pennsylvania', 'Rhode Island', 'Virginia'}" - ] - }, - "execution_count": 164, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 32#\n", - "#Find the states in `state_summary` that are not in `usa_states_sub`\n", - "#Hint: set(list1) - set(list2) is an easy way to get items in list1 that are not in list2\n", - "missing_states = set(state_summary.state) - set(usa_states_sub.state)\n", - "missing_states" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "No?? " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If you look at the table on the web, you can perhaps start to guess what the problem is. You can confirm your suspicion by pulling out state names that _contain_ 'Massachusetts', 'Pennsylvania', or 'Virginia' from usa_states_sub:" - ] - }, - { - "cell_type": "code", - "execution_count": 165, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "20 Massachusetts[C]\n", - "37 Pennsylvania[C]\n", - "38 Rhode Island[D]\n", - "45 Virginia[C]\n", - "47 West Virginia\n", - "Name: state, dtype: object" - ] - }, - "execution_count": 165, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "usa_states_sub.state[usa_states_sub.state.str.contains('Massachusetts|Pennsylvania|Rhode Island|Virginia')]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Delete square brackets and their contents and try again:" - ] - }, - { - "cell_type": "code", - "execution_count": 166, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "20 Massachusetts\n", - "37 Pennsylvania\n", - "38 Rhode Island\n", - "45 Virginia\n", - "47 West Virginia\n", - "Name: state, dtype: object" - ] - }, - "execution_count": 166, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 33#\n", - "#Use pandas' Series' `replace()` method to replace anything within square brackets (including the brackets)\n", - "#with the empty string. Do this inplace, so you need to specify the arguments:\n", - "#to_replace='\\[.*\\]' #literal square bracket followed by anything or nothing followed by literal closing bracket\n", - "#value='' #empty string as replacement\n", - "#regex=True #we used a regex in our `to_replace` argument\n", - "#inplace=True #Do this \"in place\"\n", - "usa_states_sub.state.replace(to_replace='\\[.*\\]', value='', regex=True, inplace=True)\n", - "usa_states_sub.state[usa_states_sub.state.str.contains('Massachusetts|Pennsylvania|Rhode Island|Virginia')]" - ] - }, - { - "cell_type": "code", - "execution_count": 168, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "set()" - ] - }, - "execution_count": 168, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 34#\n", - "#And now verify none of our states are missing by checking that there are no states in\n", - "#state_summary that are not in usa_states_sub (as earlier using `set()`)\n", - "missing_states = set(state_summary.state) - set(usa_states_sub.state)\n", - "missing_states" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Better! You have an empty set for missing states now. You can confidently add the population and state area columns to the ski resort data." - ] - }, - { - "cell_type": "code", - "execution_count": 169, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
stateresorts_per_statestate_total_skiable_area_acstate_total_days_openstate_total_terrain_parksstate_total_nightskiing_acstate_populationstate_area_sg_miles
0Alaska32280.0345.04.0580.0731545665384
1Arizona21577.0237.06.080.07278717113990
2California2125948.02738.081.0587.039512223163695
3Colorado2243682.03258.074.0428.05758736104094
4Connecticut5358.0353.010.0256.035652785543
\n", - "
" - ], - "text/plain": [ - " state resorts_per_state state_total_skiable_area_ac \\\n", - "0 Alaska 3 2280.0 \n", - "1 Arizona 2 1577.0 \n", - "2 California 21 25948.0 \n", - "3 Colorado 22 43682.0 \n", - "4 Connecticut 5 358.0 \n", - "\n", - " state_total_days_open state_total_terrain_parks \\\n", - "0 345.0 4.0 \n", - "1 237.0 6.0 \n", - "2 2738.0 81.0 \n", - "3 3258.0 74.0 \n", - "4 353.0 10.0 \n", - "\n", - " state_total_nightskiing_ac state_population state_area_sg_miles \n", - "0 580.0 731545 665384 \n", - "1 80.0 7278717 113990 \n", - "2 587.0 39512223 163695 \n", - "3 428.0 5758736 104094 \n", - "4 256.0 3565278 5543 " - ] - }, - "execution_count": 169, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 35#\n", - "#Use 'state_summary's `merge()` method to combine our new data in 'usa_states_sub'\n", - "#specify the arguments how='left' and on='state'\n", - "state_summary = state_summary.merge(usa_states_sub, how='left', on='state')\n", - "state_summary.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Having created this data frame of summary statistics for various states, it would seem obvious to join this with the ski resort data to augment it with this additional data. You will do this, but not now. In the next notebook you will be exploring the data, including the relationships between the states. For that you want a separate row for each state, as you have here, and joining the data this soon means you'd need to separate and eliminate redundances in the state data when you wanted it." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.11 Target Feature" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally, what will your target be when modelling ticket price? What relationship is there between weekday and weekend prices?" - ] - }, - { - "cell_type": "code", - "execution_count": 170, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAyt0lEQVR4nO3deZxcVZn/8c9T1UtCFghJCJCkTbAJTkAI0AOEmAyLigsQHZBhm6CiqD9B3CaAjjijowMyroM6ExEFZcBAlGRwQwGHLUQ60AkEhbQGSSeQpUkwDUmlu+v5/XFvVaqqb1VXd9fSy/f9esWuunXr1umirafOOc95jrk7IiIiALFqN0BERAYPBQUREUlTUBARkTQFBRERSVNQEBGRtJpqN2AgJk2a5DNmzKh2M0REhpTVq1dvd/fJUY8N6aAwY8YMmpubq90MEZEhxcz+ku8xDR+JiEiagoKIiKQpKIiISJqCgoiIpJUtKJjZzWa21cyezjg2x8weM7MWM2s2sxMyHrvGzFrN7FkzO6Nc7RIRkfzK2VP4IfC2nGNfAf7V3ecA14b3MbPZwPnAkeFzvmNm8TK2TURkyGrvSLBm407aOxIlv3bZUlLd/UEzm5F7GBgf3t4f2BzeXgjc4e4JYIOZtQInACvL1T4RkaFoecsmrlq2ltpYjM5kkq+cczRnz5lasutXep3Cx4Ffm9l/EPRSTg6PTwUeyzivLTzWg5ldBlwG0NDQULaGiogMNu0dCa5atpY9nUn2kARg8bK1zGucxMSx9SV5jUpPNH8E+IS7Twc+AXw/PG4R50Zu9ODuS9y9yd2bJk+OXJAnIjIste3YTW0s+2O7Nhajbcfukr1GpYPCJcBPw9t3EgwRQdAzmJ5x3jT2DS2JiAgwbcJoOpPJrGOdySTTJowu2WtUOihsBv4uvH0asD68vQI438zqzWwmcDjw+wq3TURkUJs4tp6vnHM0o2pjjKuvYVRtjK+cc3TJho6gjHMKZnY7cAowyczagM8DHwS+aWY1wB7CuQF3X2dmS4FngC7go+7eXa62iYgMVWfPmcq8xkm07djNtAmjSxoQAGwo79Hc1NTkKognItI3Zrba3ZuiHtOKZhERSVNQEBGRNAUFERFJU1AQEZE0BQURkQooZ72iUhrS23GKiAwF5a5XVErqKYiIlFFmvaJdiS72dCZZvGztoO0xKCiIiJRRJeoVlZKCgohIGVWiXlEpKSiIiJRRJeoVlZImmkVEyqzc9YpKSUFBRKQCJo6tH9TBIEXDRyIikqagICIiaQoKIiKSVragYGY3m9lWM3s65/gVZvasma0zs69kHL/GzFrDx84oV7tERCS/ck40/xC4Ebg1dcDMTgUWAke7e8LMDgqPzwbOB44EDgV+a2aztPuaiEhlla2n4O4PAi/nHP4IcJ27J8JztobHFwJ3uHvC3TcArcAJ5WqbiAxvQ6X43GBU6ZTUWcB8M/sSwR7Nn3b3x4GpwGMZ57WFx3ows8sI93ZuaGgob2tFZMgpVfG59o7EkFhXUGqVDgo1wATgJOBvgaVmdhhgEedGbh7t7kuAJRDs0VymdorIEJRZfG4PQWmJxcvWMq9xUp8+2IdSVdNSq3T2URvwUw/8HkgCk8Lj0zPOmwZsrnDbRGSIK0XxuaFW1bTUKh0U7gZOAzCzWUAdsB1YAZxvZvVmNhM4HPh9hdsmIkNcKYrPDbWqpqVWzpTU24GVwBFm1mZmlwI3A4eFaap3AJeEvYZ1wFLgGeBXwEeVeSQifVWK4nNDrappqZn70B2Wb2pq8ubm5mo3Q0QGmYFOEq9o2cTiYTynYGar3b0p6jEVxBORYWegxeeGUlXTUlNQEBGJMFSqmpaaah+JiEiagoKIiKQpKIiISJqCgoiIpCkoiIhImoKCiIikKSiIiEiagoKIiKQpKIiISJqCgoiIpCkoiIhImoKCiIikKSiIiEiagoKIiKSVc+e1m81sa7jLWu5jnzYzN7NJGceuMbNWM3vWzM4oV7tERCS/cvYUfgi8LfegmU0H3gK8kHFsNnA+cGT4nO+YWbyMbRORQai9I8GajTtp70hUuykjVtk22XH3B81sRsRDXwcWA8szji0E7nD3BLDBzFqBEwj2eBaREWB5yyauGsZbYA4VFZ1TMLOzgU3uvibnoanAxoz7beGxqGtcZmbNZta8bdu2MrVURCqpvSPBVcvWsqczya5EF3s6kyxetlY9hiqoWFAws/2AzwLXRj0cccyjruPuS9y9yd2bJk+eXMomikiVtO3YTW0s++OoNhajbcfuKrVo5KrkHs2vB2YCa8wMYBrwhJmdQNAzmJ5x7jRgcwXbJiJVNG3CaDqTyaxjnckk0yaMrlKLRq6K9RTc/Sl3P8jdZ7j7DIJAcJy7vwSsAM43s3ozmwkcDvy+Um0TkcrIN5E8cWw9XznnaEbVxhhXX8Oo2hhfOedoJo6tr1JLR66y9RTM7HbgFGCSmbUBn3f370ed6+7rzGwp8AzQBXzU3bvL1TYRqbzeJpLPnjOVeY2TaNuxm2kTRisgVIm5Rw7dDwlNTU3e3Nxc7WaISC/aOxLMu/5+9nTuGyIaVRvjkatO04d/FZjZandvinpMK5pFpOw0kTx0KCiISNlpInnoUFAQkbLTRPLQUcmUVBEZwTSRPDQoKIhIxUwcW69gMMhp+EhERNIUFEREJE1BQURE0hQUREQkTUFBRHrVumUXdzVvpHXLrmo3RcpM2UciUtC1dz/FrY+lN0pk0dwGvrDwjVVskZSTegoiklfrll1ZAQHg1pUvqMcwjOXtKZjZgYWe6O4vl745IjKYtGzcmfd445RxlW2MVESh4aPVBLufGdAA7AhvHwC8QLBhjogMY3OmH9Cn4zL05R0+cveZ7n4Y8GvgLHef5O4TgTOBn1aqgSJSPY1TxrFobkPWsUVzG9RLGMZ63U8hrLt9fM6x5ny1uDPOuZkggGx196PCYzcAZwF7gT8B73P3neFj1wCXAt3Ax9z91701XvspiFRG65ZdtGzcyZzpByggDAMD3U9hu5n9s5nNMLPXmdlngfYinvdD4G05x34DHOXuRwPPAdeEDZwNnA8cGT7nO2YWL+I1REaUfNtZ9kdf0kwbp4zj3KbpCggjQDEpqRcAnwd+Ft5/MDxWkLs/aGYzco7dm3H3MeDc8PZC4A53TwAbzKwVOAFYWUT7REaE3raz7AulmUo+vfYU3P1ld7/S3Y8N/11Zosyj9wO/DG9PBTZmPNYWHuvBzC4zs2Yza962bVsJmiEy+LV3JLhq2Vr2dCbZlehiT2eSxcvW9qvHoDRTKaTXoGBms8xsiZnda2b3p/4N5EXDIagu4LbUoYjTIic73H2Juze5e9PkyZMH0gyRIaOU21kWSjMVKWb46E7gv4CbCCaBB8TMLiGYgD7d981ytwHTM06bBmwe6GuJDBcD2c6yvSORtbGN0kylkGKCQpe7f7cUL2ZmbwOuAv7O3V/LeGgF8D9m9jXgUOBw4PeleE2R4SC1neXinDmFQhvWtHckuG3VC3z7gfXUxeNZ8xCL5jZw68rsOQVNIgsUl5L6L8BWgonm9ABmb/MKZnY7cAowCdhCMFl9DVDPvuylx9z9w+H5nyWYZ+gCPu7uv8y9Zi6lpMpIk/utP5/lLZtYfNdaEl3ZvYtRtTEeueo0Jo6tV5rpCFYoJbWYoLAh4rCHC9uqSkFBpKf2jgTzrr+fPZ3JHo+Nq6/hxx84kWM0VDSiFQoKvQ4fubvKWYgMIalJ6T30DArFzkPIyFVM9tF+4eK1JeH9w83szPI3TUT6I2pSGqC+xnqdhxApZkXzDwjKUpwc3m8D/q1sLRKRAUlNSo+qjTGuvob6mhifesssHr369H4vdpORo5jso9e7+z+Y2QUA7r7bzKLWFYhIhfQ24Xz2nKnMa5xU1KS0SKZigsJeMxtNuJjMzF5PRhaSiFRWseUuJo6tVzCQPitm+OjzwK+A6WZ2G3AfsLisrRKRSKUsdyESpZiewmrg74GTCMpRXAkoqVmkCqIyi1LlLtQrkFIopqfwv0Cnu//c3e8BJofHRKTCBlLuQqQYxQSFLwP/a2ZjzOx44C7g4vI2S0Si5GYWjaqNKc1USqqYxWs/N7Nagg1yxgHvcvf1ZW+ZiERSZpGUU96gYGb/SXb56vHAn4ErzAx3/1i5GycyEhVT30iZRVIuhXoKuUWFVpezISJS2t3VRPojb1Bw91tSt8N1Cg3u/mxFWiUyAmWmm6ayixYvW8u8xknqFUjFFFP76CyghWCtAmY2x8xWlLldIiNOKXdXE+mvYrKP/gU4AdgJ4O4tgCqnipSY0k1lMCgmKHS5+ys5xwpvwgCY2c1mttXMns44dqCZ/cbM1oc/J2Q8do2ZtZrZs2Z2RvG/gsjwoHRTGQyKWdH8tJldCMTN7HDgY8CjRTzvh8CNwK0Zx64G7nP368zs6vD+VWY2GzgfOJJgO87fmtksdx/wntAiQ4nSTaXaiukpXEHwYZ0A/gd4Bfh4b09y9weB3C07FwKpCexbgHdlHL/D3RPuvgFoJRiyEimb9o4EazbuzFs3qLfHi9W8oZ2v3fsszRvaez+ZoMdwzPQDFBCkKopZvPYa8Fkz+7K7vzrA15vi7i+G133RzA4Kj08FHss4ry08JlKUYvcuTukt9bNUqaEX3/QYD7cGweBb97cyv3EiP/rASX2+jkilFJN9dLKZPQP8Ibx/jJl9p8TtiNqfIXLewswuM7NmM2vetm1biZshQ9Hylk3Mu/5+Lr5pFfOuv58VLZsKnt9bpdFSVSJt3tCeDggpD7W2F91jEKmGYoaPvg6cAbQDuPsaYEE/X2+LmR0CEP7cGh5vA6ZnnDcN2Bx1AXdf4u5N7t40efLkfjZDhov+fID3lvpZqtTQB9dv79NxkcGgmKCAu2/MOdTfCeAVwCXh7UuA5RnHzzezejObCRwO/L6fryEjSH8+wHtL/RxIamjmPMSCwydFnpPvuMhgUExQ2GhmJwNuZnVm9mnCoaRCzOx2YCVwhJm1mdmlwHXAW8xsPfCW8D7uvg5YCjxDsEjuo8o8kmL05wM8lfpZF4f6eIy6OFmpn/1NDc0dxtr8yh7mN07MOmd+40SaZk7McwWR6jP3wksOzGwS8E3gzQRj//cCV7p71QdGm5qavLk5t0STjDQrWjaxuI+Twtfe/RS3PvZC+v6iuQ18YeEbs87py+R1e0eCedffz57OfQFqVG2MR646jQ3bOnhw/XYWHD5JAUEGBTNb7e5NUY8VqpK6HHiYYE3C+9x9b5naJzIgmbn9Y+rivLq3m/aOROQHeXtHgpV/as8KCAC3rnyBRSfNoHHKvk0F+1KJtNCOaE0z1TuQoaNQSur3gJOBLwFvNLNngUcIgsSj7r6lAu2TEawv39Qnjq3n4dbt6TTSvd1JLj+1kQtPbEg/N5Vm6snoa7Rs3JkVFPrSJpWokOGiUJXUe4B7AMwsDhwLnALcQFD7KF6B9skI1dd1AlEVRr/6m+e48YH13HDuMcxrnJR+PJ850w/od5tS8xC5w1hagCZDTcHFa+F8wsnhv5OAUcBvCSaQRcqiPyWko4ZvABJdzuJla1nyj8dHPp6yaG4DE8bUsWbjzsieSTFtUokKGQ4KzSmsJyhpsQz4NfBv7t5RqYbJyFVofD7fB23U8E3mc8F6PF4Xh8+84294U+Nk1r34V+Zdf39kL6C9I8EDf9xK3KzHdXPbpB3RZKgr1FO4maB3cA7wRuAoM1sJPKl0USmngaSZfmppC7kjRJ3JJEceOj5yeOfsOVPz9gKSySR3PL6RJ17YSV1NjFf3dve4ruYMZLgpNKfw76nbZjaLYAjpg8B8M9vm7n9XgfbJCNTf8fmlzRuzAoIBdTWWfm6+4Z2onsmeziQfX7o2fX9v976AMKYuTre75gxkWOq1IJ6ZHUZQsfREgp7DZODPZW6XjHB9HZ+PqjPkQO6IUtTwTqGhp1xj6uP861lHcuobDlJAkGEp74pmM/uZmb0I/BI4HVgNXODuk939zEo1UIanfGWpM4/3pYR0vnpCnUnvtRZSqmdSX9P7Av/upCsgyLBWqKfwA4Lhog5335P5gJnVu/vAiszLiJUvtXMg5aoXHD6Jb93fGvlYb5PUEPRMDtivjg//aDWvdUZPmdXFTUNGMuzl/Wrk7ivcfTvRu6wpJVX6pHXLLu5q3kjzhvbIqqatW3YNqFx108yJPeoMpeSbEE61qXXLLgCOPHQ8yTw7zTYcOIqV15zerz0VRIaSQimpBxNsdDPazI5l354H44H9KtA2GSZy6wzVxnumdrZs3NlrGmpvK5x/9IGTaN7Qzvce+jMPPLuN+pp43knqD93azK+f2bcoP1X7KHOCe09nN8e/bgIfnD+T02cfXJL3QmSwKzR8dAbwXoK9Db6WcXwX8JkytkmGkdYtu3rUGerszv423plMMmf6AQXTUIsdWkrVGcoXQNo7Ely4ZCXPbs3eRDBV+0gL0GSkK5SSegtwi5md4+7LKtgmGUZaNu6MPF4bN0ZlfJNvnDIubxpqf1Y4R2UZLW/ZxKcj1jFktrVxyjgtQJMRrdDw0Sejbqe4+9dyj4nkyldP6PYPnEhtTTzr23hf1hEUM3mcKRVYCpQ+6rX2kchIUGj4qHC5SJEiNE4Zx6K5Ddy6MnvvgnylpItdR1DsauL7nnmJe5/ZQuNBYwvWPnrbkVN6rZAqMhL0uslOWV7U7BPABwjWFz0FvI9g8vonwAzgeeA8d99R6DraZGfoaN2yi5aNO5kz/YB+ffj2dSOd5g3tXPajZl5+ravXax/fsD/L/t+b+twmkaGq0CY7xey89gPomafn7u/vZ2OmEmzeM9vdd5vZUuAXwGzgZXe/zsyuBia4+1WFrqWgUF192e+gN8UEjWJe7+4nNvKFe57JGwxqDEbX1bCns4vT3zCFD8yfqQ1wZMTp185rGe7JuD0KeDeweYBtqiFIde0k6CFsBq4h2K8B4Bbgd0DBoCDV0d6R4LZVL/DtB9ZTF48Xvd9Bvg/0YrbGLKZNb/3a/9H+WmfB88485hDeN+8wZRaJ5NFrUMjNPDKz2wn2VOgXd99kZv8BvADsBu5193vNbIq7vxie86KZHRT1fDO7DLgMoKGhob/NkH5a3rKJxXetJdEVjM0nuoJv5IWygQqlk0alrEZtjVnoGstbNvHJO1oopnTvWUcfyjGaUBbJq/diLz0dDvT709jMJgALCXZvOxQYY2YXF/t8d1/i7k3u3jR58uT+NkP6IZXBkwoImVLZQPmeE7WCec3GnTzcGl2zKDOVNd812jsStHckWHzXmqICwhFTxmgRmkgviqmSuotgTsHCny8xsGGdNwMb3H1beP2fEpTl3mJmh4S9hEOArQN4DSmDfLubQf5soKjneNJ5x38+TH08RqIr+uM8Mz20UErq/z23jURX4Xmxg8bV8e/vfqMCgkgRihk+KnWe3gvASWa2H8Hw0elAM/AqcAlwXfhzeYlfd8QYaKZPpsy5gHwlputrsgvF5T5nT84Hf6LbAWdv2OOIGSQzPtcXzW3IanfU6ya6uuns6ubbD0QXwQMYUxvjlvefoIlkkT4otHjtuEJPdPcn+vOC7r7KzO4CngC6gCeBJcBYYKmZXUoQON7Tn+uPdKWYtE2JGsfPXHW8tzvJ5ac2cuGJDemAkPucz505m94y3MbU1fDvf38UezqTkYEsVdr603e20J2EbodYzLjwplXEYtbjeq+fNIYrTns97zpuer9+b5GRLG9Kqpk9EN4cBTQBawiGkI4GVrl71RO7lZKarXXLLt789Qd7HP/tJxb0ucfQ3pFg3vX3sydjCfCo2hiPXHUaQN66QrnPqauJURuzHltZZkpdt1A2UG6wy6e+JsajVxe+lshIVygltVDp7FPd/VTgL8Bx4eTu8cCxQP4+u1RNvjpD+Y4XkhrHz5RZWiJq85uo58QM9uYMH9XEgg/vcfU1jKqN9bpHQfOG9rwBoT5u1GVc64Zztd+ByEAUs07hDe7+VOqOuz9tZnPK1yTpr3y1e/pT0yffOP6YuniPNQep+2Pq4j2es6czSW3cqIk5o2tr0sNQxVQiTa2H+NZ9z+Vtp8WMn1/+Jl7d2621ByIlUExQ+IOZ3QT8mCD76GLgmbK2SvolX52h/kw2p8bxFy9biyedRLcTixlv/9ZDuO/7gD/v+GksXd2WnkM4r2kaP3l8Y1ZGUGe3U18T41NvncWbGiel25M79JQKEjte3cvNjzzPnc0vFCxgVxcnXWFVREqjmDIXo4CPAPMJ5hSeAGa4+6Xlb15hmlPYJ/dDtVTZR80b2rngplU99kDIZ1RtjP849xgWL1vLaznzCPvVxkniPVY/Z05Ov7q3KysTKZ93HnUwX3jXUeoZiPTDgMpcuPuecNL5EOAfgAnAXaVtouRTTL2fqCyhc5sGnnmzvGUTn1raQsRatbxqYzHGj64lGfFlI7X3cebq56i9EgqpiRt3fOBEpZmKlEmhlNRZwPnABUA7QQVT3P2UirRMitptrD8b0BSjvSPBJ37SUtS39kydySRHHjo+PfQUM+vRY8icsG7bsZtEoTGiDPU1wUSyAoJI+RTqKfwReAg4y91bIV3yWiqgtw/7VA/ild2dRW9AU6jXkfvYyj9tjwwI8ZhhZMwpNE1jaXNbj93SUhvmrNv8Ch+8tTl7jiFj9fNTG3f0LMGbozYGHzt9VtZ6CBEpj0JB4RyCnsIDZvYr4A6COQWpgEKlHR5u3Z7uQeztTvaoRdSR6OpRcqLHorJ3zuaoqfszbcLorOulPthffnVvZLs++ebDOf+EhqwAcuXpsyKDzcSx9SyYdRA3hHMMmdcH+NZ96/nGb/JnFgGcNHMC377oeAUDkQoptEfzz4CfmdkY4F3AJ4ApZvZd4Gfufm9lmjgy5dttbExdvNcxeAd2vLo3q+xE7nM+e/fTjK2P09mdJOlBhlBmj+TH7z8h8tonzjywx+5ove1pnLvN5sOt2zn5uvsjC+tlOr5hf+740MkFzxGR0uq1Sqq7v+rut7n7mcA0oAW4utwNG07aOxKs2biT9o5E0ee37djN5945m1G12Yu8Xt3b3WOBWJQVazanXy9qURlAR6KbRJf3yCyqjcWorYmzaG52MdyamHHR93/PipZNRf0eUXa8ujdvpdWUifvVcNeHTtJuaCJVUMw6hTR3fxn47/CfFKGYyeJC53/uzNkcdej+WQvFoorS5fr+wxtY8tCf0wvFinlOSnrMP2ewvyvpdCWdT925pk8T2Zm/U6KrO7JeEUDc4KvvOVo1i0SqqD/7KUiRCu0DUOz5X7znmR5j9R89pZG6eOHpnVf3dqdfD4JFXvU1+Z9TF8/ukWzY1pG3tERnt7Nu8ytF9YBat+zin+5ck/6d9nZ7Vm2klPoa4+v/MEcBQaTK+tRTkL4pNFkc9S27t/Mzv3E7Tl08mGjed64Rj1vWh27q+WfPmcoB+9Vy6S3NkQvRPvOON3Bsw4T0mP/533us4O/26J/auexHqwv2gG577C98/n/X0ZXzevVxw82oj0dXWhWR6lFQKKN8k8VRm9H0dn70Iq/sc2MxyF0zlvl6Rx66f96VyanyE6nXKTQHHDf4wSPPk+iKTpdt3bKL7/6ulWVPRm/lrXpFIoOXho/KKFU/KHeyON+HYKHzoyaLe1YIPYYbzs3/ejvypJke37B/uhxGvknpXJYzEpXqkVx791O8+esP5g0IdXFL1yuKqrQqItVVlZ6CmR0A3AQcRTCd+X7gWYJV0zOA54Hz3H1HNdrXF72VochNx+ztQzDf+VG9iHzfuGcfMj6y9lG+EtprN/2V9o4EE8fWM23CaPZ2Z69AjhmYk94HuduhO2de4LXOLp7auKPgngc1ceMXH5uvAnYig1i1ho++CfzK3c81szpgP+AzwH3ufp2ZXU2Q9jqQvaDLrtjMot7y+Is5f+LYes5rmpZVAfW8pmk9PmALtSlfCe2YWXre4uHW7T2Gjox9ASElNS/QFa5z6E7CP68oXDz3X886UgFBZJCr+PCRmY0HFgDfB3D3ve6+E1gI3BKedgvBgrlBq6+ZRaV4vaXNbVnHlja30bplVzoDqLc2NU4Zx9nH9Ny8PtGVpLOrmwef28biu9bSnVPfImoawmLGeccdWlRtpNoYfOndR3HRSa8r/hcWkaqoRk/hMGAb8AMzOwZYDVwJTHH3FwHc/UUzOyjqyWZ2GXAZQENDQ9QpFdHXzKJyvJ4nnXd86yFq4jG6k87lpzbS1Z39Nb+rO5luU+uWXTz5l509rl0TgwtvWkVNLNbrKuP9auN0e5K4OT/+fVvBc0ElrkWGmmoEhRrgOOAKd19lZt+kDyuk3X0JsASC/RTK08Te9TWzqByvlwi/wqfmAL7x2+d6fKvvSkJnV3fBPY6DOOA95hJy1dfEuOTk1/G9h/5Moiv/ed8472i6kpRkPwcRqaxqZB+1AW3uviq8fxdBkNhiZocAhD+3VqFtRetrZlGpX682YvFavn1wVm14ueAEcG9/BPVxoy5unPnGg/n+wxsKpqvOb5zIu46bzrlN0xUQRIagivcU3P0lM9toZke4+7PA6QTbez4DXAJcF/5cXum29VVfM4tK+XobX36Ny29/siTXNSOrpEV9jfHV98xh/OhaDt1/FF/9zXP88umX8qaZplx56mF84oy/KUmbRKQ6qrVO4QrgNjNbC8wBvkwQDN5iZuuBt4T3B72JY+sL5tv3tRhesc97w8HjqMn5r1cTCzKSMi2a28AZR/acXM70hYVHZfV4bjj3GM485lAWzJrM05t28sunX+q1vYeMr1NAEBkGqpKS6u4tQNT+oKdXuCll1ddieKk1D09veoUv/vyZHs/Lvd6FJzbwk8c3ErcY3Z7khnOPwYG7n2zDiOEkaXrdgTROGceiuQ1Z6axGEES+et4czp4zlbcddXBWj6e9I8H7f/g4a9peiWxrfU2MZDLJEQeP4wNvmqmaRSLDhHnEXrpDRVNTkzc3N1e7GZHaOxLMu/7+rDpEo2pjPHLVaZG9itQHfk3M6EhkT/iOqo1xz+Vv4swbH+5xvXsyFq8Bka+ZOqezq5vn219jxsT9qK2J5x3yWt6yiX+6c21WXaVcN14wh7mvH9iWnyJSHWa22t2jvpir9lG59CVlNXN9QZTaWIyWjTt7XC+GsfmVPSyYNRmANRHnALzjWw9RXxNP9zqi9jhO9VJSm/gUCgiL5jZw5jH5ezwiMnQpKJRJX1JWowJI7vPmTD+gx/Ve6+zmg7c2c8O5wfDStAmj2d2ZnSuaCjR7u4PjmYXrUord7wCCdFMNFYkMXyqIVyZ9SVmNCiAAY+ri6ec1ThkXuSdCoit71bLlVqrLkeqtpOSugs633wHsSzcVkeFLPYUyKjZlNRVA/umutcRjRnfSufas7B3XUtc7YL9aPvzjJ3ht7755h8wP+lE1cTq7868sS/VW7n5iI/c89RJHHTq+Ry8lc7+DRFeSU4+YzAfnz4wcdhKR4UVBYYDyVUnNHKMvhqf+14NFA+Pqazgmo4Bd65ZdtGzcyYyJ+5HMSQ7IHJbKHT6KGdTGjbr4vjmFBdffx6udwTV++4eeawS134HIyKWgQO/lr/PJl3KaOg7BmH593LCY5U1JTQ3hJLqcVD3ST9+1ltmHjAfg2uXrePTP7enz5zdO5PG/7Mh63VQaqeWsRIvHjJ9fMT+dffSe/34sd+vl4Dxgv/qa9PW0GllkZBrxQaGvawlSonZCW7ws+CDPzSRKdDt0e+QkL8C6za8Qy5kL2NuV5M1ffzDytR9qbeeuD51EbU2cMXVxXt3bTXtHgnWbX6E2HqMzo4bRqJo4v3t2K3c8/gKt217L+/u8adYkPvmWI9QzEBnhRnRQyPfBHvXBnStfymlU6mjm47kpqctbNrH4rjVhL6F4z7e/Rm1NLB3Q9nR1k0x6j/pHHYku/u0Xf+z1eu+ec2jWcJWIjEwjOvsoauvJ3OycfPKlnEaljmY+npmSmj1s1DcT9qvNyhrq7O4ZEGpiFjlUlGtMrSmrSESAER4UeltLUKj+UL6U01Tq6KjaGKNqg7e3Lqwy+rl3zs7qJbTt2I0Xs0tNDgP++NKuXvdS7iri2jUG6774jj63QUSGpxE9fJT6YF+cM6cwcWx9UXMN+VJOM4+v+nM7N9z7LDUx4wv3rGPcqJr0dTq7utN7IvSFAzfc+xzxAovMenPA6DgfWfB6PnTq4f2+hogMP6p9RM/so77WLSp03RO//Nus/QdqYrDqM2/m4dbt/NOda9jbj6CQqb4mRl08Rkeiq6ihoinj67jt0pOUXSQygqn2US8mjq3vMazT3602MwPMus1/7bEhTVcS7l33Ep9bvq6o4Z3eXHTCdH617iV2FdoKLfRvZ8/m4pNnDvg1RWT4UlCI0N+tNnOHnN43b0bkef9899N5d0nrq5sf/UtR5y2a26CAICK9GtETzfn0Z6vN3BpCezqT3Pzwhj5tm1kTI73VZk2M9ET1QMyaPIbffmIBX1j4xgFfS0SGv6r1FMwsDjQDm9z9TDM7EPgJMAN4HjjP3XdUq31nz5nK7EPG07JxZ1Eb0EcNOdXF41y24DBufKCVeMzo6nYMj5xcronBr65ckLU3QqpMxi+ffokbH2glUWhz5BwHj6vjxguPU70iEemTag4fXQn8ARgf3r8auM/drzOzq8P7V1WrcX1d6ZxvyOntRx0cLgpz9quNc+FNq3o8ty4O//GeOT0CT6pncsWUccw+ZBwfvW01e7p7PL2HM448iP/+x7/t/UQRkRxVCQpmNg14J/Al4JPh4YXAKeHtW4DfUaWg0N+Vzh89pZEbH1hPXTzO3u5uTnvDZN75nw9RF4+zu7MLMwvSSLud+riBGZef2siFJzYUvO7FNz3Gw63teR9PmTV5DN+5+HhlFolIv1Wrp/ANYDGQ+ek1xd1fBHD3F83soKgnmtllwGUADQ0NZWlcX7OPMnsVYMw/fBL3/XErv3hqCwCJrlRmkNMZDh25Gb+44k29foA3b2gvGBBOO2ISR009gAWHT9JQkYgMWMWDgpmdCWx199Vmdkpfn+/uS4AlEKxTKG3rAoWyj6LWNOT2Kn7x9Eu9vkZ9PMare3sfC3pw/faCj1904us4ffbBvV5HRKQY1cg+mgecbWbPA3cAp5nZj4EtZnYIQPizZ6H/CsmXffRw63bmXX8/F9+0innX38+Klk2R9ZOKUUyKK8CCwyflfeyIKWMUEESkpCreU3D3a4BrAMKewqfd/WIzuwG4BLgu/Lm80m3LlFvCAkivcs6cZ/jx+08gUWCT+yj1NdEprqmNdDKznZpmTmR+40QeyhhCOmhsHf/+929UQBCRkhtMi9euA5aa2aXAC8B7qtyerJXOazbupCai1tCFN60idTS1ruC8pmksbW4jZpa1bSZAbQy+t6iJBbMmZx2/9u6nuPWxF9L3F81tSK8t+NEHTqJ5QzsPrt+uuQMRKauqBgV3/x1BlhHu3g6cXs32FPL0plfoSGR/wOducJ9MOr/42Hwap4zjytNnsfJP7Vx++5NZ53Qm4dD9R2Uda92yKysgANy68gUWnTQjq8egYCAi5aYVzUVo70jwxZ8/0+N4Xc5q5fqaeHryeOLYesaPjo65m1/J3q+hZePOyPPyHRcRKRcFhSJETSbvV9fzrcudPP7r7ugidU/8ZQdfu/dZmjcE8wRz8ux4lu+4iEi5KCgUISpFNenw+bOOLFgfKV9P4Rv3tfKt+1s5978f4x9veozGKeNYNDd7zcWiuQ1ahCYiFTeYJpoHncw1CVGb8Zw9ZypvO+rgHpvspBx56P7Uxi29YC3KQ63tNG9o5wsL38iik2YUXWtJRKQcFBTyiKp99MhVp/UIALl7MWSaOLaeC06Yzq0rX4h8POXB9dtpmjmRxinjFAxEpKo0fBQhqgz24mVrAThm+gFF777W3pFgaXNbr+cVWqAmIlJJCgoRoiaWU7WPBnqd3JUO8xuVaioig4eGjyL0d+e1Yq5TXxvj2xccy5q2V7QQTUQGHfUUIvRn57W+XOf02QfzybceoYAgIoOOuZel0GhFNDU1eXNzc9mun1sRtdTnFPNcEZFSM7PV7t4U9ZiGjwoolFkExe/OFnWdvu7sJiJSCRo+6qd8GUrtHYmyPldEpJwUFPppIBlKpcpuEhEpNQWFfhpIhlKpsptEREpNQaGfBpKhVKrsJhGRUqt49pGZTQduBQ4GksASd/+mmR0I/ASYATwPnOfuOwpdayDZR8Vk/kTthNaf6wykDSIipTbYso+6gE+5+xNmNg5YbWa/Ad4L3Ofu15nZ1cDVwFXlaEAxmT+FdkLL1FuGUiEDea6ISDlUfPjI3V909yfC27uAPwBTgYXALeFptwDvKsfrF5P5k28ntNYtu8rRJBGRQaOqcwpmNgM4FlgFTHH3FyEIHMBBeZ5zmZk1m1nztm3b+vyaxWT+aCc0ERmpqhYUzGwssAz4uLv/tdjnufsSd29y96bJkyf3+XWjMn/2dnfzyu696d6CdkITkZGqKkHBzGoJAsJt7v7T8PAWMzskfPwQYGs5Xjs386cmFuyi9tHbnmTe9fezomWTdkITkRGrGtlHRjBn8LK7fzzj+A1Ae8ZE84HuvrjQtQaafbRu81/54K3NJLr29RxG1cZ45KrTmDi2vqjsIxGRoWawZR/NA/4ReMrMWsJjnwGuA5aa2aXAC8B7ytmIiWPr2X90LXXxWFZQSM0vTBxbr53QRGTEqXhQcPeH6bnXTMrplWyLVhaLiGQb0SuatbJYRCTbiC+dffacqcxrnKSVxSIiKCgAWlksIpIyooePREQkm4KCiIikKSiIiEiagoKIiKQpKIiISFrFy1yUkpltA/5S7XYAk4Dt1W5EPwzVdsPQbftQbTcM3bar3T29zt0jK4oO6aAwWJhZc746IoPZUG03DN22D9V2w9Btu9rdNxo+EhGRNAUFERFJU1AojSXVbkA/DdV2w9Bt+1BtNwzdtqvdfaA5BRERSVNPQURE0hQUREQkTUGhD8xsupk9YGZ/MLN1ZnZlePxfzGyTmbWE/95R7bZGMbPnzeypsI3N4bEDzew3ZrY+/Dmh2u3MZGZHZLyvLWb2VzP7+GB9z83sZjPbamZPZxzL+x6b2TVm1mpmz5rZGdVpdd5232BmfzSztWb2MzM7IDw+w8x2Z7z3/1WtdoftiWp73r+PQf6e/ySjzc+ndqes6Hvu7vpX5D/gEOC48PY44DlgNvAvwKer3b4i2v88MCnn2FeAq8PbVwPXV7udBdofB14CXjdY33NgAXAc8HRv73H4t7MGqAdmAn8C4oOo3W8FasLb12e0e0bmedX+l6ftkX8fg/09z3n8q8C1lX7P1VPoA3d/0d2fCG/vAv4ATK1uqwZsIXBLePsW4F3Va0qvTgf+5O6DYRV7JHd/EHg553C+93ghcIe7J9x9A9AKnFCJduaKare73+vuXeHdx4BpFW9YEfK85/kM6vc8xcwMOA+4vaKNQsNH/WZmM4BjgVXhocvDbvbNg20IJoMD95rZajO7LDw2xd1fhCDoAQdVrXW9O5/s/5MMhfcc8r/HU4GNGee1MXi/ZLwf+GXG/Zlm9qSZ/Z+Zza9Wo3oR9fcxVN7z+cAWd1+fcawi77mCQj+Y2VhgGfBxd/8r8F3g9cAc4EWCbt9gNM/djwPeDnzUzBZUu0HFMrM64GzgzvDQUHnPC7GIY4MuR9zMPgt0AbeFh14EGtz9WOCTwP+Y2fhqtS+PfH8fQ+I9By4g+wtQxd5zBYU+MrNagoBwm7v/FMDdt7h7t7snge9Rpe5ob9x9c/hzK/AzgnZuMbNDAMKfW6vXwoLeDjzh7ltg6LznoXzvcRswPeO8acDmCretIDO7BDgTuMjDwe1w6KU9vL2aYFx+VvVa2VOBv4+h8J7XAH8P/CR1rJLvuYJCH4TjfN8H/uDuX8s4fkjGae8Gns59brWZ2RgzG5e6TTCJ+DSwArgkPO0SYHl1WtirrG9OQ+E9z5DvPV4BnG9m9WY2Ezgc+H0V2hfJzN4GXAWc7e6vZRyfbGbx8PZhBO3+c3VaGa3A38egfs9Dbwb+6O5tqQMVfc+rMes+VP8BbyLoaq4FWsJ/7wB+BDwVHl8BHFLttka0/TCCrIs1wDrgs+HxicB9wPrw54HVbmtE2/cD2oH9M44NyvecIHC9CHQSfCu9tNB7DHyW4Fvfs8DbB1m7WwnG31N/6/8VnntO+De0BngCOGsQvud5/z4G83seHv8h8OGccyv2nqvMhYiIpGn4SERE0hQUREQkTUFBRETSFBRERCRNQUFERNIUFGTYMbN3m5mb2RvyPP47Myu4IXpYZfPT4e33mtmh4e2FZnZ3xnnXmFlrxv2zzGxFP9r8XjO7sYjzOvp6bZG+UFCQ4egC4GGCWkml8F7g0PD2o8DcjMfmAn81s1Q9o5OBR0r0uiIVp6Agw0pYl2oewQKm88Njo83sjrA42k+A0Rnnd2TcPtfMfphzvXOBJuC2sLZ9B/CKmTWGp0wlKHtycnj/ZODRcAXqMjN7PPw3L7zemLBA2+NhcbOFEb/DO81spZlNMrOZ4e3HzeyLmb+nmd1nZk9YsEfGwvD4Fy3c5yO8/yUz+1i/3kwZkRQUZLh5F/Ard38OeNnMjgM+Arzm7kcDXwKOL/Zi7n4X0ExQ+2eOu+8m6C2cbGZHEKxSfiy8XwMcDTwOfBP4urv/LcFq1JvCS34WuD88fipwQ1h2BAiGvgj2XHiHu28Pr/Pd8PyXMpq2B3i3BwUOTwW+mlGG5ZLwWjGCwHgbIkWqqXYDRErsAuAb4e07wvuHA98CcPe1ZrZ2gK/xCEGPIA6sJKidcy1BKfVn3X2Pmb0ZmB18TgMwPqw99Vbg7NR8BTAKaAhvn0rQK3mrB9V3Iej1nBPe/hHBZjcQVPv8cljpNknQY5ni7s+bWbuZHQtMAZ70sJCaSDEUFGTYMLOJwGnAUWbmBB/aDjxJ/vLImcdHFflSjwJXhNf/nrvvMrNRwCnsm0+IAXPDnkVmGw04x92fzTl+IkGBs8MIql8252ljykXAZOB4d+80s+cz2n8TwTzIwcDNRf5OIoCGj2R4ORe41d1f5+4z3H06sIGggNhFAGZ2FMEQT8oWM/ubcKjl3Xmuu4tg+9WUZwgmnucTBBwICsZ9mCBgANwLXJ56gpnNCW/+GrgiDA6E3+hT/kJQMvlWMzsyPPYI+ybML8o4d39gaxgQTiXYojTlZ8DbgL8NX0+kaAoKMpxcQPCBmGkZwf62Y8Nho8Vkl0q+GrgHuJ+gYmWUHwL/ZcGG6aM9qCK5Ctju7p3hOSsJvuWngsLHgKZwcvsZgoAB8EWgFlhrwYbt6cljgLAHcRFwp5m9HriSYEOkxwkCQcpt4fWbw/P/mHGNvcADwFJ3787zO4lEUpVUkWEm7PU8AbzHs7dzFOmVegoiw4iZzSbYB+E+BQTpD/UUREQkTT0FERFJU1AQEZE0BQUREUlTUBARkTQFBRERSfv/xgpsJjgDGfkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "#Code task 36#\n", - "#Use ski_data's `plot()` method to create a scatterplot (kind='scatter') with 'AdultWeekday' on the x-axis and\n", - "#'AdultWeekend' on the y-axis\n", - "ski_data.plot(x='AdultWeekday', y='AdultWeekend', kind='scatter');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A couple of observations can be made. Firstly, there is a clear line where weekend and weekday prices are equal. Weekend prices being higher than weekday prices seem restricted to sub $100 resorts. Recall from the boxplot earlier that the distribution for weekday and weekend prices in Montana seemed equal. Is this confirmed in the actual data for each resort? Big Mountain resort is in Montana, so the relationship between these quantities in this state are particularly relevant." - ] - }, - { - "cell_type": "code", - "execution_count": 171, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
AdultWeekendAdultWeekday
14142.042.0
14263.063.0
14349.049.0
14448.048.0
14546.046.0
14639.039.0
14750.050.0
14867.067.0
14947.047.0
15039.039.0
15181.081.0
\n", - "
" - ], - "text/plain": [ - " AdultWeekend AdultWeekday\n", - "141 42.0 42.0\n", - "142 63.0 63.0\n", - "143 49.0 49.0\n", - "144 48.0 48.0\n", - "145 46.0 46.0\n", - "146 39.0 39.0\n", - "147 50.0 50.0\n", - "148 67.0 67.0\n", - "149 47.0 47.0\n", - "150 39.0 39.0\n", - "151 81.0 81.0" - ] - }, - "execution_count": 171, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#Code task 37#\n", - "#Use the loc accessor on ski_data to print the 'AdultWeekend' and 'AdultWeekday' columns for Montana only\n", - "ski_data.loc[ski_data.state == 'Montana', ['AdultWeekend', 'AdultWeekday']]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Is there any reason to prefer weekend or weekday prices? Which is missing the least?" - ] - }, - { - "cell_type": "code", - "execution_count": 172, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "AdultWeekend 4\n", - "AdultWeekday 7\n", - "dtype: int64" - ] - }, - "execution_count": 172, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ski_data[['AdultWeekend', 'AdultWeekday']].isnull().sum()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Weekend prices have the least missing values of the two, so drop the weekday prices and then keep just the rows that have weekend price." - ] - }, - { - "cell_type": "code", - "execution_count": 177, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0 85.0\n", - "1 53.0\n", - "2 34.0\n", - "3 89.0\n", - "4 78.0\n", - " ... \n", - "323 48.0\n", - "326 42.0\n", - "327 59.0\n", - "328 49.0\n", - "329 49.0\n", - "Name: AdultWeekend, Length: 277, dtype: float64" - ] - }, - "execution_count": 177, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#ski_data.drop(columns='AdultWeekday', inplace=True)\n", - "ski_data.dropna(subset=['AdultWeekend'], inplace=True)\n", - "ski_data['AdultWeekend']" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(277, 25)" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ski_data.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Perform a final quick check on the data." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2.11.1 Number Of Missing Values By Row - Resort" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Having dropped rows missing the desired target ticket price, what degree of missingness do you have for the remaining rows?" - ] - }, - { - "cell_type": "code", - "execution_count": 178, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
count%
329520.0
62520.0
141520.0
86520.0
74520.0
146520.0
184416.0
108416.0
198416.0
39416.0
\n", - "
" - ], - "text/plain": [ - " count %\n", - "329 5 20.0\n", - "62 5 20.0\n", - "141 5 20.0\n", - "86 5 20.0\n", - "74 5 20.0\n", - "146 5 20.0\n", - "184 4 16.0\n", - "108 4 16.0\n", - "198 4 16.0\n", - "39 4 16.0" - ] - }, - "execution_count": 178, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "missing = pd.concat([ski_data.isnull().sum(axis=1), 100 * ski_data.isnull().mean(axis=1)], axis=1)\n", - "missing.columns=['count', '%']\n", - "missing.sort_values(by='count', ascending=False).head(10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These seem possibly curiously quantized..." - ] - }, - { - "cell_type": "code", - "execution_count": 179, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0., 4., 8., 12., 16., 20.])" - ] - }, - "execution_count": 179, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "missing['%'].unique()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Yes, the percentage of missing values per row appear in multiples of 4." - ] - }, - { - "cell_type": "code", - "execution_count": 180, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.0 107\n", - "4.0 94\n", - "8.0 45\n", - "12.0 15\n", - "16.0 10\n", - "20.0 6\n", - "Name: %, dtype: int64" - ] - }, - "execution_count": 180, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "missing['%'].value_counts()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is almost as if values have been removed artificially... Nevertheless, what you don't know is how useful the missing features are in predicting ticket price. You shouldn't just drop rows that are missing several useless features." - ] - }, - { - "cell_type": "code", - "execution_count": 181, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Int64Index: 277 entries, 0 to 329\n", - "Data columns (total 25 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 Name 277 non-null object \n", - " 1 Region 277 non-null object \n", - " 2 state 277 non-null object \n", - " 3 summit_elev 277 non-null int64 \n", - " 4 vertical_drop 277 non-null int64 \n", - " 5 base_elev 277 non-null int64 \n", - " 6 trams 277 non-null int64 \n", - " 7 fastSixes 277 non-null int64 \n", - " 8 fastQuads 277 non-null int64 \n", - " 9 quad 277 non-null int64 \n", - " 10 triple 277 non-null int64 \n", - " 11 double 277 non-null int64 \n", - " 12 surface 277 non-null int64 \n", - " 13 total_chairs 277 non-null int64 \n", - " 14 Runs 274 non-null float64\n", - " 15 TerrainParks 233 non-null float64\n", - " 16 LongestRun_mi 272 non-null float64\n", - " 17 SkiableTerrain_ac 275 non-null float64\n", - " 18 Snow Making_ac 240 non-null float64\n", - " 19 daysOpenLastYear 233 non-null float64\n", - " 20 yearsOpen 277 non-null float64\n", - " 21 averageSnowfall 268 non-null float64\n", - " 22 AdultWeekend 277 non-null float64\n", - " 23 projectedDaysOpen 236 non-null float64\n", - " 24 NightSkiing_ac 163 non-null float64\n", - "dtypes: float64(11), int64(11), object(3)\n", - "memory usage: 56.3+ KB\n" - ] - } - ], - "source": [ - "ski_data.info()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There are still some missing values, and it's good to be aware of this, but leave them as is for now." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.12 Save data" - ] - }, - { - "cell_type": "code", - "execution_count": 182, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(277, 25)" - ] - }, - "execution_count": 182, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ski_data.shape" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Save this to your data directory, separately. Note that you were provided with the data in `raw_data` and you should saving derived data in a separate location. This guards against overwriting our original data." - ] - }, - { - "cell_type": "code", - "execution_count": 183, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Directory ../data was created.\n", - "Writing file. \"../data/ski_data_cleaned.csv\"\n" - ] - } - ], - "source": [ - "# save the data to a new csv file\n", - "datapath = '../data'\n", - "save_file(ski_data, 'ski_data_cleaned.csv', datapath)" - ] - }, - { - "cell_type": "code", - "execution_count": 184, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Writing file. \"../data/state_summary.csv\"\n" - ] - } - ], - "source": [ - "# save the state_summary separately.\n", - "datapath = '../data'\n", - "save_file(state_summary, 'state_summary.csv', datapath)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2.13 Summary" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Q: 3** Write a summary statement that highlights the key processes and findings from this notebook. This should include information such as the original number of rows in the data, whether our own resort was actually present etc. What columns, if any, have been removed? Any rows? Summarise the reasons why. Were any other issues found? What remedial actions did you take? State where you are in the project. Can you confirm what the target feature is for your desire to predict ticket price? How many rows were left in the data? Hint: this is a great opportunity to reread your notebook, check all cells have been executed in order and from a \"blank slate\" (restarting the kernel will do this), and that your workflow makes sense and follows a logical pattern. As you do this you can pull out salient information for inclusion in this summary. Thus, this section will provide an important overview of \"what\" and \"why\" without having to dive into the \"how\" or any unproductive or inconclusive steps along the way." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**A: 3** Your answer here" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For the data wrangling process, the data info is firstly inspected. " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - }, - "toc": { - "base_numbering": 1, - "nav_menu": {}, - "number_sections": true, - "sideBar": true, - "skip_h1_title": false, - "title_cell": "Table of Contents", - "title_sidebar": "Contents", - "toc_cell": false, - "toc_position": {}, - "toc_section_display": true, - "toc_window_display": true - }, - "varInspector": { - "cols": { - "lenName": 16, - "lenType": 16, - "lenVar": 40 - }, - "kernels_config": { - "python": { - "delete_cmd_postfix": "", - "delete_cmd_prefix": "del ", - "library": "var_list.py", - "varRefreshCmd": "print(var_dic_list())" - }, - "r": { - "delete_cmd_postfix": ") ", - "delete_cmd_prefix": "rm(", - "library": "var_list.r", - "varRefreshCmd": "cat(var_dic_list()) " - } - }, - "types_to_exclude": [ - "module", - "function", - "builtin_function_or_method", - "instance", - "_Feature" - ], - "window_display": false - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} From c3932f2e643868313d3ea229ce1713ee221e3127 Mon Sep 17 00:00:00 2001 From: JIahui-01 <52976459+JIahui-01@users.noreply.github.com> Date: Tue, 25 Apr 2023 00:37:49 -0500 Subject: [PATCH 3/7] Delete README.md --- README.md | 35 ----------------------------------- 1 file changed, 35 deletions(-) delete mode 100644 README.md diff --git a/README.md b/README.md deleted file mode 100644 index 2c97ce9fb..000000000 --- a/README.md +++ /dev/null @@ -1,35 +0,0 @@ -# DataScienceGuidedCapstone - -Hello students! -Welcome to the Data Science Guided Capstone! - -## Getting Started - -Start by forking this repository to your personal GitHub account and cloning the fork to your local machine. - -**Note**: If forking and cloning a repo is new to you and/or github is new to you then it is strongly suggested to use [GitHub desktop](https://desktop.github.com/) and follow instructions in the docs [here](https://docs.github.com/en/free-pro-team@latest/desktop/contributing-and-collaborating-using-github-desktop/cloning-and-forking-repositories-from-github-desktop). - -From https://github.com/springboard-curriculum/DataScienceGuidedCapstone press the green "code" dropdown and then press "Open with GitHub Desktop". This will fork the springboard repository into your own github account and then clone that fork to your local machine - it is in here that you will do your work and push your changes back to your fork of the repo in your own github account. - -You will find the notebooks in the Notebooks/ directory. - -You will find instructions on how to complete and submit each step of the Guided Capstone in the course materials. Each subunit will focus on one step of the Capstone, corresponding to a step of the Data Science Method. Find the Jupyter Notebook corresponding to the subunit you are working on, and open it. Follow along as you are guided through the work, and fill in the blanks! - -When you are done with the notebook, push the changes to your personal GitHub account. - -## Pipenv - -The `Pipefile` has all the python dependencies and requirements you should need. So you can use [Pipenv](https://pipenv-fork.readthedocs.io/en/latest/) is you want to create a seperate python enviornment for this project. - -To install pipenv see [here](https://pipenv-fork.readthedocs.io/en/latest/#install-pipenv-today). - -To create the env and install the required libraries (once you have pipenv installed) you can just do: -``` -pipenv install -``` - -Then to activate the env and launch jupyter from this env you can do something like the below two commands: -``` -pipenv shell -jupyter lab -``` From 010fcb84b622edc097435020ea974a7d49813f7a Mon Sep 17 00:00:00 2001 From: jiahui-01 Date: Tue, 25 Apr 2023 00:44:54 -0500 Subject: [PATCH 4/7] updates --- Notebooks/02_data_wrangling_worked.ipynb | 5060 ++++++++++++++++++++++ data/ski_data_cleaned.csv | 278 ++ data/state_summary.csv | 36 + 3 files changed, 5374 insertions(+) create mode 100644 Notebooks/02_data_wrangling_worked.ipynb create mode 100644 data/ski_data_cleaned.csv create mode 100644 data/state_summary.csv diff --git a/Notebooks/02_data_wrangling_worked.ipynb b/Notebooks/02_data_wrangling_worked.ipynb new file mode 100644 index 000000000..1cd389c10 --- /dev/null +++ b/Notebooks/02_data_wrangling_worked.ipynb @@ -0,0 +1,5060 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2 Data wrangling" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.1 Contents\n", + "* [2 Data wrangling](#2_Data_wrangling)\n", + " * [2.1 Contents](#2.1_Contents)\n", + " * [2.2 Introduction](#2.2_Introduction)\n", + " * [2.2.1 Recap Of Data Science Problem](#2.2.1_Recap_Of_Data_Science_Problem)\n", + " * [2.2.2 Introduction To Notebook](#2.2.2_Introduction_To_Notebook)\n", + " * [2.3 Imports](#2.3_Imports)\n", + " * [2.4 Objectives](#2.4_Objectives)\n", + " * [2.5 Load The Ski Resort Data](#2.5_Load_The_Ski_Resort_Data)\n", + " * [2.6 Explore The Data](#2.6_Explore_The_Data)\n", + " * [2.6.1 Find Your Resort Of Interest](#2.6.1_Find_Your_Resort_Of_Interest)\n", + " * [2.6.2 Number Of Missing Values By Column](#2.6.2_Number_Of_Missing_Values_By_Column)\n", + " * [2.6.3 Categorical Features](#2.6.3_Categorical_Features)\n", + " * [2.6.3.1 Unique Resort Names](#2.6.3.1_Unique_Resort_Names)\n", + " * [2.6.3.2 Region And State](#2.6.3.2_Region_And_State)\n", + " * [2.6.3.3 Number of distinct regions and states](#2.6.3.3_Number_of_distinct_regions_and_states)\n", + " * [2.6.3.4 Distribution Of Resorts By Region And State](#2.6.3.4_Distribution_Of_Resorts_By_Region_And_State)\n", + " * [2.6.3.5 Distribution Of Ticket Price By State](#2.6.3.5_Distribution_Of_Ticket_Price_By_State)\n", + " * [2.6.3.5.1 Average weekend and weekday price by state](#2.6.3.5.1_Average_weekend_and_weekday_price_by_state)\n", + " * [2.6.3.5.2 Distribution of weekday and weekend price by state](#2.6.3.5.2_Distribution_of_weekday_and_weekend_price_by_state)\n", + " * [2.6.4 Numeric Features](#2.6.4_Numeric_Features)\n", + " * [2.6.4.1 Numeric data summary](#2.6.4.1_Numeric_data_summary)\n", + " * [2.6.4.2 Distributions Of Feature Values](#2.6.4.2_Distributions_Of_Feature_Values)\n", + " * [2.6.4.2.1 SkiableTerrain_ac](#2.6.4.2.1_SkiableTerrain_ac)\n", + " * [2.6.4.2.2 Snow Making_ac](#2.6.4.2.2_Snow_Making_ac)\n", + " * [2.6.4.2.3 fastEight](#2.6.4.2.3_fastEight)\n", + " * [2.6.4.2.4 fastSixes and Trams](#2.6.4.2.4_fastSixes_and_Trams)\n", + " * [2.7 Derive State-wide Summary Statistics For Our Market Segment](#2.7_Derive_State-wide_Summary_Statistics_For_Our_Market_Segment)\n", + " * [2.8 Drop Rows With No Price Data](#2.8_Drop_Rows_With_No_Price_Data)\n", + " * [2.9 Review distributions](#2.9_Review_distributions)\n", + " * [2.10 Population data](#2.10_Population_data)\n", + " * [2.11 Target Feature](#2.11_Target_Feature)\n", + " * [2.11.1 Number Of Missing Values By Row - Resort](#2.11.1_Number_Of_Missing_Values_By_Row_-_Resort)\n", + " * [2.12 Save data](#2.12_Save_data)\n", + " * [2.13 Summary](#2.13_Summary)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.2 Introduction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This step focuses on collecting your data, organizing it, and making sure it's well defined. Paying attention to these tasks will pay off greatly later on. Some data cleaning can be done at this stage, but it's important not to be overzealous in your cleaning before you've explored the data to better understand it." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2.1 Recap Of Data Science Problem" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The purpose of this data science project is to come up with a pricing model for ski resort tickets in our market segment. Big Mountain suspects it may not be maximizing its returns, relative to its position in the market. It also does not have a strong sense of what facilities matter most to visitors, particularly which ones they're most likely to pay more for. This project aims to build a predictive model for ticket price based on a number of facilities, or properties, boasted by resorts (*at the resorts).* \n", + "This model will be used to provide guidance for Big Mountain's pricing and future facility investment plans." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.2.2 Introduction To Notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notebooks grow organically as we explore our data. If you used paper notebooks, you could discover a mistake and cross out or revise some earlier work. Later work may give you a reason to revisit earlier work and explore it further. The great thing about Jupyter notebooks is that you can edit, add, and move cells around without needing to cross out figures or scrawl in the margin. However, this means you can lose track of your changes easily. If you worked in a regulated environment, the company may have a a policy of always dating entries and clearly crossing out any mistakes, with your initials and the date.\n", + "\n", + "**Best practice here is to commit your changes using a version control system such as Git.** Try to get into the habit of adding and committing your files to the Git repository you're working in after you save them. You're are working in a Git repository, right? If you make a significant change, save the notebook and commit it to Git. In fact, if you're about to make a significant change, it's a good idea to commit before as well. Then if the change is a mess, you've got the previous version to go back to.\n", + "\n", + "**Another best practice with notebooks is to try to keep them organized with helpful headings and comments.** Not only can a good structure, but associated headings help you keep track of what you've done and your current focus. Anyone reading your notebook will have a much easier time following the flow of work. Remember, that 'anyone' will most likely be you. Be kind to future you!\n", + "\n", + "In this notebook, note how we try to use well structured, helpful headings that frequently are self-explanatory, and we make a brief note after any results to highlight key takeaways. This is an immense help to anyone reading your notebook and it will greatly help you when you come to summarise your findings. **Top tip: jot down key findings in a final summary at the end of the notebook as they arise. You can tidy this up later.** This is a great way to ensure important results don't get lost in the middle of your notebooks." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this, and subsequent notebooks, there are coding tasks marked with `#Code task n#` with code to complete. The `___` will guide you to where you need to insert code." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.3 Imports" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Placing your imports all together at the start of your notebook means you only need to consult one place to check your notebook's dependencies. By all means import something 'in situ' later on when you're experimenting, but if the imported dependency ends up being kept, you should subsequently move the import statement here with the rest." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "#Code task 1#\n", + "#Import pandas, matplotlib.pyplot, and seaborn in the correct lines below\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import os\n", + "\n", + "from library.sb_utils import save_file\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.4 Objectives" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are some fundamental questions to resolve in this notebook before you move on.\n", + "\n", + "* Do you think you may have the data you need to tackle the desired question?\n", + " * Have you identified the required target value?\n", + " * Do you have potentially useful features?\n", + "* Do you have any fundamental issues with the data?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.5 Load The Ski Resort Data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# the supplied CSV data file is the raw_data directory\n", + "ski_data = pd.read_csv('../raw_data/ski_resort_data.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Good first steps in auditing the data are the info method and displaying the first few records with head." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 330 entries, 0 to 329\n", + "Data columns (total 27 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Name 330 non-null object \n", + " 1 Region 330 non-null object \n", + " 2 state 330 non-null object \n", + " 3 summit_elev 330 non-null int64 \n", + " 4 vertical_drop 330 non-null int64 \n", + " 5 base_elev 330 non-null int64 \n", + " 6 trams 330 non-null int64 \n", + " 7 fastEight 164 non-null float64\n", + " 8 fastSixes 330 non-null int64 \n", + " 9 fastQuads 330 non-null int64 \n", + " 10 quad 330 non-null int64 \n", + " 11 triple 330 non-null int64 \n", + " 12 double 330 non-null int64 \n", + " 13 surface 330 non-null int64 \n", + " 14 total_chairs 330 non-null int64 \n", + " 15 Runs 326 non-null float64\n", + " 16 TerrainParks 279 non-null float64\n", + " 17 LongestRun_mi 325 non-null float64\n", + " 18 SkiableTerrain_ac 327 non-null float64\n", + " 19 Snow Making_ac 284 non-null float64\n", + " 20 daysOpenLastYear 279 non-null float64\n", + " 21 yearsOpen 329 non-null float64\n", + " 22 averageSnowfall 316 non-null float64\n", + " 23 AdultWeekday 276 non-null float64\n", + " 24 AdultWeekend 279 non-null float64\n", + " 25 projectedDaysOpen 283 non-null float64\n", + " 26 NightSkiing_ac 187 non-null float64\n", + "dtypes: float64(13), int64(11), object(3)\n", + "memory usage: 69.7+ KB\n" + ] + } + ], + "source": [ + "#Code task 2#\n", + "#Call the info method on ski_data to see a summary of the data\n", + "ski_data.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`AdultWeekday` is the price of an adult weekday ticket. `AdultWeekend` is the price of an adult weekend ticket. The other columns are potential features." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This immediately raises the question of what quantity will you want to model? You know you want to model the ticket price, but you realise there are two kinds of ticket price!" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameRegionstatesummit_elevvertical_dropbase_elevtramsfastEightfastSixesfastQuads...LongestRun_miSkiableTerrain_acSnow Making_acdaysOpenLastYearyearsOpenaverageSnowfallAdultWeekdayAdultWeekendprojectedDaysOpenNightSkiing_ac
0Alyeska ResortAlaskaAlaska3939250025010.002...1.01610.0113.0150.060.0669.065.085.0150.0550.0
1Eaglecrest Ski AreaAlaskaAlaska26001540120000.000...2.0640.060.045.044.0350.047.053.090.0NaN
2Hilltop Ski AreaAlaskaAlaska2090294179600.000...1.030.030.0150.036.069.030.034.0152.030.0
3Arizona SnowbowlArizonaArizona115002300920000.010...2.0777.0104.0122.081.0260.089.089.0122.0NaN
4Sunrise Park ResortArizonaArizona11100180092000NaN01...1.2800.080.0115.049.0250.074.078.0104.080.0
\n", + "

5 rows × 27 columns

\n", + "
" + ], + "text/plain": [ + " Name Region state summit_elev vertical_drop \\\n", + "0 Alyeska Resort Alaska Alaska 3939 2500 \n", + "1 Eaglecrest Ski Area Alaska Alaska 2600 1540 \n", + "2 Hilltop Ski Area Alaska Alaska 2090 294 \n", + "3 Arizona Snowbowl Arizona Arizona 11500 2300 \n", + "4 Sunrise Park Resort Arizona Arizona 11100 1800 \n", + "\n", + " base_elev trams fastEight fastSixes fastQuads ... LongestRun_mi \\\n", + "0 250 1 0.0 0 2 ... 1.0 \n", + "1 1200 0 0.0 0 0 ... 2.0 \n", + "2 1796 0 0.0 0 0 ... 1.0 \n", + "3 9200 0 0.0 1 0 ... 2.0 \n", + "4 9200 0 NaN 0 1 ... 1.2 \n", + "\n", + " SkiableTerrain_ac Snow Making_ac daysOpenLastYear yearsOpen \\\n", + "0 1610.0 113.0 150.0 60.0 \n", + "1 640.0 60.0 45.0 44.0 \n", + "2 30.0 30.0 150.0 36.0 \n", + "3 777.0 104.0 122.0 81.0 \n", + "4 800.0 80.0 115.0 49.0 \n", + "\n", + " averageSnowfall AdultWeekday AdultWeekend projectedDaysOpen \\\n", + "0 669.0 65.0 85.0 150.0 \n", + "1 350.0 47.0 53.0 90.0 \n", + "2 69.0 30.0 34.0 152.0 \n", + "3 260.0 89.0 89.0 122.0 \n", + "4 250.0 74.0 78.0 104.0 \n", + "\n", + " NightSkiing_ac \n", + "0 550.0 \n", + "1 NaN \n", + "2 30.0 \n", + "3 NaN \n", + "4 80.0 \n", + "\n", + "[5 rows x 27 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 3#\n", + "#Call the head method on ski_data to print the first several rows of the data\n", + "ski_data.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The output above suggests you've made a good start getting the ski resort data organized. You have plausible column headings. You can already see you have a missing value in the `fastEight` column" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.6 Explore The Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.6.1 Find Your Resort Of Interest" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Your resort of interest is called Big Mountain Resort. Check it's in the data:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
151
NameBig Mountain Resort
RegionMontana
stateMontana
summit_elev6817
vertical_drop2353
base_elev4464
trams0
fastEight0.0
fastSixes0
fastQuads3
quad2
triple6
double0
surface3
total_chairs14
Runs105.0
TerrainParks4.0
LongestRun_mi3.3
SkiableTerrain_ac3000.0
Snow Making_ac600.0
daysOpenLastYear123.0
yearsOpen72.0
averageSnowfall333.0
AdultWeekday81.0
AdultWeekend81.0
projectedDaysOpen123.0
NightSkiing_ac600.0
\n", + "
" + ], + "text/plain": [ + " 151\n", + "Name Big Mountain Resort\n", + "Region Montana\n", + "state Montana\n", + "summit_elev 6817\n", + "vertical_drop 2353\n", + "base_elev 4464\n", + "trams 0\n", + "fastEight 0.0\n", + "fastSixes 0\n", + "fastQuads 3\n", + "quad 2\n", + "triple 6\n", + "double 0\n", + "surface 3\n", + "total_chairs 14\n", + "Runs 105.0\n", + "TerrainParks 4.0\n", + "LongestRun_mi 3.3\n", + "SkiableTerrain_ac 3000.0\n", + "Snow Making_ac 600.0\n", + "daysOpenLastYear 123.0\n", + "yearsOpen 72.0\n", + "averageSnowfall 333.0\n", + "AdultWeekday 81.0\n", + "AdultWeekend 81.0\n", + "projectedDaysOpen 123.0\n", + "NightSkiing_ac 600.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 4#\n", + "#Filter the ski_data dataframe to display just the row for our resort with the name 'Big Mountain Resort'\n", + "#Hint: you will find that the transpose of the row will give a nicer output. DataFrame's do have a\n", + "#transpose method, but you can access this conveniently with the `T` property.\n", + "ski_data[ski_data.Name == \"Big Mountain Resort\"].T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It's good that your resort doesn't appear to have any missing values." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.6.2 Number Of Missing Values By Column" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Count the number of missing values in each column and sort them." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
count%
Name00.000000
total_chairs00.000000
double00.000000
triple00.000000
quad00.000000
fastQuads00.000000
fastSixes00.000000
surface00.000000
trams00.000000
base_elev00.000000
vertical_drop00.000000
summit_elev00.000000
state00.000000
Region00.000000
yearsOpen10.303030
SkiableTerrain_ac30.909091
Runs41.212121
LongestRun_mi51.515152
averageSnowfall144.242424
Snow Making_ac4613.939394
projectedDaysOpen4714.242424
TerrainParks5115.454545
daysOpenLastYear5115.454545
AdultWeekend5115.454545
AdultWeekday5416.363636
NightSkiing_ac14343.333333
fastEight16650.303030
\n", + "
" + ], + "text/plain": [ + " count %\n", + "Name 0 0.000000\n", + "total_chairs 0 0.000000\n", + "double 0 0.000000\n", + "triple 0 0.000000\n", + "quad 0 0.000000\n", + "fastQuads 0 0.000000\n", + "fastSixes 0 0.000000\n", + "surface 0 0.000000\n", + "trams 0 0.000000\n", + "base_elev 0 0.000000\n", + "vertical_drop 0 0.000000\n", + "summit_elev 0 0.000000\n", + "state 0 0.000000\n", + "Region 0 0.000000\n", + "yearsOpen 1 0.303030\n", + "SkiableTerrain_ac 3 0.909091\n", + "Runs 4 1.212121\n", + "LongestRun_mi 5 1.515152\n", + "averageSnowfall 14 4.242424\n", + "Snow Making_ac 46 13.939394\n", + "projectedDaysOpen 47 14.242424\n", + "TerrainParks 51 15.454545\n", + "daysOpenLastYear 51 15.454545\n", + "AdultWeekend 51 15.454545\n", + "AdultWeekday 54 16.363636\n", + "NightSkiing_ac 143 43.333333\n", + "fastEight 166 50.303030" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 5#\n", + "#Count (using `.sum()`) the number of missing values (`.isnull()`) in each column of \n", + "#ski_data as well as the percentages (using `.mean()` instead of `.sum()`).\n", + "#Order them (increasing or decreasing) using sort_values\n", + "#Call `pd.concat` to present these in a single table (DataFrame) with the helpful column names 'count' and '%'\n", + "missing = pd.concat([ski_data.isnull().sum(), 100 * ski_data.isnull().mean()], axis=1)\n", + "missing.columns=['count','%']\n", + "missing.sort_values(by='count')\n", + "#missing.columns=[___, ___]\n", + "#missing.___(by=___)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`fastEight` has the most missing values, at just over 50%. Unfortunately, you see you're also missing quite a few of your desired target quantity, the ticket price, which is missing 15-16% of values. `AdultWeekday` is missing in a few more records than `AdultWeekend`. What overlap is there in these missing values? This is a question you'll want to investigate. You should also point out that `isnull()` is not the only indicator of missing data. Sometimes 'missingness' can be encoded, perhaps by a -1 or 999. Such values are typically chosen because they are \"obviously\" not genuine values. If you were capturing data on people's heights and weights but missing someone's height, you could certainly encode that as a 0 because no one has a height of zero (in any units). Yet such entries would not be revealed by `isnull()`. Here, you need a data dictionary and/or to spot such values as part of looking for outliers. Someone with a height of zero should definitely show up as an outlier!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.6.3 Categorical Features" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So far you've examined only the numeric features. Now you inspect categorical ones such as resort name and state. These are discrete entities. 'Alaska' is a name. Although names can be sorted alphabetically, it makes no sense to take the average of 'Alaska' and 'Arizona'. Similarly, 'Alaska' is before 'Arizona' only lexicographically; it is neither 'less than' nor 'greater than' 'Arizona'. As such, they tend to require different handling than strictly numeric quantities. Note, a feature _can_ be numeric but also categorical. For example, instead of giving the number of `fastEight` lifts, a feature might be `has_fastEights` and have the value 0 or 1 to denote absence or presence of such a lift. In such a case it would not make sense to take an average of this or perform other mathematical calculations on it. Although you digress a little to make a point, month numbers are also, strictly speaking, categorical features. Yes, when a month is represented by its number (1 for January, 2 for Februrary etc.) it provides a convenient way to graph trends over a year. And, arguably, there is some logical interpretation of the average of 1 and 3 (January and March) being 2 (February). However, clearly December of one years precedes January of the next and yet 12 as a number is not less than 1. The numeric quantities in the section above are truly numeric; they are the number of feet in the drop, or acres or years open or the amount of snowfall etc." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameRegionstate
0Alyeska ResortAlaskaAlaska
1Eaglecrest Ski AreaAlaskaAlaska
2Hilltop Ski AreaAlaskaAlaska
3Arizona SnowbowlArizonaArizona
4Sunrise Park ResortArizonaArizona
............
325Meadowlark Ski LodgeWyomingWyoming
326Sleeping Giant Ski ResortWyomingWyoming
327Snow King ResortWyomingWyoming
328Snowy Range Ski & Recreation AreaWyomingWyoming
329White Pine Ski AreaWyomingWyoming
\n", + "

330 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " Name Region state\n", + "0 Alyeska Resort Alaska Alaska\n", + "1 Eaglecrest Ski Area Alaska Alaska\n", + "2 Hilltop Ski Area Alaska Alaska\n", + "3 Arizona Snowbowl Arizona Arizona\n", + "4 Sunrise Park Resort Arizona Arizona\n", + ".. ... ... ...\n", + "325 Meadowlark Ski Lodge Wyoming Wyoming\n", + "326 Sleeping Giant Ski Resort Wyoming Wyoming\n", + "327 Snow King Resort Wyoming Wyoming\n", + "328 Snowy Range Ski & Recreation Area Wyoming Wyoming\n", + "329 White Pine Ski Area Wyoming Wyoming\n", + "\n", + "[330 rows x 3 columns]" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 6#\n", + "#Use ski_data's `select_dtypes` method to select columns of dtype 'object'\n", + "ski_data.select_dtypes(include='object')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You saw earlier on that these three columns had no missing values. But are there any other issues with these columns? Sensible questions to ask here include:\n", + "\n", + "* Is `Name` (or at least a combination of Name/Region/State) unique?\n", + "* Is `Region` always the same as `state`?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2.6.3.1 Unique Resort Names" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Crystal Mountain 2\n", + "Alyeska Resort 1\n", + "Brandywine 1\n", + "Boston Mills 1\n", + "Alpine Valley 1\n", + "Name: Name, dtype: int64" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 7#\n", + "#Use pandas' Series method `value_counts` to find any duplicated resort names\n", + "ski_data['Name'].value_counts().head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You have a duplicated resort name: Crystal Mountain." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Q: 1** Is this resort duplicated if you take into account Region and/or state as well?" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Alyeska Resort, Alaska 1\n", + "Snow Trails, Ohio 1\n", + "Brandywine, Ohio 1\n", + "Boston Mills, Ohio 1\n", + "Alpine Valley, Ohio 1\n", + "dtype: int64" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 8#\n", + "#Concatenate the string columns 'Name' and 'Region' and count the values again (as above)\n", + "(ski_data['Name'] + ', ' + ski_data['Region']).value_counts().head()" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Alyeska Resort, Alaska 1\n", + "Snow Trails, Ohio 1\n", + "Brandywine, Ohio 1\n", + "Boston Mills, Ohio 1\n", + "Alpine Valley, Ohio 1\n", + "dtype: int64" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 9#\n", + "#Concatenate 'Name' and 'state' and count the values again (as above)\n", + "(ski_data['Name'] + ', ' + ski_data['state']).value_counts().head()" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (2636742558.py, line 1)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m Input \u001b[0;32mIn [56]\u001b[0;36m\u001b[0m\n\u001b[0;31m **NB** because you know `value_counts()` sorts descending, you can use the `head()` method and know the rest of the counts must be 1.\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ], + "source": [ + "**NB** because you know `value_counts()` sorts descending, you can use the `head()` method and know the rest of the counts must be 1." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**A: 1** Your answer here" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
NameRegionstatesummit_elevvertical_dropbase_elevtramsfastEightfastSixesfastQuads...LongestRun_miSkiableTerrain_acSnow Making_acdaysOpenLastYearyearsOpenaverageSnowfallAdultWeekdayAdultWeekendprojectedDaysOpenNightSkiing_ac
104Crystal MountainMichiganMichigan113237575700.001...0.3102.096.0120.063.0132.054.064.0135.056.0
295Crystal MountainWashingtonWashington7012310044001NaN22...2.52600.010.0NaN57.0486.099.099.0NaNNaN
\n", + "

2 rows × 27 columns

\n", + "
" + ], + "text/plain": [ + " Name Region state summit_elev vertical_drop \\\n", + "104 Crystal Mountain Michigan Michigan 1132 375 \n", + "295 Crystal Mountain Washington Washington 7012 3100 \n", + "\n", + " base_elev trams fastEight fastSixes fastQuads ... LongestRun_mi \\\n", + "104 757 0 0.0 0 1 ... 0.3 \n", + "295 4400 1 NaN 2 2 ... 2.5 \n", + "\n", + " SkiableTerrain_ac Snow Making_ac daysOpenLastYear yearsOpen \\\n", + "104 102.0 96.0 120.0 63.0 \n", + "295 2600.0 10.0 NaN 57.0 \n", + "\n", + " averageSnowfall AdultWeekday AdultWeekend projectedDaysOpen \\\n", + "104 132.0 54.0 64.0 135.0 \n", + "295 486.0 99.0 99.0 NaN \n", + "\n", + " NightSkiing_ac \n", + "104 56.0 \n", + "295 NaN \n", + "\n", + "[2 rows x 27 columns]" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ski_data[ski_data['Name'] == 'Crystal Mountain']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So there are two Crystal Mountain resorts, but they are clearly two different resorts in two different states. This is a powerful signal that you have unique records on each row." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2.6.3.2 Region And State" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What's the relationship between region and state?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You know they are the same in many cases (e.g. both the Region and the state are given as 'Michigan'). In how many cases do they differ?" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "297" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 10#\n", + "#Calculate the number of times Region does not equal state\n", + "(ski_data.Region == ski_data.state).sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You know what a state is. What is a region? You can tabulate the distinct values along with their respective frequencies using `value_counts()`." + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "New York 33\n", + "Michigan 29\n", + "Sierra Nevada 22\n", + "Colorado 22\n", + "Pennsylvania 19\n", + "Wisconsin 16\n", + "New Hampshire 16\n", + "Vermont 15\n", + "Minnesota 14\n", + "Idaho 12\n", + "Montana 12\n", + "Massachusetts 11\n", + "Washington 10\n", + "New Mexico 9\n", + "Maine 9\n", + "Wyoming 8\n", + "Utah 7\n", + "Salt Lake City 6\n", + "North Carolina 6\n", + "Oregon 6\n", + "Connecticut 5\n", + "Ohio 5\n", + "Virginia 4\n", + "West Virginia 4\n", + "Illinois 4\n", + "Mt. Hood 4\n", + "Alaska 3\n", + "Iowa 3\n", + "South Dakota 2\n", + "Arizona 2\n", + "Nevada 2\n", + "Missouri 2\n", + "Indiana 2\n", + "New Jersey 2\n", + "Rhode Island 1\n", + "Tennessee 1\n", + "Maryland 1\n", + "Northern California 1\n", + "Name: Region, dtype: int64" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ski_data['Region'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A casual inspection by eye reveals some non-state names such as Sierra Nevada, Salt Lake City, and Northern California. Tabulate the differences between Region and state. On a note regarding scaling to larger data sets, you might wonder how you could spot such cases when presented with millions of rows. This is an interesting point. Imagine you have access to a database with a Region and state column in a table and there are millions of rows. You wouldn't eyeball all the rows looking for differences! Bear in mind that our first interest lies in establishing the answer to the question \"Are they always the same?\" One approach might be to ask the database to return records where they differ, but limit the output to 10 rows. If there were differences, you'd only get up to 10 results, and so you wouldn't know whether you'd located all differences, but you'd know that there were 'a nonzero number' of differences. If you got an empty result set back, then you would know that the two columns always had the same value. At the risk of digressing, some values in one column only might be NULL (missing) and different databases treat NULL differently, so be aware that on many an occasion a seamingly 'simple' question gets very interesting to answer very quickly!" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "state Region \n", + "California Sierra Nevada 20\n", + " Northern California 1\n", + "Nevada Sierra Nevada 2\n", + "Oregon Mt. Hood 4\n", + "Utah Salt Lake City 6\n", + "Name: Region, dtype: int64" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 11#\n", + "#Filter the ski_data dataframe for rows where 'Region' and 'state' are different,\n", + "#group that by 'state' and perform `value_counts` on the 'Region'\n", + "(ski_data[ski_data.Region != ski_data.state]\n", + " .groupby(\"state\")['Region']\n", + " .value_counts())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The vast majority of the differences are in California, with most Regions being called Sierra Nevada and just one referred to as Northern California." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2.6.3.3 Number of distinct regions and states" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Region 38\n", + "state 35\n", + "dtype: int64" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 12#\n", + "#Select the 'Region' and 'state' columns from ski_data and use the `nunique` method to calculate\n", + "#the number of unique values in each\n", + "ski_data[['Region', 'state']].nunique()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because a few states are split across multiple named regions, there are slightly more unique regions than states." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2.6.3.4 Distribution Of Resorts By Region And State" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If this is your first time using [matplotlib](https://matplotlib.org/3.2.2/index.html)'s [subplots](https://matplotlib.org/3.2.2/api/_as_gen/matplotlib.pyplot.subplots.html), you may find the online documentation useful." + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAHwCAYAAAAy11lrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACmHElEQVR4nOzdeZhdRZ3/8ffHgGyBoMIoIBB1QGQN0qCsBgZxQxHBAURlUREdzA8UHEZmMOq4siMoAwwEkE1WkV2BsG8dCAkgbhBHFpFFImGJED6/P6ouubnc3tLd6e7k83qefnJvnTp16jYP93Sdqvp+ZZuIiIiIiIi+eN1QdyAiIiIiIkaeDCQiIiIiIqLPMpCIiIiIiIg+y0AiIiIiIiL6LAOJiIiIiIjoswwkIiIiIiKizzKQiFjISFpN0ixJo4a6LxEREbHwykAiYghJmiHphfqH/18kTZI0uj9t2v4/26NtzxmofkZExMgmaaKkn/Wh/nhJDw9mn2Lky0AiYuh91PZoYBywIfAfQ9udiIiIiJ5lIBExTNj+C3AVZUCBpPdKukXSM5LukTS+UVfS2yTdIOlZSb+WdHzjSZOksZIsabH6fmVJl0h6WtIfJH2hqZ2Jkn4u6fTa1n2SOhbgx46IiAEm6d8lPVK/138r6SPAN4Bd6gz4PbXeXpJ+U+s9KOmLtXwZ4Apg5Vp/Vr2XvE7SwZL+KOmpev9449B90hhqGUhEDBOS3gp8CPiDpFWAy4D/Bt4IHAhcIGnFWv0s4A7gTcBE4DPdNH028DCwMrAz8D1J/9J0/GPAOcDywCXAcQPziSIiYkGT9E5gP2Bj28sCHwAeAL4HnFuXvm5Qq/8V2B5YDtgLOErSu20/R7kfPVrrj7b9KDAB+DjwPso95W/A8Qvu08Vwk4FExNC7WNKzwJ8pX+rfBD4NXG77ctuv2P4V0Al8WNJqwMbAobb/YfsmygDgNSStCmwB/LvtF21PBU5m3oHHTfU6c4AzgA1e21JERIwQc4AlgLUlLW57hu0/tqto+zLbf3RxPXA1sGU3bX8ROMT2w7ZnUx5k7dyYAY9FTwYSEUPv4/Wp0XhgLWAFYHXgk3VZ0zOSnqEMCFaiPAV62vbzTW38uYu2G3WfbSr7E7BK0/u/NL1+HlgyN4WIiJHJ9h+A/Sl/5P9V0jmSVm5XV9KHJN1Wl74+A3yYcg/qyurARU33pd9QBi5vHrhPECNJBhIRw0R9GjQJOJwyMDjD9vJNP8vY/gHwGPBGSUs3nb5qF80+Wusu21S2GvDIwH+CiIgYDmyfZXsLyh/+Bn5Y/32VpCWACyj3nDfbXh64HFCjmTZN/xn4UMu9aUnbuacsojKQiBhejgbeD9wEfFTSBySNkrRkDcX3Vtt/oixzmijp9ZI2BT7arjHbfwZuAb5f21gf+Bxw5gL5NBERsUBJeqekbepA4UXgBcqswePAWEmNv/1eT1kC9QTwsqQPAds1NfU48CZJY5rKTgC+K2n1eq0VJe0wuJ8ohrMMJCKGEdtPAKdTpqV3oETZeILyFOgg5v4/uzuwKfAUZUP2ucDsLprdDRhLmZ24CPhm3XMRERELnyWAHwBPUpau/hPlXnJePf6UpLvqktcJwM8pm6Y/RdN+O9sPUIJ1PFiXMq0MHFPrXF339t0GvGeBfKoYlmS3m7mKiJFE0rnAA7a/OdR9iYiIiEVDZiQiRiBJG0t6R43p/UHK7MXFQ9ytiIiIWIQkMkvEyPQW4EJKHomHgS/ZvntouxQRERGLkixtioiIiIiIPsvSpoiIiIiI6LMMJCIiIiIios+yR2IEWmGFFTx27Nih7kZEjABTpkx50vaKQ92PGF5yH4mI3uruPpKBxAg0duxYOjs7h7obETECSPrTUPchhp/cRyKit7q7j/S4tEmSJR3R9P5ASRP72IHxkjZrej9J0s59aWN+SfqspHsl3SfpfkkH9lB/YqOOpG9L2ra+3rK2MVXSUgPQr5Mlrd3fdiIiYvDVe+EZTe8Xk/SEpEsHqP3xA9jWnpKOG4i2IiK605sZidnAJyR93/aTfb2ApMWA8cAs4Ja+nt+mPVGiTb3Si7ofomQI3s72o5KWBD7T22vZPrTp7e7A4bZP7WU/R9me003bn+9tP1pNf2QmYw++rMvjM37wkfltOiIi2nsOWFfSUrZfAN4PPNKXBiQtZvvlQeldH+U+EhEDoTebrV8GTgQOaD0gaXVJ10iaVv9drZZPknSkpOuAc4F9gQPq0/wt6+lbSbpF0oPNsxOSDpJ0Z23zW7VsrKTfSPoJcBewZX1/Up0luLqLWYL/AA60/SiA7Rdtn1Tb/EK9zj2SLpC0dJvPN0nSzpI+D/wrcKikM1UcVmc6pkvapdYfL+k6SWcB0+v7yZLOl/RA49xad7Kkjvr6p5I662f5Vi/+m0RExIJ3BdD4C3s34OzGAUmb1Hva3fXfd9byPSWdJ+mXwNWSzpC0Q9N5Z0r6WPNFemjrQklXSvq9pB81nbOXpN9Juh7YfNB+AxERTXobtel4YHdJY1rKjwNOt70+cCZwbNOxNYFtbe8EnAAcZXuc7Rvr8ZWALYDtgR8ASNoOWAPYBBgHbCRpq1r/nfVaGwJ/qvWOt70O8AywU5t+rwtM6eIzXWh7Y9sbAL8BPtfVh7d9MnAJcJDt3YFP1P5tAGwLHCZppVp9E+AQ241lSxtSZkXWBt5O+y/4Q2x3AOsD75O0fld9iYiIIXMOsGud3V4fuL3p2APAVvUedSjwvaZjmwJ72N4GOBnYC6DeUzcDLm+5TndtjQN2AdYDdpG0ar3/fItyf3k/5X4TETHoerXZ2vbfJZ0OTABeaDq0KeWPaoAzgB81HTuvu6U9wMV1edL9kt5cy7arP40MvaMpA4b/A/5k+7am8x+yPbW+ngKM7c1nabKupP8Glq/XuaoP524BnF0/3+P1CdDGwN+BO2w/1FT3DtsPA0iaWvt5U0t7/yppH8p/j5UoN4FpzRXq8X0ARi2XACwREQua7WmSxlJmI1r/+B8DnCZpDcDA4k3HfmX76drG9ZKOl/RPlPvnBbZfrpPVvWnrGtszASTdD6wOrABMtv1ELT+X8jBvHrmPRMRA60seiaMpT+2X6aZOc5rs53pob3bTazX9+/06czHO9j/b/t8u2ms+fw7tB0X3ARt1cf1JwH6216M8yVmyh/42UzfH+tRPSW8DDgT+pc7sXNauL7ZPtN1hu2PU0q0TQxERsYBcAhxO07Km6jvAdbbXBT7KvN/jrfeFMyj77vYC2u27666tru4pzffftnIfiYiB1uuBRH2a8nPmXQJ0C7Brfb07r33S3vAssGwvLnMVsLek0QCSVqlPbebX94EfSXpLbW8JSRPqsWWBxyQtXvveFzdQppRHSVoR2Aq4Yz77uBzlJjOzzsx8aD7biYiIwXcK8G3b01vKxzB38/WePbQxibLkFdv3tTnel7agLLEaL+lN9Z72yV6cExHRb33NI3EEsF/T+wnAKZIOAp6grvts45fA+XWD2Ve6atz21ZLeBdxap3lnAZ+mPHXpM9uX1z/Of103OZtyEwD4L8qX75+A6fRuoNNwEWVZ1z21za/b/oukteajj/dIupsye/IgcHNP56y3yhg6E1EjImKBq0tVj2lz6EeU5UhfBa7toY3HJf0GuLiLKr1uq7b3mEpY9luBxyhBSUZ1d07uIxExEGT3OBsaw0xHR4eTSCgiekPSlBrMIYaJGiVwOvDuxn6HBS33kYjore7uI33ZIxERERH9oJLk9AHgx0M1iIiIGCh9XdoUERER88n2r4HVhrofEREDYZGYkZBkSWc0vV9M0hOSLh2g9scPYFt7SjpuINqKiIiIiBgsi8qMxHOUvBFL2X6BkrDnkR7OmYekxWy/PCi966Ppj8xk7MGXdXl8RjbQRURERMQgW1QGEgBXAB8BzqckEzob2BJA0iaUPBlLURLu7WX7t5L2rOcsCSwj6RHgfNu/qOedCZxLSURHL9r6GLA08A7gIttfr+fsBfwHJdrG75g3TnhERMwHSXMom5oXAx4CPmP7GUnjgQNtbz+f7fbp/JrE7tKaF6KrOrNsj56f/vT1WpAHUhExMBaJpU3VOcCukpYE1qeEfm14ANjK9obAocD3mo5tCuxhexvgZGqIW0ljgM14bXbT7toaB+wCrEfJQ7GqpJUoCfE2p8yUrN3/jxoREcALNbnpusDTwL8NdYciIhYmi8xAwvY0YCxlNqL1j/8xwHmS7gWOAtZpOvarmowP29cD/1yT5O0GXNBmuVN3bV1je6btF4H7gdWB9wCTbT9h+x+UGY7XkLSPpE5JnXOeT6CPiIg+uhVYpen9aEnnS3pA0pk11xCS/kXS3ZKmSzpF0hK1/IO17k3AJxqNSFqm1ruznrdDd52QtI6kOyRNlTRN0hotx0dLukbSXbUPO9TysZJ+I+kkSfdJulrSUvXYRpLukXQrGSxFxAK0yAwkqkuAwynLmpp9B7iuPrX6KGUpU8NzLXXPoGTC3gs4tc01umurecnSHOYuLesxmYftE2132O4YtfSYnqpHREQlaRTwL5R7QMOGlOzSawNvBzavM9aTgF1sr0f5jv5SLT+J8p2+JfCWpnYOAa61vTGwNXCYpGW66c6+wDG2xwEdwMMtx18EdrT97treEY1BDrAGcLztdYBngJ1q+anABNub9vjLiIgYQIvaQOIU4Nu2p7eUj2Hu5us9e2hjEuXmg+372hzvS1tQlliNl/QmSYsDn+zFORER0bOlJE0FngLeCPyq6dgdth+2/QowlTJj/U7gIdu/q3VOA7YC1qrlv3fJ4vqzpna2Aw6u15lMeXjUXXjXW4FvSPp3YPUaAKSZgO9Jmgb8mjKL8uZ67CHbU+vrKcDYusx2+TpjDuVhV1uZ2Y6IgbYobbbG9sPAMW0O/Qg4TdJXgWt7aONxSb8BLu6iSq/bqu09Jmki5ebyGHAXMKq7c9ZbZQyd2QgXEdGTF2yPq39sX0pZ9nNsPdZuhlh0rauZYwE72f5tbzpk+yxJt1MCeVwl6fO2m+8VuwMrAhvZfknSDObObLf2eal6/R5nteu1TwROBFhipTV6dU5ERHcWiYFEu0gYtidTnh5h+1ZgzabD/1XLJ1FmIF4laWnK9PKry6Pmp63maB+2T6X9MqmIiOgn2zMlTQB+Iemn3VR9gPKU/59t/wH4DHB9LX+bpHfY/iNlj1zDVcBXJH3FtiVtaPvuri4g6e3Ag7aPra/XZ96HTmOAv9ZBxNaUvXTdfbZnJM2UtIXtmygDkYiIBWKRGEgMFEnbUpZHHWk788IRESOE7bsl3QPsCvy5izov1nDc50laDLgTOMH2bEn7AJdJehK4CWiEV/0OJeT3tLqXYQbQXVjYXYBPS3oJ+Avw7ZbjZwK/lNRJWXL1QC8+3l7AKZKepwxsepSZ7YgYCCrLPWMk6ejocGdn51B3IyJGAElTbHcMdT9ieMl9JCJ6q7v7yKK22ToiIiIiIgbAQrO0SdKbgGvq27dQNqI9Ud9vUnM0RERERETEAFhoBhK2n6JkjqZGQZpl+/Ch7NNgmf7ITMYefFmXx2dk3WtEREREDLKFemlTzfZ5vaQpkq6StFItnyzphzW76O8kbVnL95R0oaQrJf1e0o+a2tpO0q012+h5kkbX8h9Iur9mKD28ln1S0r010+gNtWyUpMNq9tNpkr7Y1PZBTeXfWpC/o4iIKGo+n6n15y+SHml6//qh7l9ExHCz0MxItCHgx8AOtp+QtAvwXWDvenwx25tI+jDwTWDbWj6OkvF0NvBbST8GXgD+E9jW9nM1kdBXJR0H7AisVcP+LV/bOBT4gO1Hmso+B8y0vbGkJYCbJV1NCSW7BrBJ7fMlkrayfcNg/FIiIqK9zGzPlZntiOiNhXlGYglKeL5f1Yyj/wm8ten4hfXfKZSMpg3X2J5p+0XgfkoM7/cCa1P++J8K7FHL/w68CJws6RPA87WNm4FJkr7A3ORy2wGfreffDryJMoDYrv7cTUlGt1Ytn0cykkZELHiZ2Y6I6NrCPiNxn+1NuzjeyBDayGjaWt58TMCvbDcnISoXkTYB/oUSm3w/YBvb+0p6DyVz6VRJ42obX7F9Vcv5HwC+b/t/uvswyUgaEbHAZWY7IqIbC/NAYjawoqRNbd8qaXFgTdv3zUdbtwHHq2Y7Vclu/VbgUWBp25dLug34A4BK9tPbgdslfRRYlZIk6EuSrq0ZS9cEHqnl35F0pu1ZklYBXrL91646k0RCERELRPPMNpQZ5seajnc7sw0gqTGzvTxzZ7YBXg/cyrwz25cBl9Y2GjPbP2+6znbA+pJ2ru/H8NqZbYDRtXyegYRKUr19AEYtt2Jffg8REW0tzAOJV4CdgWMljaF81qOBPg8k6pOoPYGz61MgKE+WngV+IWlJylOgA+qxwyStUcuuAe4BplFuNHep3EWeAD5u+2pJ7wJurTeXWcCngS4HEhERsUBkZjsiohsL5UDC9sSmt1u1OT6+6fWT1CdJticBk5qObd/0+lpg4zaX26RN+59o1y3gG/Wntf4xwDFtzomIiKGz0M5sR0QMhIVyIBERETEAFtqZ7SyRjYiBIDuzmyNNR0eHOzs7h7obETECSJpiu2Oo+xHDS+4jEdFb3d1HhnX4V0lzVBIB3Svpl43IFZLGS7q0h9O7a7dP50saK+neHurMmt/+9PVaERERERFDbbgvbXrB9jgASacB/0YJvbdISyKhiIiIiBhqw3pGosWtwCpN70dLOl/SA5LOrOtFkfQvku6WNF3SKY21qJI+WOveBLy6GVrSMrXenfW8HbrrhKR1VBIQTa2Jf9ZoOT5a0jUqCYemN9qrMw2/kXSSpPskXS1pqXpsI5WkQ7dSBksREREREcPaiBhISBpFCY13SVPxhsD+lLjcbwc2r5vVJgG72F6PMuPypVp+EvBRYEvgLU3tHAJca3tjYGvKBrdluunOvsAxdaakA3i45fiLwI62313bO6IxyKHE9T7e9jrAM8BOtfxUYEI3IQYjIiIiIoaV4b60aSlJUylRKqYAv2o6dofthwGa6jwLPGT7d7VOYznU5Fr++1r/Z9SkPJQkPh+TdGB9vySwGvCbLvp0K3CIpLcCFzbabCLge5K2okT8WAV4cz32kO2p9fUUYGyNBLK87etr+RnAh1ovmkRCERG9I+kQ4FOUHA6vAF+soVT72s544B+2b6nvJwGX2j6/h/PmANOBxYGXKfeio22/0sO1DmwOO97DNfYHTrT9fG/qt+ppiWxPsoQ2ImD4z0g09kisTskC2rzsp6uEP13pKjyVgJ1sj6s/q9nuahCB7bOAjwEvAFdJ2qalyu7AisBGte+PUwYn3fW5x9BZtk+03WG7Y9TSY3qqHhGxSJK0KbA98G7b6wPbAn+ez+bGA5vNx3kv1PvJOsD7gQ8D35zPPnRlf2DpAW4zIqJPhvtAAgDbM4EJwIE1IVBXHqA85f/n+v4zwPW1/G2S3lHLmzOLXgV8pWmPxYbd9UXS24EHbR9LWWq1fkuVMcBfa7KgrSmDoO4+2zPATElb1KLdu6sfERHdWgl40vZsKElHbT8K3e6hmyFphfq6Q9JkSWMpS1kPqHvitqztbyXpFkkPStq5p87UpHD7APupGCvpxrqP7i5JrxmoSNq49vPt7fosaQKwMnCdpOvqOT+V1Fn34H2rn7/DiIheGe5Lm15l+25J9wC70sXTJdsvStoLOE/SYsCdwAm2Z9elQZdJehK4CVi3nvYdSoKhaXUwMYPyNKsruwCflvQS8Bfg2y3HzwR+KakTmEoZxPRkL+AUSc9TBjbdSiKhiIguXQ0cKul3wK+Bc21f37SH7l9s/07S6cCXKN//r2F7hqQTgFm2DweQ9DnKQGULYC3Kw6RulznVth6U9DrgnyhJ4t5f71drAGdT9ttRr7EZ8GNgh1r3+tY+2z5a0leBrW0/WU89xPbTdU/hNZLWtz2tuR9ZIhsRA21YDyRsj255/9Gmt5Obyvdren0NZSN2a1tXUr74W8tfAL7YQz9mUAcetr8PfL+rvtYv9a42Ta/bVP/wptdTgA2a6k3srj8REdGe7VmSNqIE1tgaOFfSwcDdtN9Dd3QfL3Fx3etwv6Q391h7rsbS28WB4ySNoyxxXbOpzruAE4HtbD8qaYM+9Plf60BhMcpgZ21KJuxX2T6xts8SK62RbLQR0W/DeiARERHRV7bnUB42TZY0HdiDMkPclZeZu9R3yW7qwbx73brblze3UlkSO4cyw/BNyt65Deo1X2yq+li9/obAo31o/23AgcDGtv9WN4X39DkiIvptROyRiIiI6A1J72zJ7zMO+BNd76GDsqR1o/p6p6ZznwWW7Wd/VgROAI6zbco+usfqrMZngFFN1Z8BPkKJ/De+hz4392054DnKfrs30ybyX0TEYMiMRERELExGAz+WtDxlpuEPwD5d7aGr53wL+F9J3wCaw8T+EjhfJbHoV/rQh0bo8kb41zOAI+uxnwAXSPokcB1lAPAq249L+ihwBbA3ZQ9duz6fCFwh6THbW0u6G7gPeBC4uacOZq9dRAwElQckI5ckA0fa/lp9fyAw2vbEAWp/LCVu+Lo91V1QOjo63NnZOdTdiIgRQNIU2x0914xFSe4jEdFb3d1HFoYZidnAJyR9vyl6xZCRNKquzx00SSQUEREREUNtYdgj8TJliveA1gOSVpR0gaQ768/mtXy6pOVrTO+nJH22lp8haduuLiRplKTDalvTJH2xlo+XdJ2ks4DpkpaRdJmkeyTdK2mXWm8jSddLmiLpKkkrSXqHpLuarrGGpCkD+huKiIiIiBhgC8NAAuB4YHdJrSmfjwGOsr0xZQPdybX8ZmBzYB3KetJGoqH3Ard1c53PATNrexsDX6jRMgA2ocTxXhv4IPCo7Q3qkqgrVRLp/RjY2fZGwCnAd23/kbJBblxtZy9KrPN5SNqnJhvqnPP8zJ5/IxERERERg2ihGEjY/jtwOiX7dbNtKfG6p1ISBy0naVngRmCr+vNTYD1JqwBP257VzaW2Az5b27sdeBPQiA5yh+2H6uvpwLaSfihpy5qZ+52UPBK/quf/J/DWWv9kYK+aSGgX4Kw2n/FE2x22O0Yt3TpeioiIBU2SJZ3R9H4xSU9IurS+/1jNYbGg+7VvY6Y9ImIwLQx7JBqOBu4CTm0qex2waU069ypJN1CS+qwGHALsCOxMGWB0R8BXbM+TfbqG6Xs18kbNQLoR8GHg+5KuBi4C7rPdLlndBZTY4tcCU2w/1UM/IiJi6D0HrCtpqXqfeT/wSOOg7UsoD7EWGEmL2T6hp3rZaxcRA2GhGUjYflrSzynLj06pxVcD+wGHAUgaZ3uq7T9LWgF4ve0HJd1ESeazX7u2m1wFfEnStbZfkrQmTTeNBkkrU2Y3fiZpFrAn8ANgRUmb2r61LnVa0/Z9NSzhVZTZkc/19FkTti8iYti4gpL74XxgN+Bs6nJZSXsCHbb3q+Fev0lJTDfT9laS1qE8/Ho95cHXTrZ/L+mrlNCvACfbPro1gmBzhEJJk4FbKEt2L6kz77NsHz74Hz8iFmULxdKmJkcAKzS9nwB01I3R9wP7Nh27HfhdfX0jsApwU5s2F2NuJtOTgfuBuyTdC/wP7Qdj6wF31CVMhwD/bfsflFmPH0q6h5JldbOmc84ETBn8RETEyHAOsKukJYH1mTcPRbNDgQ/Y3gD4WC3bFzjG9jigA3i4zmbvBbyHsm/vC5I27EU/lrf9PttHzP9HiYjomxE/I2F7dNPrx4Glm94/Sdlz0O68zzS9voWuB1XrAH+s9V4BvlF/mk2uP432rqLMXrRecyplX0Y7WwCnDHbo2IiIGDi2p9XZgt2Ay7upejMwqc6cX1jLbgUOkfRW4MI6G7EFcJHt5wAkXUiZ4ehpidS5PfVV0j7APgCjlluxp+oRET0a8QOJwSTp28AOlKVJg3mdi4B3ANsM5nUiImJQXAIcDoynBOF4Ddv7SnoPZRnU1LrU9ixJt9eyqyR9nrIXr52XmfeB15Itx5+jB7ZPpIRLZ4mV1hjZ2WgjYlhY2JY2DSjbh9YQrncP8nV2tL3+cEioFxERfXYK8G3b07uqIOkdtm+3fSjwJLCqpLcDD9o+ljIYWR+4Afi4pKUlLUMJBnIj8DjwT5LeJGkJYPtB/kwRET3KjEQlaVbzMqle1B8PHGh7e0kfA9a2/YPB6l9ERAxPth+m5C3qzmGS1qDMOFwD3AMcDHxa0kvAXyiDkaclTQLuqOed3HiYVWfJbwceAh7oT58TtCMiBoLszG5C/wYSg9apLiyx0hpeaY+j5/v8hO2LWHRImmK7Y6j7EcNLR0eHOzs7h7obETECdHcfydKmFpLGS5os6XxJD0g6U5LqsQ/WspuATzSds6ek4+rrj0q6XdLdkn4t6c21fKKkU2rbD0qa0HT+xZKmSLqvboaLiIiIiBjWMpBob0Ngf2Bt4O3A5jW030nARykRNN7Sxbk3Ae+1vSElLODXm46tBXwA2AT4Zs0lAbC37Y0o4f8mSGq7WS8iIiIiYrjIHon27qhrXqm5IMYCs4CHbP++lv+MGkavxVuBcyWtREky9FDTsctszwZmS/or8GbgYcrgYcdaZ1VgDWCe7NYJ2xcRERERw0lmJNqb3fR6DnMHXL3ZUPJj4Djb6wFfZN4Qfa9pt+612BbYtCYqupvXhvXD9om2O2x3jFp6TG8/R0RERETEoMiMRO89ALythvD7IyX5UDtjgEfq6z160e4Y4G+2n5e0FiWTaUREjEB1dvlC4F2220ZWknSL7c0WbM/mNf2RmYw9+LL5Pj9BOyICMpDoNdsv1uVFl0l6krIXYt02VScC50l6BLgNeFsPTV8J7CtpGvDbek63ErYvImLY2o1yf9iVcj94laRRtucM9SAiImKgJPzrCJSwfRHRWwn/uuBIGk15ILQ1cInttery1W8CjwHjbK/dCDde80J8rJ6+InC17b0kfRXYu5afbPtoSWOBKyiDlM0oM9872H5B0hcoe+heD/wB+Izt57vra8KIR0RvJfxrRETE4Ps4cKXt3wFPS3p3Ld8EOMT22s2VbR9qexzwPkqAjeMkbQTsBbyHstT1C5I2rKesARxvex3gGWCnWn6h7Y3rPrvfAJ9r1zlJ+0jqlNQ55/mZA/KBI2LRloFERETEwNiNEvab+m9jL90dth9qd0LNU3QmcJTtKcAWwEW2n7M9i7LfYsta/SHbU+vrKZSIggDrSrpR0nRgd2CddtdK0I6IGGjZIxEREdFPNf/PNpQ/6g2MokT6uxx4rptTJwIP2z610VQ3dVsj/y1VX08CPm77Hkl7AuP72P2IiPmyyA4k6hf9z2x/pr5fjLKG9Xbb20v6GLC27R8s4H7tCzxv+/Su6iTaRkTEsLMzcLrtLzYKJF1PmWFoS9L2wPuZ9w//G4BJkn5AGVTsCHymh2svCzxWk5zuztzIgV1K0I6IGAiL7ECC8oRoXUlL2X6B8mX+6pev7UuASxZkhyQtZvuEBXnNiIgYELsBrQ+eLgC+BPyxi3O+BqwM3FFWOHGJ7UMlTQLuqHVOtn133Wzdlf8Cbgf+BEynDCwiIgbdojyQgBIB4yPA+ZSbwNnUtah1erjD9n6SPkmJujEHmGl7K0nrAKdSomS8DtjJ9u+7ibZxqe11a9sHAqNtT5Q0GbgF2By4RNKywCzbhw/+x4+IiIFge3ybsmOBY9uUj67/bt1FW0cCR7aUzaAp5HjzPcL2T4Gfzl/PIyLm36K+2focYFdJSwLrU57otHMo8IEaEaMRqm9f4JgacaMDeLiHaBvdWd72+2wf0VWFRNuIiIiIiOFkkR5I2J5GiXqxG2VDXFdupqxZ/QJlAx3ArcA3JP07sHpdHtVdtI3unNuLvibaRkREREQMG4v0QKK6BDicsqypLdv7Av8JrApMlfQm22dRZideAK6StA1dR9t4mXl/10u2HO8uokdERERExLCzqO+RADiFsu9hes1A+hqS3mH7duB2SR8FVpU0BnjQ9rGS3k5ZGtVVtI3HgX+q4QFnAdsDV85vhxNtIyJi4NQofkfa/lp9/+o+tgFqfyxN++QiIhYWi/xAwvbDwDE9VDtM0hqUwcE1wD3AwcCnJb0E/AX4tu2n20XbAJD0bcoejIeABwb8g0RExPyaDXxC0vdtPznUnZE0yvacwbxGwohHxEBYZAcSjagZLWWTgcn19SRKkh9sf6JNE9+vP61tvCbaRi3vKnrH+Jb3E3vqe0REDKiXgROBA4BDmg9IWhE4AVitFu1v++aaRXpLYCbwJHCA7dMlnQGcZvvX7S4kaRQlTOx4YAngeNv/U2fEv0nJZzRO0sbAz4G3Uvbmfcf2uTWox5HA6HrdPYGlgfNsv7teYw3gHNsb9fP3EhHRreyRiIiIgOOB3euy1WbHAEfZ3hjYCTi5lt9MCdu9DvAgcwNrvBe4rZvrfI6ynHZjYGNKdL+31WObAIfYXhv4IPCo7Q3qkqgra8K5HwM710HCKcB3bf8RmClpXG1nL+qDsIiIwbTIzkhEREQ02P67pNOBCZQgGg3bAmvXhHEAy9V8PzcCW1GSwP0U2EfSKsDTNWpfV7YD1pe0c30/BlgD+Adwh+2Havl04HBJP6Tsr7hR0rqUXBK/qv0ZRZnBgDLA2avmMtqFMiiZh6R9gH0ARi23Yi9+KxER3cuMBGWjnaQjmt4fKGniIF9zhqQVBvMaERHRJ0dTZgyWaSp7HbCp7XH1ZxXbz1KCa2xZfyYDTwA7UwYY3RHwlab23mb76nrs1Qh+tn8HbEQZUHxf0qH13Puazl3P9nb1lAuAD1GCeUyx/VTrhRNGPCIGWmYkimG10a4n2SQXETHwasCMn1MGE6fU4quB/YDDACSNsz3V9p/rw6DX235Q0k3AgbVud64CviTpWtsvSVoTeKS1kqSVKbMbP5M0i7IX4gfAipI2tX1rXeq0pu37bL8o6SrK7Mjn+vmriIjolQwkij5ttKMko3sQGGf7mVrvD5T1sptQck68HngK2N324zX069nAipSoTmq6xsWUHBVLUrJlnzgInzEiInp2BPMOBiYAx0uaRrln3gDsW4/dztwkpTdSAnDc1KbNxSgPrKAsQRoL3KWyPukJ4ONtzlmPEjHwFeAl4Eu2/1GXRB1b93IsRplFua+ecybwCcrgp1sJIx4RAyEDibmOB6ZJ+lFLeWOj3U2SVgOusv0uSb+g5Ik4VdJ7gBl1wHAT8F7blvR54OvA1yjROG6y/W1JH6GuU632rk/ClgLulHRBu2npiIgYeM1R/Gw/TomC1Hj/JGXPQbvzPtP0+ha6Xi68DvDHWu8V4Bv1p9nk+tNo7yrK7EXrNadS9ma0swVwymCHjo2IaMhAopqPjXbnAocCpwK71vdQQvWdK2klyqxEY+PcVpQnRdi+TNLfmq4xQdKO9fWqlI138wwkskkuImLkqTmEdqAsTRrM61wEvAPYZjCvExHRLJut53U0vd9odyvwz3Xp08eBC2v9HwPH2V4P+CJluVKDWy9YY4dvW6+xAXB3yznlxGySi4gYcWwfWkO43j3I19nR9vojYZ9fRCw8MpBoYvtpSgKg5o1qjY12QNloV+sauIiSGOg3TUuRxjB349weTe3cAOxe2/gQ8Iam+n+z/byktSgxyCMiIiIihrUsbXqtvmy0Oxe4k3mnrCcC50l6hJKUqJFo6FvA2ZLuAq4H/q+WXwnsW9v/Ld0nMgKySS4iYjiSNKt5v0Uv6o8HDrS9vaSPAWvb/sFg9S8iYqCpPFiPkaSjo8OdnZ1D3Y2IGAEkTbHdMdT9WBT0ZyAxaJ3qwhIrreGV9jh6vs9PGPGIRUd395EsbYqIiBhAksZLmizpfEkPSDqzhnpF0gdr2U3UABy1fE9Jx9XXH5V0u6S7Jf1a0ptr+URJp9S2H5Q0oen8iyVNkXRfDc4RETHoMpCIiIgYeBtS8g6tDbwd2FzSksBJwEcpGbHf0sW5jTDiGwLnUMKIN6wFfICSs+ibNSkdlDDiGwEdlEiAbxrYjxMR8VoZSDSRtKMk103PXdW5ZUH2KSIiRqQ7bD9c80ZMpSShWwt4yPbva8COn3Vx7luBqyRNBw6i5KFouMz27Bqd6a/Am2v5BEn3UPbZNcKIz0PSPpI6JXXOeX5m/z9hRCzystl6XrtRngTtStk0/SpJo2zPsb3ZUHSs2fRHZjL24Mvm+/ysbY2IGHSzm17PYe79tjcbE38MHGn7krqPYmJ37baEEX9e0mS6CCMOnAhlj0Qv+hER0a3MSFSSRgObU0K/7lrLxku6TtJZwPRaNqv++21JU+vPI5JOreVflXRv/dm/lo2V9BtJJ9X1q1fXLNZI+oKkOyXdI+kCSUu/pnMREbEweAB4m6R31Pe7dVGvqzDiXUkY8YgYEpmRmOvjwJW2fyfpaUnvruWbAOvafqi5su1DgUMljQFuBI6TtBGwF/AeQMDtkq4H/kaZZt7N9hck/RzYiTKtfaHtkwAk/TdlIPPjQf6sERGxgNl+sW6EvkzSk5QZ8HXbVJ1I+zDiXUkY8YgYEhlIzLUbJbM1lM1tuwGXUda5PtTuhBqF40zgKNtTJP0/4CLbz9XjF1I21F1CWRc7tZ46hbJeFmDdOoBYHhgNXNXFtfYB9gEYtdyK8/sZIyJikDRCv9qeDExuKt+v6fWVlL0SredOAibV178AftGmzsSW982DkA/Nf88jIuZPBhJAjW6xDeWPegOjKOtYLwee6+bUicDDtk9tNNVN3dZ1rUvV15OAj9u+R9KewPh2J2dta0REREQMJ9kjUewMnG57ddtjba8KPARs0dUJkrYH3k/JfN1wA/BxSUtLWgbYkbLsqTvLAo/VEH679+dDREREREQsKJmRKHYDftBSdgHwJeCPXZzzNWBl4I6aZ+gS24dKmgTcUeucbPtuSWO7ufZ/AbcDf6Js6F62p85mbWtEREREDDWVUNYxknR0dLizs3OouxERI4CkKbY7hrofMbzkPhIRvdXdfSQzEhEREUNI0qzGRu0Fpb/5iLqTXEURi47skYiIiIiIiD7LQCIiImIYUHFYTWg6XdIutfwnkj5WX18k6ZT6+nM1fDiSLpY0pSY93WfoPkVELEqG3UBC0iH1i3BazRr9nvlsZ7ykzZreT5K0cy/Om1Ove1/NNv1VSd3+nuq1Lu1D3/ZPBuuIiGjxCWAcsAGwLXCYpJUoEQG3rHVWAdaur7dgbmTAvW1vBHQAE2pY84iIQTWs9khI2hTYHni37dmSVgBeP5/NjQdmAbf08bwXbI+r/fkn4CxgDPDN+exHO/tTslo/Pz8n93dta9avRkQMS1sAZ9ueAzwu6XpgY8pgYX9JawP3A2+oA4xNmRuCfIKkHevrVYE1gKeaG09i04gYaMNtRmIl4EnbswFsP2n7UQBJ/yLp7jrde4qkJWr5jDrgQFKHpMk13Oq+wAF1dqHxJGcrSbdIerA3sxO2/0r50t2vTjmPlXSjpLvqz2at50jauPbz7e36LGkCJWzsdZKuq+f8VFJnnQX5Vj9/hxERMTK1TWpq+xHgDcAHKbMTNwL/Csyy/ayk8ZQZjE1tbwDcDSzZpp0TbXfY7hi19JjB+QQRsUgZbgOJq4FVJf2urgl9H4CkJSkZoHexvR5lJuVLXTViewZwAnCU7XG2G1O/K1Ge+GzPa/NGdNXWg5Tf0z8BfwXeb/vdwC7Asc1168DiBGAH4NF2fbZ9bD22te2t66mH1LBa6wPvk7R+b/oWERELlRuAXSSNkrQisBVz8xLdSpnNbgwkDmTusqYxwN9sPy9pLeC9C7TXEbHIGlZLm2zPkrQRZS3o1sC5kg6mPF15yPbvatXTgH8Dju7jJS62/Qpwv6Q39+G8xlOixYHjJI0D5gBrNtV5F3AisJ3tRyVt0Ic+/2udcl6MMthZG5g2TwcyJR0RsbC7iLJc6R7AwNdt/6Ueu5Fyf/mDpD8Bb2TuQOJKYF9J04DfArf1dKEkNo2IgTCsBhIAdW3oZGCypOnAHsDUbk55mbkzK6+Zym0xu+l12ynkVpLeThk0/JWyT+Jxyka41wEvNlV9rF5/Q8qMQ2/bfxvlydLGtv9WM2O3nZKmDFRYYqU1kkUwImIh0cgh4ZIh9qD601rnf4H/ra9fApZpOjYb+NAC6WxERJNhtbRJ0jslrdFUNA74E/AAMFbSP9fyzwDX19czgI3q652azn0WWLaf/VmRslTpuPoFPwZ4rM5qfAYY1VT9GeAjwPfqetXu+tzct+WA54CZdZYkN4OIiIiIGPaG24zEaODHkpanzDT8AdjH9ouS9gLOk7QYcCflD3yAbwH/K+kbwO1Nbf0SOF/SDsBX+tCHpSRNpSxjehk4AziyHvsJcIGkTwLXUQYAr7L9uKSPAlcAewNd9flE4ApJj9neWtLdwH3Ag8DNPXUwU9IRERERMdRUHrTHSNLR0eHOzs6h7kZEjACSptRgDhGvyn0kInqru/vIsFraFBERsTCRtKMk12hK1DDi985nW7MGtncREf0z3JY2RURELEx2A24CdgUmDm1X5upvYtPuJOlpxKIjMxL9lCdEERHRjqTRwObA5ygDidbjbZOcSlpJ0g01oeq9TUlVG+etIOlWSR/pTaLUiIjBkhmJEWgwnyRBniZFRAyQjwNX2v6dpKclvRt4uul4I8npizVi4dlAB/Ap4Crb35U0Cli6cUKN7ncJ8J+2fyVp6S7aiIgYdJmRGCAqDqtPj6ZL2qWW/0TSx+rriySdUl9/TtJ/19cXS5oi6b6aeC4iIka+3YBz6utz6vtmiwMn1ZxJ51GSkUKJ8reXpInAerafbap/DSVR3a96aOM1JO0jqVNS55znZ/bvk0VEkBmJgfQJSt6LDYAVgDsl3QDcQMnUfQmwCiVzNcAWzL3B7G37aUlL1fMusP3Ugux8REQMHElvArYB1pVkSt4hU8KINxxAmySntm+QtBUlN9EZkg6zfTolJPkU4APMzUvUto12ktg0IgZaZiQGzhbA2bbn2H6c8iW/MXAjsKWktYH7gcclrQRsCtxSz50g6R7gNmBVYI3WxvMkKSJiRNkZON326rbH2l4VeAh4a1OdtklOJa0O/NX2SZRs1u+u9U3JUbSWpIO7ayMiYkHIjMTAUbtC249IegPwQcrsxBuBfwVm2X62ZsHeFtjU9vOSJgNLtmknT5IiIkaO3YAftJRdAHyj6X1XSU7HAwdJegmYBXy2cYLtOZJ2BX4p6e/dtNGtJDaNiIGQgcTAuQH4oqTTKIOFrYCD6rFbgf0p09xvAs6vP1CeJv2tDiLWAt67IDsdEREDz/b4NmXHAsc2vf89sH5Tlf+o5acBp7U5f3T99x+U5U0Nr2kjImJByEBi4FxEWa50D2X6+eu2/1KP3QhsZ/sPkv5EGWjcWI9dCewraRrwW8rypm7lSVJEREREDLUMJPqp6QmRKTMQB7Wp87+Uda7YfglYpunYbOBDC6SzEREREREDJJutIyIiIiKizzKQiIiIiIiIPsvSpoiIiH6o0fa+b/uqprL9gQnAibZbozd119bKwLG2d+6h3uXAp2w/Mz99nv7ITMYefNn8nNpvM7LHL2KhkRmJHkjaUZJrRCUkjZV073y2NWtgexcREcPA2cCuLWW7Anu0G0RI6vIhnu1HexpE1Hofnt9BRETEQMmMRM92A26i3BQmDm1XisF+kpSnRRERfXI+8N+SlrA9W9JYYGXgnyXtYns/SZOAp4ENgbsk/QQ4k5JA7grgq7ZH13Mvtb2upD2BjwFLA+8ALrL9dQBJM4AO209KupiSzHRJ4JiadygiYtBlRqIbkkYDmwOf47VPmxqzEzdKuqv+bFbLV5J0g6Spku6VtGXLeStIulXSR7pqIyIiRgbbTwF3UBKPQrlfnEsJBd5sTWBb218DjqH80b8x8Gg3zY8DdgHWA3aRtGqbOnvb3gjoACZIelO7hiTtI6lTUuec52f27sNFRHQjA4nufRy40vbvgKclvbvl+F+B99t+N+WLvpFo6FPAVbbHARsAUxsnSHozcBlwqO3LumkjIiJGjublTbvW963Osz2nvt4UOK++Pqubdq+xPdP2i8D9wOpt6kyQdA8lD9GqwBrtGrJ9ou0O2x2jlh7T/aeJiOiFLG3q3m7A0fX1OfX98U3HFweOkzQOmEN52gRwJ3CKpMWBi21Pbap/DfBvtq/voY15SNoH2Adg1HIr9vNjRUTEALsYOLI+cFrK9l2S1m+p89x8tDu76fUcWu7bksYD2wKb2n6+bvxecj6uExHRZxlIdKFODW8DrCvJlHWsBn7SVO0A4HHKrMPrgBcBbN8gaSvgI8AZkg6zfTrwMjAF+ABwfXdttKprXk8EWGKlNVqnyyMiYgjZnlX/iD+F9rMRrW4DdqIsgXrN0tk+GAP8rQ4i1gLe25uT1ltlDJ3ZDxcR/ZSBRNd2Bk63/cVGgaTrgbc21RkDPGz7FUl7UAYbSFodeMT2SZKWAd4NnE4ZiOwNnCfp4BrNo20b3ckNICJiWDobuJDeDQz2B34m6WuU5a7zu2nhSmBfSdOA31IGKBERC0QGEl3bDWgN23cB8I2m9z8BLpD0SeA65k5bjwcOkvQSMAv4bOME23Mk7Qr8UtLfu2kjIiJGENsXAWp6PwmYVF/v2VL9EeC9tl3vCZ213gxg3dbz6/vtm16PbWrrQwP0ESIi+kR2VsmMNB0dHe7s7BzqbkTECCBpiu2Ooe5HzKtG8zuOMvB4hhJ56Q8L6vq5j0REb3V3H8mMRERExAJm+0bK3riIiBEr4V8jIiIiIqLPFqmBhCRLOqPp/WKSnpB0aX0/vjcJ4WoSuXtbyiZKOnAA+viatiMiYmSSNKv+++p3e73XNO47H5N08Hy2vbKk8weutxERfbOoLW16jhLOdSnbLwDvp2x4axhP2Rx9yxD0rdemPzKTsQdfNiTXnpFoURERA8b2JcAl83nuo5QIg32W+0hEDIRFakaiuoKS3wFKZKazoTwtAvYFDpA0tW6Emy+Sxkm6TdI0SRdJekMP5RtJukfSrcC/9eOzRUTECCJpT0nH1deTJB0r6RZJD0rauZZL0mGS7pU0XdIutbx5lmMdSXfU+9c0SW2zW0dEDKRFcSBxDrCrpCWB9YHb4dWQeycAR9keVzfCdecd9Qt7qqSplEFIw+nAv9teH5gOfLOH8lOBCbY37feni4iIkWwlYAtge+aGIP8EMI6yOXtb4DBJK7Wcty9wjO1xQAfw8ILobEQs2ha5gYTtacBYymzE5f1o6o91wDGufnGfACBpDLC87Ubm6tOArfpQfgZtSNpHUqekzjnPz2/eooiIGOYutv2K7fuBN9eyLYCzbc+x/ThwPbBxy3m3At+Q9O/A6nX57jxyH4mIgbbIDSSqS4DDqcuahpgoGa+7ZftE2x22O0YtPWYBdCsiIobA7KbXavm3S7bPAj4GvABcJWmbNnVyH4mIAbWoDiROAb5te3pL+bPAsv1p2PZM4G9Neyw+A1zfTfkzwExJW9Ty3ftz/YiIWOjcAOwiaZSkFYGtgDuaK0h6O/Cg7WMpD8vWX/DdjIhFzaIWtQkA2w8Dx7Q59EvgfEk7AF8B3gB02D60j5fYAzhB0tLAg8BePZTvBZwi6Xngqp4aX2+VMXQm6kVExKLiImBT4B7KDPbXbf+lBglp2AX4tKSXgL8A3+6uwdxHImIgyO5xVU0MMx0dHe7s7BzqbkTECCBpiu2Ooe5HDC+5j0REb3V3H1lUlzZFREREREQ/ZCARERERERF9loFERERERET0WQYS3ZA0q/7bnD10vKRL6+uPSTp4PtteWdL5A9fbiIiIiIgFZ5GM2jRQbF9CCbM3P+c+Cuw8P+dOf2QmYw++bH5O7bcZifIREcOcpKOAP9k+ur6/Cviz7c/X90cAj9g+sg9tjgf+YfuWlvKxwE3AarZfaSqfCuxTf46sCeZ6e619gedtn95NnQ7gs7Yn9LbdZrmPRMRAyIxEP0jaU9Jx9fUkScdKukXSg5J2ruWSdJikeyVNl7RLLW+e5VhH0h2SpkqaJmmNoftUEREj3i3AZgCSXgesAKzTdHwz4OY+tjm+0WYz2zOAPwONHEFIWgtY1vYdtj/fbhAhaVRXF7J9QneDiFqnc34HERERAyUDiYG1ErAFsD3wg1r2CWAcsAGwLXCYpJVaztsXOMb2OKADeLi1YUn7SOqU1Dnn+ZmD0/uIiIXDzcz9o38d4F7gWUlvkLQE8C7gbkkbSbpe0hRJVzW+myVNkHR/fbBzTp112Bc4oD7w2bLlemcDuza937WWIWlynT1A0ixJ35Z0O7CppM9J+l2tc1LTg6mJkg5sOv+H9WHT7xrXbllmu0l9iHV3/fedA/vrjIhoL0ubBtbFdWr7fklvrmVbAGfbngM8Lul6YGNgWtN5twKHSHorcKHt37c2bPtE4ESAJVZaI8k/IiK6YPtRSS9LWo0yoLgVWIWS1G0m5fvXwI+BHWw/UWeLvwvsDRwMvM32bEnL235G0gnALNuHt7nkzykDk6/YfpmSHO6TbeotA9xr+1BJKwM/A94NPAtcS0k4185itjeR9GHgm5SHUs0eALay/bKkbYHvATu1NiKpsdSKUcut2MWlIiJ6LwOJgTW76bVa/u2S7bPqE6qPAFdJ+rztawejgxERi4jGrMRmwJGUgcRmlIHELcA7gXWBX0kCGAU8Vs+dBpwp6WLg4p4uVLNM3wf8i6THgZds39um6hzggvp6E+B6208DSDoPWLOLS1xY/50CjG1zfAxwWl0Wa2DxLvqZB1IRMaAykBh8NwBflHQa8EZgK+AgYMlGBUlvBx60fWx9vT7l6VRb660yhs5sVouI6E5jn8R6lKVNfwa+BvwdOIXykOc+25u2OfcjlO/qjwH/JWmdNnVaNZY3PV5ft/NinZ2GXjxkatJ4SDWH9vft7wDX2d6xLsOa3Ie2IyLmWwYSg+8iynT6PZQnRV+vT6/GNtXZBfi0pJeAvwDfXuC9jIhYuNxMGTg8WP94f1rS8pQ9E1+gDChWlLSp7VslLU6ZEfgNsKrt6yTdBHwKGE1ZfrRcN9e7gLKk6Hlgm1707w7gKElvqG3vBEzv+8cEyozEI/X1nr05IQ+kImIgZCDRDduj678zKFPg2J5MfdpjexIwqb7es4tzTZmBOKjleHOb3we+PxifISJiETWdEq3prJay0bafBKjR9Y6VNIZyPzwa+B3ws1om4Ki6R+KXwPmSdgC+YvvG5ovVOrcBb7b9UE+ds/2IpO8BtwOPAvdTll3Njx9RljZ9lW5msyMiBprK37kxknR0dLizs3OouxERI4CkKbY7hrof8VqSRtueJWkxyuz1KbYvWhDXzn0kInqru/tIwr9GREQMjYk1cd29wEP0YmN3RMRwMiwHEpKOkrR/0/urJJ3c9P6IOoXblzbHS3pNMqGaGO7hmrSouXxqjc19sqS1+3itfSV9toc6HZKO7Uu7ERGx8LB9oO1xtteyPcFZIhARI8xw3SNxCyUG99FNWUmbN7ltBuzfxzbHA7Nq26+yPUNSIyvp9TBvVlLKhrjXkDSqKfrGPGyf0FNnbHcC8zWvPP2RmYw9+LL5ObXfZmRzXkREREQwTGckSFbSZCWNiBhBJFnSEU3vD5Q0cZCvOUPSCoN5jYiI7gzLGYlkJW2flTQiIoat2cAnJH2/ERVqOMvMdkQMhGE5kKiSlbSJpH2AfQBGLbdiTx8pIiIWrJcpWaMPAA5pPiBpReAEYLVatD/lAdmDwDjbz9R6fwA2p9xf/hN4PfAUsLvtxyW9iTJbviJl2a2arnExsCol2ekxNYt1RMSgGq5Lm+C1WUlvo8xIbEYZZDSyko6rP+vZ3q6e+xHgeGAjYEoNrdeTxvKmV5c1tTHYWUnXBT5KU9brBtsn2u6w3TFq6TF9uHRERCwgxwO71xwUzY6h5KPYmDLbfLLtV4BfADsCSHoPMMP248BNwHttbwicA3y9tvNN4KZafglzByYAe9veCOgAJtRBR0TEoBrOA4mbge2Bp23PqU/+l6cMJm4FfkvNSgogaXFJ69TN2avavo7y5bs8c7OSLtvN9S4APkxZ1nROL/p3B/C+um9jMfq3FKnPWUkjImJ4sf134HRgQsuhbYHjaqjXS4DlJC0LnEu550B5iHVuff1W4CpJ0ynJTNep5VtRltRi+zLgb03XmCDpHspDt1WBNVr7J2kfSZ2SOuc8P7+57yIi5hrOS5uSlbQL660yhs6sMY2IGI6OBu4CTm0qex2wqe0XmitKuhX457r06ePAf9dDPwaOtH2JpPHAxKbTXhMittbZtl7jeUmT6WJmm7L8iiVWWiOhZiOi34btQKIuIVqupWzPlvdTKU9oWm3Rpr3fAev3cM0d2pSNb3o9uuXwWbZPbMpKenWtN7GL85+k7pGwPRmYXF/fyrz7K/6ru35GRMTwZPtpST8HPgecUouvBvYDDgOQNM72VNuWdBFlH+BvbD9V6zfPUu/R1PwNwO7Af0v6EPCGpvp/q4OItYD3DtLHi4iYx7AdSIwQE2uUpSUpN4qLh7Y7ERExDBxBGTg0TACOlzSNct+9gRKSHMpypjuZd1nrROA8SY9Qliq9rZZ/Czhb0l2UvEf/V8uvBPat7f+2ntOtzGxHxEDIQKIfbB841H2IiIih1zxjXTdML930/knm7oVoPa+TluAdtn9B2YjdWvcpYLumogOaXn9ovjoeEdEPw3mzdUREREREDFOL/IxE3ZT2fdtXNZXtT5mKPtH2D/rQ1srAsbZ37qHe5cCnGrHD+yqJhCIiIiJiqC3yAwnm5o+4qqlsV2CP1shOAJIWq9mvX8P2o0C3g4ha78Pz2deIiIiIiGEhS5vgfGB7SUsASBoLrEwJyXdcLZsk6UhJ1wE/lPQOSbdJulPStyXNapwr6d76ek9JF0q6UtLvJf2ocUFJMyStUF9fLGmKpPtq9uqIiBhEkt4i6RxJf5R0v6TLJa3Z85mD1p/9JS3d9P5yScvPRztjJX1qQDsXEdGNRX5GwvZTku4APkjZ3NZICtQaY3tNYFvbcyRdChxj+2xJ+9K1ccCGlMzWv5X0Y9t/bqmzdw0XuBRwp6QLmkIAvqoOMvYBGLXcin3/oBERgSRRwnWfZnvXWjYOeDMlD9FQ2J+SaO556Nes9VjgU8ybf6mtoVwi25MsoY0YOTIjUTSWN1H/PbtNnfNqbgso2bXPq6+7+8K+xvZM2y9SEtat3qZOj9lIoSQSst1hu2PU0mO6/zQREdGVrYGXbJ/QKKg5iW6SdJikeyVNl7QLlGRvkiZLOl/SA5LOrIORxuzytyTdVc9Zq5YvI+mUOmt9d02EiqRRkg6vdadJ+oqkCZRZ8OvqrHfrrPVna917JJ1RyybVhKzU97Pqyx8AW0qaKqk5olNExKBY5GckqouBIyW9G1jK9l2SWpPXPTcf7c5uej2Hlt93b7ORRkTEgFkXmNKm/BOUWeQNgBUoM8Q31GMbAusAjwI3A5sDN9VjT9p+t6QvAwcCnwcOAa61vXddonSHpF8Dn6XkhNjQ9suS3lhnpL8KbF3DxL5K0jq1rc1tPynpjT18toOBA21v39tfRkREf2QgAdieVf+IP4X2sxGtbgN2oiyB2rWHut2Zr2ykSSQUETHgtgDOrjPPj0u6HtgY+Dtwh+2HASRNpSwhagwkLqz/TqEMRqDkeviYpEauoSWB1SgPjk5oBOyw/XQPfdoGOL8xwOhF/W5liWxEDLQsbZrrbMqTqHN6UXd/4Kt1b8VKwMz5vOaVwGI1G+l36EU20oiI6Jf7gI3alKtNWUN3s8uz25QL2Mn2uPqzmu3f1PLW/Xfd6ar+y9T7d11m9freNJYlshEx0DKQqGxfZFu2H6jvJ9ner77e0/b5TdUfAd5rexPgt0BnrTfD9rqt59f329ueXF+Ptf2k7dm2P2R7fduftD2+USciIgbFtcASkr7QKJC0MfA3YJe6j2FFYCvgjvm8xlXAV5r2UmxYy68G9pW0WC1vLFV6Fli2TTvXAP8q6U0t9WcwdzC0A7B4D+1ERAyKLG2aPxsBx9WbxDPA3kPbnYiI6A3blrQjcLSkg4EXKX+Y7w+MBu6hzAJ83fZfGhuo++g7wNHAtHqfmAFsD5xMiQA4TdJLwEnAccCJwBWSHrO9dVNf75P0XeB6SXOAu4E963m/qLPi1zB3D9804OUawGOS7aO66mCWyEbEQJDdl1nWGA46Ojrc2dk51N2IiBFA0hTbHUPdjxhech+JiN7q7j6SpU0DQNJbJf2iJp77o6RjJL1eJSndcV2cM18JhyIiIiIihoMsbeqnOm19IfBT2ztIGkWZpv4uZVNfW/1IOJREQhEREREx5DIj0X/bAC/aPhWghg48gLJvYmlgZUlX1tmKHzVOakk49NWaBOleSfsv+I8QEREREdE3mZHov3VoSW5k+++S/o/y+x1HSWY0G/itpB/b/nOjrqSNgL2A91BC/d0u6Xrbdy+g/kdERERE9FkGEv3XVZzvRvk1tmcCSLofWB34c1O9LYCLbD9X61wIbEmJzjG3sSQSiohYaEl6K3A8sDZltcClwEHAp4CO5nDiTedcDnzK9jN9vV6WyEbEQMjSpv67D5hnJ7uk5YBVKQmKuktkBN0nQXpVEglFRCycmvbaXWx7DUqI2NGUvXZdsv3h+RlEREQMlAwk+u8aYGlJnwWom62PACYBz/fi/BuAj0taWtIywI7AjYPU14iIGH6y1y4iRqQsbeqnpuRGP5H0X5TB2eXAN4DdenH+XZImMTeD6sk97Y9IIqGIiIVK9tpFxIiUgcQAqF/oH21zaFL9adTbvun12KbXRwJHDloHIyJiOMteu4gYkbK0KSIiYmhlr11EjEgZSERERAyt7LWLiBFpxC1tkvQW4GhgY8pTmhnA/rZ/N0T92R840fbz9f18heOTNBbYzPZZA93HiIgYvrLXLiJGKtntlmUOTzVE3i3AabZPqGXjgGVtD8nTF0kzKDG+n+xnO+OBA5v3UXRliZXW8Ep7HN2fyw2axP+OGF4kTbHd0XPNWJR0dHS4s7NzqLsRESNAd/eRkba0aWvgpcYgAsD2VOAmSYfVsHfTJe0C5Y9zSZMlnS/pAUln1sFII2zetyTdVc9Zq5YvI+kUSXdKulvSDrV8lKTDa91pkr4iaQKwMnCdpOua2m2E4/tsrXuPpDNq2SRJOzf6L2lWffkDYEtJUyUdMKi/xYiIiIiIfhppS5vWpSVEXvUJSni8DYAVgDsl3VCPbUgJrfcocDOwOXBTPfak7XdL+jJwIPB54BDgWtt7S1oeuEPSr4HPAm8DNrT9sqQ32n5a0leBrVtnJCStU9va3PaTkt7Yw2c7mF7OSEREREREDLWRNiPRlS2As23Psf04cD1lDwXAHbYftv0KMBUY23TehfXfKU3l2wEHS5oKTAaWBFYDtgVOsP0ygO2ne+jTNsD5jQFGL+p3S9I+kjoldc55fmZ/moqIiIiI6LeRNpC4D9ioTXl3oe+6C5s3u025gJ1sj6s/q9n+DV3H+e5KV/Vfpv7e6zKr1/emsYTti4h4LUmWdETT+wMlTexjG+Mlbdb0fp4lqN2c9xZJ50j6o6T7JV0uac0+fYD27Y6VdG993SHp2P62GRExGEba0qZrge9J+oLtkwAkbQz8DdhF0mnAG4GtgIOAtebjGlcBX5H0lRpJY8Ma/eJqYF9Jk5uXNgHPAssCrZutrwEuknSU7aea6s+gDIZ+DuwALF7rN9qJiIjemw18QtL35yfohaTFgPHALEowj96eJ+AiSvCPXWvZOODNQI9RBOv5qrPlXbLdCQz4rujpj8xk7MGXDXSzC0SCekQMHyNqINEUIu9oSQcDL1LDvwKjgXsoswBft/2XxgbqPvoOJbzstPpFPwPYHjgZWLOWvwScBBwHnAhcIekx21s39fU+Sd8Frpc0h5JhdM963i8k3UEZbDxXT5kGvCzpHmCS7aO66mDC9kVEvOplyvfwAZR9aa+StDpwCrAi8ASwl+3/q6FSn6bsoXuasndujqRPA1+pp29V98C9hXJPOb/lul0F/0DSaOAXwBsoD4v+0/YvapjvK4DrgE0puR/2Az5EuXf9t+1zWz7DeOr+uTrTshrw9vrv0baPrfUupiSwWxI4xvaJvf0FRkTMrxEV/jWKhO2LiN5a2MO/1sh3K1MexmwAfAEYbXuipF9S9qqdJmlv4GO2P14HEisAO9ieU/9An2X78NrmJGAZYBfKzPYltv+55boTgLfZfk2UvTrLsbTtv9cofrcBawCrAw9ScgbdJmknYF/gg7U/dwLvAZYALrW9bpuBxHaUQcyywG+Bt9h+qSkAyFK1nffZfqqr39twDiPek8xIRCxY3d1HRtoeiYiIiHnY/jtwOjCh5dCmQCPJ5xmUwBwN59me002zF9t+xfb9lOVKfSHKMtxpwK+BVZra+JPt2+rr7gKFdOUy27PrMq6/NrU7oc5o30aZmVjjNZ1K0I6IGGAZSERExMLgaOBzlJmErjRPwT/XZa2iOVBHu4AeXQX/ANidspxqI9vjgMcpS45ar9tdoJDe9GsOsFidtdgW2NT2BpSltEu2npigHREx0DKQiIiIEa8Gs/g5ZTDRcAuwa329O3NzCLWan2AX1wJLSPpCo0DSxpLeB4wB/lqXHG1NWdLUzg2UQCGjJK1ICRRyRx/7Qb3e32w/X/cGvnc+2oiI6LMRtdl6sEl6K3A8sDZlkHUpcJDtfwxpxyIiojeOAPZrej8BOEXSQdTN1l2c90vgfEk7MHezdbd6CP5xH/BLSZ2U/EUPdNHMRZTlV62BQsb2pg9NrqREFZxG2TdxWw/1E7QjIgZENltXNULT7cBPbZ8qaRQlEsjTtg9qqrdYIyndUMkmuYjorYV9s3XMnwTtiIjeymbr3tkGeNH2qQB1E94BwN6SvizpvBoB5GpJy0g6RdKdku6uT7GQtLSkn0uaJulcSbdL6qjHdpM0XdK9kn7YuKikWZK+K+keSbdJ6uumvoiIiIiIBS4DibnWAaY0F9RIIP9HWQK2KbCH7W0oscqvtb0xJQzfYZKWAb5MWae6PiUfxUYAklYGfkgZrIwDNpb08XqZZYDb6ga5GyihCyMiIiIihrUMJOYS80b0aC3/Vd3MByWO98GSpgKTKdExVqOE8jsHwPa9lLjmUML5Tbb9RF0WdSZlUx3APyh7MaAMZMa27VzC9kVERETEMJLN1nPdB+zUXCBpOUo87jm8NmTfTrZ/21K/q1B+3YX4e8lzN6rMoYv/JjVL6YlQ9kh0015ERERExKDLQGKua4AfSPqs7dPrZusjgEnA8y11rwK+IukrNXLHhrbvpoQW/FfgOklrA+vV+rcDx9QMp38DdgN+PL8dTbSNiIgFR9JRlERyR9f3VwF/tv35+v4I4BHbRw7CtU8GjqyJ8QbM9EdmMvbgywayyREhAT8iBlaWNlV1VmBH4JOSfg/8jhLO7xttqn8HWByYJune+h7gJ8CKNQTfv1OWNs20/RjwH8B1lDB/d9n+xWB+noiIGDC3AJsBSHodsAJlX13DZsDNg3Fh258f6EFERMRAyYxEE9t/Bj7a5tCk+tOo9wLwxTb1XgQ+bftFSe+gzHL8qZ5zFnBWm2uObnp9PnD+/H+CiIgYBDcDR9XX6wD3AitJegNlxvpdlHwSX7I9FUDSzcCXgIeBU4C317r72J4maSLwNmAlYE3gq5REch8CHgE+WhPaTQYOtN0paRZwDLA98AKwg+3H6/3mTGAUcAXw1eZ7S0TEYMmMxMBaGrhJ0j2URENfSjK7iIiRzfajwMuSVqPMPtxKWbK6KdBBmX0+AdgTQNKawBK2pwHfAu6u0fy+AZze1PQ7gI8AOwA/A66zvR5lkNBuDU5XUf6OAY6pkQQf7epzJGhHRAy0DCQGkO1nbXfY3sD2+ravGOo+RUTEgLiZMohoDCRubXp/C3AesL2kxYG9mTuLvQVwBoDta4E3SRpTj11h+yVgOmU24cpaPp32Efy6ivK3ab0+tJn5brB9Yr1HdYxaekxX1SIiem1IBxKSXDepNd4fWKd7+9LGeEmbNb2fJGnnXpz3FknnSPqjpPslXV6fIvWLpLF13wSSOiQd2982IyJiyDX2SaxHWdp0G+UP+M2Am20/D/yKMrvwr8z9g75d1L5G5L3ZALZfYd4Ifq/Qfulxr6L8RUQsKEP9JTQb+ISk79t+sq8nS1oMGA/MonzJ9/Y8UZYenWZ711o2DngzZZN1b85X/fLvku1OoLO3/eqtkRxtIxEzImKEuhn4GvCg7TnA05KWp+yZaCwxOhn4JXBjU96hG4Ddge9IGg88afvvXUcLny+3UcKXnwvs2psTEv0vIgbCUC9tepmSG+GA1gOSVpd0jaRp9d/VavkkSUdKuo7ypbkvcICkqZK2rKdvJekWSQ92MTuxNeXJzgmNAttTbd8oaXS93l2SpkvaoV53rKTfSPoJcBewqqTDJN1b6+3S5jOMl3RpfT1R0imSJtd+TWiqd7GkKZLuk7TP/P0qIyJiEE2nRGu6raVsZuNBmO0pwN+BU5vqTAQ6ajS/HwB7DELf9ge+KukOyubtbICIiAViqGckAI6nhFH9UUv5ccDptk+TtDdwLPDxemxNYFvbc+pSqFm2DweQ9DnKF+kWwFrAJbw2EtK6lPWl7bwI7FifGK0A3CbpknrsncBetr8saSdgHLAB5eZyp6Qbevisa1EGMcsCv5X007o+dm/bT0taqrZzge2nemgrIiIWkDoLsVxL2Z7N7yWtTHlAd3VTnacpy51a25vY8n50u2O2x3dRpznK3yPAe2teo10ZhJnwiIh2hnpGAtt/p0SxmNByaFPmrjE9gzIwaDivfql35WLbr9TY22/uY5cEfK8+Pfo1sEpTG3+y3XgatQVwtu05th8Hrgc27qHty2zPrk+v/trU7oQa6ek2SibtNV7TqUTbiIgYtiR9lhLJ6ZCelr0Ogo2AqfW+9WXKEqyIiEE3HGYkAI6mLBc6tZs6bnr9XA/tzW563W4h6n1AVxuydwdWBDaqMbxnAEu2ue78LHBt7tccYLG6ZnZbYFPbz9eY4Uu2nmj7RMoyMJZYaQ23Ho+IiKFj+3TmDe26IK99I2V2PCJigRryGQl4der358DnmopvYe6msd2Bm7o4/VnKUqG+uBZYQlJjgxySNpb0PmAM8Nc6iNgaWL2LNm4AdpE0StKKwFbAHX3sB/V6f6uDiLUoCYkiIiIiIoa14TIjAXAEsF/T+wnAKZIOAp4A9urivF8C59dN0V/pzYXqOtIdKZlID6bsi5hB2bB2H/BLSZ3AVOCBLpq5iLL86h7KbMnXbf9F0tje9KHJlcC+dUr6t8y7ka+tRNuIiBhZJBn4me3P1PeLAY8Bt9vevpvzOoDP2m5d/hsRMeQ0NyR1jBQdHR3u7MxeuojomaQptjuGuh+LOkmzgN8Dm9l+QdKHgO8DD3c3kBgsS6y0hlfa4+gFfdlhLyHKI16ru/vIsFjaFBERsQi4Amj8pbobcHbjgKRNatjyu+u/76zlvQ0j/mlJd9RQ6P8jadQC/FwRsYjKQCIiImLBOAfYVdKSwPqUKE8NDwBb2d4QOBT4XhdtrAV8ANgE+KakxSW9C9gF2Nz2OEowj90H5yNERMw1nPZIRERELLRsT6v76HYDLm85PAY4TdIalH13i3fRzGW2ZwOzJTXCiP8LJQTsnTVj9lKUEOPzqAlP9wEYtdyK/f48ERHDakZC0iE1u/O0Oj37nh7qT2pkrpa0v6Slu6g3uW5Y600fXp1Gnh+SPluzXd8n6X5JB9byb0vatqe+RkTEQu0S4HCaljVV3wGus70u8FHahAGvXhNGnBKO/DTb4+rPO1sT3kEJI267w3bHqKXH9PdzREQMnxkJSZsC2wPvtj27ZpV+fR+a2B/4GfD8IHSvV+rmuf2B7Ww/WqevPwNg+9CmqvvTj75Of2QmYw++rH+dHSLZyBYRi7hTgJm2p9c8Qg1jKBmqAfbsY5vXAL+QdJTtv0p6I7Cs7T/1t7MREd0ZNgMJYCXgyTplS83+DICkQylPaJai5Jf4opvCTdUNZysD10l60vbWPV2sTi+fASxTi/azfUtLnY0pSeB2At4AHAmMBp4E9rT9WEuz/wEcaPvR+hleBE6qbU0CLq39fLWvlAHFurYPqPW+ALzL9ld7+gwRETGy2H4YOKbNoR9RljZ9lZLrqC9t3i/pP4GrJb0OeAn4N6DLgUTCiEfEQBhOS5uuBlaV9DtJP6nJ4RqOs71xnfJdijJz8SrbxwKPAlv3ZhBR/RV4v+13UzapHdt8UNJmwAnADsCfgR8DO9veiPJE6btt2lwXmNLdRdv09RzgY5Ia62H3ovsM3xERMcLYHt2mbHIj9KvtW22vaXtz2/9le2ybOhNtH950/rq2Z9TX59ZlTevb3sh2jzmJIiL6a9jMSNieJWkjYEtga+BcSQfbngRsLenrwNLAG6lJ4/p5ycWB4ySNo6wzXbPp2LsoMxGNJUrrUgYJv6ob2UZREgn1m+3nJF0LbC/pN8Ditqe31ssmuYiIiIgYTobNQALA9hxgMjBZ0nRgD0nnAD8BOmz/WdJEut6E1hcHAI8DG1BmZl5sOvZYvcaGlNkDAffZ3rSHNu+jRM7o07Q0cDLwDUr4v7azEbZPpAxuWGKlNZJFMCIiIiKG1LAZSNTkO6/Y/n0tGkdZ39kYNDwpaTSwM3B+myaeBZal7F/ojTGUjKKvSNqDMsvQ8AzwOcp60+co+zJWlLSp7VvrMqQ1bd/X0ub3gR9J2t72XyQtQdnPcWxLvXn6avt2SasC76bEFu9W1rZGRERExFAbTnskRlM2mt0vaRqwNjDR9jOUDcvTgYuBO7s4/0TgCknXdXH8MkkP15/zKLMce0i6jbKs6bnmyrYfp2zwPp4yM7Ez8ENJ9wBTgc1aL2D78lr/15Luo+yXaDdYa9fXnwM32/5bF/2PiIh+kmRJRzS9P7DOdA9U+2PrNb7TVLaCpJckHTefbb4aPjwiYjhRU/CjGEI1d8VRtq/pqW5HR4c7OzsXQK8iYqSTNMV2r/LoLAokvUhZvrqx7Sdrrp/R7fIuzGf7YynhWP9es1Qj6UvAF4GbbO83ENfpryVWWsMr7XH0UHdj2EmI8ojX6u4+MpxmJBZJkpaX9Dvghd4MIiIiol9epswKH9B6QNKKki6QdGf92byWT6/f1ZL0lKTP1vIzupgpeAH4TVMi1F0os849XecXTW1/UdKZ9XVz8tWNJd0i6R5Jd0haVtKSkk6t/bxbUm+jF0ZE9Muw2SOxqKpLt9bsqV5ERAyY44Fpkn7UUn4MZWb4JkmrAVdRovjdDGxO2bf3ICW64OnAe4EvdXGNc4BdJf2FEhnwUUoOoe6usw9ws6SHgK/V9l8l6fXAucAutu+UtBxl0PL/AGyvJ2ktyv6+NWsuo4iIQZOBRD/VaexLa46LRtlEYBZlM/XVjQR13bQxmZLILuuVIiIGme2/SzodmED5Q7xhW2DtGuYbYDlJywI3AltRBhI/BfaRtArwtO1ZXVzmSuA7lOiA57Yca3sd24+rJGC9DtjR9tMt570TeMz2nY3PASBpC0quI2w/IOlPlAdU05pPThjxiBhoGUgMrj2BeylPogbM9EdmMvbgywayyWEj61MjYgE5GriLeUNuvw7Y1Hbz4AJJN1AyRa8GHALsSAnAcWNXjdv+h6QplJmFdSjBO7q9TrUe8BRzZy/m6QrQbmOj2pS161PCiEfEgMoeicHVAZwpaaqkpSQdWtfD3ivpRDU9jgI+Wde7/k7SlkPV4YiIRUF92v9zSqjvhquBVzdD14Sl2P4zsAKwhu0HgZuAA+lmIFEdAfy77adaytteR9ImwIcokQIPlPS2lvMeAFaWtHGtv6ykxYAbgN1r2ZqUAc9ve+hbRES/ZUZicHXStGRJ0nG2v11fnwFsz9wM3YvZ3kTSh4FvUqa+IyJi8BxB0x/0lKVOx9cQ5I0/0Petx25nbr6hGyl5g27qrvGaa6g131Db60j6f5RQ53vZflTS14BTJG3T1N4/JO0C/FjSUpRlWdtSwpmfoJLI9WVgT9uzu+tb8hFFxEDIQKL/upoeble+taSvA0sDb6TcYBoDiQvrv1OAsa0nZm1rRET/2R7d9Ppxyvdx4/2TlAhL7c77TNPrW+hiRt/2DGDdNuWTgEk9XGeDpvqXAJfUt3s2ld9Jyybs1joREQtKljb131PAG1rK3khLhm1JS1KeGu1sez3Kk6clm6o0nh7Noc0Az/aJtjtsd4xaesxA9T0iIiIiYr5kINFPNWLHY5L+BUDSG4EPUqa8nwWWrVUbg4YnJY2mbNSLiIiIiBiRsrRpYHyWst71iPr+W7b/KGkSZd3qC8CmlFmI6cAM4M75vVjWtkZERETEUMtAYgDYvh94TSZR2xcAFzQV/Wf9aa03vun1k7TZIxERERERMZxkaVNERMQAkfRWSb+Q9HtJf5R0TM1IHRGx0MmMRERExACouYEuBH5qewdJoygJ4L4LHNRUbzHbLw9RN4GFO7HpYErS1Ih5ZUYiIiJiYGwDvGj7VADbc4ADgL0lfVnSeZJ+CVwtaRlJp9QkpXdL2gFA0tKSfi5pmqRzJd0uqaMe203S9JrU9IeNi0qaJem7ku6RdJukNy/4jx4Ri6KFfiAh6ShJ+ze9v0rSyU3vj5D01UG69smS1h6MtiMiYthZh5IL6FW2/w78H2UFwKbAHra3AQ4BrrW9MWWP3WGSlgG+DPzN9vrAd4CNACStDPyQMlgZB2ws6eP1MssAt9negJJE7wuD+BkjIl61KCxtugX4JHC0pNcBKwDLNR3fDNh/MC5s+/OD0e6iOiWdKeWIGOZE+2SkjfJf2X66lm0HfEzSgfX9ksBqwBbAMQC2763ZrwE2BibbfgJA0pnAVsDFwD+AS2u9KcD723YuiU0jYoAt9DMSwM2UwQKUp0X3As9KeoOkJYB3UQYZ4xonSLpZ0vqS3ijp4jrFfJuk9evxiZJOk3S1pBmSPiHpR3XK+UpJi9d6k5umpNtOPUt6R31/p6RvS5q1wH4zERExkO4DOpoLJC0HrEpJNvpc8yFgJ9vj6s9qtn9Ty9vpqhzgJduNAUzbpKaQxKYRMfAW+oGE7UeBlyWtRhlQ3ArcTpli7gCmAScAewJIWhNYwvY04FvA3XWK+RvA6U1NvwP4CLAD8DPgupqx+oVa3qqrqedjgGPq9PajXX0OSftI6pTUOef5mX3+PURExKC7Blha0mcB6mbrI4BJwPMtda8CvlI3aCNpw1p+E/CvtWxtYL1afjvwPkkr1HZ3A64fvI8SEdGzRWFpE8ydldgMOBJYpb6eSVn6dB7wX5IOAvamfOlDmWLeCcD2tZLeJKnxGOcK2y9Jmg6MAq6s5dNpnweiq6nnTYGP19dnAYe3+wC2T6RE/2CJldZoN3UeERFDyLYl7Qj8RNJ/UR7WXU55ELVbS/XvAEcD0+pgYgawPfAT4LS6pOluysOumbYfk/QfwHWU2YnLbf9ifvuaxKYRMRAWlYHELZSBw3qUpU1/Br4G/B04xfbzkn5FmV34V+ZOTbebSm78ET8bwPYrkpqnlV+h/e+1V1PPERExctn+M/DRNocmMfchFbZfAL7Ypt6LwKdtvyjpHZRZjj/Vc86iPHBqveboptfnA+fP/yeIiOi9ReWP2ZspA4cHazi+pyUtT9kz0VhidDLwS+DGps1wNwC7A9+RNB540vbf60z0QLmNMutxLrBrb07Ik6SIiIXW0sB1da+dgC/Z/scQ9ykioq1FZSAxnRKt6ayWstG2nwSwPUXS34FTm+pMBE6tU8zPA3sMQt/2B34m6WvAZZTlVhERsQiy/SwtG7YjIoarRWIgUWchlmsp27P5fY3R/Trg6qY6T1OWO7W2N7Hl/eh2x2yP76JO89TzI8B769raXYHO3n6uiIiIiIihstBHbeqNGmHjduAQ268s4MtvBEytsx5fpizBioiIQTLQiUprSPADuzh2Sz/6OV7SZj3XjIgYGovEjERPbJ/OvKFdF+S1bwQ2GIprR0QsohZYolLb/RkIjAdmUfo7oBbVxKb9lcSoEfPKjEQvSLKkM5reLybpCUmX9nBeh6RjB7+HERHRB71JVPqBmij0XkknNuV7mCDp/pqo9JymNteuSUgflDShUdhIMlpnFyZLOl/SA5LObGrzw7XsJknHSrpU0lhgX+AASVMlbSlpdUnX1GtfU/MjIWlSPe+Wev2dB/fXFxFRZEaid54D1pW0VA3Z937K3oZu2e5kEPY85ElSe3lSFBG9YftRSa2JSleh5PWZScndcJztbwPUB0nbUyL7HQy8zfbsGv2vYS1ga2BZ4LeSfmr7pZZLb0gZuDxKGcxsLqkT+B9gK9sPSTq79nGGpBOAWbYPr/34JXC67dMk7Q0cy9w8RCtRch+tBVxCQsBGxAKQGYneu4K5Gat3A85uHJC0SX0SdHf99521fHxj1qKuoT2liydWn5Z0R33q9D81a2lERAye5kSlt9afxvtbgK0l3V6Tjm5DGQBAGWScKenTwMtN7V1me3aNBPhX4M1trnmH7YfrXryplOSla1FCkz9U65zd5ryGTZkbffAMysCh4WLbr9i+v4trI2kfSZ2SOuc8nwCBEdF/GUj03jnArpKWBNanbM5ueIDyNGlD4FDge120sRbwAWAT4JuSFpf0LmAXYHPb4yjJ6nYfnI8QERFVa6LS2yh/qG9GGWT8BNjZ9nrAScCS9byPAMdTAmVMkdSY2Z/d1HZXSUfb1elPYiI3vW5uu22btk+03WG7Y9TSY/px2YiIIgOJXrI9jfL0aDfg8pbDY4DzJN0LHMXcJ1et2j2x+hfKDelOSVPr+7e3npgnSRERA+pmynKlp23PqeG+l6cMJm6tdZ6UNBrYGaBuzF7V9nXA12v90fTPA8Db654IKA+WGp6lLJVquIW5iUt3B27q57UjIvoleyT65hLgcEokjTc1lX8HuM72jvVmMLmL87t6GnWa7f/o7sK2TwROBFhipTXcXd2IiOhRt4lKJZ1U388A7qzHR1ESiI6hfHcfZfuZumd6vth+QdKXgSslPQnc0XT4l8D5knYAvgJMAE6RdBDwBLDX/F53vVXG0Jl9ZRHRTxlI9M0pwEzb0yWNbyofw9zN13v2sc1rgF9IOsr2XyW9EVjW9p/629mIiGivp0Sltv8T+M82p27RWtAmSem6Ta9H138n0/SQyfZ+TadcZ3utGsXpeGqQDtu/oyylbbZNm+vv2fK+v7MkERG9koFEH9h+GDimzaEfAafVBEbX9rHN+yX9J3B1nTZ/Cfg3oMuBRJ4kRUQsVL4gaQ/g9cDdlChOERHDnuyskhlpOjo63Nk54FFlI2IhJGmK7Y6h7kcML7mPRERvdXcfyWbriIiIiIjoswwkIiIiIiKiz7JHIiIiRhxJBn5m+zP1/WLAY8Dttrcfgv6MBw4crGvXLNqfsv2T+n4ssJnts7o7ryvTH5nJ2IMvG7gOBjOydzEWQSNuIFFvHkfa/lp9fyAlXN/EAWp/LPAQ8N+2/6uWrUC5Qf1PS6SN3rb5beAG278eiD7mBtBevsQjFinPAetKWsr2C8D7mRs9b2G0PPBlSqI8KHmNPsW84WsjIhaokbi0aTbwifrH/WB5kJKoqOGTwH3z25jtQwdqEBEREa+6gpJpGkqy0LMbByRtIukWSXfXf99Zy9eRdIekqZKmSVpD0jKSLpN0j6R7Je1S6x4q6c5admINz4qkf5b061r/LknvqJcdLel8SQ9IOrOp/ozGPUtSh6TJ9fX7aj+m1n4uW8sPqtedJulbte0fAO+odQ+r77es7w9o97kG7bceEVGNxIHEy5TEbAe0HpC0oqQL6hfwnZI2r+XTJS2v4ilJn63lZ0jats01XgB+I6mxQ30X4Oe9uM4vmtr+oqQz6+tJkhqZUTeuN7V76pf+spKWlHRq7efdkrYeqF9WRMRC7BxgV0lLUvIt3N507AFgK9sbAocC36vl+wLH2B4HdAAPAx8EHrW9Qc0BcWWte5ztjWvZUsx9wHQmcLztDYDNKDPWABsC+wNrA28HNu+h/wcC/1b7siXwgqTtgDWATYBxwEaStgIOBv5oe5ztg+r7G+v7o7r4XPOQtI+kTkmdc56f2UPXIiJ6NuKWNlXHA9Mk/ail/BhKptGbJK0GXAW8C7iZ8oX+J8psw5bA6cB7gS91cY3GDeovlCzUjwIr93CdfYCbJT0EfK22/ypJrwfOBXaxfaek5SiDlv8HYHs9SWtRckqsafvFpnP3qe0zarkVe/+biohYSNmeVpej7gZc3nJ4DCW/zxqAgcVr+a3AIZLeClxo+/eSpgOHS/ohcKntG2vdrSV9HVgaeCNwX51NWMX2RbUPLwLUyYc7ar4hJE2lLD+6qZuPcDNwZH3odKHth+tAYjtKPgmA0ZSBxf/18Ot4zedqrWD7RMqDOJZYaY3Efo+IfhuJMxLY/jtlIDCh5dC2wHH1C/wSYLk6VXwjsFX9+SmwnqRVgKdtz+riMldS1tzuRvnjv8fr2H6c8uTrOuBrtp9uOe+dwGO272x8DtsvUzKlnlHLHqAMeNZs+cwn2u6w3TFq6THd/n4iIhYhlwCH07SsqfoOJWP0usBHgSUB6ubkj1Ee4lwlaZuaQXojYDrw/bqkaUnKfoSdba8HnFTbUDd9md30eg5zH9a9zNz77ZKNCrZ/AHyeMttxW32QJOD7daZhnO1/tv2/Pf0S2n2uns6JiOivETmQqI4GPgcs01T2OmDTpi/gVWw/C9xAmYXYEpgMPAHsTBlgtGX7H8AUyszCBS2Hu7oOwHrAU8ydvWgmypOxduUREdF3pwDftj29pXwMczdf79kolPR24EHbx1IGIetLWhl43vbPKIOSdzP3D/4nJY2m3DMaD7IelvTx2t4SkpbuoY8zKAMVgJ2a+vIO29Nt/xDoBNaizHDvXa+JpFUk/RPwLLBsU5vzvG/3uXroU0REv43UpU3YflrSzymDiVNq8dXAfsBhAJLG2Z5q+891o9vrbT8o6SbK2tSeIjAdAVxv+6k6bd3Q9jqSNgE+RFkne72kq20/1HTeA8DKkjauS5uWpTw9ugHYHbhW0prAasBvu+rUequMoTMRiiIiqEuJjmlz6EeUpU1fBa5tKt8F+LSkl4C/AN8GNgYOk/QK8BLwJdvPSDqJMksxA7izqY3PAP+jEpHvJUpAju58C/hfSd9g3n0c+9c9cXOA+4ErbM+W9C7g1nrfmQV82vYfJd0s6V7KJvNvAC9LugeYRBn4tH6uLuU+EhEDQfbIWiYpaZbtxpOaN1NCtf7I9sQ6WDiesl9hMUrI1X1r3TOAUbY/JWkzyrrVFW0/1dL+WMoa2XVbyvcEOmzv1+46lH0OdwB72b5L0scoG8K3AU6tbZ4vaWPgx5Sp7Bcoy6ReBk6gPLF6Gfiq7eu6+h10dHS4s7NzPn57EbGokTTFdkfPNWNRkvtIRPRWd/eRETeQiNwAIqL3MpCIdnIfiYje6u4+MpL3SERERERExBDJQCIiIiIiIvpsxA0kJB0laf+m91dJOrnp/RF1c11v25so6cAujt3Sj36Or3sxIiJiISLJdd9d4/1ikp6QdOl8tre8pC8PXA8jIhaMkRi16RZKhIyjJb0OWAFYrun4ZpTMov1muz8DgfGUaBvzPRjpyvRHZjL24MsGutmF3oxEKImIgfEcsK6kpWy/QMk59EgP53RneeDLlLwVC0TuIwte7kGxMBpxMxKUTKCNP/DXAe4FnpX0BklLUCIpfUDSnZLulXSiagw9SRMk3S9pmqRzmtpcW9JkSQ9KejXJnaRZ9d/x9fj5kh6QdGZTmx+uZTdJOlbSpTXy077AAZKmStpS0uqSrqnXvkYlIzaSJtXzbqnX33lwf30RETEArgAafxnuRlNCPElvlHRx/b6/TdL6tXyipFPa3G9+ALyj3i8OkzS63ifukjRd0g71/LGSfiPpJEn3Sbpa0lL12Bfqfe8eSReo59wWERH9NuIGErYfpcTOXo0yoLiVEpd7U6ADmAYcZ3vjGsJ1KWD7evrBwIa216f8od+wFvABYBPgm5IWb3PpDSkzHWsDbwc2V8l8+j/Ah2xvAaxY+ziDEs71qJqw7kbgOOD0eu0zgWOb2l6Jkt16e8oNJSIihrdzgF3rfWB95s0P8S3g7vp9/w3g9KZj7e43BwN/rPeLg4AXgR1tvxvYGjii8fAKWAM43vY6wDPMTXB3Yb3vbQD8hpJjKSJiUI24gUTVmJVoDCRubXp/C7C1pNslTafkcVinnjcNOFPSpyn5Ghousz3b9pPAX4E3t7nmHbYftv0KMBUYS7khPNiUdO7sNuc1bAqcVV+fQRk4NFxs+xXb93dxbSTtI6lTUuec52d2c5mIiBhstqdR7gO7AZe3HN6C8j2P7WuBN0kaU4/15n4j4HuSpgG/BlZpqveQ7an19ZTaByhLrW6s973dmXvfm9to7iMRMcBG6kDiFsqgYT3K0qbbKH+ob0YZZPwE2Nn2esBJlIyfUKahj6ckfpsiqbFHZHZT23Nov3ekXR21qddbzQk8mttu26btE2132O4YtfSYdlUiImLBugQ4nNc+RGr3Pd74zu/N/WZ3ygz3RrbHAY8z9z7W1fmTgP3qfe9bTfXndiD3kYgYYCN1IHEzZRnQ07bn2H6aslltU8rsBMCTkkYDOwPUjdmr1ozRX6/1R/ezHw8Ab697IgB2aTr2LLBs0/tbgF3r690pmbUjImLkOgX4tu3pLeU3UL7nkTQeeNL237tpp/V+MQb4q+2XJG0NrN6LviwLPFaXSu3eu+5HRPTPSIzaBDCdEq3prJay0baflHRSfT8DuLMeHwX8rE4vi7J/4Zm5y077zvYLNWTflZKeBO5oOvxL4Py6Se4rwATgFEkHAU8Ae83vdddbZQydif4QETGkbD8MHNPm0ETg1Lo06Xlgjx7aeUrSzZLupWzi/iHwS0mdlKW0D/SiO/9F2afxJ8r9b9nuKuc+EhEDQbZ7rhVdkjTa9qy6Ee544Pe2jxrMa3Z0dLizs3MwLxERCwlJU2x3DHU/YnjJfSQiequ7+8hIXdo0nHxB0lTgPsp09P8MbXciIiIiIgbfSF3aNGzU2YdBnYGIiIiIiBhuhmRGQpIlndH0fjFJT0i6dIj6M34wry1p+bqXovF+rKRPDdb1IiIiIiIG21DNSDxHiXm9lO0XgPcDjwxRXxaE5YEvU8LSQon7/Snm3Szea9MfmcnYgy8bkI5FMSObDiMiIiL6ZCiXNl1ByetwPiWhz9nAlgCSNgGOpmSlfgHYy/ZvJa0DnAq8njKbshPwKPBz4K2UyEzfsX2upEOBj9Y2bgG+aNuS/pmSdXpFSgzuT9b+jJZ0PrAuJcnPp2v9GUBHjQbVARxue7yk9zE3WoeBrWw/W6My/SuwBHCR7W9SslW/o+6l+FX9nO+q708Drm79XLZ/PwC/44iIGEYkzbL9mtDjkiYBl9o+v5tzJwMH2u73Luk8kFrw8sAqFkZDudn6HGBXSUsC61PC1jU8QPnDfEPgUOB7tXxf4JiaoKcDeBj4IPCo7Q1srwtcWeseZ3vjWrYUJe8EwJnA8bY3oCSwe6yWbwjsD6wNvB3YvIf+Hwj8W+3LlsALkrYD1gA2AcYBG0naCjgY+KPtcbYPqu9vrO+P6uJzRUREREQMW0M2kLA9jbLEZzfg8pbDY4Dzakzto4B1avmtwDck/Tuwel0WNR3YVtIPJW1pe2atu7Wk2yVNB7YB1pG0LLCK7YtqH160/Xytf4fth22/QonbPbaHj3AzcKSkCcDytl8Gtqs/dwN3/f/27jzMrqpO9/j3NSAQA0GF1ohoFEFaBgMWXkXA0GK3diuIDQ00rcSrICrS6FUuT6uIOIACguBABxsDqIDIIIiKNhCZhwqEBBBQIV6mRhANRAQhvPePtQ7ZKU5NSaXOqar38zz11NlrT+scyFm19lrr9wM2pXQsBtPufS1H0n6SeiX1Ln1s8bOvEBERY4aKr0u6VdKFwN809h0q6XpJN0uareUTHu0u6TpJd0hqjeKvKek7khZKurEmsYuIWOU6Hf71fOBoyrSmps8Dl9bRhHcCawLY/j6wM2W600WS/s72HcDrKB2KI+oX8JqU9Qi72d4COKleY6Dsc080Xi9l2bSvp1j2Oa3ZOsD2kcAHKKMd10jatF7/iDrSMMP2q2z/12AfQrv31eaY2bZ7bPdMmjx1sEtGRER32xV4NbAFsC9lhLylvxF1gNVsv54ygv7ZWvYRgNre7QWcUtvB5eSBVESMtE53JE4GDre9sE/5VJYtvp7VKpT0SuBO28dTOiFbSnoJ8Jjt71I6JVuz7A/+hyRNAXYDsP0IcI+kd9XrrSFp8iB1XETpqEBZk9Gqy0a2F9r+MtBLGX24CPjf9Z5I2kDS3wCPsnyW0eW2272vQeoUERFj2w7A6baX2r4PuKSx71kj6o1959Tf81g2cr4dcBqA7dso2a036XvDPJCKiJHW0TwStu9h2YLlpq9Qnqh8nOW/XPcA/k3Sk8D/AIcD2wBHSXoaeBL4kO0/STqJMkqxCLi+cY33AP8p6fB6/O4M7HPAf0n6D5Zfx3FQHT5eCtwK/NT2E5L+Fri6jkQvoSza/q2kK+tUrZ8C/wE8JekmYA6l49P3ffVriw2m0ptFWxERY537FjRG1Hts3y3pMBqj4SwbPW+OnA802h4RscrIftb3WHS5np4e9/audNCOiJgAJM2z3dPpekTRitok6d3AB4F/pKyPuJUyxem/gdspow2TgGuAH9o+rBm1SdJ6QK/t6fWh22a23y9pE0p0wE1sP9H3/i1pRyJiqAZqR5LZOiIiYvSdS5m2tBC4A/glwCAj6v35JnBinQr1FDBroE5ERMRISUciIiJilLRySLhMBzign2M+DXy6TfnMxuuHqGskbD9OYz1hRMRo6fRi64iIiIiIGIMmXEdCkiWd1theTdKDkn68gtdbV9KHR66GERERERHdbyJObfozsLmktWrit7eyLNTsilgX+DBljuqoWHjvYqYfcuFo3S6ARYmSFREREbGcCTciUf0UaP1luBeNhHiSXiDpPEkLJF0jactafpikkyXNlXRnzWgNcCSwkaT5ko6SNEXSxZJuqFlGd6nnT5f0K0knSbpF0s8lrVX37VuzmN4k6ewh5LaIiIhxoLYNN/cpO0zSJyTNqrmSBrvGXEmJzBURo24ijkgAnAEcWqczbUlJjLd93fc54Ebb76oZpk8FZtR9mwI7UpLJ3S7pW8AhwOa2Z0CZKgXsavuRGp7vGknn1/M3Bvayva+kH1AS3H0XOMf2SfX8LwDvB05YZe8+IiLGglnAzcB9I33hjGx3n4x8x1g0IUckbC+gRLvYC/hJn93NDKGXAC+U1EoBeqHtJ2q0jN8DL2pzeQFfkrSAEg98g8Zxd9meX183s5JuLunyGrpvb5bPYlouKu0nqVdS79LHFg/zHUdExBjUA3yvjnivJenQOnp9s6TZqplPq90lXSfpDknb93fBiIiRNCE7EtX5wNE0pjVV7TKEtrL2NeNyN7OKNu0NrA+8ro5SPMCyrKT9nT8HOMD2FpQRkWYW01IBe7btHts9kyZP7bs7IiLGn15gb9sz6pq+r9vexvbmwFrAOxrHrmb79cBBwGdHv6oRMRFN1KlNUKYzLba9UNLMRvlllM7A52v5Q3WaUn/XeZQy1allKvB7209K2hF4+RDqsjZwv6TV670HXPy9xQZT6c0QaETEeOBhlO8o6WBgMvAC4BbggrrvnPq7Odq9HEn7AfsBTFpn/RWsbkTEMhO2I2H7HuBrbXYdBnynTk16DNhnkOv8QdKVdbHcT4EvAxdI6gXmA7cNoTqfAa4FfkfJZrr2wIdHRMQ48Qfg+X3KXgDc1SyQtCYlOmCP7bslHcbyo9etEe/+RsuxPRuYDbDGtI3768BERAzZhOtItLKK9imbC8ytrx8GdmlzzGF9tjdvvP7XPoe/sZ/bN885uvH6W8C3Bqt7RESML7aXSLpf0ltsXyzpBcDbKA+6dmPZg6VWp+EhSVPqvh+Ofo0jIpaZcB2JiIiILvNe4BuSjqnbn7P9W0lzgBMl/YXygOokyqj1IuD6lblhpshGxEhIRyIiIqKDbN9KCS3et/xs4OxG0afrT9/jZjZeP0Q/ayQiIkbaRI7atEIkLemnfI6k3QY5N0mDIiIiImJcyIjEGJREQqMviYIiIiIilpcRiRWk4uuSbpV0IfA3jX3DShokaU1J35G0UNKNNWxsRERERETXSkdixe0KvBrYAtgX2Laxb7hJgz4CUBPS7QWcUkP9RUTEKJNkSac1tleT9KCkH9ftnSUd0rkagqSZkrYd/MiIiFUnU5tW3A7A6baXAvdJuqSxb7hJg7YDTgCwfZuk3wGbAAtaF0wioYiIUfNnYHNJa9WM0m+lkSjU9vnA+Z2qXDUTWAJctSInZ4rs2JLptdGtMiKxcp6V0KeRNGi3OsJwEoMnDeo3bfYzN7Jn2+6x3TNp8tSVq3VERAzmp0Drr7e9gNNbOyTNkvT1+nqOpOMlXSXpzlbQjTpiMFfSDyXdJul7rWmukl4n6ZeS5km6SNK0Wn5gnS67QNIZtewFks6rZddI2lLSdGB/4GOS5kvaXtI7JV1bp8f+t6QXjdYHFRETVzoSK+4yYE9Jk2oj0FrX0C5p0FCutTeApE2AlwG3j3B9IyJi6M6gfMevCWwJXDvAsdMoI8vvAI5slG9Fmcb6GuCVwJskrU4Zgd7N9uuAk4Ev1uMPAbayvSWlowDwOeDGWvYfwKm2FwEnAsfanmH7cuAK4A22t6p1P3gl3ntExJBkatOKOxf4O0pyoDuAXwLY/pOk4SYN+iYl6dBC4Clglu0n+js4iYQiIlYt2wvqk/+9gJ8Mcvh5tp8Gbu0zEnCd7XsAJM2nTGf9E7A58Is6QDEJuL8evwD4nqTzgPNq2XbAP9c6XSLphZLaDUu/FDizPth6LnBX3wMyRTYiRlo6EsNke0r9beCAfo4ZVtIg248Ds0a8shERsTLOB46mrEd44QDHNR/8qJ/y1nRWAbfYfmOb6/wTZf3dzsBnJG1G+6mvz5pWSxnl+Krt8yXNBA571kn2bGA2wBrTNm53jYiIYcnUpoiIiPZOBg63vXAEr3k7sL6kNwJIWl3SZpKeA2xo+1LKtKR1gSksP/V1JvCQ7UeAR4G1G9edyrIF4fuMYH0jIvqVEYmIiIg26rSkr43wNf9aF2QfX6corQYcR5ki+91aJsr6hz9JOgz4jqQFwGMs6yRcAPxQ0i7ARykjEGdJuhe4BnjFQPXIFNmIGAkqM3RiLOnp6XFvb2+nqxERY4CkebZ7Ol2P6C5pRyJiqAZqR8bd1KYkEoqIiIiIWPXG49SmJBKKrpNkQhERETHejLsRiSqJhCIiIiIiVqHx2pFIIqGIiIiIiFVoXHYkbC+g5GgYciIh27cCz0okVJMMza/XezXLEgnNp+SKeGk9vpVI6N8oSeWgdFBOq3W6BBgokdBFNSHdJ4HN+h4gaT9JvZJ6lz62eJC3FBERq0odsf6HPmUHSfpmp+rUqMPkTtYhIiaW8bhGoiWJhCIiYlU4HdgTuKhRtiflQdCAJE2yvXQV1esg4LuUMLEDylq78SXr8KJTxnNH4mRgse2F9Y/zkfBMIiHbV9epTpsAv6ImEpJ0BfCvLJ9I6PPNREKSHgXWaVx3WImEEv87IqKjfgh8QdIatp+oa99eAkyWdDWwBvBb4H22l0haRGmT/h74uqQjge8DOwKrA/sBRwCvAo6yfWJdl/cV4O2UB1BfsH1m42HTQ5QR8nnAv1FySbwEuFTSQ7Z3XOWfQkRMeONyahOUREK2RzyRELAb8GVJN1GmPG0LTKIkEloI3EhNJET5su+piYSOZPlEQru2FluzLJHQ5ZTGISIiupTtPwDXAW+rRXsCFwOfAnayvTXQC3y8cdrjtrezfUbdvruObl8OzKG0LW8ADq/73w3MAF4L7AQc1QruQZs1fLaPB+4DdkwnIiJGy7gbkbA9pU3ZXGBufT2H8qWN7Vntzm0eX7cPaLyeT5nC1Nd2be77MLBLm/I7KIvAm37U5poREdGdWtObflR/nwO8E7iyBvl7LnB14/gz+5zfCkO+EJhi+1HgUUmPS1qX0qacXqdBPSDpl8A2wCPUNXwAdb3edErQjgFJ2o8y+sGkddYf3ruNiGhj3HUkIiIiRsF5wFclbQ2sRRmN/oXtvfo5/s99tlvr8J5m+TV5T7NsTV5/2q3hG1TW2kXESBu3U5siIiJWFdtLKCPXJ1NGJ66hhAl/FYCkyZI2WYlbXAbsIWmSpPUpI+HXDXLOo8DaK3HPiIhhmXAjEpLmAkfYvqhRdhCwie0Pd7BeBwGzbQ8abSMiIrrC6ZQpTXvaflDSLOB0SWvU/Z8G7ljBa58LvBG4ibLY+mDb/yNp0wHOmQ38VNL9g62TSNCOiBgJsifW6KakD1KSv72vUXYN8MmaHG6gc1dZ2L4a1aPH9qCLrdeYtrGn7XPcqqhGdEDC9sWqJGme7Z5O1yO6S09Pj3t7eztdjYgYAwZqRybi1KYfAu9oPTHqG7ZP0g2SzpI0pe5fJOnQGtZ197r9pXpsr6StJV0k6beS9q/nSNJRkm6WtFDSHrV8Zk1k9ENJt0n6Xj32QJaF7bu0A59JRERERMSwTLiORML2RURERESsvAnXkahaYfuov++i/GF/ZQ2ltw/w8sbxA4Xtu9b2o7YfBJ4Vts/2A0ArbB/UsH22n6bkoZg+lApL2q+OgPQufWzxkN9oRERERMSqMOEWW1fnkbB9ERHRhqRjgd/ZPq5uX0QZif5A3T4GWAz81faRHajfS4Djbe822veOiGiakB0J20tq9KZm2L5vSHqV7d9Imgy8tCaOWxGXAR+UdArwAkrYvk8CA0XbaIXtS2briIjOugrYHThO0nOA9YB1Gvu3BQ6yfW0nKmf7PsqU2hW28N7FTD/kwhGqUXS7BPWIVWVCdiSqhO2LiIh2rgSOra83A24Gpkl6PvAY8LfAayW9x/YBknYHPksZZV5sewdJk4AvA/9AaQdOsn2CpLcAR1Pa3+uBD9l+okbuO4WSHXt1YHfbt0l6M/C1WhdTHky9EPix7c1r27UzMBnYCDjX9sGr7JOJiGiYsB0J2+fSmIJk+xKWrWNoHje9v23bcyiLrdsd+8n60zx3LiWBUWv7gMbrE4AThvMeIiJi5Nm+T9JTkl5GGX24GtiA8oBoMbAA+GvjlEOBf7B9b10nB7Af8ApgK9tPSXqBpDUpbcZbbN8h6VTgQ8Bx9ZyHbG8t6cPAJ4AP1N8fsX1ljSb4eJsqz6AE8ngCuF3SCbbvHonPIiJiIBN1sXVERMRArqR0Ilodiasb21e1OXaOpH2BSbVsJ+BE208B2H4YeDVwV2Pa7CmUEYaWc+rveSwLxHElZU3fgcC6rev1cbHtxbYfB25l+WAhz0jQjogYaelIREREPNtVlE7DFpSpTddQRiS2pfxx/wzb+1Omw24IzJf0QsqId9/AGAMF4oBlwTieCcRRF3N/gBIY5Jp+psgOKYiH7dm2e2z3TJo8dZCqREQMLh2JiIiIZ7sSeAfwcA3l/TCwLqUzcXXzQEkb2b7W9qGUgBkbAj8H9pe0Wj3mBcBtwHRJr6qnvocSHrxf9doLbX+ZkuNooLV2ERGjalTWSEgy8FXb/6dufwKYYvuwEbr+dOrCs0bZYcAS20ePxD2GUZd+7yvpKtvbjmZ9IiJihSykRGv6fp+yKbYfkpYbXDhK0saUEYeLKYE2bgY2ARZIepKy2Prrkt4HnFU7GNcDJw5Sj4Mk7UgZabgV+CkwbeBTBpegHRExEmSv+pQEkh4H7ge2qV/AE7Ij0c/xk2wvHc491pi2saftc9wK1C7GooTti5UhaZ7tnk7XI7pLT0+Pe3t7O12NiBgDBmpHRmtq01OU8KYf67tD0vqSzpZ0ff15Uy1fKGldFX+Q9N5afpqknYZzc0n71mvfVO81uZbPkfQtSZdKulPSmyWdLOlXkuY0zl8i6RhJN0i6WNL6tfxASbdKWiDpjMYtXyNpbr3mgc3r1N8z6z2/DyyUNEnSUbWOCyR9cDjvLyIiIiJitI3mGolvAHtL6rvC62vAsba3Af4Z+HYtvxJ4EyWG953A9rX8DZRFb31tJGl+6wfYv7HvHNvb2H4t8Cvg/Y19zwf+jtLJuYASO3wzYAtJM+oxzwNusL01ZT7rZ2v5IZTQflv2ud+mlNjhrwc+K2n1NvV9PfAp26+p9VlcP4NtgH0lvaJ5cKJtREREREQ3GbU8ErYfqTGzDwT+0ti1E+UJfmt7HUlrA5dTwuL9DvgWsJ+kDSgL35a0ucVvbc9obdQpRi2bS/oCZaHcFOCixr4LbFvSQuAB2wvr+bdQwu/NB54GzqzHf5dlIfoWAN+TdB5wXuOaF9p+AnhC0u+BFwH39Knvdbbvqq//HthSUitT6VRgY6C1H9uzKaM6rDFt41U/Hy0iIiIiYgCjnZDuOOAG4DuNsucAb7Td7Fwg6TLgI8DLgE8BuwK7UToYwzUHeJftm2oW0JmNfa2weU+zfAi9p+n/82n9If9PlM7OzsBnJG3W55rQfyi+PzdeC/io7YvaHBcRERER0XVGtSNh+2FJP6BM5Tm5Fv8cOAA4CkDSDNvzbd8taT3gubbvlHQFJcPnAe2uPYi1gfvrFKO9gXuHef5zKJ2YM4B/Ba6Q9BxgQ9uX1rr9K2W0Y0VcBHxI0iW2n5S0CXCv7T+3OzjRNiJiIknkv2f2jVjkv4X3Lmb6IReOxKViDEjQjlhVOpFH4hhKSL2WA4Geusj4VpZfa3At0MoAejmwAXDFCtzzM/Vav6DE8R6uPwObSZpHWU9xOCV76XfrlKgbKes8/rQC14ayLuRW4AZJNwP/yeiPFkVEdKsngHfXh0sTVrtOhKRJ7Y6NiBgNoxL+dayTtMT2io42jLiE7YuIoRoP4V9rxLsvUkYhPtUckahR9E6kTIMFOMj2lfUhz/bAYkqSuI/ZPlXSacAptv+7cf3pDDAiIWlfYD/gucBvgPfYfqxG9/sLJcDGy4H3AftQktZda3tWo/7/CewI/BHY0/aDNarf/pTIhrfa3rPe92XAK+vv42wf37qO7SmSZlKCftwPzKBk3z6SMm13DeAbtv9zoM80YcQnloxIxMrohvCvERERKyOR/5Y3rMh/kOh/ETHyMn1mCLppNCIiYiJK5L+Vi/wHif4XESNvXI5ISDpW0kGN7YskfbuxfYykQyUd0qH6vUTSDztx74iIMew4ytP35zXKWpH/ZtSfDWw/ClxGGYXYHpgLPMjKRf47wPYWwOeANRv7Vjby3zeA1wHzJLWOX9HIf63P4BW2fz7wW4qIWHnjdUTiKmB34LgaXWk9YJ3G/m0p82iv7UTlbN9HadBWSKJtTCyZ2xpRJPJfv4YV+S8iYqSM147ElZR5qlDmqt4MTJP0fOAx4G+B10p6j+0DJO1OmbO6lDLPdIcaCePLlHmqBk6yfYKktwBHUz6764EP2X5C0iLgFOCdwOrA7rZvk/Rmyhxe6nV2AF5IXdhX81rsDEwGNgLOtX3wKvtkIiLGtmNYvjNwIPANSQso38uXsWy9wbWUCHtQRiKOYOUi//0OWEjpWAxHM/LfYmAPlkX+m0oZUTjW9p8aU7SG49uUaVQ3qFzgQeBdA52QMOIRMRLGbdSm+of9DsDbKV/SGwBXU77Ej6A8zeqpHYmFwNts3ytp3fpl/iHK3Ns9bD8l6QWUTsivgbfYvqPO173B9nH1fsfUzsaHga1tf0DSBcCRNYrIFOBx4KUs35E4FNiKMpx9O7Cd7bv7e2+JtjGxZEQiVsZ4iNo01nVb5D9I9L+IGLqJGrXpSsoUpm0pHYirG9tXtTl2Tg3x13p6tRNwou2noAypA68G7rLdym1xCqWz0tJaQDeP8nSode2v1jB/67au18fFthfbfpyST+LlfQ9ItI2IiIiI6CbjuSNxFaXTsAVlatM1lNje21L+uH+G7f2BTwMbAvMlvZAyitF3uGawMefWArlnFsfZPhL4ALAWcI2kTQc4b7lz+9Rxtu0e2z2TJveNfhgREd2q20YjIiJGynjuSFwJvIMS6m9pHVFYl9KZuLp5oKSNbF9r+1BK4qINKQv49m9F0ahTm24Dpkt6VT31PZSY4P2q115o+8tALyU+eERERETEmDZeF1tDWRC3HvD9PmVTbD/UZ0HbUZI2pow4XAzcRBnF2ARYIOlJymLrr0t6H3BW7WBcT8moOpCDJO1IGWm4FfgpMG1l3lgWyUVEDEzSUsp3/mqUJHL72H6sQ3WZRV2TN4LXfAlwvO0VjgAYEbGyxu1i6/Esi+QiYqgm6mLr5gJnSd8D5tn+aofqMosR7kisrATtiJGSgCDj30RdbB0REQEl9OurJD1P0smSrpd0o6RdoPyhL+kcST+T9GtJX2mdKGmJpC9KuknSNZJeVMt3l3RzLb+sll0uaUbj3CslbdnYnippUc0hgaTJku6WtLqkfWu9bpJ0tqTJ9Zg5ko6XdJWkO1vZqyVNl3Rz4/Xlkm6oP9uu6g80IgLSkYiIiHGsTkN9O2Wa06eAS2xvA+xImdbaypI9g5LfYQtgD0kb1vLnAdfYfi0lR8W+tfxQ4B9q+c617NvArHrfTYA1bC9o1cX2YsrU2TfXoncCF9l+EjjH9jb1er+iJN1rmQZsR1n3d2Sbt/l74K22t67v4fghf0ARESshHYmIiBiP1pI0nxLk4v8B/wX8PXBILZ8LrAm8rB7fXxjuvwI/rq/7hvbuGzb8LOAdNQP2/wbmtKnXmZQ/9gH2rNsAm9dRhYWU7NmbNc45z/bTtm8FXtTmmqsDJ9VzzwJe0+4DSRjxiBhpXbvYOgvl+rfw3sVMP+TCkapKTGCZ2xrj2F9sz2gW1KzP/2z79j7l/4v+w3A/6WWLCZuhvfev5/0TJWz4DNt/kPQLYBfgX4B2c4rPB46okQBfB1xSy+cA77J9U21zZjbOadatXRjyjwEPAK+lPCB8vM0x2J4NzIayRqLdMRERw9HNIxJ/sT3D9uaUJ0L7d7pCI8n2fYm2ERExqi4CPlo7FEjaakUv1E/YcCjTm44Hrq9hx5djewlwHfA14Me2l9ZdawP319GMvYdZnanA/bafpoQlnzTI8RERI6JrRyT6uBzYss5lPYEyh3U14DDbP6pPb3YGJgMbAefaPhjKQjnKF/Y7gL8Au9h+QNLuwGcpT5gW295B0uXAR23Pr+deCXyoVQlJUynzW19p++m6GO524JWUebH7Ac8FfgO8x/ZjkuYAj1CeTL0YONj2DyVNpzQim9fXp1Hm4gIcYLtv9u2IiFg5nweOo4T1FrCI0jasiHZhw7E9T9IjwHcGOPdMyhSkmY2yzwDXAr+jjMavPYy6fBM4u7ZrlwJ/HuyEhBGPiJHQteFfW6H76kK5s4GfUZ743Gr7u5LWpTzV2QrYnbLwbSvKEPDtwHa275ZkYGfbF9RIHI/Y/kKdS/o22/dKWtf2nyTtA2xl+6C6UO77tnuaU5sk/Qg4zvalkvagLHD7gKQX2v5DrfsXgAdsn1A7Es+jzIndFDjf9qv6dCQmA0/bfrw2TKf3DbMlaT9KR4VJ66z/upd+aKA2KmJoMrVp/Juo4V87pU5bnQtsWkcIulLCiEfEUI3V8K9ZKNdge7btHts9kyZPbXOJiIjoJEnvpYwqfKqbOxERESOlm6c2ZaFcRESMGbZPBU7tdD0iIkZLN3ck2mktlPuobUvayvaNK3Kh1kI54FpJ76RMm/oDZaHcBcDl/S2UkzSUhXL3DqM6U4F76rqLfRhkoVzmtkZEREREp421jkQWykVEREREdIGuXWzdKWNhoVwWyUXEUGWx9cqT9GLKQ6xtKFNVFwEH2b6jn+NbwUKWyxck6XTK+rnv2D52JevUA7zX9oErcv4a0zb2tH2OW5kqRIyIBP3ofgO1I2NtRGKVqgvlvgh8vFs7ERERMXrq6Pe5wCm296xlMyiBM9p2JFps3we0OhEvBra1/fKBzulz79VsP9XPtXspwUgiIjqmm6M2jTrbp9re0PZZna5LRER0hR0pQTtObBXUXEM3SrpY0g2SFkrape+JkqZLurlu/hz4G0nzJW0vaYakayQtkHSupOfXc+ZK+pKkXwL/Xre/LOk6SXdI2r4eN1PSj+vr10u6StKN9ferV+1HEhFRTLiOhKQXSzpD0m8l3SrpJzVnRLtjm43ASNfjMEmfWBXXjoiIEbM5JXR4X48Du9remtLZOKaVMbsfOwO/tT3D9uWU6E7/1/aWlHV1n20cu67tN9s+pm6vZvv1wEF9jmu5DdjB9laUnEpfalcBSftJ6pXUu/SxxQNUNSJiaCbU1KaVGaIe4vX7HYYeSQvvXcz0Qy5c1beJWGmZ+xrjmIAvSdoBeBrYgNKW/M+gJ0pTKZ2FX9aiUygBPFrO7HPKOfV3MxdS01TglBpAxJTcRM9iezYwG8oaicHqGRExmIk2ItHfEPUVko6SdHMdot6j74mS1pT0nbr/Rkk71vJZks6SdAHwc0lT+hvulvQpSbdL+m/g1Y3ytkPcERHRcbdQcgb1tTewPvC6mvPoAUqS1JHQN3JfKxdRM0dS0+eBS21vDrxzBOsRETGgCTUiQf9D1O8GZlASwq0HXC/psj7HfATA9haSNqV0GlpTot4IbGn7YUmrUYa7H5G0HnCNpPOBrSmZsLeifO43NOpyKvBR27+UdDhl6PqgkXjDERGxUi6hjDzsa/skAEnbAC8Hfm/7yfpgaciLqG0vlvRHSdvXaU7vAX452HkDmMqy3EWzhnJC8hFFxEiYaCMS/dkOON32UtsPUL7Qt2lzzGkAtm+j5ItodSR+0Uhe1xruXgD8N8uGu7cHzrX9mO1HKBmy+xvi3qFvBTO3NSJi9LnESN8VeGtdW3cLcBjwE6BHUi9ldOK2YV56H0o+owWUB1mHr0Q1vwIcIelKBkloGhExkibaiMQt1FB8fQy0QG4oxzSHoZvD3U9KWsSyYeYVnpOaua0REZ1Rw7j+S5tdb+zn+Cn19yLKSPhyr+v2fOANbc6d2d+27YeoayRsz6XkPML21Sx7sAUlQWpExCo30UYkLgHWkLRvq6AOUf8R2EPSJEnrU0YErutz7mWUTgJ1StPLgNvb3GMq7Ye7LwN2lbSWpLUp81ixvRj4YyukHys/xB0RERERscpNqBEJ25a0K3CcpEMo4fsWUdYjTAFuoowaHGz7fyRNb5z+TeBESQuBp4BZtp9oE+3ve8AFdbh7PnW42/YNks6sZb8DLm+cs0+99mTgTuB9A72PzG2NiIiIiE5Tmf4ZY0lPT497e5PQNCIGJ2me7Z5O1yO6S9qRiBiqgdqRiTa1KSIiYoUlqWlExDITampTRETEihovSU0hiU1jbEhS0+7XFSMSNVHbLTUh23xJ/6uWf1vSa0bh/rMkPS1py0bZzX3WSIz0PWdK+vGqun5ERIy4JDWNiGjo+IiEpDcC7wC2rouX1wOeC2D7A8O81iTbS/vbHsQ9wKeAZzUA3SZPkmKsyNOkGGeS1DQioqEbRiSmAQ/ZfgJKnOwasxtJcyX11Nd/L+nq+pTmLElTavkiSYdKugLYvc32vpKul3STpLNrZKR2fgxsJunVfXe0u7ekt0v6QeOYmfWJEpK+VZPH3SLpc41j3ibptlq3dzfKXy/pqvqU6qp2dYiIiK7V9UlN67FJbBoRI6obOhI/BzaUdIekb0p6c98D6lOZTwM72d4a6AU+3jjkcdvb2T6jzfY5trex/VrgV8D7+6nH05TsoP8xxHv/AniDpOfVQ/cAzqyvP1VXt28JvFnSlpLWBE6i5I/YHnhx4za3ATvY3go4FPhS/x9XRER0yC3A69qUr6qkpjOABxiBpKZQEpva7rHdM2ny1JW5VEQE0AUdCdtLKF/M+wEPAmdKmtXnsDcArwGulDSfknfh5Y39Z/Y5vrm9uaTLVfI/7A1sNkB1vk/pHLxisHvXBXE/A95Zh6L/CfhRPedfJN0A3Fjv9xpgU+Au2792ibn73cY9pgJn1egex7arY54kRUR0XJKaRkQ0dHyNBEBdxzAXmFv/4N8HmNM4RJSh3736ucSfB9ieA7zL9k21gzJzgHo8JekY4P8O8d5nUua9Pgxcb/vR2gn5BLCN7T9KmsPgT5M+D1xqe9e6wHtum7rNBmYDrDFt4yT/iIgYZeMlqSkksWlEjIyOdyTqeoCnbf+6Fs2gfEk2XQN8Q9KrbP+mflm+1PZQwu2tDdwvaXXK06B7Bzl+DnBwPW+we88F/gvYl2WjIOtQOjKLJb0IeHs97jbgFZI2sv1boNkxmdqo16whvKeIiOiAuobvX9rs+mT9aR67iLJAG9uP0+b73fYcGg/ObD9EWXzd7t5fBL7Ypnw+ZfQ8ImJUdbwjQXmKc4KkdSlPaX5Dmeb0DNsP1tGE0yWtUYs/zdDidn8GuJbSOVnIsg5CW7b/Kul44GuD3dv2UpUQrrMoT4SoIx83UubS3glcWcsfl7QfcKGkh4ArqA0MZW3GKZI+Thk6H1CeJEVEREREp6lM14+xpKenx729vZ2uRkSMAZLm1eAPEc9IOxIRQzVQO9LxxdYRERERETH2pCMRERExBJIs6bTG9mqSHqxTXJG0c12E3d/502t0vnb7Dpe008jXOiJi1emGNRIRERFjwZ8pIcXXsv0X4K00AnjYPp+aKG64bB86MlUcmoX3Lmb6IReO5i0jolo0jta5TpgRiTxJioiIEfBTSt4gKNH3Tm/tkDRL0tfr6xdJOlfSTfVn23rYJEknSbpF0s8lrVWPnyNpt/r6HyXdJukKScc32qnXS7pK0o3196sb9z1H0s8k/VrSV0bno4iIiW4ijUjkSVJEjIjx9DQphu0M4ND6x/2WwMnA9m2OOx74Zc0PNIkSofD5wMbAXrb3lfQD4J9pJCiVtCbwn8AOtu+SdHrjmrfV8qfqw6sv1fOhhE7fCngCuF3SCbbvHrF3HRHRxoQZkajyJCkiIlaY7QXAdEob8pMBDv074Fv1nKU1AzXAXTXvA8C8eq2mTYE7bd9Vt5sdianAWXV0/Fhgs8a+i20vrvkqbmVZRuxnSNpPUq+k3qWPLe67OyJi2CZaR+IMYM/6xGdLSn6JdlpPkl4LbE3JCQHlSdI3bG8G/IllT4KA5Z4kvd32dsD6jd2tJ0lbAYdSniS1zAD2ALYA9pC04Yq+wYiIWOXOB45m+T/yh+qJxuulPHtmwLNSXTd8HrjU9ubAO4E1h3FdbM+23WO7Z9LkqcOrdUREGxOqI5EnSRERMQJOBg63vXCAYy4GPgQgaZKkdYZ47duAV0qaXrf3aOybyrIpubOGXNuIiFVkIq2RaGk9SZoJvHCY5/Z94rNWn/1DeZK0a20g5g5w3bZPkoDZAGtM2zhZBCMiOsT2PcDXBjns34HZkt5P+V7/EHD/EK79F0kfBn4m6SHgusburwCnSPo4cMkKVb7aYoOp9GatT0SspInYkTgZWGx7oaSZ/RzTepJ0XF0k97whXvuZJ0m2F7GKniSlAYiIGH22p7Qpm0t9MGR7DjCnvn4A2KXNZTZvnHt04/WsxjGX2t5UkoBvAL31mKuBTRrHfabvfev2O4b8piIiVsKEmtoE5UmS7aE8SdpR0kLKFKbNBjm+de2/AK0nSVcADwCteUhfAY6QdCUwaYUqHxERE8G+kuZT1udNpay9i4joOrIzS2YkSZpie0njSdKvbR87kvfo6elxb2/vSF4yIsYpSfNs93S6HtFd0o5ExFAN1I5MuBGJUZAnSREREREx7k3ENRKrVB19GNERiIiIiIiIbjNhOhKSDHzV9v+p258Aptg+bASuvSYwH9i9FQ5Q0sHAK23vP4TzDwOWNBfeRUREdxlP7cjCexcz/ZALV7zCETEmLRrhYD0TpiNBCbH6bklH2H5oJC9s+3FJBwHflLQD8BLgg8Cg85IlDfu/QRqAiIlrpBuBGJZx045ERIyEibRG4ilKHoaP9d0haX1JZ0u6vv68qZYvlLSuij9Iem8tP03STs1r2P4ZJUb4eylTmw4D1pF0saQF9ffL6vlzJH1V0qXAl/vUZV9JP5XUN0dFRER0VtqRiIiGidSRgBJFaW9JU/uUfw041vY2wD8D367lVwJvooR/vRPYvpa/AbimzfUPAr4IrG/7NODrwKm2twS+BxzfOHYTYKfWEDmApAOAdwLvqqFkIyKiu6QdiYioJtRwqO1HJJ0KHAg0v2B3Al5TIrYC5QnQ2sDlwA7A74BvAftJ2gB42PaSNte/T9IlwI9r0RuBd9fXp1FySbScZXtpY/s9wD2UL/8n+15b0n7AfgCT1ll/6G86IiJGTNqRiIhlJtqIBMBxwPtZPlv1c4A32p5Rfzaw/ShwGeXp0faUzKUPArtRGob+PF1/2mkm7fhzn303A9OBl7Y90Z5tu8d2z6TJfR+ERUTEKDqOtCMREROvI2H7YeAHlEag5efAAa0NSTPqsXcD6wEb274TuAL4BAM3AE1XAXvW13vX8/tzI2Vh3fmSXjLE60dExChLOxIRUUyoqU0Nx9D4wqcMUX9D0gLKZ3IZ0Aq3dy0wqb6+HDiCgb/Imw4ETpb0ScpTqPcNdLDtK2o4wQslvbW/qCBbbDCV3kRuiYjopLQjETHhyfbgR0VX6enpcW9vb6erERFjgKR5tgcNIRoTS9qRiBiqgdqRCTe1KSIiIiIiVl5GJMYgSY8Ct3e6Hv1YDxjRRE0jqFvr1q31gtRtRXRbvV5uOyF6YjlpR1ZYt9atW+sF3Vu3bq0XdF/d+m1HJuoaibHu9m6dqiCpN3Ubnm6tF6RuK6Jb6xXRR9qRFdCtdevWekH31q1b6wXdXbe+MrUpIiIiIiKGLR2JiIiIiIgYtnQkxqbZna7AAFK34evWekHqtiK6tV4RTd38/2nqNnzdWi/o3rp1a72gu+u2nCy2joiIiIiIYcuIREREREREDFs6EmOMpLdJul3SbyQd0un6NElaJGmhpPmSOpbpSNLJkn4v6eZG2Qsk/ULSr+vv53dR3Q6TdG/93OZL+scO1GtDSZdK+pWkWyT9ey3v+Oc2QN264XNbU9J1km6qdftcLe/45xbRn25tR7qlDal1STsy/HqlHRl+vcZ8G5KpTWOIpEnAHcBbgXuA64G9bN/a0YpVkhYBPbY7GvtY0g7AEuBU25vXsq8AD9s+sjacz7f9f7ukbocBS2wfPdr1adRrGjDN9g2S1gbmAe8CZtHhz22Auv0Lnf/cBDzP9hJJqwNXAP8OvJsu+P8toq9ubke6pQ2pdUk7Mvx6pR0Zfr3GfBuSEYmx5fXAb2zfafuvwBnALh2uU9exfRnwcJ/iXYBT6utTKF8go66funWc7ftt31BfPwr8CtiALvjcBqhbx7lYUjdXrz+mCz63iH6kHRmCtCPDl3Zk+MZDG5KOxNiyAXB3Y/seuuAfQoOBn0uaJ2m/TlemjxfZvh/KFwrwNx2uT18HSFpQh6w7OoQpaTqwFXAtXfa59akbdMHnJmmSpPnA74Ff2O66zy2ioZvbkW5uQ6D7/113/PuwJe3IsOozptuQdCTGFrUp66a5aW+yvTXwduAjdfg1BvctYCNgBnA/cEynKiJpCnA2cJDtRzpVj3ba1K0rPjfbS23PAF4KvF7S5p2oR8QQdXM7kjZkxXXF9yGkHRmusd6GpCMxttwDbNjYfilwX4fq8iy276u/fw+cSxlC7xYP1DmSrbmSv+9wfZ5h+4H6RfI0cBId+tzq/Myzge/ZPqcWd8Xn1q5u3fK5tdj+EzAXeBtd8rlFtNG17UiXtyHQxf+uu+X7MO3IihurbUg6EmPL9cDGkl4h6bnAnsD5Ha4TAJKeVxcwIel5wN8DNw981qg6H9invt4H+FEH67Kc1pdFtSsd+Nzqgq//An5l+6uNXR3/3PqrW5d8butLWre+XgvYCbiNLvjcIvrRle3IGGhDoIv/XXfJ92HakeHXa8y3IYnaNMbU0GTHAZOAk21/sbM1KiS9kvIECWA14Pudqpuk04GZwHrAA8BngfOAHwAvA/4fsLvtUV+s1k/dZlKGVQ0sAj7Ymhs5ivXaDrgcWAg8XYv/gzKHtKOf2wB124vOf25bUhbCTaI8mPmB7cMlvZAu+P8top1ubEe6qQ2p9Uk7Mvx6pR0Zfr3GfBuSjkRERERERAxbpjZFRERERMSwpSMRERERERHDlo5EREREREQMWzoSERERERExbOlIRERERETEsKUjEdGFJL1Y0hmSfivpVkk/kbTJCF5/pqRtR+p6ERHRXdKOxGhIRyKiy9TEOecCc21vZPs1lHjXLxrB28wE0gBERIxDaUditKQjEdF9dgSetH1iq8D2fOAKSUdJulnSQkl7wDNPhX7cOlbS1yXNqq8XSfqcpBvqOZtKmg7sD3xM0nxJ24/ie4uIiFUv7UiMitU6XYGIeJbNgXltyt9NycD5WkpG0+slXTaE6z1ke2tJHwY+YfsDkk4Eltg+eqQqHRERXSPtSIyKjEhEjB3bAafbXmr7AeCXwDZDOO+c+nseMH0V1S0iIrpf2pEYUelIRHSfW4DXtSlXP8c/xfL/ltfss/+J+nspGYWMiJgI0o7EqEhHIqL7XAKsIWnfVoGkbYA/AntImiRpfWAH4Drgd8BrJK0haSrwliHc41Fg7ZGvekREdIG0IzEq0quM6DK2LWlX4DhJhwCPA4uAg4ApwE2AgYNt/w+ApB8AC4BfAzcO4TYXAD+UtAvwUduXj/T7iIiIzkg7EqNFtjtdh4iIiIiIGGMytSkiIiIiIoYtHYmIiIiIiBi2dCQiIiIiImLY0pGIiIiIiIhhS0ciIiIiIiKGLR2JiIiIiIgYtnQkIiIiIiJi2NKRiIiIiIiIYfv/rHq3AZjRydwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#Code task 13#\n", + "#Create two subplots on 1 row and 2 columns with a figsize of (12, 8)\n", + "fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12,8))\n", + "#Specify a horizontal barplot ('barh') as kind of plot (kind=)\n", + "ski_data.Region.value_counts().plot(kind='barh', ax=ax[0])\n", + "#Give the plot a helpful title of 'Region'\n", + "ax[0].set_title('Region')\n", + "#Label the xaxis 'Count'\n", + "ax[0].set_xlabel('Count')\n", + "#Specify a horizontal barplot ('barh') as kind of plot (kind=)\n", + "ski_data.state.value_counts().plot(kind='barh', ax=ax[1])\n", + "#Give the plot a helpful title of 'state'\n", + "ax[1].set_title('state')\n", + "#Label the xaxis 'Count'\n", + "ax[1].set_xlabel('Count')\n", + "#Give the subplots a little \"breathing room\" with a wspace of 0.5\n", + "plt.subplots_adjust(wspace=0.5);\n", + "#You're encouraged to explore a few different figure sizes, orientations, and spacing here\n", + "# as the importance of easy-to-read and informative figures is frequently understated\n", + "# and you will find the ability to tweak figures invaluable later on" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "How's your geography? Looking at the distribution of States, you see New York accounting for the majority of resorts. Our target resort is in Montana, which comes in at 13th place. You should think carefully about how, or whether, you use this information. Does New York command a premium because of its proximity to population? Even if a resort's State were a useful predictor of ticket price, your main interest lies in Montana. Would you want a model that is skewed for accuracy by New York? Should you just filter for Montana and create a Montana-specific model? This would slash your available data volume. Your problem task includes the contextual insight that the data are for resorts all belonging to the same market share. This suggests one might expect prices to be similar amongst them. You can look into this. A boxplot grouped by State is an ideal way to quickly compare prices. Another side note worth bringing up here is that, in reality, the best approach here definitely would include consulting with the client or other domain expert. They might know of good reasons for treating states equivalently or differently. The data scientist is rarely the final arbiter of such a decision. But here, you'll see if we can find any supporting evidence for treating states the same or differently." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2.6.3.5 Distribution Of Ticket Price By State" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our primary focus is our Big Mountain resort, in Montana. Does the state give you any clues to help decide what your primary target response feature should be (weekend or weekday ticket prices)?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### 2.6.3.5.1 Average weekend and weekday price by state" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AdultWeekdayAdultWeekend
state
Alaska47.33333357.333333
Arizona81.50000083.500000
California78.21428681.416667
Colorado90.71428690.714286
Connecticut47.80000056.800000
Idaho56.55555655.900000
Illinois35.00000043.333333
Indiana45.00000048.500000
Iowa35.66666741.666667
Maine51.50000061.000000
Maryland59.00000079.000000
Massachusetts40.90000057.200000
Michigan45.45833352.576923
Minnesota44.59571449.667143
Missouri43.00000048.000000
Montana51.90909151.909091
Nevada78.50000081.000000
New Hampshire65.57142976.500000
New Jersey79.99000079.990000
New Mexico65.66666765.666667
New York50.03225858.945455
North Carolina41.83333364.166667
Ohio42.20000045.400000
Oregon58.85714359.857143
Pennsylvania52.70588263.687500
Rhode IslandNaNNaN
South Dakota51.50000051.500000
Tennessee36.00000065.000000
Utah89.08333393.000000
Vermont83.50000087.900000
Virginia51.00000068.000000
Washington65.10714370.144286
West Virginia62.50000079.750000
Wisconsin46.42857154.266667
Wyoming57.60000056.166667
\n", + "
" + ], + "text/plain": [ + " AdultWeekday AdultWeekend\n", + "state \n", + "Alaska 47.333333 57.333333\n", + "Arizona 81.500000 83.500000\n", + "California 78.214286 81.416667\n", + "Colorado 90.714286 90.714286\n", + "Connecticut 47.800000 56.800000\n", + "Idaho 56.555556 55.900000\n", + "Illinois 35.000000 43.333333\n", + "Indiana 45.000000 48.500000\n", + "Iowa 35.666667 41.666667\n", + "Maine 51.500000 61.000000\n", + "Maryland 59.000000 79.000000\n", + "Massachusetts 40.900000 57.200000\n", + "Michigan 45.458333 52.576923\n", + "Minnesota 44.595714 49.667143\n", + "Missouri 43.000000 48.000000\n", + "Montana 51.909091 51.909091\n", + "Nevada 78.500000 81.000000\n", + "New Hampshire 65.571429 76.500000\n", + "New Jersey 79.990000 79.990000\n", + "New Mexico 65.666667 65.666667\n", + "New York 50.032258 58.945455\n", + "North Carolina 41.833333 64.166667\n", + "Ohio 42.200000 45.400000\n", + "Oregon 58.857143 59.857143\n", + "Pennsylvania 52.705882 63.687500\n", + "Rhode Island NaN NaN\n", + "South Dakota 51.500000 51.500000\n", + "Tennessee 36.000000 65.000000\n", + "Utah 89.083333 93.000000\n", + "Vermont 83.500000 87.900000\n", + "Virginia 51.000000 68.000000\n", + "Washington 65.107143 70.144286\n", + "West Virginia 62.500000 79.750000\n", + "Wisconsin 46.428571 54.266667\n", + "Wyoming 57.600000 56.166667" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 14#\n", + "# Calculate average weekday and weekend price by state and sort by the average of the two\n", + "# Hint: use the pattern dataframe.groupby()[].mean()\n", + "state_price_means = ski_data.groupby('state')[['AdultWeekday', 'AdultWeekend']].mean()\n", + "state_price_means" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqAAAAJcCAYAAAAmbBanAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB330lEQVR4nOzde5xVVf3/8de70bgIDKnkV/EyZngFQj2a4CU0s4vm3dSvZWhJWGlYVv7qq02mRaZ5QcuwBDVDE0URTU0FL4DCwOCAeCvFVEzxhmJAAp/fH3sNHMYzF2A4Z87M+/l4zOPsvdbaa3/2xu/j+2mtvfdSRGBmZmZmViwfKXUAZmZmZtaxOAE1MzMzs6JyAmpmZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyonoGZmbYykv0n6egvazZd0cDFiao6kqyWd28p9Vkv6c2v2aWZtgxNQMys7kiZLeltSp1LHsr4KJVkR8cWIuG4DnrPVE9eIGBYRv2jNPluTpP0kTZW0SNJbkqZI2ivVDZH06Fr0VSUpJG204SI2a9+cgJpZWZFUBewPBHD4BujfScVaklRR6hiaIqkHMBEYCWwK9AZ+DiwrZVxmHZkTUDMrNycDjwFjgK8DSOok6R1JfesbSeolaYmkj6f9wyTNTu2mSuqf13a+pB9LqgPel7SRpHMk/VPSe5LmSToqr32FpEskvSHpBUnfzR8Rk1Qp6U+SXpX0iqQLCiVpkr4A/AQ4XtJiSU+k8smSvpnX7jRJT+XFskeBvnZOsZzQ1PVKugHYFrgznfNHBfoaLOllST9J1zhf0kl59WMk/V7S3ZLeBw5MZRfktTkinf/ddB+/sDb3Jk9nSTena58l6VOpnx9KurVB3CMlXVagjx0BImJsRKyIiCURcV9E1EnaBbgaGJjuxzupr0Ml1ab4X5JUndffw+n3nXTMwHTMqenf6W1J90raronrMuvYIsJ//vOf/8rmD/gH8G1gT+ADYItUfi1wYV677wD3pO09gNeBTwMVZInrfKBTqp8PzAa2AbqksuOArcj+h/rxwPvAlqluGDAP2Br4GHA/2YjsRqn+duAPwCbAx4HpwLcauZ5q4M8NyiYD38yL4xVgL0DAJ4Ht8uI+OF3fv4DD1uJ6D27iHg8GlgO/BToBn0nXv1OqHwMsAvZN96dzKrsg1e+d6j+X6nsDO6/jvfkAOBbYGDgbeCFtb5li6pnabpSuec8C/fQA3gSuA74IfKxB/RDg0QL3oF+Kvz/wGnBkqqvK//dOZUeS/be5S4rl/4Cppf6/F//5r63+eQTUzMqGpP2A7YC/RsRM4J/A/6bqvwAn5jX/31QGcBrwh4h4PLIRsOvIpl/3yWt/RUS8FBFLACLilohYEBErI+Jm4DmyxArgK8DlEfFyRLwNjMiLcQuyJGd4RLwfEa8DlwInrONlfxO4KCJmROYfEfFiXv3+wATg6xExcS2utyXOjYhlEfEQcBfZdde7IyKmpPuztMFx3wCujYi/p/pXIuLpdbw3MyNiXER8QJYQdwb2iYhXyUYij0vtvgC8kf67WENEvAvsR5Y0XgMslDQhxVNQREyOiDkp/jpgLFki3phvAb+KiKciYjnwS2CAR0HNCnMCambl5OvAfRHxRtr/SyoDeBDoIunT6f/pDwDGp7rtgB+k6eh30jTrNmQjnPVeyj+RpJPzprDfAfoCm6fqrRq0z9/ejmyE7tW8Y/9ANtq3LrYhS7QbM4xspG1Sgxiau97mvB0R7+ftv0gT96uFMa/LvVl1nohYCbycF8d1wFfT9leBGxrrJCWGQyJia7J/y62Ayxprn/47miRpoaRFZPd588bap2u7PO+63iIbse7dxDFmHZYftjezsiCpC9kIXIWkf6fiTkBPSZ+KiCck/ZVsFPQ1YGJEvJfavUQ2PX9hE6eIvHNtRzZS9llgWkSskDSbLKEAeJVs+r3eNnnbL5GNNm6eRsKaE83UvwTs0ET9MODHki6NiLPyjmnqeps7J8DHJG2Sl4RuC8xtYR+Nxby29wby7q2kj5Dd9wWp6Hbg98qe/T0M+NDzrIWk0dgxZKOWUPha/gJcCXwxIpamZ0s3b6J9/T2/sSUxmHV0HgE1s3JxJLAC2JVsdHMA2fN2j5C9mARZ0nA8cBKrp98hSyaHpVEtSdokvWTSvZFzbUKWZCwEkHQK2ahZvb8C35PUW1JP4Mf1FWlq+D7gEkk9JH1E0g6SGpu+fQ2oSslVIX8Ezpa0Z4r9kw2mdd8jm34+QFL9owDNXe9rwCcaOV++n0v6qKT9yRK8W1pwDMCfgFMkfTZdf29JO6/DvQHYU9LRyl7wGk6WwD4GkKb+x5H9W0+PiH8V6kDZC1o/kLR12t+G7H+oPJaavAZsLemjeYd1B95KyeferH7UA7L/Llay5j28Gvh/knZL56iUdBxmVpATUDMrF18HRkfEvyLi3/V/ZKNUJ0naKCIeJ3sxZSvgb/UHRkQN2XORVwJvk70sMqSxE0XEPOASYBpZctIPmJLX5BqyRKoOqAXuJntpZ0WqPxn4KNmLSm+TJUlbNnK6+qTuTUmzCsRyC3AhWZL1Htmo36YN2rxD9sLPFyX9ogXX+yvg/9J08dmNxPXvdOwC4EZgWEQ83UjbhjFPB04he75zEfAQ2RQ1rN29AbiD7H9UvA18DTg6PQ9a7zqyf59Gp9/J7tungceVvbX/GNlo7g9S/YPAk8C/JdU/3vFt4HxJ7wHnkf2Pjvrr+w/Zv8mUdA/3iYjxwK+BmyS9m/r/YhMxmXVoimjJTIyZmTVG0heBqyOiXbxwImkw2Zv5WzfTtOQkbQs8DfxPetnIzMqAR0DNzNaSpC6SvqTse6G9gZ+x+oUnK5L02ML3gZucfJqVF7+EZGa29kS2ks7NwBKyTxSdV9KIOhhJm5A9HvEi2TOwZlZGPAVvZmZmZkXlKXgzMzMzKypPwZeRzTffPKqqqkodhpmZmVmzZs6c+UZE9CpU5wS0jFRVVVFTU1PqMMzMzMyaJenFxuo8BW9mZmZmReUE1MzMzMyKygmomZmZmRVVm3sGVNIKYA5ZbC8AX4uId9LKHGdHxGHr2O9aHS+pCpgYEX2baLM4IrqtSzxrey4zM7OO5IMPPuDll19m6dKlpQ7FmtG5c2e23nprNt544xYf0+YSUGBJRAwAkHQd8B2yNXfNzMysg3j55Zfp3r07VVVVSCp1ONaIiODNN9/k5ZdfZvvtt2/xcW19Cn4a0Dtvv5ukcZKelnSj0n+Rkj4rqVbSHEnXSuqUyr+Q2j4KHF3fiaRNUrsZ6bgjmgpC0m6SpkuaLalOUp8G9d0kPSBpVorhiFReJekpSddIelLSfZK6pLo9JT0haRpZkm1mZmbJ0qVL2WyzzZx8tnGS2GyzzdZ6pLrNJqCSKoDPAhPyincHhgO7Ap8A9pXUGRgDHB8R/chGdU9P5dcAXwb2B/4nr5+fAg9GxF7AgcBv0rJujRkGXJ5GZnPAyw3qlwJHRcQeqb9LtPr/YvoAV0XEbsA7wDGpfDRwZkQMbOY+DJVUI6lm4cKFTTU1MzNrV5x8lod1+XdqiwloF0mzgTeBTYG/59VNj4iXI2IlMBuoAnYCXoiIZ1Ob64ADgJ1T+XORrTf657x+DgHOSeeZDHQGtm0ipmnATyT9GNguIpY0qBfwS0l1wP1ko7ZbpLoXImJ22p4JVEmqBHpGxEOp/IbGThwRoyIiFxG5Xr0KfsvVzMzMrKy02WdAU5I2kWx6+opUtyyv3Qqy+JtKuxtb6F7AMRHxTEsCioi/SHocOBS4V9I3I+LBvCYnAb2APSPiA0nzyZLaQjF3SedvLDYzMzNroOqcu1q1v/kjDm1Ru/Hjx3P00Ufz1FNPsfPOO3+ofvDgwVx88cXkcrlG+6iurqZbt26cffbZjBkzhkMOOYStttqKO+64g9GjR3P77bcD8Ktf/Yo//elP/OMf/wDgzjvv5JprrmHChAmN9l3ImDFjqKmp4corr2yyXbdu3Vi8ePFa9d1a2uIIKAARsQg4EzhbUlOvVT1NNqr4ybT/NeChVL69pB1S+Yl5x9wLnJH3DOnuTcUi6RPA8xFxBdkjAf0bNKkEXk/J54HAds1c2zvAIkn7paKTmmpvZmZmpTF27Fj2228/brrpplbpb8yYMSxYsACAQYMGMW3atFV106ZNo0ePHrz++usATJ06lX333bdVztvWtNkEFCAiaoEngBOaaLMUOAW4RdIcYCVwdSofCtyVXkLKXw7qF8DGQJ2kuWm/KccDc9OU/c7A9Q3qbwRykmrIksmnW3B5pwBXpZeQGk7pm5mZWYktXryYKVOm8Kc//WlVArpkyRJOOOEE+vfvz/HHH8+SJav/X3i3bqu/zDhu3DiGDBmyRn/jxo2jpqaGk046iQEDBtCtWzcqKytXjXi+8sorHHPMMUydOhXIEtBBgwaxcOFCjjnmGPbaay/22msvpkyZAsD777/Pqaeeyl577cXuu+/OHXfc8aFruOuuuxg4cCBvvPEGL7zwAgMHDmSvvfbi3HPPXeM6P/vZz7LHHnvQr1+/Vf2ce+65XH755ava/fSnP+WKK6740DnWRZubgm/4Xc2I+HLe7uS88u/mbT9A9oJSw77uIUsYG5YvAb7VTBzzgb5p+1fArxqLNSLeABp7mahvXvuL87ZnAp/Ka1fdVDxmZmZWXLfffjtf+MIX2HHHHdl0002ZNWsWkydPpmvXrtTV1VFXV8cee+zR4v6OPfZYrrzyyjWm7AcNGsTUqVNZsWIFffr0YZ999uHee+/lsMMOo66ujr322otTTz2Vs846i/32249//etffP7zn+epp57iwgsv5KCDDuLaa6/lnXfeYe+99+bggw9edb7x48fz29/+lrvvvpuPfexjnHrqqZx++umcfPLJXHXVVavade7cmfHjx9OjRw/eeOMN9tlnHw4//HC+8Y1vcPTRR/O9732PlStXctNNNzF9+vRWubdtLgE1MzMzawvGjh3L8OHDATjhhBMYO3Yszz33HGeeeSYA/fv3p3//hk/lrZ199913VQI6cOBA9t57b84//3xqa2vZaaed6Ny5M/fffz/z5s1bdcy7777Le++9x3333ceECRO4+OJsfGvp0qX861//AmDSpEnU1NRw33330aNHDwCmTJnCrbfeCsDXvvY1fvzjHwPZtzx/8pOf8PDDD/ORj3yEV155hddee42qqio222wzamtree2119h9993ZbLPN1ut66zkBNTMzM2vgzTff5MEHH2Tu3LlIYsWKFUhi9913b/SzQ/nlLf0u5qBBgxg5ciQrVqzgtNNOo3v37ixdupTJkyevev5z5cqVTJs2jS5duqxxbERw6623stNOO61R/vjjj/OJT3yC559/nmeffXaNF6QKxX7jjTeycOFCZs6cycYbb0xVVdWq+L/5zW8yZswY/v3vf3Pqqae26Jpaok0/A2pmZmZWCuPGjePkk0/mxRdfZP78+bz00ktsv/327LHHHtx4440AzJ07l7q6ulXHbLHFFjz11FOsXLmS8ePHF+y3e/fuvPfee6v2d911VxYsWMAjjzzC7rtnTxMOGDCAq6++mkGDBgFwyCGHrPFG++zZswH4/Oc/z8iRI8m+Ngm1tbWr2my33XbcdtttnHzyyTz55JNANtpa/yxr/TUALFq0iI9//ONsvPHGTJo0iRdfXP3azFFHHcU999zDjBkz+PznP7+Wd7FxHgE1MzOzNq+ln01qLWPHjuWcc85Zo+yYY46htraWJUuW0L9/fwYMGMDee++9qn7EiBEcdthhbLPNNvTt27fgJ46GDBnCsGHD6NKly6pRzU9/+tMsWrRo1VrqAwcOZNSoUasS0CuuuILvfOc79O/fn+XLl3PAAQdw9dVXc+655zJ8+HD69+9PRFBVVcXEiRNXnWunnXbixhtv5LjjjuPOO+/k8ssv53//93+5/PLLOeaYY1a1O+mkk/jyl79MLpdjwIABa3xu6qMf/SgHHnggPXv2pKKionVuLqD6rNnavlwuFzU1NaUOw8zMbIN76qmn2GWXXUodRoe3cuVK9thjD2655Rb69OnTaLtC/16SZkZEwQ+kegrezMzMzD5k3rx5fPKTn+Szn/1sk8nnuvAU/DqStLjhJ6M2uAW1UF1Z1FOa2XqqXlTqCMzM1smuu+7K888/v0H69giomZmZmRWVE9D1pMxvJM2VNEfS8an8d5IOT9vjJV2btr8h6YK0fbukmZKelDS0dFdhZmZmVjyegl9/RwMDyFY12hyYIelh4GFgf7K143sDW6b2+wH1C8qeGhFvSeqSjrs1It7M7zwlpkMBKnr0omrp6A18OWbtQ7HfmDUzs5bzCOj62w8YGxErIuI14CFgL+ARYH9JuwLzgNckbUm2ZOfUdOyZkp4AHgO2AT70hG9EjIqIXETkKrr6+U8zMzMrfx4BXX8Fl0OIiFckfQz4Atlo6KbAV4DFEfGepMHAwcDAiPiPpMlA56JEbGZmVm5a+yXcFr4gOH78eI4++mieeuqpNb6PWW/w4MFrrO1e8FTV1XTr1o2zzz6bMWPGcMghh7DVVltxxx13MHr0aG6//XYAfvWrX/GnP/2Jf/zjHwDceeedXHPNNUyYMGGtLm3MmDHU1NSs8fH61lBVVUVNTQ2bb775evflEdD19zBwvKQKSb2AA4DpqW4aMDy1eQQ4O/0CVAJvp+RzZ2CfokZtZmZmzRo7diz77bffqhWE1teYMWNYsGABkC3DOW3atFV106ZNo0ePHrz++usATJ06ddVynO2NR0DX33iyafUngAB+FBH/TnWPAIdExD8kvUg2ClqfgN4DDJNUBzxDNg3fpH69K6nxc21mZmZFsXjxYqZMmcKkSZM4/PDDqa6uZsmSJZxyyinMmzePXXbZhSVLlqxq361bt1WrH40bN46JEycyZsyYVfXjxo2jpqaGk046adVKSJWVlfzjH//gk5/8JK+88grHHHMMU6dO5cgjj2Tq1KlccMEFLFy4kGHDhvGvf/0LgMsuu4x9992X999/nzPOOIM5c+awfPlyqqurOeKII9a4hrvuuosLLriAO++8k1mzZvGzn/2MZcuWscMOOzB69Gi6detGVVUVX//617nzzjv54IMPuOWWW9h555158803OfHEE1m4cCF77703rbl4kUdA11H9N0Aj88OI6BsR/SLi5rw2f4qIrdL2BxGxSUTclvaXRcQXI6J/RBwXEYMjYnJJLsbMzMw+5Pbbb+cLX/gCO+64I5tuuimzZs3i97//PV27dqWuro6f/vSnzJw5s8X9HXvsseRyOW688UZmz55Nly5dGDRoEFOnTuWZZ56hT58+7LPPPkydOpXly5dTV1fHXnvtxfe+9z3OOussZsyYwa233so3v/lNAC688EIOOuggZsyYwaRJk/jhD3/I+++/v+p848ePZ8SIEdx9990AXHDBBdx///3MmjWLXC7Hb3/721VtN998c2bNmsXpp5/OxRdfDMDPf/5z9ttvP2prazn88MNXJcCtwSOgZmZmZgWMHTuW4cOHA3DCCScwduxYnnvuOc4880wA+vfvT//+/dfrHPvuuy9Tp05lxYoVDBw4kL333pvzzz+f2tpadtppJzp37sz999/PvHnzVh3z7rvv8t5773HfffcxYcKEVQnj0qVLVyWJkyZNoqamhvvuu48ePXowceJE5s2bt2pK/7///S8DBw5c1efRRx8NwJ577sltt90GwMMPP7xq+9BDD+VjH/vYel1rPiegZmZmZg28+eabPPjgg8ydOxdJrFixAknsvvvuSAXfP16jfOnSpS06z6BBgxg5ciQrVqzgtNNOo3v37ixdupTJkyevShZXrlzJtGnT6NKlyxrHRgS33norO+200xrljz/+OJ/4xCd4/vnnefbZZ8nlckQEn/vc5xg7dmzBODp16gRARUUFy5cvL3hNrclT8GZmZmYNjBs3jpNPPpkXX3yR+fPn89JLL7H99tuzxx57cOONNwIwd+5c6urqVh2zxRZb8NRTT7Fy5UrGjx9fsN/u3bvz3nvvrdrfddddWbBgAY888gi77747AAMGDODqq69m0KBBABxyyCFrvNE+e/ZsAD7/+c8zcuTIVc9m1tbWrmqz3Xbbcdttt3HyySfz5JNPss8++zBlypRVb9j/5z//4dlnn23yHhxwwAGrrvVvf/sbb7/9dvM3roU8AmpmZmZtXws/m9Raxo4dyznnnLNG2THHHENtbS1Lliyhf//+DBgwgL333ntV/YgRIzjssMPYZptt6Nu376oXkvINGTKEYcOGrXoJqUuXLnz6059m0aJFbLzxxgAMHDiQUaNGrUpAr7jiCr7zne/Qv39/li9fzgEHHMDVV1/Nueeey/Dhw+nfvz8RQVVVFRMnTlx1rp122okbb7yR4447jjvvvJMxY8Zw4oknsmzZMiB7JnTHHXds9B787Gc/48QTT2SPPfbgM5/5DNtuu+2639AG1JpvNNmGlcvloqamptRhmJmZbXBPPfUUu+yyS6nDsBYq9O8laWZEFPxAqqfgzczMzKyoPAVfThbUtv5KEGbWNhR5etHMrJQ8AlqApMXpt0rS3LQ9WNLEtH24pHOa6qOJvreSNK71ojUzM2uf/JhgeViXfycnoOsgIiZExIh1PHZBRBzb2jGZmZm1J507d+bNN990EtrGRQRvvvkmnTt3XqvjPAW/DiQNAXIR8V1JY4B3gRzwP2RLcY5T9uGsi4Avki3ReUFE3CypCpgYEX0l7QaMBj5K9j8GjomI54p+QWZmZm3M1ltvzcsvv8zChQtLHYo1o3Pnzmy99dZrdYwT0NaxJbAfsDMwARgHHA0MAD4FbA7MkPRwg+OGAZdHxI2SPgpUNOxY0lBgKEBFj15ULR29oa7BrKzNH3FoqUMws1a08cYbs/3225c6DNtAPAXfOm6PiJURMQ/YIpXtB4yNiBUR8RrwELBXg+OmAT+R9GNgu4hY0rDjiBgVEbmIyFV09QtIZmZmVv6cgLaOZXnbavDbqIj4C3A4sAS4V9JBGyA2MzMzszbFCeiG8zBwvKQKSb2AA4Dp+Q0kfQJ4PiKuIJu671/8MM3MzMyKy8+AbjjjgYHAE2QvIf0oIv6dXkKqdzzwVUkfAP8Gzm+qw369K6nxc25mZmZW5rwUZxnxUpxmZmZWLrwUp5mZmZm1GU5AzczMzKyonICamZmZWVE5ATUzMzOzonICamZmZmZF5QTUzMzMzIrK3wEtJwtqodrLcZoZUL2o1BGYma0zj4CuB0lbS7pD0nOS/inpckkflTRE0pWNHHO3pJ5FDtXMzMyszXACuo4kCbgNuD0i+gA7At2AC5s6LiK+FBHvbPgIzczMzNomJ6Dr7iBgaUSMBoiIFcBZwKlAV2ArSfek0dGL6g+SNF/S5mn7+5Lmpr/hxb8EMzMzs+LzM6DrbjdgZn5BRLwr6V9k93UAsDuwDHhG0siIeKm+raQ9gVOATwMCHpf0UETU5vcpaSgwFKCiRy+qlo7ecFdkZhvU/BGHljoEM7M2wSOg605ANFH+QEQsioilwDxguwbt9gPGR8T7EbGYbDp//4adRcSoiMhFRK6iq19AMjMzs/LnBHTdPQnk8gsk9QC2AVaQjXzWW8GHR5u1QaMzMzMza6M8Bb/uHgBGSDo5Iq6XVAFcAowB/tOC4x8GxkgaQZaMHgV8rakD+vWupMZTeGZmZlbmPAK6jiIiyJLG4yQ9BzwLLAV+0sLjZ5Elq9OBx4E/Nnz+08zMzKw9UpZHWTnI5XJRU1NT6jDMzMzMmiVpZkTkCtV5BNTMzMzMisoJqJmZmZkVlRNQMzMzMysqJ6BmZmZmVlROQM3MzMysqPwd0HKyoBaqvRqSma2H6kWljsDMrOONgEoKSTfk7W8kaaGkiWn/cEnnlCCuYZJOLvZ5zczMzIqtI46Avg/0ldQlIpYAnwNeqa+MiAnAhGIGJGmjiLi6mOc0MzMzK5UONwKa/A2oX9PyRGBsfYWkIZKuTNvHSZor6QlJD6ey3SRNlzRbUp2kPqn8+6ntXEnDU1mVpLl5fZ8tqTptT5b0S0kPAd+TVC3p7A1/6WZmZmal1RFHQAFuAs5L0+79gWuB/Qu0Ow/4fES8IqlnKhsGXB4RN0r6KFAhaU/gFODTZOu6P54Sy7ebiaNnRHwGoD4xbUjSUGAoQEWPXlQtHd3yqzSzNm/+iEObb2Rm1s50yBHQiKgDqshGP+9uoukUYIyk04CKVDYN+ImkHwPbpWn8/YDxEfF+RCwGbqNwQtvQzS2IdVRE5CIiV9HVLyCZmZlZ+euQCWgyAbiYvOn3hiJiGPB/wDbAbEmbRcRfgMOBJcC9kg4iG/UsZDlr3uPODerfX8fYzczMzMpWR05ArwXOj4g5jTWQtENEPB4R5wFvANtI+gTwfERcQZbE9gceBo6U1FXSJsBRwCPAa8DHJW0mqRNw2Aa+JjMzM7M2r6M+A0pEvAxc3kyz36SXjAQ8ADwBnAN8VdIHwL/Jkti3JI0Bpqfj/hgRtQCSzgceB14Anl6fmPv1rqTGz4uZmZlZmVNElDoGa6FcLhc1NTWlDsPMzMysWZJmRkSuUF1HnoI3MzMzsxJwAmpmZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyonoGZmZmZWVB32O6BlaUEtVHs5TjNrJdWLSh2BmXVQHX4EVNLitWw/WNLEtH24pHM2TGRmZmZm7ZNHQNdDREwgW47TzMzMzFqow4+A1ksjm5MljZP0tKQbJSnVfSGVPQocnXfMEElXpu0vS3pcUq2k+yVtkcqrJV2b+n5e0pl5x98uaaakJyUNLfIlm5mZmZWER0DXtDuwG7AAmALsK6kGuAY4CPgHcHMjxz4K7BMRIembwI+AH6S6nYEDge7AM5J+HxEfAKemdeS7ADMk3RoRb+Z3mhLToQAVPXpRtXR0K16umZWT+SMOLXUIZmatwgnomqZHxMsAkmYDVcBi4IWIeC6V/5mUEDawNXCzpC2BjwIv5NXdFRHLgGWSXge2AF4GzpR0VGqzDdAHWCMBjYhRwCiATlv2iVa4RjMzM7OS8hT8mpblba9gdYLeksRvJHBlRPQDvgV0bqpfSYOBg4GBEfEpoLbBMWZmZmbtkhPQ5j0NbC9ph7R/YiPtKoFX0vbXW9BvJfB2RPxH0s7APusXppmZmVl58BR8MyJiaXoO8y5Jb5A969m3QNNq4BZJrwCPAds30/U9wDBJdcAz6Zgm9etdSY2fATMzM7Mypwg/Vlgucrlc1NTUlDoMMzMzs2ZJmhkRuUJ1noI3MzMzs6JyAmpmZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyp/hqmcLKiF6spSR2FmHUH1olJHYGbtWLsYAZUUkm7I299I0kJJE9P+4ZLOKV2EIGmwpEGljMHMzMysLWgvI6DvA30ldYmIJcDnWL0qERExAZhQquCSwWTryk8tcRxmZmZmJdUuRkCTvwH1ywSdCIytr5A0RNKVaXuMpCskTZX0vKRjU/lgSZMljZP0tKQbJSnV7SnpIUkzJd0ractUfqakeZLqJN2UyjaVdHsqe0xSf0lVwDDgLEmzJe0v6cuSHpdUK+l+SVsU60aZmZmZlVJ7GQEFuAk4L0279weuBfZvpO2WwH7AzmQjo+NS+e7AbsACYAqwr6THgZHAERGxUNLxwIXAqcA5wPYRsUxSz9THz4HaiDhS0kHA9RExQNLVwOKIuBhA0seAfSIiJH0T+BHwg4aBpmVAhwJU9OhF1dLR63h7zKxczfcSvGbWzrSbBDQi6tJI44nA3c00vz0iVgLzGow8To+IlwEkzQaqgHfI1n7/exoQrQBeTe3rgBsl3Q7cnsr2A45JMT0oaTNJhd4c2hq4OY2mfhR4oZHrGgWMAui0ZR+vm2pmZmZlrz1NwUM2mnkxedPvjViWt61GyleQJegCnoyIAemvX0QcktocClwF7AnMlLRRg/7qFUocRwJXRkQ/4FtA52ZiNjMzM2sX2lsCei1wfkTMacU+nwF6SRoIIGljSbtJ+giwTURMIps+7wl0Ax4GTkptBwNvRMS7wHtA97x+K1n9otTXWzFeMzMzszat3UzBA6Tp88tbuc//pheVrkhT6RsBlwHPAn9OZQIujYh3JFUDoyXVAf9hdXJ5JzBO0hHAGUA1cIukV4DHgO2bi6Vf70pq/CyYmZmZlTlF+LHCcpHL5aKmpqbUYZiZmZk1S9LMiMgVqmtvU/BmZmZm1sY5ATUzMzOzonICamZmZmZF5QTUzMzMzIrKCaiZmZmZFZUTUDMzMzMrqnb1HdB2b0EtVBda1dPMrA2qXlTqCMysjWr3I6CSQtINefsbSVooaWLaP1zSOU0cXyVpbiN150s6uPWjNjMzM2u/OsII6PtAX0ldImIJ8DlWL4FJREwgW0N+rUXEea0TopmZmVnH0e5HQJO/AfVrWJ4IjK2vkDRE0pVpewtJ4yU9kf4GpWYVkq6R9KSk+yR1Se3HpGU6kfQlSU9LelTSFXkjrHtLmiqpNv3ulHfe2yTdI+k5SRcV51aYmZmZlVZHGAEFuAk4LyWF/YFrgf0LtLsCeCgijpJUAXQDPgb0AU6MiNMk/RU4Bvhz/UGSOgN/AA6IiBckjc3r8+lUvjxN1/8yHQ8wANgdWAY8I2lkRLyUH5CkocBQgIoevahaOnp97oOZtRPzRxzafCMzszaqQ4yARkQdUEU2+nl3E00PAn6fjlkREfVP0L8QEbPT9szUV76dgecj4oW0n5+AVgK3pOdILwV2y6t7ICIWRcRSYB6wXYHYR0VELiJyFV39ApKZmZmVvw6RgCYTgItZMzlsqWV52yv48Mixmjj2F8CkiOgLfBnovBb9mpmZmbU7HSkBvRY4PyLmNNHmAeB0AEkVknq0sO+ngU9Iqkr7x+fVVbL6pachLY7WzMzMrJ3qMCNuEfEycHkzzb4HjJL0DbIRydOBV1vQ9xJJ3wbukfQGMD2v+iLgOknfBx5cp+CTfr0rqfFzX2ZmZlbmFBGljqFdkNQtIhZLEnAV8FxEXNqa58jlclFTU9OaXZqZmZltEJJmRkSuUF1HmoLf0E6TNBt4kmza/Q+lDcfMzMysbeowU/AbWhrtbNURTzMzM7P2yCOgZmZmZlZUTkDNzMzMrKicgJqZmZlZUfkZ0HKyoBaqvRqSmdkaqhc138bM2pSijoBKCkk35O1vJGlhWqO96CQN3pDnltQzfR+0fr9K0v9uqPOZmZmZlYNiT8G/D/SV1CXtf47VqwS1Rz2Bb+ftVwFOQM3MzKxDK8UzoH8D6pfzOZG8tdkl7S1pqqTa9LtTKt9N0nRJsyXVSeojaRNJd0l6QtJcScentudJmpHKRqUPwyPpk5LuT+1nSdohnbabpHGSnpZ0Y177+ZI2T9s5SZPT9mdSHLNTnN1T+Q/Teesk/Tz1PQLYIbX9TdrfP+2fVei6NthdNzMzM2sjSvEM6E3AeWnquz/ZGu37p7qngQMiYrmkg4FfAscAw4DLI+JGSR8FKoAvAQsi4lAASfUPR14ZEeenshuAw4A7gRuBERExXlJnsuR7G2B3YDdgATAF2Bd4tIn4zwa+ExFTJHUDlko6BOgD7A0ImCDpAOAcoG9EDEjxDAbOjojD0v7IAte1BklDgaEAFT16UbV0dHP318xKaL6XyzUza1bRR0Ajoo5sKvpE4O4G1ZXALZLmkn3UfbdUPg34iaQfA9tFxBJgDnCwpF9L2j8i6p9CP1DS45LmAAcBu6VRyt4RMT7FsDQi/pPaT4+IlyNiJTA7xdaUKcBvJZ0J9IyI5cAh6a8WmAXsTJaQNqfQda0hIkZFRC4ichVd/QKSmZmZlb9SfYZpAnAxedPvyS+ASRHRF/gy0BkgIv4CHA4sAe6VdFBEPAvsSZaI/ipNvXcGfgccGxH9gGtSH2oilmV52ytYPSq8nNX3p3N9g4gYAXwT6AI8Jmnn1P+vImJA+vtkRPypuZtQ6LqaO8bMzMys3JUqAb0WOD8i5jQor2T1S0lD6gslfQJ4PiKuIEte+0vaCvhPRPyZLJndg9WJ4htpevxYgIh4F3hZ0pGpv06SujYT43yyBBeyxwDqY9khIuZExK+BGrLRznuBU9M5kdRb0seB94DueX2usV/oupqJyczMzKzsleQ7oBHxMnB5gaqLgOskfR94MK/8eOCrkj4A/g2cD+wF/EbSSuAD4PSIeEfSNWSjovOBGXl9fA34g6TzU/vjmgnz58CfJP0EeDyvfLikA8lGS+cBf4uIZZJ2Aaald5gWA1+NiH9KmpIeKfgb8BNguaQngDFkCXPD62pUv96V1Pj5MjMzMytziohSx2AtlMvloqamptRhmJmZmTVL0syIyBWq81KcZmZmZlZUTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OicgJqZmZmZkXlBNTMzMzMiqok3wG1dbSgFqq9HKeZtSPVi5pvY2btTrsZAZV0qaThefv3Svpj3v4labnOc0oU31aSxpXi3GZmZmZtSbtJQIGpwCAASR8BNgd2y6sfBNyb1nIvuohYEBHHluLcZmZmZm1Je0pAp5ASULLEcy7wnqSPSeoE7AJ8StKVAJKOkzRX0hOSHk5lFZIuljRHUp2kM1L5ZyXVpvJrU39Imi/p55JmpbqdU/lnJM1Of7WSukuqSktyImmIpNsk3SPpOUkXFfNGmZmZmZVSu3kGNCIWSFouaVuyRHQa0BsYCCwC6oD/5h1yHvD5iHhFUs9UNhTYHtg9IpZL2lRSZ7J12z8bEc9Kuh44HbgsHfNGROwh6dvA2cA30+93ImKKpG7A0gIhDwB2B5YBz0gaGREvNWwkaWiKi4oevahaOnod7o6ZdQTzRxxa6hDMzFqkPY2AwupR0PoEdFre/tQCbcdIOg2oSGUHA1dHxHKAiHgL2Al4ISKeTW2uAw7I6+e29DsTqMrr+7eSzgR61vfXwAMRsSgilgLzgO0KXVBEjIqIXETkKrr6BSQzMzMrf+0tAa1/DrQf2RT8Y2QjoIPIksJVImIY8H/ANsBsSZsBAqJBn2rmnMvS7wrSiHJ6zvSbQBfgsfqp+UaOW+NYMzMzs/auvSWgU4DDgLciYkUawexJloROy28oaYeIeDwizgPeIEtE7wOGSdootdkUeBqokvTJdOjXgIeaCiL1PScifg3UAIUSUDMzM7MOqb2Nus0he/v9Lw3KukXEG9Iag5m/kdSHbITzAeAJslHTHYE6SR8A10TElZJOAW5JiekM4Opm4hgu6UCykc15wN+ALdf34vr1rqTGz3iZmZlZmVNEwxlna6tyuVzU1NSUOgwzMzOzZkmaGRG5QnXtbQrezMzMzNo4J6BmZmZmVlROQM3MzMysqJyAmpmZmVlROQE1MzMzs6Jqb59hat8W1EK1V0MyMyt71YtKHYFZSZV9AppWMHog7f4P2bc3F6b9vSPivwUPNDMzM7OSKPsENCLeBAYASKoGFkfExaWMyczMzMwa1y6fAZW0p6SHJM2UdK+kLVP5ZEm/ljRd0rOS9k/lQyTdJukeSc9Juiivr0MkTZM0S9Itkrql8hGS5kmqk3RxKjtO0lxJT0h6OJVVSPqNpBmp7bfy+v5hXvnPi3mPzMzMzEql7EdACxAwEjgiIhZKOh64EDg11W8UEXtL+hLwM+DgVD4A2B1YBjwjaSSwBPg/4OCIeF/Sj4HvS7oSOArYOSJCUs/Ux3nA5yPilbyybwCLImIvSZ2AKZLuA/qkv71TzBMkHRARD69xMdJQYChARY9eVC0d3Uq3yaxjmO/la83M2pz2mIB2AvoCf09rv1cAr+bV35Z+ZwJVeeUPRMQiAEnzgO2AnsCuZEkjwEeBacC7wFLgj5LuAiamPqYAYyT9Ne88hwD9JR2b9ivJEs9D0l9tKu+WytdIQCNiFDAKoNOWfbxuqpmZmZW99piACngyIgY2Ur8s/a5gzetflrddXyfg7xFx4odOIu0NfBY4AfgucFBEDJP0aeBQYLakAamPMyLi3gbHfx74VUT8YS2vz8zMzKystcdnQJcBvSQNBJC0saTd1rGvx4B9JX0y9dVV0o7pOdDKiLgbGM7ql6B2iIjHI+I84A1gG+Be4HRJG6c2O0raJJWfmvdMaW9JH1/HOM3MzMzKRnscAV0JHAtcIamS7BovA55c247SM6RDgLHp+U3Ingl9D7hDUmeyEc6zUt1vJPVJZQ8ATwB1ZFP9s5TN4y8EjoyI+yTtAkxL0/uLga8CrzcWT7/eldT4eTYzMzMrc4rwY4XlIpfLRU1NTanDMDMzM2uWpJkRkStU1x6n4M3MzMysDXMCamZmZmZF5QTUzMzMzIrKCaiZmZmZFZUTUDMzMzMrKiegZmZmZlZU7fE7oO3Xglqorix1FGZmq1UvKnUEZlaG2swIqKSfSnpSUp2k2WlJy3XpZ7CkQXn7Y/LWYW/quBXpvE9KekLS9yU1eX/SuSY21aZB++GSura0vZmZmVl71CZGQNOymYcBe0TEMkmbAx9dx+4Gk60qNHUtj1sSEQNSPB8H/gJUAj9bxzgKGQ78GfhPK/ZpZmZmVlbaygjolsAbEbEMICLeiIgFAJI+K6lW0hxJ19YviSlpfkpUkZSTNFlSFTAMOCuNZu6f+j9A0lRJz7dkNDQiXgeGAt9VpkrSI5Jmpb9BDY+RtFeK8xOFYpZ0JrAVMEnSpHTM7yXVpFHXn6/nPTQzMzMrC21iBBS4DzhP0rPA/cDNEfFQWmt9DPDZiHhW0vXA6WRru39IRMyXdDWwOCIuBpD0DbIEdz9gZ2ACMK65gCLi+TQF/3Gy9dk/FxFL01rvY4FVS0ulhHQkcERq+1DDmCPiMknfBw6MiDfSoT+NiLckVQAPSOofEXX5cUgaSpYMU9GjF1VLRzcXuplZ0cwvdQBmVpbaxAhoRCwG9iRLtBYCN0saAuwEvBARz6am1wEHrMMpbo+IlRExD9hiLY5T+t0YuEbSHOAWYNe8NrsAo4AvR8S/1jLmr0iaBdQCuzXoF4CIGBURuYjIVXT1C0hmZmZW/trKCCgRsQKYDExOid7XgdlNHLKc1Ql052a6X5a3rUZb5TeSPgGsIBvR/BnwGvCpdM6leU1fTeffHViwFv1vD5wN7BURb0saQ/PXYWZmZlb22sQIqKSd0tR2vQHAi8DTQJWkT6byr5FNb0M287Nn2j4m79j3gO7rGU8v4GrgyogIspeRXo2IlSmGirzm7wCHAr+UNLiZmPNj6wG8DyyStAXwxfWJ2czMzKxctJUR0G7ASEk9yUY2/wEMTc9cngLcImkjYAZZYgjwc+BPkn4CPJ7X153AOElHAGesRQxdJM0mm25fDtwA/DbV/Q64VdJxwCSyxHGViHhN0peBvwGnAo3FPAr4m6RXI+JASbXAk8DzwJTmAuzXu5KaEYeuxSWZmZmZtT3KBvisHORyuaipqSl1GGZmZmbNkjQzInKF6trEFLyZmZmZdRxOQM3MzMysqJyAmpmZmVlROQE1MzMzs6JyAmpmZmZmRdVWPsNkLbGgFqq9GpKZtVHVi0odgZmViQ4zAiopJN2Qt7+RpIWSJq5jfz0lfbv1IjQzMzPrGDpMAkr28fi+krqk/c8Br6xHfz0BJ6BmZmZma6kjJaCQrVRUv5TQicDY+gpJm0q6XVKdpMck9U/l1ZKulTRZ0vOSzkyHjAB2kDRb0m8kdZP0gKRZkuaklZiQVCXpKUnXSHpS0n31SbCk0yTNkPSEpFsldS3anTAzMzMrkY72DOhNwHlp2r0/cC2wf6r7OVAbEUdKOgi4nmxNeoCdgQPJ1nF/RtLvgXOAvhExALIpfeCoiHhX0ubAY5ImpOP7ACdGxGmS/kq2dv2fgdsi4pp0/AXAN4CR+QFLGgoMBajo0YuqpaNb836YmbWa+aUOwMzKRodKQCOiTlIV2ejn3Q2q9yNLDImIByVtJqn+jZ+7ImIZsEzS68AWBboX8EtJBwArgd557V6IiNlpeyZQlbb7psSzJ9ANuLdAzKPI1pCn05Z9vG6qmZmZlb0OlYAmE4CLgcHAZnnlKtC2PuFblle2gsL37SSgF7BnRHwgaT7QuZHj659DHQMcGRFPSBqSYjIzMzNr1zraM6CQTbufHxFzGpQ/TJZEImkw8EZEvNtEP++RTcnXqwReT8nngcB2LYilO/CqpI3rz21mZmbW3nW4EdCIeBm4vEBVNTBaUh3wH+DrzfTzpqQpkuaSvdz0a+BOSTXAbODpFoRzLvA48CIwhzUT2g/p17uSmhGHNtXEzMzMrM1ThB8rLBe5XC5qampKHYaZmZlZsyTNjIhcobqOOAVvZmZmZiXkBNTMzMzMisoJqJmZmZkVlRNQMzMzMysqJ6BmZmZmVlROQM3MzMysqDrcd0DL2oJaqK5svp2ZWUdQvajUEZjZOiqbEVBJ/yPpJkn/lDRP0t2SdixhPMMldc3bv1tSz3Xop0rS/7ZqcGZmZmZtWFkkoJIEjAcmR8QOEbEr8BNgixKGNRxYlYBGxJci4p116KcKcAJqZmZmHUZZJKDAgcAHEXF1fUFEzAYelfQbSXMlzZF0PGRruUuaLGmcpKcl3ZiSWCTNl/RzSbPSMTun8k0kXStphqRaSUek8gpJF6e2dZLOkHQmsBUwSdKkvH43T9snp7ZPSLohlY2RdGx9/JIWp80RwP6SZks6a4PeRTMzM7M2oFyeAe0LzCxQfjQwAPgUsDkwQ9LDqW53YDdgATAF2Bd4NNW9ERF7SPo2cDbwTeCnwIMRcWqaSp8u6X7gZGB7YPeIWC5p04h4S9L3gQMj4o38gCTtlvraNyLekLRpM9d2DnB2RBxWqFLSUGAoQEWPXlQtHd1Md2Zmhc0fcWipQzAzA8pnBLQx+wFjI2JFRLwGPATsleqmR8TLEbESmE021V3vtvQ7M6/8EOAcSbOByUBnYFvgYODqiFgOEBFvNRPTQcC4+sS0Be2bFBGjIiIXEbmKrn4ByczMzMpfuYyAPgkcW6BcTRyzLG97BWte67IC5QKOiYhn1jhBNnUfaxFrY+2XkxL+1OdH16JPMzMzs3ajXEZAHwQ6STqtvkDSXsDbwPHpOc1ewAHA9HU8x73AGXnPiu6eyu8DhknaKJXXT6m/B3Qv0M8DwFckbdag/Xxgz7R9BLBxM/2YmZmZtUtlMQIaESHpKOAySecAS8kSuuFAN+AJslHHH0XEv+tfLFpLvwAuA+pSEjofOAz4I7BjKv8AuAa4EhgF/E3SqxFxYF6sT0q6EHhI0gqgFhiSjrtD0nSyJPX9dEgdsFzSE8CYiLi0sQD79a6kxs9wmZmZWZlTxNrMLlsp5XK5qKmpKXUYZmZmZs2SNDMicoXqymUK3szMzMzaCSegZmZmZlZUTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OicgJqZmZmZkVVFt8BLbb0zdHbgF0i4mlJVcDEiOi7Dn0tjohurRLYglqo9nKcZmYfUr2o1BGY2VrwCGhhJwKPAieUOhAzMzOz9sYJaAOSugH7At+gQAIqqUrSI5Jmpb9BqXxLSQ9Lmi1prqT9Gxy3uaRpkg5trA8zMzOzjsBT8B92JHBPRDwr6S1JewBv5dW/DnwuIpZK6gOMBXLA/wL3RsSFkiqArvUHSNoCmAD8X0T8XVLXRvr4EElDgaEAFT16UbV0dGtfr5m1c/O9hK+ZtTFOQD/sRLI14QFuSvtX5dVvDFwpaQCwgmydeIAZwLWSNgZuj4jZee0fAL4TEQ8108eHRMQosnXn6bRlH6+bamZmZmXPCWgeSZsBBwF9JQVQAQTwu7xmZwGvAZ8ie4RhKUBEPCzpAOBQ4AZJv4mI64HlwEzg88BDTfVhZmZm1hH4GdA1HQtcHxHbRURVRGwDvABsndemEng1IlYCXyNLUpG0HfB6RFwD/AnYI7UP4FRgZ0nnNNWHmZmZWUfgEdA1nQiMaFB2K/CTvP3fAbdKOg6YBLyfygcDP5T0AbAYOLn+gIhYIekE4E5J7zbRR5P69a6kxs9ymZmZWZlThB8rLBe5XC5qampKHYaZmZlZsyTNjIiCL1l7Ct7MzMzMisoJqJmZmZkVlRNQMzMzMysqJ6BmZmZmVlROQM3MzMysqJyAmpmZmVlR+Tug5WRBLVRXljoKMzNbG9WLSh2BWZtTkhFQSSHpkrz9syVVr2UfgyUNytsfI+nYFhz3P5JukvRPSfMk3S2p0bXY1yKeKklz03ZO0hXr26eZmZlZe1SqKfhlwNGSNl+XgyVtRLby0KBmmjY8TsB4YHJE7BARu5KtcrRFS4+X1Ow9i4iaiDhzbWIzMzMz6yhKlYAuB0YBZzWskLSdpAck1aXfbVP5GEm/lTQJuBkYBpwlabak/dPhB0iaKun5RkZDDwQ+iIir6wsiYnZEPCKpWzrfLElzJB2Rzlsl6SlJvwNmAdtI+o2kuand8QWuYbCkiWm7WtK1kianuM7Ma3e7pJmSnpQ0dN1upZmZmVl5KeUzoFcBdZIualB+JXB9RFwn6VTgCuDIVLcjcHBaW70aWBwRFwNI+gawJbAfsDMwARjXoO++wMxG4lkKHBUR76aR2cckTUh1OwGnRMS3JR0DDAA+BWwOzJD0cDPXujNZ8tsdeEbS7yPiA+DUiHhLUpfUz60R8Wb+gSkxHQpQ0aMXVUtHN3MqM2tr5o84tNQhmJm1KSV7Cz4i3gWuBxpOVQ8E/pK2byBLKOvdEhErmuj29ohYGRHzaOG0eh4Bv5RUB9wP9M7r48WIeCxt7weMjYgVEfEa8BCwVzN93xURyyLiDeD1vH7PlPQE8BiwDdCn4YERMSoichGRq+jqF5DMzMys/JX6M0yXAd8ANmmiTeRtv99Mf8vytlWg/klgz0aOPQnoBewZEQOA14DOBc5bqN/m5Me1AthI0mDgYGBgRHwKqM07n5mZmVm7VdIENCLeAv5KloTWmwqckLZPAh5t5PD3yKa018aDQCdJp9UXSNpL0meASuD1iPhA0oHAdo308TBwvKQKSb2AA4DpaxkH6XxvR8R/JO0M7LMOfZiZmZmVnbbwHdBLgO/m7Z8JXCvph8BC4JRGjrsTGJdeFjqjJSeKiJB0FHCZpHPInvucDwwnGx29U1INMBt4upFuxpM9JvAE2ejsjyLi35KqWhJDnnuAYWnK/xmyafgm9etdSY2fJTMzM7Myp4hovpW1CblcLmpqakodhpmZmVmzJM2MiFyhulI/A2pmZmZmHYwTUDMzMzMrKiegZmZmZlZUTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OiagvfAd2gJAXw24j4Qdo/G+gWEdWt0Hdnsm+GHhcRc1LZj4BPRMSwFhxfTd569s1aUAvVXo7TzGydVC8qdQRmlnSEEdBlwNGSNm/tjiNiKdlH7H+nTG/gW8D/a+5YSe0++TczMzMrpCMkoMuBUcBZDSsk9ZJ0q6QZ6W/fVD5HUs+UVL4p6eRUfoOkg/P7iIh7gFeBk4FLgWqgh6QHJNWl323T8WMk/VbSJODXDWI5TdLfJHVp9TtgZmZm1oZ0lFG4q4A6SRc1KL8cuDQiHk1J4r3ALsAUYF/gReB5YH/gerL12k8v0P9wsvXgn4uIGyTdCVwfEddJOhW4Ajgytd0RODgiVqQpeCR9FzgEODIiluV3LGkoMBSgokcvqpaOXuebYGa2tuZ7+V8z2wA6RAIaEe9Kup5snfkleVUHA7tKqt/vIak78AhwAFkC+ntgaJpefysiFhfof4GkB4GJqWggcHTavgHIT3xviYgVeftfA14mSz4/KND3KLIRXDpt2cfrppqZmVnZ6whT8PUuA74BbJJX9hFgYEQMSH+9I+I94GGyUc/9gcnAQuBYssS0MSvTXyH5ieP7DermAlXA1i26CjMzM7My12ES0Ih4C/grWRJa7z7gu/U7kgakti8BmwN9IuJ54FHgbJpOQPNNBU5I2yel4xtTS/bi0gRJW7WwfzMzM7Oy1SGm4PNcQl7CSTYlf5WkOrJ78TBQ//mkx4GKtP0I8CuaTiTznQlcK+mHZKOnpzTVOD2DejZwl6TPRcQbhdr1611JjZ/HMjMzszKnCD9WWC5yuVzU1NSUOgwzMzOzZkmaGRG5QnUdZgrezMzMzNqGFiWgkrpKOlfSNWm/j6TDNmxoZmZmZtYetXQEdDTZikID0/7LwAUbJCIzMzMza9damoDuEBEXAR8ARMQSQE0fYmZmZmb2YS1NQP+blogMAEk7kI2ImpmZmZmtlZZ+hqkauAfYRtKNZMtUNvlpITMzMzOzQlr8GSZJm5GthS7gsca+VWkbTm6riqgZ2q3UYZiZFV/1olJHYGZrab0/wyTpgYh4MyLuioiJEfGGpAdaN8y2S9KH1n9P5WMkHdvMsZMlFbz5ZmZmZh1Rk1PwkjoDXYHNJX2M1S8e9QC8bKSZmZmZrbXmRkC/BcwEdk6/9X93AFdt2NDaHmWulDRP0l3Ax/PqzpM0Q9JcSaMk5X8l4DhJ0yU9K2n/1L6zpNGS5kiqlXRgsa/HzMzMrBSaHAGNiMuByyWdEREjixRTW3YUsBPQD9gCmAdcm+qujIjzASTdABwG3JnqNoqIvSV9CfgZcDDwHYCI6CdpZ+A+STtGxNL8E0oaCgwFqOjRi6qlozfk9ZmZtU3n3LVqc/6IQ0sYiJm1hha9BR8RIyX1BXYFOueVX7+hAmujDgDGRsQKYIGkB/PqDpT0I7JHFjYFnmR1Anpb+p0JVKXt/YCRABHxtKQXgR2BuvwTRsQoYBRApy37tOyNMTMzM7M2rEUJqKSfAYPJEtC7gS8CjwIdLQGF9C3UfOlZ2d8BuYh4SVI1eYk6q7+ZuoLV99wf8jczM7MOqaUfoj8W+Czw74g4BfgU0GmDRdV2PQycIKlC0pZA/XOb9cnmG5K6kd2vlvR1EoCkHYFtgWdaOV4zMzOzNqelH6JfEhErJS2X1AN4HfjEBoyrrRoPHATMAZ4FHgKIiHckXZPK5wMzWtDX74CrJc0BlgNDIqLJ1aX69a6kxs8+mZmZWZlraQJaI6kncA3Zc4yLgekbKqi2JiK6pd8AvttIm/8D/q9A+eC87TdIz4Cml42GtHqwZmZmZm1cS19C+nbavFrSPUCPiKhr6hgzMzMzs0JavBJS/XZEzI+Iuo60EpKZmZmZtR6vhGRmZmZmRdXcFPy3gOFkyeZMsgQ0gPeAKzdoZGZmZmbWLjU5BR8Rl0fE9sCFwIC0PRp4HphWhPjMzMzMrJ1p8XdAI+JdSfsBnwPGAL/fYFGZmZmZWbvV0s8wrUi/hwJXR8QdabUfK6YFtVBdWeoozMw6hupFpY7ArN1q6QjoK5L+AHwFuFtSp7U4tmxJCkk35O1vJGmhpInNHJeTdMWGj9DMzMys/LQ0ifwKcC/whYh4B9gU+OGGCqoNeR/oK6lL2v8c8EpzB0VETUScuUEjMzMzMytTLUpAI+I/EXFbRDyX9l+NiPs2bGhtxt/IHj0AOBEYW18haW9JUyXVpt+dUvng+lFSSdWSrpU0WdLzks7MO/6rkqZLmi3pD5IqinhdZmZmZiXR0mdAO7KbgPNSQtkfuBbYP9U9DRwQEcslHQz8EjimQB87AwcC3YFnJP0e+CRwPLBvRHwg6XfAScD1+QdKGgoMBajo0YuqpaNb+/rMzNbZ/BGHNt/IzKwBJ6DNSKs+VZGNft7doLoSuE5SH7Lvo27cSDd3RcQyYJmk14EtgM8CewIzJAF0AV4vcP5RwCiATlv2ifW+IDMzM7MScwLaMhOAi4HBwGZ55b8AJkXEUSlJndzI8cvytleQ3XcB10XE/2vtYM3MzMzaMiegLXMtsCgi5kganFdeyeqXkoasZZ8PAHdIujQiXpe0KdA9Il5s7IB+vSup8XSXmZmZlbl2/yml1hARL0fE5QWqLgJ+JWkKsFYvEEXEPOD/gPsk1QF/B7Zc72DNzMzM2jhF+LHCcpHL5aKmpqbUYZiZmZk1S9LMiMgVqvMIqJmZmZkVlRNQMzMzMysqJ6BmZmZmVlROQM3MzMysqJyAmpmZmVlR+Tug5WRBLVRXljoKM7PSqF5U6gjMrJW02xFQSZdKGp63f6+kP+btXyLp+xvo3H+UtOuG6NvMzMys3LXbBBSYCgwCkPQRYHNgt7z6QcCUDXHiiPhm+tC8mZmZmTXQnhPQKaQElCzxnAu8J+ljkjoBuwCXSRpQf4CkKZL6S9pU0u2S6iQ9Jql/qq+WdJ2k+yTNl3S0pIskzZF0j6SNU7vJknJpe7GkCyU9kfraIpXvkPZnSDpf0uKi3RkzMzOzEmq3z4BGxAJJyyVtS5aITgN6AwOBRUAd8CeyNdyHS9oR6BQRdZJGArURcaSkg4DrgQGp6x2AA4FdU5/HRMSPJI0HDgVubxDKJsBjEfFTSRcBpwEXAJcDl0fEWEnDGrsOSUOBoQAVPXpRtXT0+twWM7Pydc5dTVbPH3FokQIxs/XVnkdAYfUoaH0COi1vfypwC3BYGrk8FRiTjtsPuAEgIh4ENpNU//bP3yLiA2AO2frv96TyOUBVgRj+C0xM2zPz2gxM5wf4S2MXEBGjIiIXEbmKrn4ByczMzMpfux0BTeqfA+1HNgX/EvAD4F3g2oj4j6S/A0cAXwHq1ytVgb4i/S4DiIiVkj6IiPrylRS+n/ltVjTSxszMzKzD6AgjoIcBb0XEioh4C+hJNvo4LbX5I3AFMCPVAzwMnAQgaTDwRkS828qxPQYck7ZPaOW+zczMzNqs9j4aN4fs7fe/NCjrFhFvAETETEnvAvkPV1YDoyXVAf8Bvr4BYhsO/FnSD4C7yJ5LbVK/3pXU+BknMzMzK3NaPTvcMUnaCpgM7BwRK4t43q7AkogISScAJ0bEEU0dk8vloqampjgBmpmZma0HSTMjIleorr2PgDZJ0snAhcD3i5l8JnsCV0oS8A7ZS1BmZmZm7V6HTkAj4nqyTyyV4tyPAJ8qxbnNzMzMSqm9v4RkZmZmZm2ME1AzMzMzKyonoGZmZmZWVE5AzczMzKyoOvRLSGVnQS1UezlOM7M2r7rZTzubdWhtagRU0gpJsyXNlXRL+lZmqWIZIunKVu5zK0njWrNPMzMzs3LTphJQsg+zD4iIvsB/gWGlDqg1RcSCiDi21HGYmZmZlVJbS0DzPQJ8UtImkq6VNENSraQjYNUI5W2S7pH0nKSL6g+UtFjShZKekPSYpC1S+XFpdPUJSQ+nskckDcg7doqk/nn7lZLmS/pI2u8q6SVJG0s6LcX1hKRb60dsJY2RdIWkqZKel3RsKq+SNDdv+xFJs9LfoA19Q83MzMzagjb5DKikjYAvAvcAPwUejIhTJfUEpku6PzUdAOwOLAOekTQyIl4CNgEei4ifpsT0NOAC4Dzg8xHxSuoL4I/AEGC4pB2BThFRJ2kPgIhYJOkJ4DPAJODLwL0R8YGk2yLimhTzBcA3gJGp3y2B/YCdgQlAw6n314HPRcRSSX2AscCHlquSNBQYClDRoxdVS0c3bGJm1ibNH3FoqUMwszaqrY2AdpE0G6gB/gX8CTgEOCeVTwY6A9um9g9ExKKIWArMA7ZL5f8FJqbtmUBV2p4CjJF0GlCRym4BDpO0MdlymGMKxHUzcHzaPiHtA/RNo5hzgJOA3fKOuT0iVkbEPGCLAn1uDFyTjr0F2LXQDYmIURGRi4hcRVe/gGRmZmblr62NgC6JiAH5BWmt9GMi4pkG5Z8mG/mst4LV1/NBRETD8ogYlo47FJgtaUBEvCnp78ARwFcoMApJNoL5K0mbkq3h/mAqHwMcGRFPSBoCDM47Jj82FejzLOA1suU4PwIsLdDGzMzMrN1pawloIfcCZ0g6IyJC0u4RUbsuHUnaISIeBx6X9GVgG+BNsmn4O4FHIuKthsdFxGJJ04HLgYkRsSJVdQdeTaOnJwGvrEU4lcDLEbFS0tdZPSLbqH69K6nxlJaZmZmVuXJIQH8BXAbUpdHQ+cBh69jXb9LzlgIeAJ4AiIiZkt4FmnrA8mayqfLBeWXnAo8DLwJzyBLSlvodcKuk48ieLX1/LY41MzMzK1taPVPdcUnaiuz50p0jYmWJw2lULpeLmpqaUodhZmZm1ixJMyOi0KONbe4lpKKTdDLZKOZP23LyaWZmZtZelMMU/AYVEdcD15c6DjMzM7OOosOPgJqZmZlZcTkBNTMzM7OicgJqZmZmZkXV4Z8BLSsLaqHaqyGZmbWa6kWljsCsQ/IIKCBpa0l3SHpO0j8lXS7po6WOy8zMzKw96vAJaPq4/W1ka7f3AXYEugEXNmjn0WIzMzOzVtDhE1DgIGBpRIwGSMtsngWcKunbkm6RdCdwn6RNJF0raYakWklHAEjqKumvkuok3SzpcUm5VHeipDmS5kr6df1JJS2WdKGkJyQ9JmmL4l+6mZmZWfF5VA92A2bmF0TEu5L+RXZ/BgL9I+ItSb8EHoyIUyX1BKZLuh84HXg7IvpL6gvMhlUrLP0a2BN4myyJPTIibgc2AR6LiJ9Kugg4DbigYXCShgJDASp69KJqaVOrhZqZWSHzRxxa6hDMLI9HQLN14QutR1pf/veIeCuVHQKcI2k22dKdnYFtgf2AmwAiYi5Ql9rvBUyOiIURsRy4ETgg1f0XmJi2ZwJVhYKLiFERkYuIXEVXv4BkZmZm5c8joPAkcEx+gaQewDbACuD9/CrgmIh4pkF7NdJ3Y+UAH0REfeK7Av9bmJmZWQfhEVB4AOia1oRHUgVwCTAG+E+DtvcCZ9QnnJJ2T+WPAl9JZbsC/VL548BnJG2e+j0ReGjDXYqZmZlZ29fhR90iIiQdBfxO0rlkSfndwE/IEsZ8vwAuA+pSEjofOAz4HXCdpDqglmwKflFEvCrp/wGTyEZD746IO9Y11n69K6nxc0xmZmZW5rR6FtjWVRrd3DgilkragWxUdceI+G9rnieXy0VNTU1rdmlmZma2QUiaGRG5QnUdfgS0lXQFJknamGyk8/TWTj7NzMzM2gsnoK0gIt4DCmb4ZmZmZrYmv4RkZmZmZkXlBNTMzMzMisoJqJmZmZkVlRNQMzMzMysqv4RUThbUQrWX4zQzM6B6UakjMFtnHXYEVNJkSZ9vUDZc0vOSzlnLvraSNK4F7e6W1HMtQzUzMzNrVzryCOhY4ASy5TXrnQB8PSIeadhY0kYRsbxQRxGxADi2uRNGxJfWMVYzMzOzdqPDjoAC44DDJHUCkFQFbAV8UtKVqWyMpN9KmgT8WtIOkh6TNEPS+ZIW1x8raW7aHiLpNkn3SHpO0kX1J5Q0X9Lmaft2STMlPSlpaFGv3MzMzKyEOuwIaES8KWk68AXgDrLRz5uBhmuT7ggcHBErJE0ELo+IsZKGNdH9AGB3YBnwjKSREfFSgzanRsRbkroAMyTdGhFvNuwoJadDASp69KJq6ei1v1gzs1Y2f8ShpQ7BzMpYRx4BhdXT8KTfsQXa3BIRK9L2QOCWtP2XJvp9ICIWRcRSYB6wXYE2Z0p6AngM2AboU6ijiBgVEbmIyFV09QtIZmZmVv46egJ6O/BZSXsAXSJiVoE2769Dv8vytlfQYKRZ0mDgYGBgRHwKqAU6r8N5zMzMzMpOh05AI2IxMBm4lsKjnw09BhyTtk9oqmEzKoG3I+I/knYG9lmPvszMzMzKSod9BjTPWOA2WpZQDgf+LOkHwF3Aun6E7R5gmKQ64BmyxLZZ/XpXUuPnrszMzKzMKaLhOzfWGEldgSUREZJOAE6MiCOKdf5cLhc1NTXFOp2ZmZnZOpM0MyJyheo8Arp29gSulCTgHeDU0oZjZmZmVn6cgK6F9IH6T5U6DjMzM7Ny1qFfQjIzMzOz4nMCamZmZmZF5QTUzMzMzIrKz4CWkwW1UO3VkMzM2pXqdf2in1n5KosRUEkh6ZK8/bMlVbdi/1XpHL/IK9tc0geSrlzHPs+XdHBrxWhmZmbWXpRFAkq2tOXRkjbfgOd4Hjgsb/844Ml17SwizouI+9c7KjMzM7N2plwS0OXAKOCshhWSekm6VdKM9LdvKp8jqacyb0o6OZXf0MjI5BLgKUn1H0w9HvhrC85zR17f35J0Y9oeI+nYtL2XpKmSnpA0XVJ3SZ0ljU5x1ko6sLVulpmZmVlbVk7PgF4F1Em6qEH55cClEfGopG2Be4FdgCnAvsCLZKOb+wPXk627fnoj57gJOEHSv4EVwAJgq2bOMxSYIukF4Ac0WNdd0keBm4HjI2KGpB5kye73ACKiX1oP/j5JO0bE0gbHD03noKJHL6qWjm7Z3TIzs7Iwv9QBmJVA2SSgEfGupOuBM8kSuHoHA7tmixMB0ENSd+AR4ACyBPT3wFBJvYG3ImJxI6e5B/gF8BpZ0piv4Hki4jVJ5wGTgKMi4q0Gx+0EvBoRM+qvA0DSfsDIVPa0pBeBHYG6Btc9imz0l05b9vG6qWZmZlb2yiYBTS4DZgH5w4AfAQZGRH5SiqSHge8A2wI/BY4CjiVLTAuKiP9Kmkk2krkb8OXmzpP0A95k9WjpGqEAhRJHFSgzMzMza/fK5RlQANLo4l+Bb+QV3wd8t35H0oDU9iVgc6BPRDwPPAqcTRMJaHIJ8OOIeLNBecHzSNob+CKwO3C2pO0bHPc0sJWkvVL77pI2Ah4GTkplO5Ilys80E5uZmZlZ2Su3EVDIEsTv5u2fCVwlqY7seh4GhqW6x4GKtP0I8CuyRLRREfEkhd9+/9B5JH0PuAY4JSIWSPoBcK2kg/L6+6+k44GRkrqQPT5wMPA74GpJc8heshoSEcuaiq1f70pqRhzaVBMzMzOzNk8RfqywXORyuaipqSl1GGZmZmbNkjQzInKF6spqCt7MzMzMyp8TUDMzMzMrKiegZmZmZlZUTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OiKsfvgHZcC2qhurLUUZiZWTmqXlTqCMxWKZsRUEmXShqet3+vpD/m7V8i6ftr0V+1pLMbqZu6HnEOljRoXY83MzMza+/KJgEFpgKDACR9hGyZzd3y6gcBU1rjRBGxPgnk4BSLmZmZmRVQTgnoFFYndrsBc4H3JH1MUidgF+DzkmZImitplCQBSDpT0jxJdZJuyutzV0mTJT0v6cz6QkmL0+/gVD9O0tOSbszr80up7FFJV0iaKKmKbBnQsyTNlrS/pO0kPZDO/YCkbdPxY9JxU9P5j92wt8/MzMysbSibZ0DTWuvLUwI3CJgG9AYGAouAOuDKiDgfQNINwGHAncA5wPYRsUxSz7xudwYOBLoDz0j6fUR80ODUu5MlvAvIkuB9JdUAfwAOiIgXJI1NMc6XdDWwOCIuTnHcCVwfEddJOhW4Ajgy9b0lsF+KYwIwruF1SxoKDAWo6NGLqqWj1/7mmZlZmzJ/xKGlDsGspMppBBRWj4LWJ6DT8vanAgdKelzSHOAgVk/R1wE3SvoqsDyvv7siYllEvAG8DmxR4JzTI+LliFgJzAaqyBLG5yPihdRmbBMxDwT+krZvIEs4690eESsjYl4j5yYiRkVELiJyFV39ApKZmZmVv3JLQOufA+1HNgX/GFmCV//85++AYyOiH3AN0DkddyhwFbAnMFNS/cjvsry+V1B4RLhQG63HNUQjfa9Pn2ZmZmZlo9wS0Clk0+pvRcSKiHgL6EmWhE5Lbd6Q1A04Fla9sLRNREwCfpTad1vPOJ4GPpGe+QQ4Pq/uPbIp/XpTgRPS9knAo+t5bjMzM7OyVjbPgCZzyN5+/0uDsm4R8Yaka9L+fGBGqq8A/iypkmyU8dKIeCe9S7ROImKJpG8D90h6A5ieV30nME7SEcAZwJnAtZJ+CCwETlnX8/brXUmNnxsyMzOzMqeIaL6VfYikbhGxOL0VfxXwXERcuiHPmcvloqamZkOewszMzKxVSJoZEblCdeU2Bd+WnCZpNvAkUEn2VryZmZmZNaPcpuDbjDTauUFHPM3MzMzaI4+AmpmZmVlROQE1MzMzs6JyAmpmZmZmReVnQMvJglqo9mpIZmbWwVUvKnUEtp7a9QiopEhrwtfvbyRpoaSJrdT/4Fbsa4ikK1ujLzMzM7O2rF0noMD7QF9JXdL+54BX1qaDvGU7zczMzKwVtPcEFOBvZGvBA5wIjK2vkLS3pKmSatPvTql8iKRbJN0J3CfphrSyUf1xN0o6PP8kzfR1m6R7JD0n6aK8Y06R9Kykh4B9N9gdMDMzM2tDOsLo3k3AeWmqvD9wLbB/qnsaOCAilks6GPglcEyqGwj0j4i3JH0GOAu4Iy3pOQj4OrBf3nma6msAsDuwDHhG0khgOfBzYE9gETAJqG0YvKShwFCAih69qFo6ej1vh5lZxzTfSxmbtRntPgGNiDpJVWSjn3c3qK4ErpPUBwhg47y6v0fEW6mPhyRdJenjwNHArSnRbGlfD0TEIgBJ84DtyNa0nxwRC1P5zcCOBeIfBYwC6LRlH6+bamZmZmWvI0zBA0wALiZv+j35BTApIvoCXwY659W936DtDcBJwClAoWHIpvpalre9gtWJvxNKMzMz63A6SgJ6LXB+RMxpUF7J6peShjTTxxhgOEBEPFmgfm36AngcGCxpM0kbA8e14BgzMzOzstfup+ABIuJl4PICVReRTZt/H3iwmT5ek/QUcHsjTVrcV+rvVUnVwDTgVWAWUNHUMf16V1LjZ5jMzMyszCnCs8AtIakrMAfYo/55zmLL5XJRU1NTilObmZmZrRVJMyMiV6iuo0zBr5f0VvvTwMhSJZ9mZmZm7UWHmIJfXxFxP7BtqeMwMzMzaw88AmpmZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyq/hFROFtRCdWWpozAzM1t/1f6oTEe2wUZAJYWkS/L2z04fXm+t/qskzW1QVi3p7NY6x1rE0uh5JU0tdjxmZmZmbdmGnIJfBhwtafMNeI42LyIGNSyT1OSKR2ZmZmbt2YZMQJcDo4CzGlZI6iXpVkkz0t++qXyOpJ7KvCnp5FR+Q/oYfItJOi31/UQ6V9dUPkbS7yVNkvS8pM9IulbSU5LG5B2/WNIlkmZJekBSr1R+pqR5kuok3ZR3yl0lTU59npnfT/odnM75F2COpApJv0kx1kn61tpcn5mZmVm52tDPgF4F1Em6qEH55cClEfGopG2Be4FdgCnAvsCLwPPA/sD1wD7A6QX630HS7Lz9/wEuTtu3RcQ1AJIuAL4BjEx1HwMOAg4H7kzn/CYwQ9KAiJgNbALMiogfSDoP+BnwXeAcYPuIWCapZ965dwYOBLoDz0j6fUR80CDevYG+EfGCpKHAoojYS1InYIqk+yLihfwDUruhABU9elG1dHSB22BmZuVq/ohDSx2CWdFt0AQ0It6VdD1wJrAkr+pgshHD+v0ekroDjwAHkCWgvweGSuoNvBURiwuc4p8RMaB+p8Ezpn1T4tkT6EaW5Na7MyJC0hzgtYiYk45/EqgCZgMrgZtT+z8Dt6XtOuBGSbcDt+f1eVdELAOWSXod2AJ4uUG80/MSzEOA/pKOTfuVQB9gjQQ0IkaRjSTTacs+UeAemJmZmZWVYrwFfxkwC8gfuvsIMDAi8pNSJD0MfIds2cufAkcBx5IlpmtrDHBkRDwhaQgwOK9uWfpdmbddv9/YPalP/g4lS5IPB86VtFuDPgFWNNLP+3nbAs6IiHsLtDMzMzNrtzb4d0Aj4i3gr2RT4PXuI5vOBkDSgNT2JWBzoE9EPA88CpzNuiWg3YFXJW0MnLQOx3+ELPkF+F/gUUkfAbaJiEnAj1g9urou7gVOT/EhaUdJm6xjX2ZmZmZlo1jfAb2EvISTbEr+Kkl1KYaHgWGp7nGg/i3xR4BfkSWia+vc1NeLwByyhHRtvA/sJmkmsAg4PsX1Z0mVZCOYl0bEO3mPEqyNP5JN989S1sFC4MimDujXu5IaPytkZmZmZU4RfqywEEmLI2JdRzc3iFwuFzU1NaUOw8zMzKxZkmZGRK5QnZfiNDMzM7OicgLaiLY2+mlmZmbWXjgBNTMzM7OicgJqZmZmZkXlBNTMzMzMiqpYn2Gy1rCgFqorSx2FmZlZ21K9qNQR2FpqMyOgki6VNDxv/15Jf8zbv0TS99eyz8GSBhUor5L0cvqwfH75bEl7S/qjpF3X8lzDJJ3cTJucpCvWpl8zMzOz9qYtjYBOBY4DLkuJ4eZAj7z6QcDwtexzMLA49b1KRMyX9BKwP/AQgKSdge4RMR2YXqgzSRURsaJQXURc3VwwEVED+EOeZmZm1qG1mRFQYApZkgmwGzAXeE/SxyR1AnYBaiXtKekhSTPTKOmWAJLOlDRPUp2kmyRVka2udFYa2dy/wfnGAifk7Z+QypA0WVIubS+WdL6kx4GBkr4h6dnU5hpJV6Z21ZLOzjv+15Kmp7b7p/LBkiam7b0lTZVUm353at3baWZmZtY2tZkR0IhYIGm5pG3JEtFpQG9gINlSmHVAACOBIyJioaTjgQuBU4FzgO0jYpmknmmJzKuBxRFxcYFT/pUsoT0jIpaTLbV5XIF2mwBzI+I8SVsBfwb2AN4DHgSeaOSSNoqIvSV9CfgZcHCD+qeBAyJiuaSDgV8CxzTsRNJQYChARY9eVC0d3cjpzMysmOZ7aWSzddZmEtCkfhR0EPBbsgR0EFkCOhXYCegL/D2tv14BvJqOrQNulHQ7cHtzJ4qIf0t6EvispNeADyJiboGmK4Bb0/bewEMR8RaApFuAHRs5xW3pdybZmu8NVQLXSepDllhv3Eico4BRAJ227ON1U83MzKzstbUEdCpZwtmPbAr+JeAHwLvAtYCAJyNiYIFjDwUOAA4HzpW0WwvOVz8N/1raLmRp3nOfauF1ACxLvysofJ9/AUyKiKPS4wKT16JvMzMzs7LVlp4BhWwE9DDgrYhYkUYae5JNw08DngF6SRoIIGljSbull5a2iYhJwI/SMd3Ipsm7N3G+W4EvkU2/39SC+KYDn0nPpW5EgSnztVAJvJK2h6xHP2ZmZmZlpa2NgM4he/v9Lw3KukXEGwCSjgWukFRJFv9lwLPAn1OZgEvTM6B3AuMkHQGcERGP5J8stXkM2CIiXmguuIh4RdIvgceBBcA8sscD1sVFZFPw3yd7lrRZ/XpXUuNnjszMzKzMKcKPFa4NSd0iYnEaAR0PXBsR44tx7lwuFzU1/oqTmZmZtX2SZkZErlBdW5uCLwfVkmaTPaP6Ai144cnMzMzMVmtrU/BtXkScXeoYzMzMzMqZR0DNzMzMrKicgJqZmZlZUTkBNTMzM7OicgJqZmZmZkXll5DKyYJaqK4sdRRmZmblo3pdP9dtG1KHHgGVFJIuyds/W1L1Bj7nfEmbb8hzmJmZmbVlHToBJVuv/WgnhGZmZmbF09ET0OXAKOCshhWSekm6VdKM9LevpI+kEcyeee3+IWkLSV+W9LikWkn3S9oi1W8m6b5U/geypULrj71d0kxJT0oauuEv18zMzKz0/AwoXAXUSbqoQfnlZGvKPyppW+DeiNhF0h3AUcBoSZ8G5kfEa5IeBfaJiJD0TeBHwA+AnwGPRsT5kg4F8hPNUyPiLUldgBmSbo2IN/ODSInpUICKHr2oWjq69e+AmZlZGzd/xKGlDsFaUYdPQCPiXUnXA2cCS/KqDgZ2lVYNWPaQ1B24GTgPGA2ckPYBtgZulrQl8FGyZToBDgCOTue6S9Lbeec4U9JRaXsboA+wRgIaEaPIRmnptGWfWL+rNTMzMyu9jj4FX+8y4BvAJnllHwEGRsSA9Nc7It4DpgGflNQLOBK4LbUfCVwZEf2AbwGd8/r6UOIoaTBZkjswIj4F1DY4xszMzKxdcgIKRMRbwF/JktB69wHfrd+RNCC1DWA88Fvgqbwp80rglbT99bx+HgZOSn18EfhYXvu3I+I/knYG9mnFSzIzMzNrszr8FHyeS8hLOMmm5K+SVEd2nx4GhqW6m4EZwJC89tXALZJeAR4Dtk/lPwfGSpoFPAT8K5XfAwxL/T+TjmlSv96V1PgZGDMzMytzygb0rBzkcrmoqakpdRhmZmZmzZI0MyJyheo8BW9mZmZmReUE1MzMzMyKygmomZmZmRWVE1AzMzMzKyonoGZmZmZWVP4MUzlZUAvVlaWOwszMrPxULyp1BJan3Y6ASvofSTdJ+qekeZLulrRjE+0Xp9+tJI3LKx8rqU7SWa0QU07SFevbj5mZmVk5a5cjoMoWcB8PXBcRJ6SyAcAWwLNNHRsRC4Bj0zH/AwyKiO3W4twbRcTyRvquAfwhTzMzM+vQ2usI6IHABxFxdX1BRMwGaiU9IGmWpDmSjmh4oKQqSXPT7n3AxyXNlrS/pAGSHksjouMlfSwdM1nSLyU9BHwv7f9a0nRJz0raP7UbLGli2t5b0lRJtel3pw17S8zMzMzahnY5Agr0BWYWKF8KHBUR70raHHhM0oRofDmow4GJETEAIC2beUZEPCTpfOBnwPDUtmdEfCa1+zKwUUTsLelLqd3BDfp+GjggIpZLOhj4JXBMwwAkDQWGAlT06EXV0tEtuwNmZmbtwHwvQd0utdcEtDECfinpAGAl0JtsWv7fzR4oVZIlmQ+louuAW/Ka3NzgkNvS70ygqkCXlcB1kvoAAWxc6LwRMQoYBdBpyz5eN9XMzMzKXnudgn8S2LNA+UlAL2DPNKr5GtC5lc75foP9Zel3BYUT/V8AkyKiL/DlVozDzMzMrE1rrwnog0AnSafVF0jaC9gOeD0iPpB0YNpvkYhYBLxd/zwn8DXgoSYOaU4l8EraHrIe/ZiZmZmVlXY5BR8RIeko4DJJ55A9+zkfqAaukFQDzCZ7DnNtfB24WlJX4HnglPUI8yKyKfjvkyXMzerXu5IaPwtjZmZmZU6Nv39jbU0ul4uaGn/FyczMzNo+STMjIleorr1OwZuZmZlZG+UE1MzMzMyKygmomZmZmRWVE1AzMzMzKyonoGZmZmZWVE5AzczMzKyo2uV3QNutBbVQXVnqKMzMzNqe6kWljsDWQtmOgEoKSZfk7Z8tqboV+6+SNLe1+jMzMzOzTNkmoGRrrR8tafNSBwIgqaLUMZiZmZmVg3JOQJcDo4CzGlZI6iXpVkkz0t++qXyOpJ7KvCnp5FR+g6SDGzuRpApJv0l91Un6ViofLGmSpL8AcyRtIukuSU9Imivp+NRuT0kPSZop6V5JW0raQdKsvHP0kTSzVe+QmZmZWRtU7s+AXgXUSbqoQfnlwKUR8aikbYF7gV2AKcC+wItka7nvD1wP7AOc3sR5vgEsioi9JHUCpki6L9XtDfSNiBckHQMsiIhDASRVStoYGAkcERELU1J6YUScKmmRpAERMZtsXfkxDU8saSgwFKCiRy+qlo5eqxtkZmbWEcwvdQC2Vso6AY2IdyVdD5wJLMmrOhjYVVL9fg9J3YFHgAPIEtDfA0Ml9QbeiojFTZzqEKC/pGPTfiXQB/gvMD0iXkjlc4CLJf0amBgRj0jqC/QF/p7iqQBeTe3/CJwi6fvA8WTJbMNrHEU20kunLftEC26LmZmZWZtW1glochkwC8gfGvwIMDAi8pNSJD0MfAfYFvgpcBRwLFli2hQBZ0TEvQ36Gwy8X78fEc9K2hP4EvCrNEo6HngyIgYW6PdW4GfAg8DMiHizmTjMzMzMyl45PwMKQES8BfyVbJq83n3Ad+t3JA1IbV8CNgf6RMTzwKPA2TSfgN4LnJ6m05G0o6RNGjaStBXwn4j4M3AxsAfwDNBL0sDUZmNJu6V4lqa+f8+aCbSZmZlZu9UeRkABLiEv4SSbkr9KUh3ZNT4MDEt1j5NNg0OWeP6KLBFtaCOyN+0hmyqvAmYpm0dfCBxZ4Jh+wG8krQQ+AE6PiP+mqfsrJFWmfi8DnkzH3AgcTZY0N6lf70pqRhzaXDMzMzOzNk0RfqywEElHACdFxFc28HnOBioj4tzm2uZyuaipqdmQ4ZiZmZm1CkkzIyJXqK69jIC2KknnA0cAQzbwecYDOwAHbcjzmJmZmbUlTkALiIjzgPOKcJ6jNvQ5zMzMzNqasn8JyczMzMzKixNQMzMzMysqJ6BmZmZmVlROQM3MzMysqPwSEiDpKOA2YJeIeLqRNlMjYlBxI2tgQS1UV5Y0BDMzsw6helGpI2jXPAKaOZHsY/QnNKyQVAFQ8uTTzMzMrJ3o8AmopG7AvmRLeZ6QygZLmiTpL8CcVLY4/Z4vaXb6e0XS6FT+fUlz09/wVFYl6SlJ10h6UtJ9krqkutMkzZD0hKRbJXUt+sWbmZmZlUCHXwlJ0leBAyPiG5Kmki3p2QO4C+gbES+kdosjolvecZVkS3mekorGAPsAIlvu86vA28A/gFxEzJb0V2BCRPxZ0mYR8Wbq6wLgtYgYWSC+ocBQgIoevfbc+nQvGW9mZrYu5ns566JqaiWkDj8CSjb9flPavintA0yvTz4bSuvB3whcGhEzgf2A8RHxfkQsJnuedP/U/IWImJ22Z5KtKQ/QV9IjkuYAJwG7FTpXRIyKiFxE5Cq6+vlPMzMzK38d+iUkSZuRLYPZV1IAFUAAdwPvN3FoNfByRNQPR6qJtsvytlcAXdL2GODIiHhC0hBg8FqGb2ZmZlaWOvoI6LHA9RGxXURURcQ2wAtkI5oFSToM+BxwZl7xw8CRkrpK2gQ4imx6vindgVclbUw2AmpmZmbWIXToEVCy6fYRDcpuBU4H/tnIMT8AtgKmZzPxTIiI8ySNAaanNn+MiFpJVU2c+1yyZ0VfJHvRqXtzwfbrXUmNn18xMzOzMtfhX0IqJ7lcLmpqakodhpmZmVmz/BKSmZmZmbUZTkDNzMzMrKicgJqZmZlZUTkBNTMzM7OicgJqZmZmZkXlBNTMzMzMiqqjfwe0vCyohWovx2lm9v/bu/dgu8ryjuPfXw9iiOEWoBaCECsqIpSAB5TrcJspCC3olAEHW6CXlKlTjZZS1A5GZmSYobXaqRTjJVBLo4VyCR1F7gS0XE5IMEGIykWhhJsohEsAw9M/9sqwOT1JDrnsnXXO9/PP3utd71rrOfuZc84z7/uuvaQxYeYz/Y6gb8bNCGiSm5L8/rC2GUnO71dMXTFM7GcMkiRJvTRuClBgDnDisLYTm/bVSjKwQSLqmAFYgEqSpHFjPBWglwLHJHkzQPOYzB2AiUn+J8ldSS5JMqnZ/1CSs5LcChzfbJ/T9B1KsneS7ye5P8lpzTFJcl6SxUkWJTmhaT+kGYG9NMl9SS5u+n68ieHGJDf24TORJEnquXGzBrSqfpnkDuBI4Eo6o5/XA58Fjqiq55P8HfAp4OzmsOVVdSBAknOBh6tqvyT/BFwIHABMAO4BLgA+DEwD9gS2Be5MMq85117Ae4FHgR8AB1TVPyf5FHBoVT01UtxJpgPTAQa22I6py2evp09EkiStykPnHt3vEMa08TQCCq+fhj8ReBDYDfhBkoXAycDOXf2/M+z4uc3rIuD2qlpWVU8Cy5NsBRwIzKmqFVX1OHAzsE9zzB1V9UhVvQosBKaOJuCqmlVVg1U1ODDRG5AkSVL7jZsR0MYVwBeT7A1sBiwArq2qj6yi//PDtl9qXl/ter9yexMgq7l2d/8VjL/PXpIkCRhnI6BV9RxwE/BNOqOhtwEHJNkFIMnEJO9ah0vMA05IMpBkO+Bg4I41HLMM2HwdrilJktQq43EUbg5wGXBiVT2Z5BRgzsqbk4C/B36ylue+HNgPuBso4IyqeizJrqs5ZhbwvSRLq+rQ1Z18jylbMuSaFEmS1HKpqn7HoFEaHBysoaGhfochSZK0RknmV9XgSPvG1RS8JEmS+s8CVJIkST1lASpJkqSesgCVJElST1mASpIkqacsQCVJktRT4/F7QNvr0QUw08dxSpIkYOYz/Y5grY2LEdAkv5Pk20nuT/LjJN9d1ROPkkxNsngDxTEzyekb4tySJEltMeYL0CSh84Sim6rqHVW1G/AZ4K3r6fyOIkuSJL0BY74ABQ4FXqmqC1Y2VNVC4NYk5yVZnGRRkhOGH5hkQpLZzf4FSQ5t2k9JckmSq4BrkkxKcn2Su5q+x3ad47NJliS5Dnh3V/u0JLcl+VGSy5NsvQE/A0mSpI3GeBi92x2YP0L7h4FpwJ7AtsCdSeYN6/MxgKrao3me+zVdU/f7Ab9XVU83o6Afqqpnk2wL3JZkLrA3cCKwF53P+q6uWP4N+OuqujnJ2cDngBnDg0wyHZgOMLDFdkxdPnstPgJJkjTWPNTvANbBeBgBXZUDgTlVtaKqHgduBvYZoc+3AKrqPuDnwMoC9Nqqerp5H+CcJD8CrgOm0JniPwi4vKpeqKpngbkASbYEtqqqm5vjLwIOHinIqppVVYNVNTgw0RuQJElS+42HAvQe4H0jtGcUx66uz/Nd708CtgPeV1XTgMeBCc2+GsV1JEmSxo3xMAV/A53Ryb+oqq8BJNkH+BVwQpKLgMl0RiD/ltcKR4B5dIrLG5qp952AJXSm1rttCTxRVa8060R37jr+wiTn0vms/wD4alU9k+RXSQ6qqluAP6YzArtae0zZkqFzj16Lj0CSJGnjMeYL0KqqJB8CvpTkTGA5nWUTM4BJwN10RinPqKrHkkztOvx84IIki4DfAKdU1UudG+tf52LgqiRDwELgvubadyX5TtP2c+CWrmNObs49EXgAOHU9/ciSJEkbtVQ5Q9wWg4ODNTQ01O8wJEmS1ijJ/KoaHGnfeFgDKkmSpI2IBagkSZJ6ygJUkiRJPWUBKkmSpJ6yAJUkSVJPjfmvYRpTHl0AM30akiRJWgczn+l3BI6Aro0kU5MsHtY2M8npSU5JssMoznFTkhG/mkCSJGksswBd/04B1liASpIkjVcWoOvfIHBxkoVJNktyVpI7kyxOMiuvf4zS8UnuSPKTJAf1K2BJkqRecg3o+jcEnF5VQwBJ/qWqzm7efws4Briq6btJVe2b5IPA54Ajhp8syXRgOsDAFtsxdfnsHvwIkiSpnx469+h+h7BBOQK6dlb1/NKR2g9NcnvzPPnDgPd27buseZ0PTB3xhFWzqmqwqgYHJnoDkiRJaj9HQNfOL4Gth7VNBh7sbkgyATgfGKyqh5PMBCZ0dXmpeV2BuZAkSeOEI6BroaqeA5YmORwgyWTgSOBWYBmwedN1ZbH5VJJJwB/1OlZJkqSNjaNua+9PgK8k+cdm+/NVdX+SC4ELkrwI7Ad8DVgEPATcuS4X3GPKlgyN8TUhkiRp7EvVqpYzamMzODhYQ0ND/Q5DkiRpjZLMr6oRv/PcKXhJkiT1lAWoJEmSesop+BZJsgxY0u84tM62BZ7qdxBaL8zl2GAexwbzuPHZuaq2G2mHNyG1y5JVraVQeyQZMo9jg7kcG8zj2GAe28UpeEmSJPWUBagkSZJ6ygK0XWb1OwCtF+Zx7DCXY4N5HBvMY4t4E5IkSZJ6yhFQSZIk9ZQFqCRJknrKArQlkhyZZEmSnyU5s9/xaHSSvC3JjUnuTXJPkk807ZOTXJvkp83r1v2OVWuWZCDJgiT/3Wybx5ZJslWSS5Pc1/xe7mce2yfJJ5u/qYuTzEkywTy2iwVoCyQZAL4CHAXsBnwkyW79jUqj9Bvgb6rqPcAHgI81uTsTuL6q3glc32xr4/cJ4N6ubfPYPl8Grq6qXYE96eTTPLZIkinAx4HBqtodGABOxDy2igVoO+wL/KyqHqiql4FvA8f2OSaNQlUtraq7mvfL6Pyzm0Infxc13S4CjutLgBq1JDsCRwNf72o2jy2SZAvgYOAbAFX1clX9GvPYRpsAmyXZBJgIPIp5bBUL0HaYAjzctf1I06YWSTIV2Au4HXhrVS2FTpEK/HYfQ9PofAk4A3i1q808tsvvAk8Cs5ulFF9P8hbMY6tU1f8C/wD8AlgKPFNV12AeW8UCtB0yQpvfn9UiSSYB/wXMqKpn+x2P3pgkxwBPVNX8fseidbIJsDfwr1W1F/A8TtO2TrO281jg7cAOwFuSfLS/UemNsgBth0eAt3Vt70hnukEtkORNdIrPi6vqsqb58STbN/u3B57oV3walQOAP0zyEJ0lMIcl+XfMY9s8AjxSVbc325fSKUjNY7scATxYVU9W1SvAZcD+mMdWsQBthzuBdyZ5e5JN6Sy2ntvnmDQKSUJnvdm9VfXFrl1zgZOb9ycDV/Y6No1eVX26qnasqql0fv9uqKqPYh5bpaoeAx5O8u6m6XDgx5jHtvkF8IEkE5u/sYfTWV9vHlvEJyG1RJIP0lmDNgB8s6q+0N+INBpJDgRuARbx2trBz9BZB/qfwE50/pgeX1VP9yVIvSFJDgFOr6pjkmyDeWyVJNPo3Ei2KfAAcCqdwRjz2CJJPg+cQOebRhYAfw5Mwjy2hgWoJEmSesopeEmSJPWUBagkSZJ6ygJUkiRJPWUBKkmSpJ6yAJUkSVJPWYBKUsskWZFkYZLFSS5JMnEV/X64nq53XJKzhrXNHLa9aZJ5zbO5JWm1LEAlqX1erKppVbU78DJwWvfOJAMAVbX/erreGcD5zbl3SPI94K+aIviTzbVeBq6n892MkrRaFqCS1G63ALskOSTJjUn+g86DD0jy3MpOSc5IsijJ3UnObdrekeTqJPOT3JJk1+EnT/Iu4KWqeqppmgHMp1OQ7gNc3dX9CuCk9f8jShprnCqRpJZqpruP4rUicF9g96p6cFi/o4DjgPdX1QtJJje7ZgGnVdVPk7yfTlF52LDLHADc1bX9MrAN8HTzHO57u/YtplOUStJqOQIqSe2zWZKFwBCdRw5+o2m/Y3jx2TgCmF1VLwBU1dNJJgH7A5c05/oqsP0Ix24PPNm1fR6d/x1/meT65tGkNOddAbycZPO1/9EkjQeOgEpS+7xYVdO6G5IAPL+K/gGGP3f5t4BfDz/PSNcCtly5UVXP0Ck+lwLfB65MslNVLW+6vBlY/v9PI0mvcQRUksa+a4A/XXm3fJLJVfUs8GCS45u2JNlzhGPvBXZZuZHkPUlW/u9YBLwKvKnZtw3wZDM1L0mrZAEqSWNcVV0NzAWGmun205tdJwF/luRu4B7g2BEOnwfslWaIlc6a0B8CpwK3A1+oqmXNvkOB726QH0LSmJKq4bMykiS9JsmXgauq6rqutplVNXNYv8uAT1fVkh6HKKllHAGVJK3JOcDwL7u/qXsjyabAFRafkkbDEVBJkiT1lCOgkiRJ6ikLUEmSJPWUBagkSZJ6ygJUkiRJPWUBKkmSpJ76Pyu+o3rlO50YAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# The next bit simply reorders the index by increasing average of weekday and weekend prices\n", + "# Compare the index order you get from\n", + "# state_price_means.index\n", + "# with\n", + "# state_price_means.mean(axis=1).sort_values(ascending=False).index\n", + "# See how this expression simply sits within the reindex()\n", + "(state_price_means.reindex(index=state_price_means.mean(axis=1)\n", + " .sort_values(ascending=False)\n", + " .index)\n", + " .plot(kind='barh', figsize=(10, 10), title='Average ticket price by State'))\n", + "plt.xlabel('Price ($)');" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "The figure above represents a dataframe with two columns, one for the average prices of each kind of ticket. This tells you how the average ticket price varies from state to state. But can you get more insight into the difference in the distributions between states?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### 2.6.3.5.2 Distribution of weekday and weekend price by state" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, you can transform the data into a single column for price with a new categorical column that represents the ticket type." + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [], + "source": [ + "#Code task 15#\n", + "#Use the pd.melt function, pass in the ski_data columns 'state', 'AdultWeekday', and 'Adultweekend' only,\n", + "#specify 'state' for `id_vars`\n", + "#gather the ticket prices from the 'Adultweekday' and 'AdultWeekend' columns using the `value_vars` argument,\n", + "#call the resultant price column 'Price' via the `value_name` argument,\n", + "#name the weekday/weekend indicator column 'Ticket' via the `var_name` argument\n", + "ticket_prices = pd.melt(ski_data[['state', 'AdultWeekday', 'AdultWeekend']], \n", + " id_vars= 'state', var_name='Ticket',\n", + " value_vars=['AdultWeekday', 'AdultWeekend'],value_name='Price' )\n", + "#var_name='state', value_name='Ticket'" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
stateTicketPrice
0AlaskaAdultWeekday65.0
1AlaskaAdultWeekday47.0
2AlaskaAdultWeekday30.0
3ArizonaAdultWeekday89.0
4ArizonaAdultWeekday74.0
\n", + "
" + ], + "text/plain": [ + " state Ticket Price\n", + "0 Alaska AdultWeekday 65.0\n", + "1 Alaska AdultWeekday 47.0\n", + "2 Alaska AdultWeekday 30.0\n", + "3 Arizona AdultWeekday 89.0\n", + "4 Arizona AdultWeekday 74.0" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ticket_prices.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is now in a format we can pass to [seaborn](https://seaborn.pydata.org/)'s [boxplot](https://seaborn.pydata.org/generated/seaborn.boxplot.html) function to create boxplots of the ticket price distributions for each ticket type for each state." + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtQAAAIlCAYAAAD1429MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACLH0lEQVR4nO3deXzcVb3/8denSaEpbVlSrFiBAgUEoRYoyKYIthIVWUS9Itq4cvFqW3D5eVW8FMQr170tKnKv2laxqCxqpUZaZS+CpdSWTYlYkIAsYSu0lCb5/P4430kn6WQm32UyS97Px6OPdOY7c3IymXy/nznncz7H3B0REREREUlmRKU7ICIiIiJSyxRQi4iIiIikoIBaRERERCQFBdQiIiIiIikooBYRERERSUEBtYiIiIhICo2V7kAa48eP90mTJlW6GyIiIiJS5+68886n3H3XQsdqOqCeNGkSq1atqnQ3RERERKTOmdlDAx1TyoeIiIiISAoKqEVEREREUlBALSIiIiKSQk3nUIuIiIjUgi1btvDII4/w0ksvVborUsKoUaN49atfzciRIwf9HAXUIiIiImX2yCOPMHbsWCZNmoSZVbo7MgB3p7Ozk0ceeYS99tpr0M9TyoeIiIhImb300ks0NzcrmK5yZkZzc3PsmQQF1CIiIiJDQMF0bUjye1JALSIiIjKMdXZ2MnXqVKZOncorX/lKJk6cyNSpUxkzZgz/8R//UfS5Y8aMGfT3ueGGG1i5cmXa7lYl5VCLiIiIDGPNzc2sWbMGgLlz5zJmzBg+85nPZP59brjhBsaMGcPRRx+deduVphFqEREREdnGDTfcwEknnQTACy+8wIc+9CEOPvhgpkyZwlVXXdXnsU899RRHHXUU1157LU8++SSnn346hx9+OIcffji33nor69ev59JLL+Xb3/42U6dO5eabb67Ej1Q2GqEWERERkaK+/OUvs+OOO7Ju3ToAnnnmmd5jjz/+OCeffDIXXXQRM2bM4H3vex/nnnsuxx57LA8//DAnnngi9913H2effXbZRr8rTQG1iIiIiBS1YsUKrrjiit7bO++8MxDqa7/5zW/mu9/9Lscdd1zvY++9997exz7//PNs2LBhaDs8xBRQi4iIiEhR7l6w+kVjYyOHHXYYv//973sD6p6eHm677TaampqGupsVoxxqERERESnqLW95C5dccknv7VzKh5nxox/9iPvvv5+LL7644GNzCx7Hjh1btyPVCqhrUGdnJ7Nnz6azszPRcREREZE4zjvvPJ555hkOOuggXve613H99df3HmtoaOCKK67g+uuv53vf+x7z589n1apVTJkyhQMPPJBLL70UgHe84x1cc801dbko0dy90n1IbNq0ab5q1apKd2PIfetb32Lp0qWcfPLJnHvuubGPi4iIyNC67777OOCAAyrdDRmkQr8vM7vT3acVerxGqGtMZ2cnbW1tuDttbW3bjEKXOi4iIiIi2VJAXWMWLVpET08PAN3d3SxevDjWcRERERHJlgLqGrNixQq6uroA6OrqYvny5bGOi4iIiEi2FFDXmOnTp9PYGKodNjY2MmPGjFjHRURERCRbCqhrTGtrKyNGhF9bQ0MDM2fOjHVcRERERLKlgLrGNDc309LSgpnR0tJCc3NzrOMiIiIiki0F1DWotbWVgw8+eMDR51LHRUREZHi65pprMDPuv//+gsff9KY3Uaok8dy5c/nGN74BwMKFC3n00UcB+PWvf82pp57a+7ivfvWrTJ48ufd2rqRvXAsXLuSTn/xkyceNGTMmdttZ0dbjNai5uZn58+cnPi4iIiKV9clPfZYnnno6s/ZeMX4XLvnW10s+bsmSJRx77LFcccUVzJ07N/X3XbhwIQcddBCvetWrOProoznrrLN6j912222MGzeOJ554gle84hWsXLmSY445JvX3rEZlC6jN7EfAScAT7n5QdN/Pgf2jh+wEPOvuU81sEnAf8Nfo2J/c/exy9U1ERESkkp546mn+PuG47Bp8/MaSD3nhhRe49dZbuf766zn55JOZO3cumzZt4kMf+hD33nsvBxxwAJs2bep9/JgxY3jhhRcAuPLKK/ntb3/LwoULe49feeWVrFq1ijPPPJOmpiZuu+02dtxxR9rb25k8eTIdHR2cfvrprFy5klNPPZWVK1dy0UUX8eSTT3L22Wfz8MMPA/Cd73yHY445hhdffJFZs2axbt06urq6mDt3Lqecckqfn+Haa6/loosuYunSpWzYsIH3ve99dHV10dLS0ufnPOWUU3jmmWfYsmULF110Eaeccgpf+tKXGD9+PHPmzAHgi1/8IhMmTGD27NmJX/acco5QLwQuAXoLIbv7v+X+b2bfBJ7Le/zf3X1qGfsjIiIiMmz96le/oqWlhf32249ddtmF1atXc8MNNzB69GjWrl3L2rVrOfTQQwfd3rve9S4uueQSvvGNbzBtWthA8Oijj2blypV0d3ez7777cuSRR/L73/+ek046ibVr13L44Yfz4Q9/mHPPPZdjjz2Whx9+mBNPPJH77ruPr3zlK5xwwgn86Ec/4tlnn+WII45g+vTpvd/vmmuu4Vvf+hbLli1j55135sMf/jAf//jHmTlzJt/97nd7Hzdq1CiuueYaxo0bx1NPPcWRRx7JySefzEc+8hHe+c53MmfOHHp6erjiiiu44447MnltyxZQu/tN0cjzNszMgPcAJ5Tr+4uIiIjIVkuWLOGcc84B4L3vfS9LlizhgQce6B2hnTJlClOmTEn1PY455pjegPqoo47iiCOO4MILL+Suu+5i//33Z9SoUaxYsYJ777239znPP/88GzZs4LrrruM3v/lNb372Sy+91DuKff3117Nq1Squu+46xo0bB8Ctt97KVVddBcAHPvABPve5zwHg7nzhC1/gpptuYsSIEXR0dPD4448zadIkmpubueuuu3j88cc55JBDMiveUKkc6jcAj7v7A3n37WVmdwHPA+e5+82FnmhmZwFnAeyxxx5l76iIiIhIrevs7OSPf/wjd999N2ZGd3c3ZsYhhxxCGOfcVv79L7300qC+z9FHH82CBQvo7u7mYx/7GGPHjuWll17ihhtu6M2f7unp4bbbbqOpqanPc92dq666iv3337/P/bfffjt77703Dz74IH/72996R8P79zHn8ssv58knn+TOO+9k5MiRTJo0qbf/H/3oR1m4cCH/+te/+PCHPzyon2kwKlXl4wxgSd7tx4A93P0Q4FPAz8xsXKEnuvtl7j7N3aftuuuuQ9BVERERkdp25ZVXMnPmTB566CHWr1/PP//5T/baay8OPfRQLr/8cgDuvvtu1q5d2/ucCRMmcN9999HT08M111xTsN2xY8eyYcOG3tsHHnggjz76KDfffDOHHHIIAFOnTuXSSy/l6KOPBuAtb3kLl1xySe9z1qxZA8CJJ57IggULcHcA7rrrrt7H7Lnnnlx99dXMnDmTe+65Bwij4VdccQVA788A8Nxzz/GKV7yCkSNHcv311/PQQw/1HjvttNNoa2vjz3/+MyeeeGLMV3FgQx5Qm1kj8E7g57n73H2zu3dG/78T+Duw31D3TURERKQeLVmyhNNOO63Pfaeffjrr16/nhRdeYMqUKXzta1/jiCOO6D1+8cUXc9JJJ3HCCSew2267FWz3gx/8IGeffTZTp05l06ZNmBmvf/3rGT9+PCNHjgTgqKOO4sEHH+wNqOfPn8+qVauYMmUKBx54IJdeeikAX/rSl9iyZQtTpkzhoIMO4ktf+lKf77X//vtz+eWX8+53v5u///3vzJs3j+9+97scfvjhPPfc1mV5Z555JqtWrWLatGlcfvnlvOY1r+k9tt1223H88cfznve8h4aGhhSvaF+W+xRQDlEO9W9zVT6i+1qAz7v7cXn37Qo87e7dZrY3cDNwsLsXrSczbdo0L1UrUURERKTS7rvvPg444IDe25Uqmzfc9fT0cOihh/LLX/6Sfffdd8DH9f99AZjZne4+rdDjy1k2bwnwJmC8mT0CnO/uPwTeS990D4A3AheaWRfQDZxdKpgWERERqVUKfofevffey0knncRpp51WNJhOopxVPs4Y4P4PFrjvKuCqcvVFRERERIa3Aw88kAcffLAsbWvrcRERERGRFBRQi4iIiIikoIBaRERERCQFBdQiIiIiIikooBYREREZJq655hrMjPvvv7/g8Te96U2UKkk8d+7c3u3BFy5cyKOPPgrAr3/9a0499dTex331q19l8uTJvbeXLl3KySefHLvPCxcu5JOf/GTs55UyadIknnrqqUzaqtTW4yIiIiLD1hc+/Umee+rxzNrbcfwE/vubl5R83JIlSzj22GO54oormDt3burvu3DhQg466CBe9apXcfTRR3PWWWf1HrvtttsYN24cTzzxBK94xStYuXJl7/bj9UYBtYiIiMgQe+6px/ncPoVHiZP4n7+XfswLL7zArbfeyvXXX8/JJ5/M3Llz2bRpEx/60Ie49957OeCAA9i0aVPv48eMGcMLL7wAhK3Lf/vb37Jw4cLe41deeSWrVq3izDPPpKmpidtuu40dd9yR9vZ2Jk+eTEdHB6effjorV67k1FNPZeXKlVx00UU8+eSTnH322Tz88MMAfOc73+GYY47hxRdfZNasWaxbt46uri7mzp3LKaec0udnuPbaa7noootYunQpq1ev5vzzz2fz5s3ss88+/PjHP2bMmDFMmjSJ1tZWli5dypYtW/jlL3/Ja17zGjo7OznjjDN48sknOeKII8hyc0OlfIiIiIgMA7/61a9oaWlhv/32Y5dddmH16tV8//vfZ/To0axdu5YvfvGL3HnnnYNu713velfv9t5r1qyhqamJo48+mpUrV/LXv/6VfffdlyOPPJKVK1fS1dXF2rVrOfzww5kzZw7nnnsuf/7zn7nqqqv46Ec/CsBXvvIVTjjhBP785z9z/fXX89nPfpYXX3yx9/tdc801XHzxxSxbtgyAiy66iBUrVrB69WqmTZvGt771rd7Hjh8/ntWrV/Pxj3+8Nz3lggsu4Nhjj+Wuu+7i5JNP7g3os6ARahEREZEBLFiwgPb2djo6OgCYOHEikydPZtasWb3Hb7zxxoLHqs2SJUs455xzAHjve9/LkiVLeOCBB5g9ezYAU6ZMYcqUKam+xzHHHMPKlSvp7u7mqKOO4ogjjuDCCy/krrvuYv/992fUqFGsWLGCe++9t/c5zz//PBs2bOC6667jN7/5TW8A/NJLL/UGvddffz2rVq3iuuuuY9y4cfz2t7/l3nvv7U0hefnllznqqKN623znO98JwGGHHcbVV18NwE033dT7/7e//e3svPPOqX7WfAqoRURERErIT4WIc6xadHZ28sc//pG7774bM6O7uxsz45BDDsHMCj4n//6XXnppUN/n6KOPZsGCBXR3d/Oxj32MsWPH8tJLL3HDDTf0Br89PT3cdtttNDU19Xmuu3PVVVex//7797n/9ttvZ++99+bBBx/kb3/7G9OmTcPdmTFjBkuWLCnYj+233x6AhoYGurq6Cv5MWVLKh4iIiMgAZs2axbx585g8eTKTJ09m3rx5fUagZ82aNeCxanLllVcyc+ZMHnroIdavX88///lP9tprLw499FAuv/xyAO6++27Wrl3b+5wJEyZw33330dPTwzXXXFOw3bFjx7Jhw4be2wceeCCPPvooN998M4cccggAU6dO5dJLL+Xoo48G4C1veQuXXLJ1AeWaNWsAOPHEE1mwYEFvbvNdd93V+5g999yTq6++mpkzZ3LPPfdw5JFHcuutt9Le3g7Axo0b+dvf/lb0NXjjG9/Y+7P+7ne/45lnnin9wg2SAmoRERGROrdkyRJOO+20PvedfvrprF+/nhdeeIEpU6bwta99jSOOOKL3+MUXX8xJJ53ECSecwG677Vaw3Q9+8IOcffbZTJ06lU2bNmFmvP71r2f8+PGMHDkSgKOOOooHH3ywN6CeP38+q1atYsqUKRx44IFceumlAHzpS19iy5YtTJkyhYMOOogvfelLfb7X/vvvz+WXX8673/1unn/+eRYuXMgZZ5zBlClTOPLIIwcsBZhz/vnnc9NNN3HooYdy3XXXsccee8R7EYuwLFc4DrVp06Z5qVqJIiIiImnNmTMHgHnz5sU6lnPfffdxwAEH9N6uVNk8GZz+vy8AM7vT3acVerxyqEVERESGmILf+qKUDxERERGRFBRQi4iIiIikoIBaREREZAjU8rq14STJ70kBtYiIiEiZjRo1is7OTgXVVc7d6ezsZNSoUbGep0WJIiIiImX26le/mkceeYQnn3yy0l2REkaNGsWrX/3qWM9RQC0iIiJSZiNHjmSvvfaqdDekTJTyISIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJQQG1iIiIiEgKCqhFRERERFJQQC0iIiIikoIC6irR2dnJ7Nmz6ezsrHRXRERERCQGBdRVYtGiRaxbt47FixdXuisiIiIiEoMC6irQ2dlJW1sb7k5bW1vJUepSo9ka7RYREREZOgqoq8CiRYvo6ekBoLu7u+QodanRbI12i4iIiAwdBdRVYMWKFXR1dQHQ1dXF8uXLB3xsqdHsuKPdIiIiIpKOAuoqMH36dBobGwFobGxkxowZAz621Gh23NFuEREREUlHAXUVaG1tZcSI8KtoaGhg5syZAz621Gh2nNFuEREREUlPAXUVaG5upqWlBTOjpaWF5ubmAR9bajQ7zmi3iIiIiKSngLpKtLa2cvDBBxcdnc49rthodpzRbhERERFJTwF1lWhubmb+/PlFR6dzjys2mh1ntFtERERE0musdAckvtbWVtavXz/g6HOp4yIiIiKSHQXUNSg3mp30uIiIiIhkRykfIiIiIiIpKKAWEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJoWwBtZn9yMyeMLO78+6ba2YdZrYm+ve2vGOfN7N2M/urmZ1Yrn6JiIiIiGSpnCPUC4GWAvd/292nRv+WAZjZgcB7gddGz/memTWUsW8iIiIiIpkoW0Dt7jcBTw/y4acAV7j7Znf/B9AOHFGuvlVCZ2cns2fPprOzs9JdEREREZEMVSKH+pNmtjZKCdk5um8i8M+8xzwS3Vc3Fi1axLp161i8eHGluyIiIiIiGRrqgPr7wD7AVOAx4JvR/VbgsV6oATM7y8xWmdmqJ598siydzFpnZydtbW24O21tbRqlFhEREakjQxpQu/vj7t7t7j3A/7I1reMRYPe8h74aeHSANi5z92nuPm3XXXctb4czsmjRInp6egDo7u7WKLWIiIhIHRnSgNrMdsu7eRqQqwDyG+C9Zra9me0F7AvcMZR9K6cVK1bQ1dUFQFdXF8uXL69wj0REREQkK+Usm7cEuA3Y38weMbOPAF8zs3VmthY4HjgXwN3vAX4B3Au0AZ9w9+5y9W2oTZ8+ncbGRgAaGxuZMWNGhXskIiIiIllpLFfD7n5Ggbt/WOTxXwG+Uq7+VFJrayttbW0ANDQ0MHPmzAr3SERERESyop0Sh0BzczMtLS2YGS0tLTQ3N1e6SyIiIiKSkbKNUEtfra2trF+/XqPTIiIiInVGAfUQaW5uZv78+ZXuhoiIiIhkTCkfIiIiIiIpKKAWEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJQQG1iIiIiEgKCqhFRERERFJQQC0iIiIikoICahERERGRFBRQ16DOzk5mz55NZ2dnouMiIiIikh0F1DVo0aJFrFu3jsWLFyc6LiIiIiLZUUBdYzo7O2lra8PdaWtr22YUutRxEREREcmWAuoas2jRInp6egDo7u7eZhS61HERERERyZYC6hqzYsUKurq6AOjq6mL58uWxjouIiIhIthRQ15jp06fT2NgIQGNjIzNmzIh1XERERESypYC6xrS2tjJiRPi1NTQ0MHPmzFjHRURERCRbCqhrTHNzMy0tLZgZLS0tNDc3xzouIiIiItlqrHQHJL7W1lbWr18/4OhzqeMiIiIikh0F1DWoubmZ+fPnJz4uIiIiItlRyoeIiIiISAoKqEVEREREUlBALSIiIiKSgnKoRUSqxIIFC2hvb6ejowOAiRMnMnnyZGbNmjWo4yIiUhkKqEVEqsymTZtSHRcRkaGlgFpEpErkRprnzJkDwLx582IdFxGRylAOtYiIiIhICgqoRURERERSUEAtIiIiIpKCAmoRERERkRQUUIuIiIiIpKCAWkREREQkBQXUIiIiIiIpKKAWEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJQQG1iIiIiEgKCqhFRERERFIoW0BtZj8ysyfM7O68+75uZveb2Vozu8bMdorun2Rmm8xsTfTv0nL1q1p1dnYye/ZsOjs7K90VEREREYmhnCPUC4GWfvctBw5y9ynA34DP5x37u7tPjf6dXcZ+VaVFixaxbt06Fi9eXOmuiIiIiEgMZQuo3f0m4Ol+913n7l3RzT8Bry7X968lnZ2dtLW14e60tbVplFpERESkhjRW8Ht/GPh53u29zOwu4HngPHe/uTLdytaCBQtob2+no6MDgIkTJzJ58mRmzZrV+5hFixbR09MDQHd3N4sXL+bcc8+tSH9FREREJJ6KLEo0sy8CXcDl0V2PAXu4+yHAp4Cfmdm4AZ57lpmtMrNVTz755NB0OAObNm1i06ZNBY+tWLGCrq4wcN/V1cXy5cuHsmsiIiIiksKQj1CbWStwEvBmd3cAd98MbI7+f6eZ/R3YD1jV//nufhlwGcC0adN8qPqdVG4kes6cOQDMmzdvm8dMnz6dZcuW0dXVRWNjIzNmzBjSPoqIiIhIckM6Qm1mLcDngJPdfWPe/buaWUP0/72BfYEHh7JvldTa2sqIEeFX0dDQwMyZMyvcIxEREREZrHKWzVsC3Absb2aPmNlHgEuAscDyfuXx3gisNbO/AFcCZ7v70wUbrkPNzc20tLRgZrS0tNDc3FzpLomIiIjIIJUt5cPdzyhw9w8HeOxVwFXl6kstaG1tZf369RqdFhEREakxlazyIXmam5uZP39+pbshIiIiIjFp63ERERERkRQUUIuIiIiIpKCAWkREREQkBQXUIiIiIiIpKKAWERERGULt7e28/e1vp729PdFxqT4KqEVERESG0EUXXcSLL77IRRddlOi4VB8F1CIiIiJDpL29nfXr1wOwfv36bUahSx2X6qSAWkRERGSI9B91jntbqpMCahEREZEhkht9TnpbqpMCahEREZEhMmnSpFS3pTopoBYREREZIuedd16q21KdFFCLiIiIDJHJkyf3jjpPmjSJyZMnxzou1UkBtYiIiMgQOu+889hhhx0GHH0udVyqT2OlOyAiIiJSaxYsWNBb0i73dc6cOb3HJ0+ezKxZswo+d/LkyVx77bUDtl3quFQfBdQiIiIiMbW3t/PAPXexx5huttsSJvw3P7QKgIdfaKhk16QCFFCLiIiIJLDHmG6+cOjz29z/36vHVaA3UkkKqEVERET6yU/pgG3TOjo6OhhfkZ5JNVJALSIiItJPe3s7a+6+j+7RuwAw4mUH4M4HH6dh49OMGTUSRlayh1JNFFCLiIiIFNA9ehc2veZt29zfdP8y6NlQgR5JtVLZPBERERGRFBRQi4iIiIikoIBaRERERCQFBdQiIiIiIikooBYRERERSUEBtYiIiIhICgqoRURERERSUEAtIiIiIpKCAmoRERERkRQUUIuIiIiIpKCtx0VEZEgtWLCA9vZ2Ojo6ADjuuOOYNWtWwWMTJ05k8uTJvcdFRKqRAmoREamITZs2JTomIlJtFFCLiMiQyo02z5kzp8/tQsfmzZs3xL0TEYlPOdQiIiIiIikooBYRERERSUEpHyIiVS63UC8n9/9cWgSghXsiIhWkgFpEpMq1t7fzwD13sceYbgC22xImFzc/tAqAh19oqFjfREREAbWISE3YY0w3Xzj0+YLH/nv1uCHujYiI5FMOtYiIiIhICgqoRURERERSUEAtIiIiIpKCAmoRERERkRS0KFGkAnJl0Do6OgCYOHFin7JnpY6LiIhI9YgVUJvZDsBL7t5dpv6IDCubNm1KdVxEREQqr2hAbWYjgPcCZwKHA5uB7c3sSWAZcJm7P1D2XorUmdxIc25jjnnz5sU6LiIiItWjVA719cA+wOeBV7r77u7+CuANwJ+Ai83s/WXuo4iIiIhI1SqV8jHd3bf0v9PdnwauAq4ys5Fl6ZmIiIiISA0oOkJdKJg2s+2iXOoBHyMiIiIiMlyULJtnZnPMbP/o/8cB/wQeMLP/KHfnRERERESq3WDqULcC7dH/zwNOBvYFPl6uTomIiIiI1IpSVT7OB14FfNHMtgOmAicCLcBYM/sv4AZ3v6ncHRURERERqUalcqgvAFYTAu9dgKvc/ULgy8Bj7n7hQMG0mf3IzJ4ws7vz7tvFzJab2QPR153zjn3ezNrN7K9mdmIWP5yIiIiISLkNJuXjI8D2QCfw2ei+/YD/K/G8hYSR7Hz/CfzB3fcF/hDdxswOJNS7fm30nO+ZWcMg+iYiIiIiUlEld0p098eAz/W7737g/hLPu8nMJvW7+xTgTdH/FwE3RG2fAlzh7puBf5hZO3AEcFvJn0BEpMbltprPyf0/t7FPe3s7u6tAqYhI1So6Qm1m55nZLkWOn2BmJ8X4fhOiAD0XqL8iun8ioXpIziPRfSIida+9vZ01d9/HnQ8+zp0PPs6Gl50NL3vv7Rde3FjpLkoV6OzsZPbs2XR2diY6LiLlU2qEeh2w1MxeIuRSPwmMIlT5mAqsAP47g35Ygfu84APNzgLOAthjjz0y+NYiIpXXPXoXNr3mbQWPjVn9E+Dloe2QVJ1Fixaxbt06Fi9ezLnnnhv7uIiUT6lFib9292OAs4F7gAbgeeCnwBHufq67Pxnj+z1uZrsBRF+fiO5/BNg973GvBh4doE+Xufs0d5+26667xvjWIlKNNKomUlpnZydtbW24O21tbdv8vZQ6LiLlVTKHGsDdHwAeyOD7/YZQ1/ri6Ouv8+7/mZl9i1Cmb1/gjgy+n4hUOY2qVUYub7ujowOAiRMnMnnyZGbNmlXhnkkhixYtoqenB4Du7u5t/l5KHRcpptT5QOeL0gZT5SMRM1tCWFS4v5k9YmYfIQTSM8zsAWBGdBt3vwf4BXAv0AZ8wt27y9U3EakOGlWrvE2bNrFp06ZKd0NKWLFiBV1dXQB0dXWxfPnyWMdFBqPU+UDni4ENaoQ6CXc/Y4BDbx7g8V8BvlKu/ohI9dGoWuXkRpZylUTmzZtXye5ICdOnT2fZsmV0dXXR2NjIjBkzYh0XKabU+UDni9LKNkItIlKKRtVEBqe1tZURI8Ilu6GhgZkzZ8Y6LiLlNaiA2sz2M7M/5HY9NLMpZnZeebsmIvVu+vTpNDaGiTKNqkka9b64tbm5mZaWFsyMlpYWmpubYx0XkfIa7Aj1/wKfB7YAuPtaws6GIiKJaVRNspK/uLVetba2cvDBBw/4d1LquIiUz2AD6tHu3r/qRlfWnRGR4UWjapKF4bK4tbm5mfnz5w/4d1LquIiUz2AXJT5lZvsQbbZiZu8CHitbr0Rk2GhtbWX9+vUaVZPEBlrcqlJfIjJUBjtC/QngB8BrzKwDOAf4eLk6JSLDh0bVJK1Si1tV6ktEym2wG7s8CEw3sx2AEe6+obzdEhERGZyBSsap1JeIDJXBVvn4bzPbyd1fdPcNZrazmV1U7s6JiIiUosWtIlJpg035eKu7P5u74e7PAG8rS49ERERi0OJWEam0wS5KbDCz7d19M4CZNQHbl69bIiIig6fFrSJSSYMNqH8K/MHMfkyo9PFhYFHZeiUiIhJDbnGriEglDCrlw92/BnwFOAB4LfDl6D4RERERkbKphZ1QB5tDjbv/zt0/4+6fdvffl7NTIiIiIiJQGzuhFg2ozeyW6OsGM3s+798GM3t+aLooIiIiIsNRreyEWjSH2t2Pjb6OHZruiIiIiEi9iruD6UA7oSZpq5xKLko0sxHAWnc/aAj6IyIiZZS7AOXk/p/b/ATQ9twiUnaD3b200E6ouYA6bls5nZ2dXHDBBZx//vnblNksdqyYkgG1u/eY2V/MbA93fzhWj0VEpKq0t7fzwD13sceYbgC22xIy/zY/tAqAh19oqFjfRIa7/iOuxx13XN19uI27g+lAO6EmaSsnPye7f3Be7Fgxgy2btxtwj5ndAbyYu9PdTx70dxIRkaqwx5huvnBo4WUw/7163BD3RkTyA+lNmzb1jrjeeOONtLe3D+tZo9bWVtra2oBsdkLtn5M9c+bM3pHoYsdKGWyVjwuAk4ALgW/m/RMRERGRFHIzR+O7HmP3kc+yY+MWdmzcwviux3jgnrv6pGkNN1nvhFooJ3swx0opOkJtZqOAs4HJwDrgh+7eFbfzIiIiIjKwgWaONGuU7U6oxXKyB5OvPZBSI9SLgGmEYPqtaFRaRERERIZQbifUtKPTEHKyGxvDeHL/nOxix0oplUN9oLsfDGBmPwTuiNft2lSqDEslyrT0z6/KaWpq6vO4/itdm5qaKlpGRkRERIKB4gcZOsVystPka5cKqLfk/uPuXWYWo8u1r1QZlrhlWtJob29nzd334SMasZ7eXwsbXnZsyyZ2aOxm+xFOT3ff31H3lud54NknhqyfIiIi0tdAiw43bdrUe9/uIyvcyWEil5O9dOnSbXKyix0rpVRA/bq8HRENaIpuG+DuXpeJPaXKsCQt05JW9+hd2PSat21z/5jVP2GPMS9r1b6IiGQiaS1eKSw3KNY9ehcYMZYRDQ7AcyPG8txmaHhxI+xU2T6WWzXVwC+Wk500X7vUTokqSCoiIjLMJK3FKwMbaFAMwsAYvDy0HRpi1VQDP5eTHfdYMYOtQy0iIiLDQJpavCLF1HMN/MHWoRYREZFhIE0tXpHhSiPUMVRT/o+IiEg5pKnFW086Ojpo2PgcTfcv2+ZYw8ZONvZ08dCIhoIjqw9taGCHqJKHDA8KqGOopvwfERGRcpg+fTrLli2jq6srdi1ekeFKAXVM9Zz/IyIikqYWbz2ZOHEi/9rcWHAhYdP9yxjTs4HdRz474O6G20+cOBTdlCoxbALqwWzGUiqlo729XXUiRTJSjg2SVOprq+GygUQlNtqqd2lq8YoMV8MmoM4pthlLnzqRwIiXQ53IOx98HBgedSJFhlqWGySp1Ne2hnIDqkoaLj/nUElai1dkuBo2AfVgN2MZ7nUiRYZK1hsk1XWpr55uHtpQePETFF4ANdDrm7+Iuh5UaqOtepe0Fq/IcDVsAupKyE8hGagiSO6YpitFiis1tV+o1JdGqUVEZCgooI4j5ihRfgrJNukjG58GtgbVmq4UGZyB/lbqutTXiAb2HLu56IJoLYASEakcBdRlNlAKyQ5rruizADJfe3s7c+bM0Ui1SJ5SU/sq9SUiIpWigDqODEeJrGcLvnlzbw1r1bQWSUelvkREpFK09XgF5Wpaf+HQ55l37LPMO/bZ3tu5zWNEZHBypb7MrCKlvjo7O5k9ezadnZ2JjouISO3SCLWI1I1KlvoqVbJPJf1EpNaU2p8DUHpqRAF1no6ODho2PkfT/csKP6C7i8c3VmZQv2jfurfQ/lxjrJJaIvWoUqW+SpXsq6aSfh0dHbwYswSfiAxP7e3tPHDPXb2z5kpPHZgCaslEsZJm2sls8KphNKD/7+u4447r/X76XRZWqmSfSvqJSK3KpacWMtAH8+FIAXWeiRMn8q/NjUU3dtnc0937BsqNVk8YHS6UD7/QwL4V6NuY1T9h8tiNVVFSq1j5P5UGLK2aRgP0uxy8UiX7qqmk38SJE9nc9VhVnC9EROqFAuoYfMRIbLvt2H7PUDv65Wj0MHd7X7bWlR5uipU0005m8VR6NKD/7yt/9Fm/y8JKleyr5ZJ+CxYsoK2tjY0bN+LuvfebGQ0N4QNed3d3n2O546NHj6alpWXYz2CIlE4pHTh1U2lYtUEBdQw9o8Yxee8J22zhq6BCZHgrVbJPJf1EROqbAmoRkZRyJfuWLl1asGRfqePVvCB61qxZGmEWSWkwKaUDpW7WSxpWvS+IVkAtUqcGmqoHTceXQ6mSfUNZ0i9/cWv/ha3t7e3sPrLsXSjZr1xfIPQtf6Fr/2M5WgArItVKAbWISAZKlewrdnwwo1cTRr886L60t7ez5u776B69CyNeDh+m7nzwcQAaXtwIOw26qUzl9wvo07eGDZ3s0NjN5q7HAJXnEqk39b4gWgF1ArlRlvwRFI2cSLWphql6ldmrnO7RuwxYFQgGH5xnrVi/9hjzsspziUhNUkDdT8PGp3vzGEe8FE7sPaPG9R6DCb2PbWpqGvL+idQildkTEZF6poA6T/+Sd+3tG8L9e+eC6AkaXROJQWX2RERkOFBAnad/oKwgQEREhhOlaQ0vpXbnreQi5lqjgLpSerp5qI7Lx4hI5RQtw1fBEnxSO5SmNTwUWygMlV3EXGuGPKA2s/2Bn+fdtTfwX4Rf2ceAJ6P7v+DuAxRlFRERkawpTatyHn5h6yBb7kPvhNE9PPxCA/uW8fsOtFAYKr+IuZYMeUDt7n8FpgKYWQPQAVwDfAj4trt/Y6j7VBEjGthz7Oa6LR8jIpVTrAxf3BJ8IlJ+PmIktt12bL9nWMv1cpR6sf2ek9mXbdd4SfWpdMrHm4G/u/tDZlbhroiIiIgMvZ5R45i894TeGQHNENSeSgfU7wWW5N3+pJnNBFYBn3b3ZyrTLRERkb4WLFjAjTfeCGixnoj0VbGVKWa2HXAy8Mvoru8D+xDSQR4DvjnA884ys1VmturJJ58s9BAREZGy2LRpkxbsicg2KjlC/VZgtbs/DpD7CmBm/wv8ttCT3P0y4DKAadOmeTk6pp0QRUSyV7z6yBban2us6spHs2bN6r0uaCpeRPJVsnbSGeSle5jZbnnHTgPuHvIe9dPU1KTdEEVERESkqIqMUJvZaGAG8O95d3/NzKYCDqzvd2xIaSRaRCR7paqPTB67UZWPpG41bHy6d3ZmxEvhfd4zalzvMZiwzQz5ggULFJPUiIoE1O6+EWjud98HKtEXERERkXLqX/auvX1DuH/vCdE9E/o8RrPjtafSVT5ERERE6lr/UWaVxas/CqjLSNv/ioiIyHCSS1vpiBYR50pM1jsF1CIiIiKSqeFWXlIBdRllvf1vbkFD/8UMdHfx8AsNveWmciPfE0b3APDwCw3sm/SHEBERERmkXHpL/7SWOXPm1HWsooC6RuRPl/RfzNDR0QXQuwL+5Wh18PZ7hufsy7YLIkRERESylEv3APrs5QEhDXb0Tq+o21hFAXWNyF/QUGoxgxY7iIhIHPmBEGwbDAHa4ExKam9vZ83d99E9ehdGvBz23rvzwbBvX8PG55l60AF9RqyhfmIVBdSSSqmTsE7AIiLpDLTIK3duLXV8MNrb23ngnrvYY0w3ANttCdPxmx9aBYTpeJHB6B69S8FU14IFGuqIAmpJJf/TKNDnE2koVC8iUtuKTWPD0A0clFrklXYR2B5juoturCMiA6v7gFojqOU3XD+Nikj1yjIIzh+9rcTI7UCLvAZ7PN9wLWlWLfrvhDhnzhzFIXWi7gPqYtNYmsIqv46Ojt6TvHLyRGSoZB0EDzR6W6sjt8OtpFm10U6I9afuA2qovxNhLdm0aVNFR3ZEZPjSuX9bxUqaSfkNxQDSggULaGtrY+PGjbh7n2Nmxjvf+c6KDmTV6yj9sAiopbJ0URMREZF89TZKr4BaREREpE7MmjWrqkd7q7lvaSigFhFJYShKmomISHVTQF1B9bwFp8hwU+6SZlI5HR0dvLihoWCa2kMbGtgh+rAkIsOXAuoK8REjse22691ys9624JTCSpVxbG9vZ/eRFelaUdpFbWBZljQTEZHapIC6QnpGjWPy3hPqdgtOKazYRjgADS9uhJ0q1buBaRc1Gc4mTpzI5q7HBlxcvf3EiRXolYhUEwXUIkNsoI1wAMas/gnw8tB2aJC0i5qIiEhhdRNQa/enbGkhlYhIZZVKtco/Pxc6HuecXSxPHOonV3zBggVcffXVBeszjx49mpaWFl3nJJG6CahztPAnW3o9RUS2LiIfygXkJVPENnSyQ2M3m7seA7QTsAwf1biup24Cau3+lC0tpBIRCXKznR0dHTzX9TQAL29poqmpiX1fW97Z0FIpYnuMeTmTjbOK5Ynn2quHXPFqr9Esg1ON63rqJqAWEREph/ya4jfeeCOgNDiRSqu2dT0KqEVERAahlkc3a7Vkp9SWjo4OGjY+R9P9y7Y51rCxk46Orgr0amgooBaRIZd/ca+G3DeRelerJTtFaoUCahEZcvn5b9WQ+yYyHNRqyU6pHRMnTuRfmxsLvs+a7l/GxIkTKtCroaGAehjrXxrvuOOOA6i6lbNSnwbKf1NNaxGRoVEsRQOA7i20P9dY9+UUs6CAWvqUxqvGlbMikq1cCThgSMvASXXT+0IkOQXUw1j/0nizZs1izpw5VbdyVkSy4yNGYtttx/Z7hlJvL0ezULnb+4I2xRqG9L4YnoqlaEBIBZo8dmPdl1PMggJqEZFhpGfUOCbvPWGbWv2qNT+86X0hks6ISndARERERKSWaYR6GCpWj/See+5hpDdoAYLUHG26IZJe7vqQf13Q39LAKrEl/XBT6NxejRRQD0PF6pE2dHUxUusOpUblL7CV+lZqo5KOjg7GV6Rn9aGpqanSXah6TU1NTJxc/znn1bBYtRbO7Qqoh6mB6pGOWf0T9tQChJqxYMEC2tra2LhxI+7ee7+ZMXr0aFpaWobNyNKsWbN6gyrlfda/ogMDG59mpPXw4gCzbbUy05ampFnSn3G4nC+yMHHixIrmnPcvfVuOmblqWKxa6NyeX8p3MPJfq/zgvKmpqc+od5rXUwG1iNQ07bo4fA00MNB0/zJGbnqqAj0SGXrlHL2tl8WquQ/gPqIR69nSe/+Gl50nn7kP2PrBIOnrqYBapIbNmjVr2AeL2nVRCtl+++3ZfeSmATcPqoWZtjQlzWrlZ5Tk+pe+rbUgd6gV+wAO6V9PBdQiUvO066JI7Su2sHgo0htE0lBALSJSBRo2Pt07UjLipfDhoGdU9IGgu6sqFgaJlFup6fZaWJwmw5MCakml2KKZho2dbDaHkRXomEgN6b+op719Q7h/7wkAdHR0AfRO4ddzRQEZvootLFZ6g1Q7BdQiUlJHRwcvblB98nyDKdsGYWq60PH86er+09alggYFFSIi2Rjx0vO0t2/oPa8mXdxe8wF1qYtae3s7u9fRCGn+z9u/4H4lCvIXWzTTdP8yxvRsADRFJ/WnWNk2gIYNnezQ2M3mrscA+iyY1GJJEZHiilVwyjK2s54t+ObNvYvZky5ur/mAuuRF7cWNsFOlelcepQruqyC/ZG3ixIls7npM9cn7GWjVOIQKDHuMeVmLJUVEEsiP78od2w20sB0Gf76u+YAaSl/U4OWh7VAZFSuTptXOIiIiUi+KbUJXbbFdXQTU1Sy3cr//qv2GjU8DEyrYs4E9/EIDc27ZiZe6rc/9oxqczT1W8WoC/csnHXfccfowUceGW1qXSDmU2nWxYWNn7+LXoVZsar/UWgQYfps3lTonQmVfk1qMe7KggLqM8lfd91+1DxOqclV+bpvRhqYmRvQrT9TQ1MS+eVt0DsbmzZt56KXybP+r8knDw3BM6xIZTopO7RdZiwDDc/OmkufEjU9XrG+1GPdkRQF1GeV/OqyVVfn9txmtRv3LJw2nkYnhajildYmUQ6ldF5vuX8bEiZUbPSw2tT/QWgQYvusRip0TB5qFGApDFvf0dPNQlVWeUkAtZVUP2/+KiIiIFKOAWkREpEI6Ozu54IILOP/882lubq50d0Rqw4gG9hy7uaoqT9V/QF1kWmA4bkYhIiLVY9GiRaxbt47Fixdz7rnnVro7IpJQ/QfUIjLkBrOL4PiK9EykenR2dtLW1oa709bWxsyZMzVKLVKj6j+gLjItoBze+te/xN7EqEpJ/90lBzo+5KpwoUUSxVahN2x8mjGjRoJK3ckwt2jRInp6egDo7u7WKLXUhUrs2lwN6j+gFqF0iT2V4MveQKvQm+5fBj0bKtAjkeqyYsUKurpC7eeuri6WL18+LAPqojWyu7fQ/lxjzQ8yDEfDbdfmigTUZrYe2AB0A13uPs3MdgF+DkwC1gPvcfdnKtE/qR/9S+z1L99T6viQq8KFFlKbhuvmCrVk+vTpLFu2jK6uLhobG5kxY0aluyQ1oJo36YHhW8q2kiPUx7v7U3m3/xP4g7tfbGb/Gd3+XGW6JiJSu4bz5gq1pLW1lba2NgAaGhqYOXNmhXtUGcVqZI9Z/RMmj92oQQapetWU8nEK8Kbo/4uAG1BALWVSatHccMj3kvpVi5tKDUfNzc20tLSwdOlSWlpatCBRBqXaN+kZrioVUDtwnZk58AN3vwyY4O6PAbj7Y2b2igr1TYaB9vZ2HrjnLvYY0w303c52OG5lKyKV0drayvr164dkdDqXBgQoFShD+QM0w2UBnmyrUgH1Me7+aBQ0Lzez+wf7RDM7CzgLYI899ihX/2QY2GNM94DVX0REhkJzczPz588v+/fpn+ajVKBs1fICvGr9oFV8sWoXj28cMfSdKqIiAbW7Pxp9fcLMrgGOAB43s92i0endgCcGeO5lwGUA06ZN86Hqs4gMXrETYcPGTjb2dPHQiMptuBS3nOJxxx2nEaeMDHjx7u7i4Re2vidyF8sJo0NZuYdfaGDfvHZKvcc2m6s0Y57+71+lAmVn1qxZNXt+GC4ftIaiksyQB9RmtgMwwt03RP9/C3Ah8BugFbg4+vrroe6b1I9SOdL33HMPI107aA53/csl5gfSmzZt6j1+44030t7erqnclIpdvHNVCXILzF6O/ma33zM8Z98Czxcpt4E+ANZLikw1f9AqtVh1wuiXK9CrgVVihHoCcI2Z5b7/z9y9zcz+DPzCzD4CPAy8uwJ9kzpRbGMRgIauLkYqVbpsip0Im+5fxpieDew+8tmKbbg0ULnEOXPmbM2tHwmPR7n147se44F7Ck6aSQxxLt6lLuyDeY+B6svXioHKPMaduchS8dHb+hi5HS5KBefb2ebe2/3fY2bh+aUMeUDt7g8Crytwfyfw5qHuj9SvgTYWgfAHtOcApZiGaxmmYqP67e3t7D4Mps87OjrwvESy3AkVwJ3eFJDcY4vVgi02jahZEJGtipV5rOTMRTWP3kp8A6ab9XRjo8f2vqeSvseqqWyeSFEqdVdeRbcLf3Ej7FTBzhVTZLv2JIHr5m7joQ1h+mJLjwEwcoSzudvYIX1vRaSfOGUeFdRKEoOZbUi70VvNB9SlR4kquxK01J72w3XP+yRU6q78BhrVH7P6J0B15auVw3HHHdcnh7onyqHeYedd2C9auJhTqhZssQ0phussiIhkY6grc9R6rDIUsw01H1DXilIldWq55M5QyrLU3UB5eeXMyZMyKLJde9zAVVU+RKTaVbIyh2KVgdV8QD2YUaJKrgQtdRHWRboyfMRIbLvtCuZMJc3JK1WKrdZVamFQlkqlDYFSh+pJ7j1bq+/XwSjXwEBnZycXXHAB559/vnZwLIM0r28lcrt1Tiyt5gNqkSR6Ro1j8t4T+lR3gGxOSP1LsdWDYh9AoHZKmpWs/rLx6Yr1TbLV1NTExMm1/X4tpRwDAzmLFi1i3bp1LF68mHPPPTeL7koevb71RwG1SEbSLmioZuX8ADLUilV/GXAthtSciRMn1sX7tZhy/V12dnbS1taGu/O73/2OmTNnapQ6Q/mvb1tbm17fhKpt1lQB9TBUaoexXJmiWlZqsWru56z1hRa1bDhMx1czvfe3Ve9pW4O1aNEitmzZAsCWLVuGbBQ1PyWrnhfwL1q0iJ6ecL7r7u7WKHUC1ThrqoBaBC20GGpxpuOrvZJPrdN7f1v1mLYVx/Lly/GoILu7c9111w1ZwDccFvCvWLGCrq4wcNXV1cXy5csVUMdUjbOmCqiHoVI7jE2cGK/cTtGtWUeNrMhIZKnFqrmfsxZHN+pB1tPxG7aMqMhod7HSVcV2eKuGUXi997c1mLStUovJ+m9fny8XDD777LN0d3f3Bq0AZsbo0aNpaWmp+O9mwoQJrF+/vs/toTBr1qwBf/ZKvyZZmj59OsuWLaOrq4vGxkZmzJhR6S5JBoZFQF3NF7VaV6pY+osvvsgOO1TPlIzUnlIfjnZYcwXbb2dsv+fkIX2PlSpdVWyHN733a1epxWS5ha8+ohHr2dLn2IaXHet6iQbbtt384LrSHn/88aK3JZ3W1lba2toAaGhoYObMmRXukWSh7gPqcq6CHg5KjcbEKd9TDVMyUn/yp/6G8j0Wt3SV3v+1b7CLyUotfJ0avV87Ozs544wzePnll9l+++1ZvHhxVSxOmzFjBkuXLsXdMTPe8pa3VLpLdaW5uZmWlhaWLl1KS0tLVfzOJb26D6irMc+mlqi0T2mqbVw7BrtYVYaXwf4Nb9mypeRisjjvsWpdnNba2srvfvc7tmzZwsiRIzWCWgatra2sX78+1WtbTws160HdB9SSnEr7DE6xLdEBbYsuUuUGW5/8gQceyHQx2WAWpw31FtMQRlDf+ta3snTpUt761rfqvF8Gzc3NzJ8/P5O26mGhZj1QQD1MFV1IGJ2gq3X0pBoNtCU6JNsWXcpjsItVZfgZTH3ywSwmi/MeK9VeJbeYzmIEtV5U60hwlt+/Wn/GrPX/ORcsWJBZaUYF1MNQqYWEueO1XtqnEiM7IlJ7Bpum8V//9V+ZLiYrtTitEltM52Q5glovhsNI8HD4GaH4z5n0NVBAPQwN9iRdy6V9KjmyIyL1abCLyQb7YV6L02pDvY3SFjIcfkYo/nOmfQ0UUMuAarm0TyVHdkSktsRJ0yiVChH3w7xSK0TqgwJqGZBGTypjoLrpuWOqnS6SvTijysVSIeJ+mFdqhUh9UEAtRQ3l6MlHP/pRHnvsMTZv3ty7GDJnxIgRIfXEGgsu8ntoQwM7dHSUtX/5O6BBGNWaPHkyHR0dvLihYcDFh3H6VqxuOlR+M5x6WLii3HrpL/c3ldvdcFP3SwA09RhNTU1M3PuAukkRq4e/YZFqpIBaihrK0ZNnn32WF17cCGbQb9ewbu8Z4FlDr/92wgCbu42HNoTyeFt6wjZoI0d477EdBtl2rdRNr9WFK8qtl0L6r/Lv/6G5HoPNWv0bFqlWCqilapTKYxyz+idMHruxYHm6/149rneL56z13/QhX+7+XcbvCoRguycKuEeMaqKpqYn9ootyPaj1wKIcufWlRvw0Ilg7qrUMWZbvMb3vRMpDAbVICaU3fXieqQeFKeHhMrol2yo14qcRweEpy9+73mMi1asuAmrlREq5DWbTh1oPnIvV4tWW3AMr9Xuv9feFJJPl713vMZHqV/MBtXIipZgspl0Hu+mDiAytwez4KiIyFGo+oFa94eFloJJypcrJaSq0tGI57NqSW6rNYHd8FREZCjUfUMvwUayk3EDl5LKYCo2z6YPUBi0UrH0aTBGRaqKAWmpGrZSUk9qhmQsREcmCAmoRGXY0Ei0iIllSQC0iIiJ1YcGCBbS1tbFx40Y8b4MwM2P06NG0tLToA7WUxYhKd0BEJAv5edFz5sxhwYIFle6SiIgMExqhlprTf0HZggULNOJQhSpR0kw50SLD26xZs3Q9kIpQQC01S8FT9apESTNdSEVEpFKGTUCtMln1Q7+z6pd1STPthioytDo7O7ngggs4//zzaW5urnR3RKresAmoczSqKVJbtBuqyNBbtGgR69atY/HixZx77rmV7o5I1Rs2AbVGNSUNjZBWjjbwEBlanZ2dtLW14e60tbUxc+ZMjVKLlDBsAmqRpDRCKiLDyaJFi+jp6QGgu7tbo9RSMbnBrFoYyFJALVWlGkeCsxwh7ejooGHjc70/Y38NGzvp6OiK30kRkYysWLGCrq5wHurq6mL58uUKqGXI5Q9U1cJAlgJqyUSxRZ+DXRCqkWARkcqbPn06y5Yto6uri8bGRmbMmFHpLskwlB8j1EKqnwJqyVSxRZ+lFoQOh1zZiRMn8q/NjWx6zdsKHm+6fxkTJ1bXNJaIDC+tra20tbUB0NDQwMyZMyvcI5Hqp4BaMlFs0acWhIqIVJfcjqLz5s3bZuavubmZlpYWli5dSktLixYkigyCth4XEREZZi666CJefPFFLrroooLHW1tbOfjggzU6LTJICqhFRESGkfb2dtavXw/A+vXre9e35Gtubmb+/PkanRYZpLpJ+dBOiPH1f80WLFig16tK6P0saek9pNdgIP1HpS+66CIWLlxYmc6I1Im6CahztBNifHrNhlac0oD63Uhaeg/pNegvNzo90G0Ria9uAurhPuKQhF6zeLIY7cot/uno6GDTpk1s6n4JgKYeo6mpiYl7H6ARNMmE3kN6DQYyadKkPkH0pEmTKtYXkXpRNwG1yFBJM9qVu8DngvOOjg4glNNTIC0iQ+G8887jox/9aJ/bIpKOAmqRQcoy2FXgLCKVMnny5N5R6kmTJmnDLJEMqMqHiIjIMHPeeeexww47aHRaJCMaoRYRERlmJk+ezLXXXlvpbojUDY1Qi4iIiIikoIBaRERERCSFIQ+ozWx3M7vezO4zs3vMbE50/1wz6zCzNdG/tw1132pFZ2cns2fPprOzM9FxEREREclOJUaou4BPu/sBwJHAJ8zswOjYt919avRvWQX6VhMWLVrEunXrWLx4caLjIiIiIpKdIQ+o3f0xd18d/X8DcB8wcaj7Uas6Oztpa2vD3Wlra9tmFLrUcRERERHJVkWrfJjZJOAQ4HbgGOCTZjYTWEUYxX6mgt2rSosWLaKnpweA7u5uFi9ezLnnnjvo47Ugix0JJZmBtkXvvyW6iIhIpVVTvFCxRYlmNga4CjjH3Z8Hvg/sA0wFHgO+OcDzzjKzVWa26sknnxyq7laNFStW0NXVBUBXVxfLly+PdbyWNDU1pdqVUOKZPHkyUw86gMP2nsBhe09g7HbG2O2Mw/aewNSDDtDmDyIiUpWqIV6oyAi1mY0kBNOXu/vVAO7+eN7x/wV+W+i57n4ZcBnAtGnTvPy9rS7Tp09n2bJldHV10djYyIwZM2IdrwUaia6M/q/7nDlzAJg3b14luiMiIlJUNcULlajyYcAPgfvc/Vt59++W97DTgLuHum+1oLW1lREjwq+toaGBmTNnxjouIiIiItmqRMrHMcAHgBP6lcj7mpmtM7O1wPFAbSX+DpHm5mZaWlowM1paWmhubo51XERERESyNeQpH+5+C2AFDqlM3iC1trayfv36AUefSx0XERERkexUtMqHJNPc3Mz8+fMTHxcRERGR7GjrcRERERGRFBRQi4iIiIikoIBaRERERCQFBdQiIiIiIikooBYRERERSUFVPkSkjwULFtDe3k57e3vv7XLsRtX/+8yZM4fJkydX1c5XQ63Ua1Ivr1mx91jcn7FeXhMRqW0KqEWkoKamprr6PrWk1GtSL69ZsZ8j7s9YL6+JiNQmBdQi0sdQjexpBHFbpV6TennNiv0ccX/GenlNRKS2KYdaRERERCQFBdQiUjc6OzuZPXs2nZ2dle6KiIgMIwqoRaRuLFq0iHXr1rF48eJKd0VERIYRBdQiUhc6Oztpa2vD3Wlra9MotYiIDBkF1CJSExYsWMCcOXN6S6TNmTOHBQsW9B5ftGgRPT09AHR3d2uUWkSkDuSXxux/3q8mCqhFpKY0NTUVLJG2YsUKurq6AOjq6mL58uVD3TURESmDgc771URl80SkJpQqjzZ9+nSWLVtGV1cXjY2NzJgxY4h6JiIi5TJr1qyaKI+pEWoRqQutra2MGBFOaQ0NDcycObPCPRIRkeFCAbWI1IXm5mZaWlowM1paWmhubq50l0REZJhQyoeIlE3+YhKAOXPmMHny5LJN37W2trJ+/XqNTouIyJBSQC0iZTdUi0mam5uZP3/+kHwvERGRHAXUIlI2tbCQREREJC3lUIuIiIiIpKCAWkREREQkBQXUIiIiIiIpKKAWEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKSigFhERERFJQQG1iIiIiEgKCqhFRERERFJQQC0iIiIikoICahERERGRFBRQi4iIiIikoIBaRERERCQFc/dK9yExM3sSeGgQDx0PPJXRt1VblW1PbamtcrentuqjrazbU1tqq9ztqa3qb2tPd9+10IGaDqgHy8xWufs0tTX0bWXdntpSW+VuT23VR1tZt6e21Fa521Nbtd2WUj5ERERERFJQQC0iIiIiksJwCagvU1sVayvr9tSW2ip3e2qrPtrKuj21pbbK3Z7aquG2hkUOtYiIiIhIuQyXEWoRERERkbJQQC0iInXBzLYvcN8uleiLiAwvSvkQERkGzGxPYF93X2FmTUCju29I0M4q4MfAz9z9mQz6tR2wX3Tzr+6+JUVb1wKn5tows92A37r7YQnb2xnYFxiVu8/db0raPxk8MzsIOJC+r/3ihG0dS3jv/9jMdgXGuPs/sumpSNBY6Q5Icma2IzAXeEN0143Ahe7+XIK25rj7vFL3xWwzkwulme0DPOLum83sTcAUYLG7P5uwvcwuklm1ZWYGnAns7e4XmtkewCvd/Y4k/cpKGV77icCe5J17KhmgmNn73f2nZvapQsfd/VtD3af+sniPmdnHgLOAXYB9gFcDlwJvTtCl9wIfAv6cF1xf5wlGZ6L31CJgPWDA7mbWmuI98Svgl2Z2OrA78BvgM0kaMrOPAnMIr9Ua4EjgNuCEhO29jq3n6pvd/S9J2qk2ZrYOGPB37+5TErR5PvAmQkC9DHgrcAsQO6CO2poG7E94r44EfgocE7etrJnZH9z9zaXui9Fe1X0ANLN9ga+y7YejvVO0WVXXkZy6DKjN7EhgAXAAsB3QALzo7uMStDUK+AjwWvq+GT6csG9Zvrl+BNwNvCe6/QHCCeOdCdpqBfoHzx8scN+gZHyhvAqYZmaTgR8SLpI/A96WoF+ZXSQzvuB+D+iJnnshsIHwcx8eoz8LKH5hm52gX1m+9v8D/BtwL9Cd6xaQ9MPMrsDn2PZvKc7rv0P0dWySPgzQr8zOGRm+xz4BHAHcHvXlATN7Rdz+RM9tB75oZl8CTiKch3rM7EfAPHd/OkZz3wTe4u5/BTCz/YAlQKIRZXf/3+iD/K+AScC/u/vKJG0RXvfDgT+5+/Fm9hrggiQNmdkc4GPA1dFdPzWzy9x9QYK2do3amkTfgCLpNSnt9fKk6Osnoq8/ib6eCWxM0ifgXcDrgLvc/UNmNgH4v4RtnQYcAqwGcPdHzSzx37uZHUMYyMoFdBaaHfw1PDpHjAbGR0GwRYfGAa9K2K8sr23vBP4HeEXUt9zPGDuGIsQk5wPfBo4nfBi3os8o3rfMriNmtoFtr5nPAauAT7v7g3Haq8uAGriEMIryS8In05nA5IRt/QS4HziREOicCdyXom9Zvrn2cffT825fYGZr4jRgZmcA7wP2MrPf5B0aC3Qm7Bdke6HscfcuMzsN+I67LzCzuxL2K7OLZMZtvd7dD839XO7+TBQYxLEq+noMIcj8eXT73cCdCfuV5Wt/KrC/u29O+Pz+Lif8jG8HziZ8KHwyTgPu/gMzawCed/dvZ9SvLM8ZWb3HNrv7y2EiBMyskSIfvkoxsymEc9fbCB+6LgeOBf4ITI3R1MjcOQLA3f9mZiMT9Cd/hsEIo9NrgCPN7MiEMw0vuftLZoaZbe/u95vZ/gnagfAB6/Xu/mLU3/8hBDuxA2rg18DNwAq2BhRppLpeuvtDEAJNd88f9f1PM7uV8DcQ1yZ37zGzLjMbBzwBJB3RfNnd3cw86ucOpZ5Qwg+Bcwnn1KSv/78D5xCC5zvZGgM8D3w3YZtZXo++BrzD3dPEOjlN7v4HM7PovTLXzG4mxEFJnEp215FvAY8SBomM8HfwSuCvhIGCN8VprF4Daty93cwa3L0b+LGZJR2lmOzu7zazU9x9kZn9DPh9iq5l+ebaZGbHuvst0PvJeVPMNlYCjxH2sf9m3v0bgLUJ+pSTyYUysiUK/FuBd+TaT9hWlhfJLNvaEgV2uZP+roQR60Fz90XRcz8IHJ+XR3opcF2KfmX12j8YPTergLrZ3X8YpSbdCNxoZjfGbcTdu83sZMKH3Cxkec7I6j12o5l9AWgysxnAfwBLk3TIzO4EniUEFv+Zd2G7PToHxbHKzH5I31HNJB/++o84XjPA/XE8YmY7EUa7l5vZM4SLbxJG3+Crm+QDKaPd/XMJn1tQRtfLHfpdj45m6wxQXKui1/5/Ce+HF4Ck6W+/MLMfADtZSH36cNRuUs+5++9SPJ8olXKemc1KMksxgCyvR49nFEwDvGRmI4AHzOyTQAdh5DupLK8jLe7++rzbl5nZn6K0yy/EbaxeA+qN0ejeGjP7GiFgTPqHncv7fdbCIol/EabaksryzfVxYJGFXGoDniakaQxaFNQ/BByVsA8DyepCCWEk7GzgK+7+DzPbi5ADl0SWF8ks25pPCAJeYWZfIUx5npewrVcRAonc1PsYEk4jku1rv5HwN/kH8k6GCVNRYOvf5mNm9nbCa//qhG2tNLNLCCPeL+b1bXWKfmVxzsjqPfY54KPAOsLo2DKST6G/e6CpUHePm272cUKqwGzCOewmQvpTLO5+QfSB9GJ3/2zc5w/Q5mnRf+ea2fXAjkBbwuZ+TPjAkQv0TyV8IEnit2b2NndflvD5/WV1vfwI8KPoegThQ1eiNBR3/4/ov5eaWRswzt0TDfC4+zeiD5HPE/Ko/8vdl8dtx8wOjf57vZl9nZC+k38ei32uiGb8jmbb9J0kiy+zvB6tMrOfR23l/4xXD/iMgZ1DSG+ZDXyZkILSmrBfkO11pMfM3gNcGd1+V96x+GtCEqwjqXoWVrM/TsgHO5dwIvyuu/89QVsfJUxpTiGcFMcQ/iAvTdi3wwnTvzsR3lw7Al9z9z8laS9qcxyAuz+foo38XKLtCJ8AE+WdR+1tT7hQHkvehTLD6f7UzOw4oouku79c6baiKbo3E16vPyQdITCzDxFy/K6P7joOmJsbwY7Z1hzPaLGqmRU8iSbpV9TeSYSp790JU+fjCD9n7JHXKGAq0LVY+di5tjI9Z+S1m+g9Fn2AX+vuB6X5/nntTQD+G3iVu7/VzA4EjnL32AFiNP3+UjQyShQUb+/uiXJvLcWCrgHaawAm0DfYeThhW4eSdz5090SpU9G5egfgZbZ+eEua35q7Xj5BOOfnrpff85Arn6S9cYTYIvbi+Lw2sl6sl1/hZjTQ4DEr3AxwjshJeq74CWGR8Bry8oFTDDLk2k11PTKzHxe42z1hnn6WsryOmNnehHViRxHinz8R/gY6gMNysy2Dbq9OA+q39p+SMbOz017QqoUNUJEgJ2G+YP/vcSpwhLvHnvbIipn9wt3fY9uuIs8tkIi9ejxqN5OLpJldSAjoVuZyI9PI+OL9SiA3lXW7u/8rYTur3f3Qfvfd5e6HJGkvSxZyNm8tdV8tshK1kz3ewj/M7HLg80nfT/3a+h3hg8IX3f11FvKx73L3gxO09Sdguru/EN0eQ6gYcnTCvn2TUOXgl/SdaYg9smZmswipeI+zNf0q1nnHzMa5+/MD/T7j/h6rWTSIcjrbjrYOOofati7Wu56Qv5q/WO937n5Agn71Vrhx930sFAa4NMsPXkmZ2X3AgZ4iEKvW95iZfcfdzzGzpRQY7XX3kyvQrbKq15SPL5nZZnf/I4CZ/T/CAsDYAXUWJ4monSzfXLm8wP0JixByiwnfQcKKCQX68ysz+8+kz7dtV0Ln2o2zsGRO9PWkoo+K16+CF0nCaGJc64EzgPnRqNHNhJGnX6fsVy6/Mmm/IKzUf5Lw2u9nZvt5jAorVobFqpZ9+aQFwKGDuG8wffuvQvfH/TuP2srinHEn4fdvwB7AM9H/dwIeBvaK2a3dgHvM7A76BppJLmrj3f0XZvb5qI0uM0u6OGtULpiO2nohGkFMahfC+zN/tNDZWl0jjjmExU9pFmf/jHD+yv0+c3J/34ne+xZy/t8Y3bzB3X+boI2BBiyAROXufk2okHAnyfNb8xfr5adQpFmsl1mFm5woxax/FZ8kiy/vJiyCeyxFd/q/x/Jz8xO9x8zs1YRz6TFRG7cAc9z9kRjN5NI9vxH3+w/Qp8wH2Czjijn1GlCfTMgz+yzQArwmui+JLE4SkOGby90vADCz64BDc1NXZjaXMDITm4UyOTkjCKu900xfpF4J7e6PRV8fiqaZcyXk7nD3JxL2K4uLZK5/PyLkDL6SULrwM4SRkCQLoTLrl20tK3QPfT80xPmwVY7FqplUuDGzo4CjgV37zdaMI3yQSCJ/hmEU4QKVdFFO6nOGu+8FvQtKf+NRvqyZvRWYnqDJpKv9C3nRzJrZuoD2SMLPm7StQ3P5p2Z2GPEXVvdy9w8lfW4B/yT5zwWAu58UfY37AWhAZnYx4Vx4eXTXHAuLAeMOgGQ9YPFqd29J04CXZ7Fe1hVuLiWMoh9PWIfwLpIvmBwP3Bt90M3PBx50vFKO9xjRxk2EClEA74/umxGjX3dGX2MvFB9A5gNsZFwxpy5TPgCiT6ArCBe1DyedUjGzu7PKPcyamd0PvM6jvORoZOwv7v6aBG3l50x1EUZf/zdp4Gpmt3vf1bOJWVg08HXgBkIA9gbgs+5+ZbHnDdDW9cAMd+/KoF//RxhtfZzwR3kLsDpJ2xn366/AFM8gX93M/sf7VRQodN8g27rT3Q8zs3W59AAzu9nd31Dquf3aOY4wHXw2fWedNgBL3f2BuH0r8D22JwSyJyZ4bmbnjNxr1u++Ve4+LYv2E/bpUMLo1UGEEbZdgXd5gkVjFtaUXMHWxVO7Af+WuxgnaC+LkbVcWz8kzAJeS99gJ1FKnWW0GYWZrQWmuntPdLuBkHKTdDYrE2Z2GbDA3ddl0NZ2hL/v3lF44AeeYHMwCwstnyWUA5xFqHBzr7t/MWHf1rr7lLyvY4Cr3f0tCdo6rtD9SYPQDN9ja9x9aqn7BtlW6rrd/drbga1lFfcjDJj+LuF7I9HPNJC6GqG2rQvrctNp2xGmO95lZu7JFm2sNLODszhJRH3M8s31E+AOCyvHnVDAPtHWrFmN7FgZVkIDXwQOzwX30TTNCrauzI3jQeAGC1sUp71INhNGRJ8lVNR4KkVAnGW/siwrNINQISLfWwvcNxiZVLjxrSXyFkazF2PD3VtTBzIwmuR1b7M8ZzxlZucRKqs4YaRo0LMYZnaLux9r225gkHijBndfHQUC+0ftJN4F1d3/bGExbq6t+5O2FUk9spbn4ejfdtG/xCzjTY0IqT+53NgdizxuMH3LahOPY4EPmtk/COeeNGtdvkc4h+UqvnwA+D6hUk1c/0moQJJFhRvYOoOy0cxeRfh7TDQ67O43ZjX7mvF77Ckzez9h7wgIqY1JZ0+zqNud7ybgDRY2xPkDYf+FfyNUEosr04o5dTtCnRUzu5dQ5D6Lk0RuVHmbN1fSqf5oivTY6GaaleOLCCM5z0a3dwa+GTeXyMqzErp3RDO6PYIwEp9kEVTBet+5NJokzOwAwiYe5xJWj8cu3ZZlv8zsKsIuY4nLCpnZxwkjOfsA+av9xwK3uvv7E/Qr0wo3FkrS/YSQNwvwFNDq7ncnaCs/L6+BMOp6obtfkqCtzM4ZFhYanc/WkbqbgAu8govZzOzdhOoBG6Jg/1Dgojgfls3sBHf/Y79Us16erDxXpiNrWcp41ugM4GLCwj0jvDc+7+5XJGyvnQw28bBQSWMbHm38ErOtv7j760rdl6DdXQipKYn3WLCwQ+gCQkWm7xLOG//n7l9K0FaWs69Zvsf2IGz4k6t+sRKY7ckW72c2Wx21t9rDJmizCPt6fM0SLpS3rRVzNhMq5qTZEbK+RqhzolHgNe7+YvQp61DCLm9JVri/NdvepS8Kn8/d7zSzfxItjjCzPRL+nFNywXTU7jNmFvsN6u7HJ/jepbSZ2e/Z+mn53wijDLGlCZz7s1C27Q2EC9rOhF3ibq50vwiLVH9T8lHF/Qz4HWERYX5u5oakwZy7/zn67wuE/Om0LgM+5e7XA5jZm6L7klSIyM/L6yJsbJB0tiGzc0b0Ws8p+cBBsOyqyHzJ3X9pZscSPkh+gzB6GOeieRzh7+UdBY4lXUQIGYysWXmqE2Q2a+TuS8zsBsKopgGf84RVfCKZbOLhW3dMfAV5i/US6jazfTwqdWuhvFmi0c3otTqZ8L5fAzxpZje6e9FqWUV8LQparzKz3xJ+1pcStpX17GtWM5O793+fR3FVkvNFlrPVUVfsKMKI9Eei+xLFsu6eZuOnbdTlCHWUY/Y6QoWEnxCmHN7p7gXzlQbR3usIgRPAze7+lxR9u5gwApb6zWVhpfc3CSuinyBUA7jf3V+boK2/AG9y92ei27sANyYZBc5rM6uV0JjZ6YS8yFwN12tKPGWgdnYF/l+BfiUZOf8uYcTwZndPVEC/TBfvTEWB077u/mMzGw+Mdfd/JGin0M/4HGHK7gfuHuuilPUoVr+/85vSjGJF7fUJLBKO7mTyfrUMSsDltXWXux9iZl8F1rn7z5KOEGXFzL5H+OC3E9uOrM2JM0pqZodFAxWp81vNbEHUj4mknDXKa7NQFZvngIeSfAg0s3mEShO/IsUmHgWuR3sC9yW8Hr2ZkKrzIOGcvyfwodyH55ht5d6vHyUEiudblP8ct62ovUKlRLe5b5BtZTn7mnpmMq+tLH/GzGr8R+29kVAA4FZ3/5/ow9Y5MWdgX+NhJ8mCP0/SYL8uR6iBLnd3MzsFmOdhe+KCxcBLMbM5hLIquZPLT83sMk++Ajk3ipO/qMjpW+ZpsL4MHAmsiE4YxxNGZJL4JiH3M/fJ+N3AVxK2hWW7Ehp3v4qwWUZalxN2wzuJsOillVBeLkmfPpHLf4v+MJPkv2VaWgjAMixPF6WiTCPkuP6YkEv6U8KHm7geJKRS5M80PA7sR9gK+ANx24umX3Ov4fsJaRaxFfg7vzzp3/lAgQUhKI4rq/drZlVkgA4LWzlPB/7HwgLOEUkasrCxxSc92gQkShv4kcevEbyekEZ3ftoPoZ5tdYJV0dd7CdP6PYSR1sSVTAh5xYcSqu0YYXHoWqDZwn4L18Vsbxxh97n8RXVJZgmyvB79nVBPvDe3nuQlRBvNbDdCJaZECxEBLFRzmgg09QvExhGudUkUmn1NOoOdembSylBBKetZaw+LLG/Ku/0gYRfGOD5FqMj1zQLHksZj4O519w+4Efg88DfCJ+8GwkhKkrbWAjvk3d6BsOtYkrYagHMz/DlXRV//AoyI/n9HivYOBD5JWAl9YMq+re33NbdhQ5K23gk8QBiFeZ5QzeH5hG3dmd+v3PslYVvvJmzbvoiwGPQfhGoHZXtvD7JftxDy+9YSgrm5hLzbJG2tIVzQ7ur/u03Q1k0D3Qfck6C9nQlbtq8G7gK+A+ycsG9Z/p3/hbBg9a7o9vHAZQnbyuT9Ssi3bczo/TU6+pvcN7q9G/CWhG39OyFYehvhA83fCPm8SdqaSPjwsYLwAf6duX8x21kXvR/6/1sX9z1BmIL/GiG/P/c+fYqQNzsy4c95BfDavNsHEj7s7k1IdUz9O07Yr8yuR4QPRxPzbr+R5Nfwd0e/v+9Ft/cGrkrQTmv0d7SBkK6U+/fruO+xfu2eDnyLUE70tEr9/qK+HEeYyXos+pr796nc33uMtt4fff1UoX8p+rgfIbXvuvzfQyVft9y/eh2h/jfCphQfcfd/RQn2X0/YltE3dyu36UZs7t4djV59O2Ff+nvWQsmemwgjak8Q8j8HzfrusvQvQu5s7tgunnzxU2YroQkXpNSLZiK5CgKPRSkpjwKxFxFGziOj/LcsR5UJCzX+YGbmYap7rpndTDgxxvWyu7uZedTPHRK0kbNrfo5/9Hc5Pvd94jbmIT1pdtRWAyEgfj5h3zL7Owe2uHunmY0wsxHufr2FFfiJ2oq+Jnq/5o0yZVJFJpqSvsPzygJ6qBefaGMKd/+Bmd1DCFSeAg7xhPnA7t4R/XxfIeRm59dgjzPammWd268RBhP28q37BYwjzEh9nbCJSVyvcfd7cjfc/V4zO8TdHzSL/5a1sDvhR9g2rSju5hapr0d5zgZ+ZWGdymGEre7flqQhd/8lefszeBjRPD1BU+OB30b/ILyvngRu8QQpcHn9ucrMlhNlDMS97lqGG/R4vwpKg33eAHLXikzzlAm/y0sJM9+pqoZE1423s+3GLolKY9ZlQB2dkL+Vd/thEpaTI3zyv91CaTqAU4EfpejeSjO7hDCSkr9jWZKcnVMIgeu5hAT9HYG4Ocpl2cmLUI5mJ8JFY3XUVtJSRZksmolcZGY7Ap8mrNQeR3j9khjhfVM8Okk49U1Gm55EMilPF/lFNL2/k4UtfD9MSM9I4tPALWb2d8LPthfwH1GQvihuY2b2M8KFt5vw/t3RzL7l7kk+POf/nRvhb+uHCdqBbAOLtO/X3MUskxJwHmq//sWSL37uw8w+AHyJUCN4CrDMzD7kMdepmNlrCQsjHwWOiIL8RPIDCUtf0uwkYD+Phtai9p+3UEXnfpIF1H81s+8TRqohDCD9LUq9SVJy8CdRX04kXD/OJNmmRqcQFueluR4BveUUZwPLozZnuHui1DwLdagvIlwr2wh5xue4+09jNjWmwH17Al80s7meoMqKmf074TXaRPgAmOS6Oyf6muUHwUtygyh5Yq13cfcfRF+zXHAPIaX3+xm1tZTw/lrH1g/gidXrosQjCRefAwgXjwbgBXffMWF7hxJK0+UWxN2Vom+ZJOhHn6x+7+5Jdk0bUtGJfpRHeZIJnp/JopmsWVi5PIW++W9rvYKbnkTPy7o83QxCfqUR3nPLk7QTtbU9oRB/ruZw0tXxveXQzOxMwijW5wgpEkkXG2Xydx59QNhE+HCVCyx+mmS2x8x2TRpIFGlzBDAm6Wi+mf2REGSm3sbczH4FnJU3y3MEIT1masx27iMsPoybP1yszdQlzczsb+6+X9xjJdpsIpS0zL1XbyHkVb8EjPaY9dht66K93EYlIwl/58nySFOwbRcuH0iY/XgGEr/HcueJ0wgDYucC13vKEnx57e9CyBtPsmDvAeAod38qi75kJbrm9l/v8i+gCRjn7oNe72Jm8wvc/RwhRejXCfo2l7A25Rr6xgNJzq+JF6cWUpcj1IRV3u8lTA1MI4x+7JukIQu7ZS1w9/l5981197lJ2vOMEvSj9JGNZrZj0kA1n5n9wfstBCp03yDaKVhXNjqWNAhOvWjGzP6fh3qVuVX3fXiCldDu/lnrW33kMk9YfYQMR5U9w/J0UXD4R3dfbmb7A/ub2UiPsfmGDVxzeO8U7wmAkdHF/1TgEnffUmBUZbB93IeQx73aQvm9N5jZPzyvlGQM/xV9qOohGnmPUj6SbIaz0sJGGT8n7Mb2TII2sh7Nz2zEyd1Pjfq3g7u/6O53REF1XFM9g/q7/WRR0uxeM5vp7n1mSC2U9rs/SafcfZOFqia/dfe/9jucZHOj3N/ysxZqu/+LMAU+KLbthmq9h4hf0zezxdl5RkZf3wYscfenk6TGDCRqL2mDfydc21KzbTdvgq2jyp+OUl0G6xB3f2Pe7aVmdpO7vzFK0YpjFGEQJZd2czpwD/ARMzve3c+J2V5r9PWzefclnU3/nZm9JasP4vUaUOPu7WbW4O7dwI/NbGXCpk4EDosuPrmT4smEhV6xRdO357N1o4YbCRtIJAmKXwLWRflX+SNFccrHjCIsMhpvYTOX3IlhHKFKQVy5urKvIKwW/mN0+3jCSE/s4Mmz2cUxN4W5quijYvLsqo+cQ/g9zCaMKp/A1hPHoBQY3ekjyegOfXelWkGyXamOozw1h39AqO7wF+AmCxUikuZQXwVMM7PJhNSkpYR0qCR5m5ntLunu+0YB5nsJU8v3AlckmK4+MEo1OJNQw/1zhMA6dkDtYXe3PQmLlFaY2WgSVgCwUFXgh4Tp9D0slC78d8IIbJw+ZR1MQzYpXZ8ArjazD7M1re5wwkjfaUk6ZWEdztcJs697mdlUwjUkaXWTy6K/7y8RqkSMif4/KJ5hLV/PprJKf0stbKi2iZBitivJ60Zvw8xOIBpBT+DzhA/Nt5Oy1B0hzfVRwnnLCOeMVwJ/JaSpvilGW1mud5kMnOBRSccoXek6wnky9m6y7p50LVYhfwKuiQazUm/sUq8pHzcRSjr9H+HT9mPAB5NM8ZjZasIb8XJCDuIc4M+esOaqhVqRd7M1Z/QDwOvcfcCR3SJtFQy43H3Q+agWyoWdQwieO9gaUD8P/K8n2Ckuave3wMc8ymW0ULbou3F+znKMKmdhgJEASPnHmJYNUDc3J8nFyjLclWoomFmjJ6vFm/s5/x+wyd0XxP05bevuknsTRp5yEu8u2a/98YSL5pnuHiuAjUaVphIutpdEQXGimt0WcunPAnZx930sLKi9NO5sVtTW7YSKHL/JvdZmdrfnLXqsFMs2pesEwqI/I8yE/CFFv+4kfOC+Ie81S1NXOTfwlEo0y/OIu2+OZnmmAIuTzPJY4bTNFxMHOuEDw/PRzO4OhFr6sRa/WuFFf7sQgtiZ7h57xsHM7iCk7PTJ4Y1zDc9ra5sdCc3sT+5+ZNy/dTN7G2HhX5/1LoRBsY+5+3ditPVXwrqGXGnMHYHb3f01Sa4l0azkx9k6KHkDIa879voBM3uQMMO5zjMIhut1hPoDhD/ATxLypXYn2apeCB86ngfeEeXu3EjIiUxqH3fP78sFZrYmSUPuvsjMtiOUkQH4a9w3lbvPA+aZ2SxPXlu7kEned2FQrt5wHJmNKmc5epvliIyZFa0bGrNfN0ZtngQsc/fUiyxCc9nsSmUhf/p0tl1RnXSznwmE1f+vcve3mtmBhA09kiwm3GJhS+eZbB1JH1nk8YVkvrukhYoQpxFGm/Yh5A0mSYnIcjT/E1Efbgdw9wcsbGKTiLv/s9+MeeLgLgpc/+TuqabRoyn8+YTR5FyucuKULnfPlffKQpe7P5dh2sI/zKyNkFb0xxSBRf4szw8Jo91JZ3myTNscTXjP7kH4IPgqQn3r3xZ7XgH9F/050OnuLxZ68CB1efIdG/vrsZD3n0tJelfesVi/U3dfFn1QLrTe5Tsx+/U1YI2FHSuNEAj/d/TBZkXMtiAsPh5JWDcAId77PvDRBG09ANydRTANdRpQ+9ZV2ptIn+/XG/C4+1wzW0Woo5jUJjM71t1vAbCwnWeiIv/RKMAiwoXSgN3NrNVD4fO4esxsp9xoQvSJ/gx3/17xpw3oBttasN4JJ8dCCzIH5O5Lo6+xP60XkMvNeydhGiw3ZX4G4fWrlKOAfxJep9shcWWPfO8lfEi6Cvixp6uQcg5hWvIad7/Hwq5UsX6PeX5NyOm7k2y2x11IqM6R26zhb4SgIElA/SFCjvFX3P0fZrYXW98jgxKNwDwHnGF9t/keY2ZjPFlVjL8QFuNe6O63JXh+rm/zCQFizkMWNt5IYrO7v5wL6MyskZgX7Dz/NLOjAY8GB2aTrMJEzgeBS82sE7g5+neLx8w9d3c3s1+5+2EkT0kql7vN7H1AQxT0zCbsCJnU/oQPkZ8AfhQNPlyRu0bF0OPuXRYW/30nN8uTtFOeXdrmjwnnnKOj248QAvVYAbWnLyNXyPVmdhYhxSzVAjvCoMc8QqDphHSG91tYxPrJBO0dxtbBjykW1rvEqpYWpVLcR3jtjyBc377gW3cW/uxAzy3i8H6j7X+0sNNzEo8RYpXfkaKcaE5dpXwMMCWT40mmN7NmIUdwMVtHuZ8BWj3BNsfR1N/7PFqYYmb7ERZdHJagrTXeb2V92ql9C4vQ8rdyjjW6k+Wocl6bN3nfxRYF7xsqUeA1gxDYTwGuJfwO4y786N/uuKjNDxFewx9H7W5I1+NUfcp0Kt/M/uzuh+e/Twu9jxO0uzNhi+LYf5PR8z9JWGORxTbfFgV3O6QZCTOzZsLajWMJ74dbCEF67J0TLZQhe5YwajiLMBV8r7vH3oUuSmOZR0jRM0Ju5Zwk/erX7qsII3SfIcxgxB48MrPvAgt96yLfqhCNuH6RrYu0fw9c5Ckq5uS1vTPh95Ekreh2wujlFwn7Bvwj6d+8ZZu2ucrdp/U7TyRKd8qahQXH/bnH3H8guo5c7O5JAtRC7f2EMCO2hq0zRu7JtjG/zd2PyqJfUXurgXe7+9+j23sDV3qyKisF92bwhKX+6m2EulAdRiNshPCFOA2Z2S3ufqxtmy+bKE/WzOZE6RVj3P11UcCDJ9+IAsJOW72rvN39b1F+URIjchfvqL8NpKhXG/XnatKN7pRjxfeuZra3Ryueo5HIXcvwfQYlGn1pI2xBuz0hCL7BzC5Mk4LjYQHaVYTFT+cQ0gY+a2bz47Rrocxjofz1JCW1VprZwe4eeyHKAF6MAsXce/ZIwghxbNF05MmEc+Ia4EkzuzHhdOw5ZLfN95EWKg31WbTn7rEW7RFqFt/E1tS3Mwmj+UnKbv4nIf1nHWEB4TIS1pj3UC4szgLXoixUz3gDcDBho5hLCKPUSRwP/LuZPURY9J0792dWZiuu6Lz8Gw/lUhNvo12g3eMIOeJvBf5M2KY7rtSzPHk+QFgAmkXa5svRKG3uPLEP2cyQpRKN3v6nu/88bVsecsNjD6QVMY2wkDmLEdfrLFTDujqj9j5LGNl/kPA3uScJq1nlAmczGxtuxis52V9djVDns7Dy+X2EE8M/CFuNJlpgl1F/crUwVyf5JDVAmz8inCR+Et11JmF74dhvLgsLcCYRFiI44cT4T3f/dMx2qnLBXm8nzFoI25bmSghNIgQov69gn7Yn7NZ0RtSf3wA/cveOhO2dTDjB7EN4byxy9yeika373H3PGG3ln6RHES5qXe7+/2K0kZs5aiTkQT5IuKClClAs1I1eABxEWOi7K2Hr9ySzPXd5qMX7UcLo9PmWcKFX9CFkhidYHFmgrUwW7VlU57zffavcfVraPiZhhWvT9koyEha1+xRhIdWlhFrD65O0E7VV8O+kTFP/g2Zh3cUHPINyqVF7/yB8iPwF4X2WJic4MxaqceAp67BbqKN/HqGm9XWEMqcfdPcb0vYxrSxnR83sm4Tz6y/pW/Ur9qCWmf0SmO0pNkjKa2sDYdfELkJ1ldSxQHTN3J+t+d2JPiBZKBP5E8LiUggfwmcmnSGuqxHqKOXhvYTApJMwAmOesPZz9AlybUbT1PeZ2XrCCGn+BT9NUPFxQt7b7Kidm9iaqB/X5wijTR9n69Rr7FEnz3bBXrEUnlhbquY9p822LraAFH+MWTCzRYSA8HfABe5+dwbNng582/vl0rv7RgvluwbN3e/sd9etZha3WkiWO3j18lAz+ji2nlhjL8rN02ihEs17SD/yl8k233nPy2LR3vVm9l5C0AQhSL82TgMl/h43EwLZr/rgdjk8m/Ah6BeEKgmZrLBz9/EWdk18I/CV6G/9rx5jI4q8th4CsLDgclSJhw+l1OVS+3ldmpnSLM/TFt7o5xNGpo0wc9pF2Asi6a6Ly6M0gSOjNud49WykstzMPsO2OycnyaHehRD35M8eJi1LOp5QQ/0O+p7DYqdZZhkTAJjZJ4DLcwMnZrazmX3Ek633ugz4lLtfH7X1JsJOwEcXec7AfaunEWoz6yFM733E3duj+x6Mm4/Ur83Lgc97NtvsvpKQ77bNm7LSox4A0bTYHr7tZgEVMdAIUU7S18zCIqhJ9K00kXRr+lSi92zuRJpFalGmO2ha2AUsZwRhocp8d98/QVtHEkqGbYhujyVMK96eon+Z/C7N7N2E2ru3uPt/RHl5X/e+FXkG21ZmeXlmdiWhVN4lhIBgNjDN3d8bs53cKFEup3sEee+7wbzPSvw9NhI+GM71Qay7iFJ13k1IM+giBBRXecKNa/LaHUcYgTyOkPoxnlD1I1ZN96itk4FvEqpCPEGYWr7P3V+bpo9pWSjP2Ej4XXYTLWr3mIu3bYBypDmDDdCzPE+b2bmEqiBnufs/ovv2JlRxaHP3bw+2rX7tTiT8/vLPE0kW72fKMsqhzpoNUILVY5ReNbPXuPv90UxiobZWJ+xbZuu9rEAufaH7Bt1enQXUufJSRxPyUq8A/s9TFAK3wtvsurufkrK7iZVj5NbyNgtw970s/WYBVckyXGxRrbKcEo5O+Lld0LoI6VMXevwKAFhY8X+oe2+e/gjC9rOJUqCq/XeZRV6elWnRXrmY2QXuXvADRZHnTCTMKn4K+Jy7/6TEU4q1tZaw4PIWwkLoR1K09RfCaN+KKB3oeELlo7OStpmGhWoq/w18GHiI8KFod8KC4y/EnZ2xAfYxyIkboGchOkfM6D+CHKV/XJcwaPofwge3e+i7SLgurm1Wvfs1XObuZ0UpcP25J9zaPvobf13edaSBkEkQ+4OumV0DrGZr2uz7CQMWpybqWz0F1DkW6hueSjhJn0AoLXeNJ9hest8nNSOskj8j7i/PzH7h7u8pEAzHTvkox8itZbxZQBasDPnYZnYf2S22qEpm9gvCaGZWU8KZGGBkIc2GFKl/l+W4GGWdl5cVM5vCtqP5FS0JF41enUGodHMn8E13vzeDdlNVRYnayFWH+AthK+YeM7vD3ZPUAU/NzL5N2CTo3LxZnnGExdsbPf4Wzrl2D/JsUs1SsyLrA4odK9HmX4EpXsHUvoFYWNfyKcLM8FlRitL+7j7okn5m9ne21ukudA6Ls9FbZsUYzGyau2e6M3HUbibrvaK2diaUVj42uusmQuplopmyusqhzolOpJcDl0dT1u8mrEyPHVB72FFsKn0XOF6aoFtzoq+p80nzA2YLm1scHt28w/tulRtH1psFpOYZ515F7ibUoU692KKKXUvM/NhiMkyRedDMZhOmbyGUW3uwyONLyeJ3WY4t6VPn5ZnZfxU57O7+5TgdsrCAeQr9RumoUI1lM7uAcC68jzCT+HnPZhFnwa3MPX5VFIBnzWwM4SJ7uZk9QZilqZSTgP3yP0B6qObzceB+QnWZJC61UAN8IfAzT7CzYYaKbWsdd8vrnAcJG4FUXUBNNjWyFxA+VO1GSJ1a4u5rknTG3Y+NvmZx7f3f6O9nSdSnNPXl832OsEFPqvVekYlZDjTV5Qh1FqzwAsfPeIwKCeVmYVekrxO23jRCzuBn3f3KYs8boK0fAn8gfPA4nZCrOdLdz86sw1Ugmn6aSkjhSbXYYjjIMq3CwuKu+YSZECe8385J+iGwWn+XWeTlmVmh0ZYdCOXqmt19TMw+3evuB8Z5TpG2Uu9GGK0deJCtm1rlLkRpK79ktpV5NNO5iZBacSZh74DLK5VuY2Z/c/eCu80WOzbItvclpJK8m/D3tDDhjG6qdThm1k3erFr+IWCUu8cuC2uhfOjrCOeb/PNExVPDLMMa2dHM9Xujf6PYGsg+kLBv+ZtTAeAx15KZ2f5Rf/6N8IFoCWHToEzWjEUDpq/25HsG3EIoD5zbp+HZVP1RQF2YZbzAsUzpC38h5Js9Ed3elZDvl+SPMX+zACMsnvyyZ7BZQDWxDBZbVLvo4vhVQpmo3uoESd671Zwik8Xv0jLc+j2vzWzz8kIu9hxCMP0LQlpErA8h0QfmrNIpFhNSihLvRliOtLWo3dvd/fVpAhQLW2dPcPdb+93/RqDDow0lhpqZ/YpQy3dxv/vfD7wn7QfJKIA6lfCh93no3dVuULMYZvYOwkhpVa3DGShXPE4qRLlY2P3xzcCt7n6ohRrZS9KmFZnZIcCPCKkusTboiZ4/i1BtJfXmVHltvo4QXL8H+Je7H5OwnRvot2cAkHTPgNzg6YfY+mHyx+6+PElbdZnykZHTibbLNrPcAsfE+RBlSl8Y0e/C2kkYTYktGm36IhluFlCN6ilwLuLHhJPht4HjCSeLpO/d1GkV5Vo0k9Hvshxbv3+YkJd3ddTeTSTYeCAaffkUYXR0EWFBZ9IqGIuA28zsX6SsAe7uM6P+5XYj/C6hEsagrydZjVAVkMVW5t+h8EZgG6Nj70jTwRQ+AVxtofTlnYS/pcMJmzedlrTRKLf+Q4Ra+MsJuxyujn6/tzH4tKC5hO2lbwBw9zVmNilpv7JSDYFzf2Z2CeGcM5dQQGF3CxXFjgE+mLDNkUALIW55M3Aj4TyUxByy25wqtwD9FYQR7x0IQXBSO0apTh8lBL/nW99SxLF42BDvPELa33zgEAu5r4P+MJmjgHoAHrbJvsa2LnA8F5hgZt8n4QLHfNavtmncqZRIm5n9nvCHCWFaZVnC/uxH2KZ3En2neBKtxK025ZghqGJN7v4HM7MocJlrZjcTguxBsa3bvo8lfT3ScuQpY2Fr+/8hnKiNZL/LV7J16/f3kcHW71HQm2o6OVp4805CPvbBnnIHL8Jo1QcIuxv2lHhsqb5luRth1s4mVEWZSMhHvY4QiMYxqdAUsruvqmSA6GGjp9dHKTevJbzff+fuf0jZ9CWEHP8vuHsuBQd3fzQKNAar6tbhAJjZMYTANVc2L3eeqGRpugfYmvf8R8IHmbtIUCPbwsY1ZxA+EN1BGPw7y9Mtyv0nCXed7de3N0R9O5UwOHMFYVFtmrYz2zMgww+Tob0qnMmtWrZ1geO/JQ00LYPapvlTklFQcSzhJPEMIccv9pRklD5yKWHko3fjCN92Yw+pcmZ2KyHguZJwsu4ALvYYtaMHSqfIqYaRfjNrJ5wAM1nsYlu3fv86Yao61tbvWaaPRClnmwmL4LKoT/7HrD4cW4a7EVYjM2t398lxj9UDC1UPdk+Sk1qt63DM7H7CgFj/a1vFS08WyHv+GfBzd/9bjDauj553lSfbECa/rVzaxGsJG2Yl3pzKzP4JPEwIon/h7o+n6Vteu6n3DDCzc4BbCTNOlwJX5n+YjB7zAY9ZwlMB9RCzDGqbmtlvCaMJa/vdPw04391jT0laga2JpTaZ2eGEUeGdgC8TFlN9zd3/lKCtvYDHcrn00aKjCXGCqHLkKUft3po0D69fO5ls/W5mT1IkfaSSH0LM7HuE98NS+l4gE1X5sK27ER5LKNeVaDdCy2CBY9ROZlVRzGwJ8Ed3/99+938EeIu7/1vCblalrHJSq3UdTi6vvpJ9GIy0ec8Z9aHoLKbH2JzKzPYsY2pXKmb2DUJllQOAvwArCQH2bWk+lCigHmKWQW1TK16rc527H5ygX3MJI+bX0PeCm+oTr9Q2M1sFHO3uL0e3tyMsoDm8+DP7tFGWQNPM5hFSNn5FwiDR+m79foWnqMcbLerKTb9OIYP0kayY2Y8L3O3uHmsr+qitLHcjTL3AMWons6ooFkqRXkOoSpCboZtGqAZwmrv/K07fqp1FCzijnNTdczmpSfLrM+xTFulcubYuBhoI0/f554lEO/VlaYC85yXu/qtK9itflP88xlNsT59RP8qxZ8B2hL/townraY4CnvWEFZGUQz30nrX0tU1HFTnWlLBfuYvhZ/Puc6CiW6DK4JVpJLgxF0xHbbwcnYTiyDxPOTKOsFDsLXn3xa2t/AFCma79gNl5+Z+xL+Du3k1YYNSWlz5yg5nFTh/JmrvHXhRZxC15/y7xFLsRegYLHKN2vpn7v22tivIhwnTzNwd63gBtPQ4cHc0e5gYurnX3P8Zpp4akyknNW29RUMLzztfILp0rNzo9Le8+J8wUV0SZ8p4zY2Y/I6xH6CZ8qNzRzL7l7l+vYLe2j2Zf/0L4sJtFsn4T4TqyY/TvUcI6k0QUUA+RXN4zcAqhtum5hNX7ewKzYjb3ZzP72ABTkolynj3F9uxSNcpRseJJMzvZ3X8DYGanEBaiDVq5As0sgkR3T1QVZyAF0kfmU6HNU/KZ2SjCaO1r6bsYOvYIdW7k0rLZjTCzBY6WbVUUPGzMU2jb5HpzISE94xZ3/3OUkxqndvE3oq/vJHx4/ml0+wxgfcI+PZ7V2gh3Pz6LdjL2BULe82eqdBb4QA+VNM4kFDr4HCG2iB1Qm9kxvm0Jym3uG4QdCQuOU6dpmNllhHPhBsK1ciXwrTTnC1DKx5DJMu+5XFOSlt2OeFIB5Ug5sFAX9XLCqKERAvaZHtVmj9FOJnnKUVtlKcOXVpbpI1kzs18SdtN7HyGAOpOwGHpO0ScWbqt3N0J3T7UbYVYLHK1vVZTvevqqKBKTmd3k7m8sdV+JNt4Z/fc4UqZz5bU5Afhv4FXu/lYzOxA4yt1/GLet4cLM7iFsmvUzwizUjZZ8w5nV7n5oqftitJc6TcNCKeTxhMojKwkVPe72lAGxAuohUqa85/wpyXvSTElahjviSeVZyooVBdobQzhfbEjw3EwDTTN7h7svtSrbsMFCZY7ciG3qyhxZysuTXevuU6Lczd97gsofluFuhNFzUy9wtIyrogwnFjYE+xjbDqbEmr2wsAnU2939wej2XsAydz8gRhuFcv3zupQo5/93hNr8X3T315lZI3BXkmvucGFmswmj0n8hDITsAfzU3d8Qo42jCEHvOYQ9EXLGEQb+YgfnUbs7EoLoY6KvOwHr4s5YWsjve23Ux6MJ16inCSPegy4xm08pH0Mn87znjKckp1GlO+LJ4JUj5cDM3k6UKpDLMXb3C2M0kVmecvS9l0Zfq2rDhqzTRzK2Jfr6rJkdBPyL8P5IxN3/aX3rDXcP9NhiogWOexBS3yYRpnVj18mu8te+2v2akGazgoS/x8i5hFSuB6Pbk4BBV6+CrWlcA6UJxGnLzBrdvQsY7+6/MLPPR9+jy8IW5zIAd59PuHbkPBQN4MWxHTCGEGfmb2z3POEDeSxZp2lEsc7dZvYsoeb2c8BJhM2JFFBXuczznjOWekc8qax+I8EXZJFyYGaXAqOB44H/I5wI74jTRhnylMtShq/OXWahxvCXCOk2Y4BipeaKyWI3wpzMFjhmLctKE1VutLt/Lm0j7t5mZvsCr4nuut/dNxd7ThELgP4pAYXuK+aO6PEvmlkz0cyFmR1JBpuW1Lv8gZS8uwc9kOKhetONZrbQo/J5KSuG7AFsT8jv7yBs3PRsgnZyI/BHE0a5txDlYhPKFiZelKiUjyFSrrznrFgoDj+VcBJKuiOeVFA5Ug7yUgRyX8cAV7v7W0o+uUysius9DwdmNp6wOGg64bW/jrDDW+KNMrJY4Jg1y3jjoGplZhcBK9090S67ee2MBD5OSN+BsAX5D9x9y4BP2raNzNIE8tKcDiUE4wcRBo52Bd7Vfz2TbDXQQIq7fyRBW9tUDCGMLCdZ4JhJmoaZfYtoUaO7ZzaIqIB6iGWZ95wlG2BnPAUnw5tFmyKY2Z8Ii746CYs39q1gn6q23nO1sa07nxXkMXY+K4csFzhmzTLaOKjamdkGQs3uzYTRuqS7cf4fMJJQYQVCqle3u380RhvHAW8iBGCX5h3aACx190FXHzGzR4Dc+3sEYXTTCD9nd6Xf+9Usy4EUM1vj7lMtVAw5jKhiiKeoc25mryaMLh9NSNNodvedkraXFaV8DLGM854zE63inQDkNuy4w92fqGSfpCr81sx2IixuXE0Y+f6/SnbIq7jecxXKz138d+AHSRuyDHcjzPMd4ERCGgru/hczG3RViHLIqzSxysx+TgaVJqqZu48t/ahBObzfCPIfLWxgFqcv26QJpNBASG3qXz50dMp2h4Pc7pYbLdSI7wSSltYdGc1enEpI69piZrFHcsuVppElBdQCgJm9hxA03UA4AS0ws8+6+5UV7ZhUVF6QdJWF0o+j3L3i+YflWHxZjzxvq2AzO9VjbB1cQKGUjN7dCAnb3MeW1QLHDOWXME27cVBNMLOJhIWh+VU+borZTLeZ7ePuf4/a3Jvkv8uFhYKumFVpHou5eHrYM7NzCIHqb6KBlK+RfiDlB4R65H8BbjKzPQkLE+OaBFwJnJtlmkaWFFBLzhcJIwxPQG8ppRWEN7AMU2b2bqDNQ7m8zwKHmtmX3f2uCvYp88WXw0Sq/D7PcDfCPFkucMxElpUmaoGZ/Q/wb8C95JVMJezmG8dngeujKh9GCNCTbr70mbz/jwJOJ/6OwllsbDXcvJqtm6dMJ+QZf5SQo5xojURGFUNw96Lpa9VAOdQCbFsLO1qN+xfV6hze8nLojgW+StgV7Qvu/voSTy1nn6q23nM1sxSbKeS10X83wnlJy1ZF7WW+wDErhV6vLF7DamNmfwWmpKjIkd/W9sD+hN9lmiofhdq+0d0LrvUZ4PG7eHXuQlj1LIPNU/LaGjYb62iEWnLazOz3hMoJEEYsUq36lrqQG7F6O/B9d/+1mc2tYH9UczgGM1vH1g8dk80sV9kg9+Fj0AuDrO9uhAd7BrsRuvtThOC8auRVmti136LOcYS83HrzIGExYRbB72Fs3SDmdWaWaLfd6INbzoio3VfGaUPBdCpNhPf7jtG/R0mep7yQaGOd6PbfgJ8TFiPXFQXUw5yZTQYmuPtno8U4xxIutrcRtpyW4a3DzH5AGEH8n2gESgFt7Tgpw7Y+TQi6zgO+aCk26CnTAsesZLohRQ3YCKwxsz/Qd/FlrF1ybYDddoHYATWhvJoT3ltdwD8IufpSRpbx5imRYbOxjgJq+Q7wBehdvX41gJlNi469Y6AnyrDwHqAF+Ia7P2tmuxFyJaUGZFApIb+tLD9IlWWBYxaiike3EEbh0yzirBW/if6lldluu+6etKKEpJPZ5il5hs3GOsqhHubM7G53P2iAY33yqmX4MbN9gEfcfbOZvYlQ93mxuz9byX5J/chb4PgR4BfAN6uhZKeZ/TFmVYmaZWZNwB7u/tcUbfwSmJ1FBYYsNomRZLLaPCWvvcMIixLrfmMdBdTDnJm1u/vkuMdkeDCzNYSRp0nA7wkjWfu7+9sq2C2pA1kvcMyamX0T2Bf4JXkj6vVWh9rM3kFYbLydu+9lZlOBC32Qu+Sa2VLC6ONYMtptN4tNYiSdtJun5JXgy1WEyi1W/Wu9fjBSyof82cw+5u7/m3+nmX2ErVuky/DVE+W8vRP4jrsvMLOKlcyTZMzsBOBP7r6x0n2B8ixwLINdCBta5I9S12Md6rnAEYRRYNx9jZnFSbn4Rhn6lHqTGIkv481TciX4XgOsJdrqm7DAsS4XjGqEepiLStpcA7zM1gB6GmFhzmnu/q9K9U0qz8xuJ+TSfxF4h7v/o1iakFQnM1sMHEkIEG+O/t1SqRHhqPThZsKCM5U+rCAzu93dX29md7n7IdF9a9NsDR210QC8191jL243s9XAu/ttEnNlvZUsrDZm9i2iwDerzVOyLMFX7TRCPcy5++PA0VGh9VyQdK27/7GC3ZLq8SHgbOArUTC9F/DTCvdJYnL3mQDRNsLvAr4LvIoKXQNqofRhNOW9gDBa58AthBrZj1S0Y9m728zeBzSY2b6EzXVWDvbJZjYO+AQwkZAStjy6/VlCxY8k1aKy3CRGBqlMm6dkWYKvqmmEWkSkzpnZ+4E3AAcDTxGCw5vd/baKdqyKmdly4GfAT6K73g+c6e4zKter7JnZaMIMVG6L9d8DF7n7S4N8/q+BZwipAW8GdibMcM5x9zUp+lW2TWKk/AqU4PsTIe2satZJZE0BtYgMKBqx+ipwIGELYADcfe+KdUpiM7OngL8DlwLXu/v6yvao+pnZGnefWuq+WmVmowizT5MJI4Y/dPe423v3qQYVpXk8RagYsiFBW4cD/8ylGprZTMK24w8Bc7VZS+0wszZgPKGyx0rCB667syirWK2qftpNRCrqx8D3CbmuxxM2afhJ0WdI1XH38cCHCR+KvmJmd0QbccjAnjKz95tZQ/Tv/YQc9HqxiJDbug54K8kXF/ZWbHD3buAfSYLpyA8I63kwszcCFxPOOc8RFrBKjXD3FuBwtr6vPk0ognCdmdVlfXeNUIvIgMzsTnc/rN8o1M3u/oZK900GL8pzPQY4jpD6MZ4w/dpa0Y5VMTPbA7iEsIjKCaNsc7LcLKeS+v1NNwJ3JFn0F+16lysraISc2Y0k20HzL7nqHmb2XeBJd58b3a6b2YHhJm0JvlqhRYkiUsxLZjYCeMDMPknYPesVFe6TxHdL3r9L6nBhXebc/WEgdg3lGpI/styVt5V8LO7ekFmPwsLIxij15M3AWXnHFK/UkIxL8NUEvUFFpJhzgNGElf9fJtTk1ahmjcmVQDOzHdy90LbfEjGz/ypy2N29YtuiZ+x1ZvZ89H8DmqLblSxduAS4Mcr530Qo74iZTaZOt6uuY5OAK4FzsyrBV+2U8iEiUufM7Cjgh8AYd9/DzF4H/Lu7/0eFu1Z1zOzTBe7egbA1erO7jxniLg0rZnYksBtwXe7Dn5ntR3jvrq5o50SKUEAtItsws98UO55kO2GpnGiDnncBv8nbvEMb9JRgZmOBOYRg+hfAN939icr2SkSqkVI+RKSQo4B/EqZgbydMA0sNc/d/9suT7a5UX6qdme0CfAo4k1AN49B6rp8rIukpoBaRQl4JzADOAN4HXAsscfd7KtorSeqfZnY04NFWwLOB+yrcp6pkZl8H3kko03awu79Q4S6JSA1QyoeIFBXtWHYG8HXgQndfUOEuSUxmNh6YB0wnzDZcRygBV091lTNhZj3AZkLt9fwLZCUX64lIlVNALSIFRYH02wnB9CTgN8CP3L2jkv0SERGpNgqoRWQbZrYIOAj4HXCFu99d4S5JAsOoBJyISEUpoBaRbUTT3rl6xZr2rlEqASciMjQUUIuIDAMqASciUj6q8iEiUsdUAk5EpPwUUIuI1CmVgBMRGRpK+RARqVMqASciMjQUUIuIiIiIpDCi0h0QEREREallCqhFRERERFJQQC0iIiIikoICahGROmBmXzSze8xsrZmtMbPXm9k5ZjZ6EM8d1ONERKQwLUoUEalxZnYU8C3gTe6+2czGA9sBK4Fp7v5UieevH8zjRESkMI1Qi4jUvt2Ap9x9M0AUGL8LeBVwvZldD2Bm3zezVdFI9gXRfbMLPO4tZnabma02s1+ambYoFxEpQiPUIiI1Lgp4bwFGAyuAn7v7jf1Hns1sF3d/2swagD8As919bf7jotHtq4G3uvuLZvY5YHt3v7ACP5qISE3QTokiIjXO3V8ws8OANwDHAz83s/8s8ND3mNlZhHP/bsCBwNp+jzkyuv9WM4OQOnJbufouIlIPFFCLiNQBd+8GbgBuMLN1QGv+cTPbC/gMcLi7P2NmC4FRBZoyYLm7n1HeHouI1A/lUIuI1Dgz29/M9s27ayrwELABGBvdNw54EXjOzCYAb817fP7j/gQcY2aTo7ZHm9l+Zey+iEjN0wi1iEjtGwMsMLOdgC6gHTgLOAP4nZk95u7Hm9ldwD3Ag8Ctec+/rN/jPggsMbPto+PnAX8bmh9FRKT2aFGiiIiIiEgKSvkQEREREUlBAbWIiIiISAoKqEVEREREUlBALSIiIiKSggJqEREREZEUFFCLiIiIiKSggFpEREREJAUF1CIiIiIiKfx/K56ceUfEFXAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#Code task 16#\n", + "#Create a seaborn boxplot of the ticket price dataframe we created above,\n", + "#with 'state' on the x-axis, 'Price' as the y-value, and a hue that indicates 'Ticket'\n", + "#This will use boxplot's x, y, hue, and data arguments.\n", + "plt.subplots(figsize=(12, 8))\n", + "sns.boxplot(x='state', y='Price', hue='Ticket', data=ticket_prices)\n", + "plt.xticks(rotation='vertical')\n", + "plt.ylabel('Price ($)')\n", + "plt.xlabel('State');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Aside from some relatively expensive ticket prices in California, Colorado, and Utah, most prices appear to lie in a broad band from around 25 to over 100 dollars. Some States show more variability than others. Montana and South Dakota, for example, both show fairly small variability as well as matching weekend and weekday ticket prices. Nevada and Utah, on the other hand, show the most range in prices. Some States, notably North Carolina and Virginia, have weekend prices far higher than weekday prices. You could be inspired from this exploration to consider a few potential groupings of resorts, those with low spread, those with lower averages, and those that charge a premium for weekend tickets. However, you're told that you are taking all resorts to be part of the same market share, you could argue against further segment the resorts. Nevertheless, ways to consider using the State information in your modelling include:\n", + "\n", + "* disregard State completely\n", + "* retain all State information\n", + "* retain State in the form of Montana vs not Montana, as our target resort is in Montana\n", + "\n", + "You've also noted another effect above: some States show a marked difference between weekday and weekend ticket prices. It may make sense to allow a model to take into account not just State but also weekend vs weekday." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Thus we currently have two main questions you want to resolve:\n", + "\n", + "* What do you do about the two types of ticket price?\n", + "* What do you do about the state information?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.6.4 Numeric Features" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Having decided to reserve judgement on how exactly you utilize the State, turn your attention to cleaning the numeric features." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2.6.4.1 Numeric data summary" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countmeanstdmin25%50%75%max
summit_elev330.04591.8181823735.535934315.01403.753127.57806.0013487.0
vertical_drop330.01215.427273947.86455760.0461.25964.51800.004425.0
base_elev330.03374.0000003117.12162170.0869.001561.56325.2510800.0
trams330.00.1727270.5599460.00.000.00.004.0
fastEight164.00.0060980.0780870.00.000.00.001.0
fastSixes330.00.1848480.6516850.00.000.00.006.0
fastQuads330.01.0181822.1982940.00.000.01.0015.0
quad330.00.9333331.3122450.00.000.01.008.0
triple330.01.5000001.6191300.00.001.02.008.0
double330.01.8333331.8150280.01.001.03.0014.0
surface330.02.6212122.0596360.01.002.03.0015.0
total_chairs330.08.2666675.7986830.05.007.010.0041.0
Runs326.048.21472446.3640773.019.0033.060.00341.0
TerrainParks279.02.8207892.0081131.01.002.04.0014.0
LongestRun_mi325.01.4332311.1561710.00.501.02.006.0
SkiableTerrain_ac327.0739.8012231816.1674418.085.00200.0690.0026819.0
Snow Making_ac284.0174.873239261.3361252.050.00100.0200.503379.0
daysOpenLastYear279.0115.10394335.0632513.097.00114.0135.00305.0
yearsOpen329.063.656535109.4299286.050.0058.069.002019.0
averageSnowfall316.0185.316456136.35684218.069.00150.0300.00669.0
AdultWeekday276.057.91695726.14012615.040.0050.071.00179.0
AdultWeekend279.064.16681024.55458417.047.0060.077.50179.0
projectedDaysOpen283.0120.05300431.04596330.0100.00120.0139.50305.0
NightSkiing_ac187.0100.395722105.1696202.040.0072.0114.00650.0
\n", + "
" + ], + "text/plain": [ + " count mean std min 25% 50% \\\n", + "summit_elev 330.0 4591.818182 3735.535934 315.0 1403.75 3127.5 \n", + "vertical_drop 330.0 1215.427273 947.864557 60.0 461.25 964.5 \n", + "base_elev 330.0 3374.000000 3117.121621 70.0 869.00 1561.5 \n", + "trams 330.0 0.172727 0.559946 0.0 0.00 0.0 \n", + "fastEight 164.0 0.006098 0.078087 0.0 0.00 0.0 \n", + "fastSixes 330.0 0.184848 0.651685 0.0 0.00 0.0 \n", + "fastQuads 330.0 1.018182 2.198294 0.0 0.00 0.0 \n", + "quad 330.0 0.933333 1.312245 0.0 0.00 0.0 \n", + "triple 330.0 1.500000 1.619130 0.0 0.00 1.0 \n", + "double 330.0 1.833333 1.815028 0.0 1.00 1.0 \n", + "surface 330.0 2.621212 2.059636 0.0 1.00 2.0 \n", + "total_chairs 330.0 8.266667 5.798683 0.0 5.00 7.0 \n", + "Runs 326.0 48.214724 46.364077 3.0 19.00 33.0 \n", + "TerrainParks 279.0 2.820789 2.008113 1.0 1.00 2.0 \n", + "LongestRun_mi 325.0 1.433231 1.156171 0.0 0.50 1.0 \n", + "SkiableTerrain_ac 327.0 739.801223 1816.167441 8.0 85.00 200.0 \n", + "Snow Making_ac 284.0 174.873239 261.336125 2.0 50.00 100.0 \n", + "daysOpenLastYear 279.0 115.103943 35.063251 3.0 97.00 114.0 \n", + "yearsOpen 329.0 63.656535 109.429928 6.0 50.00 58.0 \n", + "averageSnowfall 316.0 185.316456 136.356842 18.0 69.00 150.0 \n", + "AdultWeekday 276.0 57.916957 26.140126 15.0 40.00 50.0 \n", + "AdultWeekend 279.0 64.166810 24.554584 17.0 47.00 60.0 \n", + "projectedDaysOpen 283.0 120.053004 31.045963 30.0 100.00 120.0 \n", + "NightSkiing_ac 187.0 100.395722 105.169620 2.0 40.00 72.0 \n", + "\n", + " 75% max \n", + "summit_elev 7806.00 13487.0 \n", + "vertical_drop 1800.00 4425.0 \n", + "base_elev 6325.25 10800.0 \n", + "trams 0.00 4.0 \n", + "fastEight 0.00 1.0 \n", + "fastSixes 0.00 6.0 \n", + "fastQuads 1.00 15.0 \n", + "quad 1.00 8.0 \n", + "triple 2.00 8.0 \n", + "double 3.00 14.0 \n", + "surface 3.00 15.0 \n", + "total_chairs 10.00 41.0 \n", + "Runs 60.00 341.0 \n", + "TerrainParks 4.00 14.0 \n", + "LongestRun_mi 2.00 6.0 \n", + "SkiableTerrain_ac 690.00 26819.0 \n", + "Snow Making_ac 200.50 3379.0 \n", + "daysOpenLastYear 135.00 305.0 \n", + "yearsOpen 69.00 2019.0 \n", + "averageSnowfall 300.00 669.0 \n", + "AdultWeekday 71.00 179.0 \n", + "AdultWeekend 77.50 179.0 \n", + "projectedDaysOpen 139.50 305.0 \n", + "NightSkiing_ac 114.00 650.0 " + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 17#\n", + "#Call ski_data's `describe` method for a statistical summary of the numerical columns\n", + "#Hint: there are fewer summary stat columns than features, so displaying the transpose\n", + "#will be useful again\n", + "ski_data.describe().T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Recall you're missing the ticket prices for some 16% of resorts. This is a fundamental problem that means you simply lack the required data for those resorts and will have to drop those records. But you may have a weekend price and not a weekday price, or vice versa. You want to keep any price you have." + ] + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 82.424242\n", + "2 14.242424\n", + "1 3.333333\n", + "dtype: float64" + ] + }, + "execution_count": 106, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "missing_price = ski_data[['AdultWeekend', 'AdultWeekday']].isnull().sum(axis=1)\n", + "missing_price.value_counts()/len(missing_price) * 100" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Just over 82% of resorts have no missing ticket price, 3% are missing one value, and 14% are missing both. You will definitely want to drop the records for which you have no price information, however you will not do so just yet. There may still be useful information about the distributions of other features in that 14% of the data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 2.6.4.2 Distributions Of Feature Values" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that, although we are still in the 'data wrangling and cleaning' phase rather than exploratory data analysis, looking at distributions of features is immensely useful in getting a feel for whether the values look sensible and whether there are any obvious outliers to investigate. Some exploratory data analysis belongs here, and data wrangling will inevitably occur later on. It's more a matter of emphasis. Here, we're interesting in focusing on whether distributions look plausible or wrong. Later on, we're more interested in relationships and patterns." + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA28AAAJOCAYAAAAgSD/bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACQeklEQVR4nOzdebwcVZn/8c/XsO9gJEKIBDWiIIqKCOMWQWRzhHFEQURwcNARBplBJaijuKDR36AouKEgKGsUEUaUReCKqCyCILsECCQkEHYIIhp4fn+c06Rup/ve7nt7qer7fb9e/brdVdVVT/V9+vQ5VadOKSIwMzMzMzOzcntOvwMwMzMzMzOz0bnxZmZmZmZmVgFuvJmZmZmZmVWAG29mZmZmZmYV4MabmZmZmZlZBbjxZmZmZmZmVgFuvJnZciR9V9L/jHMdMyUtGMP7TpT0xfFs28zMzMZH0qaS/iTpcUkH92ibn5T0gxaXPULSyd2OqWzceCsZSXtLuqAL650n6a2dXq9Vn6T9JF1WnBYRH46IL/QrJrMqlFk+0GCdUoV8twnpE8BQRKwZEd8cywokDUn6YN20kPSEpCWFxycAIuJLEfHBxmtre9sD+b1aod8B2HARcQpwSu21pABmRMTc/kVlg0pSpcoASStExNJ+x2Fm1isu96yPNgZO79K6X+m67dj4zJtZBUmaJemnddO+IembktaWdLykRZLukfRFSZPyMvtJ+p2kr0t6CDgD+C6wbT7y9UhebtgZBUm7SbpW0mOSbpe0U57+AUk35y4Vd0j60Bj25VWSrsnrOANYpTBvpqQFkg6TdC/wQ0krSzpa0sL8OFrSynXLf1LSA/mo297txmRm1iuSfgy8APi/2hmIfGZif0l3Axfn5X4i6V5Jj0q6VNLmhXWcKOnbkn6V1/E7Sc/P5ePDkm6R9KrC8ofl34fHJd0qafue77iVmqSLgbcAx+ac+mjuQvmYpPmSjigsu4qkkyU9KOkRSVdJmiLpSOCNhXUc28J2h3WFlPR+SXfldf9Pg7NpK0n6Uc7lGyVtld+33PeqM59M/034xlujAqxBxXXYtTs5cT4u6c9Kp32Pz0n6q7yeX0taNy87PRfCH8jJ/rCkD0t6bX7/I8VkVqELm6RL8+TrcuK9Z5R9eXuuYD8i6feSXtFkuecoVf5vz1+GOZLWy/POk3RQ3fLXSXpnmx+tdddpwC6S1gJQapy9GzgVOAlYCrwYeBXwNqDYBeF1wB3A+sD7gA8Df4iINSJinfoNSdoa+BHwcWAd4E3AvDx7MfB2YC3gA8DXJb261Z2QtBLwc+DHwHrAT4B/rVvs+XnexsABwKeAbYAtgVcCWwOfrlt+MjAV2Bc4TtKmrcZkpfJaSTflcvOHuYKwrqRfSLo/T/+FpI1qb8hl6B25LL5Thca7pH9TOtjwsKTzJW08WgCSXirpQkkP5d+Id4+wbMMyWCMcbBnbx2KDJCL2Ae4G/jki1gDm5FlvBl4G7Jhf/wqYQSq7r6HQSyd7N6ksnAw8BfwhLzcZ+CnwNUjXMQEHAa+NiDXz+ud1YdeswiJiO+C3wEE5L68D3k+qB+wK/Iek3fPi+wJrA9OA55LqFU9GxKeK64iIYfXL0UjaDPg2sDewQd7G1LrF3kE6O7gOcA5wbI5/2PcqIr7azrbLbEI33sZZgP0rsAPwEuCfSYXqJ0mF5HOA+gs7X0cqdN8DHE2qgL4V2Bx4t6Q3128gIt6Un74yJ94ZI+zLq4ETgA+RvjjfA85RPiNR52Bgd9IPw4bAw8C38rxTgb0K692MVGk+t9m2rfci4i7Sj/LuedJ2wF+BO4GdgUMi4omIWAx8Hdiz8PaFEXFMRCyNiCdb2Nz+wAkRcWFEPBMR90TELTmOcyPi9kh+A1xAOsrWqm2AFYGjI+IfEfFT4Kq6ZZ4BPhsRT+V49wY+HxGLI+J+4HPAPnXv+Z+8/G9Iudu0wm2ltjepXH4Rqaz9NKl8/SGpXHoB8CT5x1rS6sA3gZ1zmf5PwLV53u6kMvqdwPNIFYrTRtp4Xt+FpHJxfVLZ+G0VzngUlh2pDB7pYItZM0fkcvxJgIg4ISIej4ingCOAV0pau7D8WRFxdUT8DTgL+FtE/Cginib1sqideXsaWBnYTNKKETEvIm7v2V5ZJUXEUERcn+sBfyaVa7W66z9I5d6LI+LpnIePjbLKa/KBrtpjxwbLvAv4v4i4LCL+DnwGiLplLouIX+Y8/zHpoO5Am9CNN8ZXgB0TEfdFxD2kSsAVEfGnXKiexbJCsuYLEfG3iLgAeAI4LVc+a++vX75d/w58LyKuyF+ck0hH3rZpsOyHgE9FxILCj8C7lK5/OgvYsnBEem/gZ3k5K5diQ/u9+fXGpMbQolqBSKpErl943/w2tzMNaPi9kLSzpMvzWYlHgF1IBzBatSFwT0QUC+O76pa5P1dGiu+5q275DQuvH46IJ0aYb9VxbETMj4iHgCOBvSLiwYg4MyL+GhGP5+nFg1/PAC+XtGpELIqIG/P0DwFfjoib8/VDX2J4WdfI24F5EfHDfLDjGuBMUoWiXtMyuNnBloi4fAyfiU0cz5bVkiZJmp17zDzGsgPNxfL2vsLzJxu8XgMgX2d0COm3f7Gk0yW5jLQRSXqdpEtyr4dHSWfXavn3Y+B84HSlyxm+KmnFUVb56ohYp/A4v8EyG1L4HkTEX4EH65a5t/D8r8Aqqtj1/O2a0I23cRZgLRWS41i+XRsDhxaPYpAq3Y32Z2PgrMJyN5MaslNyZehclp2p2ZPlu2ZYOfwEmJm7jP0LqfE2n1RhnFwoENeKiOKZgvqjVvWv680nnfkYJp9ROBP4X1LurAP8ElAb+7AImCqp+J4XjBLfQlIOF5dfWHi9bj5j0my+VUfxQMNdwIaSVpP0PaVrIB4DLgXWkTQpN9rfQ6pULJJ0rqSX5vdvDHyjUO49RMrV+i44RRsDr6srV/cmdc1ttOxIZXCjgy1mNY3K4eK09wK7kXrsrA1Mz9PbKW+XrTji1Ih4AylvA/jKWNZjE8qppG6J0yJibdL18gLIPWc+FxGbkXo8vJ3UxRJGr2OMZBFQ7Ba/KukMX6vGs+3SmtCNN2hagD0BrFZYrNEPddnMB46sO4qxWkQ06hY0n9StqLjsKvksIKRT4XtJ2hZYFbikR/tgbchdBodIXcjuzGcUFpG6Lh4laS2l6xtf1KhbbsF9wEb5+rNGjgc+oHQ96HMkTc0V4pVIZ67vB5ZK2pl0fV07/kC6Pu9gSSsoXVu59SjvOQ34tKTnSZpM6kZRf5+Xz0laSdIbST8iP2kzLiuHaYXntUb4ocCmwOsiYi3SNZiwrBJxfkTsQLo+4hbg+3n+fOBDdeXeqhHx+xG2Px/4Td171oiI/2iy7EhlcKODLWY19wEvHGH+mqQDcw+S6idfGuuGlO7dtV0+APc30gHkp8e6Ppsw1gQeioi/KV0L/97aDElvkbRF7hL+GKkbZS2nRsvtkfwU+GdJ/5TrKJ+jvQMW49l2aU3oxtsIBdi1pOsT1pP0fNLZuX5pNfG+D3w4n9aWpNUl7SppzQbLfhc4stZdKFeCdyvM/yWpMft54IyIeGac+2DdcyrpSGyxIvh+UsPqJtL1jD8lVWSbuRi4EbhX0gP1MyPiSvJgJMCjwG+AjfNZ2oNJF9c/TCrIz2kn+NyH/Z3Afnkd7wF+Nsrbvgj8EfgzcD2pO1rxXlv35nUtJJ01/nDka/Sscg6UtJHSgEqfJF23syaprH4kT/9sbWGlgaPekc+8PgUsYVkF4rvA4bXr1ZRGZd1jlO3/AniJpH0krZgfr5X0sgbLjlgGNzrYMqZPxAbVl0kHpR6hcbfcH5HOPt9DKtvH0+V2ZWA28ACpvFyf9P0yG8lHgM9Lepx00HROYd7zSXWNx0i9uX7DsoOq3yBdmvOwhg/SdJ2G3+ft6PoN5m7v/0kakGQR8DhpoLRWL+V59nsl6WMtvqf8ImLCPoBXAFeSkuEh0g/1hqShys8gJeGfgf8CFhTeNw94a+H1yaQLi2uvPwj8Oj+fTjqjt0Jh/gJgZt37P52f70e6+LI278OkhH0EePco+7MTabCHR/J7fgKsWR8zqdH+38Cted9vB75Ut67jc9yv7ff/yQ8/Wn0AM4vfVT+q+8hl1uGkiuojpFFUV8tl9BCpYfYX0rVsQbpv6QakSsOj+T1DwGaFde5DavA/RjpTdkILcWxK6kp+P+msx8XAlnneicAXC8s2LYML2w/g4/3+fP3www8/qvYgXWK0FNik37H086H8YZiZVZ6kmcDJEbHRKIuamZlZyUn6Z+AiUnfJo0ijt786JnADZkJ3mzSz7pP0grquEcVH/eAkZmZmZjW7kS6DWEi65daeE7nhBvjMW5VI+iSN+6X/NiJ27nU8ZmZVlwe1+VWjeZFuTGtmZlYabryZmZmZmZlVQCluYjd58uSYPn36s6+feOIJVl999eZvKKmqxg3ljf3qq69+ICKe1+84RjIo+duOQd/HTu1f2fO3PndrBv3/C97H0ZQ9d2Fi52+9ibjP0Hy/y56/zt3hJuJ+jyt3+z1iSkTwmte8JoouueSSqKKqxh1R3tiBP0YJcnSkx6DkbzsGfR87tX9lz9/63O30/peZ93FkZc/dmOD5W28i7nNE8/0ue/46d4ebiPs9ntwddcASSSdIWizphsK09SRdKOm2/HfdwrzDJc2VdKukHVtugpqZmZmZmVlTrYw2eSLp3jVFs4CLImIGafjOWQCSNgP2BDbP7/l2vtu6mZmZmZmZjcOo17xFxKWSptdN3o10M1xIN04dAg7L00+PiKeAOyXNBbYG/jCW4KbPOrft98ybvetYNmXWce3mr3PXyuL6ex5lP+evVVS7+evctbJw2WutGOuAJVMiYhFARCyStH6ePhW4vLDcgjxtOZIOAA4AmDJlCkNDQ8/OW7JkCUNDQxy6xdK2Ayuup9dqcVdRlWM3MzMzM5sIOj3apBpMa3gvgog4DjgOYKuttoqZM2c+O29oaIiZM2e2ffQBYN7eM0ddpltqcVdRlWM3MzMzM5sIWrnmrZH7JG0AkP8uztMXANMKy21EuiO6mZmZmZmZjcNYG2/nAPvm5/sCZxem7ylpZUmbADOAK8cXopmZmZmZmY3abVLSaaTBSSZLWgB8FpgNzJG0P3A3sAdARNwoaQ5wE7AUODAinu5S7GZmZmZmZhNGK6NN7tVk1vZNlj8SOHI8QZmZmZmZmdlwY+02aWZmZmZmZj3kxpuZWQlJOkHSYkk3FKatJ+lCSbflv+sW5h0uaa6kWyXt2J+ozczMrJvceDMzK6cTgZ3qps0CLoqIGcBF+TWSNgP2BDbP7/m2pEm9C9XMzMx6wY03M7MSiohLgYfqJu8GnJSfnwTsXph+ekQ8FRF3AnOBrXsRp5mZmfVOp2/SbWZm3TMlIhYBRMQiSevn6VOBywvLLcjTliPpAOAAgClTpjA0NLT8RlaFQ7dY2lZgjdZTZkuWLKlczO2aCPtoZjbRuPFmZlZ9ajAtGi0YEccBxwFstdVWMXPmzOWWOeaUsznq+vZ+Hubtvfx6ymxoaIhG+z5IJsI+mplNNG68mZXE9Fnntv2eebN37UIkVmL3Sdogn3XbAFicpy8AphWW2whY2PPozMzMrKt8zZuZWXWcA+ybn+8LnF2YvqeklSVtAswAruxDfGZmZtZFPvNmZlZCkk4DZgKTJS0APgvMBuZI2h+4G9gDICJulDQHuAlYChwYEU/3JXAzMzPrGjfezMxKKCL2ajJr+ybLHwkc2b2IzMzMrN/cbdLMzMzMzKwC3HgzMzMzMzOrADfezMzMzMzMKsCNNzMzM+sYSdMkXSLpZkk3Svponr6epAsl3Zb/rlt4z+GS5kq6VdKO/YvezKzc3HgzMzOzTloKHBoRLwO2AQ6UtBkwC7goImYAF+XX5Hl7ApsDOwHfljSpL5GbmZWcG29mZmbWMRGxKCKuyc8fB24GpgK7ASflxU4Cds/PdwNOj4inIuJOYC6wdU+DNjOrCN8qwMzMzLpC0nTgVcAVwJSIWASpgSdp/bzYVODywtsW5GmN1ncAcADAlClTGBoaWm6ZKavCoVssbTnGRuuomiVLlgzEfrRrou63TWxuvJmZmVnHSVoDOBM4JCIek9R00QbTotGCEXEccBzAVlttFTNnzlxumWNOOZujrm+9ejNv7+XXUTVDQ0M0+iwG3UTdb5vY3G3SzMzMOkrSiqSG2ykR8bM8+T5JG+T5GwCL8/QFwLTC2zcCFvYqVrMiSSdIWizphsI0D7ZjpeHGm5mZmXWM0im244GbI+JrhVnnAPvm5/sCZxem7ylpZUmbADOAK3sVr1mdE0kD5xR5sB0rDTfezMzMrJNeD+wDbCfp2vzYBZgN7CDpNmCH/JqIuBGYA9wEnAccGBFP9yd0m+gi4lLgobrJHmzHSsPXvJmZmVnHRMRlNL6ODWD7Ju85Ejiya0GZjU8pB9sBD7hTVePZZzfebMKSNA94HHgaWBoRW0laDzgDmA7MA94dEQ/3K0YzMzMrrb4OtgMecKeqxrPPbrzZRPeWiHig8LrWr322pFn59WH9Cc2sOqbPOret5efN3rVLkZiZddx9kjbIZ9082I711cA13lyBsHHaDZiZn58EDOHGm5mZ2URWG2xnNssPtnOqpK8BG+LBdqwHBq7xZtaGAC6QFMD3cpeGZv3ahxmp73qtH3O7/dbHol99xAe9f/qg75+ZmTUm6TTSQdzJkhYAnyU12uZI2h+4G9gD0mA7kmqD7SzFg+1YD7jxZhPZ6yNiYW6gXSjpllbfOFLf9Vo/5v3aPAs8Fv3q6z7o/dMHff/MzKyxiNirySwPtmOlMK7Gmwd8sCqLiIX572JJZ5GG923Wr72U3E3YzMzMbOLoxH3e3hIRW0bEVvl1wxsZmpWJpNUlrVl7DrwNuIHmN5E1MzMzM+urbnSb9IAPVgVTgLMkQfoenBoR50m6igb92s3MzMzM+m28jTcP+FBQ5UEOqhz7WETEHcArG0x/kCb92s3MzMzM+mm8jTcP+FBQ5UEOqhy7tc7XyJmZmZlV17iueSsO+AAMG/ABoAoDPpiZmZmZmVXBmBtvHvDBzKw/JM2TdL2kayX9MU9bT9KFkm7Lf9ftd5xmZmbWWeM58zYFuEzSdaS7yZ8bEeeRbmS4g6TbgB3yazMz6yyP9GtmZjbBjPmaNw/4YGZWKh7p18zMbMB141YBZmbWXV0Z6bdmyqp0fbTffo9uOxFG2J0I+2hmNtG48WZmVj1dGem35phTzuao67v789DJkX7HYiKMsDsR9tHMbKKZ8I03D51uZlVTHOlX0rCRfvNZN4/0a2ZmNoDGdasAMzPrLY/0a2ZmNnFN+DNvZmYVMwU4SxKkMvzUiDhP0lXAHEn7A3cDe/QxRjMzM+sCN97MzCrEI/2amZlNXO42aWZmZmZmVgFuvJmZmZmZmVWAu02aWVPNRmM9dIul7NdgnkdjNTMzM+seN95KyLcvMDMzMzOzeu42aWZmZmZmVgFuvJmZmZmZmVWAu02aWce02+UX3O3XzMzMrFVuvA0AXyNnZtZ7LnvNzKzX3HgzMzNjbGeOzczMesmNtwmoUQWl2dDvNT5ibGZmZmbWXx6wxMzMzMzMrALceDMzMzMzM6sAd5vsgUG4jsIX5puZmZmZ9Zcbb2ZmZj3QiwN5PnBmZjbY3G3SzMzMzMysAnzmzcz6yl1yrVtGyq3RRtg1MzMrIzfe2uTKgFl/ubFnZmZmE5Ubb2Zm1nODMJCTmZlZr7nxZl3hsyNmZmZmZp3lxpuZmZlZG3yA0sz6xY03MzOzAVFsVLRyHbYbFWZm1eLGm5lZwfRZ57Y9+JArwGZmZtYLXbvPm6SdJN0qaa6kWd3ajlmnOXetypy/VlXOXasy56/1SlfOvEmaBHwL2AFYAFwl6ZyIuKkb2zPrFOfu4JlIoxo6f62qnLvjc/09j7Z9qyL3GOgc56/1Ure6TW4NzI2IOwAknQ7sBjiJreycu1Zlzl+rKuduyXmQlhE5fye4dr8fJ+60+pi31a3G21RgfuH1AuB1xQUkHQAckF8ukXRrYfZk4IEuxdY1B1c0buh/7PpK01kb9zAMaCF3YTDztx39zpdua3f/qpS/o+RuzUD/f2Hwcxha28cq5S50J39H+Aw6pgfbaDufux1TLz5Xmu936fK3W2Vvjz7nbhv48rjeW74y9tztVuNNDabFsBcRxwHHNXyz9MeI2KobgXVTVeOGasfeYaPmLgxm/rZj0Pexwvs3rrL32ZVUd/9b5n0snXGXvc+uqFr73RETcZ+hVPvtsnccJuJ+j2efuzVgyQJgWuH1RsDCLm3LrJOcu1Zlzl+rKueuVZnz13qmW423q4AZkjaRtBKwJ3BOl7Zl1knOXasy569VlXPXqsz5az3TlW6TEbFU0kHA+cAk4ISIuLGNVYx4WrnEqho3VDv2julA7sLE+CwHfR8ruX8dyl+o6P63yftYIh3MXajQfnfQRNxnKMl+u+wdt4m432PeZ0Us16XczMzMzMzMSqZrN+k2MzMzMzOzznHjzczMzMzMrAJK1XiTtJOkWyXNlTSr3/EASJon6XpJ10r6Y562nqQLJd2W/65bWP7wHP+tknYsTH9NXs9cSd+U1GhY2fHGeoKkxZJuKEzrWKySVpZ0Rp5+haTpnd6HqitjDrdC0jRJl0i6WdKNkj6ap5cy18dC0iRJf5L0i/x6YPatU6qavzVVKq9b5XK9dVXP37FoVnZPBPVlepWMlqtKvpnn/1nSq/sRZye1sM8zJT2ay+9rJX2mH3F2UqPyu27+2P7PEVGKB+kCz9uBFwIrAdcBm5UgrnnA5LppXwVm5eezgK/k55vluFcGNsn7MynPuxLYlnQvkF8BO3ch1jcBrwZu6EaswEeA7+bnewJn9Pv/U6ZHWXO4xdg3AF6dn68J/CXnSClzfYz7+N/AqcAv8uuB2bcOfT6Vzd/CPlSmvG5jn1yut/Y5VT5/x7jfDcvufsfVo30fVqZX5dFKrgK75O+pgG2AK/oddw/2eWbV/pct7Pdy5Xcn/s9lOvO2NTA3Iu6IiL8DpwO79TmmZnYDTsrPTwJ2L0w/PSKeiog7gbnA1pI2ANaKiD9E+m/9qPCejomIS4GHuhhrcV0/BbYftDMP41SlHB4mIhZFxDX5+ePAzcBUSprr7ZK0EbAr8IPC5IHYtw6qbP6OotL/Z5frLRvU/B3RCGX3QGtSpldFK7m6G/CjSC4H1snf46qaqN/PRuV30Zj+z2VqvE0F5hdeL6AcBVAAF0i6WtIBedqUiFgEqeAE1s/Tm+3D1Py8fnovdDLWZ98TEUuBR4Hndi3y6ilrDrcld5t6FXAF1cr1kRwNfAJ4pjBtUPatUwYhf6teXrfK5fryBiF/x6Wu7B50R7N8mV4VreTqoOVzq/uzraTrJP1K0ua9Ca2vxvR/7sp93sao0ZG+MtzH4PURsVDS+sCFkm4ZYdlm+1DGfRtLrGXcjzKp/OcjaQ3gTOCQiHhshAPwlcl1SW8HFkfE1ZJmtvKWBtNKuW8dNgj7N6jldasmcrk+KPsxJvVld7/j6aYxlOll00quDlo+t7I/1wAbR8QSSbsAPwdmdDuwPhvT/7lMZ94WANMKrzcCFvYplmdFxML8dzFwFunU732105r57+K8eLN9WJCf10/vhU7G+ux7JK0ArM3Ip4MnmlLmcKskrUj68T8lIn6WJ1cp15t5PfAOSfNIXTW2k3Qyg7FvnVTp/IWBKK9b5XJ9eZXP37FqUnYPsmZlelW0kquDls+j7k9EPBYRS/LzXwIrSprcuxD7Ykz/5zI13q4CZkjaRNJKpAunz+lnQJJWl7Rm7TnwNuCGHNe+ebF9gbPz83OAPfPoXZuQjhhcmbu1PC5pm3wtwfsL7+m2TsZaXNe7gIvz9ROWlC6HW5X/18cDN0fE1wqzqpTrDUXE4RGxUURMJ/1PLo6I9zEA+9Zhlc1fGJjyulUu15dX6fwdqxHK7oE1QpleFa3k6jnA+/NohNsAj9a6SlfUqPss6fm1620lbU1qozzY80h7a2z/51ZGNenVgzTqyl9II9J8qgTxvJA0Is51wI21mEjXA1wE3Jb/rld4z6dy/LdSGKEM2IpUkbgdOBZQF+I9DVgE/IPUmt+/k7ECqwA/IV0EfyXwwn7/j8r2KFsOtxH3G0in6v8MXJsfu5Q118exnzNZNtrkQO1bhz6fSuZvjr1S5XUb++VyvfXPqrL5O459blh29zuuHu7/s2V6lR6NchX4MPDh/FzAt/L864Gt+h1zD/b5oFx2XwdcDvxTv2PuwD43Kr/H/X+uFd5mZmZmZmZWYmXqNmlmZmZmZmZNuPFmZmZmZmZWAW68mZmZmZmZVYAbb2ZmZmZmZhXgxpuZmZmZmVkFuPFmZmZmZmZWAW68mZmZmZmZVYAbb22QtKmkP0l6XNLBPdrmJyX9oBfbssHSj3ztBkkzJS3odxxm9STNk/TWfsdhE4ekF0haImlSC8tOlxSSVuhFbDaxSTpR0hfHuY79JF02wvwhSR8czzYGgRtv7fkEMBQRa0bEN8eygkaJJ2k3SddKekzSA5IukjQdICK+FBETPlFtTLqVr5L0cUm3SXpS0t2SviRppY5EbWY2QY12QCAi7o6INSLi6V7GZWbl4cZbezYGbuzkCiW9GPgRcCiwNrAJ8G3gmU5uxyakjudr9k3gAOD9wJrAzsBbgdO7sC0zMwN8Bs3MwI23lkm6GHgLcGzusvDR3CXtMUnzJR1RWHYVSSdLelDSI5KukjRF0pHAGwvrOBbYErgzIi6K5PGIODMi7s7rOkLSyfn5eyTdIWmt/HpnSfdKel5+/W+Sbpb0sKTzJW2cp0vS1yUtlvSopD9LennvPj3rtW7lq6QZwEeAvSPiDxGxNCJuBP4V2FXSm/M6h52xq+8KIekbOY7HJF0t6Y2Feavm7hcPS7oJeG3dvh0m6Z7cHfRWSdt34zO06pL0KknX5Bw5Q9Lpkr7YqEtO7lb24vx812bfkzx/H0l35e/Kp3q4SzYBSPox8ALg/3KZ+4mcn/tLuhu4WHVdIXNZ+2VJV+bf97Mlrddk/WtLOl7SolyGflEtdL80a6S+nAVWKcz7d0lzJT0k6RxJG+bpy3Xlra8vpEk6JufzLSP9xjer9w46N95aFBHbAb8FDoqINYDrSGce1gF2Bf5D0u558X1JZ9GmAc8FPgw8GRGfKq4jIg4CrgFemhtXb5G0xggxnAH8AfimpOcCxwMfjIj787Y/CbwTeF7ezmn5rW8D3gS8JMf7HuDB8X4mVl5dzNftgQURcWXd9uYDl5NyrRVXkQ5crAecCvxEUq3g/yzwovzYMccHpOv4gIOA10bEmnn+vBa3aROAUvfdnwM/JuXXT0gHF1rxBE2+J5I2A74D7ANsSPqubNS5yG2ii4h9gLuBf87l9pw8683Ay0jlXSPvB/6NlJdLSb0jGjkpz38x8CpSee3LMqxtI5WzkrYDvgy8G9gAuIv2eua8DrgDmEyqD/ys0QGJUeq9A82NtzGKiKGIuD4inomIP5MS5s159j9IP+wvjoinI+LqiHisyXruAGYCU0kF9QP5rEOzRtyBwHbAEPB/EfGLPP1DwJcj4uaIWAp8CdgyH4X4B6l720sB5WUWjesDsErpVL6SCtNmubOIVIC2Es/JEfFgPnN3FLAysGme/W7gyIh4KDcKixWRp/Oym0laMSLmRcTtrWzTJoxtgBWBoyPiHxHxU9LBglGN8j15F/CLiLg0Ip4C/gd3b7feOCIinoiIJ5vM/3FE3BART5Dy8t31Z9QkTSF1cT8kr2sx8HVgz65GboNqpHJ2b+CEiLgml5WHA9sqj+XQgsWF9Z4B3Eo6mFZvpHrvQHPjbYwkvU7SJZLul/Qo6WzF5Dz7x8D5wOmSFkr6qqQVm60rIi6PiHdHxPNI3dTeBDTskhMRj5COcLwcOKowa2PgG0rd3h4BHgIETI2Ii4FjgW8B90k6TrnrpU0MHczXB0hH0hrZALi/xXgOzV0dHs35unYhng2B+YXF76o9iYi5wCHAEcDi3B1uw1a2aRPGhsA9ERGFaXc1W7holO/JsLzMFWX3YLBemN/G/LtIlerJdctsnKcvKtQTvges36kgbUIZqZzdkOG/20tIZeXUFtfdaL2Nfueb1ntb3E5lufE2dqcC5wDTImJt4LukpCEfLfhcRGwG/BPwdlK3BoBotLKaiLgK+BmpcbYcSVuSukecxvAzEvOBD0XEOoXHqhHx+7zeb0bEa4DNSd0nPz6Gfbbq6lS+XgxMk7R1caKkaaQjcb/Jk54AViss8vzCsm8EDiOdYVs3ItYBHq3FQzqDN63w3hcUtxURp0bEG0gFdwBfaWH/beJYBEyVpMK0Wg4Ny0tJz2e4pt8T6vJS0mqkM9ZmndSojjBivYHly8t/kA60Fc0HngImF+oIa0XE5mMP1SawkcrZhaTfZwAkrU4qK+8hlcHQpH6QNVrvwgYxjFjvHWRuvI3dmsBDEfG3XJF9b21GvnZti9xt4TFSQVob1vc+4IWFZd+QL+xcP79+KfAO0vVDw+Rrgk4m9fH9ACnBP5Jnfxc4XNLmedm1Je2Rn782H1FekfTF+VshHpsYOpKvEfEXUq6dImkbSZNyzp0J/B74dV70WuCdklZTGgxi/7pYlpLO0q0g6TNA8UzwHFIurytpI+A/C7FuKmk7SSuT8vhJnMs23B9I+XWwpBUkvROoHWy4Dthc0pa5PD2i7r1NvyfAT4G35zJ7JeDz+DfUOm9Ymdui90naLB9Q+Dzw0/pbCeRLJS4AjpK0lqTnSHqR8iBTZm0aqZw9FfhALmdXJnVnvCJf5nA/qRH3vlx/+DfS9e1F6+f1rpjrsS8Dftkghqb13kHnH56x+wjweUmPA59h2YXFkI4i/JRUEb6ZdDbi5DzvG8C7lEbG+SbwCKmxdr2kJcB5wFnAVxts88ukwSK+k/sRvw/4oqQZEXEW6QzE6ZIeA24g9W+HVDH+PvAw6fTzg8D/jv8jsArpVL5CGjDkB3mZv5Jy7S5g94ioXQP0deDvpIrIScAphe2dD/wK+Et+398Y3u3nc3n6naTKxo8L81YGZpOOKt9LKuQ/2d5HYYMsIv5OuoB9P1KZ9x5Sb4bawYfPkw4y3AbU3wy26fckj6p6IKlisiiv2zePt077MvDp3A3sXS2+58fAiaQycRXg4CbLvR9YCbiJlL8/pXk3eLOmRilnLyJde3kmqax8EcOvrfx3Uu+vB0m9werPlF0BzCD9zh8JvCsiluuiPkq9d6BpeLdSM7P2SPo8sDvwpnxNplmpSDqRdODr0/2OxayTJA0BJ0fED/odi5n1hm/4aGbjEhGfkbSYdM3bef2Ox8zMzGxQufFmZuMWEcf2OwYzMzOzQeduk2ZmZmZmZhXgAUvMzMzMzMwqoBTdJidPnhzTp09fbvoTTzzB6quv3vuA2uAYO6NZjFdfffUD+eblpeX87a4qx1j2/K1i7pY1trLGBWOLrey5C9XL37LGBeWNbaxxlT1/q5a7zTjezmspdyOi74/XvOY10cgll1zScHqZOMbOaBYj8McoQY6O9HD+dleVYyx7/lYxd8saW1njihhbbGXP3ahg/pY1rojyxjbWuMqev1XL3WYcb+e1krvuNmlmZmZmZlYBpeg22cz19zzKfrPObes982bv2qVozNrTbv46d60sXPZalbnstapy2Wut8Jk3MzMzMzOzCnDjzczMzDpK0gmSFku6oTBtPUkXSrot/123MO9wSXMl3Sppx/5EbWZWfm68mZmZWaedCOxUN20WcFFEzAAuyq+RtBmwJ7B5fs+3JU3qXahmZtXhxpuZmZl1VERcCjxUN3k34KT8/CRg98L00yPiqYi4E5gLbN2LOM3MqqbUA5aYmZnZwJgSEYsAImKRpPXz9KnA5YXlFuRpy5F0AHAAwJQpUxgaGlp+I6vCoVssbTmoY045u+Vla7aYunbb71myZEnDeMugrLGVNS6zfnLjzczMzPpJDaZFowUj4jjgOICtttoqZs6cudwyx5xyNkdd393qzby9l9/uaIaGhmgUbxmUNbayxmXWT+42aWZmZr1wn6QNAPLfxXn6AmBaYbmNgIU9js3MrBLceDMzM7NeOAfYNz/fFzi7MH1PSStL2gSYAVzZh/jMzErP3SbNzMysoySdBswEJktaAHwWmA3MkbQ/cDewB0BE3ChpDnATsBQ4MCKe7kvgZmYl58abmZmZdVRE7NVk1vZNlj8SOLJ7EZmZDQZ3mzQzMzMzM6sAN97MzMzMzMwqwI03MzMzMzOzCnDjzQaWpGmSLpF0s6QbJX00T19P0oWSbst/1y2853BJcyXdKmnH/kVvZmZmZjacG282yJYCh0bEy4BtgAMlbQbMAi6KiBnARfk1ed6ewObATsC3JU3qS+RmZmZmZnXceLOBFRGLIuKa/Pxx4GZgKrAbcFJe7CRg9/x8N+D0iHgqIu4E5gJb9zRoMzMzM7MmfKsAmxAkTQdeBVwBTImIRZAaeJLWz4tNBS4vvG1BntZofQcABwBMmTKFoaGh5ZaZsiocusXSlmNstI5uW7JkSV+22w7HaGZmZpa48WYDT9IawJnAIRHxmKSmizaYFo0WjIjjgOMAttpqq5g5c+ZyyxxzytkcdX3rX7F5ey+/jm4bGhqiUexl4hjNzMzMEnebtIEmaUVSw+2UiPhZnnyfpA3y/A2AxXn6AmBa4e0bAQt7FauZmZmZ2UjceLOBpXSK7Xjg5oj4WmHWOcC++fm+wNmF6XtKWlnSJsAM4MpexWtmZmZmNpJRG28ebt0q7PXAPsB2kq7Nj12A2cAOkm4DdsiviYgbgTnATcB5wIER8XR/QjczMzMzG66VC3Jqw61fI2lN4GpJFwL7kYZbny1pFmm49cPqhlvfEPi1pJe4Emy9FhGX0fg6NoDtm7znSODIrgVlZmZmZjZGo55583DrZmZmZmZm/dfWaJOdHG69G0OtQ++HW6/CEOGO0czMzMys+lpuvHV6uPVuDLUOvR9uvQpDhDtGMzMzM7Pqa2m0SQ+3bmZmZmZm1l+tjDbp4dbNzMzMzMz6rJUzbx5u3cysxySdIGmxpBsK03yLFjOzLnLZa2XXymiTl0WEIuIVEbFlfvwyIh6MiO0jYkb++1DhPUdGxIsiYtOI+FV3d8HMbCCdCOxUN20W6RYtM4CL8mvqbtGyE/BtSZN6F6qZ2cA4EZe9VmItXfNmZma9FRGXAg/VTfYtWszMushlr5Vde0M5mplZP43rFi1Q/du0lPW2ImWNC8odm1lFTPiyt5GqlS1Vi7cZN97MzKqvpVu0QPVv01LW24qUNS4od2xmFTdhyt5Gqla2VC3eZtxt0sysOnyLFjOz3nPZa6XhxpuZWXX4Fi1mZr3nstdKw90mzcxKSNJpwExgsqQFwGdJt2SZI2l/4G5gD0i3aJFUu0XLUnyLFjOzMXHZa2XnxpuZWQlFxF5NZm3fZPkjgSO7F5FZZ0iaBzwOPA0sjYitJK0HnAFMB+YB746Ih/sVo01cLnut7Nx4MzMzs157S0Q8UHhdu4/WbEmz8uvD+hPa6KbPOret5efN3rVLkZjZRONr3szMzKzfmt1Hy8zMCnzmzczMzHopgAskBfC9PIR6s/toDdOte2V129DQUKnvMVXW2Moal1k/ufFmZmZmvfT6iFiYG2gXSrql1Td2615Z3TZv75mlvsdUWWMra1xm/VSu0s3MzCrJ1wBZqyJiYf67WNJZwNbk+2jls27F+2iZmVmBr3kzMzOznpC0uqQ1a8+BtwE30Pw+WmZmVuDGmw00SSdIWizphsK09SRdKOm2/HfdwrzDJc2VdKukHfsTtZnZwJoCXCbpOtLNjM+NiPNI99HaQdJtwA75tZmZ1XG3SRt0JwLHAj8qTGs4JLWkzYA9gc2BDYFfS3qJb7hpZtYZEXEH8MoG0x+kyX20zKw5d1mfeHzmzQZaRFwKPFQ3udmQ1LsBp0fEUxFxJzCXdC2GmZmZmVnf+cybTUTNhqSeClxeWG5BnracbgxX3Y/hkKswDLNjNDMzM0vceDNbRg2mRaMFuzFc9by9l19Ht1VhGGbHaGZmZpa426RNRPfloaipG5J6ATCtsNxGwMIex2ZmZmZm1pDPvNlEVBuSejbDh6Q+BzhV0tdIA5bMII2GZmZmNmbTZ53LoVssZb8WB5fwoBLWLR7gpPrceLOBJuk0YCYwWdIC4LOkRtscSfsDdwN7AETEjZLmADcBS4EDPdKkmZmZmZWFG2820CJiryazGg5JHRFHAkd2LyIzMzMzs7HxNW9mZmZmZmYV4MabmZmZmZlZBbjxZmZmZmZmVgFuvJmZmZmZmVWABywxM7Oe83DVZmZm7fOZNzMzMzMzswpw483MzMzMzKwC3HgzMzMzMzOrADfezMzMzMzMKsCNNzMzMzMzswpw483MzMzMzKwC3HgzMzMzMzOrADfezMzMzMzMKsA36TYzs9Kr3dT70C2Wsl+LN/j2jb1tomj3pvfg74e1ZqTcalYeO7e6y403s5Lwj6+ZmZmZjcTdJs3MzMzMzCrAZ97MKqzds3U+U2dmZjD896OV7sj+/TArh4FrvLkya2ZmZtZZrl+ZlYO7TZqZmZmZmVVA1868SdoJ+AYwCfhBRMzu1rbMOsm5a1Xm/B07n1noL+euVZnz13qlK403SZOAbwE7AAuAqySdExE3dWN7vVT/4+5+4oNlkHN3LFyZrRbnb2/5mqHOce4Onon0++H8HW4i/e/7oVtn3rYG5kbEHQCSTgd2AyZkElulDHTujuXgQ7eNVsjXx+hCfkQDnb82ukbfp5G+5yX6Pjl3rcqcv9YziojOr1R6F7BTRHwwv94HeF1EHFRY5gDggPxyU+DWBquaDDzQ8QA7yzF2RrMYN46I5/UqiFZyN093/vZOlWMsXf4OQO6WNbayxgVji610uZunVzl/yxoXlDe2scZVuvyteO4243g7b9Tc7daZNzWYNqyVGBHHAceNuBLpjxGxVScD6zTH2BklinHU3AXnby85xrYMfNlb1tjKGheUO7aCgS97yxoXlDe2ssbVwMCXvY043v7o1miTC4BphdcbAQu7tC2zTnLuWpU5f62qnLtWZc5f65luNd6uAmZI2kTSSsCewDld2pZZJzl3rcqcv1ZVzl2rMuev9UxXuk1GxFJJBwHnk4ZMPSEibhzDqkY8vVwSjrEzShFjB3MXSrJPo3CMnVGKGCdI2VvW2MoaF5Q7NmDClL1ljQvKG1tZ4xpmgpS9jTjePujKgCVmZmZmZmbWWd3qNmlmZmZmZmYd5MabmZmZmZlZBZS28SZpJ0m3SporaVa/46knaZqkSyTdLOlGSR/td0zNSJok6U+SftHvWBqRtI6kn0q6JX+e2/Y7pvEoe+4CSJon6XpJ10r6Y7/jqZF0gqTFkm4oTFtP0oWSbst/1y1ZfEdIuid/ltdK2qVf8bVrtFxV8s08/8+SXt2juEYtXyXNlPRo4XP/TI9iG/G704/PTNKmhc/hWkmPSTqkbpm+fF7dVMb8de6OKa4Jmb/1qlB3KCprPaKm7PWJcYmI0j1IF3veDrwQWAm4Dtis33HVxbgB8Or8fE3gL2WLsRDrfwOnAr/odyxN4jsJ+GB+vhKwTr9jGse+lD53c5zzgMn9jqNBXG8CXg3cUJj2VWBWfj4L+ErJ4jsC+Fi/P7sx7MuouQrsAvyKdA+jbYArehTbqOUrMLMfZdpo351+fWZ1/9d7STd67fvn1eX9LF3+Onc78n8d+Pxtst+lrzvUxVzKekQhvlLXJ8bzKOuZt62BuRFxR0T8HTgd2K3PMQ0TEYsi4pr8/HHgZmBqf6NanqSNgF2BH/Q7lkYkrUX6gh0PEBF/j4hH+hrU+JQ+d8ssIi4FHqqbvBupgU/+u3svYypqEl9VtZKruwE/iuRyYB1JG3Q7sKqUr0305TMr2B64PSLu6uE2+6GU+evcHbeJkr/1XHfosLLXJ8ajrI23qcD8wusFlLjwkzQdeBVwRZ9DaeRo4BPAM32Oo5kXAvcDP1Tq2vkDSav3O6hxqEruBnCBpKslHdDvYEYxJSIWQaoYAev3OZ5GDsrdjE6oUDeMVnK17/k8Svm6raTrJP1K0uY9Cmm0706/P7M9gdOazOvH59Utpc9f5+6YTJT8rVeGz75dVapH1FShPjGqsjbe1GBaKe9pIGkN4EzgkIh4rN/xFEl6O7A4Iq7udywjWIF0Wvs7EfEq4AnSqeyqqkruvj4iXg3sDBwo6U39DqjCvgO8CNgSWAQc1ddoWtdKrvY1n0cpX68hda16JXAM8PMehTXad6dvn5nSzYHfAfykwex+fV7dUur8de62b4Llb72q1B2KXI/ok7I23hYA0wqvNwIW9imWpiStSCqcT4mIn/U7ngZeD7xD0jzSKfjtJJ3c35CWswBYEBG1I5M/JTXmqqoSuRsRC/PfxcBZpC4bZXVfretO/ru4z/EMExH3RcTTEfEM8H3K/VkWtZKrfcvn0crXiHgsIpbk578EVpQ0udtxtfDd6WcZsDNwTUTcVz+jX59XF5U2f527YzaR8rdevz/7tlWsHlFT6vpEq8raeLsKmCFpk3wkZk/gnD7HNIwkka7TujkivtbveBqJiMMjYqOImE76DC+OiPf1OaxhIuJeYL6kTfOk7YGb+hjSeFUhd1eXtGbtOfA24IaR39VX5wD75uf7Amf3MZbl1F0T8i+U+7MsaiVXzwHen0eh2wZ4tNblpJtaKV8lPT8vh6StSb9nD3Y5rla+O335zLK9aNLlrB+fV5eVMn+du+MykfK3XunrDkUVrEfUlLo+0aoV+h1AIxGxVNJBwPmkEXhOiIgb+xxWvdcD+wDXS7o2T/tkPiJk7flP4JRcYN0BfKDP8YxZRXJ3CnBW/h1cATg1Is7rb0iJpNNIo4pNlrQA+CwwG5gjaX/gbmCPksU3U9KWpC4u84AP9Su+djTLVUkfzvO/C/ySNALdXOCv9O672bB8BV5QiO1dwH9IWgo8CewZEd3uZtTwu1OGz0zSasAOFPKvLq5+fF5dU+L8de6OwUTL33oVqTsUlbYeUVP2+sR4aIBy38zMzMzMbGCVtdukmZmZmZmZFbjxZmZmZmZmVgFuvJmZmZmZmVWAG29mZmZmZmYV4MabmZmZmZlZBbjxZmZmZmZmVgFuvJmZmZmZmVWAG28lIWlTSX+S9Likg/sdj5mZmZWPpBslzezDdockfbDX2zUrC0m/krRvv+Nw4608PgEMRcSaEfHNfgdjViTpRElfHMf7x/yjL+m7kv5nrNu2iUfSPElPSloi6d6cv2v0Oy4bHDm3ao9nCvm2RNLe3dx2RGweEUMtxln8Ltwn6Yf+Lgy2/D9/a7/jGImkmZIW1E07QtI/cq4+Iun3krbtV4yNRMTOEXFSv+Nw463PJK2Qn24M3NjPWKza2imwq1C410TEhyPiC/2OwyrnnyNiDWBL4FXA4f0NxwZJRKxRewB3k/MtP05pZR2F3/8Rp3VA7bvwauC1wKfbebMS1xetF87IuToZuAT4SZ/jKSV/GcdJ0mGS7sndHW+VtH39WYr6Iwy54nyYpD8DT0i6GHgLcGw+4vASSbvmbpSPSZov6Yi67b4hH5V4JM/fL09fWdL/Sro7H2X7rqRVe/JhmPVYlyo6NkAi4l7gfGDLJkd7nz2QkY/8zpH0o1ym3yhpq8Kyy5X3vd0bKztJz5E0S9Ltkh7M+bRenjddUkjaX9LdwMWS9pP0O0lfl/QQcISkF0m6OL//AUmnSFqnsI2Wc7YoIu4BfgW8XNK6kn4h6X5JD+fnGxW2MSTpSEm/A/4KvLBuPzeQ9GdJH8uv95N0R47hzm6ffbT25Lrh0ZIW5sfRklbO82ZKWiDpUEmLJS2S9IHCe58r6f9yffQqSV+UdFlh/kslXSjpoVwuvrswbxdJN+W8uEfSxyStTsrDDbXsbPWGxXgjYilwCjBV0vPyuoYddM65f3J+Xvtu7Zvrvw9I+lQLn8sRkn4i6eQc4/W5Dn54/izmS3pbYflSdB12420cJG0KHAS8NiLWBHYE5rX49r2AXYF1ImI74LfAQfmo3V+AJ4D3A+vk5f5D0u55uy8gJf4xwPNIR5avzev9CvCSPO3FwFTgM2PeSasEST8GXgD8Xy4IPyHpHfmH/JFc4Lys2bJ5+k+Uupg9KulSSZuPIY7dJF2bC/nbJe1UmL1xrqQ8LukCSZML72u6bRUOhhR+ZA6TdC/wQ0mTc8Xjkfzj8Vv5KLFluUK6MzC3xbe8AzidVPaeAxyb1zOe8t4mjoOB3YE3AxsCDwPfqlvmzcDLSDkE8DrgDmB94EhAwJfz+18GTAOOGGGbDXO2nqRpwC7An0j1vx+Sev28AHiywfv2AQ4A1gTuKqxnOvAb4NiI+N9cGf8msHP+bvwTy+okVg6fArYh1Q1fCWzN8DOwzwfWJtUZ9we+JWndPO9bpDrp84F98wOA/L+/EDiVlL97Ad8u/IYfD3wo58XLgYsj4glSmbywcLZ6YTFYSSuR6sAPkr5DrXoDsCmwPfCZWr1nFP8M/BhYl/TdOJ/0/ZgKfB74Xhvb7wlXcMbnaWBlYDNJK0bEvIi4vcX3fjMi5kfEk41mRsRQRFwfEc9ExJ+B00gFPsDewK8j4rSI+EdEPBgR10oS8O/Af0XEQxHxOPAlYM9x7aWVXkTsQ6HrDvBzUs4cQmrg/5LUWFupftmI+Gpeza+AGaQC+BrSUa+WSdoa+BHwcVIl4k0Mr9y+F/hAXv9KwMcK89rZ9vOB9UiVjgOAQ4EFeT+nAJ8Eop3YbSD9XNLjwHxgMfDZFt93WUT8MiKeJv2gvzJPH095bxPHh4BPRcSCiHiK1Oh6l4b3EjgiIp4o/P4vjIhjImJpRDwZEXMj4sKIeCoi7ge+xrLf/0aa5WzNzyU9AlxGanR9KdcbzoyIv+a6wpENtnFiRNyY4/pHnrYZMAR8NiKOKyz7DOmM3qoRsSgifBlIuewNfD4iFuec+hypcV7zjzz/HxHxS2AJsKmkScC/kv7ff42Im4DiNV9vB+ZFxA9znlwDnAm8q7DezSStFREP5/kjeXfO1SdJ9dl35bNwrfpc/g5dB1zH8t+FRn4bEefn7fyEVJeYnXP+dGC6Cme+y8CNt3GIiLmkyvERwGJJp9ef+h3B/JFmSnqdpEuUujQ8CnyY1AcY0lG4RpWG5wGrAVfnsxCPAOfl6TaxvAc4N1cA/gH8L7Aq6YhoQxFxQkQ8XqhwvFLS2m1sc3/ghLzNZyLinoi4pTD/hxHxl1xhmUM6AjiWbT9D+iF5Kq/rH8AGwMb5h+e3EeHGm+2ej/bOBF7KsvJzNPcWnv8VWEXSCuMs723i2Bg4q/AbfDOp4T+lsEz97/+w15LWz/l1j6THgJMZOX8b5mxh2u4RsU5EbBwRH4mIJyWtJul7ku7K27gUWCdX1pvFCakRcA/w09qEfCblPaR6yiJJ50p66QjxWu9tSOHsaX5eLL8erGsk/RVYg1R/XIHhuVB8vjHwulq+55zfm3SQFVLDbxfgLkm/0egDkMyJiHVI35cbgNe0sG9F9d+FVgbnua/w/EnggXwgpPaaFtfTM268jVNEnBoRbyAlcJC6LT5BakTVPL/RW0dZ9amk7g/TImJt4LukrhSQvjgvavCeB0iJtnkuqNeJiLXzmRibWIYV1BHxDClvpjZaWNIkSbNzV8fHWHbGrNUKLzQ/qFDTsFAdw7bvj4i/FV7/P1KXuAuUrrmY1UbMNuAi4jfAiaQDGMPK5lxRbfngVpPy3qxoPqn74DqFxyqRrjerqf/9r3/95TztFRGxFvA+lv3+d8qhpO5lr8vbeFOeXtxOo3rKEaS6xqnFhl4+c7ED6UDaLcD3Oxyvjc9CUrlV84I8bTT3A0uBjQrTphWezwd+U5fva0TEfwBExFURsRupV83PSQduYZQ6cEQ8QDqLfYSkDfLkVurWE4Ibb+OgdG+27ZQu+vwbqeH0NKmv9y6S1pP0fNLR2natCTwUEX/L3dHeW5h3CvBWSe+WtILSxaRb5gr694GvS1o/xzhV0o7Lr94GULEwHFZQ5y6100hHTOuXhZRfuwFvJfV7n157axvbb3ZQYTTtbntY7PmM3aER8UJS3/X/lgeSsOGOBnYg/fCvojQg1Iqkaz5WbmUFI5T3ZkXfBY6UtDGApOdJ2q3NdaxJ6rb2iKSppK7onbYmKYcfURpQpdVuxf8A9gBWB36sNEDLFKVrrFcHnsqx+7vRXytKWqX2IF1G8emcj5NJYyGcPNpK8hmon5EaUavlM6rvLyzyC+AlkvaRtGJ+vFbSyyStJGlvSWvnHkCPsSwv7gOeO1Lvntxz53zSrbQg1a33zNvYimVdMyccN97GZ2VgNuko1L2kIwufJPU5v450BuEC4IwxrPsjwOfzNRufYdnRCiLibtJp6EOBh0gJXevXexjpLMTl+SzGr0lH12zw3ceyEcHmALsqjX66IilXngJ+32BZSD/kT5EuDl6NdK1ku44HPpC3+Zx84KCVrjPj2rakt0t6cW6g1n4cXHGwZ+VrPH5EGkziI8APSAcyniBdL9mKZuW9WdE3SL1mLsi/35eTBiRpx+dIw/o/CpxLqjx32tGkrvQPkGI8r9U3RsTfgXeSvgMnkLrVHUo6aPgQ6dq5j3Q2XGvTL0mN89pjFeCPwJ+B60nXlrd679aDSAdW7yXVb08j/WaTr5d8G2lshYV5ma+w7KDYPsC8XB/9MOkscq1hdhpwR+5u2awL+v8DDsgnJP6HdID4YdJ35NQW4x848qUhZoMhH909BliLVCjfTroIfSqpgf+R2kXkDZb9LumM7nakH9//IV2UPCMi5ko6EVgQESPeH0jSv5AK1U1IDcQDI+J8SUPAyRHxg7zcfsAHI+INSjeMbWnbkmbm9RSHtP4v4KOk7m8PA98L3xfOzMys4yR9BXh+ROw76sLWFW68mZmZmZnZcnIPmpVIZ+xeSzqr98GI+Hk/45rI3G3SzMzMzMwaWZPUdfcJ0iUZRwFn9zWiNkj6lZbdDLz4qGy3d595M7OW5cKuUYH324jYudfxmJmZmU0kbryZmZmZmZlVwAqjLSDpBNId1BdHxMvztPVIIyhOJ42o+O6IeDjPO5x0s96ngYMj4vzRtjF58uSYPn36ctOfeOIJVl999RZ3pT8cY2c0i/Hqq69+ICJKfZPxKudvJ3l/l1f2/G2Uu2X8P5YtpokQT9lzF5qXvWVVtrxpR9ViL3v+Vrne4Bg7Y1z13ogY8UG6ceOrgRsK074KzMrPZwFfyc83Iw2RvzJptLnbgUmjbeM1r3lNNHLJJZc0nF4mjrEzmsUI/DFGyZ9+P6qcv53k/V1e2fO3Ue6W8f9YtpgmQjxlz90Yoewtq7LlTTuqFnvZ87fK9QbH2BnjqfeOOmBJRFxKGr67aDfSUN7kv7sXpp8eEU9FxJ2k+41tPdo2zMzMzMzMbGSjdptsYkpELAKIiEX55nmQ7id1eWG5BXnaciQdABwAMGXKFIaGhpZbZsmSJQ2nl4lj7IwqxGhmZmZm1k9jbbw1owbTGo6IEhHHAccBbLXVVjFz5szlljnmlLM56rIn2gpg3uxd21p+vIaGhmgUe5k4xmqYPuvctt/T63y3icG5aFXWbv46d63KnO8Tz1gbb/dJ2iCfddsAWJynLwCmFZbbCFg4ngDb5SQ2MzMzM7NBNNabdJ8D7Juf78uym/WdA+wpaWVJmwAzgCvHF6KZmZmZmZm1cquA04CZwGRJC4DPArOBOZL2B+4G9gCIiBslzQFuApYCB0bE012K3czMzMzMbMIYtfEWEXs1mbV9k+WPBI4cT1BmZmZmZmY23Fi7TZqZmZmZmVkPdXq0STMzMzMza9P19zzKfmMY7dcmFp95MzMzMzMzqwA33szMzMzMzCrAjTczMzMzM7MKcOPNzMzMzMysAtx4MzMzMzMzq4AJP9rk9DZH9Zk3e9cuRWJmZmZmZtacz7yZmZmZmZlVgBtvZmZmZmZmFeDGm5mZmZmZWQW48WZmZmZmZlYBbryZmZmZmZlVgBtvZmZmZmZmFeDGm5mZmZmZWQW48WYDTdIJkhZLuqEwbT1JF0q6Lf9dtzDvcElzJd0qacf+RG1mZmZmtjw33mzQnQjsVDdtFnBRRMwALsqvkbQZsCeweX7PtyVN6l2oZmZmZmbNufFmAy0iLgUeqpu8G3BSfn4SsHth+ukR8VRE3AnMBbbuRZxmZmZmZqNZod8BmPXBlIhYBBARiyStn6dPBS4vLLcgT1uOpAOAAwCmTJnC0NDQcsssWbKk4fRmDt1iacvL1rSz/m5rd3+rbqLtr5mZmfWfG29my6jBtGi0YEQcBxwHsNVWW8XMmTOXW2ZoaIhG05vZb9a5LS9bM2/v1tffbe3ub9VNtP01a4ekE4C3A4sj4uV52nrAGcB0YB7w7oh4OM87HNgfeBo4OCLO70PYZmal526TNhHdJ2kDgPx3cZ6+AJhWWG4jYGGPYzMzGwQn4uuNzcw6zo03m4jOAfbNz/cFzi5M31PSypI2AWYAV/YhPjOzSvP1xmZm3eFukzbQJJ0GzAQmS1oAfBaYDcyRtD9wN7AHQETcKGkOcBOwFDgwIp7uS+BmZoOnJ9cbt3v9cK+uXa3ydbJVjt1s0LjxZgMtIvZqMmv7JssfCRzZvYjMzKxOR683bvf64V5dO1zl62SrHLsNN73d78fsXbsUiY2Vu02amZWQbzBvA8jXG1ulSZon6XpJ10r6Y57WtFw26wY33szMyulEPOCDDRZfb2yD4C0RsWVEbJVfNyyXzbrFjTczsxLygA9WZfl64z8Am0pakK8xng3sIOk2YIf8moi4Eahdb3wevt7YqqVZuWzWFb7mzcysOro+4MOSJUs4dIv2683dHMygbIMlOJ7R+XpjG1ABXCApgO/lazCblcvDtDLYzpRV2x9wp9sa/UaUrbypN+gxjqvxJmke8DjppppLI2KrkW7CaWZmXdGxAR+GhoY46rIn2g6gm4M+lG2wBMdjNmG9PiIW5gbahZJuafWNrQy2c8wpZ3PU9eU6r1JftlehvBn0GDvRbdJ9f83MesMDPpiZ9UlELMx/FwNnkbqnNyuXzbqiG9e8ue+vmVl3eMAHM7M+kLS6pDVrz4G3ATfQvFw264rxnpt1398B71fbK1WI0ayXfIN5M7NSmQKcJQlS/fnUiDhP0lU0KJfNumW8jTf3/R3wfrW9UoUY23X9PY+2fbNYs5qqDfjgG7+a2SCLiDuAVzaY/iBNymWzbhhXt0n3/TUzMzMzM+uNMZ/Wyv19nxMRjxf6/n6eZX1/Z+O+v2Zd5bMdZmZmZhPHePokuu+vmZmZmZlZj4y58ea+v2ZmZmZmZr3TjVsFmJmZmZmZWYe58WZmZmZmZlYBbryZmZmZmZlVQLluomZmZmZmZqVQP6r1oVssHfUeth7Zurt85s3MzMzMzKwC3HgzMzMzMzOrADfezMzMzMzMKsCNNzMzMzMzswpw483MzMzMzKwCPNqkmZmZmZn1Rf2IlqOZ6KNZuvFmZmZmE1a7FUdw5dHM+sfdJs3MzMzMzCrAjTczMzMzM7MKcOPNzMzMzMysAnzNm5mZmZmZdcRYriO11rnx1qb6hDx0i6XsN0qS+sJmMzMzMzMbL3ebNDMzMzMzqwCfeTMzMzNrg+9LZWb94sabmZmZWRdNn3VuS5dZ1LixZ2bNuPHWAz5CZ2ZmZmZm4+XGm9kE4gMJZmZmZtXlxpuZmfVcOwcSDt1iKTO7F4qZmVlleLRJMzMzMzOzCnDjzczMzMzMrALcbdLMzEqv3es1wddsmpnZ4PGZNzMzMzMzswpw483MzMzMzKwC3G3SzMwGkm+NYWZmg8aNtwEwWgXl0C2Wsl9hGVdQrFUezt3MzMzKZKLXe7vWeJO0E/ANYBLwg4iY3a1tDZqxXJhvnePcHTsPKtF/zl+rKufuMr04a+yDc53l/C2vMtarT9xp9TG/tyuNN0mTgG8BOwALgKsknRMRN3Vje2ad4tztPXdt6xznr1WVc3d8ylg5nUicv9ZL3TrztjUwNyLuAJB0OrAb4CSuqG7/MIznCESHOXdLriyVlGK3jBI1KJ2/49BqbtX+9yX6vz+rwgdDnLsTXMV7bjh/rWcUEZ1fqfQuYKeI+GB+vQ/wuog4qLDMAcAB+eWmwK0NVjUZeKDjAXaWY+yMZjFuHBHP61UQreRunj4o+dtJ3t/llS5/W8jdMv4fyxbTRIindLmbp7dS9pZV2fKmHVWLvXT5O0D1BsfYGWOu93brzJsaTBvWSoyI44DjRlyJ9MeI2KqTgXWaY+yMEsU4au7C4ORvJ3l/S2HcZW8Z96tsMTmeruhY2VtWVf4/VTn2HnG9t0QGPcZu3edtATCt8HojYGGXtmXWSc5dqzLnr1WVc9eqzPlrPdOtxttVwAxJm0haCdgTOKdL2zLrJOeuVZnz16rKuWtV5vy1nulKt8mIWCrpIOB80pCpJ0TEjWNYVRW6RjjGzihFjB3MXSjJPvWQ97fPOpS/pdsvyheT4+mwDpe9ZVXl/1OVY+8613tLZ6Bj7MqAJWZmZmZmZtZZ3eo2aWZmZmZmZh3kxpuZmZmZmVkFlLbxJmknSbdKmitpVr/jaUTSPEnXS7pW0h/7HQ+ApBMkLZZ0Q2HaepIulHRb/rtuCWM8QtI9+bO8VtIu/YxxPKqQu+MhaZqkSyTdLOlGSR/N00uVZ50maZKkP0n6RX49cPvbj9xtt8ySdHiO71ZJO3Yhnrbzu5sxSVpF0pWSrsvxfK6f8Vj7ylhXGEkV6hGDqOx1h2ZlYxnV/16XjaR1JP1U0i3589y2nfeXsvEmaRLwLWBnYDNgL0mb9Teqpt4SEVuW6H4SJwI71U2bBVwUETOAi/LrfjqR5WME+Hr+LLeMiF/2OKaOqFjujtVS4NCIeBmwDXBg3sey5VmnfRS4ufB6oPa3j7l7Ii2WWTmePYHN83u+nePupLbyuwcxPQVsFxGvBLYEdpK0TR/jsbEpW11hJCdS/nrEQKlI3aFZ2VhG9b/XZfMN4LyIeCnwStqMtZSNN2BrYG5E3BERfwdOB3brc0yVEBGXAg/VTd4NOCk/PwnYvZcx1WsS46AY+NyNiEURcU1+/jip0JlKyfKskyRtBOwK/KAwedD2ty+522aZtRtwekQ8FRF3AnNz3J2Mp9387mpMkSzJL1fMj+hXPDb4qlCPGEClrzuMUDaWSpPf69KQtBbwJuB4gIj4e0Q80s46ytp4mwrML7xeQAkThPQDeoGkqyUd0O9gRjAlIhZB+vIB6/c5nmYOkvTn3GWjql0yqpK7HSFpOvAq4Aqqk2djcTTwCeCZwrRB298y5W6zz7anMbaY312PKXcBuhZYDFwYEX2Nx9pWlbrCSAatvCubSn1v68rGsjma5X+vy+SFwP3AD3PXzh9IWr2dFZS18aYG08p4T4PXR8SrSae5D5T0pn4HVGHfAV5E6ha0CDiqr9GMXVVyd9wkrQGcCRwSEY/1O55ukfR2YHFEXN3vWLqsCrnbsxjbyO+uxxQRT0fElsBGwNaSXt7PeKxtrivYaCrzvS3zb39Ffq9XAF4NfCciXgU8QZvdkMvaeFsATCu83ghY2KdYmoqIhfnvYuAsyts15T5JGwDkv4v7HM9yIuK+XEF5Bvg+5f0sR1OJ3B0vSSuSCu9TIuJneXLp82yMXg+8Q9I8UleW7SSdzODtb5lyt9ln25MY28zvnn1uuWvNEOl6pL7HY62pUF1hJINW3pVNJb63TcrGMmn2e10mC4AFuQcFwE9JjbmWlbXxdhUwQ9ImklYiXXx9Tp9jGkbS6pLWrD0H3gbcMPK7+uYcYN/8fF/g7D7G0lDtRyH7F8r7WY6m9Lk7XpJE6qt9c0R8rTCr9Hk2FhFxeERsFBHTSf/PiyPifQze/pYpd5t9tucAe0paWdImwAzgyk5ueAz53dWYJD1P0jr5+arAW4Fb+hWPtadidYWRDFp5VzZlKn8bGqFsLI0Rfq9LIyLuBeZL2jRP2h64qZ11rNDxqDogIpZKOgg4H5gEnBARN/Y5rHpTgLNSLrMCcGpEnNffkEDSacBMYLKkBcBngdnAHEn7A3cDe/QvwqYxzpS0JambwDzgQ/2Kbzwqkrvj9XpgH+D6fB0OwCcpWZ71wEDtb79yt50yKyJulDSH9EO3FDgwIp7ucEht5XcPYtoAOCmPRvccYE5E/ELSH/oUj7WnlHWFkVShHjFoKlJ3aFg2VnV08D77T+CU3FC/A/hAO29WRCm71JqZmZmZmVlBWbtNmpmZmZmZWYEbb2ZmZmZmZhXgxpuZmZmZmVkFuPFmZmZmZmZWAW68mZmZmZmZVYAbb2ZmZmZmZhXgxpuZmZmZmVkFuPFmZl0nKSS9uMm8JZJe2OuYrHMknSjpi/2Ow8zMrF2S/kXS/FwfedUoy+4n6bLC66b1m24Z+MZb/YdcN29vSRe0uJ4jJJ08wvx5kt461ji7TdILclJO6ncs1pykN0j6vaRHJT0k6XeSXtvHeIZywfTKuuk/z9NnjncbEbFGRNwx3vXY4JK0jqTvSLpX0l8lXS/pAz3a9kxJCzq8ziFJH8zPJelSSZ+pW2ZfSbdLWq2T27bBJmkzSefk35DHJV0i6Z/6HZdZM5JWknSUpAW5nnqnpK/3OIz/BQ7K9ZE/9XjbbRuYxttYKr0RcUpEvK2HMb4xJ+YSSU/kyu+SwuMF3dp2RNydk/Lpbm3DxkfSWsAvgGOA9YCpwOeAp/oZF/AX4P21F5KeC2wD3N+3iGzCkLQS8GtgY2BbYG3g48BsSf/dz9g6ISIC2B/4b0mbA0h6Hqky8cGI+GsntiNphU6sx/pntP+hpBcBvwOuBzYBNgTOAi6QtG33I7RB1IOy43BgK2BrYE3gLUCvG1AbAzf2eJtjNhCNtxJXeoeJiN/mBtQawOZ58jq1aRFxdyvrafRF8hm1gfASgIg4LSKejognI+KCiPgzLDuLLOl/JT2cj07tXHuzpA3zEdeHJM2V9O95+iqSnpQ0Ob/+tKSl+XuDpC9KOnqEuE4B3lPIsb1IFYK/F7a9taQ/SHpE0iJJx+ZK93LygZb5kt6SXz/b5SB3v/uWpHPzUeMrcoWk9t63Sbo1H6T5tqTf1M5gNCPpRZIulvSgpAcknSJpncL8aZJ+Jun+vMyxI63PQNKrJF2T/0dnAKvk6etK+kX+LB/OzzfK8/aQdHXdeg6V9PP8fBdJN+V13iPpY3mxfYAXAHtExJ0R8Y+IOA84GPh8IY/nSTo8r+NhST+UtEphW2+XdG3O0d9LekVh3jxJH5P055xbZxTfO8LnsKukP0l6LOf0EYV5q0g6OefUI5KukjRF0pHAG4Fj80G7YyPiNuBI4HhJzwG+CZwZEZeMEvcspbNzj+f9/pfCvP2UDmJ+XdJDwLOxWedJ+rikM+umHSPpaElrSzo+l4335DJ3Ul5mtPJpnqTDJP0ZeELSCvn1Pfn/fquk7fPiRwB/iIhPRcRDEfF4RHwT+DHwlby+6bnMPUDSwhzToYXtPaeQVw9KmiNpvbr37ivp7hzvp7r4sVoLGpUDklbOZcbLC8s9T6kusH5+PVqZWJ93I5U3k5TOnj2gVDc5KOfKCnl+0+8A8FrgrIhYGMm8iPhRXSxNy2dJ/65U53lIqQ60YZ7+OUnH5OcrKp00+Wp+vaqkv+UyeQkwCbhO0u3NPtMO/9vGJyIq/yC12B9pMm8/4LLC6/8HXEY6els/7xvAfOAx4GrgjYV5RwA/Bc4AHgeuAV5ZmD8PeGt+/hxgFnA78CAwB1ivLq7pQAAr5NdrA8cDi4B7gC8Ckwr78Dvg68BDed6JwHeAXwJPAG8FdiUdrXgs78cRI2xvCPhCXu/jwAXA5BY+658A9wKPApcCmxfmrQocBdyV518GrNrv/KjKA1gr58tJwM7Aug1y+R/Av5MKmv8AFgLK838DfJtUkd6SdGZs+zzvUuBf8/MLcm7uXJj3L01iGgI+mN9TW/5K0hmQBcDMPO01pLNxK+Rcuxk4pLCeAF4M7Jhzc+v6efn5iTnHt87rOgU4Pc+bnHP7nXneR/Pn8cFRPtcXAzsAKwPPy/t7dJ43Cbguf7dWz5/dG/qdC2V+ACvl7/h/ASsC78r/hy8CzwX+FViNdAT1J8DP8/tWzv/blxXW9adCXi4il7nAusCr8/PTgZMaxLECsBTYMb+eB9wATCMdxPsd8MU879XAYuB1+X++b15+5cJ7rySdqVgv5++H87yZwIImn8VMYAtSmf8K4D5g9zzvQ8D/5c9iUv6OrFX8XtWtaxJwBfAz4O78+Y0W9x455ucA7yH9FmxQKC+WAv+ZPyuXxd39XmyQP/91Cvm5OP/ffw58L5cx6+dc+1Bermn5VMjNa3NerwpsSipDN8zzpwMvys/vBT7QILa3AE/nXJxOKnNPy/FsQfqtqNVfDgEuBzbKMX0POK2wrQC+n2N5Jekg+cs6/Xn60VbuNSwHgBOAIwvLHQicl5+3UiY+m3cjbSfP+zBwU86bdUm9JYp1zpG+A58mlXkfyfmouv2bR/PyeTvggbw/K5NO4lxamHd9fv5PpHrPFYV51xW28Ww9pIV93Y/hbYdh7+3J/7zfSdehxG1a6a19yPkf8H3gfGC1Jv+A95EqHysAh5IKwlXyvCNIFZR3kSosHwPuBFYsJNeohV9hW9PbSOz9qPsRJlVyHwVen/dtFUauSNRvbygn8kvy+oaA2S181v9GqlSsDBwNXFuY9628nqmkwuCfyAWBHy3n8svy/3ZB/p+fA0wp5MHcwrKr5f/p80kF7NPAmoX5XwZOzM+/QDqav0LO648Cs3PePEmThjvLGm/vI/3Ybwr8Jc97tvHW4H2HkI6k1V4HqWvEXcAWdcvWN95+UJi3C3BLfv5+0lHl2jyRKjEjNt4axLY78Kf8fFtSxWWFfv/vq/IA3kThoEGe9ntyQ6lu2S2Bhwuvv0OuTJB6HzzMssrC3aQGz1p16/h1s7Ip5/Le+fk88g96IXduL2z3C3XvvRV4c+G97yvM+yrw3fx8Jk0abw3iORr4en7+b/lzeUWD5YYa5W3+TALYrZW4G7z/2sJ79wPu7ne+TKQH8Cvg3/Pzt5Mqs1NIDZxVC8vtBVzSZB3Plk/59Tzg3wqvX0yqdL+VXP8ozFsK7NRgnS/NeTWVZXWBlxbmfxU4Pj+/mXzQL7/egFT3WaHw3o0K868E9uz3Z+/HsP/3tcBuOUfuKEz/HfD+/LyVMvHfWtlOfn4xuc6aX78158oKo30HSPXFA3N8T5F+X/YtLDuP5uXz8cBXC/PWyPk6nVS3/RupXj8L+CSp3rIGqXfeNwvvG7EBxvJla18bbwPRbTIiHgPewLIjQvfnU6dT8iIrkiqe6wH/HE2uIYiIkyPiwYhYGhFHkRoomxYWuToifhoR/wC+Rqr4btNgVR8CPhURCyLiKVLD711q0m84x7kz6UzFExGxmHQmYM/CYgsj4pgc25N52tkR8buIeCYi/hYRQxFxfX7957zPbx7ho/thRPwlr28OqaI1oog4IVJXjNp+vTKfDn8OqbLy0Yi4J1K3v9/n5axFEXFzROwXERsBLycd+Tm6sMi9hWVrebxGXu6hiHi8sOxdpB9rSGflZpKOTl0PXEjKjW1IDcIHRgntZ6QjVf9J6oIzjKSXKHWRu1fSY8CXSGfKig4B5kTE9aNs697C87/m/YO0j/NrMyKVmqMOJCFpfUmn564ajwEnF2KbBtwVEUtHW489a0Pgnvz519wFIGk1Sd+TdFf+rC8F1il0jzkJeK8kkbpDzimUEf9KanDdpdQdtnaNzgOkCuQwuTydnOfXzC88vyvHCul6hkNz96BHJD1C+t9vWFi+Wd41Jel1SgNC3C/pUdLR51pu/Zh0sPD03D3tq5JWHGl9EVG75qL2d8S4Jb2/0O3pEVKZUfzeFT8P676TSAe6yH9/TPofrggsKvyfvkc6SDta+VRTLPfmksrSI4DF+b21PG74XcnTniEdLFlunSz/XTmrEOvNpAODUwrLt/1dse4ZoRy4GFg1l1Mbk+p4Z+W3tVImDis/RilvNqxbvvh8xO9Ari9+KyJeD6xD6kJ+gqSXFdYxUr3grtqMiFhCOpkzNddt/0iq67yJVA/6Pemkx5vz64ZaKFv7aiAabzBqpffFpKMQn4uIvzdZRe36i5tzn9pHSF0ZG/4QRsQzpIrjhiyvlcKvfvmmiV2/7WbTRqlINNJWAazUp3l27gf8GOloCHkbk0mN2dtHWoe1LiJuIZ2Jevkoi0I6UrWepDUL015A6oILqcDaFPgX4DcRcVOevysjFGCFWP5KOqr8HzRovJGO4t0CzIiItUhHuFS3zB7A7pIOaWF/GllEOpsNpFH6iq9H8GXSgZ1X5NjeV4htPvCCZgdWrKFFwNT8+dfUBls6lJRnr8uf9ZvydAFExOWkayXfCLyXQi5FxFURsRup3Ps56YASpDNvO0tavS6OfyUdpb28MG1aXUwL8/P5pDN+6xQeq0XEaW3t+fJOJZ0dnxYRawPfLezrPyLicxGxGakXwttZNvBPNFpZA03jzpWx7wMHAc+NiHVI3UaL/5dWt2Od8XPgFUrXGb2d1O17PilPJxf+h2tFRO2695HKp5ph/8eIODUi3kCqOwT5ejbSd2WPBnG9m9RroXjgeqTvys51ObdKRNyDlc5I5UCup84hneV6L/CLwgHeVsrEaGU7eZFhv88Mz6/RvgPLNpiu9f8W6UDDZi18BAtJ34NanKuTzrTV8vU3pAPPrwKuyq93JF2acWmjFbZYtvbVwDTeihpUem8GPgD8StKmjd4j6Y3AYaRCbt38z3qU4f+saYXln0NK1IUsr93Cr5XEbvQjXD+taUWiQ97LslPxa5NOS5O38QDp9PSLGr7TRiXppfkAQm2Ah2mkQvfykd8JETGf1ED7stJACa8gjWB3Sp7/V9J1nAeyrLH2e9JZ4lEbb9knSV0q5jWYtybperQlkl5KauTVWwhsDxws6SMtbrPoXGALSbvnxtaBpC6jo1kTWAI8ImkqaaTCmitJPzqzJa2eP7vXjyG2ieQPpO5ZBytdxP5O0g8hpM/6SdJnvR7w2Qbv/xFwLLA0Ii6DZ4eK3lvS2rlnw2OkA16QGngLgJ8oDZiwoqQdSd2Aj4iIRwvrPlDSRnnbnyRdowzph/jD+QCX8v9617qDHSPKuVF8KO/vQxHxN0lbk8rI2vJvkbSF0lnHx0hdeWr7dB/Qyr0NR4p7ddJvwP15ex+gtQM91iUR8TfStfGnAldGGuV5Eema4aMkraU0IMiLJNV6xYxUPi1H0qaStpO0Muk390mW5dXngH+SdKSk9SStKek/SQcNDqtb1f8onSnfnFQ/qn1XvgscmSuwtUEudhvzh2LdNlo5cCrpmq298/OadsvE0bYzB/iopKlKA+48m2+jfQckHaJ0S5ZV82/KvqTvxZ9a2P9TgQ9I2jJ/J75Euq5tXp7/G1L+35RP3gyRLgW5MyKajZhd+rJ1IBpvrVR689GETwK/VmH0uoI1SRWS+4EVlO65s1bdMq+R9M5ccTyE5Y/61rRV+LVQuLeqaUWiQ9Yk7fODpOutvlSbkY/wnAB8TWnUw0mSts1fJmvN46SLh6+Q9AQpt24gnc1oxV6kBvVCUteIz0bEhYX5vyGd4b2y8HpNmhx9qhdpJKiG90wkXQP63rwP32dZRaB+HXeTGnCHaZRRIhu89wHSUeWvknJwM1KXiNG65n6O1F30UVID8GeFdT4N/DPp7PzdpEbCe9qJa6LJP4DvJPX7f5j0edU+06NJ1xk8QMrf8xqs4sekH8L6M7j7APOUzup/mNz9LHerfCvpINcVpIbQ10hd0/9f3TpOJZWld+THF/M6/kga6OfYHPPcHH+rppIqycXHi0gX2H9e0uPAZ1h2thDSgYWf5nhvJn3favcK/QapK/3Dkr7ZbKMjxZ3Pnh9FakzfR7re+Xdt7JN1x0mk/0Uxv99PGujnJtL/8acs697YtHxqYmXS9coPkHrPrE+q2xBp1NI3kAYSmUc6MPWvpEF96nPjN6R8ugj434io3fP2G6SDwBfkvL6c9LtkJTRaORARV5AG29iQ1HumNr2tMrGF8ub7pLL3z6RG1y9JderagYWRvgNP5nXfS8rrA0kDWY16/9eIuAj4H+BMUr6/iOGXHP2e9JtUq+fcRDro0bTeU4myNUpwceV4H6Qf1jmk06RP5L/fIzW+9mP4hYX/TuofO704j3TB5PGkH9pFwCcYPgjJEQwfbfJP5NHQYtkFlcXRJv+bdPHn46SuhF+qi3k6y482+R1S5fHRvP49o8HFkXnaidQNEEAaTOWuvM1fkL6UJzfZ3hCFC+YbbaPB57wGcHZe/12kL+OzF2qSviBH58+/NhqlRzjzoyuP/D1bCLyl37H40db/bdVchszo8HqfLYP98KNfD1IXxL9SN/BOWR71dQE//OjGgzSOw139jmNQH7Uhxs3MSi93l7uCdKTu46QjdC+MZYP4WMkp3Vj77RGxXYfXO490QOrXnVyvWavy5RRfIzXc/q3f8TQiaTrLRsr2QE3WEZJWJd2S4gLS+A5nApdHxCH9jGtQ+SJ9M6uSbUld42rdL3aPiCclfZdlo7wVnRwRH+5lgNZcbmCJNBy62cBQGijhPlKvlJ36HI5Zr4nUBfgM0sHVc0ldya0LfObNhpG0N6nLab27osHIQGZmZmZm1htuvJmZmZmZmVVAKbpNTp48OaZPn77c9CeeeILVV6+/tU/5Oe7Oufrqqx+IiOf1O46RVCV/yxYPlC+mTsdT9vxtlLtl+5804hjHb7T4yp67UJ2ytxe8z8OVPX+LuVvW/10Z4ypjTNDZuFrK3X6PmBIRvOY1r4lGLrnkkobTy85xdw7wxyhBjo70qEr+li2eiPLF1Ol4yp6/jXK3bP+TRhzj+I0WX9lzNypU9vaC93m4sudvMXfL+r8rY1xljCmis3G1krsDcZ83MzMzMzOzQVeKbpPNXH/Po+w369y23jNv9q5disasPe3mr3PXrLnphe/SoVssbem75e/UxOSy16pqept1XnD+TkQ+82ZmZmZmZlYBbryZmZmZmZlVgBtvZmZmZmZmFeDGm5mZmZmZWQW48WZmZmZmZlYBbryZmZmZmZlVgBtvZmZmZmZmFeDGm5mZmZmZWQW48WZmVkKSTpC0WNINhWnrSbpQ0m3577qFeYdLmivpVkk79idqMzMz6yY33szMyulEYKe6abOAiyJiBnBRfo2kzYA9gc3ze74taVLvQjUzM7NecOPNzKyEIuJS4KG6ybsBJ+XnJwG7F6afHhFPRcSdwFxg617EaWZmZr2zQr8DMOsWSdOAHwHPB54BjouIb0haDzgDmA7MA94dEQ/n9xwO7A88DRwcEef3IXSzZqZExCKAiFgkaf08fSpweWG5BXnaciQdABwAMGXKFIaGhobNX7JkyXLTyuDQLZY++3zKqsNfN9PP/Sjr51hT9vjMzKwxN95skC0FDo2IayStCVwt6UJgP1LXs9mSZpG6nh1W1/VsQ+DXkl4SEU/3KX6zVqnBtGi0YEQcBxwHsNVWW8XMmTOHzR8aGqJ+WhnsN+vcZ58fusVSjrp+9J+veXvP7GJEIyvr51hT9vjMzKwxd5u0gRURiyLimvz8ceBm0tkIdz2zqrpP0gYA+e/iPH0BMK2w3EbAwh7HZmZmZl3mM282IUiaDrwKuIIedD2D1rt21XS7C1MZu0mVLaayxdPAOcC+wOz89+zC9FMlfY101ngGcGVfIjQzM7OucePNBp6kNYAzgUMi4jGpUQ+ztGiDaWPqegZwzClnt9S1q6bbXbzK2E2qbDGVKR5JpwEzgcmSFgCfJTXa5kjaH7gb2AMgIm6UNAe4idRd+EB39zUzMxs8brzZQJO0IqnhdkpE/CxPvk/SBvmsm7ueWSlFxF5NZm3fZPkjgSO7F5GZmZn1m695s4GldIrteODmiPhaYVat6xks3/VsT0krS9oEdz0zMzMzsxLxmTcbZK8H9gGul3RtnvZJ3PXMzMzMzCrIjTcbWBFxGY2vYwN3PTMzMzOzinG3STMzMzMzswpw483MzMzMzKwC3HgzMzMzMzOrgFEbb5KmSbpE0s2SbpT00Tx9PUkXSrot/1238J7DJc2VdKukHbu5A2ZmZmZmZhNBK2felgKHRsTLgG2AAyVtBswCLoqIGcBF+TV53p7A5sBOwLclTepG8GZmZmZmZhPFqI23iFgUEdfk548DNwNTgd2Ak/JiJwG75+e7AadHxFMRcScwF9i6w3GbmZlZCbnHjplZ97R1qwBJ04FXAVcAUyJiEaQGnqT182JTgcsLb1uQp9Wv6wDgAIApU6YwNDS03PamrAqHbrG0nRAbrqfXlixZUoo42lXVuM3MrFRqPXaukbQmcLWkC4H9SD12ZkuaReqxc1hdj50NgV9Leonvs2lmtryWG2+S1gDOBA6JiMekZrfPanhfrVhuQsRxwHEAW221VcycOXO5Nx1zytkcdX17t6Kbt/fy6+m1oaEhGu1P2VU1bjMzK498YLd2cPdxScUeOzPzYicBQ8BhFHrsAHdKqvXY+UNvIzernumzzm1r+Xmzd+1SJNYrLbWMJK1IaridEhE/y5Pvk7RBPuu2AbA4T18ATCu8fSNgYacCNjMzs2roZI+dvL6O99oZhB4nE7HnzETcZzNoofGmdIrteODmiPhaYdY5wL7A7Pz37ML0UyV9jdT9YQZwZSeDNjMzs3LrdI8d6E6vnTL02BmvidhzZiLusxm0dubt9cA+wPWSrs3TPklqtM2RtD9wN7AHQETcKGkOcBOp3/uB7rduZma95u5E/eMeO2Zm3TFq4y0iLqPxUTGA7Zu850jgyHHEZWZmZhXkHjs2qCTNAx4HngaWRsRWktYDzgCmA/OAd0fEw/2K0QZfK/d5MzMzM2tVrcfOdpKuzY9dSI22HSTdBuyQXxMRNwK1Hjvn4R47Vm5viYgtI2Kr/LrhfY/NuqW9oRzNzMzMRuAeOzbBNBtF1awr3HgzMzMzMxtdABdICuB7eQCdZqOoDtNspNTiqJnt3tt4LFodobOMo3mWMSbofVxuvJmZmZmZje71EbEwN9AulHRLq29sNlJqcdTM/docZGksWh1dtYyjeZYxJuh9XL7mzczMzMxsFBGxMP9dDJxFupn8fXn0VOpGUTXrCp95MzMzMzMbgaTVgedExOP5+duAz9N8FNVSavUWKodusZT9Zp3rW6iUkBtvZmZmZmYjmwKclW82vwJwakScJ+kqGtz32Kxb3HgzM6sY32vIzKy3IuIO4JUNpj9Ik1FUzbrB17yZmVWT7zVkZmY2wbjxZgNN0gmSFku6oTBtPUkXSrot/123MO9wSXMl3Sppx/5EbTYmu5HuMUT+u3v/QjEzM7NucLdJG3QnAscCPypMq52hmC1pVn59mKTNgD2BzYENgV9LeklEPN3jmM1G0/F7DdWU9T46xfsfTVm1O/dD6uR+l/VzrCl7fGZm1pgbbzbQIuJSSdPrJu8GzMzPTwKGgMPy9NMj4ingTklzScMA/6EnwZq1ruP3Gqop6310ivc/OnSLpRx1fed/vlq9/1Eryvo51pQ9PjMza8yNN5uImp2hmApcXlhuQZ62nNHOXkD7Zwe6fRS8jEfayxZT2eJppnivIUnD7jWUc9r3GjIzMxtAbryZLaMG06LRgqOdvQA45pSz2zo70Mmj/o2U8Uh72WIqWzyNTLR7DZmZmdkybrzZRNTsDMUCYFphuY2AhT2PzmxkvteQmZnZBOXGm01Ezc5QnAOcKulrpAFLZgBX9iVCsyZ8ryEzMyuzdntWzJu9a5ciGUxuvNlAk3QaaXCSyZIWAJ8lNdqWO0MRETdKmgPcBCwFDvRIk2ZmZjZRuYt7+bjxZgMtIvZqMqvhGYqIOBI4snsRmZmZmZmNjW/SbWZmZmZmVgFuvJmZmZmZmVWAu02amZmZmVlftHpd3aFbLGW/WedO+AFOfObNzMzMzMysAtx4MzMzMzMzqwA33szMzMzMzCrAjTczMzMzM7MKcOPNzMzMzMysAtx4MzMzMzMzqwA33szMzMzMzCrAjTczMzMzM7MK8E26zczMaP1GsTUT/UaxZmbWez7zZmZmZmZmVgFuvJmZmZmZmVWAG29mZmZmZmYV4GvezEqi3ettwNfcWHmMJX/NzMysPW68mZmZmZlZJUz0waXceDMzMzMzs4E0aD2bfM2bmZmZmZlZBbjxZmZmZmZmVgFd6zYpaSfgG8Ak4AcRMbtb2yqa6P1gbfz6lbtmneD87Z2Rfm8O3WIp+9XN9+/NyJy7VmXOX+uVrjTeJE0CvgXsACwArpJ0TkTc1I3tmXWKc9eqrFP565Ejrddc9lqVOX+tl7p15m1rYG5E3AEg6XRgN8BJbGVXqdxtp5J96BZLmdm9UKwcKpW/E82gXTTfYc5dqzLn74Bpt35V39NiNOMp27vVeJsKzC+8XgC8rriApAOAA/LLJZJubbCeycADXYmwFsdXurLarsfdJWWMe+Meb2/U3IXy5G87DobJB7+vPPFkpfqM6Hw8pcvfFnK3bP+T5Rw8gWLs0m8UjB5f6XIXulP2dvEz7qXSfye6YKR9Ll3+jpC7pfzflbGcLWNMMLa4Rih3Rs3dbjXe1GBaDHsRcRxw3Igrkf4YEVt1MrBecNyVNmruQjXzt2zxQPliKls8YzDusrcKn4FjHL8SxjewZW8veJ/7bsxlb8n241lljKuMMUHv4+rWaJMLgGmF1xsBC7u0LbNOcu5alTl/raqcu1Zlzl/rmW413q4CZkjaRNJKwJ7AOV3allknOXetypy/VlXOXasy56/1TFe6TUbEUkkHAeeThkw9ISJuHMOqRuwaUWKOu6I6mLtQvs+zbPFA+WIqWzxt6VD+VuEzcIzjV6r4Brzs7QXvcx+NM39Lsx91yhhXGWOCHseliOW6lJuZmZmZmVnJdKvbpJmZmZmZmXWQG29mZmZmZmYVUNrGm6SdJN0qaa6kWX3Y/gmSFku6oTBtPUkXSrot/123MO/wHOutknYsTH+NpOvzvG9KUp6+sqQz8vQrJE3vUNzTJF0i6WZJN0r6aFViHxS9zN1u5+kY4ul6/rUZzyqSrpR0XY7nc/3+jMqs3+VujqEjOd3lGDuW512Kr2N5XyVlyN9OKVvZ3gtl+/3ohX7lbJnLMEmTJP1J0i9KFNM6kn4q6Zb8mW3b17gionQP0sWetwMvBFYCrgM263EMbwJeDdxQmPZVYFZ+Pgv4Sn6+WY5xZWCTHPukPO9KYFvSPUB+Beycp38E+G5+vidwRofi3gB4dX6+JvCXHF/pYx+ER69zt9t5Wsb8azMeAWvk5ysCVwDb9PMzKuuj17nb7Zzucowdy/MuxdexvK/Koyz528H9KVXZ3qN9LtXvRw/2t285W+YyDPhv4FTgF/l1GWI6Cfhgfr4SsE4/4+p78jb5kLYFzi+8Phw4vA9xTK8rOG8FNsjPNwBubRQfabShbfMytxSm7wV8r7hMfr4C6c7s6sI+nA3sUMXYq/joR+52M0/LmH/jiGU14BrgdWWIp2yPspS7edvjyuk+xDumPO9RbGPO+37l4hj3szT528F9Km3Z3qP9L83vR5f2rzQ5W5YyjHR/vIuA7VjWeOt3TGsBd1JXz+1nXGXtNjkVmF94vSBP67cpEbEIIP9dP09vFu/U/Lx++rD3RMRS4FHguZ0MVqk746tIR10rFXuFlSF3O/m/HrMu5l+7cUySdC2wGLgwIvoaT4mVIXebaff/1TPjzPNuxtWJvK+SQdiH0UyYcqssvx9dVoqcLVkZdjTwCeCZwrR+x/RC4H7gh7k75w8krd7PuMraeGvUNzl6HkXrmsU70n50dR8lrQGcCRwSEY+NtGiTOPoWe8WV+bMZy/96bBvqbv61JSKejogtSUf0tpb08n7GU2JV3Me+xtyBPO+aDuV9lQzCPozVQJVbZfr96LK+x1mmMkzS24HFEXF1q29pMK0bn98KpC7M34mIVwFPkLpJ9i2usjbeFgDTCq83Ahb2KZai+yRtAJD/Ls7Tm8W7ID+vnz7sPZJWANYGHupEkJJWJH0ZT4mIn1Up9gFQhtzt5P+6bT3IvzGJiEeAIWCnMsRTQmXI3Wba/X91XYfyvOvGmfdVMgj7MJqBL7fK+vvRJX3N2RKWYa8H3iFpHnA6sJ2kk/scU207C3LvBYCfkhpzfYurrI23q4AZkjaRtBJpUIxz+hwTpBj2zc/3JfURrk3fU2kUxk2AGcCV+TTq45K2ySMdvb/uPbV1vQu4OHLn2PHI2zkeuDkivlal2AdEGXK3k//rtvQo/9qJ53mS1snPVwXeCtzSr3hKrgy520xb/69uB9OpPO9ifB3J+27F1yVlzt9OGehyq2y/Hz3Qt5wtYxkWEYdHxEYRMZ30WVwcEe/rZ0w5rnuB+ZI2zZO2B27qa1ydvrCvUw9gF9LoN7cDn+rD9k8DFgH/ILWi9ydd13URcFv+u15h+U/lWG+lMKoRsBVwQ553LPmCR2AV4CfA3PxPfWGH4n4D6fTsn4Fr82OXKsQ+KI9e5m6387SM+ddmPK8A/pTjuQH4TJ7et8+ozI9e5m63c7rLMXYsz7sUX8fyvkqPMuRvB/elVGV7j/a5VL8fPdrnvuRsBcqwmSwbsKTvMQFbAn/Mn9fPgXX7GVetMm5mZmZmZmYlVtZuk2ZmZmZmZlbgxpuZmZmZmVkFuPFmZmZmZmZWAW68mZmZmZmZVYAbb2ZmZmZmZhXgxpuZmZmZmVkFuPFmZmZmZmZWAW68NSHpRElf7PSy3dRmzPtJuqzbMVnvDXrujnM7Q5I+2O3tWGOS3ijp1hLEUYq8t2qTtETSC1tcNiS9uEPbnZ7Xt0KDeS/IcU3Kr38lad9ObNfMymFCNt5yBe5hSSt3Yd0zJS0ovN4gF7JTCtM+1WTaeZ2OxwaLc9eqLCJ+GxGbjnc9Ha4Iz5T0TK7wLpG0QNIcSa/txPpH2bYkfVzSbZKelHS3pNnd+H5b+yTNk3SfpNUL0z4oaQggItaIiDs6sJ3lDqZK2kjSmZIekPSopOsl7TfauiLi7hzX0/n1zhFx0nhjNLPymHCNN0nTgTcCAbyj29uLiEXAXOBNhclvAm5pMO3Sbsdj1eXctbJrdCagIhZGxBrAmsA2pBz/raTtu7zdbwIHAO/P294Z2A6Y0+XtWutWAD7ah+3+GJgPbAw8l5Qj9/UhDjMrmQnXeCMVgJcDJwLPdiWQ9CpJ10h6XNIZwCqFeY2Oii135DcfnfsVsGHhKO6GpIrtm/Iyk4BXAd+om7ZtXg5J/ybp5nyG5XxJGxe28VJJF0p6SNKtkt7daCclrSnpEknfzEd3nyvpHEmPSboSeFHd8t+QND/Pv1rSG/P050v6q6TnFpZ9jaT7Ja3YwudtnTNRc7fp+5S6v31L0rl5/6+Q9KLC/B0k3ZKPXB8LqOVP256Vz0AcLumm/L/9oaRVlM/WSjpM0r3ADyWtLOloSQvz42jlM0la/uzuhvnswv2S7pR0cGHeJEmflHR7/t9eLWmapNqBgutynr4nL/92SddKekTS7yW9orCupt+RokgWRMRngB8AXymsY0xlpKQXS/pNzsEH8vaRNAP4CLB3RPwhIpZGxI3AvwI7SdouL3eipO/m78DjeV0tfa9G+35YS/4f8DFJ69TPKJalSr+x/5fz4ypJX9Tylya8Veks68P5/yJJLwO+C2yb8/mRvOxrgRMj4omcG3+KiF81ClDSv+bv6MtV16VSha7iyr8Hkv43x3CnpJ0L69lE0qU5V36dYzx5tA9I0k8k3Ztz/FJJmxfmrSrpKEl35fmXSVp1tHWaWXMTtfF2Sn7sKGmKpJWAn5OOdK0H/IT0A9qWiHiCdOR0Ye62sEZELKRQASZVfm8BLqqbtiJwpaTdgU8C7wSeB/wWOA2erWBfCJwKrA/sBXy7WFDm5Z6b1/+7iDg4IgL4FvA3YAPg3/Kj6Cpgy7z/pwI/kbRKRNwLDAHFivb7gNMj4h/tfkY2LhMud4HVWnjfXsDngHVJZwqPzOuaDJwJfBqYDNwOvL7dz8aetTewI+nAz0tInyvA80m5tzHpLNKnSGevtgReCWxdWPZZkp4D/B9wHTAV2B44RNKOeZH/Jv1vdwHWIpVZf42IWu69MufpGZJeDZwAfIh0luJ7wDlKDcmxfkd+Brxay7rMjbWM/AJwASk/NwKOyctsDyyIiCuLG42I+aSDNDsUJu+d1zMZuJZUBrT6vWr4/bCW/ZH0//3YKMt9C3iC9H3Yl8IBtoK3kxplryTly44RcTPwYeAPOZ/XycteDnxL0p6SXtBso5I+QDrI8NaIuKGF/XkdcCspl74KHC+pdlDrVOBK0nfoCGCfFtYH6cDfDFIOXkPOz+x/gdcA/0T67nwCeKbF9ZpZIxExYR7AG4B/AJPz61uA/yJVRBcCKiz7e+CL+fl+wGV16wrgxfn5iYVlZ5J+kIvLTgeeJv14/hdwZJ5+T2HaJXnar4D9C+99DvBXUsXoPcBv69b9PeCzhThOAG4APl5YZlLe75cWpn2pfp/q1vswqXJE3u7vCuu6F9i63//PifSYwLnbyvt+UJi3C3BLfv5+4PLCPAELgA/2+/9ZtQcwD/hw3ed8e86ZvwOrFObdDuxSeL0jMK8+x0iVyLvrtnM48MP8/FZgtybxPJvD+fV3gC/ULXMr8OYWviPL5X2e/tK8nalNYmipjAR+BBwHbFT3/k8X87Nu3unA92NZjp9emLdG/k5OG8/3w4+W8/6twMuBR0kHpT4IDBXzkGW/sZsW3vtFCmVvXvYNhddzgFn5+X4sX06vC8wGbsz/72uB1+Z50/P6PgbcVMytwrwV8ushcpmXtzO3sOxqednnAy8AlgKrFeafDJzc5me2Tl7n2qTfgCdr3xM//PCjM4+JduZtX+CCiHggvz41T9sQuCciorDsXZ3aaETMI1Ua30CqSPw2z/pDYVqtK9DGwDeUuv48AjxEqnROzfNeV5uX5+9NKnhrdgVWJXXDqHkeqd/+/MK0Yfsn6VCl7m6P5vWuTToyB3A2sJnSqFo7AI9G3dFi67qJmrutvO/ewvO/kiq3kD6bZ3M+f0bF74C1p7782DA/vz8i/laYtyHDc7C4bNHGpG66xf/tJ4HaYDjTSA3BVmwMHFq3rml5u2P9jkwlVUIfgXGVkZ8gfQ+ulHSjpFqvhwdIPSEa2SDPrynm8RLSd2tDxvf9sBZFOqP1C2BWk0Ua/cY2Kmta/l9ExMMRMSsiNid9J64Ffl44SwbwceBbEbGg0TqaeDaGiPhrfroGKZ8eKkxrtg/DKHVvnq3UvfkxUoMX0ndjMqmLcqvfYzNrQVUvLm9b7mP9bmCS0rUZACuTjhItAqZKUuEH/gUsK3CeIB2hqq2r+MNYL5pM/y2porsty7pT1Ka9ATg2T5tPOrtxSv0KlK5z+E1E7FA/r+D7pCN2v5S0U6TucPeTjqhNI52xqe1fbb1vBA4jdeO5MSKekfQw+fqgiPibpDmkSsFLSd2PrEcmeO7Ob+F9zSwi5XwtBhVfW9uKn90LSGezYPm8WUhqVNzYYNmi+cCdETGjyfbmk7pottIVrJZ7y3UJlPRmRv6ONPMvwDUR8cR4yshI3Sr/PcfyBuDXStftXUzq4rh18WCYpGmkbqdfKMRSzOM1SN3PFjK+74e157OkLoFHNZhX+43dCPhLntZOWdOs7E0zIx6Q9L+k8ne9wqy3AedJujcizmxje40sAtaTtFqhAdfKPrwX2I10hnIe6aBG7bvxAOlyjReRukebWQdMpDNvu5O6HmxGum5hS+BlpEro7qSC92BJK0h6J+k6jZrrgM0lbSlpFVJf8GbuA54rae266ZeSunEtjIjH8rTL8rS1SWcyIJ11OLx2zYKktSXtkef9AniJpH2ULoRfUdJrlS54LjqI1GXoF5JWjTRk8M+AIyStJmkzhvfHXzPv//3ACpI+Q7rGpOhHpC4X7yB1pbDe2Z0JmrttvK+Rc/O+v1Pp4v2DGX5GwtpzoNLw5euRzpCd0WS504BPS3qe0nWHn6FxmXEl8JjSYCer5iP4L9eyIfp/AHxB0gwlr9CyQUHuA4r31/o+8GFJr8vLri5pV0lrkvJzpO/Is/J7p0r6LKl73CfzrDGXkZL2kLRRfvkwqaL+dET8hfSdOUXSNnn/Nyddp/nriPh1Yd27SHqD0vV7XwCuiHRt3Hi+H9aGiJhLyvmDG8yr/419Kal8bNV9wEb5/wuApK/k78MKOY//g9Tl8cHC+24EdiJdGzeuEYgj4i7S9X1HSFpJ0rbAP7fw1jWBp4AHSQcKv1RY5zOk7vBfUxqcaJKkbeVbYZiNy0RqvO1Lupbi7oi4t/YgnTXYizTIwn6kH9f3kApiAPKP7OeBXwO3kSquDUXELaTKyx1K3Vhq3YV+Q7qYt/jea0ndxK6uHemKiLNIFx+frtQF4QbSQBJExOOkI217ko663puXHVYQ5qPLB5COyp6dK+0HkbpG3Eu6DuKHhbecT7pe6S+k7kR/o667RET8jnSR8TW5K531zoTNXdJ1JKO+r8n+PADsQbpu5EHSBfW/G+191tSppIE37siPZje5/iKpEvhn4HrS2Yrlls0V3n8mHYy4k3SU/gekAwIAXyNdF3QB8BhwPCnnIB2EOCnn6bsj4o+ks1vHkr4Hc0nfCSLi74zwHck2lLQEWEIamGQLYGZEXJDnj6eMfC1wRV7/OcBHI+LOPO+gvM8n522fR7pGqX5AlVNJZ34eIg3+sHfeZkvfK+uYzwOrN5l3ECl37yWdeT2N1KhpxcWkhti9kmrdZVcDziJ1272DdDZ7uQZaRFxHGgjl+yqMHDlGe5N6WDxI+s6ewej78CPSd+Ie0vV3l9fN/xipHLiKlL9fYWLVPc06TsMvAzBrTtLFwKkR8YN+x2JmvSNpHmnQg1+Ptuwo69mONIDGC0dduIK6UUZKOpE0oMpyI3ZaeUn6CvD8iNh31IVLSv+/vfsPlew+6zj+frJNatlGknTTdekGb1pCoTQ1DcuqRMqt1brNSreClUCVBFIWxEDFiN5S0Opfq1BRRIqx1i7aNko1zdKANqRe/M9m12yymyYx23hrN7tmjT9qsn9Yt33845zb3Cz3x/w653y/d94vGO7Mydydz8w8Ocxzv88503ytxdOZ+ZtDZ5H0Cv/6oZG0o0y3svGolCRt5e00q2zbjvvI+RbN9+29ox293Q/cTbNyVo125PYtEXFFRBygOZbtiwPHknSZuTlhiSYXEUdpjq36SDumI0ljiYg/oBn7qnYlYiPuI0Vz7Nfnac7aeIHmxCYPDppofD9AM1L8BpqzDP9iZj4WER+i+QqKy32jPRumpB45NilJkiRJFXBsUpIkSZIqUMTY5K5du3JhYWHQDBcvXmTnzo1OIjUMM8GJEydezMzre3vACQxZvyXWCJhrVen1W8K+dz2l1s9GassLW2cuvXZh4/ot8f0oMRNs31w11K80qSKat4WFBY4fPz5ohuXlZRYXFwfNcDkzQUR8o7cHm9CQ9VtijYC5VpVevyXse9dTav1spLa8sHXm0msXNq7fEt+PEjPB9s1VQ/1Kk3JsUpIkSZIqYPMmSZIkSRUoYmxylhaWHhrr/itHDnaURBrPuLUL8JkD5R2rIHVhkv8/3L/Pp1PPf4u7xqgX60RSTbZd8yZJKt9mzdi9N18a68O3JEnzwrFJSZIkSaqAzZskSZIkVWDuxyZXR3dGHdNxNl6SJEnSEFx5kyRJkqQK2LxJkiRJUgVs3iRJkiSpAjZvkiRJklSBuT9hiVQzv4xWkiRpfrjyJkmSJEkVsHmTJEmSpArYvEmSJElSBWzeJEmSJKkCNm+SJEmSVAGbN0mSJEmqgM2bJEmSJFXA5k2SJEmSKmDzJkmSJEkVsHmTJEmSpAq8ZugAkvqzsPTQWPdfOXKwoySSJEkalytvkiRJklQBmzdJkiRJqoDNmyRJkiRVYKpj3iJiBXgJ+A5wKTP3RcR1wF8CC8AK8HOZ+V/TxZQkSZq9cY8FBo8HljScWay8vTszb8nMfe3tJeCRzLwJeKS9LUmSJEmaQhdjk4eAo+31o8AHOngMaWoRsRIRpyLiZEQcb7ddFxEPR8Sz7c9rh84pSZIkwfRfFZDAlyMigT/OzPuA3Zl5HiAzz0fEG9f7xYg4DBwG2L17N8vLy1NGadx786WJfm/360b73VnlHMXLL7/c6+ONosRMU3p3Zr645vbqyvGRiFhqb//6MNEkTcOvxpAkbTfTNm+3Zea5tkF7OCKeHvUX20bvPoB9+/bl4uLilFEad00wuw5N4/aJUyO8HKcujv1vT/qBYHl5mVm9LrNSYqYZOwQsttePAsvYvEnSzHi8vCRNbqrmLTPPtT8vRMQDwH7ghYjY06667QEuzCCn1IWiVo4nWTUedcV4UpM+r1JXaEvNJc0hpx4kaQITN28RsRO4IjNfaq+/F/ht4BhwJ3Ck/fngLIJKHShq5XiSVeORV4wntPKhxYl+r9QV2lJzSXLqQZJGMc2nvt3AAxGx+u98LjP/NiIeBf4qIu4G/hX44PQxpdlz5Vi1cuxMlet06qHriQQYfyqh1FV/c0n1mbh5y8zngB9aZ/t/AO+ZJpTUNVeOtQ04dqZadTr18IeffbDTiQQYfyqh1FV/c0n16XbvJpXLlWNtN46dqQpOPUjS5GzeNJdcOVblijrZziQ2G2vrY+xtPdvtBD2bGSqzUw+SNB2bN0mqT1En25nEZifo6fpEPBvZbifo2cyAmZ16kKQp2LxJUmUcO1OtnHqQpOlcMXQASdLoImJnRFy9ep1m7Ow0r4ydgWNnkiRtS668SVJdHDuTJGlO2bxJUkUcO5MkaX45NilJkiRJFbB5kyRJkqQK2LxJkiRJUgVs3iRJkiSpAjZvkiRJklQBmzdJkiRJqkDRXxWwsPTQ0BEkSZIkqQhFN2+ShjXuH1BWjhzsKIkkSZIcm5QkSZKkCti8SZIkSVIFbN4kSZIkqQIe89YDjxuSJEmSNC1X3iRJkiSpAjZvkiRJklQBmzdJkiRJqoDNmyRJkiRVwBOWSJIkjWHcE5F95sDOjpJImjeuvEmSJElSBWzeJEmSJKkCjk1KkqY27hiZJEkanytvkiRJklQBmzdJkiRJqoDNmyRJkiRVwGPepI54DJAkSZJmyZU3SZIkSaqAzZskSZIkVcCxSUmSpA6dev5b3DXGKP3KkYMdppFUM5u3Aq0eK3XvzZdG2tm7k1cpxq1dsH5VjnGPU7V2JUl9s3nbBvzAoZpZv5IkSaOxeZMkvYpnSpUkqUw2b5IkSQVxIkHSRjo722REHIiIZyLiTEQsdfU40qxZu6qZ9ataWbuStLVOVt4iYgfwR8BPAmeBRyPiWGZ+rYvH03imGYka50QU4yjlr4bWbvms341Zv6qVtdu/haWHOj25VB/76lL2vVKfuhqb3A+cycznACLifuAQ4E5YpbN2VTPrt0eTnF11XF19YF7NXNCHX2u3cB4LK5UhMnP2/2jEzwIHMvPD7e1fAH44M+9Zc5/DwOH25luBZ2YeZDy7gBcHznA5M8EPZub1fT3YKLXbbi+lfkusETDXquLqt6Da3Uyp9bOR2vLC1pmLq912+yj1W+L7UWIm2L65eq1fqU9drbzFOtte1SVm5n3AfR09/tgi4nhm7hs6x1pmGsSWtQvl1G+p74e5BlPdvnc9tb1PteWFIjPPbN9b4HMrMhOYS6pRVycsOQvcsOb2XuBcR48lzZK1q5pZv6qVtStJI+iqeXsUuCkiboyIq4A7gGMdPZY0S9auamb9qlbWriSNoJOxycy8FBH3AH8H7AA+nZlPdvFYM1TiGJGZelZh7Zb6fphrABXW70Zqe59qywuFZZ5x7Rb13FolZgJzSdXp5IQlkiRJkqTZ6uxLuiVJkiRJs2PzJkmSJEkVmMvmLSJWIuJURJyMiOPttusi4uGIeLb9eW0POT4dERci4vSabRvmiIiPRsSZiHgmIn6qx0wfj4jn29frZETc3mcmNazbiXJZu4UptX62yHxDRPx9RDwVEU9GxEdKzh0R3xcRX42Ix9u8v1Vy3lmJiANt/jMRsdTzYxdbIxGxIyIei4gvFZTpmoj4QkQ83b5mP1pCLqkKmTl3F2AF2HXZtt8FltrrS8Dv9JDjXcCtwOmtcgBvAx4HXgvcCHwd2NFTpo8Dv7rOfXvJ5OV7r7d1O34ua7ewS6n1s0XmPcCt7fWrgX9usxWZm+Y7017fXr8S+EfgR0rNO6PnvKPN/Wbgqvb5vM0aSYBfAT4HfKm9XUKmo8CH2+tXAdeUkMuLlxouc7nytoFDNDsT2p8f6PoBM/MfgP8cMcch4P7M/N/M/BfgDLC/p0wb6SWTNmXdbp5rI9buQEqtn81k5vnM/Kf2+kvAU8CbKDR3Nl5ub17ZXrLUvDOyHziTmc9l5reB+2meVy9KrZGI2AscBD61ZvPQmb6f5o84fwqQmd/OzP8eOpdUi3lt3hL4ckSciIjD7bbdmXkemp0w8MaBsm2U403AN9fc72y7rS/3RMQT7cjT6ijD0JnmjXU7GWu3fCXXz6tExALwTprVrGJzt6NyJ4ELwMOZWXTeGSjmORRWI78P/Brw3TXbhs70ZuDfgT9rxzk/FRE7C8glVWFem7fbMvNW4H3AL0XEu4YONIJYZ1tf3/PwSeAtwC3AeeATBWSaR9bt+KzduhX1PkXE64G/Bn45M/9ns7uus63X3Jn5ncy8BdgL7I+It29y98HzzkARz6GkGomInwYuZOaJUX9lnW1dvIavoRmd/mRmvhO4SDMmOXQuqQpz2bxl5rn25wXgAZrl9xciYg9A+/PCQPE2ynEWuGHN/fYC5/oIlJkvtB8Evgv8Ca+MKwyWaR5Zt+OzdqtRZP2sFRFX0nwo/2xm/k27ufjc7TjaMnCACvJOYfDnUGCN3Aa8PyJWaMZIfzwi/mLgTKuPc7ZdDQb4Ak0zN3QuqQpz17xFxM6IuHr1OvBe4DRwDLizvdudwIPDJNwwxzHgjoh4bUTcCNwEfLWPQKs709bP0Lxeg2aaN9btZKzdahRZP6siImiOz3kqM39vzX8qMndEXB8R17TXXwf8BPB0qXln5FHgpoi4MSKuAu6geV69KLFGMvOjmbk3MxdoXo+vZObPD5mpzfVvwDcj4q3tpvcAXxs6l1SNoc+Y0veFZtb68fbyJPCxdvsbgEeAZ9uf1/WQ5fM0o1z/R/OXpbs3ywF8jOYsS88A7+sx058Dp4AnaHaie/rM5MW6nSKXtVvYpdT62SLzj9GMaT0BnGwvt5eaG3gH8Fib9zTwG+32IvPO8HnfTnOWx6+v7iOtke891iKvnG1y8Ew0o+zH29fri8C1JeTy4qWGS2Q6NixJkiRJpZu7sUlJkiRJqpHNmyRJkiRVwOZNkiRJkipg8yZJkiRJFbB5kyRJkqQK2LxJkiRJUgVs3iRJkiSpAv8P2vUGp/NbpuEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#Code task 18#\n", + "#Call ski_data's `hist` method to plot histograms of each of the numeric features\n", + "#Try passing it an argument figsize=(15,10)\n", + "#Try calling plt.subplots_adjust() with an argument hspace=0.5 to adjust the spacing\n", + "#It's important you create legible and easy-to-read plots\n", + "ski_data.hist(figsize=(15,10))\n", + "plt.subplots_adjust(hspace=0.5);\n", + "#Hint: notice how the terminating ';' \"swallows\" some messy output and leads to a tidier notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What features do we have possible cause for concern about and why?\n", + "\n", + "* SkiableTerrain_ac because values are clustered down the low end,\n", + "* Snow Making_ac for the same reason,\n", + "* fastEight because all but one value is 0 so it has very little variance, and half the values are missing,\n", + "* fastSixes raises an amber flag; it has more variability, but still mostly 0,\n", + "* trams also may get an amber flag for the same reason,\n", + "* yearsOpen because most values are low but it has a maximum of 2019, which strongly suggests someone recorded calendar year rather than number of years." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### 2.6.4.2.1 SkiableTerrain_ac" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "39 26819.0\n", + "Name: SkiableTerrain_ac, dtype: float64" + ] + }, + "execution_count": 116, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 19#\n", + "#Filter the 'SkiableTerrain_ac' column to print the values greater than 10000\n", + "ski_data.SkiableTerrain_ac[ski_data.SkiableTerrain_ac > 10000]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Q: 2** One resort has an incredibly large skiable terrain area! Which is it?" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
39
NameSilverton Mountain
RegionColorado
stateColorado
summit_elev13487
vertical_drop3087
base_elev10400
trams0
fastEight0.0
fastSixes0
fastQuads0
quad0
triple0
double1
surface0
total_chairs1
RunsNaN
TerrainParksNaN
LongestRun_mi1.5
SkiableTerrain_ac26819.0
Snow Making_acNaN
daysOpenLastYear175.0
yearsOpen17.0
averageSnowfall400.0
AdultWeekday79.0
AdultWeekend79.0
projectedDaysOpen181.0
NightSkiing_acNaN
\n", + "
" + ], + "text/plain": [ + " 39\n", + "Name Silverton Mountain\n", + "Region Colorado\n", + "state Colorado\n", + "summit_elev 13487\n", + "vertical_drop 3087\n", + "base_elev 10400\n", + "trams 0\n", + "fastEight 0.0\n", + "fastSixes 0\n", + "fastQuads 0\n", + "quad 0\n", + "triple 0\n", + "double 1\n", + "surface 0\n", + "total_chairs 1\n", + "Runs NaN\n", + "TerrainParks NaN\n", + "LongestRun_mi 1.5\n", + "SkiableTerrain_ac 26819.0\n", + "Snow Making_ac NaN\n", + "daysOpenLastYear 175.0\n", + "yearsOpen 17.0\n", + "averageSnowfall 400.0\n", + "AdultWeekday 79.0\n", + "AdultWeekend 79.0\n", + "projectedDaysOpen 181.0\n", + "NightSkiing_ac NaN" + ] + }, + "execution_count": 117, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 20#\n", + "#Now you know there's only one, print the whole row to investigate all values, including seeing the resort name\n", + "#Hint: don't forget the transpose will be helpful here\n", + "ski_data[ski_data.SkiableTerrain_ac> 10000].T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**A: 2** Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "But what can you do when you have one record that seems highly suspicious?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can see if your data are correct. Search for \"silverton mountain skiable area\". If you do this, you get some [useful information](https://www.google.com/search?q=silverton+mountain+skiable+area)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Silverton Mountain information](images/silverton_mountain_info.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can spot check data. You see your top and base elevation values agree, but the skiable area is very different. Your suspect value is 26819, but the value you've just looked up is 1819. The last three digits agree. This sort of error could have occured in transmission or some editing or transcription stage. You could plausibly replace the suspect value with the one you've just obtained. Another cautionary note to make here is that although you're doing this in order to progress with your analysis, this is most definitely an issue that should have been raised and fed back to the client or data originator as a query. You should view this \"data correction\" step as a means to continue (documenting it carefully as you do in this notebook) rather than an ultimate decision as to what is correct." + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "26819.0" + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 21#\n", + "#Use the .loc accessor to print the 'SkiableTerrain_ac' value only for this resort\n", + "ski_data.loc[39, 'SkiableTerrain_ac']" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [], + "source": [ + "#Code task 22#\n", + "#Use the .loc accessor again to modify this value with the correct value of 1819\n", + "ski_data.loc[39, 'SkiableTerrain_ac'] = 1819" + ] + }, + { + "cell_type": "code", + "execution_count": 121, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1819.0" + ] + }, + "execution_count": 121, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 23#\n", + "#Use the .loc accessor a final time to verify that the value has been modified\n", + "ski_data.loc[39, 'SkiableTerrain_ac']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**NB whilst you may become suspicious about your data quality, and you know you have missing values, you will not here dive down the rabbit hole of checking all values or web scraping to replace missing values.**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What does the distribution of skiable area look like now?" + ] + }, + { + "cell_type": "code", + "execution_count": 122, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEXCAYAAADm5+DTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAmT0lEQVR4nO3de5gcZZn+8e9NwikknDY4G0JI4GdATooygIqHiaAcFfXyEBYRVjSw6ioKKqdV1GWXVQF31wU2CgvIISBn0FWQpUUUhATDMYBAAgmEcA4MKpj4/P543yGVprunpzM9XZO5P9fV13S/VfXWU09X9dNVXVOliMDMzKws1uh0AGZmZkUuTGZmViouTGZmViouTGZmViouTGZmViouTGZmViptL0ySzpD0T4PU1+aSeiWNyq8rkj49GH3n/v5X0sGD1d8A5vvPkp6W9MQAp1sgaY86w+6R1NNkPyHp9XWGHSLppoHEVRaSDpP0/U7H0UfSKZIOX4Xp15V0taSlkn4ymLG1S6N1dAB9HCvpR4MVk606SVPy58bodvS/Sp1KWgB0AcuA5cC9wLnAzIj4K0BENLUh5r4+HRG/rDdORDwKjF2VmAvzOwF4fUR8otD/3oPR9wDjmAQcCUyOiCcHq9+I2G6w+hqOJK0FHA+8tdOxFHwXuFXSWRHxSgvTf4S0vf1NRCyTdDawKCKOH8wgyyYi/qXTMdjQGow9pvdHxDhgMnAS8DXgzEHodyXtqswlMBl4ZjCL0nDUhvd3f+C+iHhsMDtdlTgjYjFwH/CBFruYDDwQEctajaGomWXpOzphr83FavyZ1HkR0fIDWADsUdW2C/BXYPv8+mzgn/Pz8cA1wPPAs8CvScXxx3maPwG9wFeBKUAAhwKPAjcW2kbn/irAvwK3AkuBK4GN87Ae0rfJ18QL7AW8Avwlz++OQn+fzs/XIH3jfgR4krQnuEEe1hfHwTm2p4HjGuRpgzz9U7m/43P/e+Rl/muO4+wa09bMWXX+gTcA84HpNYbtAtyc+1gM/ABYqzCPAL4APJyX5buFeRwC3FQY9w3AdTmW+4GPNVjuvwfmAS/mvg8rDOsBFpG+yDyR14E1gKOBh4BngIv73s88zU/yuEvz+rBdg3mfBRxf1VZ3emBd4OT8/iwFbsptfe/1q+thHv9TedmeA35B2uMFEHBqXmeWAneSt4U8/DjgfxrEXTNG4JusvM4elp+/kl9fncfbFLiUtK7NB75Q6PsE4BLgPOAF8rpeNf+zgdOBnwEvkdbRZvq8KL/PtwNvqvUZQf/r4XasWLeWAMcW5nFeM9tefs/Oye/LPNJnyaIG+a67PtfJxQLSOnsn8DLpqNMHgHvyclWAbaqW/6g8/tKcp3UKw/cD5uZpfwu8sTBsm9zf87n/DxSGVYrvH4XtlH7WwcI004HZVW1fAq7Kz/cFfk9aVxYCJxTG63sfRheWc4/C8Fffs/z6rXn5ngfuAHoa1pZGA/t7VAdTaH8U+IfCm9tXmP4VOANYMz/eCajOgvUt+LnAeqz8IVEsTI8B2+dxLmXFCtxDncJUK3HVbzbpg+dBYEvS4cPLgB9XxfbDHNebSCvpNnXydC6paI7L0z4AHFovzqpp+80Z8Jac8/3qLOtOecUYnec/DziiMG4ANwAbA5vn+PrycAgrVvj1SCvo3+e+3kL6YKhZIEgr9v8jbSjvBv4IvKWw3MuAfwPWznk8ArgF2Cy3/TdwYaG/T+Ucrg18H5jbIG+3AR+taqs7PfBf+f2fCIwC3p7H63uvi+vhB/O6sU3Ow/HAb3M/ewJzgA3zcm8DTCjM58PA7Q3ibhTjCay8sZ9N3rby6zXyvL8OrEVadx8G9ixM/5cc/xrAujXmfzbpw2y3PM6YJvv8CGn9PIpUvNYcyHqYl3kx6bD2Ovn1rtXLTT/bHumoza+AjUjr0Z3U2b7oZ32ukYt18vLMBSbl+W9FKlrvzcv/VdK6sVZh+W8lFfeN8zIfnoe9hVQ8diWtcwfn8dfOfT0IHJvz/h5S4d+6+rOqxnbacB0sTDMm9zm1arvp+3LbA+yQl/2NpC8LH6x6H/otTKRt6hlgn9zXe/PrTepuBwMtRvU+6KvabyF/i2HlwvQt0gf06/vrq7DgW9ZoKxamkwrDtyV9gxzFqhem64HPFoZtTdoA+zaqADYrDL+17w2t6nMUacPZttB2GFApvPmNClN/Ofsmac9jWjPvTR52BHB54XUAexVefxa4vsYK/3Hg11V9/TfwjSbXlyuALxaW+xVW/vY4D9i98HpCX85r9LVhjnuDOvP6Q3GZGk1P2lj+ROGbfj/r4f+Sv1jk12uQiu5k0gfIA6QP4DVq9Pde4OEm87XSMlavs7y2MO0KPFrVxzHkPbQ8/Y39zPNs4NwB9nlLVS4WA+8cyHoIHAD8vs54ry43/Wx7FIpmfv1p6hemhutzdS4Ky/Opwut/Ai6uWv7HyHsEefxPFIZ/BzgjPz8d+HZV//eTvsS9k7TnvEZh2IXkvRYaF6aG62DV/M4Dvp6fTyUVqjF1xv0+cGrV+9BMYfoa+Ut9YfgvgIPrxdWus/ImknaNq32X9C3gWkkPSzq6ib4WDmD4I6RvGuObirKxTXN/xb5Hk3587lM8i+6P1D4xYzzpG091XxObjKO/nB1O+rZ+Q70OJG0l6RpJT0h6AfgXXpuj6jxuWqOrycCukp7vewAHAn9bZ757S7pF0rN53H2q5vtURPy5qv/LC33PI51U0yVplKSTJD2Ul2FBnqbee/0c6Vt3XyyNph9P+jb8UJ2+YOX8TAb+vRDns6RvphMj4v9Ih6j+C1giaaak9QvTjiMdzniNFpax2mRg06r351hWXmf7256qxxlQn5FOelpEjfWnn/VwEo3zX63etrdpVfyNlreZ9bnW9MW2lT4n8vIvZOXtu16sk4Ejq+Y/Kfe5KbAw99enqc+NJtbBogtIXwoA/g64IiL+CCBpV0k3SHpK0lLSZ00rn62TgY9WLec7SF88axr0wiRpZ1LyXnOKcUS8GBFHRsSWwPuBL0vavW9wnS7rtfeZVHi+Oekb9tOk3esxhbhGAZsMoN/HSQkt9r2MtDs7EE/nmKr7aupH+X5yBmll2VzSqQ26OZ30o/vUiFif9MGiqnGq8/h4jX4WAr+KiA0Lj7ER8Q/VI0pam3Ro9XtAV0RsSDpWX5xv9XuwENi7qv91Ip3A8HekExr2IO3lTOmbVZ1lvpN0mKVPo+mfBv5MOuxYTzHWhaTfy4pxrhsRvwWIiP+IiJ1Iv5lsBXylMO02pGPstQx0GWvlb35VXOMiYp8G0/TXbzN9vrruSFqDdAit1vrTaD1cSOP8N2txnv9rYquhmfW5Vr6KbSt9TkhSnmcz2/dC4MSq+Y+JiAtzv5NyPvsUPzdW+nyj6sthP+tg0bXAeEk7kgrUBYVhFwBXAZMiYgPSTwr11sVG8Swk7TEVl3O9iDipTl+DV5gkrS9pP2AWaRfurhrj7Cfp9fnNe4H0bXh5HryEdPx6oD4haVtJY0iHvS6JiOWkXdl1JO0raU3S7wBrF6ZbAkypeuOLLgS+JGkLSWNJ3+4uigGeEZVjuRg4UdI4SZOBL5N2ofvVT84g7XrvBbxLUr03elyetlfSG4DXFBLgK5I2yqevf5H0I221a4CtJB0kac382FnSNjXGXYuU76eAZZL2Bt7Xz+KeQcrT5Lzsm0jav7AML5OOTY8hvR+N/Ix0SKRP3enzt9KzgFMkbZr3XN6Wi2u9OI+RtF2OcwNJH83Pd87fNNckbax/ZuX3692kQ4G1DHQZq7eZW4EXJH1N6X+eRknaPn9ZbFUzfe4k6cP5LLUj8jLcUqOvRuvhNcDfSjpC0tp5W9m1hXgvJr03G0maCHy+wbgDWZ8bzW9fSbvn9/xI0vL/tolpfwgcntcXSVovf16NA35HWn++muPqIX0xnZWnnQt8WNIYpf9BPLSv0ybWwVflz7NLSEdmNiadCNJnHPBsRPxZ0i6kL071zAWm51i7Sb859jkPeL+kPfP6s46kHkmb1eyJwSlMV0t6kVQVjwNOIf2YWMtU4Jeks4huBk6LiEoe9q/A8XlX76gBzP/HpGPBT5AOx3wBICKWkn4r+RHpW8ZLpEMMffr+QfEZSbfX6Pes3PeNpB9z/wz84wDiKvrHPP+HSXuSF+T+m9EoZwBExPOk3y72lvTtGn0cRVqpXiRtDLWKzpWkH0znAj+lxin/EfEiqbhMJ32je4IVJy/UGvcLpA33uTz/qxovKv+ex7k2r1O3kH7jgHTywSOk9/Jean/wFV0NvEFS3yGl/qY/CriL9OPvs3m5am4fEXF5Hj5L6ZDU3UDf/8CtT8rxc3l+z5D2GpE0gfQ76BV1Yh7oMp4JbJu3mSvyl6D3AzuS1tmnSev/Bv30U1eTfV5J+r3mOeAg4MMR8Zca3dVdD/P68t48rydIvxFOayHkb5G28/mk7eYSUqGotWxNr8/1RMT9wCeA/yTl5v2kf6Hp9//UImI28BnSYbfnSIfsD8nDXiGd7bd37vc04JMRcV+e/FTSb7RLSGchnl/ouu46WMcFpL30n1R98f4s8K28LX6dtC3X80+kPd7nSL97v7rnFRELSUcCjiV9UV1I2oOrW3/6zu4yW+1ImkE66eSITscCIOlk4KGIOK3TsQwW1fhH9TKR9A+kEyPe3e/IVhr+BzFbbUXEzE7HUBQRR3Y6htVd3ivdknR0YSrp0NoPOhqUDZgLk5mtTtYinfK9Bensx1mkw2A2jPhQnpmZlYpve2FmZqUyrA/ljR8/PqZMmdLStC+99BLrrbfe4Aa0GnF+GnN+GnN+Gut0fubMmfN0RGzS/5idMawL05QpU5g9e3ZL01YqFXp6egY3oNWI89OY89OY89NYp/Mj6ZH+x+ocH8ozM7NSaVthkjRJ6TpL85TupvrF3L6xpOsk/SH/3agwzTGSHpR0v6Q92xWbmZmVVzv3mJYBR0bENqSr3H5O0rak++1cHxFTSVfwPhogD5tOurbTXsBp8k3KzMxGnLYVpohYHBG35+cvkq4UPZF0aYpz8mjnkO4NQ26fFREvR8R80uU5dmlXfGZmVk5D8huTpCnAm0kXJuyKdItp8t/X5dEmsvLl5BfR/K0hzMxsNdH2s/LylbkvJd2p8oV0kezao9Zoe81//+brn80A6OrqolKptBRXb29vy9OOBM5PY85PY85PY85PY20tTPmy65cC50fEZbl5iaQJEbE4X9fqydy+iJXvnVLzni75+mczAbq7u6PVUy47fbpm2Tk/jTk/jTk/jTk/jbXzrDyRLss/LyJOKQy6inRve/LfKwvt0/O9WLYgXYDx1nbFZ2Zm5dTOPabdSPdmuUvS3Nx2LHAScLGkQ4FHgY8CRMQ9ki4m3YdmGfC5fC8YMzMbQdpWmCLiJurfhnf3Wo0RcSJwYrtiqjbl6J82Nd6Ck/ZtcyRmZtbHV34wM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NScWEyM7NSaVthknSWpCcl3V1ou0jS3PxYIGlubp8i6U+FYWe0Ky4zMyu30W3s+2zgB8C5fQ0R8fG+55JOBpYWxn8oInZsYzxmZjYMtK0wRcSNkqbUGiZJwMeA97Rr/mZmNjwpItrXeSpM10TE9lXt7wJOiYjuwnj3AA8ALwDHR8Sv6/Q5A5gB0NXVtdOsWbNaiq23t5f5S5c3Ne4OEzdoaR7DWW9vL2PHju10GKXl/DTm/DTW6fxMmzZtTt/nbxm181BeIwcAFxZeLwY2j4hnJO0EXCFpu4h4oXrCiJgJzATo7u6Onp6elgKoVCqcfNNLTY274MDW5jGcVSoVWs3tSOD8NOb8NOb8NDbkZ+VJGg18GLiory0iXo6IZ/LzOcBDwFZDHZuZmXVeJ04X3wO4LyIW9TVI2kTSqPx8S2Aq8HAHYjMzsw5r5+niFwI3A1tLWiTp0DxoOisfxgN4F3CnpDuAS4DDI+LZdsVmZmbl1c6z8g6o035IjbZLgUvbFYuZmQ0fvvKDmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmViguTmZmVSjtvrX6WpCcl3V1oO0HSY5Lm5sc+hWHHSHpQ0v2S9mxXXGZmVm7t3GM6G9irRvupEbFjfvwMQNK2wHRguzzNaZJGtTE2MzMrqbYVpoi4EXi2ydH3B2ZFxMsRMR94ENilXbGZmVl5je7APD8v6ZPAbODIiHgOmAjcUhhnUW57DUkzgBkAXV1dVCqVloLo7e3lyB2WNzVuq/MYznp7e0fkcjfL+WnM+WnM+WlsqAvT6cC3gch/TwY+BajGuFGrg4iYCcwE6O7ujp6enpYCqVQqnHzTS02Nu+DA1uYxnFUqFVrN7Ujg/DTm/DTm/DQ2pGflRcSSiFgeEX8FfsiKw3WLgEmFUTcDHh/K2MzMrByGtDBJmlB4+SGg74y9q4DpktaWtAUwFbh1KGMzM7NyaNuhPEkXAj3AeEmLgG8APZJ2JB2mWwAcBhAR90i6GLgXWAZ8LiKa+wHIzMxWK20rTBFxQI3mMxuMfyJwYrviMTOz4cFXfjAzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JxYTIzs1JpW2GSdJakJyXdXWj7rqT7JN0p6XJJG+b2KZL+JGlufpzRrrjMzKzc2rnHdDawV1XbdcD2EfFG4AHgmMKwhyJix/w4vI1xmZlZibWtMEXEjcCzVW3XRsSy/PIWYLN2zd/MzIYnRUT7OpemANdExPY1hl0NXBQR5+Xx7iHtRb0AHB8Rv67T5wxgBkBXV9dOs2bNaim23t5e5i9d3tS4O0zcoKV5DGe9vb2MHTu202GUlvPTmPPTWKfzM23atDkR0d2xAPoxuhMzlXQcsAw4PzctBjaPiGck7QRcIWm7iHihetqImAnMBOju7o6enp6WYqhUKpx800tNjbvgwNbmMZxVKhVaze1I4Pw05vw05vw0NuRn5Uk6GNgPODDy7lpEvBwRz+Tnc4CHgK2GOjYzM+u8IS1MkvYCvgZ8ICL+WGjfRNKo/HxLYCrw8FDGZmZm5dC2Q3mSLgR6gPGSFgHfIJ2FtzZwnSSAW/IZeO8CviVpGbAcODwinq3ZsZmZrdbaVpgi4oAazWfWGfdS4NJ2xWJmZsOHr/xgZmal4sJkZmal4sJkZmal4sJkZmal4sJkZmal0lRhkrRbM21mZmarqtk9pv9sss3MzGyVNPw/JklvA94ObCLpy4VB6wOj2hmYmZmNTP39g+1awNg83rhC+wvAR9oVlJmZjVwNC1NE/Ar4laSzI+KRIYrJzMxGsGYvSbS2pJnAlOI0EfGedgRlZmYjV7OF6SfAGcCPSBdZNTMza4tmC9OyiDi9rZGYmZnR/OniV0v6rKQJkjbue7Q1MjMzG5Ga3WM6OP/9SqEtgC0HNxwzMxvpmipMEbFFuwMxMzODJguTpE/Wao+Icwc3HDMzG+ma/Y1p58LjncAJwAcaTSDpLElPSrq70LaxpOsk/SH/3agw7BhJD0q6X9KeA14SMzNbLTRVmCLiHwuPzwBvJl0VopGzgb2q2o4Gro+IqcD1+TWStgWmA9vlaU6T5EsemZmNQK3e9uKPwNRGI0TEjcCzVc37A+fk5+cAHyy0z4qIlyNiPvAgsEuLsZmZ2TDW7G9MV5POwoN08dZtgItbmF9XRCwGiIjFkl6X2ycCtxTGW5TbasUyA5gB0NXVRaVSaSEM6O3t5cgdmvtf4VbnMZz19vaOyOVulvPTmPPTmPPTWLOni3+v8HwZ8EhELBrEOFSjLWq0EREzgZkA3d3d0dPT09IMK5UKJ9/0UlPjLjiwtXkMZ5VKhVZzOxI4P405P405P401+xvTr4D7SFcY3wh4pcX5LZE0ASD/fTK3LwImFcbbDHi8xXmYmdkw1uwdbD8G3Ap8FPgY8DtJrdz24ipW/LPuwcCVhfbpktaWtAXp96tbW+jfzMyGuWYP5R0H7BwRTwJI2gT4JXBJvQkkXQj0AOMlLQK+AZwEXCzpUOBRUqEjIu6RdDFwL+lQ4eciwheLNTMbgZotTGv0FaXsGfrZ24qIA+oM2r3O+CcCJzYZj5mZraaaLUw/l/QL4ML8+uPAz9oTkpmZjWQNC5Ok15NO8f6KpA8D7yCdQXczcP4QxGdmZiNMfyc/fB94ESAiLouIL0fEl0h7S99vb2hmZjYS9VeYpkTEndWNETGbdJt1MzOzQdVfYVqnwbB1BzMQMzMz6L8w3SbpM9WN+XTvOe0JyczMRrL+zso7Arhc0oGsKETdpCuLf6iNcZmZ2QjVsDBFxBLg7ZKmAdvn5p9GxP+1PTIzMxuRmr21+g3ADW2OxczMrOX7MZmZmbWFC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZVKszcKHDSStgYuKjRtCXwd2BD4DPBUbj82InwzQjOzEWbIC1NE3A/sCCBpFPAYcDnw98CpEfG9oY7JzMzKo9OH8nYHHoqIRzoch5mZlUSnC9N04MLC689LulPSWZI26lRQZmbWOYqIzsxYWgt4HNguIpZI6gKeBgL4NjAhIj5VY7oZwAyArq6unWbNmtXS/Ht7e5m/dHlT4+4wcYOW5jGc9fb2Mnbs2E6HUVrOT2POT2Odzs+0adPmRER3xwLoRycL0/7A5yLifTWGTQGuiYjtXzNhQXd3d8yePbul+VcqFQ75+UtNjbvgpH1bmsdwVqlU6Onp6XQYpeX8NOb8NNbp/EgqdWHq5KG8AygcxpM0oTDsQ8DdQx6RmZl13JCflQcgaQzwXuCwQvN3JO1IOpS3oGqYmZmNEB0pTBHxR+BvqtoO6kQsZmZWLp0+K8/MzGwlLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqLkxmZlYqHbm1uqQFwIvAcmBZRHRL2hi4CJgCLAA+FhHPdSI+MzPrnE7uMU2LiB0joju/Phq4PiKmAtfn12ZmNsKU6VDe/sA5+fk5wAc7F4qZmXWKImLoZyrNB54DAvjviJgp6fmI2LAwznMRsVGNaWcAMwC6urp2mjVrVksx9Pb2Mn/p8qbG3WHiBi3NYzjr7e1l7NixnQ6jtJyfxpyfxjqdn2nTps0pHK0qnY78xgTsFhGPS3odcJ2k+5qdMCJmAjMBuru7o6enp6UAKpUKJ9/0UlPjLjiwtXkMZ5VKhVZzOxI4P405P405P4115FBeRDye/z4JXA7sAiyRNAEg/32yE7GZmVlnDXlhkrSepHF9z4H3AXcDVwEH59EOBq4c6tjMzKzzOnEorwu4XFLf/C+IiJ9Lug24WNKhwKPARzsQm5mZddiQF6aIeBh4U432Z4DdhzoeMzMrlzKdLm5mZubCZGZm5eLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpeLCZGZmpdKp+zENK1OO/mlT4y04ad82R2JmtvrzHpOZmZWKC5OZmZWKC5OZmZWKC5OZmZWKC5OZmZXKkBcmSZMk3SBpnqR7JH0xt58g6TFJc/Njn6GOzczMOq8Tp4svA46MiNsljQPmSLouDzs1Ir7XgZjMzKwkhrwwRcRiYHF+/qKkecDEoY7DzMzKSRHRuZlLU4Abge2BLwOHAC8As0l7Vc/VmGYGMAOgq6trp1mzZrU0797eXuYvXd7StPXsMHGDQe2vk3p7exk7dmynwygt56cx56exTudn2rRpcyKiu2MB9KNjhUnSWOBXwIkRcZmkLuBpIIBvAxMi4lON+uju7o7Zs2e3NP9KpcIhP3+ppWnrWZ2u/FCpVOjp6el0GKXl/DTm/DTW6fxIKnVh6sgliSStCVwKnB8RlwFExJLC8B8C13QitlXhSxeZma26TpyVJ+BMYF5EnFJon1AY7UPA3UMdm5mZdV4n9ph2Aw4C7pI0N7cdCxwgaUfSobwFwGEdiM3MzDqsE2fl3QSoxqCfDXUsZmZWPr7yg5mZlYoLk5mZlYoLk5mZlYoLk5mZlYoLk5mZlYoLk5mZlYoLk5mZlUpHLklkg8uXQjKz1YkLUwe4kJiZ1edDeWZmViouTGZmViouTGZmVir+janEmv0tqh3uemwphzQxf/8OZmaDzXtMZmZWKi5MZmZWKj6UN4IM5NDgkTsMbp/NHvLzqfRm5j0mMzMrFe8x2ZDo5IkcZja8lG6PSdJeku6X9KCkozsdj5mZDa1S7TFJGgX8F/BeYBFwm6SrIuLezkZmZePfosxWX6UqTMAuwIMR8TCApFnA/oALk7WkkwWsUyeGdFLZvwgMhy80wyHGdlNEdDqGV0n6CLBXRHw6vz4I2DUiPl8YZwYwI7/cGri/xdmNB55ehXBXd85PY85PY85PY53Oz+SI2KSD82+obHtMqtG2UuWMiJnAzFWekTQ7IrpXtZ/VlfPTmPPTmPPTmPPTWNlOflgETCq83gx4vEOxmJlZB5StMN0GTJW0haS1gOnAVR2OyczMhlCpDuVFxDJJnwd+AYwCzoqIe9o0u1U+HLiac34ac34ac34ac34aKNXJD2ZmZmU7lGdmZiOcC5OZmZXKiCxMI/GyR5ImSbpB0jxJ90j6Ym7fWNJ1kv6Q/25UmOaYnKP7Je1ZaN9J0l152H9IqnWa/7AkaZSk30u6Jr92fjJJG0q6RNJ9eT16m/OzgqQv5W3rbkkXSlrH+WlRRIyoB+mkioeALYG1gDuAbTsd1xAs9wTgLfn5OOABYFvgO8DRuf1o4N/y821zbtYGtsg5G5WH3Qq8jfR/Z/8L7N3p5RvEPH0ZuAC4Jr92flbk5hzg0/n5WsCGzs+ruZkIzAfWza8vBg5xflp7jMQ9plcvexQRrwB9lz1arUXE4oi4PT9/EZhH2pj2J33gkP9+MD/fH5gVES9HxHzgQWAXSROA9SPi5khb0bmFaYY1SZsB+wI/KjQ7P4Ck9YF3AWcCRMQrEfE8zk/RaGBdSaOBMaT/wXR+WjASC9NEYGHh9aLcNmJImgK8Gfgd0BURiyEVL+B1ebR6eZqYn1e3rw6+D3wV+GuhzflJtgSeAv4nH+r8kaT1cH4AiIjHgO8BjwKLgaURcS3OT0tGYmHq97JHqzNJY4FLgSMi4oVGo9Zoiwbtw5qk/YAnI2JOs5PUaFtt80PaG3gLcHpEvBl4iXRoqp4RlZ/829H+pMNymwLrSfpEo0lqtK22+RmokViYRuxljyStSSpK50fEZbl5ST58QP77ZG6vl6dF+Xl1+3C3G/ABSQtIh3ffI+k8nJ8+i4BFEfG7/PoSUqFyfpI9gPkR8VRE/AW4DHg7zk9LRmJhGpGXPcpn9pwJzIuIUwqDrgIOzs8PBq4stE+XtLakLYCpwK35cMSLkt6a+/xkYZphKyKOiYjNImIKaZ34v4j4BM4PABHxBLBQ0ta5aXfS7Wicn+RR4K2SxuTl2p30O67z04pOn33RiQewD+mstIeA4zodzxAt8ztIhwTuBObmxz7A3wDXA3/IfzcuTHNcztH9FM4MArqBu/OwH5CvILK6PIAeVpyV5/ysWK4dgdl5HboC2Mj5WSk/3wTuy8v2Y9IZd85PCw9fksjMzEplJB7KMzOzEnNhMjOzUnFhMjOzUnFhMjOzUnFhMjOzUnFhMjOzUnFhsmFH0nH59gJ3SporaVdJCySNrzHub/vpa4qku+sMq0jqbjDt5Xn+D0pamp/PlfT2gS9V3XlsKumSwerPbDgY3ekAzAZC0tuA/Ui38Hg5F6O16o0fEYNWJGr0/aEcUw9wVETs18x0kkZHxLJ6r6vm8TjwkVWP1mz48B6TDTcTgKcj4mWAiHg6f3gDIGldST+X9Jn8ujf/HSvpekm355uwFW91MlrSOXkP7BJJY6pnKul9km7O0/8kXwz3NSRtIulSSbflx265/QRJMyVdC5xb4/UUSb/O/d/et9dV3KOTdIiky/Ly/UHSdxolStLpkmbnvctvFtp3lvRbSXdIulXSuGYSbzZkOn3pCT/8GMgDGEu6nNIDwGnAu3P7AmAK8Evgk4Xxe/Pf0aT73ACMJ93/RnmaAHbLw84i7f0AVEiXhxkP3Aisl9u/Bny9MI8eVlzC6ALgHfn55qRrEwKcAMxhxY3kql+PAdbJz6cCs/PzKcDd+fkhwMPABsA6wCPApAa52jj/HZWX5Y2kvcuHgZ3zsPWB0Z1+X/3wo/jwoTwbViKiV9JOwDuBacBFkvpuv3Al8J2IOL/GpAL+RdK7SPdbmgh05WELI+I3+fl5wBdI99bp81bSHUd/k66ryVrAzXVC3APYVivuhr1+YY/kqoj4U2Hc4us1gR9I2hFYDmxVp//rI2IpgKR7gcmsfF+foo9JmkEqyhPyMgSwOCJuA4jGtz4x6wgXJht2ImI5aQ+gIukuVly9+TfA3pIuiIjqi0AeCGwC7BQRf8m3t1inr8vqWVS9FnBdRBzQRHhrAG+rKkDkQvVS1bjF118ClgBvyn38uU7/LxeeL6fONpyvWH0Uac/oOUlnk5ZXjMD7+9jw4t+YbFiRtLWkqYWmHUmHtAC+DjxDOsRXbQPSjQD/ImkaaU+jz+b5pAqAA4Cbqqa9BdhN0utzDGMk1dujuRb4fCHeHftdqBXxLY6IvwIHkQ6/rYr1SYVvqaQuYO/cfh+wqaSdc3zjlG4FblYaLkw23IwFzpF0r6Q7SYenTigMPwJYp8aJAecD3ZJmk/ae7isMmwccnPvbGDi9OGFEPEX6fefCPM4twBvqxPeFPJ8786G2w5tcrtNyDLeQDuNV710NSETcAfweuIf0u9lvcvsrwMeB/5R0B3AdK/YczUrBt70wM7NS8R6TmZmVio8tmw1zkn5Hultq0UERcVcn4jFbVT6UZ2ZmpeJDeWZmViouTGZmViouTGZmViouTGZmVir/HwaoGE7VjUXwAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ski_data.SkiableTerrain_ac.hist(bins=30)\n", + "plt.xlabel('SkiableTerrain_ac')\n", + "plt.ylabel('Count')\n", + "plt.title('Distribution of skiable area (acres) after replacing erroneous value');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You now see a rather long tailed distribution. You may wonder about the now most extreme value that is above 8000, but similarly you may also wonder about the value around 7000. If you wanted to spend more time manually checking values you could, but leave this for now. The above distribution is plausible." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### 2.6.4.2.2 Snow Making_ac" + ] + }, + { + "cell_type": "code", + "execution_count": 123, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "11 3379.0\n", + "18 1500.0\n", + "Name: Snow Making_ac, dtype: float64" + ] + }, + "execution_count": 123, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ski_data['Snow Making_ac'][ski_data['Snow Making_ac'] > 1000]" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
11
NameHeavenly Mountain Resort
RegionSierra Nevada
stateCalifornia
summit_elev10067
vertical_drop3500
base_elev7170
trams2
fastEight0.0
fastSixes2
fastQuads7
quad1
triple5
double3
surface8
total_chairs28
Runs97.0
TerrainParks3.0
LongestRun_mi5.5
SkiableTerrain_ac4800.0
Snow Making_ac3379.0
daysOpenLastYear155.0
yearsOpen64.0
averageSnowfall360.0
AdultWeekdayNaN
AdultWeekendNaN
projectedDaysOpen157.0
NightSkiing_acNaN
\n", + "
" + ], + "text/plain": [ + " 11\n", + "Name Heavenly Mountain Resort\n", + "Region Sierra Nevada\n", + "state California\n", + "summit_elev 10067\n", + "vertical_drop 3500\n", + "base_elev 7170\n", + "trams 2\n", + "fastEight 0.0\n", + "fastSixes 2\n", + "fastQuads 7\n", + "quad 1\n", + "triple 5\n", + "double 3\n", + "surface 8\n", + "total_chairs 28\n", + "Runs 97.0\n", + "TerrainParks 3.0\n", + "LongestRun_mi 5.5\n", + "SkiableTerrain_ac 4800.0\n", + "Snow Making_ac 3379.0\n", + "daysOpenLastYear 155.0\n", + "yearsOpen 64.0\n", + "averageSnowfall 360.0\n", + "AdultWeekday NaN\n", + "AdultWeekend NaN\n", + "projectedDaysOpen 157.0\n", + "NightSkiing_ac NaN" + ] + }, + "execution_count": 124, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ski_data[ski_data['Snow Making_ac'] > 3000].T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can adopt a similar approach as for the suspect skiable area value and do some spot checking. To save time, here is a link to the website for [Heavenly Mountain Resort](https://www.skiheavenly.com/the-mountain/about-the-mountain/mountain-info.aspx). From this you can glean that you have values for skiable terrain that agree. Furthermore, you can read that snowmaking covers 60% of the trails." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What, then, is your rough guess for the area covered by snowmaking?" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2880.0" + ] + }, + "execution_count": 125, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + ".6 * 4800" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is less than the value of 3379 in your data so you may have a judgement call to make. However, notice something else. You have no ticket pricing information at all for this resort. Any further effort spent worrying about values for this resort will be wasted. You'll simply be dropping the entire row!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### 2.6.4.2.3 fastEight" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Look at the different fastEight values more closely:" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0 163\n", + "1.0 1\n", + "Name: fastEight, dtype: int64" + ] + }, + "execution_count": 126, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ski_data.fastEight.value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Drop the fastEight column in its entirety; half the values are missing and all but the others are the value zero. There is essentially no information in this column." + ] + }, + { + "cell_type": "code", + "execution_count": 127, + "metadata": {}, + "outputs": [], + "source": [ + "#Code task 24#\n", + "#Drop the 'fastEight' column from ski_data. Use inplace=True\n", + "ski_data.drop(columns='fastEight', inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What about yearsOpen? How many resorts have purportedly been open for more than 100 years?" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "34 104.0\n", + "115 2019.0\n", + "Name: yearsOpen, dtype: float64" + ] + }, + "execution_count": 128, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 25#\n", + "#Filter the 'yearsOpen' column for values greater than 100\n", + "ski_data.yearsOpen[ski_data.yearsOpen > 100]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Okay, one seems to have been open for 104 years. But beyond that, one is down as having been open for 2019 years. This is wrong! What shall you do about this?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What does the distribution of yearsOpen look like if you exclude just the obviously wrong one?" + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeG0lEQVR4nO3de5hcVZnv8e/PcAnQJAHBnhiQBo0XDhGEVhxQT8eIgoDBR7k4wARFcxiV0THqxCt4hTmDnvHoKEZUIjgERBwiKMpEG/TIcImoQQFRCBDARDCJNCAYeM8fazXsVPpSSfeu6u71+zxPP1177du7dtV+a9Xau1YpIjAzs3I8rd0BmJlZaznxm5kVxonfzKwwTvxmZoVx4jczK4wTv5lZYZz4W0zS2ZI+MkrbepakPkmT8nSvpLeOxrbz9r4vad5obW8z9vtJSfdL+kOr920bG8lrStLpks7Pjzd6rVp7OfGPIkkrJT0i6UFJ6yT9TNIpkp48zhFxSkR8osltvWqoZSLirojoiIjHRyH2J0/SyvYPi4jFI932ZsaxO7AA2Dsi/qaV+7b6jOZrtZGk90m6KZ93d0h6X8P8Lkk/lvSwpFuq55Wk6ZKWSrpXUkjqalh3hqRLJf1J0ipJp4x2/O3gxD/6joyIHYE9gDOBfwa+Oto7kbTVaG9zjNgDeCAi1rQziAl8fCciAX8P7AQcCrxT0nGV+RcANwJPBz4EXCxp1zzvCeAK4A2DbPt84A6gEzgc+LSk2aNeg1aLCP+N0h+wEnhVQ9lLSC+uffL0ucAn8+NdgMuAdcCfgJ+Q3ozPy+s8AvQB7we6gABOBu4Crq6UbZW31wucAVwHrAcuBXbO83qAVQPFSzpZHgP+mvf3y8r23pofPw34MHAnsAb4BjA1z+uPY16O7X7gQ0Mcp6l5/T/m7X04b/9Vuc5P5DjOHWDdm0hvrv3TW+f97ZenXwr8LB/TXwI9lWXfDNwMPAjcDvyvyrweYBXpjfoP+TkY8PkZpE4HAdfn4349cFBl3qDPSxMx9wKfAP5fjvuHwC5DHNsjgF/kbf0MeGEuPzbXeUqePizXc9c8PTev92fg98ChA7wGTgfOr+yr/3nvf/3tCVyV47wS+EL/8gMsO2S9SIn8TuAB4CMMcG4NcQz+L/D5/Pi5wKPAjpX5PwFOaVhnqxxfV6WsI5ftWilbBJzX7lwz4lzV7gAm0t9gL05SMvyH/Phcnkr8ZwBnk5LX1sDLAQ20rcqJ8w1gB2C7QU6me4B98jLfrpx4PQyS+PPjjU7qyvb6T/q3AL8D9sonxCX9J0Aljq/kuPbNJ9sLBjlO3yAlvx3zur8FTh4szoZ13w9cWJmeC6zIj2fkRPFa0hvJIXm6P7kdDjyb1EL8n8DDwP6V/W4A/gXYNtdj0OenIaadgbXAiaQE8qY8/fQmnpfhYu4lJeLn5ph6gTMHOTb7k96UDwQmkd6IVwLb5vnfJL3+ng7cCxyRy19CekM6JMcwA3j+AK+B0xk68V8DfDYfv1eQEvpQiX/AegF7k974XwZsA5xFapQMm/jzc3sjObEDrwdubljmC+Q3hkrZQIl/x1z2jErZV4Ab251rRvrnrp7WuJeUHBr9FZgO7BERf42In0R+dQ3h9Ih4KCIeGWT+eRFxU0Q8RGopHTNKF9SOBz4bEbdHRB/wAeC4hi6Rj0XEIxHxS1LLdd/GjeRYjgU+EBEPRsRK4DOkpNmM84HXSpqSp08ktc4BTgC+FxHfi4gnIuJK4AZSUiUiLo+I30dyFamV+fLKtp8ATouIR/Pxbfb5ORy4LSLOi4gNEXEBcAtwZGWZwZ6XIWPOvh4Rv80xXQTsN8ixeRvw5Yi4NiIej3R95lHSJwqAdwCvJCXZ70bEZbn8ZOBrEXFljuGeiLhlkH0MSNKzgBcDH8nH72rgu8OsNli93pjj+2lEPAZ8lJSAm3E66c3r63m6g/SmVrWelNSHFBEPkj6RfETSZEn7k7qEtm8yljHLib81ZpC6Chr9K6kV/UNJt0ta2MS27t6M+XeSWqq7NBXl0J6Zt1fd9lakvs9+1btwHiaddI12IbXiGrc1o5kgIuJe0sn4BknTSF0W38yz9wCOzhfW10laR2o1TgeQdJik/84X6taRkmv12PwxIv5SmW72+Wk8NgPVabDnZciYs2aOK3lbCxq2tXuOj4hYB3yL9MnjM5X1die1vkfimcDa/MbWr/GYNBqsXs+kcrwi4mHSp6AhSXonqYvo8Ih4NBf3AVMaFp1C+jTSjONJXVh3A18ivdZWNbnumOXEXzNJLyYlgJ82zsst3gURsRepdfgeSXP6Zw+yyeFaPrtXHj+L1Gq9H3iISksltzZ3rSw73HbvJSWW6rY3AKuHWa/R/Tmmxm3dsxnbWExqKR8NXBMR/eveTWpZT6v87RARZ0raltTFchbQGRHTgO+Rugb6bXQMhnl+qhqPzUB1Gux5GTTmZg9Gxd3Apxq2tX3+BIKk/UhddheQ+sGr6z27ie1v9BoCqndd3QfsJGmHStmztqAO/dvarX9C0nak7qlBSXoLsBCYExHVxPxrYC9J1Rb+vrl8WBFxZ0QcERG7RsSBOY7rmqvG2OXEXxNJUyQdASwh9XOuGGCZIyQ9R5JIF9Uez3+QEupeW7DrEyTtLWl74OPAxZFuofstMFnS4ZK2Jl1Q3bay3mqgq3rraYMLgH+StKekDuDTpL72DZsTXI7lIuBTknaUtAfwHlIXTrP+k9Sf/S7S9YJ+5wNHSnqNpEn543mPpN1InzK2JV1Q3iDpMODVQ+1kmOen6nvAcyX9naStJB1L6qe+rLLMYM/LUDFvrq8Ap0g6UMkO+fneUdLkvK8Pki5yz5D09rzeV4E3S5oj6Wn5FsbnD7D9XwCvULonfyqpuw9ICZLURfUxSdtIehkbd3VtjotJx+QgSdsAH2PjN+iNSDqe9Ho8JCJur86LiN/muE/Lx/b1wAtJjYD+9Sfz1LmwbZ7un/eCfPy2kXQC6TXz2S2s15jhxD/6vivpQVIr6kOkF8mbB1l2JvBfpI+j1wBfjIjePO8M4MP5I/t7N2P/55Eu4P0BmAz8I0BErAfeDpxDaok+xMYfWb+V/z8g6ecDbPdredtXk25v+wtw6mbEVXVq3v/tpE9C/5G335TcJ/xt0kfwSyrld5Mu9n6QlODvBt5HuhPnQdKxuIh04fXvgKXD7Gqo56cazwOku2kWkLok3k+6cHp/ZbHBnpdBY27iUDTGcQOpn/8LuY6/A07Ks88gXTT/Uu4GOQH4pKSZEXEd6TX6f0j931ex6ScY8vWHC4FfAcvZ+I0N0jE9kNSteRobvylvTj1+TXqNLCG1/h8kXbR+dJBVPklqiV+v9CWxPklnV+YfB3STjsmZwBsj4o+V+f13z0G6NlO9fvYa0ut0LXAK6W6n6rrjUv8dJGbjiqSPAs+NiBPaHctwJPWSPvWd0+5YxqP8CXMdMDMi7mhzOBOCW/w27kjamXQnyqJ2x2L1kHSkpO3zNYOzgBWkW1NtFDjx27gi6W2k7pDv51sGbWKaS7pofi+py+24Jm51tia5q8fMrDBu8ZuZFWZcDES1yy67RFdXV7vDaImHHnqIHXbYYfgFJxjXuyyud2ssX778/ojYtbF8XCT+rq4ubrjhhnaH0RK9vb309PS0O4yWc73L4nq3hqQBvz3trh4zs8I48ZuZFcaJ38ysME78ZmaFceI3MyuME7+ZWWGc+M3MCuPEb2ZWGCd+M7PC1PrN3fybqOeQfuMzSD/7divpxxy6SMOsHhMRa+uMw6wuXQsvb2q5lWceXnMkZs2ru8X/OeCKiHg+6Xcubyb9LuayiJgJLMvTZmbWIrUlfklTgFeQfs+TiHgsItaRxtlenBdbDBxVVwxmZrap2sbjl7Qf6ReSfkNq7S8n/Tj2PRExrbLc2ojYaYD15wPzATo7Ow9YsmRJLXGONX19fXR0dLQ7jJYbr/Vecc/6ppabNWPqgOXjtd4j5Xq3xuzZs5dHRHdjeZ2Jvxv4b+DgiLhW0ueAPwOnNpP4q7q7u8Ojc05s47XeI+3jH6/1HinXuzUkDZj46+zjXwWsiohr8/TFwP7AaknTc1DTgTU1xmBmZg1qS/wR8QfgbknPy0VzSN0+S4F5uWwecGldMZiZ2abq/iGWU4FvStoGuB14M+nN5iJJJwN3AUfXHIOZmVXUmvgj4hfAJv1LpNa/mZm1gb+5a2ZWGCd+M7PCOPGbmRXGid/MrDBO/GZmhXHiNzMrjBO/mVlhnPjNzArjxG9mVhgnfjOzwjjxm5kVxonfzKwwTvxmZoVx4jczK4wTv5lZYZz4zcwK48RvZlYYJ34zs8I48ZuZFcaJ38ysME78ZmaFceI3MyuME7+ZWWGc+M3MCuPEb2ZWmK3q3LiklcCDwOPAhojolrQzcCHQBawEjomItXXGYWZmT2lFi392ROwXEd15eiGwLCJmAsvytJmZtUg7unrmAovz48XAUW2IwcysWIqI+jYu3QGsBQL4ckQskrQuIqZVllkbETsNsO58YD5AZ2fnAUuWLKktzrGkr6+Pjo6OdofRcuO13ivuWd/UcrNmTB2wfLzWe6Rc79aYPXv28kpvy5Nq7eMHDo6IeyU9A7hS0i3NrhgRi4BFAN3d3dHT01NTiGNLb28vpdS1arzW+6SFlze13MrjewYsH6/1HinXu71q7eqJiHvz/zXAd4CXAKslTQfI/9fUGYOZmW2stsQvaQdJO/Y/Bl4N3AQsBeblxeYBl9YVg5mZbarOrp5O4DuS+vfzHxFxhaTrgYsknQzcBRxdYwxmZtagtsQfEbcD+w5Q/gAwp679mpnZ0PzNXTOzwjjxm5kVxonfzKwwTvxmZoVx4jczK4wTv5lZYZz4zcwK48RvZlYYJ34zs8I48ZuZFcaJ38ysME78ZmaFceI3MyuME7+ZWWGc+M3MCuPEb2ZWGCd+M7PCOPGbmRXGid/MrDBO/GZmhXHiNzMrjBO/mVlhnPjNzArjxG9mVhgnfjOzwtSe+CVNknSjpMvy9M6SrpR0W/6/U90xmJnZU1rR4n8XcHNleiGwLCJmAsvytJmZtUitiV/SbsDhwDmV4rnA4vx4MXBUnTGYmdnGFBH1bVy6GDgD2BF4b0QcIWldREyrLLM2Ijbp7pE0H5gP0NnZecCSJUtqi3Ms6evro6Ojo91htNx4rfeKe9Y3tdysGVMHLB+v9R4p17s1Zs+evTwiuhvLt6prh5KOANZExHJJPZu7fkQsAhYBdHd3R0/PZm9iXOrt7aWUulaN13qftPDyppZbeXzPgOXjtd4j5Xq3V22JHzgYeJ2k1wKTgSmSzgdWS5oeEfdJmg6sqTEGMzNrUFsff0R8ICJ2i4gu4DjgRxFxArAUmJcXmwdcWlcMZma2qXbcx38mcIik24BD8rSZmbVInV09T4qIXqA3P34AmNOK/ZqZ2ab8zV0zs8I48ZuZFcaJ38ysME78ZmaFceI3MyuME7+ZWWGc+M3MCuPEb2ZWGCd+M7PCNJX4JR3cTJmZmY19zbb4P99kmZmZjXFDjtUj6W+Bg4BdJb2nMmsKMKnOwMzMrB7DDdK2DdCRl9uxUv5n4I11BWVmZvUZMvFHxFXAVZLOjYg7WxSTmZnVqNlhmbeVtAjoqq4TEa+sIygzM6tPs4n/W8DZwDnA4/WFY2ZmdWs28W+IiC/VGomZmbVEs7dzflfS2yVNl7Rz/1+tkZmZWS2abfH3/zj6+yplAew1uuGYmVndmkr8EbFn3YGYmVlrNJX4Jf39QOUR8Y3RDcfMzOrWbFfPiyuPJwNzgJ8DTvxmTehaePmA5QtmbeCkhnkrzzy8FSFZwZrt6jm1Oi1pKnBeLRGZmVmttnRY5oeBmaMZiJmZtUazffzfJd3FA2lwthcAF9UVlJmZ1afZPv6zKo83AHdGxKqhVpA0Gbga2Dbv5+KIOC3f/38hafiHlcAxEbF2M+M2M7Mt1FRXTx6s7RbSCJ07AY81sdqjwCsjYl9gP+BQSS8FFgLLImImsCxPm5lZizT7C1zHANcBRwPHANdKGnJY5kj68uTW+S+AucDiXL4YOGrzwzYzsy2liBh+IemXwCERsSZP7wr8V27ND7XeJGA58Bzg3yPinyWti4hplWXWRsROA6w7H5gP0NnZecCSJUuar9U41tfXR0dHR7vDaLnxWu8V96wf0fqd28HqRzYumzVj6oi2OR6M1+d7pFpd79mzZy+PiO7G8mb7+J/Wn/SzB2ji00JEPA7sJ2ka8B1J+zS5PyJiEbAIoLu7O3p6eppddVzr7e2llLpWjdd6N96Dv7kWzNrAZ1ZsfBquPL5nRNscD8br8z1SY6XezSb+KyT9ALggTx8LfK/ZnUTEOkm9wKHAaknTI+I+SdOBNUOvbWZmo2nIVruk50g6OCLeB3wZeCGwL3ANuTU+xLq75pY+krYDXkW6QLyUpwZ9mwdcOpIKmJnZ5hmuxf9vwAcBIuIS4BIASd153pFDrDsdWJz7+Z8GXBQRl0m6BrhI0snAXaQLxmZm1iLDJf6uiPhVY2FE3CCpa6gV83ovGqD8AdJYP2Zm1gbDXaCdPMS87UYzEDMza43hWvzXS3pbRHylWpi7aZbXF5ZZew02mqbZRDBc4n836TbM43kq0XcD2wCvrzEuMzOryZCJPyJWAwdJmg3034N/eUT8qPbIzMysFs2Ox/9j4Mc1x2JmZi2wpePxm5nZOOXEb2ZWGCd+M7PCNDtWj5lZbZq9fdY/RD863OI3MyuME7+ZWWGc+M3MCuPEb2ZWGCd+M7PCOPGbmRXGid/MrDBO/GZmhXHiNzMrjBO/mVlhnPjNzArjxG9mVhgP0mZmtRhq4LUFszZwkn/XuG3c4jczK4wTv5lZYZz4zcwKU1sfv6TdgW8AfwM8ASyKiM9J2hm4EOgCVgLHRMTauuIwG2/8oyRWtzpb/BuABRHxAuClwDsk7Q0sBJZFxExgWZ42M7MWqS3xR8R9EfHz/PhB4GZgBjAXWJwXWwwcVVcMZma2KUVE/TuRuoCrgX2AuyJiWmXe2ojYaYB15gPzATo7Ow9YsmRJ7XGOBX19fXR0dLQ7jJYbab1X3LO+qeVmzZg6qtsbqc7tYPUjW7Zus3Vpl6GO4ZbWe6zXeTitPr9nz569PCK6G8trT/ySOoCrgE9FxCWS1jWT+Ku6u7vjhhtuqDXOsaK3t5eenp52h9FyI633aPeLN7u9kVowawOfWbFll9rGeh//cPfxb0m9x3qdh9Pq81vSgIm/1rt6JG0NfBv4ZkRckotXS5qe508H1tQZg5mZbay2xC9JwFeBmyPis5VZS4F5+fE84NK6YjAzs03VOWTDwcCJwApJv8hlHwTOBC6SdDJwF3B0jTGYmVmD2hJ/RPwU0CCz59S1XzMzG5q/uWtmVhgnfjOzwjjxm5kVxonfzKwwTvxmZoVx4jczK4wTv5lZYZz4zcwK48RvZlYYJ34zs8I48ZuZFabOQdrMbAzwb/haI7f4zcwK48RvZlYYd/VYUVr1k4qtMJHqYq3lFr+ZWWGc+M3MCuPEb2ZWGCd+M7PCOPGbmRXGid/MrDC+ndPGNN+y2Dr+hm853OI3MyuME7+ZWWGc+M3MClNb4pf0NUlrJN1UKdtZ0pWSbsv/d6pr/2ZmNrA6W/znAoc2lC0ElkXETGBZnjYzsxaqLfFHxNXAnxqK5wKL8+PFwFF17d/MzAamiKhv41IXcFlE7JOn10XEtMr8tRExYHePpPnAfIDOzs4DlixZUlucdVlxz/qmlps1Y+qTj/v6+ujo6KgrpDFrsHo3ewzHq87tYPUj7Y5i81Rfr0MZ6rnb0no3u++xqtXn9+zZs5dHRHdj+Zi9jz8iFgGLALq7u6Onp6e9AW2Bk5q9L/r4nicf9/b2Mh7rOlKD1bvZYzheLZi1gc+sGLOn4YCqr9ehDPXcbWm9m933WDVWzu9W39WzWtJ0gPx/TYv3b2ZWvFYn/qXAvPx4HnBpi/dvZla8Om/nvAC4BniepFWSTgbOBA6RdBtwSJ42M7MWqq1zMSLeNMisOXXt08zMhudv7pqZFWZ83U5gY9rmjKTpER7N2sctfjOzwjjxm5kVxl091haN3UILZm2Y8F/WMhsr3OI3MyuME7+ZWWHc1WPD8u/emk0sbvGbmRXGid/MrDBO/GZmhXHiNzMrjBO/mVlhnPjNzArjxG9mVhgnfjOzwjjxm5kVxonfzKwwE37IhmaHG/APg5iNfT6fR4db/GZmhXHiNzMrzITv6hltdYxUWd1mK3+QxB+HbUt4tNbxzy1+M7PCOPGbmRXGXT1ZiR9fS6yz2ZYY7buJNufcq6NLti0tfkmHSrpV0u8kLWxHDGZmpWp54pc0Cfh34DBgb+BNkvZudRxmZqVqR4v/JcDvIuL2iHgMWALMbUMcZmZFUkS0dofSG4FDI+KtefpE4MCIeGfDcvOB+XnyecCtLQ20fXYB7m93EG3gepfF9W6NPSJi18bCdlzc1QBlm7z7RMQiYFH94Ywtkm6IiO52x9FqrndZXO/2akdXzypg98r0bsC9bYjDzKxI7Uj81wMzJe0paRvgOGBpG+IwMytSy7t6ImKDpHcCPwAmAV+LiF+3Oo4xrLjurcz1Lovr3UYtv7hrZmbt5SEbzMwK48RvZlYYJ/42kbS7pB9LulnSryW9K5fvLOlKSbfl/zu1O9Y6SJok6UZJl+XpCV9vSdMkXSzplvy8/20h9f6n/Bq/SdIFkiZP1HpL+pqkNZJuqpQNWldJH8hD19wq6TWtitOJv302AAsi4gXAS4F35KErFgLLImImsCxPT0TvAm6uTJdQ788BV0TE84F9SfWf0PWWNAP4R6A7IvYh3dBxHBO33ucChzaUDVjXfL4fB/yPvM4X85A2tXPib5OIuC8ifp4fP0hKAjNIw1cszostBo5qS4A1krQbcDhwTqV4Qtdb0hTgFcBXASLisYhYxwSvd7YVsJ2krYDtSd/bmZD1joirgT81FA9W17nAkoh4NCLuAH5HGtKmdk78Y4CkLuBFwLVAZ0TcB+nNAXhGG0Ory78B7weeqJRN9HrvBfwR+Hru4jpH0g5M8HpHxD3AWcBdwH3A+oj4IRO83g0Gq+sM4O7KcqtyWe2c+NtMUgfwbeDdEfHndsdTN0lHAGsiYnm7Y2mxrYD9gS9FxIuAh5g43RuDyv3Zc4E9gWcCO0g6ob1RjRlNDV9TByf+NpK0NSnpfzMiLsnFqyVNz/OnA2vaFV9NDgZeJ2klaWTWV0o6n4lf71XAqoi4Nk9fTHojmOj1fhVwR0T8MSL+ClwCHMTEr3fVYHVt2/A1TvxtIkmk/t6bI+KzlVlLgXn58Tzg0lbHVqeI+EBE7BYRXaQLWz+KiBOY+PX+A3C3pOflojnAb5jg9SZ18bxU0vb5NT+HdD1rote7arC6LgWOk7StpD2BmcB1rQjI39xtE0kvA34CrOCpvu4Pkvr5LwKeRTppjo6IxotFE4KkHuC9EXGEpKczwestaT/SBe1tgNuBN5MaXxO93h8DjiXdyXYj8FaggwlYb0kXAD2k4ZdXA6cB/8kgdZX0IeAtpGPz7oj4fkvidOI3MyuLu3rMzArjxG9mVhgnfjOzwjjxm5kVxonfzKwwTvw24Sj5qaTDKmXHSLqinXGZjRW+ndMmJEn7AN8ijYE0CfgFcGhE/H4LtjUpIh4f3QjN2seJ3yYsSf+bNCbODvn/HsAs0rg5p0fEpXmAvPPyMgDvjIif5S+XnUYaWGw/4MWkL+HsRnoj+UREXNiwv/2As0kjUP4eeEtErJXUS3rjeQkwJZdflwdp+/wAMZ0EvC5v59nAdyLi/aN3ZKx0Tvw2YeXE+nPgMeAy4NcRcb6kaaSvxr+INCjWExHxF0kzgQsiojsn/suBfSLiDklvIH1ieFve9tSIWN+wv18Bp0bEVZI+DkyJiHfnxH9bRLxN0iuAL0bEPpI+DfxmgJiOBj6aHz8K3Aq8LCKqIzmabbGt2h2AWV0i4iFJFwJ9wDHAkZLem2dPJn2F/l7gC7m1/jjw3MomrsvjpEMaWuMsSf8CXBYRP6nuS9JUYFpEXJWLFpO6mvpdkGO6WtKUnOhfTRqwrjEmSD/csT5v+zekTytO/DYqnPhtonsi/wl4Q0TcWp0p6XTSmCr7km52+Etl9kP9DyLit5IOAF4LnCHphxHx8c2Io/GjdQwR04Gkln6/x/G5aqPId/VYKX4AnJpHiETSi3L5VOC+iHgCOJHUf78JSc8EHo6I80k/LLJ/dX5una+V9PJcdCJwVWWRY/N2Xkb6MZL1Q8RkViu3IqwUnyD98tevcqJdCRwBfBH4tqSjgR9TaeU3mAX8q6QngL8C/zDAMvOAsyVtz1Ojb/ZbK+ln5Iu7w8RkVitf3DWrWb64+96IuKHdsZiBu3rMzIrjFr+ZWWHc4jczK4wTv5lZYZz4zcwK48RvZlYYJ34zs8L8f4RWK25Xye/sAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#Code task 26#\n", + "#Call the hist method on 'yearsOpen' after filtering for values under 1000\n", + "#Pass the argument bins=30 to hist(), but feel free to explore other values\n", + "ski_data.yearsOpen[ski_data.yearsOpen < 1000].hist(bins=30)\n", + "plt.xlabel('Years open')\n", + "plt.ylabel('Count')\n", + "plt.title('Distribution of years open excluding 2019');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above distribution of years seems entirely plausible, including the 104 year value. You can certainly state that no resort will have been open for 2019 years! It likely means the resort opened in 2019. It could also mean the resort is due to open in 2019. You don't know when these data were gathered!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's review the summary statistics for the years under 1000." + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "count 328.000000\n", + "mean 57.695122\n", + "std 16.841182\n", + "min 6.000000\n", + "25% 50.000000\n", + "50% 58.000000\n", + "75% 68.250000\n", + "max 104.000000\n", + "Name: yearsOpen, dtype: float64" + ] + }, + "execution_count": 131, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ski_data.yearsOpen[ski_data.yearsOpen < 1000].describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The smallest number of years open otherwise is 6. You can't be sure whether this resort in question has been open zero years or one year and even whether the numbers are projections or actual. In any case, you would be adding a new youngest resort so it feels best to simply drop this row." + ] + }, + { + "cell_type": "code", + "execution_count": 132, + "metadata": {}, + "outputs": [], + "source": [ + "ski_data = ski_data[ski_data.yearsOpen < 1000]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### 2.6.4.2.4 fastSixes and Trams" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The other features you had mild concern over, you will not investigate further. Perhaps take some care when using these features." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.7 Derive State-wide Summary Statistics For Our Market Segment" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You have, by this point removed one row, but it was for a resort that may not have opened yet, or perhaps in its first season. Using your business knowledge, you know that state-wide supply and demand of certain skiing resources may well factor into pricing strategies. Does a resort dominate the available night skiing in a state? Or does it account for a large proportion of the total skiable terrain or days open?\n", + "\n", + "If you want to add any features to your data that captures the state-wide market size, you should do this now, before dropping any more rows. In the next section, you'll drop rows with missing price information. Although you don't know what those resorts charge for their tickets, you do know the resorts exists and have been open for at least six years. Thus, you'll now calculate some state-wide summary statistics for later use." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Many features in your data pertain to chairlifts, that is for getting people around each resort. These aren't relevant, nor are the features relating to altitudes. Features that you may be interested in are:\n", + "\n", + "* TerrainParks\n", + "* SkiableTerrain_ac\n", + "* daysOpenLastYear\n", + "* NightSkiing_ac\n", + "\n", + "When you think about it, these are features it makes sense to sum: the total number of terrain parks, the total skiable area, the total number of days open, and the total area available for night skiing. You might consider the total number of ski runs, but understand that the skiable area is more informative than just a number of runs." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A fairly new groupby behaviour is [named aggregation](https://pandas-docs.github.io/pandas-docs-travis/whatsnew/v0.25.0.html). This allows us to clearly perform the aggregations you want whilst also creating informative output column names." + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
stateresorts_per_statestate_total_skiable_area_acstate_total_days_openstate_total_terrain_parksstate_total_nightskiing_ac
0Alaska32280.0345.04.0580.0
1Arizona21577.0237.06.080.0
2California2125948.02738.081.0587.0
3Colorado2243682.03258.074.0428.0
4Connecticut5358.0353.010.0256.0
\n", + "
" + ], + "text/plain": [ + " state resorts_per_state state_total_skiable_area_ac \\\n", + "0 Alaska 3 2280.0 \n", + "1 Arizona 2 1577.0 \n", + "2 California 21 25948.0 \n", + "3 Colorado 22 43682.0 \n", + "4 Connecticut 5 358.0 \n", + "\n", + " state_total_days_open state_total_terrain_parks \\\n", + "0 345.0 4.0 \n", + "1 237.0 6.0 \n", + "2 2738.0 81.0 \n", + "3 3258.0 74.0 \n", + "4 353.0 10.0 \n", + "\n", + " state_total_nightskiing_ac \n", + "0 580.0 \n", + "1 80.0 \n", + "2 587.0 \n", + "3 428.0 \n", + "4 256.0 " + ] + }, + "execution_count": 142, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 27#\n", + "#Add named aggregations for the sum of 'daysOpenLastYear', 'TerrainParks', and 'NightSkiing_ac'\n", + "#call them 'state_total_days_open', 'state_total_terrain_parks', and 'state_total_nightskiing_ac',\n", + "#respectively\n", + "#Finally, add a call to the reset_index() method (we recommend you experiment with and without this to see\n", + "#what it does)\n", + "state_summary = ski_data.groupby('state').agg(\n", + " resorts_per_state=pd.NamedAgg(column='Name', aggfunc='size'), #could pick any column here\n", + " state_total_skiable_area_ac=pd.NamedAgg(column='SkiableTerrain_ac', aggfunc='sum'),\n", + " state_total_days_open=pd.NamedAgg(column='daysOpenLastYear', aggfunc='sum'),\n", + " state_total_terrain_parks=pd.NamedAgg(column='TerrainParks', aggfunc='sum'),\n", + " state_total_nightskiing_ac=pd.NamedAgg(column='NightSkiing_ac', aggfunc='sum')\n", + ").reset_index()\n", + "state_summary.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.8 Drop Rows With No Price Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You know there are two columns that refer to price: 'AdultWeekend' and 'AdultWeekday'. You can calculate the number of price values missing per row. This will obviously have to be either 0, 1, or 2, where 0 denotes no price values are missing and 2 denotes that both are missing." + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 0\n", + "1 0\n", + "2 0\n", + "3 0\n", + "4 0\n", + " ..\n", + "323 0\n", + "326 0\n", + "327 0\n", + "328 0\n", + "329 1\n", + "Length: 281, dtype: int64" + ] + }, + "execution_count": 145, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "missing_price = ski_data[['AdultWeekend', 'AdultWeekday']].isnull().sum(axis=1)\n", + "missing_price.value_counts()/len(missing_price) * 100\n", + "missing_price" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "About 14% of the rows have no price data. As the price is your target, these rows are of no use. Time to lose them." + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": {}, + "outputs": [], + "source": [ + "#Code task 28#\n", + "#Use `missing_price` to remove rows from ski_data where both price values are missing\n", + "ski_data = ski_data[missing_price != 2]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.9 Review distributions" + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAJOCAYAAAAkve/mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACTk0lEQVR4nOzdebgcVbnv8e/PMM/EQIQQCSqiIIoaUY6oQZTRY3AA4aCCojjARe6JSkCP4oBGryjOioIgMjogHFABkQ2iMguGUQIEEhIIcwYBCbz3j7Wa1O507929d/fu6u7f53n2s7urqqvf6n5r9VpVq1YpIjAzMzMzM7Nyek6nAzAzMzMzM7P63GgzMzMzMzMrMTfazMzMzMzMSsyNNjMzMzMzsxJzo83MzMzMzKzE3GgzMzMzMzMrMTfazGwlkn4k6X9GuY5pkuaP4HUnSfryaN7bzMzMRkfSVpL+LmmJpMPG6D2PkvTTsXivbuNGW8lI2l/ShW1Y71xJb2n1eq37STpQ0uXFaRHx0Yj4UqdiMuuGMssHGKxVuiHfrS99GhiIiHUj4jsjWYGkAUkfqpo2XdL1khZLelDSxZKmAETEVyLiQzVX1ufcaCuZiDg1InapPJcUkl7UyZisd0lapdMxNKPb4jUzGy2Xe9ZBmwM3tXKFuU77c2AGsD6wBfAD4JlWvk8vcqPNrAtJminpV1XTvi3pO5LWl3SCpIWS7pX0ZUnj8jIHSvqLpG9Jehg4E/gRsIOkpZIezcsNOoNQdVTsDkm75ekfkHRL7jpxp6SPjGBbXinpuryOM4E1CvOmSZov6QhJ9wE/k7S6pOMkLch/x0lavWr5o/LRu7mS9m82JjOzsSLpFOD5wP/mcvjT+YDtQZLuAf6Ul/ulpPskPSbpMknbFNZxkqQfSPp9XsdfJD0vl4+PSLpV0isLyx+Rfx+WSLpN0s5jvuFWapL+BOwEfC/n1CdyV8nFkuZJOrqw7BqSfiHpIUmPSrpa0kRJxwBvKKzje8B2wF0RcXEkSyLi1xFxT17X0ZJ+kR+/J9ct1svPd8/7wEb5+QdzHeQRSRdI2jxPV67nLMr7yz8kvWzsPr326PtGW62Cq0aFddC1Obki+KmcBMtyBXliLiyXSPqjpA3zslNy4fuBnOSPSPqopNfk1z+ak7iy7me7qkm6LE++ISf7e4bZlrcpVawflfRXSS+vs9xzlCr9d+Qd7CxJ4/O8P0g6tGr5GyS9s8mP1trrdGCPQkE2DtgHOA04GVgOvAh4JbALUOxq8FrgTmBj4L3AR4G/RcQ6EbFB9RtJ2p50VOxTwAbAG4G5efYi4G3AesAHgG9JelWjGyFpNeC3wCnAeOCXwLuqFntenrc5cDDwGeB1pIL/FcD2wGerlp8ATAIOAI6XtFWjMVmpvEbSzbnc/FmuGGwo6TxJD+Tp50narPKCXIbemcviu1RotNf7gR+KpJdIukjSw/k3Yp8hlq1ZBmuIgywj+1isl0TE+4B7gP+MiHWAs/KsNwEvBXbNz38PbEkqu68DTq1a1T6ksnAC8CTwt7zcBOBXwDchXacEHAq8JiLWzeuf24ZNsy4WEW8G/gwcmvPyBuD9pHrAnsDHJO2VFz+AdNZsMvBcUr3i8Yj4THEdEXEoKSdfkhtVO0laZ4gYziTl8XckPRc4AfhQRDyQ3/so4J3ARvl9Ts8v3YVUV3lxjvc9wEOj/Uw6ra8bbaMsuN4FvJWUEP9JKkyPIhWOzwGqL9h8LamwfQ9wHKni+RZgG2AfSW+qfoOIeGN++Iqc7GcOsS2vAk4EPkLaYX4MnKt8BqLKYcBepB+ETYFHgO/neacB+xXWuzWpsnx+vfe2sRcRd5MKvr3ypDcD/wLuAnYHDo+IZRGxCPgWsG/h5Qsi4rsRsTwiHm/g7Q4CToyIiyLimYi4NyJuzXGcHxF35KNllwIXko6qNep1wKrAcRHxVET8Cri6aplngM9HxJM53v2BL0bEooh4APgC8L6q1/xPXv5SUu7WrWhbqe1PKpdfSCprP0sqX39GKpeeDzwOfA9A0trAd4Ddc5n+H8D1ed5e1P+Brymv7yJSubgxqWz8gQpnOArLDlUGD3WQxayeo3M5/jhARJyYz0o8CRwNvELS+oXlz46IayPiCeBs4ImI+HlEPE3qVVE50/Y0sDqwtaRVI2JuRNwxZltlXSkiBiJidq4H/INUrlXqrk+Ryr0XRcTTOQ8X11nPncA00oHVs4AH88mSeo23Q0h1nAHgfyPivDz9I8BXI+KWiFgOfAXYLh+MewpYF3gJoLzMwlF9ACXQ1402RldwfTci7o+Ie0k//ldGxN9zYXo2KwrHii9FxBMRcSGwDDg9Vzorr69evlkfBn4cEVfmHeZk0pG219VY9iPAZyJifqHwf7dSv/mzWZH0kCpNv8nLWbkUG9j/lZ9vTmoELcxH+x8lVR43LrxuXpPvMxmouV8odVW4Ip+FeBTYg3TgolGbAvdGRBSm3V21zAO5ElJ8zd1Vy29aeP5IRCwbYr51j+9FxLyIeBg4BtgvIh7KXWn+FRFL8vTiQa9ngJdJWjMiFkZE5XqMoX7g63kbMDcifpYPclwH/Bp4d41l65bB9Q6yRMQVI/hMrH88W1ZLGidpVu4hs5gVB5iL5e39hceP13i+DkBEzAEOJ/32L5J0hiSXkTYkSa+VdEnu5fAY6WxaJf9OAS4AzlC6bOHrklatt66IuCIi9omIjUgHet9IOplRa9lHSb1wXgYcW5i1OfDtQl3nYUDApIj4E+lg3veB+yUdXzlo1s36utE2yoKrocJxFMs3a3NgRiV5cwJPpnZldXPg7MJyt5AasBNzJeh8VpyZ2ZeVu2BYOfwSmJa7hr2D1GibR6ooToiIDfLfehFRPDMQVeupfl5tHulMxyD5DMKvgW+QcmcD4HekQrNRC4FJkoqvef4w8S0g5XBx+QWF5xvmMyT15lv3KB5guBvYVNJakn4s6e5ceb0M2EDSuNxYfw+pMrFQ0vmSXpJfX/cHfoj33xx4bVW5uj+pC26tZYcqg2sdZDGrqFUOF6f9FzCd1ENnfWBKnt5MebtixRGnRcSOpLwN4GsjWY/1ldOAc4HJEbE+6Xp4AeSeMl+IiK1JPRzeRupKCcPUMSLiauA3pEbZSiRtB3yQdGav2KV8HvCRQl1ng4hYMyL+mtf7nYh4NalH24tJl3h0tb5utEHdgmsZsFZhsVo/0GUzDzimKnnXioha3X/mkboPFZddI5/1g7Rj7CdpB2BN4JIx2gZrQu4aOEDqKnZX4fT/hcCxktZTun7xhbW63xbcD2ymdH1ZLScAH1C63vM5kiblivBqpDPVDwDLJe1O6kfejL+Rrr87TNIqStdObj/Ma04HPitpI0kTgM8Bv6ha5guSVpP0BtKPxy+bjMvKYXLhcaXxPQPYCnhtRKxHOkILKyoPF0TEW4FNgFuBn+T5Q/7A1zEPuLTqNetExMfqLDtUGVzrIItZxf3AC4aYvy7pgNxDpPrJV0b6Rkr33npzPvD2BOnA8dMjXZ/1jXWBhyPiCaVr3f+rMiNfm7Zt7vq9mNQ9sZJTg3Jb0o6SPixp4/z8JcDbgZV6Hkhag/T7fhTpuvlJkj6eZ/8IOLLSXV1pELa98+PX5DODq5Lq9E/QAzne1422IQqu60nXH4yX9DzS2bhOGa4gr/gJ8NGcpJK0tqQ9Ja1bY9kfAcdoxSg7G0maXpj/O1Ij9ovAmRHhYVjL6zTSkddiBfD9pAbVzaTrFX9FqsDW8yfSkL73SXqwemZEXEUeZAR4DLgU2DyflT2M1Cf9EVIBfm4zwUfEv0nXGB2Y1/Ee0hG3oXwZuAb4BzCb1O2seK+s+/K6FpDOEn808jV41nUOkbSZ0kBJR5Guy1mXVFY/mqd/vrKw0oBQb89nWp8ElrLih7ruD/wQzgNeLOl9klbNf6+R9NIayw5ZBtc6yDKiT8R61VdJB6MepXb325+TzjbfSyrbR9O1dnVgFvAgqbzcmLR/mQ3l48AXJS0hHSw9qzDveaS6xmJS761LWXEw9dukS3AeURp86VFSI222pKXAH0iX5ny9xnt+FZgfET/Ml+m8F/iypC0j4mzSiZYzcq+LG0nX9EMaHO0npLrA3aSDHd8Y/UfQYRHRt3/Ay4GrgCWkrjLnkbqyrEGqHCwmVQz/LylpKq+bC7yl8PwXpAuGK88/BPwxP55COoO3SmH+fGBa1es/mx8fCFxemPdRUheyR4F9htme3UiDODyaX/NLYN3qmEmN9f8Gbsvbfgfwlap1nZDjfk2nvyf/+a/RP9LFzfM7HYf/WvJdzgWOJFVQHyWNirpWLqMHSA2yf5KuVQtgFdLBiUtJBxcezcttXVjn+0gN/cWkM2MnNhDHVqQu4w+Qfvj/BGyX550EfLmwbN0yuPD+AXyq05+v//znP//5r7v+FDHc5SxmZt1B0jTgFxGx2TCLmpmZmXWNVTodgJn1NknPJ50tqWXryDfUNDMzM7Pahr2mTdKJSncUv7EwbbzSzUZvz/83LMw7UtIcpZuQ7lp7rTYSko5Susl29d/vOx2bWT0RcU+kwRtq/bW0wRbpPjI+y2YNk/SGOuXq0k7HZmZmVjFs90hJbyRdO/DziHhZnvZ10ggysyTNBDaMiCOUbsR8Omn0t02BPwIvjnRjRzMzMzMzM2vSsN0jI+IySVOqJk8nXfAP6eLwAeCIPP2MSCO83CVpDqkB97eh3mPChAkxZcoUli1bxtprrz3UoqXl2Nvj2muvfTDSzRdLq5K/FWX+PFul17exVdtX9vytzl3o/e+2oh+2czTbWPbchdr5C93x3TrG1qgXY9nzt5tztx36cbtHkrsjvaZtYqT7QRERCyv3WiDdpLQ4DO186ty4VNLBwMEAEydO5Bvf+AZLly5lnXVGe4/pznDs7bHTTjvd3ekYhjNlyhSuueaaZ58PDAwwbdq0zgU0Bnp9G1u1fZJKnb/VuQu9/91W9MN2jmYby567UDt/oTu+W8fYGvViLHv+dnPutkM/bvdIcrfVA5GoxrSa/S8j4njgeICpU6fGtGnTuvpLc+xmZmZmZtYOI7259v2SNgHI/xfl6fOByYXlNiPd4NbMzMzMzMxGYKRn2s4FDgBm5f/nFKafJumbpIFItiTdvHpEpsw8v+nXzJ2150jfzqylms1f566Vhcte62az732MA5vIYeeulUWzuQvO334ybKNN0umkQUcmSJoPfJ7UWDtL0kHAPcDeABFxk6SzSPdkWg4c4pEjzczMzMzMRq6R0SP3qzNr5zrLHwMcM5qgzMzMzMzMLBnpNW1mZmZmZmY2BtxoMzMrIUknSlok6cbCtPGSLpJ0e/6/YWHekZLmSLpN0q6didrMzMzawY02M7NyOgnYrWraTODiiNgSuDg/R9LWwL7ANvk1P5A0buxCNTMzs3Zyo83MrIQi4jLg4arJ04GT8+OTgb0K08+IiCcj4i5gDrD9WMRpZmZm7dfqm2ubmVn7TIyIhQARsVDSxnn6JOCKwnLz87SVSDoYOBhg4sSJDAwMDJq/dOlSZmzb/KC/1espu6VLl3ZdzM3qh200M+sXbrSZmXU/1ZgWtRaMiOOB4wGmTp0a06ZNGzR/YGCAYy9f1nQAc/efNuwyZTIwMED1tveafthGM7N+4UabWUn4hsbWgPslbZLPsm0CLMrT5wOTC8ttBiwY8+jMzMysLXxNm5lZ9zgXOCA/PgA4pzB9X0mrS9oC2BK4qgPxmZmZWRv4TJuZWQlJOh2YBkyQNB/4PDALOEvSQcA9wN4AEXGTpLOAm4HlwCER0fyFaWZmZlZKbrSZmZVQROxXZ9bOdZY/BjimfRGZmZlZp7h7pJmZmZmZWYm50WZmZmYtI2mypEsk3SLpJkmfyNPHS7pI0u35/4aF1xwpaY6k2yTt2rnord85f62s3GgzMzOzVloOzIiIlwKvAw6RtDUwE7g4IrYELs7PyfP2BbYBdgN+IGlcRyI3c/5aSbnRZmZmZi0TEQsj4rr8eAlwC+lm79OBk/NiJwN75cfTgTMi4smIuAuYA2w/pkGbZc5fKysPRGJmZmZtIWkK8ErgSmBiRCyEVDGWtHFebBJwReFl8/O0Wus7GDgYYOLEiQwMDKy0zMQ1Yca2yxuOsdY62m3p0qUded9mOMbW5m87chc6k7+t1g251moj2WY32szMzKzlJK0D/Bo4PCIWS6q7aI1pUWvBiDgeOB5g6tSpMW3atJWW+e6p53Ds7MarN3P3X3kd7TYwMECt2Muk32Nsdf62I3ehM/nbat2Qa602km1290gzMzNrKUmrkiq8p0bEb/Lk+yVtkudvAizK0+cDkwsv3wxYMFaxmlVz/loZudFmZmZmLaN0SuIE4JaI+GZh1rnAAfnxAcA5hen7Slpd0hbAlsBVYxWvWZHz18rK3SPNzMyslV4PvA+YLen6PO0oYBZwlqSDgHuAvQEi4iZJZwE3k0buOyQinh7zqM0S56+VkhttZmZm1jIRcTm1r/MB2LnOa44BjmlbUGYNcv5aWbnRZn1L0lxgCfA0sDwipkoaD5wJTAHmAvtExCOditHMzMzMzNe0Wb/bKSK2i4ip+XnNm2eamZmZmXWKG21mg9W7eaaZmZmZWUe4e6T1swAulBTAj/M9VOrdPHOQoW6SWblhYrM3yByJTt2MstdvhNnr22dmZmbdxY0262evj4gFuWF2kaRbG33hUDfJrNww8cCZ57c63pV06qaavX4jzF7fPjMzM+su7h5pfSsiFuT/i4Czge2pf/NMMzMzM7OOcKPN+pKktSWtW3kM7ALcSP2bZ5qZmZmZdYS7R1q/mgicLQnSfnBaRPxB0tXUuHmmmZmZmVmnuNFmfSki7gReUWP6Q9S5eaaZmZmZWSeMqtHmmxObmZmZmZm1VyvOtO0UEQ8WnlduTjxL0sz8/IgWvI+ZVZnS5AiVc2ft2aZIzMzMzKxd2jEQiW9ObGZmZmZm1iKjPdPW0psTV9/QdiQ3J/7uqc0N9rftpPWbfo9auvlmvN0cu5mZmZlZrxtto62lNyeuvqFtN92cuJtvxtvNsZtZObirrpmZWfuMqtFWvDmxpEE3J85n2XxzYrMSccW6N3gQKDMzs/4y4mvafHNiM7OO2ikitouIqfl5ZRCoLYGL83MzMzPrAaM50+abE5uZlcd0YFp+fDIwgEfuNTMz6wkjbrT55sRmZh3T0kGgipYuXcqMbZ9uZ+wAHR/8qB8GYOqHbTQz6xetuE+bmZmNrZYOAlU0MDDAsZcva2WsNbVqEKiR6ocBmPphG83M+kU77tNmZmZtVBwEChg0CBSAB4GyTpN0oqRFkm4sTBsv6SJJt+f/GxbmHSlpjqTbJO3amajNnLtWXm60mZl1EQ8CZV3iJGC3qmk1B8uRtDWwL7BNfs0PJI0bu1DNBjkJ566VkBttZmbdZSJwuaQbgKuA8yPiD8As4K2Sbgfemp+bdUREXAY8XDV5OmmQHPL/vQrTz4iIJyPiLmAO6eyx2Zhz7lpZ+Zo2M7Mu4kGgrIvVGyxnEnBFYbn5edpKhhtIB2DimjBj2+UNB9WJwVq6YZAYxzhIKXMXOj+oUyt0Q6612ki22Y02MzMz6yTVmBa1FhxuIB2A7556DsfObrx604lBcbphkBjH2JCO5i50flCnVijB9zjmRrLN7h5pZmZmY6HeYDnzgcmF5TYDFoxxbGZDce5ax/X9mbYpM89vavm5s/ZsUyRmZmY9rTJYziwGD5ZzLnCapG8CmwJbkq7XNCsL5651XN832szMzKy1JJ0OTAMmSJoPfJ5U4T1L0kHAPcDeABFxk6SzgJuB5cAhEdH+O7yb1eDctbJyo83MzMxaKiL2qzOr5mA5EXEMcEz7IjJrjHPXysrXtJmZmZmZmZWYz7SVkK+zMzMzMzOzCp9pMzMzMzMzKzGfaTOzuuqd9Z2x7XIOrDHPZ33NzMzMWs9n2szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxHxNm5m1TLMjn4KvgzMzMzMbjhttZmZm+HYrZmZWXm60mZmZjYAbeWZmNlbcaOsBrjiYmZmZmfUuD0RiZmZmZmZWYj7TNgZGMjhDO1XHU+9GyUU+O2dmZmZm1hlutJmZmY2BsTiA5wNsZma9yY02a4ivm7N2cW5ZuwyVW430MDAzMysLN9rMzKz0ytbN3MzMbCy50dakehUHH7U1M2ucG2FmZmaNc6PN2sJd3szMxl6x7PUgU2ZmvcONNjMzM7M2anbUZjemzayaG21m1lV8FtfMzKx3zL73saYuMerX3/W23Vxb0m6SbpM0R9LMdr2PWas5d62bOX+tWzl3rZs5f63d2nKmTdI44PvAW4H5wNWSzo2Im9vxfmat4ty1KTPPb3pgobIc9XP+Wrdy7lo3c/5as72ATtpt7abfo13dI7cH5kTEnQCSzgCmA05eKzvnrnUz5691K+dunxvJiLIjqfi2ifPX2q5djbZJwLzC8/nAa4sLSDoYODg/XSrpNmAC8GCbYmqrwxz7qOhrdWdtPoZhQAO5C3Xzt6Ljn2e7lSFnGjVEbtXV7PZ1U/4Ok7vQRd/taHRTDo9UI9vYTbkLDeUvtG7/bZvhvptOxFRD6feRnb5WN8bS5W87chdKkyujVfp9ttVGkrvtarSpxrQY9CTieOD4QS+SromIqW2Kqa0ce88YNnehdv4+u4I++Dx7fRu7ePtGVPYOWkH3bntT+mE7u2wbR132PruiLthux9gaJYpx1GUvlGp7xlQ/bvdItrldA5HMByYXnm8GLGjTe5m1knPXupnz17qVc9e6mfPX2q5djbargS0lbSFpNWBf4Nw2vZdZKzl3rZs5f61bOXetmzl/re3a0j0yIpZLOhS4ABgHnBgRNzXw0iFPG5ecY+8Bo8jdon74PHt9G7ty+5y/TemH7eyabWxR7lZ0w3Y7xtYoRYwtzN9SbE8H9ON2N73Nilipy7iZmZmZmZmVRNturm1mZmZmZmaj50abmZmZmZlZiZWm0SZpN0m3SZojaWan4wGQNFfSbEnXS7omTxsv6SJJt+f/GxaWPzLHf5ukXQvTX53XM0fSdyTVGhq2FfGeKGmRpBsL01oWr6TVJZ2Zp18paUo7tqOblTGPGyFpsqRLJN0i6SZJn8jTS5vvzZI0TtLfJZ2Xn/fMtrVKt+ZvRbeV2Y1wud64bsjfWt9nmdT7LSgTSWtIukrSDTnGL3Q6plbohvxttbLvD+0wqn0sIjr+R7po8w7gBcBqwA3A1iWIay4woWra14GZ+fFM4Gv58dY57tWBLfL2jMvzrgJ2IN3H4/fA7m2K943Aq4Ab2xEv8HHgR/nxvsCZnf6OyvRX1jxuMPZNgFflx+sC/8w5Utp8H8E2/jdwGnBeft4z29aiz6dr87ewDV1VZje4TS7XG/ucuiJ/a32fZfqr91vQ6biqYhSwTn68KnAl8LpOxzXKbeqK/G3Ddpd6f2jTNo94HyvLmbbtgTkRcWdE/Bs4A5je4ZjqmQ6cnB+fDOxVmH5GRDwZEXcBc4DtJW0CrBcRf4v0Df288JqWiojLgIfbGG9xXb8Cdu61Mw2j1E15PEhELIyI6/LjJcAtwCRKnO/NkLQZsCfw08Lknti2Fura/B1GV3/PLtcb1hX5W+f7LI0hfgtKI5Kl+emq+a/bR9XrivxttbLvD+0wmn2sLI22ScC8wvP5lKOQCOBCSddKOjhPmxgRCyF98MDGeXq9bZiUH1dPHyutjPfZ10TEcuAx4Llti7z7lDWPm5K7R72SdPSy2/K9nuOATwPPFKb1yra1Si/kby+U2Y1wub6yXsjfUqn6LSiV3N39emARcFFElC7GJjl/+1Cz+1hb7tM2ArWO6pXhqMnrI2KBpI2BiyTdOsSy9bahrNs2knjLui1l0fWfj6R1gF8Dh0fE4iEOuHdNvkt6G7AoIq6VNK2Rl9SYVspta7Fe2L5eLrMb0c/leq9sRylU/xZ0Op5qEfE0sJ2kDYCzJb0sIrr5uijnb58ZyT5WljNt84HJheebAQs6FMuzImJB/r8IOJt0+vr+3NWE/H9RXrzeNszPj6unj5VWxvvsayStAqxPn53WHkYp87hRklYlFSCnRsRv8uRuy/daXg+8XdJcUpeTN0v6Bb2xba3U1fkLPVNmN8Ll+sq6Pn/Los5vQSlFxKPAALBbZyMZNedvHxnpPlaWRtvVwJaStpC0Guli6HM7GZCktSWtW3kM7ALcmOM6IC92AHBOfnwusG8eiWsLYEvgqtx1ZYmk1+XrBN5feM1YaGW8xXW9G/hTvj7CktLlcaPyd30CcEtEfLMwq9vyfSURcWREbBYRU0jfyZ8i4r30wLa1WNfmL/RUmd0Il+sr6+r8LYshfgtKQ9JG+QwbktYE3gIMdVa9Gzh/+8So9rFmRz1p1x+wB2kElTuAz5QgnheQRu+5AbipEhOpr//FwO35//jCaz6T47+NwmhjwFRS5eEO4HuA2hTz6cBC4CnSUZuDWhkvsAbwS9LF7VcBL+j091S2v7LlcRNx70jqivEP4Pr8t0eZ832E2zmNFaNH9tS2tejz6cr8zbF3XZnd4Ha5XG/8syp9/tb6PjsdU1V8NX8LOh1XVYwvB/6eY7wR+FynY2rRdpU+f9uwzaXeH9q0zSPexyqFtpmZmZmZmZVQWbpHmpmZmZmZWQ1utJmZmZmZmZWYG21mZmZmZmYl5kabmZmZmZlZibnRZmZmZmZmVmJutJmZmZmZmZWYG21mZmZmZmYl5kbbECRtJenvkpZIOqzT8YyUpGmS5nc6DrNaJM2V9JZOx2H9QdLzJS2VNK6BZadICkmrjEVsZpJOkvTlUa7jQEmXDzF/QNKHRvMeZqPVK3XsseRG29A+DQxExLoR8Z2RrKBW4ajkU5Jul/S4pHskfUXSai2J2sysTw13ECAi7omIdSLi6bGMy8zMBhl1HbvfuNE2tM2Bm9qw3u8ABwPvB9YFdgfeApzRhvcyMzPAZ8zMzDqrUA63q47ds9xoq0PSn4CdgO/lrjSfyKdxF0uaJ+nowrJrSPqFpIckPSrpakkTJR0DvKGwju9J2hL4OLB/RPwtIpZHxE3Au4A9Jb0pr3PQGbrq7g6Svp3jWCzpWklvKMxbM3exeETSzcBrqrbtCEn35lPSt0nauR2foXU3Sa+UdF3OkzMlnSHpy7W63uQuZC/Kj/est6/k+e+TdHfeXz4zhptkPU7SKcDzgf/NZe6nc24eJOke4E/VXR5zWftVSVdJekzSOZLG11n/+pJOkLQwl6FfbqSbpVk91eUssEZh3oclzZH0sKRzJW2ap6/UbbdGrx5J+m7O6VuH+p2X9EFJt+Q6wwWSNm/HtlpvqFWHVFW3XlVdlpN7QBwh6R/Ashp17Bc3UHfYUdJfcz17nqQD8/TVJX1Dqdfa/ZJ+JGnNMfkwxpgbbXVExJuBPwOHRsQ6wA2kM2MbAHsCH5O0V178AGB9YDLwXOCjwOMR8ZniOiLiUGBnYH5EXFX1fvOAK4BdGgzxamA7YDxwGvBLSZXC/vPAC/Pfrjk+IPUhBg4FXhMR6+b5cxt8T+sTSl11fwucQsqxX5IOLDRiGXX2FUlbAz8E3gdsStpfNmtd5NbPIuJ9wD3Af+Zy+6w8603AS0nlXS3vBz5IysnlpN4QtZyc578IeCWpvPa1QTYiQ5Wzkt4MfBXYB9gEuJvmeuO8FrgTmECqE/ym1sGIXDYfBbwT2IhUZzl9JNtjvW+Udcj9SHWCDarr2BHxT4auOzwf+D3wXVKebgdcn9f7NeDFedqLgEnA50a8kSXmRluDImIgImZHxDMR8Q9SofamPPspUuXzRRHxdERcGxGL66xqArCwzryFpGRsJJ5fRMRD+UzdscDqwFZ59j7AMRHxcG4MFisgT+dlt5a0akTMjYg7GnlP6yuvA1YFjouIpyLiV6QDBcMaZl95N3BeRFwWEU8C/wM804b4zYqOjohlEfF4nfmnRMSNEbGMlJP7VJ9BkzSR1JX98LyuRcC3gH3bGrn1sqHK2f2BEyPiulxWHgnsIGlKg+teVFjvmcBtpIpwtY8AX42IWyJiOfAVYDufbbM6RlOH/E5EzKtXDg9Td9gf+GNEnJ5z+qGIuF6SgA8D/zfXeZeQcrgny2U32hok6bWSLpH0gKTHSGfTJuTZpwAXAGdIWiDp65JWrbOqB0lHzWrZBHigwXhm5O4Mj0l6lHSmrxLPpsC8wuJ3Vx5ExBzgcOBoYJFSl7dNG3lP6yubAvdGRBSm3V1v4aJh9pVBuZkryQ+1KGazeuY1Mf9uUkV6QtUym+fpC3P3nEeBHwMbtypI6ztDlbObMvi3eymprJzU4LprrbfWb/3mwLcLOf0woCbex/rIKOuQQ5bDw9QdJgO1GocbAWsB1xZy+A80eAKk27jR1rjTgHOByRGxPvAjUsFGbvV/ISK2Bv4DeBvpFC9AVK3nT8BkSdsXJ0qaTDrqdmmetIyUiBXPKyz7BuAI0hm1DSNiA+CxSjykM3aTC699fvG9IuK0iNiRVFgH6dSyWdFCYFI+ilVRyaNBuSnpeQxWd1+hKjclrUU6S23WKtVlbr1pRdXl5VOkA2xF84AngQkRsUH+Wy8ithl5qNbnhipnF5B+owGQtDaprLyXVAZDnTpCVmu9C2rEMA/4SCGnN4iINSPir81vjvWDOnXIunXW4kuHWfVQdYd5pEt+qj0IPA5sU8jf9XP3+J7jRlvj1gUejogncoPrvyozJO0kadvcnWYx6Qe/Mpz0/cALKsvmfrs/Ak6V9DpJ4yRtA/wa+Cvwx7zo9cA7Ja2lNMDDQVWxLCedlVtF0ueA9QrzzwKOlLShpM2A/1OIdStJb5a0OvAEKdk99LVV+xspxw6TtIqkdwKVAw03ANtI2i5fR3l01Wvr7ivAr4C35QuKVwO+iMsha61BZW6D3itp63wQ4YvAr6pvCRARC4ELgWMlrSfpOZJeqDx4lNkIDFXOngZ8IJezq5O6fF2Zu6M9QGq8vTfXIT7IyhXajfN6V5W0N+mazt/ViOFHpPrCNvDsYDt7t3pDrTcMUYe8HthD0vh8IPfwEax+qLrDqcBbJO2T95XnStouIp4BfgJ8S9LGOcZJkupdv9zVXFlq3MeBL0paQrrA8azCvOeRKqOLgVtIZ8t+ked9G3i30qhMlWvLDgV+mpf5F3AjqevCXjkBIV0r8W9SBeRkUsJWXEC6IPOf+XVPMPi08xfy9LtIlYxTCvNWB2aRjk7cRyrYj2ruo7BeFxH/Jl2YfiDwCPAe4Dd53j9JFds/ArcD1Tdxrbuv5JFSDyFVSBbmdfvG79ZKXwU+m7vJvLvB15wCnEQqE9cA6t3o9f3AasDNpNz9FfW7u5sNaZhy9mLS9ZW/JpWVL2TwdTofBj5F6jK5Demgb9GVwJak3/pjgHdHxEpd0SPibNKZkjMkLSbVR3ZvyQZaL6pXhzyFdEB3LqneeeYI1j1U3eEeYA9gBqkL7/XAK/LsI4A5wBU5h//IijEeeooGd3m2TpD0RWAv4I0R8WhnozGrTdJJpJFPP9vpWMxaRdIA8IuI+GmnYzEzM6vHNxotgYj4nKRFpGva/tDpeMzMzMzMrDzcaCuJiPhep2MwMzMzM7PycfdIMzMzMzOzEvNAJGZmZmZmZiVWiu6REyZMiClTpqw0fdmyZay99tpjH1ATHGNr1Ivx2muvfTAiSn2TxG7L37LGBeWNbaRxlT1/uy13obyxlTUuGFlsZc9d6M78rcXxtl7Z87cbcrcssfRbHEPmbkR0/O/Vr3511HLJJZfUnF4mjrE16sUIXBMlyNGh/rotf8saV0R5YxtpXGXP327L3YjyxlbWuCJGFlvZcze6NH9rcbytV/b87YbcLUss/RbHULnr7pFmZmZmZmYlVorukfXMvvcxDpx5flOvmTtrzzZFY9acZvPXuWtl4bLXupnLXrP6pjS4b8zYdjkHzjzf+0eJ+EybmZmZmZlZibnRZmZmZmZmVmJutJmZmZmZmZWYG21mZmZmZmYl5kabmZmZmZlZibnRZmZmZmZmVmLDDvkvaTLwc+B5wDPA8RHxbUnjgTOBKcBcYJ+IeCS/5kjgIOBp4LCIuKAt0ZuZWSk0Oox0hYeRNjMza1wjZ9qWAzMi4qXA64BDJG0NzAQujogtgYvzc/K8fYFtgN2AH0ga147gzczMzMzMet2wjbaIWBgR1+XHS4BbgEnAdODkvNjJwF758XTgjIh4MiLuAuYA27c4bjMzMzMzs74wbPfIIklTgFcCVwITI2IhpIadpI3zYpOAKwovm5+nVa/rYOBggIkTJzIwMLDS+01cM92RvRm11tNOS5cuHfP3bJZjNDMzMzPrXg032iStA/waODwiFkuqu2iNabHShIjjgeMBpk6dGtOmTVvpRd899RyOnd1Uu5K5+6+8nnYaGBigVuxl4hjNzMzMzLpXQ6NHSlqV1GA7NSJ+kyffL2mTPH8TYFGePh+YXHj5ZsCC1oRrZmZmZmbWX4ZttCmdUjsBuCUivlmYdS5wQH58AHBOYfq+klaXtAWwJXBV60I2MzMzMzPrH430PXw98D5gtqTr87SjgFnAWZIOAu4B9gaIiJsknQXcTBp58pCIeLrVgZuZmZmZmfWDYRttEXE5ta9TA9i5zmuOAY4ZRVxmZmZmZmZGg9e0mZmZmZmZWWe40WZmZmZmZlZibrSZmZmZmZmVmBtt1tMknShpkaQbC9PGS7pI0u35/4aFeUdKmiPpNkm7diZqMzMzM7MVmrtztVn3OQn4HvDzwrSZwMURMUvSzPz8CElbA/sC2wCbAn+U9GKPfmpmZmZlNGXm+Z0OwcaIz7RZT4uIy4CHqyZPB07Oj08G9ipMPyMinoyIu4A5wPZjEaeZmZmZWT0+02b9aGJELASIiIWSNs7TJwFXFJabn6etRNLBwMEAEydOZGBgYOU3WRNmbLu84aBqraMdli5dOmbv1ayyxlbWuMzMzKw/uNFmtkKt+xFGrQUj4njgeICpU6fGtGnTVlrmu6eew7GzG9/F5u6/8jraYWBggFrxlkFZYytrXGZlJelE4G3Aooh4WZ42HjgTmALMBfaJiEfyvCOBg4CngcMi4oIOhG1mVlruHmn96H5JmwDk/4vy9PnA5MJymwELxjg2M7NecBKwW9W0yvXEWwIX5+dUXU+8G/ADSePGLlQzs/Jzo8360bnAAfnxAcA5hen7Slpd0hbAlsBVHYjPzKyr+XpiM7PWcvdI62mSTgemARMkzQc+D8wCzpJ0EHAPsDdARNwk6SzgZmA5cIhHjjQza5m+vp64nm67Zrbb4jXrFW60WU+LiP3qzNq5zvLHAMe0LyIzM6vSF9cT19Nt18x2W7xmvcLdI83MzGws+Hpi62qS5kqaLel6SdfkaeMlXSTp9vx/w07Hab3JjTYzMzMbC76e2HrBThGxXURMzc9rDrBj1mruHmlmZmYt5euJrY9MJ+U6pAF2BoAjOhVMq02ZeX7Tr5k7a882RGJutJmZdRlJc4ElpHtaLY+IqUPdA8tsrPl6YutRAVwoKYAf52ss6w2wM0gjg+iMZJCXZgbdaUazA/oUtXKgmrIMfFOGONxoMzPrTjtFxIOF55UuOrMkzczPe+Zor5lZCbw+IhbkhtlFkm5t9IWNDKIzkkFeDhzBmbBGzNh2eVMD+hS1cnCfsgx8U4Y4fE2bmVlvqHcPLDMza4GIWJD/LwLOJt1PsN4AO2Yt5TNtZmbdp61ddEbTLaZRI+1mUoYuKrWUNS4od2xm3ULS2sBzImJJfrwL8EVWDLAzi8ED7Ji1lBttZmbdp61ddJq9z9VIjLT7TBm6qNRS1rig3LGZdZGJwNmSINWfT4uIP0i6mhoD7Ji1mhttZmZdpthFR9KgLjr5LJu76JiZtVBE3Am8osb0h6gzwI5ZK7nRZmbWRXqli06zw0h7CGkzM+tnbrSZmXUXd9ExMzPrM8M22iSdCLwNWBQRL8vT6t4PSNKRwEGk+wcdFhEXtCVysx7jG1haI9xFx8zMrP80MuT/ScBuVdMq9wPaErg4P0fS1sC+wDb5NT+QNK5l0ZqZmZmZmfWZYRttEXEZ8HDV5Hr3A5oOnBERT0bEXcAc0gXyZmZmZmZmNgIjvaat3v2AJgFXFJabn6etpF33Chrre9F0w/1vHKOZmZmZWfdq9UAkqjEtai3YrnsFjfTePyPVDfe/cYxmZmZmZt2rkWvaark/3weIqvsBzQcmF5bbDFgw8vDMzMzMzMz620gbbZX7AcHg+wGdC+wraXVJWwBbAleNLkSz9pA0V9JsSddLuiZPGy/pIkm35/8bdjpOMzMzM+tvjQz5fzowDZggaT7wedLNW1e6H1BE3CTpLOBmYDlwSEQ83abYzVphp4h4sPC8MjLqLEkz8/MjOhOamZm1m2+3YmbdYNhGW0TsV2dWzfsBRcQxwDGjCcqsg6aTDlJAGhl1ADfazMzMzKyDWj0QiVk3CeBCSQH8OA+OU29k1EHaNfpps0Yy4maZR+osa2xljaufVM6GzNh2OQc2eGbEZ0PMzKxXuNFm/ez1EbEgN8wuknRroy9s1+inzRrJaKllHqmzrLGVNS4zMzPrDyMdiMSs60XEgvx/EXA26Ubw9UZGNTMzMzPrCDfarC9JWlvSupXHwC7AjdQfGdXMzMzMrCPcPdL61UTgbEmQ9oPTIuIPkq6mxsioZmZmFc2OOOnrK81stNxos74UEXcCr6gx/SHqjIxqZmZmZtYJbrSZdTEf7TUzM+sNs+99rOHRca3/uNFmZmZmZmYt4QPK7eGBSMzMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxHxNm5mZmZmZdcRQ18DN2Hb5SoOz9Os1cD7TZmZmZmZmVmJutJmZmZmZmZWYG21mZmZmZmYl5kabmZmZmZlZiXkgErM+MmXm+TUv6q2nXy/2NTMzMysTN9rMzMwYegSzWnxQw8zMxkrPNdr8o2tmZmZl4iHNzWy0eq7RZmZmZmZmvalfT9B4IBIzMzMzM7MS6/szbf3aWjczMzMzs+7Q9402MzOzkSge9GtmVNZm+EChmZlBGxttknYDvg2MA34aEbPa9V5mreTctW7m/LVu5dy1bub8La9me9VBOQ+YtaXRJmkc8H3grcB84GpJ50bEze14P7NWce6OzkgKxqJGzlaUsSAtC+evdSvn7mC+dKO7OH9tLPbZdp1p2x6YExF3Akg6A5gOdH3yVn8prmT2nJ7NXWtMrYJ3uP28RPu487fH9FHl3blr3cz522NGUt9vt3Y12iYB8wrP5wOvLS4g6WDg4Px0qaTbaqxnAvBgWyJskcMaiFFfG6Ng6iv950j9GDcf4ziGzV3o7vxtJGcrxjp3y7o/DRfXEDGVLn+7OXehvPnbTFztVGebRxJb6XIXuj9/a2lF7oxxudgNn2/p8rfbcrcsZVqvxjGSekO7Gm2qMS0GPYk4Hjh+yJVI10TE1FYG1mqOsTVKFOOwuQvdnb9ljQvKG1tZ46qh58vessZW1rig3LEV9HzZW4/j7Qk9V/aWJRbHsUK77tM2H5hceL4ZsKBN72XWSs5d62bOX+tWzl3rZs5fa7t2NdquBraUtIWk1YB9gXPb9F5mreTctW7m/LVu5dy1bub8tbZrS/fIiFgu6VDgAtLQpydGxE0jWNWQp5FLwjG2RilibGHuQkm2qYayxgXlja2scQ3SJ2VvWWMra1xQ7tiAvil763G8Xa5Hy96yxOI4MkWs1GXczMzMzMzMSqJd3SPNzMzMzMysBdxoMzMzMzMzK7HSNtok7SbpNklzJM3sdDy1SJorabak6yVd0+l4ACSdKGmRpBsL08ZLukjS7fn/hiWM8WhJ9+bP8npJe3QyxmYMl6tKvpPn/0PSq8YgpsmSLpF0i6SbJH2ixjLTJD1W+Mw/1+648vsOud904vPK77tV4bO4XtJiSYdXLdORz6xdypi7+X2dv83F1He5W0s31BuKyliHKOqG+kS3KkPZW6ZytizlaunL0ogo3R/pIs47gBcAqwE3AFt3Oq4acc4FJnQ6jqqY3gi8CrixMO3rwMz8eCbwtRLGeDTwyU5/fiPYlmFzFdgD+D3pPi6vA64cg7g2AV6VH68L/LNGXNOA8zrwmQ2533Ti86rzvd4HbF6Gz6yN21i63M3v6/wd3ffa07k7xHaXvt5QFXPp6hBV8ZW+PtGNf2Upe8tUzpaxXC1jWVrWM23bA3Mi4s6I+DdwBjC9wzF1hYi4DHi4avJ04OT8+GRgr7GMqVqdGLtVI7k6Hfh5JFcAG0japJ1BRcTCiLguP14C3AJMaud7ttCYf1417AzcERF3j/H7jqVS5i44f0epH3K3FtcbWqwb6hNdqhRlb5eVs50oV0tXlpa10TYJmFd4Pp9yJlIAF0q6VtLBnQ5mCBMjYiGknRTYuMPx1HNoPu19Yhd1uWgkVzuaz5KmAK8ErqwxewdJN0j6vaRtxiik4fabMuz/+wKn15nXic+sHUqfu+D8HYF+yN1aOv25j0S31CGKuqU+UWalK3tLUM6WsVwtXVnalvu0tYBqTCvjvQleHxELJG0MXCTp1nxkypr3Q+BLpO/5S8CxwAc7GlFjGsnVjuWzpHWAXwOHR8TiqtnXkU77L1W6hvC3wJZjENZw+01H93+lG6O+HTiyxuxOfWbtUOrcBedvs/ood2vplnpDkesQ/alUZW9JytlSlatlLUvLeqZtPjC58HwzYEGHYqkrIhbk/4uAs0mnvMvo/spp5Px/UYfjWUlE3B8RT0fEM8BPKO9nWa2RXO1IPktalVQQnxoRv6meHxGLI2Jpfvw7YFVJE9odVwP7Taf3/92B6yLi/uoZnfrM2qS0uQvO3xHql9ytpdPlRtO6qA5RVPr6RBcoTdlblnK2hOVqKcvSsjbarga2lLRFbu3uC5zb4ZgGkbS2pHUrj4FdgBuHflXHnAsckB8fAJzTwVhqquqb/A7K+1lWayRXzwXen0c/eh3wWKV7SbtIEnACcEtEfLPOMs/LyyFpe1J58FCb42pkvxnzz6vKftTpEtGJz6yNSpm74PwdhX7J3VpKX28o6rI6RFHp6xNdoBRlb1nK2ZKWq6UsS0vZPTIilks6FLiANHrLiRFxU4fDqjYRODt/b6sAp0XEHzobEkg6nTSyzQRJ84HPA7OAsyQdBNwD7N25COvGOE3SdqTT3XOBj3QqvmbUy1VJH83zfwT8jjTy0RzgX8AHxiC01wPvA2ZLuj5POwp4fiGudwMfk7QceBzYNyLa3Z2o5n5Tgs8LAElrAW+lkH9VsXXiM2uLEucuOH+b1k+5W0uX1BuKSlmHKOqG+kQ3KlHZW5ZytlTlapnLUvVQmW1mZmZmZtZzyto90szMzMzMzHCjzczMzMzMrNTcaDMzMzMzMysxN9rMzMzMzMxKzI02MzMzMzOzEnOjzczMzMzMrMTcaDMzMzMzMysxN9rMzKyvSLpJ0rQOvO+ApA+N9fualYmk30s6oNNxmHUbN9rGiKSTJH15FK8f8Y+9pB9J+p+Rvrf1J0lzJT0uaamk+3IOr9PpuKw35Lyq/D1TyLWlkvZv53tHxDYRMdBgnMX94H5JP/N+0Pvy9/6WTscxFEnTJM2vmna0pKdyvj4q6a+SduhUjLVExO4RcXKn4+hVkg6UdHmdeftLurDB9Rwt6RdDzC/1PiLp+Xk/GNfpWFrFjbaCZhKw7MlaFBEfjYgvdToO60r/GRHrANsBrwSO7Gw41isiYp3KH3APOdfy36mNrEPSKo1Ma4HKfvAq4DXAZ5t5sRL/3tpYOTPn6wTgEuCXHY7H2kDSjrlR/pikhyX9RdJrhnpNRJwaEbuMYYxvKByMWyYpqg7YPb9d7x0R9+Tfk6fb9R5jzT8ifa5NFRzrMRFxH3ABsF2do7vPHsTIR+fOkvRzSUtyV7SphWWPkHRvnnebpJ3HdmuszCQ9R9JMSXdIeijn0vg8b0r+0T9I0j3An/JR5b9I+pakh4GjJb1Q0p/y6x+UdKqkDQrv0XC+FkXEvcDvgZdJ2lDSeZIekPRIfrxZ4T0GJB0j6S/Av4AXVG3nJpL+IemT+fmBku7MMdzV7rON1jxJq0s6TtKC/HecpNXzvGmS5kuaIWmRpIWSPlB47XMl/a+kxZKulvTl4tkQSS+RdFGufN8maZ/CvD0k3Zxz415Jn5S0NikXNy1UgDctxhsRy4FTgUmSNsrrGnTAWYWzKYX96wBJ9+R95zMNfC5HS/qlpF/kGGdLerGkI/NnMU/SLoXl3U14lCStB5wHfBcYD0wCvgA82cm4qkXEnwsH57bJkzcoHKC7p5H11KqrqofOoDXKjbZM0inA84H/zYXfpyW9Pf+AP5oLmZfWWzZP/6VSN7LHJF0maZv671g3jumSrs8F+x2SdivM3jxXTpZIulDShMLr6r63Cl0zCz8sR0i6D/iZpAm5wvFo/sH4s3xU2ApyZXR3YE6DL3k7cAawAXAu8L28nq2AQ4HXRMS6wK7A3BaHa93tMGAv4E3ApsAjwPerlnkT8FJS/gC8FrgT2Bg4BhDw1fz6lwKTgaOHeM+a+VpN0mRgD+DvpN/PnwGbk34PHq/xuvcBBwPrAncX1jMFuBT4XkR8I1fAvwPsnveL/wCuHyJe64zPAK8j9Tx4BbA9g8+6Pg9Yn1SBPgj4vqQN87zvA8vyMgfkPwDy938RcBoph/cDflD4HT8B+EjOjZcBf4qIZaQyeUGhArygGKyk1YD3Aw+R9qNG7QhsBewMfK5S9xnGfwKnABuS9o8LSPvIJOCLwI+beH8b3osBIuL0iHg6Ih6PiAsj4h/VC0r6f5Iul7S+qrpOSvp2blQvlnStpDdUvXwNSWfmeud1kl5RKxgNcbCtnhzPCfkAx735QMa4PK/WwbiTJP1Q0u8kLQN2krSnpL/n+OdJOrqw/spBiFXy8wFJX6pXjx4izqHq12tKOlbS3Xn+5ZLWHG6dI+WKeRYR76PQRQf4LXA6cDiwEfA7UiNtteplI+LreTW/B7YkFbrXkY5wNUzS9sDPgU+RKg9vZHCF9r+AD+T1rwZ8sjCvmfd+HunIzOakCsUMYH7ezonAUUA0E7v1rN9KWgLMAxYBn2/wdZdHxO9yt4RTSBUcgKeB1YGtJa0aEXMj4o6WR23d7CPAZyJifkQ8SWpsvbvqSOvREbEsIh7PzxdExHcjYnmuvMyJiIsi4smIeAD4JqmhV0+9fK34raRHgctJja2vRMRDEfHriPhXRCwhNRar3+OkiLgpx/VUnrY1MAB8PiKOLyz7DOkM3poRsTAibhr2k7Kxtj/wxYhYlPPqC6SGecVTef5TEfE7YCmwVa6Ivov0nf8rIm4Gitd0vQ2YGxE/y7lyHfBr4N2F9W4tab2IeCTPH8o+OV8fBz4MvDufdWvUF/J+dANwAyvvD7X8OSIuyO/zS1J9YlbO+zOAKSqc7bZR+yfwtKSTJe1eODjwrNyQ+gnwcmCXiHisxnquJh2EGE86aPBLSWsU5k8nfZ+V+b+VtGqN9TRysK3aycBy4EWkyy92AYpnYKsPxkGqBx9DOhB2OelAyPtJdeY9gY9J2muI9xyqHl3PUPXrbwCvJh1oGw98mlSWt4UbbfW9Bzg///A/Rfpi1iR9MTVFxIkRsaRQ0XiFpPWbeM+DgBPzez4TEfdGxK2F+T+LiH/mispZpB1tJO/9DOnH48m8rqeATYDN84/NnyPCjTYD2Csf3Z0GvIR0jUQj7is8/hfpaN0qETGHdCDkaGCRpDNU1aXH+t7mwNn5zP+jwC2kxv7EwjLzql4z6LmkjXNu3StpMfALhs7dmvlamLZXRGwQEZtHxMcj4nFJa0n6cT7Cuhi4DNhAg7vsVMcJqeJ/L/CryoR81uQ9wEeBhZLOl/SSIeK1ztiUwhnT/LhYfj1U1Tj6F7AOqQGzCoPzofh4c+C1lZzPeb8/6QArpAbfHsDdki7V8AOLnBURG5D2mRtJlcpmVO8PjQy8c3/h8ePAg4VriSoHVzyAT4tExGLSGdEAfgI8IOlcSZVyclXSiYfxpBMM/6qznl/kA1DLI+JY0kHVrQqLXBsRv8r14G8Ca5DONldr5GDbs3KcuwOH5wNwi4BvAfsWFht0MC5POyci/pLryE9ExEBEzM7P/5G3eagDdHXr0fXUq1/nHmkfBD6R6+tPR8Rf83Jt4UZbfYMK54h4hlTITqq1sKRxkmblU8OLWXGGrNFKLqQuPEOddahZkI7gvR+IiCcKz/8fqdvbhUrXVMxsImbrAxFxKXAS6eDFMmCtyrxcSd2oiXWdFhE7kioqAXytpcFat5tH6ia4QeFvjUjXk1VUH1Sqfv7VPO3lEbEe8F5Sl8lWmkGq3Lw2v8cb8/Ti+9Q6+HU08CBwWrGBl89SvJV0AO1WUkXMymUBqdyqeH6eNpwHSGcUNitMm1x4PA+4tCrn14mIjwFExNURMZ10pP+3pMomDNMjJiIeJFWmj5a0SZ48qPxmRcPQukxE3BIRB0bEZqRus5sCx+XZLyKdJftCRPy73jqUrsG8JXfte5TUvbdYd3z24EKuB89n8IGKikYOtlUvvyrpIFXlNT8m5fhK711vmqTXSrpE6drix0gHvpo5QDfkgYRh6tcTSI3YMest5EbbYMUCcFDhLEmkQvbeGstCOuU6HXgLKemnVF7axPvPA17YxPIjfe9BsecjCDMi4gWkfun/LQ8OYSs7Dngr6Qd/jdyXfFXSNR2rN7ICSVtJerPSxftPkI7A9szITtYSPwKOkbQ5gKSNJE1vch3rkrqmPSppEqnLeautS8rfR5Wu3Wi06/BTwN7A2sApuQvTRKVrqNcmDSSwFO8XZbCqpDUqf6Sj+J/NOTkB+BzpLO6Q8hmn35AaT2vls6jvLyxyHvBiSe+TtGr+e42kl0paTWmY9vXz2Y7FrMiN+4HnDtWjJ/fWuYDUbQvStZL75veYyooumNbF8vd8EqnxBqnR9AHg90rXkq9E6fq1I4B9gA3z2dnHGFx3nFxY/jmkAw+1DlQ0crCtevkngQmF5deLiOJYELUOSlRPO410HfLkiFif9PvRygN0Q9WvHyTVY0ZSbx8RN9oGu58VI3ydBewpaedcMZ1BSrC/1lgW0g/4k6QLftcCvjKC9z8B+EB+z+dImtRgF5lRvbekt0l6UW6YVn4QXGGwQSJdw/FzUt/1jwM/JR3EWEY6+taI1YFZpMLuPtJRtaNaHqx1s2+TfoQvVLqe8grStQ3N+AJpeP7HgPNJFeZWO47UZf5BUox/aPSF+cj3O0n5fyKp69wMUmXoYVL3no+3Nlwbgd+RGuaVvzWAa4B/ALNJ17c0ev/VQ0mVvvtI102eTh7pL9I1kbuQuoYtyMt8jRUHw94HzM1H+j9KOnNcqaifDtyZz1bU62r+/4CDJW0M/A+pkvkIaT85rcH4rUSURhudoTxirdIgSfuRyiIgDVJC+n39o6RaDYt1SWeAHwBWkfQ5YL2qZV4t6Z25m+PhpJy9gpU1dbAtIhYCFwLHSlov13lfKGmoro21rAs8HBFPKI0L8V9Nvr6R9desX+czjycC35S0aT4rt0M+KN0eEeG//EdqTd8DPEq6OPEdwM2kH/5LgW2GWHYd4BxgCalb5ftJRwRelJc/CfhyAzG8g/SDsITUZXHXPH0A+FBhuQNJF8/TzHuTrk2aX/We/5d0yrdS+f6fTn8X/vOf//znP//16h+pUXZyp+PwX3f+kS7VOYsVB07vJXUvXK9YP8zLfjjXDadU1R3HkU4WLAYWks7GzgXekucfTbr29sxcv/w78KrCeovLPgf4b+C2vOwdpAGbijFPyXXTVfLz9YEf5nrnY3n9++Z5g7YhT1upHk06U3x3fs/zSCP4/qLO+9WtRw/xOQ9Xv16TdADv3rwNlwFrtut7V35TMzMzM2uD3GtmNdIZuteQzuJ9KCJ+28m4zKx7uHukmZmZWXutS+qmu4x0huRY0hH8riDp91pxE+/in7u3m40Rn2kbY7mAq1XI/Tkidh/reMzMzMzM+pGk/al98/e7Y/DAKB3nRpuZmZmZmVmJ1bzp3VibMGFCTJkyZaXpy5YtY+211x77gDqsH7e73jZfe+21D0ZEw/cA64Ra+VvG79AxDa/V8ZQ9f+uVve1Qlu/acTQWR9lzF7q77uAYW6Nb87ebcrdsMfV6PEPmbqdHwIkIXv3qV0ctl1xySc3pva4ft7veNgPXRAlydKi/Wvlbxu/QMQ2v1fGUPX/rlb3tUJbv2nEM1mtl71DbVCaOsTW6NX+7KXfLFlOvxzNU7nogEjMzMzMzsxJzo83MzMzMzKzESnFNWytNmXl+U8vPnbVnmyKxfudctG7VbO6C89e6l/PdymL2vY9xoOsOVofPtJmZmZmZmZVYz51pMzOzsTfc2YoZ2y4fdATZR4fNzMwa5zNtZmZmZmZmJeZGm5mZmZmZWYm5e6SZmZn1jJEM5mBWIWky8HPgecAzwPER8W1J44EzgSnAXGCfiHgkv+ZI4CDgaeCwiLigA6Fbj/OZNjMzMzOzZDkwIyJeCrwOOETS1sBM4OKI2BK4OD8nz9sX2AbYDfiBpHEdidx6mhttZmZmZmZARCyMiOvy4yXALcAkYDpwcl7sZGCv/Hg6cEZEPBkRdwFzgO3HNGjrC+4eaWZmZmZWRdIU4JXAlcDEiFgIqWEnaeO82CTgisLL5udp1es6GDgYYOLEiQwMDKz0fhPXTCPtNqPWelpp6dKlbX+PZvRzPG60mZmZmZkVSFoH+DVweEQsllR30RrTYqUJEccDxwNMnTo1pk2bttKLvnvqORw7u7mq+dz9V15PKw0MDFAr1k7p53jcPdLMzMzMLJO0KqnBdmpE/CZPvl/SJnn+JsCiPH0+MLnw8s2ABWMVq/UPN9rMzMzMzAClU2onALdExDcLs84FDsiPDwDOKUzfV9LqkrYAtgSuGqt4rX+4e6SZmZmZWfJ64H3AbEnX52lHAbOAsyQdBNwD7A0QETdJOgu4mTTy5CER8fSYR209z402MzMzMzMgIi6n9nVqADvXec0xwDFtC8oMd480MzMzMzMrtWEbbZJOlLRI0o2FaeMlXSTp9vx/w8K8IyXNkXSbpF3bFbiZmZmZmVk/aORM20mkO7wX+a7wZmZmZmZmY2DYRltEXAY8XDXZd4U3MzMzMzMbAyMdiGRUd4WHxu4MP5K7jJftTvIjUba7vY+FftxmMzMzM7NGtHr0yIbuCg+N3Rl+JHcZP3Dm+U0t3+47yY9E2e72Phb6cZvNzMzMzBox0tEjfVd4M7MOkTRX0mxJ10u6Jk+rO0CUmZmZdbeRNtp8V3gzs87aKSK2i4ip+XnNAaLMzMys+zUy5P/pwN+ArSTNz3eCnwW8VdLtwFvzcyLiJqByV/g/4LvCm5mNlXoDRJmZmVmXG/aatojYr84s3xXezKwzArhQUgA/ztcI1xsgapBGBoFqdkCnRkxcc/B6OzXwUFkGPernOCTNBZYATwPLI2KqpPHAmcAUYC6wT0Q8MqaBmZmVWKsHIjErFUknAm8DFkXEy/K0upUDSUcCB5EqE4dFxAUdCNtsOK+PiAW5YXaRpFsbfWEjg0A1O6BTI2Zsu5xjZ6/4yenUIFBlGfTIcbBTRDxYeF7p3jtL0sz8/IhOBGZmVkYjvabNrFuchG8Obz0mIhbk/4uAs0n3w6w3QJRZN3D3XjOzIfhMm/W0iLhM0pSqydOBafnxycAA6YjuszeHB+6SVLk5/N/GJFizBkhaG3hORCzJj3cBvsiKAaJmMXiAKLOyaWv33uquuO0w2i6lZekeOxTHaFYubrRZP2r7zeGXLl3KjG2bG4On3T88ZfxxK1tMZYunjonA2ZIgleGnRcQfJF0NnJUHi7oH2LuDMZoNpa3de7976jmDuuK2w2i795ale+xQHKNZubjRZrZCy24OPzAwwLGXL2vqzdt9jU8Zf9zKFlPZ4qklIu4EXlFj+kPUGSDKrEyK3XslDeremw+klb5775Qmr/ucO2vPNkViZv3C17RZP/LN4c3MOkDS2pLWrTwmde+9kfr3fzUzM9xos/7km8ObmXXGROBySTeQytfzI+IP1Ln/q5mZJe4eaT0t3xx+GjBB0nzg86TKwErX/kTETZIqN4dfjm8Ob2bWUu7ea2Y2Mn3faHO/9N7mm8ObmZmZWbdz90gzMzMzM7MSc6PNzMzMzMysxPq+e6SZmY09d003MzNrnM+0mZmZmZmZlZjPtJmVRLNnHsBnH8zMzMz6gc+0mZmZmZkBkk6UtEjSjYVp4yVdJOn2/H/DwrwjJc2RdJukXTsTtfUDN9rMzMzMzJKTgN2qps0ELo6ILYGL83MkbQ3sC2yTX/MDSePGLlTrJ260mZmZmZkBEXEZ8HDV5OnAyfnxycBehelnRMSTEXEXMAfYfizitP7ja9rMzMzMzOqbGBELASJioaSN8/RJwBWF5ebnaSuRdDBwMMDEiRMZGBhY+U3WhBnbLm8qsFrraaWlS5e2/T2a0c/xuNFmZmZmZtY81ZgWtRaMiOOB4wGmTp0a06ZNW2mZ7556DsfObq5qPnf/ldfTSgMDA9SKtVP6OZ5RNdokzQWWAE8DyyNiqqTxwJnAFGAusE9EPDK6MM3MzMy6U/XowDO2Xc6BQ4wY7JGBS+d+SZvks2ybAIvy9PnA5MJymwELxjw66wutuKZtp4jYLiKm5uc1L9Y0MzMzM+tC5wIH5McHAOcUpu8raXVJWwBbAld1ID7rA+0YiKTexZpmZmZmZqUl6XTgb8BWkuZLOgiYBbxV0u3AW/NzIuIm4CzgZuAPwCER8XRnIrdeN9pr2gK4UFIAP879detdrDlIIxdkjuTivmYv4GzWWFxsWLaLLMdCP26zmZmZlUtE7Fdn1s51lj8GOKZ9EZklo220vT4iFuSG2UWSbm30hY1ckDmSi/uG6iPeCu2+4BPKd5HlWOjHbTYzMzMza8SoukdGxIL8fxFwNuneFPfnizSpuljTzMzMzMzMmjTiM22S1gaeExFL8uNdgC+y4mLNWQy+WNPMzGxEqkffa4RH4DMzs14xmu6RE4GzJVXWc1pE/EHS1cBZ+cLNe4C9Rx+mmZmZmZlZfxpxoy0i7gReUWP6Q9S5WNPMzMzMzMya044h/83MzMzMzKxF3GgzMzMzMzMrMTfazMzMzMzMSsyNNjMzMzMzsxIb7c2122r2vY+1/WbZZmZmZmZmZVbqRpuZmZlZvxnJfQmb5fsYmnUXN9qa5Bu8mpl1h1rl9Yxtl9ftweGy2szMysrXtJmZmZmZmZWYG21mZmZmZmYl5kabmZmZmZlZibnRZmZmZmZmVmJutJmZmZmZmZWYR48062LNjGY6Y9vlTGtfKGZmZmbWJm60mZmZmZl1oWZvReVbm3QvN9rMzMxw5cfMzMrL17SZmZmZmZmVmM+0mfURn0kwMzMz6z5utJmZmZmZ9YFmD96etNvabYrEmuXukWZmZmZmZiXWtjNtknYDvg2MA34aEbPa9V5l56Ma3cW5u4K7U3Yf5+/Y8f7RWs5d62bOX2u3tjTaJI0Dvg+8FZgPXC3p3Ii4uR3v12tm3/sYBzZZGWiGKw71OXetmzl/rVs5d8fecAcdZmy7vK11kVYoy0HuXs7fkdRJXc9sj3adadsemBMRdwJIOgOYDnR98lpjuvjsonN3FJr93st4w+9mtwFK9QPl/C2xYm6VpULsstesJZy/1nbtarRNAuYVns8HXltcQNLBwMH56VJJt9VYzwTgwbZEWGKHtXm79bV2rXnkdvpa3W3efIxDGTZ3oaH8LV3utjuvRuIwmHDYe0sV04g+oyH2qdLlb4Nlb8uVJf8cx2A9WPZCST7boZTl+x9KN8TYTfnbrbk7kjxocz2zbJ9Rq+Opm7vtarSpxrQY9CTieOD4IVciXRMRU1sZWDfox+0u0TYPm7swfP6WaHue5ZiGV7Z4RqAlZW87lOWzdRzljIMWlb1Qqm2qyzG2Roli7Nl6b9li6ud42jV65HxgcuH5ZsCCNr2XWSs5d62bOX+tWzl3rZs5f63t2tVouxrYUtIWklYD9gXObdN7mbWSc9e6mfPXupVz17qZ89fari3dIyNiuaRDgQtIQ5+eGBE3jWBVY96FpyT6cbtLsc09nruOaXhli6cpLczfdijLZ+s4BitFHC3O3VJs0zAcY2uUIkbXHcZU38ajiJW6jJuZmZmZmVlJtKt7pJmZmZmZmbWAG21mZmZmZmYlVtpGm6TdJN0maY6kmZ2Opx0kTZZ0iaRbJN0k6RN5+nhJF0m6Pf/fsNOxtpqkcZL+Lum8/LwntrlTeSvpREmLJN1YmFb3M5V0ZI7xNkm7timmpvO73XFJWkPSVZJuyDF9odMx9ZJ633nVMtMkPSbp+vz3uTbFMlfS7Pwe19SYL0nfyd/tPyS9qg0xbFXYzuslLZZ0eNUybfk8mi0Tql7blb+/ZY+7kf2jLKp/o8tG0gaSfiXp1vx57tDpmEZrrPJ3iN/moyXdWyiL9ii8pubvoKRX53J2Ti5Pa936oJGYViqvR/K73Ip46pXbnfx8nhURpfsjXcR5B/ACYDXgBmDrTsfVhu3cBHhVfrwu8E9ga+DrwMw8fSbwtU7H2oZt/2/gNOC8/Lzrt7mTeQu8EXgVcGNhWs3PNOfYDcDqwBY55nFtiKmp/B6LuEj30lknP14VuBJ4Xac/q175q/edVy0zrbLftzmWucCEIebvAfw+58TrgCvbHM844D5g87H4PJopE2rE2XW/v90QdyP7R1n+qPqNLtsfcDLwofx4NWCDTsc0yu0Zs/wd4rf5aOCTNZav+zsIXAXskMvR3wO7jzCmlcrrkfwutyqequ/lPtINrzv2+VT+ynqmbXtgTkTcGRH/Bs4Apnc4ppaLiIURcV1+vAS4BZhE2taT82InA3t1JMA2kbQZsCfw08LkXtjmjuVtRFwGPFw1ud5nOh04IyKejIi7gDmk2FsdU7P53fa4Ilman66a/6KTMfWSIb7zMpoO/DznxBXABpI2aeP77QzcERF3t/E9ntVkmVDUrb+/pY+7W/aPOr/RpSFpPdJBiRMAIuLfEfFoR4MavTHL3xHkYc3fwVxerhcRf4vUQvk5ra27NfW73KZ4Gim3xyyesjbaJgHzCs/nU8KCrZUkTQFeSTryPzEiFkLauYCNOxhaOxwHfBp4pjCtF7a5bHlb7zMd8zgbzO8xiSt3+7keWARcFBEdj6kXVX3n1XZQ6qL6e0nbtCmEAC6UdK2kg2vMH+vvdl/g9DrzxuLzgMbK2W7N+a6Ke5j9o9OOY+Xf6DJ5AfAA8LPchfOnktbudFCj1JH8rZGHhyp1Fz+x0B2xXmyT8uPq6SNRq7xu9ne5lfFUVJfbnfp8gPI22mr1+ezZexNIWgf4NXB4RCzudDztJOltwKKIuLbTsbRBt+TtmMbZRH6PSVwR8XREbAdsRjoa9rJOx9RrhvnOryN1EXwF8F3gt20K4/UR8Spgd+AQSW+sDrPGa9ry3SrdbPftwC9rzB6rz6NR3ZrzXRN3mX/zu+Q3ehVS198fRsQrgWWk7nPdbMzzt0Ye/hB4IbAdsBA4dpjYWhnzcOX1oNDHIJ5a5XYnPx+gvI22+cDkwvPNgAUdiqWtJK1K2mlOjYjf5Mn3V7rp5P+LOhVfG7weeLukuaTT/2+W9At6Y5vLlrf1PtMxi7PJ/B7Tzy93pxkAditLTL2gznf+rIhYXOmiGhG/A1aVNKHVcUTEgvx/EXA2K3drHcvvdnfguoi4v0acY/J5ZI2Us92a810R93D7RwnU+40uk/nA/NxLAuBXpEZcNxvT/K2VhxFxfz6o+QzwE1aUmfVim58fjzrmOuV1s7/LLYsnG1Rud/LzqShro+1qYEtJW+SW7r7AuR2OqeXyKDInALdExDcLs84FDsiPDwDOGevY2iUijoyIzSJiCul7/VNEvJfe2Oay5W29z/RcYF9Jq0vaAtiSdLFsS40gv9sel6SNJG2QH68JvAW4tZMx9ZIhvvPiMs+rjKAlaXvS79BDLY5jbUnrVh4DuwA3Vi12LvB+Ja8DHqt0xWmD/ajTNXIsPo+CRsrZspVjjSp93I3sH502xG90aUTEfcA8SVvlSTsDN3cwpFYYs/ytl4dV1/S+gxVlZs3fwVxeLpH0urzO9zOCutsQ5XVTv8utiqdgULndqc9nkCjBqDm1/kgje/2TNArLZzodT5u2cUfSqdJ/ANfnvz2A5wIXA7fn/+M7HWubtn8aK0aP7Ilt7lTe5oJlIfAU6ejOQUN9psBncoy3McrRjIaIqen8bndcwMuBv+eYbgQ+N1z+jcVn1St/Q3znHwU+mpc5FLiJNNrWFcB/tCGOF+T135Df6zN5ejEOAd/P3+1sYGqbPpO1SI2w9QvT2v55NFMmAJsCvyu8tit/f8sed739o9NxDRHvNMo7euR2wDX5s/wtsGGnY2rBNo1J/g5RTp+Sy8J/kBoimxReU/N3EJhK+i29A/geoBHEU6+8bvp3uRXx5PXUKrc78vkU/5RXamZmZmZmZiVU1u6RZmZmZmZmhhttZmZmZmZmpeZGm5mZmZmZWYm50WZmZmZmZlZibrSZmZmZmZmVmBttZmZmZmZmJeZGm5mZmZmZWYm50dYlJIWkF9WZt1TSC8Y6JmsdSSdJ+nKn4zAzMxsJSe+QNC/XSV45zLIHSrq88LxuHcfGRjP1kLLUWZqMeVDOdaOea7RJ2lHSXyU9JulhSX+R9JoOxjOQC6NXVE3/bZ4+bbTvERHrRMSdo12P9S5JG0j6oaT7JP1L0mxJHxij954maX6L1zkg6UP5sSRdJulzVcscIOkOSWu18r2tt0naWtK5+TdkiaRLJP1Hp+MyG4qk1SQdK2l+bjTdJelbYxzGN4BDc53k72P83jaE/Jv5iKTV27DuQb/xkjbJ9duJhWmfqTPtD62Op5f1VKNN0nrAecB3gfHAJOALwJOdjAv4J/D+yhNJzwVeBzzQsYisb0haDfgjsDmwA7A+8ClglqT/7mRsrRARARwE/LekbQAkbUSqQHwoIv7ViveRtEor1mOdM9x3KOmFwF+A2cAWwKbA2cCFknZof4TWq8ag/DgSmApsD6wL7ASMdcNpc+CmMX5PG4akKcAbgADe3u73i4iFwBzgjYXJbwRurTHtsnbH00t6qtEGvBggIk6PiKcj4vGIuDAi/gErTo1K+kY+4nCXpN0rL5a0aT7C+rCkOZI+nKevIelxSRPy889KWp4biUj6sqTjhojrVOA9ksbl5/uRKgL/Lrz39pL+JulRSQslfS9XtleSzybOk7RTfv5st4J8qvj7ks7PR4mvzBWRymt3kXRbPor8A0mXVs5Y1CPphZL+JOkhSQ9KOlXSBoX5kyX9RtIDeZnvDbU+A0mvlHRd/o7OBNbI0zeUdF7+LB/JjzfL8/aWdG3VemZI+m1+vIekm/M675X0ybzY+4DnA3tHxF0R8VRE/AE4DPhiIY/nSjoyr+MRST+TtEbhvd4m6fqco3+V9PLCvLmSPinpHzm3ziy+dojPYU9Jf5e0OOf00YV5a0j6Rc6pRyVdLWmipGNIP0DfUzqi/L2IuB04BjhB0nOA7wC/johLhol7ptLZuCV5u99RmHeg0pn6b0l6GHg2Nms9SZ+S9Ouqad+VdJyk9SWdkMvGe3OZOy4vM1z5NFfSEZL+ASyTtEp+fm/+3m+TtHNe/GjgbxHxmYh4OCKWRMR3gFOAr+X1Tcll7sGSFuSYZhTe7zmFvHpI0lmSxle99gBJ9+R4P9PGj9UaVKsskLR6LjdeVlhuI6X6wMb5+XDlYnXuDVXmjFM6W/agUv3k0Jwvq+T5dfcD4DXA2RGxIJK5EfHzqljqltGSPqxU73lYqR60aZ7+BUnfzY9XlbRM0tfz8zUlPZHL5aXAOOAGSXfU+0xb/LVZY94PXAGcBBxQmag69ZA8b6WuhKrRhVXS2sDvgU2Vfo+X5ty5jNxAyzn6SuDbVdN2yMsh6YOSblGqe1wgafPCe7xE0kU5N2+TtE+tjZS0rlLPiO8oeW7O5cWSrgJeWLX8t5XqHYslXSvpDXn685R6JD23sOyrleplqzbwebdPRPTMH7Ae8BBwMrA7sGHV/AOBp4APkwqXjwELAOX5lwI/ICXudqQzYTvneZcB78qPLwTuAHYvzHtHnZgGgA/l11SWv4qUrPOBaXnaq0ln31YBpgC3AIcX1hPAi4BdgXnA9tXz8uOTgIdJR9tWITUYz8jzJgCLgXfmeZ/In8eHhvlcXwS8FVgd2Chv73F53jjgBuBbwNr5s9ux07lQ5j9gNeBu4P8CqwLvzt/Dl4HnAu8C1iIdLf0l8Nv8utXzd/vSwrr+XsjLhcAb8uMNgVflx2cAJ9eIYxVgObBrfj4XuBGYTDpT/Rfgy3neq4BFwGvzd35AXn71wmuvIp2ZGJ/z96N53jRgfp3PYhqwLekA0suB+4G98ryPAP+bP4txeR9Zr7hfVa1rHHAl8Bvgnvz5DRf33jnm5wDvAZYBmxTKi+XA/8mf1Zqdzp1e/gM2yZ//BoX8XJS/998CP85lzMY51z6Sl6tbPhVy8/qc12sCW5HK0E3z/CnAC/Pj+4AP1IhtJ+DpnItTSGXu6TmebUm/FW/Jyx5OqiBtlmP6MXB64b0C+EmO5RWkniAvbfXn6b+m869mWQCcCBxTWO4Q4A/5cSPl4rO5N9T75HkfBW7OubMhqYdEAKvk+UPtB58llXsfzzmpqu2bS/0y+s3Ag3l7Vif1VrqsMG92fvwfpLrPlYV5NxTe49m6SAPbeiBweb3X+q+luT0n58WrSXWNiQxRD6n1/VR/R6S6ZmXZaVT9xud94Yb8eCqpXN6yatrjOY69cowvJZX7nwX+mpdbm1RefyDPe1XO1W2KcZDqTldVYsrzzgDOyut4GXBvVc69N79uFWAGqfxfI8/7HfCxwrLfAr7b8e+y0wG0ITlfmr/E+aQK17nAxEISziksu1ZOwueRCtWngXUL878KnJQff4l09H6V/MV+AphFaqQ8DkyoE88AqdH2XtKP/FbAP/O8ZxttNV53OOmoWXFnOTLvZNsOsyP9tDBvD+DW/Pj9pKPIlXnKO8OQjbYase0F/D0/3oFUYVml0999t/yRjjQ9e7AgT/trsbApTN8OeKTw/IfkCgSwDfAIKyoI95AaOutVreOPwKw6sdwH7J8fzyX/iBdy547C+36p6rW3AW8qvPa9hXlfB36UH0+jTqOtRjzHAd/Kjz+YP5eX11huoFbe5s8kgOmNxF3j9dcXXnsgcE+n86Wf/khHbD+cH7+NVIGdSGrYrFlYbj/gkjrreLZ8ys/nAh8sPH8RqaL9FmDVqtcuB3arsc6X5LyaxIqG10sK878OnJAf30I+2Jefb0KqDK1SeO1mhflXAft2+rP330rf+fXA9Jwndxam/wV4f37cSLn4wUbeJz/+E7kRlp+/JefLKsPtB6RG4yE5vidJvzEHFJadS/0y+gTg64V56+ScnUI6uPAEqXI7EziKVHdZh3T5yXcKrxuy4cXK5asbbe3P4x3zdzkhP7+V1FAbsh5S/f1Uf0cM32ibQqpTb5jfr1JvubcwrZK7vwcOKrz2OcC/SN1t3wP8uWrdPwY+X4jjRNIB508VlhmXt7tYTn+lepuq1vsI8Ir8+D3AXwrruo/CyZJO/fVa90gi4paIODAiNiO1rDclVQQr7issW7nWZZ283MMRsaSw7N2kH2lIZ+GmkVr5s4GLgDeRzo7NiYgHhwntN6SjUv+H1NVmEEkvVuoKd5+kxaTkmlC12OHAWRExe5j3uq/w+F95+yBt47zKjEjZOOwAEZI2lnRG7o6xGPhFIbbJwN0RsXy49dizNgXuzZ9/xd0AktaS9GNJd+fP+jJgg0IXmJOB/5IkUrfHsyKics3mu0gNrbuVur1WrsF5kFRxHCR3uZmQ51fMKzy+O8cKqfCckbsAPSrpUdJ3v2lh+Xp5V5ek1+buDA9Ieox0pLmSW6cAFwBnKHVD+/pwXRMionI9ReX/kHFLer9WdG16lFRmFPe74udh7Xcy6QAX+f8ppO9wVWBh4Xv6MelMw3DlU0Wx3JtDKkuPBhbl11byuOa+kqc9Q/pRX2mdrLyvnF2I9RZS5WViYfmm9xVrryHKgj8Ba+ayanPSgbSz88saKRcHlSHDlDmbVi1ffDzkfhDpkpDvR8TrgQ1I3cVPlPTSwjqGqhvcXZkREUtJvZYmRcTjwDWk+s4bSXWhvwKvz9MupY4GyldrvwOACwt11NPytLr1kFaIiLmk+uWOpLz5c571t8K0yvVsmwPfLuTJw6STCpPyvNdW7WP7k062VOxJOrjwo8K0jUgHO6rL6WcpXV5yi1J34UdJ1/tX8vMcYGulkdnfCjwWEVc1/0m0Vs812ooi4lZSK/xlwywK6YjDeEnrFqY9n3RUAFIhtRXwDuDSiLg5z9+TIQqtQiz/Ih1N+Bg1Gm2kI3a3AltGxHqko1mqWmZvYC9JhzewPbUsJHW7ANKoe8XnQ/gq6QjLy3Ns7y3ENg94vjxIQzMWApPy51/x/Px/BinPXps/68pFuwKIiCtI10K+AfgvCrkUEVdHxHTSj/hvSd0CIJ1p2z33PS96F+mI7BWFaZOrYlqQH88jHSnboPC3VkSc3tSWr+w00tnwyRGxPqnQrWzrUxHxhYjYmtQt522sGNAnaq2shrpx5wrYT4BDgedGxAako3XF76XR97HW+C3wcqVriN5G6t49j5SnEwrf4XoRsU1+zVDlU8Wg7zEiTouIHUkVgiBfr0baV/auEdc+pF4KxUFthtpXdq/KuTUi4l6slIYqCyLiGVJZuh+pzD2vcHC3kXIxGnmfvMig32gG59hw+8GKN0zX83+fdJBh6wY+ggWkfaES59qkM2uVnL2UdND5lcDV+fmupMswag4k0WD5am0kaU1S2fWmfELgPtIZrlcwdD0EUlfWtQrrKjaSqtX7nfwzqQ6zA6kOXZy2IytyZx7pDHNxP1ozIv6a511aNW+diPhY4X1+AvwB+F2hnvMAqedEdTld2Z43AEeQPp8Nc34+xor6xxOk/X5/0gHyWvX2MddTjTalixVnaMXADZNJBe0VQ78SImIeKam+qjQAwstJI9Kdmuf/C7iW1P2g0kj7K6k72rCNtuwoUreJuTXmrUu63myppJeQGnfVFgA7A4dJ+niD71l0PrCtpL1yI+sQBh+tqGddYCnwqKRJpJEHK64i7fyzJK2dP7vXjyC2fvI3UmFymNKF6e8k/fhB+qwfJ33W44HP13j9z4HvAcsj4nJ4drjn/SWtHxFPkXLp6bz8KaQjXr9UGghhVUm7krr7Hh0RjxXWfYikzfJ7HwWcmaf/BPhoPtqs/F3vWXWQY0g5N4p/ytv7cEQ8IWl7UqWosvxOkrZVOsu4mNTVobJN9wON3JtwqLjXJv3YPJDf7wM0doDH2iT/UP6K1Ji/KiLuiTQS2YXAsZLWUxro44WS3pRfNlT5tBJJW0l6s9LQ10+Q9rdKXn0B+A9Jx0gar3Rh+/8hHSw4ompV/6N0Znwb0vUWlX3lR8AxudJaGbhi+og/FBsLw5UFp5G6S+2fH1c0Wy4O9z5nAZ+QNElpMJ1nc264/UDS4UpDr6+Zf1cOIO0bf29g+08DPiBpu7xffIV03drcPP9S0j5wc0T8mxWXfdwVEfVGwXb52nl7kcq2rUlniLcjXUL05zyvXj0E0lgF2+ScWIOhB+K6H3iupPWrpl9GypsFEbE4T7s8T1ufVBeCVGYeqRWjP68vqXLw7DzgxZLel+suq0p6jQafQYZ0cOA24DxJa0bE06QebkfncnprCoOwkPaN5eTLe5RuGbRe1Tp/Tuom+nZSD46O66lGG7CEdEHwlZKWkRprN5LOXjRiP1I/3AWk7g+fj4iLCvMvJXVPuKrwfF0aHLI00qhO9W7s90lShXUJ6YfgzFoLRcQ9pIbbERpm1Mcar32QdBT566SuD1uTuj0Md0uEL5C6hT5Gavj9prDOp4H/JF0ncg+pcfCeZuLqN/lH752kwuAR0udV+UyPI53mf5CUv7XuYXIK6cev+sjP+4C5Sl3EPkruZpa7T76FdMTqSlID6JvAZyLi/1Wt4zRSxeDO/PflvI5rSAP4fC/HPCfH36hJpMpx8e+FpIujvyhpCfA5VpwdhHRA4Vc53ltI+1ul4Pw28G6lkaa+U+9Nh4o7ny0/lvTDcT/p4v2/NLFN1h4nk76LYn6/n3TB+s2k7/FXrOjGWLd8qmN10vXID5K6i21MOkBBpFFIdyQdiZ5LOiD1LtJgPdW5cSkpny4GvhERF+bp3yadPb4w5/UVpN8lK6nhyoKIuJJ05mFTUo+ZyvSmysUGypyfkMrff5AaW78jVSwrBxWG2g8ez+u+j5Tbh5AGqRr2Hq4RcTHwP8CvSTn/QmDfwiJ/Jf0uVeo6N5MOeNSt+7h8LYUDgJ/lg1/3Vf5I+bof9eshRMQ/gS+Seh/cTmps1ZR7tZ0O3KnUhbHSPfhSUvlafO31pFy6ttJzISLOJvV2OCPXX24kDSZIPqu9CykfF5Dy+2ukcrwYQwAHk+o55+SG5qGkLsD3kXrd/azwkgtI+/I/Sd0mn6CqK3Mu858BrqtzsmXMVUZNtD6kNDT6fNJAFJd0Oh5rjFKXh0Wk0SFvb+F655IG9/hjq9Zp1ixJzyd1FX9e4ehsaSjd8+gu0iAmvpbX2kbplkQ/iojNh13YzFpO0p+A0yLip52OBXrvTJsNQ9KukjbIXSAq180N233USuVjwNWtbLCZlUE+kPTfpNuUlK7BZtZOuWvjHrm72iRS9/izh3udmbWepNeQenHU7PnWCcM22iSdKGmRpBsL08Yr3eju9vx/w8K8I5Vu0Hib0nUzVi47kO6z8iCpW+NeEfG4pB9pxY0Ri38/Gnp15dZr+ZvPhn2Cxrv8mnUFpQvIF5NG6qp1LadZrxOpu+8jpO6Rt5C6jZvZGJJ0Mqlr6OExeFT5jhq2e6SkN5Iu8v55RLwsT/s6afCAWZJmkkZeOSJf6Hc66WLGTUkb/OJ83ZPZmHP+mpmZmVm3G/ZMW0RcRrpnQtF00sXi5P97FaafERFPRsRdpItyt8esQ5y/1q167SyxmZmZjdxI7601MQ8/S0QslLRxnj6JwddHzWfFzakHkXQwaaQX1lxzzVdPnjx5pWWeeeYZnvOcclx251jqa2c8//znPx+MiI1avNq25m/Zvp/R6qXtGettGWX+nkQa5evnhWkzgYsLZ4lnkkaS3Zo0utY25LPEkoY9SzxhwoSYMmXKCMPrXsuWLWPttatvW9j7mtnua6+9th1lb0sV87eM32kZY4L+iKvs+VuGsreMeeCYhsndiBj2jzQM/o2F549WzX8k//8+8N7C9BNIQ84Ouf5Xv/rVUcsll1xSc3onOJb62hkPcE00kKND/Y11/pbt+xmtXtqesd6W0eZvjdy9DdgkP94EuC0/PhI4srDcBcAOw62/Xtnb63opp5vRzHa3ouxt918xf8v4nZYxpoj+iKvs+VuGsreMeeCYhs7dkZ5pu1/SJpHOUmxCGn4c0pmJ4imzzUj3VTArE+evdauWniWeOHEiAwMD7Yu2pJYuXertNjOzrjLSRtu5pJv2zcr/zylMP03SN0lddLZkxY2omzb73sc4cOb5Tb1m7qw9R/p21j/GJH97wZSZ5zNj2+UN74fe/zpGNabVHGUqIo4HjgeYOnVqTJs2rY1hldPAwAC1tntKj//e1NvuXtPr36NZkfO9fwzbaJN0OjANmCBpPmko5lnAWZIOAu4B9gaIiJsknQXcDCwHDgmPvGcd5Py1HuOzxGZmZn1o2EZbROxXZ9bOdZY/BjhmNEGZtYrz13qMzxKbmZn1oZF2jzQzszbyWWIzMzOrcKPNzKyEfJbYzMxarXINXKPXq/sauPLojZsvmZmZmZmZ9Sg32szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSc6PNzMzMzMysxNxoMzMzMzMzKzE32szMzMzMzErMjTYzMzMzM7MSW6XTAZiZmZmZlZ2kucAS4GlgeURMlTQeOBOYAswF9omIRzoVo/Uun2kzMzMzM2vMThGxXURMzc9nAhdHxJbAxfm5Wcu50WZmZmZmNjLTgZPz45OBvToXivUyd480MzMzMxteABdKCuDHEXE8MDEiFgJExEJJG9d6oaSDgYMBJk6cyMDAQEsCmrHt8hG9buKajb22VXE2YunSpWP6fo0oU0w912ibMvP8ppafO2vPNkViZmZmZddsvQFcd+hjr4+IBblhdpGkWxt9YW7gHQ8wderUmDZtWksCOnAE+QupwXbs7AaaAbOXNb3uke4fAwMDtOpzaZUyxeTukWZmZjZmJM2VNFvS9ZKuydPGS7pI0u35/4adjtOsWkQsyP8XAWcD2wP3S9oEIP9f1LkIrZe50WZmZmZjzYM5WFeRtLakdSuPgV2AG4FzgQPyYgcA53QmQut1Pdc90szMzLrOdGBafnwyMAAc0algzGqYCJwtCVL9+bSI+IOkq4GzJB0E3APs3cEYrYe50WZmZmZjqeWDORQHCxjpwAzNaGRggjINYFDkuEYmIu4EXlFj+kPAzmMfkfWbUTXafJNB62bOXzOzjmj5YA7FwQJGOjBDM+buP23YZco0gEGR4zLrTq24ps390q2bOX+t63ggB+tmHszBzKx57RiIxDcZtG7m/LVu4QMO1nU8mIOZ2ciM9pq2tt5ksNEb/41Go/2ny9TXukyxQPniaUJb8reLP4+VzNh2eVP7Ydm3u5e+mxo8kIN1Aw/mYGY2AqNttLX1JoPfPfWcxm78NwqN9EuHcvW1LlMsUL54mtCW/O3iz2MlB848v/EbcNL4/tQpPfTdtPWAWa+r13hv9iBht312ZTho4cEczMxGZlQtomK/dEmD+qXnSoP7pVtpOX+ti7X1gFmvq9d4b3YAi7IfpKjWQwctzMz6zogbbbkv+nMiYkmhX/oXWdEvfRbul24l5fy1buYDDo2ZUqcRNmPb5WMywqCZmVmrjOZMm/ulWzdz/lpX8gEHMzOz/jPiRpv7pVs3c/62R70zG0OZO2vPNkTS03zAoUt5/+gdjXyXxTO6/h7NbLTaO8qHmZXKSCqNVi4+4GBmZtZ/2nGfNjMzMzMzM2sRN9rMzMzMzMxKrO+7RzbaXazSN9390s3MzMzMbCz1faPNzMzMzKzTfN25DcWNNjMzsxFwBcvMzMaKr2kzMzMzMzMrMTfazMzMzMzMSszdI83MzMxKpNmutx4kzaz3udFmZmZm1ka+/tHMRsuNNjMzMzMzawmfKW4PX9NmZmZmZmZWYj7T1qSRdHHwEQQzMzMzMxspN9rMzKz0fE2QmZn1M3ePNDMzMzMzKzGfaTOzjvIFy2ZmZmZDc6PNzMzMrIs1c/BrxrbLOXDm+T4AZtZl3D3SzMzMzMysxNxoMzMzMzMzKzF3jzTrYh5Rz8zMzKz3+UybmZmZmZlZibnRZmZmZmZmVmJutJmZmZmZmZWYr2kzM7NR8/32zMzM2sdn2szMzMzMzErMjTYzMzMzM7MSc/dIMzMbc75dhVl3cRdoa5dKbs3YdjkHNpBn/ZpbbrSZmZmZ9RkfOLFu1a8HENxoGwOtLhirj0T0SjL2O/+ANqZfC2szMzPrX21rtEnaDfg2MA74aUTMatd7WXPa3YgciTJVrJ271s1akb8+gGCd4LLXupnz19qtLY02SeOA7wNvBeYDV0s6NyJubsf7mbWKc9e6mfPXupVz17qZ87fcRnMgshUnJmoZycmKdp1p2x6YExF3Akg6A5gOOHmt7FqWuz5b0Z1G8r2V6Eyxy94e08pypFblw7lr7dJs7o6kcuz8tX7SrkbbJGBe4fl84LXFBSQdDBycny6VdFuN9UwAHmxLhE06rMSx6GsdDIbWfDZDbMPmo1nvCAybuzBs/pYmV1qhTLk/ElW51ZZt6ab8bbDs7WndntMjVWu7uyl3Ycj8Ld13WtY866W4uil/y1b2ljEP+immkeRuuxptqjEtBj2JOB44fsiVSNdExNRWBjZSjqW+ssUzSsPmLgydvz32efTU9vTSttTRkrK31/VBHtRU8u0eVdlbxm0rY0zguNqk68reMn7ejmlo7bq59nxgcuH5ZsCCNr2XWSs5d62bOX+tWzl3rZs5f63t2tVouxrYUtIWklYD9gXObdN7mbWSc9e6mfPXupVz17qZ89fari3dIyNiuaRDgQtIQ5+eGBE3jWBVpTmNjGMZStniGbEW5W7PfB5ZL21PL23LSlpY9va6ns6DIZR2u1uQu2XctjLGBI6r5bq07C3j5+2YhqCIlbqMm5mZmZmZWUm0q3ukmZmZmZmZtYAbbWZmZmZmZiVW2kabpN0k3SZpjqSZbX6vyZIukXSLpJskfSJPHy/pIkm35/8bFl5zZI7tNkm7tiGmcZL+Lum8EsSygaRfSbo1f0Y7dDKeMhvLvG0FSSdKWiTpxsK0rvxuy7gfW+dJmitptqTrJV2Tp9XNiW7WS/tzozpV5pa9vClTHaLwPq5LdEhZysEyllF1Yjpa0r3587pe0h5jGVNdEVG6P9JFnHcALwBWA24Atm7j+20CvCo/Xhf4J7A18HVgZp4+E/hafrx1jml1YIsc67gWx/TfwGnAefl5J2M5GfhQfrwasEEn4ynr31jnbYtifiPwKuDGwrSu/G7LuB/7r/N/wFxgQtW0mjnR7X+9tD83uL0dK3PLXt5QojpEISbXJTr0V5ZysIxlVJ2YjgY+WWPZjuZlWc+0bQ/MiYg7I+LfwBnA9Ha9WUQsjIjr8uMlwC2ku9tPJxUy5P975cfTgTMi4smIuAuYk2NuCUmbAXsCPy1M7lQs65ES+gSAiPh3RDzaqXhKbkzzthUi4jLg4arJXfndlm0/tlKrlxNdrZf25wZ1rMwtc3lTpjpEISbXJcpnzMvBMpZRdWKqp6N5WdZG2yRgXuH5/Dyt7SRNAV4JXAlMjIiFkApoYOMxiu844NPAM4VpnYrlBcADwM9yV4ufSlq7g/GUWa9se9d/tyXZj60cArhQ0rWSDs7T6uVEL+rl/C/FNpSwvDmO8tQhKlyX6Kwyl4NlzYFDJf0jd5+sdNnsaExlbbSpxrS235tA0jrAr4HDI2LxUIvWmNaS+CS9DVgUEdc2+pJ2xZKtQjpt/MOIeCWwjHT6ulPxlFmvb3tXbF8Z9mMrlddHxKuA3YFDJL2x0wGVRC/kf8e3oWzlTQnrEBWuS3RWN5aDncyBHwIvBLYDFgLHliCm0jba5gOTC883Axa08w0lrUoqeE+NiN/kyfdL2iTP3wRYNAbxvR54u6S5pK4eb5b0iw7FUln//Ii4Mj//Fang7VQ8ZdYr2961322J9mMriYhYkP8vAs4mdWWplxO9qJfzv6PbUNLypmx1iArXJTqo5OVg6XIgIu6PiKcj4hngJ6zoAtnRvCxro+1qYEtJW0haDdgXOLddbyZJpH7Wt0TENwuzzgUOyI8PAM4pTN9X0uqStgC2BK5qRSwRcWREbBYRU0jb/aeIeG8nYsnx3AfMk7RVnrQzcHOn4im5Mc3bNurK77ZM+7GVg6S1Ja1beQzsAtxI/ZzoRb2c/x0rc8ta3pStDlGIy3WJDumCcrB0OVBpRGbvIH1eHY0JKOfokZFGaNmDNBrTHcBn2vxeO5JOb/4DuD7/7QE8F7gYuD3/H194zWdybLcBu7cprmmsGPmpY7GQTg9fkz+f3wIbdvqzKevfWOZti+I9nXTq/ynSEaSDuvW7Let+7L+O5sQLSCN93QDcVNknh8qJbv7rpf25iW3uSJnbDeVNWeoQhfdxXaIDf2UqB8tYRtWJ6RRgds7Vc4FNypCXygGYmZmZmZlZCZW1e6SZmZmZmZnhRpuZmZmZmVmpudFmZmZmZmZWYm60mZmZmZmZlZgbbWZmZmZmZiXmRpuZmZmZmVmJudFmZmZmZmZWYm601SHpJElfbvWy7TRWcUgakPShdr+PrUzSGyTdVoI4SpHz1v0kLZX0ggaXDUkvatH7TsnrW6XGvOfnuMbl57+XdEAr3tfMzGwk+rLRlhsdj0havQ3rniZpfuH5JrliMLEw7TN1pv2h1fFYb4mIP0fEVqNdT4srv9MkPZMruUslzZd0lqTXtGL9w7y3JH1K0u2SHpd0j6RZ7di3bWQkzZV0v6S1C9M+JGkAICLWiYg7W/A+B0q6vGraZpJ+LelBSY9Jmi3pwOHWFRH35Liezs93j4iTRxujmZnZSPVdo03SFOANQABvb/f7RcRCYA7wxsLkNwK31ph2WbvjsXKrddS/SyyIiHWAdYHXkfL7z5J2bvP7fgc4GHh/fu/dgTcDZ7X5fa05qwCf6MD7ngLMAzYHnkvKk/s7EIeZmdmo9F2jjfSjfQVwEvBsdxdJr5R0naQlks4E1ijMq3UEd6UzFflI8u+BTQtnHTYlNcbemJcZB7wS+HbVtB3yckj6oKRb8tnACyRtXniPl0i6SNLDkm6TtE+tjZS0rqRLJH0nn42o+7rc1e37ks7P23+lpBcW5r9V0q35SPX3ADX8aRvw7NmGIyXdnL/Xn0lao3JmVtIRku4DfiZpdUnHSVqQ/46rnDmqcSZ303wm4QFJd0k6rDBvnKSjJN2Rv9drJU2WVDk4cEPO0ffk5d8m6XpJj0r6q6SXF9ZVd/8oimR+RHwO+CnwtcI6vi1pnqTFOZY35OnPk/QvSc8tLPvqvE2rSnqRpEtz/j2Y3x9JWwIfB/aPiL9FxPKIuAl4F7CbpDfn5U6S9KOc/0vyuhrap4bbN6xh/w/4pKQNqmcUy1JJz5X0vzlHrpb0ZVWVvcBblM6sPpK/G0l6KfAjYIec04/mZV8DnBQRy3J+/D0ifl8rQEnvyvvpy1TVdVKFLuHKvweSvpFjuEvS7oX1bCHpspwvf8wx/mK4D0jSLyXdl/P8MknbFOatKelYSXfn+ZdLWnO4dZqZWe/o10bbqflvV0kTJa0G/JZ0VHY88EtSxa8pEbGMdKR/Qe5as05ELKDQaCM12G4FLq6atipwlaS9gKOAdwIbAX8GTodnG4UXAacBGwP7AT8o/rjn5Z6b1/+XiDgMWKuB1+0HfAHYkHRm8Ji8rgnAr4HPAhOAO4DXN/vZGAD7A7sCLwReTPpMAZ5HyrvNSWeNPkM6W7Ud8Apg+8Kyz5L0HOB/gRuAScDOwOGSds2L/Dfpe90DWA/4IPCviKjk3Styjp4p6VXAicBHSGckfgycq9SAHOn+8RvgVVrRLe7qvE3jSbn4S0lrRMR9wABQPADxXuCMiHgK+BJwISk3NwO+m5fZGZgfEVcV3zQi5pEOzLy1MHn/vJ4JwPWk/b/RfarmvmFNuYb0HX9ymOW+Dywj7RMHUDiwVvA2UmPsFaSc2TUibgE+Cvwt5/QGedkrgO9L2lfS8+u9qaQPkA4wvCUibmxge14L3EbKp68DJ0iqHMw6DbiKtB8dDbyvgfVBOuC3JSkPryPnaPYN4NXAf5D2n08DzzS4XjMz6wF91WiTtCOpYnxWRFxLaoD8F6mCvCpwXEQ8FRG/IlUwW+VS4GWSNiR1zfxzRNwOTChMuyIi/k2qNH81Im6JiOXAV4Dt8pmBtwFzI+Jn+ajxdaQG1bsL77Vpfr9fRkSlot/I634TEVfl9zyVVLmGVOG/OSJ+lSvQxwH3tfCz6Sffi4h5EfEwqeK/X57+DPD5iHgyIh4nNTC+GBGLIuIBUoOhVsXvNcBGEfHFiPh3vi7oJ8C+ef6HgM9GxG35DNgNEfFQndg+DPw4Iq6MiKfz9TtPkvaNke4fC0hnZTcAiIhfRMRDOQePBVYHKtfnnUxqqFXOPO9HaiQCPEXabzeNiCcionLmZQKwsM57L8zzK86PiMsi4klSo3gHSZMZ3b5hzfkc8H8kbVRrZv7e30XaF/4VETeT8qLarIh4NCLuAS5h6O9jb9KBr/8B7lI6k1x9reXhwKeAaRExp8FtuTsifpKveTsZ2ASYmBuGrwE+l/fJy4FzG1lhRJwYEUtyjh4NvELS+vngzAeBT0TEvXn//GtezszM+kRfNdpIR20vjIgH8/PT8rRNgXsjIgrL3t2qN42IucB8YEfS2bU/51l/K0yrdFnbHPi2Uhe1R4GHSRXfSXneayvz8vz9SUelK/YE1iR1FaKwzuFeV2yI/QtYJz/elHRNSGVbovjcmlL83O4mfbYAD0TEE4V5mzI4/4rLFm1O6opb/F6PAioD3EwmHZhoxObAjKp1Tc7vO9L9YxLp2tFHASTNUOr2+1he//qsaFidA2ytNIrgW4HHCmfQPk3aB66SdJOkD+bpD5Iqy7VskudXFHN4KWm/2pTR7RvWhHwG6zxgZp1FNiJd+1bcT2qVNQ1/HxHxSETMjIhtSPvF9cBvC2fFIDXYvh8R82uto45nY4iIf+WH65By6uHCtHrbMIhSV+ZZSl2ZFwNz86wJ+W8NGt+XzcysB3XroAdNy/3/9wHGKV07BOlI/wako/KTJKlQMX0+K34kl5G6GFbWVazQVYs60/9MapztwIouP5VpOwLfy9PmAcdExKnVK8hn2y6NiLdWzyv4Cakb1+8k7Za7bM5r4HX1LCRV3isxqPjcmlL83J5POhMFK+fMAlJj4qYayxbNA+6KiC3rvN88UlfMRrp7VfJupa5/kt7E0PtHPe8ArouIZUrXrx1B6tJ4U0Q8I+kR8vWREfGEpLNIDaaXsOIsG7n75IdzLDsCf1S6Lu9PpK6M2xe7SOYzaK8jdYesKObwOqQuZgsY3b5hzfs8qevfsTXmPQAsJ3WB/Wee1kxZU6/sTTMjHpT0DVL5O74waxfgD5Lui4hfN/F+tSwExktaq9Bwa2Qb/guYDryF1GBbH6jsHw8CT5D25RtGGZ+ZmXWpfjrTthfwNLA1qTvNdsBLSQ2nvUiVhcMkrSLpnaTriCpuALaRtJ2kNUhdV+q5H3iupPWrpl9Gup5uQUQsztMuz9PWJ511g3SG7MjKNTW5e8zeed55wIslvU9pgIZVJb1G6SL8okNJ11uclxurjb6ulvPztr9T6aL8wxh8FsIad4jSEOTjSWfEzqyz3OnAZyVtlK8p/BxQayCDq4DFSoOYrJmP1r+s0P3rp8CXJG2p5OVaMdjH/UDx3lg/AT4q6bV52bUl7SlpXVJuDrV/PCu/dpKkz5O6Zx6VZ62b1/EAsIqkz5Gusyv6OXAgaVTXZ7dX0t6SNstPHyFVzp+OiH+S9pdTJb0ub/82pO6Nf4yIPxbWvYekHZWuz/sScGW+9m00+4Y1KXc/PJNUjlTPe5p0HeTRktaS9BJS+dio+4HN8ncMgKSv5X1ilZzLHwPmVHUTvgnYjXTt26hGFI6Iu0nX7x0taTVJOwD/2cBL1yV1R36IdIDwK4V1PkO63vSbSgMPjZO0g3xbCzOzvtJPjbYDgJ9Fuv/OfZU/0hmu/UgDfxxIqhS+h1R5ACBXDr8I/BG4ndTYqikibiVVuu/M3a0q3douJV1gXnzt9aSujNdWjspGxNmkC+LPyN1kbiQNbkJELCEdFd6XdJbgvrzsoB/vfDbkYNJZhHNI1wQN+7o62/Mg6bqQWaQKxZbAX4Z7ndV0GmlAjTvzX72bU3+ZVPH7BzCbdGZipWVzJfc/SQcg7iIdkf8p6SAA8P/bu98Yua7yjuO/Hw4gMKlKalhCEnUDsqCAwYm2ppUltAGVugTVIBUEMmnSBhmhuArSVq3hDYi+MVITiloa1fnTuCIhRIAbq0H5o4RVVV6ktoNbx3ECllnAsRM3QJs4EqBNHl6cs2Vsz252Zu+fM3O/H8mamTMze5977zPjee499xxdrzT0/X2SnpF0s1K+SenAw66cox+OiH1KZ7P+QekzcETp86BI11ou+vnIXm/7lKRTSte7rVO6Rui+/Py9SgMtfE+pa+XPdUa3sYj4jtL1fQ/nLsULflfSQ/nv71G6tucH+blteZ2/kpd9j9KAF2cOlHK70lmenyoN6LAlL3NZnylU6vOSVi/y3Dal/H1S6WzrV5WKmeV4UKkAe9L2QtfYV0rardRF96jSGeyzCrOI+C+l6xtvdM9IkEPaotSj4idKn9uv6cXX4V+UPhdPSHpUaQCVXn+p9F2wVymHv6Bu/f8NAJ3n0y9TAVAH23OSPn7G2Z9h/s67Jd0UEW940RePINsPSro9Im6q8G/eqjTK5FkjcKJstr8g6XUR0W8UyZHgNEXFYxHx2bZjAQCMLo7UAaPlbUpn1cZO7tZ5qRbvNoox5zRn3ttzN9sNkq5WOlM2MnL32jfafontTUrXqv1ry2EBAEZcZwYiAUad7S8pde0a2bMOi7G9S+na0mtzl0V007lKXSJfL+mk0oAld7Ua0eBep9R9+LeURg3+ZER81/YWpfkPz/TDPLolAACLonskAAAAABSM7pEAAAAAULAiukeuWbMmJicnW1n2c889p9WrFxvIrD3Elezfv//piHhNYwscQpv5W4VSc61OTa1z6fm7WO6WmhPENZiVxFV67gJA1xRRtE1OTmrfvn2tLHt2dlbT09OtLHspxJXY/mFjCxtSm/lbhVJzrU5NrXPp+btY7paaE8Q1mJXEVXruAkDX0D0SAAAAAApG0QYAAAAABSuie2SVJrffPdDrb91U3nUIQF36fT5m1s3rqkU+N3M7Lq87JBTo4BP/t2hOLIZcAQCgPpxpAwAAAICCUbQBAAAAQMEo2gAAAACgYBRtAAAAAFCwsRuIBEB1Bh3Yh8EoAAAAqseZNgAAAAAoGEUbAAAAABSMog0AAAAACtb5a9oGnUSWa3YAAAAANIkzbQAAAABQMIo2AAAAACgYRRsAAAAAFIyiDQAAAAAKRtEGAAAAAAWjaAMAAACAgnV+yH90l+05Sc9Kel7SfERM2T5P0tckTUqak/ThiPhZWzECAAAAnGlD110WEesjYio/3i7pgYhYK+mB/BgAAABoDWfagNNtljSd7++SNCvpr9sKZtRMDjBR/QImrAcAAFgaRRu6LCTdZzsk/VNE7JQ0EREnJCkiTth+bb832t4qaaskTUxMaHZ2tqGQV2Zm3fxZbROv6N/elDa23alTp0ZmnwEAAFC0DYgzCWNlY0Qcz4XZ/bYfW+4bc4G3U5KmpqZienq6phCrdVWf/J1ZN6/rDrb3VTC3ZbrxZc7OzmpU9hkAAADXtKGzIuJ4vj0pabekDZKesn2+JOXbk+1FCAAAAFC0oaNsr7Z97sJ9Se+V9IikPZKuzC+7UtJd7UQIAAAAJHSPRFdNSNptW0qfg9sj4h7beyXdaftqST+S9KEWYwQAAAAo2tBNEXFU0jv6tP9E0nuajwhYvhLnGBz0el+u9QUAYPnoHgkAo4k5BgEA6IgVFW2252wftH3A9r7cdp7t+21/P9++uppQAQBL2Kw0t6Dy7QfaCwUAAFSpiu6Rl0XE0z2PF4727rC9PT9mcmIAqE6tcww2MXffMPPklTq/HnEBAOpWxzVtmyVN5/u7JM2Kog0AqlTrHIN/f9tdtc/dN8z8fKXOr0dcAIC6rfR/5VqP9g5j0KPDHFEeTKlxAV3SO8eg7dPmGMzfu8wxCADAGFlp0Vbr0d5hXDXgCGYz6+Y5ojyAUuMCuiLPK/iSiHi2Z47Bz+vXcwzuEHMMAgAwVlZUrXC0FwAaxxyDAAB0zNBFG0d7AaB5zDEIAED3rORMG0d7AQAAAKBmQxdtHO0FAAAAgPqtaHJtAAAAAEC9KNoAAAAAoGAUbQAAAABQMIo2AAAAACgYRRsAAAAAFIyiDQAAAAAKRtEGAAAAAAWjaAMAAACAglG0AQAAAEDBKNrQSbYvsv1t24dtH7J9bW7/nO0nbB/I/97XdqwAAADotnPaDgBoybykmYh42Pa5kvbbvj8/98WI+NsWYwMAAAD+H0UbOikiTkg6ke8/a/uwpAvajQoAAAA4G0VbAya33z3Q6+d2XF5TJOjH9qSkSyQ9JGmjpG22/1TSPqWzcT/r856tkrZK0sTEhGZnZxuLdyVm1s2f1Tbxiv7tTWlj2506dWpk9hkAAABFGzrN9qskfUPSpyLiGds3SPobSZFvr5P052e+LyJ2StopSVNTUzE9Pd1YzL0GPSDQ7yM/s25e1x1s76tgbst048ucnZ1VW/sMAABgUAxEgs6y/VKlgu22iPimJEXEUxHxfES8IOlGSRvajBEAAACgaEMn2bakmyUdjojre9rP73nZByU90nRsAAAAQC+6R6KrNkq6QtJB2wdy22ckfdT2eqXukXOSPtFGcAAAAMACijZ0UkT8hyT3eepbTccCAAAALIXukQAAAABQMIo2AAAAACgYRRsAAAAAFIxr2gAAjRt0jsG5HZfXFAkAAOXjTBsAAAAAFIyiDQAAAAAKRtEGAAAAAAWjaAMAAACAgjEQCYBWMSAFAADA0jjTBgAAAAAFK/pM26BH4AEAAABg3BRdtAFdwkEKAAAA9EP3SAAAAAAoGGfaAADFm9x+t2bWzeuqAc5IM2gNAGBcULQVaJgfJ4PghwxGGaNNAgCArqF7JAAAAAAUjDNtQE0YWAQAAABV4EwbAAAAABSstqLN9ibbj9s+Ynt7XcsBqkbuYpSRvwAAjJ9aukfaXiXpy5L+QNIxSXtt74mIR+tYHgazkm57dQ2QUspgEeTu+OmX70vlcSm5OAzy93TjMGhN3d/XJa4zAOBsdV3TtkHSkYg4Kkm275C0WVInfzhgpJC7HTfMj+SCfviSvw1ayJXlHswqKE8AACPGEVH9H7X/RNKmiPh4fnyFpHdGxLae12yVtDU/fJOkxysPZHnWSHq6pWUvhbiS346I1zS1sOXkbm4vJX+rUGqu1ampdS4uf5eZu6XmBHENZiVxNZq7AICl1XWmzX3aTqsOI2KnpJ01LX/ZbO+LiKm24zgTcbXmRXNXKid/q9CBfXqWMV7nSr57S90+xDWYUuMCAAyuroFIjkm6qOfxhZKO17QsoErkLkYZ+QsAwBiqq2jbK2mt7Yttv0zSRyTtqWlZQJXIXYwy8hcAgDFUS/fIiJi3vU3SvZJWSbolIg7VsawKlNrFjbhaMGK5W5Wx3qeLGMt1rjB/S90+xDWYUuMCAAyoloFIAAAAAADVqG1ybQAAAADAylG0AQAAAEDBOle02Z6zfdD2Adv7ctt5tu+3/f18++oG4rjF9knbj/S0LRqH7U/bPmL7cdt/2HBcn7P9RN5mB2y/r+m4MLxSc60uti+y/W3bh20fsn1tbh/bda6S7U15Oxyxvb3B5Ra932yvsv1d2/9WSly2f9P2120/lrfb75cQFwCgep0r2rLLImJ9z/w12yU9EBFrJT2QH9ftVkmbzmjrG4fttyiNAvfW/J5/tL2qwbgk6Yt5m62PiG+1EBeGd6vKzLW6zEuaiYjfkfR7kq7J6zXO61yJvN5flvRHkt4i6aN5+zSh9P12raTDPY9LiOtLku6JiDdLekeOr4S4AAAV62rRdqbNknbl+7skfaDuBUbEv0v66TLj2Czpjoj4RUT8QNIRSRsajGsxjcWF4ZWaa3WJiBMR8XC+/6zSD9kLNMbrXKENko5ExNGI+KWkO5S2T+1K3m+2L5R0uaSbeppbjcv2b0h6l6SbJSkifhkR/9t2XACAenSxaAtJ99neb3trbpuIiBNS+uEg6bUtxbZYHBdI+nHP647ltiZts/3fuavdQnebEuLCcErOtcrYnpR0iaSH1JF1XqEitkWB++3vJP2VpBd62tqO6w2S/kfSP+dumzfZXl1AXACAGnSxaNsYEZcqdf+5xva72g5oGdynrcm5Gm6Q9EZJ6yWdkHRdbm87LlRvbPap7VdJ+oakT0XEM0u9tE/bSK5zBVrfFqXtN9vvl3QyIvYv9y192urYhudIulTSDRFxiaTntHTX/tb3LQBgeJ0r2iLieL49KWm3UveQp2yfL0n59mRL4S0WxzFJF/W87kJJx5sKKiKeiojnI+IFSTfq111qWo0LK1JkrlXF9kuVfvjfFhHfzM1jvc4VaXVbFLrfNkr6Y9tzSt1F3237KwXEdUzSsYh4KD/+ulIR13ZcAIAadKpos73a9rkL9yW9V9IjkvZIujK/7EpJd7UT4aJx7JH0Edsvt32xpLWS/rOpoBZ+AGQfVNpmrceFFSky16pg20rX+RyOiOt7nhrbda7QXklrbV9s+2VKA1fsaWLBpe63iPh0RFwYEZNK2+PBiPhYAXE9KenHtt+Um94j6dG24wIA1OOctgNo2ISk3em3gc6RdHtE3GN7r6Q7bV8t6UeSPlR3ILa/Kmla0hrbxyR9VtKOfnFExCHbdyr9hzwv6ZqIeL7BuKZtr1fqSjMn6RNNx4XhlZprNdoo6QpJB20fyG2f0XivcyUiYt72Nkn3Slol6ZaIONTQ4kdtv5UQ119Iui0X2Ecl/ZnSwdi24wIAVMwRdGkHAAAAgFJ1qnskAAAAAIwaijYAAAAAKBhFGwAAAAAUjKINAAAAAApG0QYAAAAABaNoAwAAAICCUbQBAAAAQMF+BTsjbWl3VcyYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ski_data.hist(figsize=(15, 10))\n", + "plt.subplots_adjust(hspace=0.5);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These distributions are much better. There are clearly some skewed distributions, so keep an eye on `fastQuads`, `fastSixes`, and perhaps `trams`. These lack much variance away from 0 and may have a small number of relatively extreme values. Models failing to rate a feature as important when domain knowledge tells you it should be is an issue to look out for, as is a model being overly influenced by some extreme values. If you build a good machine learning pipeline, hopefully it will be robust to such issues, but you may also wish to consider nonlinear transformations of features." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.10 Population data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Population and area data for the US states can be obtained from [wikipedia](https://simple.wikipedia.org/wiki/List_of_U.S._states). Listen, you should have a healthy concern about using data you \"found on the Internet\". Make sure it comes from a reputable source. This table of data is useful because it allows you to easily pull and incorporate an external data set. It also allows you to proceed with an analysis that includes state sizes and populations for your 'first cut' model. Be explicit about your source (we documented it here in this workflow) and ensure it is open to inspection. All steps are subject to review, and it may be that a client has a specific source of data they trust that you should use to rerun the analysis." + ] + }, + { + "cell_type": "code", + "execution_count": 149, + "metadata": {}, + "outputs": [], + "source": [ + "#Code task 29#\n", + "#Use pandas' `read_html` method to read the table from the URL below\n", + "states_url = 'https://simple.wikipedia.org/w/index.php?title=List_of_U.S._states&oldid=7168473'\n", + "usa_states = pd.read_html(states_url)" + ] + }, + { + "cell_type": "code", + "execution_count": 150, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "list" + ] + }, + "execution_count": 150, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(usa_states)" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 151, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(usa_states)" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Name & postal abbs. [1]CitiesEstablished[A]Population [B][3]Total area[4]Land area[4]Water area[4]Number of Reps.
Name & postal abbs. [1]Name & postal abbs. [1].1CapitalLargest[5]Established[A]Population [B][3]mi2km2mi2km2mi2km2Number of Reps.
0AlabamaALMontgomeryBirminghamDec 14, 181949031855242013576750645131171177545977
1AlaskaAKJuneauAnchorageJan 3, 195973154566538417233375706411477953947432453841
2ArizonaAZPhoenixPhoenixFeb 14, 1912727871711399029523411359429420739610269
3ArkansasARLittle RockLittle RockJun 15, 183630178045317913773252035134771114329614
4CaliforniaCASacramentoLos AngelesSep 9, 18503951222316369542396715577940346679162050153
\n", + "
" + ], + "text/plain": [ + " Name & postal abbs. [1] Cities \\\n", + " Name & postal abbs. [1] Name & postal abbs. [1].1 Capital Largest[5] \n", + "0 Alabama AL Montgomery Birmingham \n", + "1 Alaska AK Juneau Anchorage \n", + "2 Arizona AZ Phoenix Phoenix \n", + "3 Arkansas AR Little Rock Little Rock \n", + "4 California CA Sacramento Los Angeles \n", + "\n", + " Established[A] Population [B][3] Total area[4] Land area[4] \\\n", + " Established[A] Population [B][3] mi2 km2 mi2 \n", + "0 Dec 14, 1819 4903185 52420 135767 50645 \n", + "1 Jan 3, 1959 731545 665384 1723337 570641 \n", + "2 Feb 14, 1912 7278717 113990 295234 113594 \n", + "3 Jun 15, 1836 3017804 53179 137732 52035 \n", + "4 Sep 9, 1850 39512223 163695 423967 155779 \n", + "\n", + " Water area[4] Number of Reps. \n", + " km2 mi2 km2 Number of Reps. \n", + "0 131171 1775 4597 7 \n", + "1 1477953 94743 245384 1 \n", + "2 294207 396 1026 9 \n", + "3 134771 1143 2961 4 \n", + "4 403466 7916 20501 53 " + ] + }, + "execution_count": 152, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "usa_states = usa_states[0]\n", + "usa_states.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note, in even the last year, the capability of `pd.read_html()` has improved. The merged cells you see in the web table are now handled much more conveniently, with 'Phoenix' now being duplicated so the subsequent columns remain aligned. But check this anyway. If you extract the established date column, you should just get dates. Recall previously you used the `.loc` accessor, because you were using labels. Now you want to refer to a column by its index position and so use `.iloc`. For a discussion on the difference use cases of `.loc` and `.iloc` refer to the [pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html)." + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [], + "source": [ + "#Code task 30#\n", + "#Use the iloc accessor to get the pandas Series for column number 4 from `usa_states`\n", + "#It should be a column of dates\n", + "established = usa_states.iloc[:, 4]" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 Dec 14, 1819\n", + "1 Jan 3, 1959\n", + "2 Feb 14, 1912\n", + "3 Jun 15, 1836\n", + "4 Sep 9, 1850\n", + "5 Aug 1, 1876\n", + "6 Jan 9, 1788\n", + "7 Dec 7, 1787\n", + "8 Mar 3, 1845\n", + "9 Jan 2, 1788\n", + "10 Aug 21, 1959\n", + "11 Jul 3, 1890\n", + "12 Dec 3, 1818\n", + "13 Dec 11, 1816\n", + "14 Dec 28, 1846\n", + "15 Jan 29, 1861\n", + "16 Jun 1, 1792\n", + "17 Apr 30, 1812\n", + "18 Mar 15, 1820\n", + "19 Apr 28, 1788\n", + "20 Feb 6, 1788\n", + "21 Jan 26, 1837\n", + "22 May 11, 1858\n", + "23 Dec 10, 1817\n", + "24 Aug 10, 1821\n", + "25 Nov 8, 1889\n", + "26 Mar 1, 1867\n", + "27 Oct 31, 1864\n", + "28 Jun 21, 1788\n", + "29 Dec 18, 1787\n", + "30 Jan 6, 1912\n", + "31 Jul 26, 1788\n", + "32 Nov 21, 1789\n", + "33 Nov 2, 1889\n", + "34 Mar 1, 1803\n", + "35 Nov 16, 1907\n", + "36 Feb 14, 1859\n", + "37 Dec 12, 1787\n", + "38 May 29, 1790\n", + "39 May 23, 1788\n", + "40 Nov 2, 1889\n", + "41 Jun 1, 1796\n", + "42 Dec 29, 1845\n", + "43 Jan 4, 1896\n", + "44 Mar 4, 1791\n", + "45 Jun 25, 1788\n", + "46 Nov 11, 1889\n", + "47 Jun 20, 1863\n", + "48 May 29, 1848\n", + "49 Jul 10, 1890\n", + "Name: (Established[A], Established[A]), dtype: object" + ] + }, + "execution_count": 155, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "established" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Extract the state name, population, and total area (square miles) columns." + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statestate_populationstate_area_sg_miles
0Alabama490318552420
1Alaska731545665384
2Arizona7278717113990
3Arkansas301780453179
4California39512223163695
\n", + "
" + ], + "text/plain": [ + " state state_population state_area_sg_miles\n", + "0 Alabama 4903185 52420\n", + "1 Alaska 731545 665384\n", + "2 Arizona 7278717 113990\n", + "3 Arkansas 3017804 53179\n", + "4 California 39512223 163695" + ] + }, + "execution_count": 163, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 31#\n", + "#Now use the iloc accessor again to extract columns 0, 5, and 6 and the dataframe's `copy()` method\n", + "#Set the names of these extracted columns to 'state', 'state_population', and 'state_area_sq_miles',\n", + "#respectively.\n", + "usa_states_sub = usa_states.iloc[:, [0,5,6]].copy()\n", + "usa_states_sub.columns = ['state','state_population','state_area_sg_miles']\n", + "usa_states_sub.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Do you have all the ski data states accounted for?" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'Massachusetts', 'Pennsylvania', 'Rhode Island', 'Virginia'}" + ] + }, + "execution_count": 164, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 32#\n", + "#Find the states in `state_summary` that are not in `usa_states_sub`\n", + "#Hint: set(list1) - set(list2) is an easy way to get items in list1 that are not in list2\n", + "missing_states = set(state_summary.state) - set(usa_states_sub.state)\n", + "missing_states" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "No?? " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you look at the table on the web, you can perhaps start to guess what the problem is. You can confirm your suspicion by pulling out state names that _contain_ 'Massachusetts', 'Pennsylvania', or 'Virginia' from usa_states_sub:" + ] + }, + { + "cell_type": "code", + "execution_count": 165, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "20 Massachusetts[C]\n", + "37 Pennsylvania[C]\n", + "38 Rhode Island[D]\n", + "45 Virginia[C]\n", + "47 West Virginia\n", + "Name: state, dtype: object" + ] + }, + "execution_count": 165, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "usa_states_sub.state[usa_states_sub.state.str.contains('Massachusetts|Pennsylvania|Rhode Island|Virginia')]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Delete square brackets and their contents and try again:" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "20 Massachusetts\n", + "37 Pennsylvania\n", + "38 Rhode Island\n", + "45 Virginia\n", + "47 West Virginia\n", + "Name: state, dtype: object" + ] + }, + "execution_count": 166, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 33#\n", + "#Use pandas' Series' `replace()` method to replace anything within square brackets (including the brackets)\n", + "#with the empty string. Do this inplace, so you need to specify the arguments:\n", + "#to_replace='\\[.*\\]' #literal square bracket followed by anything or nothing followed by literal closing bracket\n", + "#value='' #empty string as replacement\n", + "#regex=True #we used a regex in our `to_replace` argument\n", + "#inplace=True #Do this \"in place\"\n", + "usa_states_sub.state.replace(to_replace='\\[.*\\]', value='', regex=True, inplace=True)\n", + "usa_states_sub.state[usa_states_sub.state.str.contains('Massachusetts|Pennsylvania|Rhode Island|Virginia')]" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "set()" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 34#\n", + "#And now verify none of our states are missing by checking that there are no states in\n", + "#state_summary that are not in usa_states_sub (as earlier using `set()`)\n", + "missing_states = set(state_summary.state) - set(usa_states_sub.state)\n", + "missing_states" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Better! You have an empty set for missing states now. You can confidently add the population and state area columns to the ski resort data." + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
stateresorts_per_statestate_total_skiable_area_acstate_total_days_openstate_total_terrain_parksstate_total_nightskiing_acstate_populationstate_area_sg_miles
0Alaska32280.0345.04.0580.0731545665384
1Arizona21577.0237.06.080.07278717113990
2California2125948.02738.081.0587.039512223163695
3Colorado2243682.03258.074.0428.05758736104094
4Connecticut5358.0353.010.0256.035652785543
\n", + "
" + ], + "text/plain": [ + " state resorts_per_state state_total_skiable_area_ac \\\n", + "0 Alaska 3 2280.0 \n", + "1 Arizona 2 1577.0 \n", + "2 California 21 25948.0 \n", + "3 Colorado 22 43682.0 \n", + "4 Connecticut 5 358.0 \n", + "\n", + " state_total_days_open state_total_terrain_parks \\\n", + "0 345.0 4.0 \n", + "1 237.0 6.0 \n", + "2 2738.0 81.0 \n", + "3 3258.0 74.0 \n", + "4 353.0 10.0 \n", + "\n", + " state_total_nightskiing_ac state_population state_area_sg_miles \n", + "0 580.0 731545 665384 \n", + "1 80.0 7278717 113990 \n", + "2 587.0 39512223 163695 \n", + "3 428.0 5758736 104094 \n", + "4 256.0 3565278 5543 " + ] + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 35#\n", + "#Use 'state_summary's `merge()` method to combine our new data in 'usa_states_sub'\n", + "#specify the arguments how='left' and on='state'\n", + "state_summary = state_summary.merge(usa_states_sub, how='left', on='state')\n", + "state_summary.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Having created this data frame of summary statistics for various states, it would seem obvious to join this with the ski resort data to augment it with this additional data. You will do this, but not now. In the next notebook you will be exploring the data, including the relationships between the states. For that you want a separate row for each state, as you have here, and joining the data this soon means you'd need to separate and eliminate redundances in the state data when you wanted it." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.11 Target Feature" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, what will your target be when modelling ticket price? What relationship is there between weekday and weekend prices?" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAyt0lEQVR4nO3deZxcVZn/8c9T1UtCFghJCJCkTbAJTkAI0AOEmAyLigsQHZBhm6CiqD9B3CaAjjijowMyroM6ExEFZcBAlGRwQwGHLUQ60AkEhbQGSSeQpUkwDUmlu+v5/XFvVaqqb1VXd9fSy/f9esWuunXr1umirafOOc95jrk7IiIiALFqN0BERAYPBQUREUlTUBARkTQFBRERSVNQEBGRtJpqN2AgJk2a5DNmzKh2M0REhpTVq1dvd/fJUY8N6aAwY8YMmpubq90MEZEhxcz+ku8xDR+JiEiagoKIiKQpKIiISJqCgoiIpJUtKJjZzWa21cyezjg2x8weM7MWM2s2sxMyHrvGzFrN7FkzO6Nc7RIRkfzK2VP4IfC2nGNfAf7V3ecA14b3MbPZwPnAkeFzvmNm8TK2TURkyGrvSLBm407aOxIlv3bZUlLd/UEzm5F7GBgf3t4f2BzeXgjc4e4JYIOZtQInACvL1T4RkaFoecsmrlq2ltpYjM5kkq+cczRnz5lasutXep3Cx4Ffm9l/EPRSTg6PTwUeyzivLTzWg5ldBlwG0NDQULaGiogMNu0dCa5atpY9nUn2kARg8bK1zGucxMSx9SV5jUpPNH8E+IS7Twc+AXw/PG4R50Zu9ODuS9y9yd2bJk+OXJAnIjIste3YTW0s+2O7Nhajbcfukr1GpYPCJcBPw9t3EgwRQdAzmJ5x3jT2DS2JiAgwbcJoOpPJrGOdySTTJowu2WtUOihsBv4uvH0asD68vQI438zqzWwmcDjw+wq3TURkUJs4tp6vnHM0o2pjjKuvYVRtjK+cc3TJho6gjHMKZnY7cAowyczagM8DHwS+aWY1wB7CuQF3X2dmS4FngC7go+7eXa62iYgMVWfPmcq8xkm07djNtAmjSxoQAGwo79Hc1NTkKognItI3Zrba3ZuiHtOKZhERSVNQEBGRNAUFERFJU1AQEZE0BQURkQooZ72iUhrS23GKiAwF5a5XVErqKYiIlFFmvaJdiS72dCZZvGztoO0xKCiIiJRRJeoVlZKCgohIGVWiXlEpKSiIiJRRJeoVlZImmkVEyqzc9YpKSUFBRKQCJo6tH9TBIEXDRyIikqagICIiaQoKIiKSVragYGY3m9lWM3s65/gVZvasma0zs69kHL/GzFrDx84oV7tERCS/ck40/xC4Ebg1dcDMTgUWAke7e8LMDgqPzwbOB44EDgV+a2aztPuaiEhlla2n4O4PAi/nHP4IcJ27J8JztobHFwJ3uHvC3TcArcAJ5WqbiAxvQ6X43GBU6ZTUWcB8M/sSwR7Nn3b3x4GpwGMZ57WFx3ows8sI93ZuaGgob2tFZMgpVfG59o7EkFhXUGqVDgo1wATgJOBvgaVmdhhgEedGbh7t7kuAJRDs0VymdorIEJRZfG4PQWmJxcvWMq9xUp8+2IdSVdNSq3T2URvwUw/8HkgCk8Lj0zPOmwZsrnDbRGSIK0XxuaFW1bTUKh0U7gZOAzCzWUAdsB1YAZxvZvVmNhM4HPh9hdsmIkNcKYrPDbWqpqVWzpTU24GVwBFm1mZmlwI3A4eFaap3AJeEvYZ1wFLgGeBXwEeVeSQifVWK4nNDrappqZn70B2Wb2pq8ubm5mo3Q0QGmYFOEq9o2cTiYTynYGar3b0p6jEVxBORYWegxeeGUlXTUlNQEBGJMFSqmpaaah+JiEiagoKIiKQpKIiISJqCgoiIpCkoiIhImoKCiIikKSiIiEiagoKIiKQpKIiISJqCgoiIpCkoiIhImoKCiIikKSiIiEiagoKIiKSVc+e1m81sa7jLWu5jnzYzN7NJGceuMbNWM3vWzM4oV7tERCS/cvYUfgi8LfegmU0H3gK8kHFsNnA+cGT4nO+YWbyMbRORQai9I8GajTtp70hUuykjVtk22XH3B81sRsRDXwcWA8szji0E7nD3BLDBzFqBEwj2eBaREWB5yyauGsZbYA4VFZ1TMLOzgU3uvibnoanAxoz7beGxqGtcZmbNZta8bdu2MrVURCqpvSPBVcvWsqczya5EF3s6kyxetlY9hiqoWFAws/2AzwLXRj0cccyjruPuS9y9yd2bJk+eXMomikiVtO3YTW0s++OoNhajbcfuKrVo5KrkHs2vB2YCa8wMYBrwhJmdQNAzmJ5x7jRgcwXbJiJVNG3CaDqTyaxjnckk0yaMrlKLRq6K9RTc/Sl3P8jdZ7j7DIJAcJy7vwSsAM43s3ozmwkcDvy+Um0TkcrIN5E8cWw9XznnaEbVxhhXX8Oo2hhfOedoJo6tr1JLR66y9RTM7HbgFGCSmbUBn3f370ed6+7rzGwp8AzQBXzU3bvL1TYRqbzeJpLPnjOVeY2TaNuxm2kTRisgVIm5Rw7dDwlNTU3e3Nxc7WaISC/aOxLMu/5+9nTuGyIaVRvjkatO04d/FZjZandvinpMK5pFpOw0kTx0KCiISNlpInnoUFAQkbLTRPLQUcmUVBEZwTSRPDQoKIhIxUwcW69gMMhp+EhERNIUFEREJE1BQURE0hQUREQkTUFBRHrVumUXdzVvpHXLrmo3RcpM2UciUtC1dz/FrY+lN0pk0dwGvrDwjVVskZSTegoiklfrll1ZAQHg1pUvqMcwjOXtKZjZgYWe6O4vl745IjKYtGzcmfd445RxlW2MVESh4aPVBLufGdAA7AhvHwC8QLBhjogMY3OmH9Cn4zL05R0+cveZ7n4Y8GvgLHef5O4TgTOBn1aqgSJSPY1TxrFobkPWsUVzG9RLGMZ63U8hrLt9fM6x5ny1uDPOuZkggGx196PCYzcAZwF7gT8B73P3neFj1wCXAt3Ax9z91701XvspiFRG65ZdtGzcyZzpByggDAMD3U9hu5n9s5nNMLPXmdlngfYinvdD4G05x34DHOXuRwPPAdeEDZwNnA8cGT7nO2YWL+I1REaUfNtZ9kdf0kwbp4zj3KbpCggjQDEpqRcAnwd+Ft5/MDxWkLs/aGYzco7dm3H3MeDc8PZC4A53TwAbzKwVOAFYWUT7REaE3raz7AulmUo+vfYU3P1ld7/S3Y8N/11Zosyj9wO/DG9PBTZmPNYWHuvBzC4zs2Yza962bVsJmiEy+LV3JLhq2Vr2dCbZlehiT2eSxcvW9qvHoDRTKaTXoGBms8xsiZnda2b3p/4N5EXDIagu4LbUoYjTIic73H2Juze5e9PkyZMH0gyRIaOU21kWSjMVKWb46E7gv4CbCCaBB8TMLiGYgD7d981ytwHTM06bBmwe6GuJDBcD2c6yvSORtbGN0kylkGKCQpe7f7cUL2ZmbwOuAv7O3V/LeGgF8D9m9jXgUOBw4PeleE2R4SC1neXinDmFQhvWtHckuG3VC3z7gfXUxeNZ8xCL5jZw68rsOQVNIgsUl5L6L8BWgonm9ABmb/MKZnY7cAowCdhCMFl9DVDPvuylx9z9w+H5nyWYZ+gCPu7uv8y9Zi6lpMpIk/utP5/lLZtYfNdaEl3ZvYtRtTEeueo0Jo6tV5rpCFYoJbWYoLAh4rCHC9uqSkFBpKf2jgTzrr+fPZ3JHo+Nq6/hxx84kWM0VDSiFQoKvQ4fubvKWYgMIalJ6T30DArFzkPIyFVM9tF+4eK1JeH9w83szPI3TUT6I2pSGqC+xnqdhxApZkXzDwjKUpwc3m8D/q1sLRKRAUlNSo+qjTGuvob6mhifesssHr369H4vdpORo5jso9e7+z+Y2QUA7r7bzKLWFYhIhfQ24Xz2nKnMa5xU1KS0SKZigsJeMxtNuJjMzF5PRhaSiFRWseUuJo6tVzCQPitm+OjzwK+A6WZ2G3AfsLisrRKRSKUsdyESpZiewmrg74GTCMpRXAkoqVmkCqIyi1LlLtQrkFIopqfwv0Cnu//c3e8BJofHRKTCBlLuQqQYxQSFLwP/a2ZjzOx44C7g4vI2S0Si5GYWjaqNKc1USqqYxWs/N7Nagg1yxgHvcvf1ZW+ZiERSZpGUU96gYGb/SXb56vHAn4ErzAx3/1i5GycyEhVT30iZRVIuhXoKuUWFVpezISJS2t3VRPojb1Bw91tSt8N1Cg3u/mxFWiUyAmWmm6ayixYvW8u8xknqFUjFFFP76CyghWCtAmY2x8xWlLldIiNOKXdXE+mvYrKP/gU4AdgJ4O4tgCqnipSY0k1lMCgmKHS5+ys5xwpvwgCY2c1mttXMns44dqCZ/cbM1oc/J2Q8do2ZtZrZs2Z2RvG/gsjwoHRTGQyKWdH8tJldCMTN7HDgY8CjRTzvh8CNwK0Zx64G7nP368zs6vD+VWY2GzgfOJJgO87fmtksdx/wntAiQ4nSTaXaiukpXEHwYZ0A/gd4Bfh4b09y9weB3C07FwKpCexbgHdlHL/D3RPuvgFoJRiyEimb9o4EazbuzFs3qLfHi9W8oZ2v3fsszRvaez+ZoMdwzPQDFBCkKopZvPYa8Fkz+7K7vzrA15vi7i+G133RzA4Kj08FHss4ry08JlKUYvcuTukt9bNUqaEX3/QYD7cGweBb97cyv3EiP/rASX2+jkilFJN9dLKZPQP8Ibx/jJl9p8TtiNqfIXLewswuM7NmM2vetm1biZshQ9Hylk3Mu/5+Lr5pFfOuv58VLZsKnt9bpdFSVSJt3tCeDggpD7W2F91jEKmGYoaPvg6cAbQDuPsaYEE/X2+LmR0CEP7cGh5vA6ZnnDcN2Bx1AXdf4u5N7t40efLkfjZDhov+fID3lvpZqtTQB9dv79NxkcGgmKCAu2/MOdTfCeAVwCXh7UuA5RnHzzezejObCRwO/L6fryEjSH8+wHtL/RxIamjmPMSCwydFnpPvuMhgUExQ2GhmJwNuZnVm9mnCoaRCzOx2YCVwhJm1mdmlwHXAW8xsPfCW8D7uvg5YCjxDsEjuo8o8kmL05wM8lfpZF4f6eIy6OFmpn/1NDc0dxtr8yh7mN07MOmd+40SaZk7McwWR6jP3wksOzGwS8E3gzQRj//cCV7p71QdGm5qavLk5t0STjDQrWjaxuI+Twtfe/RS3PvZC+v6iuQ18YeEbs87py+R1e0eCedffz57OfQFqVG2MR646jQ3bOnhw/XYWHD5JAUEGBTNb7e5NUY8VqpK6HHiYYE3C+9x9b5naJzIgmbn9Y+rivLq3m/aOROQHeXtHgpV/as8KCAC3rnyBRSfNoHHKvk0F+1KJtNCOaE0z1TuQoaNQSur3gJOBLwFvNLNngUcIgsSj7r6lAu2TEawv39Qnjq3n4dbt6TTSvd1JLj+1kQtPbEg/N5Vm6snoa7Rs3JkVFPrSJpWokOGiUJXUe4B7AMwsDhwLnALcQFD7KF6B9skI1dd1AlEVRr/6m+e48YH13HDuMcxrnJR+PJ850w/od5tS8xC5w1hagCZDTcHFa+F8wsnhv5OAUcBvCSaQRcqiPyWko4ZvABJdzuJla1nyj8dHPp6yaG4DE8bUsWbjzsieSTFtUokKGQ4KzSmsJyhpsQz4NfBv7t5RqYbJyFVofD7fB23U8E3mc8F6PF4Xh8+84294U+Nk1r34V+Zdf39kL6C9I8EDf9xK3KzHdXPbpB3RZKgr1FO4maB3cA7wRuAoM1sJPKl0USmngaSZfmppC7kjRJ3JJEceOj5yeOfsOVPz9gKSySR3PL6RJ17YSV1NjFf3dve4ruYMZLgpNKfw76nbZjaLYAjpg8B8M9vm7n9XgfbJCNTf8fmlzRuzAoIBdTWWfm6+4Z2onsmeziQfX7o2fX9v976AMKYuTre75gxkWOq1IJ6ZHUZQsfREgp7DZODPZW6XjHB9HZ+PqjPkQO6IUtTwTqGhp1xj6uP861lHcuobDlJAkGEp74pmM/uZmb0I/BI4HVgNXODuk939zEo1UIanfGWpM4/3pYR0vnpCnUnvtRZSqmdSX9P7Av/upCsgyLBWqKfwA4Lhog5335P5gJnVu/vAiszLiJUvtXMg5aoXHD6Jb93fGvlYb5PUEPRMDtivjg//aDWvdUZPmdXFTUNGMuzl/Wrk7ivcfTvRu6wpJVX6pHXLLu5q3kjzhvbIqqatW3YNqFx108yJPeoMpeSbEE61qXXLLgCOPHQ8yTw7zTYcOIqV15zerz0VRIaSQimpBxNsdDPazI5l354H44H9KtA2GSZy6wzVxnumdrZs3NlrGmpvK5x/9IGTaN7Qzvce+jMPPLuN+pp43knqD93azK+f2bcoP1X7KHOCe09nN8e/bgIfnD+T02cfXJL3QmSwKzR8dAbwXoK9Db6WcXwX8JkytkmGkdYtu3rUGerszv423plMMmf6AQXTUIsdWkrVGcoXQNo7Ely4ZCXPbs3eRDBV+0gL0GSkK5SSegtwi5md4+7LKtgmGUZaNu6MPF4bN0ZlfJNvnDIubxpqf1Y4R2UZLW/ZxKcj1jFktrVxyjgtQJMRrdDw0Sejbqe4+9dyj4nkyldP6PYPnEhtTTzr23hf1hEUM3mcKRVYCpQ+6rX2kchIUGj4qHC5SJEiNE4Zx6K5Ddy6MnvvgnylpItdR1DsauL7nnmJe5/ZQuNBYwvWPnrbkVN6rZAqMhL0uslOWV7U7BPABwjWFz0FvI9g8vonwAzgeeA8d99R6DraZGfoaN2yi5aNO5kz/YB+ffj2dSOd5g3tXPajZl5+ravXax/fsD/L/t+b+twmkaGq0CY7xey89gPomafn7u/vZ2OmEmzeM9vdd5vZUuAXwGzgZXe/zsyuBia4+1WFrqWgUF192e+gN8UEjWJe7+4nNvKFe57JGwxqDEbX1bCns4vT3zCFD8yfqQ1wZMTp185rGe7JuD0KeDeweYBtqiFIde0k6CFsBq4h2K8B4Bbgd0DBoCDV0d6R4LZVL/DtB9ZTF48Xvd9Bvg/0YrbGLKZNb/3a/9H+WmfB88485hDeN+8wZRaJ5NFrUMjNPDKz2wn2VOgXd99kZv8BvADsBu5193vNbIq7vxie86KZHRT1fDO7DLgMoKGhob/NkH5a3rKJxXetJdEVjM0nuoJv5IWygQqlk0alrEZtjVnoGstbNvHJO1oopnTvWUcfyjGaUBbJq/diLz0dDvT709jMJgALCXZvOxQYY2YXF/t8d1/i7k3u3jR58uT+NkP6IZXBkwoImVLZQPmeE7WCec3GnTzcGl2zKDOVNd812jsStHckWHzXmqICwhFTxmgRmkgviqmSuotgTsHCny8xsGGdNwMb3H1beP2fEpTl3mJmh4S9hEOArQN4DSmDfLubQf5soKjneNJ5x38+TH08RqIr+uM8Mz20UErq/z23jURX4Xmxg8bV8e/vfqMCgkgRihk+KnWe3gvASWa2H8Hw0elAM/AqcAlwXfhzeYlfd8QYaKZPpsy5gHwlputrsgvF5T5nT84Hf6LbAWdv2OOIGSQzPtcXzW3IanfU6ya6uuns6ubbD0QXwQMYUxvjlvefoIlkkT4otHjtuEJPdPcn+vOC7r7KzO4CngC6gCeBJcBYYKmZXUoQON7Tn+uPdKWYtE2JGsfPXHW8tzvJ5ac2cuGJDemAkPucz505m94y3MbU1fDvf38UezqTkYEsVdr603e20J2EbodYzLjwplXEYtbjeq+fNIYrTns97zpuer9+b5GRLG9Kqpk9EN4cBTQBawiGkI4GVrl71RO7lZKarXXLLt789Qd7HP/tJxb0ucfQ3pFg3vX3sydjCfCo2hiPXHUaQN66QrnPqauJURuzHltZZkpdt1A2UG6wy6e+JsajVxe+lshIVygltVDp7FPd/VTgL8Bx4eTu8cCxQP4+u1RNvjpD+Y4XkhrHz5RZWiJq85uo58QM9uYMH9XEgg/vcfU1jKqN9bpHQfOG9rwBoT5u1GVc64Zztd+ByEAUs07hDe7+VOqOuz9tZnPK1yTpr3y1e/pT0yffOP6YuniPNQep+2Pq4j2es6czSW3cqIk5o2tr0sNQxVQiTa2H+NZ9z+Vtp8WMn1/+Jl7d2621ByIlUExQ+IOZ3QT8mCD76GLgmbK2SvolX52h/kw2p8bxFy9biyedRLcTixlv/9ZDuO/7gD/v+GksXd2WnkM4r2kaP3l8Y1ZGUGe3U18T41NvncWbGiel25M79JQKEjte3cvNjzzPnc0vFCxgVxcnXWFVREqjmDIXo4CPAPMJ5hSeAGa4+6Xlb15hmlPYJ/dDtVTZR80b2rngplU99kDIZ1RtjP849xgWL1vLaznzCPvVxkniPVY/Z05Ov7q3KysTKZ93HnUwX3jXUeoZiPTDgMpcuPuecNL5EOAfgAnAXaVtouRTTL2fqCyhc5sGnnmzvGUTn1raQsRatbxqYzHGj64lGfFlI7X3cebq56i9EgqpiRt3fOBEpZmKlEmhlNRZwPnABUA7QQVT3P2UirRMitptrD8b0BSjvSPBJ37SUtS39kydySRHHjo+PfQUM+vRY8icsG7bsZtEoTGiDPU1wUSyAoJI+RTqKfwReAg4y91bIV3yWiqgtw/7VA/ild2dRW9AU6jXkfvYyj9tjwwI8ZhhZMwpNE1jaXNbj93SUhvmrNv8Ch+8tTl7jiFj9fNTG3f0LMGbozYGHzt9VtZ6CBEpj0JB4RyCnsIDZvYr4A6COQWpgEKlHR5u3Z7uQeztTvaoRdSR6OpRcqLHorJ3zuaoqfszbcLorOulPthffnVvZLs++ebDOf+EhqwAcuXpsyKDzcSx9SyYdRA3hHMMmdcH+NZ96/nGb/JnFgGcNHMC377oeAUDkQoptEfzz4CfmdkY4F3AJ4ApZvZd4Gfufm9lmjgy5dttbExdvNcxeAd2vLo3q+xE7nM+e/fTjK2P09mdJOlBhlBmj+TH7z8h8tonzjywx+5ove1pnLvN5sOt2zn5uvsjC+tlOr5hf+740MkFzxGR0uq1Sqq7v+rut7n7mcA0oAW4utwNG07aOxKs2biT9o5E0ee37djN5945m1G12Yu8Xt3b3WOBWJQVazanXy9qURlAR6KbRJf3yCyqjcWorYmzaG52MdyamHHR93/PipZNRf0eUXa8ujdvpdWUifvVcNeHTtJuaCJVUMw6hTR3fxn47/CfFKGYyeJC53/uzNkcdej+WQvFoorS5fr+wxtY8tCf0wvFinlOSnrMP2ewvyvpdCWdT925pk8T2Zm/U6KrO7JeEUDc4KvvOVo1i0SqqD/7KUiRCu0DUOz5X7znmR5j9R89pZG6eOHpnVf3dqdfD4JFXvU1+Z9TF8/ukWzY1pG3tERnt7Nu8ytF9YBat+zin+5ck/6d9nZ7Vm2klPoa4+v/MEcBQaTK+tRTkL4pNFkc9S27t/Mzv3E7Tl08mGjed64Rj1vWh27q+WfPmcoB+9Vy6S3NkQvRPvOON3Bsw4T0mP/533us4O/26J/auexHqwv2gG577C98/n/X0ZXzevVxw82oj0dXWhWR6lFQKKN8k8VRm9H0dn70Iq/sc2MxyF0zlvl6Rx66f96VyanyE6nXKTQHHDf4wSPPk+iKTpdt3bKL7/6ulWVPRm/lrXpFIoOXho/KKFU/KHeyON+HYKHzoyaLe1YIPYYbzs3/ejvypJke37B/uhxGvknpXJYzEpXqkVx791O8+esP5g0IdXFL1yuKqrQqItVVlZ6CmR0A3AQcRTCd+X7gWYJV0zOA54Hz3H1HNdrXF72VochNx+ztQzDf+VG9iHzfuGcfMj6y9lG+EtprN/2V9o4EE8fWM23CaPZ2Z69AjhmYk94HuduhO2de4LXOLp7auKPgngc1ceMXH5uvAnYig1i1ho++CfzK3c81szpgP+AzwH3ufp2ZXU2Q9jqQvaDLrtjMot7y+Is5f+LYes5rmpZVAfW8pmk9PmALtSlfCe2YWXre4uHW7T2Gjox9ASElNS/QFa5z6E7CP68oXDz3X886UgFBZJCr+PCRmY0HFgDfB3D3ve6+E1gI3BKedgvBgrlBq6+ZRaV4vaXNbVnHlja30bplVzoDqLc2NU4Zx9nH9Ny8PtGVpLOrmwef28biu9bSnVPfImoawmLGeccdWlRtpNoYfOndR3HRSa8r/hcWkaqoRk/hMGAb8AMzOwZYDVwJTHH3FwHc/UUzOyjqyWZ2GXAZQENDQ9QpFdHXzKJyvJ4nnXd86yFq4jG6k87lpzbS1Z39Nb+rO5luU+uWXTz5l509rl0TgwtvWkVNLNbrKuP9auN0e5K4OT/+fVvBc0ElrkWGmmoEhRrgOOAKd19lZt+kDyuk3X0JsASC/RTK08Te9TWzqByvlwi/wqfmAL7x2+d6fKvvSkJnV3fBPY6DOOA95hJy1dfEuOTk1/G9h/5Moiv/ed8472i6kpRkPwcRqaxqZB+1AW3uviq8fxdBkNhiZocAhD+3VqFtRetrZlGpX682YvFavn1wVm14ueAEcG9/BPVxoy5unPnGg/n+wxsKpqvOb5zIu46bzrlN0xUQRIagivcU3P0lM9toZke4+7PA6QTbez4DXAJcF/5cXum29VVfM4tK+XobX36Ny29/siTXNSOrpEV9jfHV98xh/OhaDt1/FF/9zXP88umX8qaZplx56mF84oy/KUmbRKQ6qrVO4QrgNjNbC8wBvkwQDN5iZuuBt4T3B72JY+sL5tv3tRhesc97w8HjqMn5r1cTCzKSMi2a28AZR/acXM70hYVHZfV4bjj3GM485lAWzJrM05t28sunX+q1vYeMr1NAEBkGqpKS6u4tQNT+oKdXuCll1ddieKk1D09veoUv/vyZHs/Lvd6FJzbwk8c3ErcY3Z7khnOPwYG7n2zDiOEkaXrdgTROGceiuQ1Z6axGEES+et4czp4zlbcddXBWj6e9I8H7f/g4a9peiWxrfU2MZDLJEQeP4wNvmqmaRSLDhHnEXrpDRVNTkzc3N1e7GZHaOxLMu/7+rDpEo2pjPHLVaZG9itQHfk3M6EhkT/iOqo1xz+Vv4swbH+5xvXsyFq8Bka+ZOqezq5vn219jxsT9qK2J5x3yWt6yiX+6c21WXaVcN14wh7mvH9iWnyJSHWa22t2jvpir9lG59CVlNXN9QZTaWIyWjTt7XC+GsfmVPSyYNRmANRHnALzjWw9RXxNP9zqi9jhO9VJSm/gUCgiL5jZw5jH5ezwiMnQpKJRJX1JWowJI7vPmTD+gx/Ve6+zmg7c2c8O5wfDStAmj2d2ZnSuaCjR7u4PjmYXrUord7wCCdFMNFYkMXyqIVyZ9SVmNCiAAY+ri6ec1ThkXuSdCoit71bLlVqrLkeqtpOSugs633wHsSzcVkeFLPYUyKjZlNRVA/umutcRjRnfSufas7B3XUtc7YL9aPvzjJ3ht7755h8wP+lE1cTq7868sS/VW7n5iI/c89RJHHTq+Ry8lc7+DRFeSU4+YzAfnz4wcdhKR4UVBYYDyVUnNHKMvhqf+14NFA+Pqazgmo4Bd65ZdtGzcyYyJ+5HMSQ7IHJbKHT6KGdTGjbr4vjmFBdffx6udwTV++4eeawS134HIyKWgQO/lr/PJl3KaOg7BmH593LCY5U1JTQ3hJLqcVD3ST9+1ltmHjAfg2uXrePTP7enz5zdO5PG/7Mh63VQaqeWsRIvHjJ9fMT+dffSe/34sd+vl4Dxgv/qa9PW0GllkZBrxQaGvawlSonZCW7ws+CDPzSRKdDt0e+QkL8C6za8Qy5kL2NuV5M1ffzDytR9qbeeuD51EbU2cMXVxXt3bTXtHgnWbX6E2HqMzo4bRqJo4v3t2K3c8/gKt217L+/u8adYkPvmWI9QzEBnhRnRQyPfBHvXBnStfymlU6mjm47kpqctbNrH4rjVhL6F4z7e/Rm1NLB3Q9nR1k0x6j/pHHYku/u0Xf+z1eu+ec2jWcJWIjEwjOvsoauvJ3OycfPKlnEaljmY+npmSmj1s1DcT9qvNyhrq7O4ZEGpiFjlUlGtMrSmrSESAER4UeltLUKj+UL6U01Tq6KjaGKNqg7e3Lqwy+rl3zs7qJbTt2I0Xs0tNDgP++NKuXvdS7iri2jUG6774jj63QUSGpxE9fJT6YF+cM6cwcWx9UXMN+VJOM4+v+nM7N9z7LDUx4wv3rGPcqJr0dTq7utN7IvSFAzfc+xzxAovMenPA6DgfWfB6PnTq4f2+hogMP6p9RM/so77WLSp03RO//Nus/QdqYrDqM2/m4dbt/NOda9jbj6CQqb4mRl08Rkeiq6ihoinj67jt0pOUXSQygqn2US8mjq3vMazT3602MwPMus1/7bEhTVcS7l33Ep9bvq6o4Z3eXHTCdH617iV2FdoKLfRvZ8/m4pNnDvg1RWT4UlCI0N+tNnOHnN43b0bkef9899N5d0nrq5sf/UtR5y2a26CAICK9GtETzfn0Z6vN3BpCezqT3Pzwhj5tm1kTI73VZk2M9ET1QMyaPIbffmIBX1j4xgFfS0SGv6r1FMwsDjQDm9z9TDM7EPgJMAN4HjjP3XdUq31nz5nK7EPG07JxZ1Eb0EcNOdXF41y24DBufKCVeMzo6nYMj5xcronBr65ckLU3QqpMxi+ffokbH2glUWhz5BwHj6vjxguPU70iEemTag4fXQn8ARgf3r8auM/drzOzq8P7V1WrcX1d6ZxvyOntRx0cLgpz9quNc+FNq3o8ty4O//GeOT0CT6pncsWUccw+ZBwfvW01e7p7PL2HM448iP/+x7/t/UQRkRxVCQpmNg14J/Al4JPh4YXAKeHtW4DfUaWg0N+Vzh89pZEbH1hPXTzO3u5uTnvDZN75nw9RF4+zu7MLMwvSSLud+riBGZef2siFJzYUvO7FNz3Gw63teR9PmTV5DN+5+HhlFolIv1Wrp/ANYDGQ+ek1xd1fBHD3F83soKgnmtllwGUADQ0NZWlcX7OPMnsVYMw/fBL3/XErv3hqCwCJrlRmkNMZDh25Gb+44k29foA3b2gvGBBOO2ISR009gAWHT9JQkYgMWMWDgpmdCWx199Vmdkpfn+/uS4AlEKxTKG3rAoWyj6LWNOT2Kn7x9Eu9vkZ9PMare3sfC3pw/faCj1904us4ffbBvV5HRKQY1cg+mgecbWbPA3cAp5nZj4EtZnYIQPizZ6H/CsmXffRw63bmXX8/F9+0innX38+Klk2R9ZOKUUyKK8CCwyflfeyIKWMUEESkpCreU3D3a4BrAMKewqfd/WIzuwG4BLgu/Lm80m3LlFvCAkivcs6cZ/jx+08gUWCT+yj1NdEprqmNdDKznZpmTmR+40QeyhhCOmhsHf/+929UQBCRkhtMi9euA5aa2aXAC8B7qtyerJXOazbupCai1tCFN60idTS1ruC8pmksbW4jZpa1bSZAbQy+t6iJBbMmZx2/9u6nuPWxF9L3F81tSK8t+NEHTqJ5QzsPrt+uuQMRKauqBgV3/x1BlhHu3g6cXs32FPL0plfoSGR/wOducJ9MOr/42Hwap4zjytNnsfJP7Vx++5NZ53Qm4dD9R2Uda92yKysgANy68gUWnTQjq8egYCAi5aYVzUVo70jwxZ8/0+N4Xc5q5fqaeHryeOLYesaPjo65m1/J3q+hZePOyPPyHRcRKRcFhSJETSbvV9fzrcudPP7r7ugidU/8ZQdfu/dZmjcE8wRz8ux4lu+4iEi5KCgUISpFNenw+bOOLFgfKV9P4Rv3tfKt+1s5978f4x9veozGKeNYNDd7zcWiuQ1ahCYiFTeYJpoHncw1CVGb8Zw9ZypvO+rgHpvspBx56P7Uxi29YC3KQ63tNG9o5wsL38iik2YUXWtJRKQcFBTyiKp99MhVp/UIALl7MWSaOLaeC06Yzq0rX4h8POXB9dtpmjmRxinjFAxEpKo0fBQhqgz24mVrAThm+gFF777W3pFgaXNbr+cVWqAmIlJJCgoRoiaWU7WPBnqd3JUO8xuVaioig4eGjyL0d+e1Yq5TXxvj2xccy5q2V7QQTUQGHfUUIvRn57W+XOf02QfzybceoYAgIoOOuZel0GhFNDU1eXNzc9mun1sRtdTnFPNcEZFSM7PV7t4U9ZiGjwoolFkExe/OFnWdvu7sJiJSCRo+6qd8GUrtHYmyPldEpJwUFPppIBlKpcpuEhEpNQWFfhpIhlKpsptEREpNQaGfBpKhVKrsJhGRUqt49pGZTQduBQ4GksASd/+mmR0I/ASYATwPnOfuOwpdayDZR8Vk/kTthNaf6wykDSIipTbYso+6gE+5+xNmNg5YbWa/Ad4L3Ofu15nZ1cDVwFXlaEAxmT+FdkLL1FuGUiEDea6ISDlUfPjI3V909yfC27uAPwBTgYXALeFptwDvKsfrF5P5k28ntNYtu8rRJBGRQaOqcwpmNgM4FlgFTHH3FyEIHMBBeZ5zmZk1m1nztm3b+vyaxWT+aCc0ERmpqhYUzGwssAz4uLv/tdjnufsSd29y96bJkyf3+XWjMn/2dnfzyu696d6CdkITkZGqKkHBzGoJAsJt7v7T8PAWMzskfPwQYGs5Xjs386cmFuyi9tHbnmTe9fezomWTdkITkRGrGtlHRjBn8LK7fzzj+A1Ae8ZE84HuvrjQtQaafbRu81/54K3NJLr29RxG1cZ45KrTmDi2vqjsIxGRoWawZR/NA/4ReMrMWsJjnwGuA5aa2aXAC8B7ytmIiWPr2X90LXXxWFZQSM0vTBxbr53QRGTEqXhQcPeH6bnXTMrplWyLVhaLiGQb0SuatbJYRCTbiC+dffacqcxrnKSVxSIiKCgAWlksIpIyooePREQkm4KCiIikKSiIiEiagoKIiKQpKIiISFrFy1yUkpltA/5S7XYAk4Dt1W5EPwzVdsPQbftQbTcM3bar3T29zt0jK4oO6aAwWJhZc746IoPZUG03DN22D9V2w9Btu9rdNxo+EhGRNAUFERFJU1AojSXVbkA/DdV2w9Bt+1BtNwzdtqvdfaA5BRERSVNPQURE0hQUREQkTUGhD8xsupk9YGZ/MLN1ZnZlePxfzGyTmbWE/95R7bZGMbPnzeypsI3N4bEDzew3ZrY+/Dmh2u3MZGZHZLyvLWb2VzP7+GB9z83sZjPbamZPZxzL+x6b2TVm1mpmz5rZGdVpdd5232BmfzSztWb2MzM7IDw+w8x2Z7z3/1WtdoftiWp73r+PQf6e/ySjzc+ndqes6Hvu7vpX5D/gEOC48PY44DlgNvAvwKer3b4i2v88MCnn2FeAq8PbVwPXV7udBdofB14CXjdY33NgAXAc8HRv73H4t7MGqAdmAn8C4oOo3W8FasLb12e0e0bmedX+l6ftkX8fg/09z3n8q8C1lX7P1VPoA3d/0d2fCG/vAv4ATK1uqwZsIXBLePsW4F3Va0qvTgf+5O6DYRV7JHd/EHg553C+93ghcIe7J9x9A9AKnFCJduaKare73+vuXeHdx4BpFW9YEfK85/kM6vc8xcwMOA+4vaKNQsNH/WZmM4BjgVXhocvDbvbNg20IJoMD95rZajO7LDw2xd1fhCDoAQdVrXW9O5/s/5MMhfcc8r/HU4GNGee1MXi/ZLwf+GXG/Zlm9qSZ/Z+Zza9Wo3oR9fcxVN7z+cAWd1+fcawi77mCQj+Y2VhgGfBxd/8r8F3g9cAc4EWCbt9gNM/djwPeDnzUzBZUu0HFMrM64GzgzvDQUHnPC7GIY4MuR9zMPgt0AbeFh14EGtz9WOCTwP+Y2fhqtS+PfH8fQ+I9By4g+wtQxd5zBYU+MrNagoBwm7v/FMDdt7h7t7snge9Rpe5ob9x9c/hzK/AzgnZuMbNDAMKfW6vXwoLeDjzh7ltg6LznoXzvcRswPeO8acDmCretIDO7BDgTuMjDwe1w6KU9vL2aYFx+VvVa2VOBv4+h8J7XAH8P/CR1rJLvuYJCH4TjfN8H/uDuX8s4fkjGae8Gns59brWZ2RgzG5e6TTCJ+DSwArgkPO0SYHl1WtirrG9OQ+E9z5DvPV4BnG9m9WY2Ezgc+H0V2hfJzN4GXAWc7e6vZRyfbGbx8PZhBO3+c3VaGa3A38egfs9Dbwb+6O5tqQMVfc+rMes+VP8BbyLoaq4FWsJ/7wB+BDwVHl8BHFLttka0/TCCrIs1wDrgs+HxicB9wPrw54HVbmtE2/cD2oH9M44NyvecIHC9CHQSfCu9tNB7DHyW4Fvfs8DbB1m7WwnG31N/6/8VnntO+De0BngCOGsQvud5/z4G83seHv8h8OGccyv2nqvMhYiIpGn4SERE0hQUREQkTUFBRETSFBRERCRNQUFERNIUFGTYMbN3m5mb2RvyPP47Myu4IXpYZfPT4e33mtmh4e2FZnZ3xnnXmFlrxv2zzGxFP9r8XjO7sYjzOvp6bZG+UFCQ4egC4GGCWkml8F7g0PD2o8DcjMfmAn81s1Q9o5OBR0r0uiIVp6Agw0pYl2oewQKm88Njo83sjrA42k+A0Rnnd2TcPtfMfphzvXOBJuC2sLZ9B/CKmTWGp0wlKHtycnj/ZODRcAXqMjN7PPw3L7zemLBA2+NhcbOFEb/DO81spZlNMrOZ4e3HzeyLmb+nmd1nZk9YsEfGwvD4Fy3c5yO8/yUz+1i/3kwZkRQUZLh5F/Ard38OeNnMjgM+Arzm7kcDXwKOL/Zi7n4X0ExQ+2eOu+8m6C2cbGZHEKxSfiy8XwMcDTwOfBP4urv/LcFq1JvCS34WuD88fipwQ1h2BAiGvgj2XHiHu28Pr/Pd8PyXMpq2B3i3BwUOTwW+mlGG5ZLwWjGCwHgbIkWqqXYDRErsAuAb4e07wvuHA98CcPe1ZrZ2gK/xCEGPIA6sJKidcy1BKfVn3X2Pmb0ZmB18TgMwPqw99Vbg7NR8BTAKaAhvn0rQK3mrB9V3Iej1nBPe/hHBZjcQVPv8cljpNknQY5ni7s+bWbuZHQtMAZ70sJCaSDEUFGTYMLOJwGnAUWbmBB/aDjxJ/vLImcdHFflSjwJXhNf/nrvvMrNRwCnsm0+IAXPDnkVmGw04x92fzTl+IkGBs8MIql8252ljykXAZOB4d+80s+cz2n8TwTzIwcDNRf5OIoCGj2R4ORe41d1f5+4z3H06sIGggNhFAGZ2FMEQT8oWM/ubcKjl3Xmuu4tg+9WUZwgmnucTBBwICsZ9mCBgANwLXJ56gpnNCW/+GrgiDA6E3+hT/kJQMvlWMzsyPPYI+ybML8o4d39gaxgQTiXYojTlZ8DbgL8NX0+kaAoKMpxcQPCBmGkZwf62Y8Nho8Vkl0q+GrgHuJ+gYmWUHwL/ZcGG6aM9qCK5Ctju7p3hOSsJvuWngsLHgKZwcvsZgoAB8EWgFlhrwYbt6cljgLAHcRFwp5m9HriSYEOkxwkCQcpt4fWbw/P/mHGNvcADwFJ3787zO4lEUpVUkWEm7PU8AbzHs7dzFOmVegoiw4iZzSbYB+E+BQTpD/UUREQkTT0FERFJU1AQEZE0BQUREUlTUBARkTQFBRERSfv/xgpsJjgDGfkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#Code task 36#\n", + "#Use ski_data's `plot()` method to create a scatterplot (kind='scatter') with 'AdultWeekday' on the x-axis and\n", + "#'AdultWeekend' on the y-axis\n", + "ski_data.plot(x='AdultWeekday', y='AdultWeekend', kind='scatter');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A couple of observations can be made. Firstly, there is a clear line where weekend and weekday prices are equal. Weekend prices being higher than weekday prices seem restricted to sub $100 resorts. Recall from the boxplot earlier that the distribution for weekday and weekend prices in Montana seemed equal. Is this confirmed in the actual data for each resort? Big Mountain resort is in Montana, so the relationship between these quantities in this state are particularly relevant." + ] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AdultWeekendAdultWeekday
14142.042.0
14263.063.0
14349.049.0
14448.048.0
14546.046.0
14639.039.0
14750.050.0
14867.067.0
14947.047.0
15039.039.0
15181.081.0
\n", + "
" + ], + "text/plain": [ + " AdultWeekend AdultWeekday\n", + "141 42.0 42.0\n", + "142 63.0 63.0\n", + "143 49.0 49.0\n", + "144 48.0 48.0\n", + "145 46.0 46.0\n", + "146 39.0 39.0\n", + "147 50.0 50.0\n", + "148 67.0 67.0\n", + "149 47.0 47.0\n", + "150 39.0 39.0\n", + "151 81.0 81.0" + ] + }, + "execution_count": 171, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 37#\n", + "#Use the loc accessor on ski_data to print the 'AdultWeekend' and 'AdultWeekday' columns for Montana only\n", + "ski_data.loc[ski_data.state == 'Montana', ['AdultWeekend', 'AdultWeekday']]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Is there any reason to prefer weekend or weekday prices? Which is missing the least?" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "AdultWeekend 4\n", + "AdultWeekday 7\n", + "dtype: int64" + ] + }, + "execution_count": 172, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ski_data[['AdultWeekend', 'AdultWeekday']].isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Weekend prices have the least missing values of the two, so drop the weekday prices and then keep just the rows that have weekend price." + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 85.0\n", + "1 53.0\n", + "2 34.0\n", + "3 89.0\n", + "4 78.0\n", + " ... \n", + "323 48.0\n", + "326 42.0\n", + "327 59.0\n", + "328 49.0\n", + "329 49.0\n", + "Name: AdultWeekend, Length: 277, dtype: float64" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#ski_data.drop(columns='AdultWeekday', inplace=True)\n", + "ski_data.dropna(subset=['AdultWeekend'], inplace=True)\n", + "ski_data['AdultWeekend']" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(277, 25)" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ski_data.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Perform a final quick check on the data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.11.1 Number Of Missing Values By Row - Resort" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Having dropped rows missing the desired target ticket price, what degree of missingness do you have for the remaining rows?" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
count%
329520.0
62520.0
141520.0
86520.0
74520.0
146520.0
184416.0
108416.0
198416.0
39416.0
\n", + "
" + ], + "text/plain": [ + " count %\n", + "329 5 20.0\n", + "62 5 20.0\n", + "141 5 20.0\n", + "86 5 20.0\n", + "74 5 20.0\n", + "146 5 20.0\n", + "184 4 16.0\n", + "108 4 16.0\n", + "198 4 16.0\n", + "39 4 16.0" + ] + }, + "execution_count": 178, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "missing = pd.concat([ski_data.isnull().sum(axis=1), 100 * ski_data.isnull().mean(axis=1)], axis=1)\n", + "missing.columns=['count', '%']\n", + "missing.sort_values(by='count', ascending=False).head(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These seem possibly curiously quantized..." + ] + }, + { + "cell_type": "code", + "execution_count": 179, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 4., 8., 12., 16., 20.])" + ] + }, + "execution_count": 179, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "missing['%'].unique()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Yes, the percentage of missing values per row appear in multiples of 4." + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0 107\n", + "4.0 94\n", + "8.0 45\n", + "12.0 15\n", + "16.0 10\n", + "20.0 6\n", + "Name: %, dtype: int64" + ] + }, + "execution_count": 180, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "missing['%'].value_counts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is almost as if values have been removed artificially... Nevertheless, what you don't know is how useful the missing features are in predicting ticket price. You shouldn't just drop rows that are missing several useless features." + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 277 entries, 0 to 329\n", + "Data columns (total 25 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Name 277 non-null object \n", + " 1 Region 277 non-null object \n", + " 2 state 277 non-null object \n", + " 3 summit_elev 277 non-null int64 \n", + " 4 vertical_drop 277 non-null int64 \n", + " 5 base_elev 277 non-null int64 \n", + " 6 trams 277 non-null int64 \n", + " 7 fastSixes 277 non-null int64 \n", + " 8 fastQuads 277 non-null int64 \n", + " 9 quad 277 non-null int64 \n", + " 10 triple 277 non-null int64 \n", + " 11 double 277 non-null int64 \n", + " 12 surface 277 non-null int64 \n", + " 13 total_chairs 277 non-null int64 \n", + " 14 Runs 274 non-null float64\n", + " 15 TerrainParks 233 non-null float64\n", + " 16 LongestRun_mi 272 non-null float64\n", + " 17 SkiableTerrain_ac 275 non-null float64\n", + " 18 Snow Making_ac 240 non-null float64\n", + " 19 daysOpenLastYear 233 non-null float64\n", + " 20 yearsOpen 277 non-null float64\n", + " 21 averageSnowfall 268 non-null float64\n", + " 22 AdultWeekend 277 non-null float64\n", + " 23 projectedDaysOpen 236 non-null float64\n", + " 24 NightSkiing_ac 163 non-null float64\n", + "dtypes: float64(11), int64(11), object(3)\n", + "memory usage: 56.3+ KB\n" + ] + } + ], + "source": [ + "ski_data.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are still some missing values, and it's good to be aware of this, but leave them as is for now." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.12 Save data" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(277, 25)" + ] + }, + "execution_count": 182, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ski_data.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Save this to your data directory, separately. Note that you were provided with the data in `raw_data` and you should saving derived data in a separate location. This guards against overwriting our original data." + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Directory ../data was created.\n", + "Writing file. \"../data/ski_data_cleaned.csv\"\n" + ] + } + ], + "source": [ + "# save the data to a new csv file\n", + "datapath = '../data'\n", + "save_file(ski_data, 'ski_data_cleaned.csv', datapath)" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing file. \"../data/state_summary.csv\"\n" + ] + } + ], + "source": [ + "# save the state_summary separately.\n", + "datapath = '../data'\n", + "save_file(state_summary, 'state_summary.csv', datapath)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.13 Summary" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Q: 3** Write a summary statement that highlights the key processes and findings from this notebook. This should include information such as the original number of rows in the data, whether our own resort was actually present etc. What columns, if any, have been removed? Any rows? Summarise the reasons why. Were any other issues found? What remedial actions did you take? State where you are in the project. Can you confirm what the target feature is for your desire to predict ticket price? How many rows were left in the data? Hint: this is a great opportunity to reread your notebook, check all cells have been executed in order and from a \"blank slate\" (restarting the kernel will do this), and that your workflow makes sense and follows a logical pattern. As you do this you can pull out salient information for inclusion in this summary. Thus, this section will provide an important overview of \"what\" and \"why\" without having to dive into the \"how\" or any unproductive or inconclusive steps along the way." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**A: 3** Your answer here" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the data wrangling process, the data info is firstly inspected. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": true + }, + "varInspector": { + "cols": { + "lenName": 16, + "lenType": 16, + "lenVar": 40 + }, + "kernels_config": { + "python": { + "delete_cmd_postfix": "", + "delete_cmd_prefix": "del ", + "library": "var_list.py", + "varRefreshCmd": "print(var_dic_list())" + }, + "r": { + "delete_cmd_postfix": ") ", + "delete_cmd_prefix": "rm(", + "library": "var_list.r", + "varRefreshCmd": "cat(var_dic_list()) " + } + }, + "types_to_exclude": [ + "module", + "function", + "builtin_function_or_method", + "instance", + "_Feature" + ], + "window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/data/ski_data_cleaned.csv b/data/ski_data_cleaned.csv new file mode 100644 index 000000000..4259e45d8 --- /dev/null +++ b/data/ski_data_cleaned.csv @@ -0,0 +1,278 @@ +Name,Region,state,summit_elev,vertical_drop,base_elev,trams,fastSixes,fastQuads,quad,triple,double,surface,total_chairs,Runs,TerrainParks,LongestRun_mi,SkiableTerrain_ac,Snow Making_ac,daysOpenLastYear,yearsOpen,averageSnowfall,AdultWeekend,projectedDaysOpen,NightSkiing_ac +Alyeska Resort,Alaska,Alaska,3939,2500,250,1,0,2,2,0,0,2,7,76.0,2.0,1.0,1610.0,113.0,150.0,60.0,669.0,85.0,150.0,550.0 +Eaglecrest Ski Area,Alaska,Alaska,2600,1540,1200,0,0,0,0,0,4,0,4,36.0,1.0,2.0,640.0,60.0,45.0,44.0,350.0,53.0,90.0, +Hilltop Ski Area,Alaska,Alaska,2090,294,1796,0,0,0,0,1,0,2,3,13.0,1.0,1.0,30.0,30.0,150.0,36.0,69.0,34.0,152.0,30.0 +Arizona Snowbowl,Arizona,Arizona,11500,2300,9200,0,1,0,2,2,1,2,8,55.0,4.0,2.0,777.0,104.0,122.0,81.0,260.0,89.0,122.0, +Sunrise Park Resort,Arizona,Arizona,11100,1800,9200,0,0,1,2,3,1,0,7,65.0,2.0,1.2,800.0,80.0,115.0,49.0,250.0,78.0,104.0,80.0 +Yosemite Ski & Snowboard Area,Northern California,California,7800,600,7200,0,0,0,0,1,3,1,5,10.0,2.0,0.4,88.0,,110.0,84.0,300.0,47.0,107.0, +Dodge Ridge,Sierra Nevada,California,8200,1600,6600,0,0,0,1,2,5,4,12,67.0,5.0,2.0,862.0,,,69.0,350.0,78.0,140.0, +Donner Ski Ranch,Sierra Nevada,California,8012,750,7031,0,0,0,0,1,5,2,8,52.0,2.0,1.5,505.0,60.0,163.0,82.0,400.0,75.0,170.0, +Mammoth Mountain Ski Area,Sierra Nevada,California,11053,3100,7953,3,2,9,1,6,4,0,25,154.0,7.0,3.0,3500.0,700.0,243.0,66.0,400.0,159.0,, +Mt. Shasta Ski Park,Sierra Nevada,California,6890,1435,5500,0,0,0,0,3,0,1,4,32.0,2.0,1.1,425.0,225.0,140.0,34.0,300.0,59.0,130.0, +Mountain High,Sierra Nevada,California,8200,1600,6600,0,0,2,2,2,5,3,14,59.0,1.0,1.6,290.0,275.0,118.0,95.0,108.0,84.0,150.0,73.0 +Mt. Baldy,Sierra Nevada,California,8600,2100,6500,0,0,0,0,0,4,0,4,26.0,,2.5,400.0,80.0,175.0,67.0,178.0,69.0,200.0, +Ski China Peak,Sierra Nevada,California,8709,1679,7030,0,0,0,1,4,2,4,11,45.0,1.0,2.2,1400.0,150.0,140.0,62.0,300.0,83.0,144.0, +Snow Valley,Sierra Nevada,California,7841,1041,6800,0,0,0,0,5,6,1,12,28.0,6.0,1.2,240.0,188.0,111.0,82.0,160.0,79.0,143.0,164.0 +Soda Springs,Sierra Nevada,California,7352,652,6700,0,0,0,0,1,1,2,4,18.0,,0.4,200.0,20.0,150.0,83.0,400.0,50.0,144.0, +Sugar Bowl Resort,Sierra Nevada,California,8383,1500,6883,1,0,5,3,1,0,2,12,105.0,3.0,3.0,1650.0,375.0,151.0,80.0,500.0,125.0,150.0, +Tahoe Donner,Sierra Nevada,California,7350,600,6750,0,0,0,1,1,0,3,5,14.0,2.0,1.0,120.0,,150.0,48.0,400.0,69.0,144.0, +Arapahoe Basin Ski Area,Colorado,Colorado,13050,2530,10780,0,0,1,2,1,2,3,9,145.0,3.0,1.5,1428.0,125.0,230.0,73.0,350.0,85.0,233.0, +Aspen / Snowmass,Colorado,Colorado,12510,4406,8104,3,1,15,4,3,5,9,40,336.0,10.0,5.3,5517.0,658.0,138.0,72.0,300.0,179.0,138.0, +Copper Mountain Resort,Colorado,Colorado,12313,2738,9712,1,2,4,0,4,4,9,24,150.0,6.0,1.7,2527.0,364.0,164.0,47.0,300.0,158.0,164.0, +Purgatory,Colorado,Colorado,10822,2029,8793,0,1,2,0,3,3,3,12,101.0,9.0,1.3,1605.0,250.0,130.0,54.0,260.0,89.0,130.0, +Howelsen Hill,Colorado,Colorado,7136,440,6696,0,0,0,0,0,1,3,4,17.0,1.0,6.0,50.0,25.0,100.0,104.0,150.0,25.0,100.0,10.0 +Loveland,Colorado,Colorado,13010,2210,10800,0,0,1,3,3,2,1,10,94.0,1.0,2.0,1800.0,240.0,205.0,82.0,422.0,79.0,184.0, +Monarch Mountain,Colorado,Colorado,11952,1162,10790,0,0,0,1,0,4,2,7,64.0,2.0,1.0,800.0,,143.0,80.0,350.0,89.0,136.0, +Powderhorn,Colorado,Colorado,9850,1650,8200,0,0,1,0,0,2,2,5,42.0,2.0,1.5,1600.0,42.0,111.0,53.0,250.0,71.0,110.0, +Silverton Mountain,Colorado,Colorado,13487,3087,10400,0,0,0,0,0,1,0,1,,,1.5,1819.0,,175.0,17.0,400.0,79.0,181.0, +Cooper,Colorado,Colorado,11700,1200,10500,0,0,0,0,1,1,2,4,41.0,1.0,1.0,400.0,,130.0,74.0,260.0,56.0,130.0, +Ski Granby Ranch,Colorado,Colorado,9202,1000,8202,0,0,2,0,1,1,1,5,40.0,1.0,0.6,406.0,170.0,116.0,36.0,220.0,84.0,92.0,100.0 +Sunlight Mountain Resort,Colorado,Colorado,9895,2010,7885,0,0,0,0,1,2,0,3,67.0,1.0,2.5,680.0,30.0,100.0,53.0,250.0,65.0,135.0, +Telluride,Colorado,Colorado,13150,4425,8725,2,0,6,1,2,2,4,17,148.0,3.0,4.6,2000.0,220.0,131.0,47.0,280.0,139.0,137.0, +Wolf Creek Ski Area,Colorado,Colorado,11904,1604,10300,0,0,3,1,2,1,3,10,120.0,,2.0,1600.0,5.0,130.0,80.0,430.0,72.0,150.0, +Mohawk Mountain,Connecticut,Connecticut,1600,650,950,0,0,0,0,5,0,3,8,25.0,,1.5,107.0,100.0,,72.0,92.0,65.0,110.0,64.0 +Mount Southington Ski Area,Connecticut,Connecticut,525,425,100,0,0,0,0,2,2,3,7,14.0,2.0,0.3,51.0,51.0,63.0,55.0,80.0,60.0,95.0,51.0 +Powder Ridge Park,Connecticut,Connecticut,720,550,170,0,0,0,0,1,2,2,5,19.0,4.0,0.5,80.0,68.0,80.0,60.0,80.0,55.0,100.0,40.0 +Ski Sundown,Connecticut,Connecticut,1075,625,450,0,0,0,0,3,0,2,5,16.0,2.0,1.0,70.0,70.0,84.0,50.0,45.0,62.0,95.0,66.0 +Woodbury Ski Area,Connecticut,Connecticut,730,300,430,0,0,0,0,0,1,4,5,12.0,2.0,0.2,50.0,50.0,126.0,57.0,70.0,42.0,180.0,35.0 +Bogus Basin,Idaho,Idaho,7582,1800,5800,0,0,3,0,1,3,4,11,91.0,3.0,1.5,2600.0,,134.0,77.0,250.0,64.0,130.0,165.0 +Brundage Mountain Resort,Idaho,Idaho,7640,1800,5840,0,0,1,0,4,0,1,6,51.0,2.0,3.2,1920.0,2.0,126.0,58.0,320.0,70.0,, +Kelly Canyon Ski Area,Idaho,Idaho,6600,1000,5600,0,0,0,0,0,4,2,6,51.0,1.0,1.3,740.0,,,62.0,200.0,42.0,, +Lookout Pass Ski Area,Idaho,Idaho,5650,1150,4500,0,0,0,0,1,3,0,4,35.0,2.0,1.5,540.0,,113.0,84.0,400.0,47.0,140.0, +Magic Mountain Ski Area,Idaho,Idaho,7200,700,6500,0,0,0,0,0,1,2,3,11.0,,1.5,280.0,,65.0,81.0,180.0,32.0,70.0, +Pebble Creek Ski Area,Idaho,Idaho,8560,2200,6360,0,0,0,0,3,0,0,3,54.0,2.0,1.3,1100.0,30.0,85.0,70.0,250.0,47.0,91.0,30.0 +Schweitzer,Idaho,Idaho,6400,2400,4000,0,1,2,0,1,3,2,9,92.0,3.0,2.1,2900.0,47.0,136.0,56.0,300.0,81.0,,100.0 +Silver Mountain,Idaho,Idaho,6300,2200,4100,1,0,0,1,2,2,1,7,80.0,2.0,2.5,1600.0,225.0,130.0,29.0,300.0,62.0,193.0,20.0 +Soldier Mountain Ski Area,Idaho,Idaho,7200,1400,5800,0,0,0,0,0,2,1,3,36.0,,0.4,1142.0,,60.0,71.0,,43.0,, +Tamarack Resort,Idaho,Idaho,7700,2800,4900,0,0,2,2,0,0,2,6,48.0,3.0,1.5,1020.0,200.0,,15.0,300.0,71.0,150.0, +Chestnut Mountain Resort,Illinois,Illinois,1040,475,565,0,0,0,2,4,0,3,9,22.0,3.0,0.2,139.0,139.0,87.0,60.0,50.0,55.0,112.0,139.0 +Ski Snowstar Winter Sports Park,Illinois,Illinois,790,262,528,0,0,0,2,0,2,2,6,15.0,1.0,0.8,28.0,28.0,56.0,38.0,38.0,35.0,86.0,28.0 +Villa Olivia,Illinois,Illinois,500,180,320,0,0,0,1,0,0,6,7,7.0,1.0,0.1,15.0,15.0,,53.0,25.0,40.0,70.0,15.0 +Paoli Peaks,Indiana,Indiana,900,300,600,0,0,1,1,3,1,2,8,15.0,2.0,0.4,65.0,65.0,75.0,41.0,18.0,45.0,80.0,65.0 +Perfect North Slopes,Indiana,Indiana,800,400,400,0,0,0,2,3,0,6,11,23.0,2.0,1.0,100.0,100.0,82.0,39.0,24.0,52.0,90.0,100.0 +Mt. Crescent Ski Area,Iowa,Iowa,1500,300,1200,0,0,0,1,0,1,0,2,11.0,1.0,0.2,50.0,50.0,,58.0,30.0,39.0,,50.0 +Seven Oaks,Iowa,Iowa,975,275,800,0,0,0,0,2,0,2,4,11.0,2.0,1.0,35.0,35.0,100.0,22.0,40.0,40.0,100.0,35.0 +Sundown Mountain,Iowa,Iowa,1059,475,584,0,0,0,1,1,2,2,6,21.0,2.0,0.6,55.0,55.0,,46.0,45.0,46.0,,55.0 +Big Squaw Mountain Ski Resort,Maine,Maine,3200,660,1750,0,0,0,0,1,0,0,1,29.0,,0.8,,,67.0,6.0,,30.0,58.0, +Camden Snow Bowl,Maine,Maine,1080,850,150,0,0,0,0,1,1,1,3,26.0,2.0,1.0,100.0,48.0,68.0,83.0,69.0,43.0,70.0,48.0 +Lost Valley,Maine,Maine,495,240,255,0,0,0,0,0,2,2,4,22.0,2.0,0.3,45.0,45.0,87.0,58.0,50.0,55.0,104.0,45.0 +Mt. Abram Ski Resort,Maine,Maine,2250,1150,1050,0,0,0,0,0,2,3,5,54.0,1.0,0.5,640.0,175.0,120.0,59.0,125.0,49.0,120.0, +New Hermon Mountain,Maine,Maine,450,350,100,0,0,0,0,0,1,2,3,20.0,,1.9,70.0,70.0,102.0,55.0,90.0,32.0,117.0,45.0 +Shawnee Peak,Maine,Maine,1900,1350,600,0,0,0,1,2,1,2,6,43.0,3.0,0.8,239.0,234.0,97.0,81.0,110.0,75.0,103.0,110.0 +Sugarloaf,Maine,Maine,4237,2820,1417,0,0,2,3,1,5,2,13,162.0,4.0,3.5,1240.0,618.0,159.0,68.0,200.0,99.0,155.0, +Sunday River,Maine,Maine,3140,2340,800,1,0,4,5,3,1,1,15,135.0,5.0,3.0,870.0,552.0,165.0,60.0,167.0,105.0,169.0,140.0 +Wisp,Maryland,Maryland,3115,700,2415,0,0,0,2,5,0,5,12,34.0,3.0,1.5,172.0,118.0,121.0,64.0,100.0,79.0,120.0,118.0 +Berkshire East,Massachusetts,Massachusetts,1720,1180,540,0,0,0,2,1,1,2,6,47.0,2.0,2.0,180.0,165.0,120.0,68.0,120.0,68.0,120.0,80.0 +Blandford Ski Area,Massachusetts,Massachusetts,1685,465,1035,0,0,0,0,0,3,2,5,29.0,2.0,0.5,132.0,70.0,,83.0,50.0,45.0,,70.0 +Blue Hills Ski Area,Massachusetts,Massachusetts,635,309,326,0,0,0,0,0,1,3,4,16.0,1.0,,60.0,60.0,,19.0,,45.0,, +Bousquet Ski Area,Massachusetts,Massachusetts,1875,750,1125,0,0,0,0,0,3,2,5,23.0,1.0,1.0,200.0,98.0,,19.0,83.0,49.0,,100.0 +Bradford Ski Area,Massachusetts,Massachusetts,1548,248,1300,0,0,0,0,2,0,8,10,15.0,1.0,0.3,48.0,48.0,,71.0,,55.0,, +Jiminy Peak,Massachusetts,Massachusetts,2380,1150,1230,0,1,0,2,3,1,2,9,45.0,3.0,2.0,167.0,163.0,121.0,71.0,90.0,81.0,120.0,104.0 +Nashoba Valley,Massachusetts,Massachusetts,440,240,200,0,0,0,0,3,1,7,11,17.0,2.0,0.5,52.0,52.0,112.0,55.0,55.0,58.0,126.0,52.0 +Otis Ridge Ski Area,Massachusetts,Massachusetts,1700,400,1300,0,0,0,0,0,1,3,4,11.0,1.0,1.0,60.0,55.0,106.0,73.0,70.0,40.0,106.0,35.0 +Ski Butternut,Massachusetts,Massachusetts,1800,1000,800,0,0,0,3,1,1,6,11,22.0,2.0,1.5,110.0,110.0,107.0,56.0,115.0,60.0,110.0, +Wachusett Mountain Ski Area,Massachusetts,Massachusetts,2006,1000,1006,0,0,3,0,1,0,4,8,27.0,2.0,1.5,112.0,112.0,,57.0,100.0,71.0,120.0,104.0 +Alpine Valley Ski Area,Michigan,Michigan,500,240,126,0,0,0,1,2,5,6,14,25.0,3.0,0.2,100.0,100.0,,57.0,20.0,47.0,,100.0 +Apple Mountain,Michigan,Michigan,820,220,600,0,0,0,1,0,0,5,6,12.0,,,80.0,42.0,,58.0,52.0,35.0,,80.0 +Big Powderhorn Mountain,Michigan,Michigan,1800,600,1200,0,0,0,0,0,9,1,10,45.0,2.0,1.0,253.0,228.0,100.0,55.0,214.0,69.0,108.0, +Bittersweet Ski Area,Michigan,Michigan,850,350,450,0,0,0,1,7,0,4,12,20.0,2.0,0.2,100.0,100.0,80.0,36.0,90.0,48.0,,100.0 +Big Snow Resort - Blackjack,Michigan,Michigan,850,465,385,0,0,0,0,0,4,2,6,26.0,2.0,1.0,170.0,86.0,95.0,42.0,210.0,65.0,115.0, +Boyne Highlands,Michigan,Michigan,1290,552,745,0,0,1,3,4,0,2,10,55.0,4.0,1.2,435.0,400.0,97.0,56.0,140.0,98.0,120.0,150.0 +Caberfae Peaks,Michigan,Michigan,1569,485,1060,0,0,0,1,2,1,1,5,34.0,2.0,1.2,200.0,200.0,118.0,82.0,140.0,49.0,130.0,150.0 +Cannonsburg,Michigan,Michigan,1100,250,850,0,0,0,1,1,1,7,10,21.0,5.0,0.1,100.0,,100.0,54.0,100.0,37.0,100.0, +Crystal Mountain,Michigan,Michigan,1132,375,757,0,0,1,3,2,0,2,8,58.0,3.0,0.3,102.0,96.0,120.0,63.0,132.0,64.0,135.0,56.0 +Big Snow Resort - Indianhead Mountain,Michigan,Michigan,1935,638,1297,0,0,0,1,1,5,2,9,32.0,2.0,1.0,240.0,150.0,120.0,60.0,204.0,49.0,120.0, +Mont Ripley,Michigan,Michigan,1140,440,700,0,0,0,0,0,2,2,4,25.0,2.0,0.8,112.0,112.0,114.0,83.0,275.0,49.0,100.0,100.0 +Mount Bohemia,Michigan,Michigan,1500,900,600,0,0,0,0,1,1,0,2,,,2.3,585.0,,83.0,19.0,273.0,68.0,100.0, +Mt. Brighton,Michigan,Michigan,1330,230,1100,0,0,0,2,3,0,8,13,25.0,5.0,0.1,130.0,130.0,111.0,59.0,60.0,59.0,100.0,130.0 +Mt. Holiday Ski Area,Michigan,Michigan,440,200,240,0,0,0,0,0,2,2,4,12.0,,0.1,45.0,45.0,100.0,70.0,120.0,34.0,90.0,45.0 +Mount Holly,Michigan,Michigan,1105,350,755,0,0,1,2,3,1,6,13,19.0,,0.1,100.0,100.0,,63.0,42.0,45.0,102.0,100.0 +Mulligan's Hollow Ski Bowl,Michigan,Michigan,700,130,570,0,0,0,0,0,0,5,5,6.0,,0.2,10.0,10.0,,19.0,60.0,20.0,,10.0 +Norway Mountain,Michigan,Michigan,1335,500,835,0,0,0,0,1,2,3,6,17.0,1.0,1.4,186.0,186.0,110.0,45.0,100.0,45.0,110.0,40.0 +Nubs Nob Ski Area,Michigan,Michigan,1338,427,911,0,0,0,3,4,2,1,10,53.0,3.0,0.9,248.0,248.0,133.0,61.0,135.0,85.0,130.0,160.0 +Pine Mountain,Michigan,Michigan,1650,500,1150,0,0,0,0,1,2,1,4,28.0,1.0,0.5,160.0,160.0,110.0,80.0,60.0,45.0,126.0,80.0 +Schuss Mountain at Shanty Creek,Michigan,Michigan,1125,450,675,0,0,0,5,0,0,3,8,42.0,3.0,1.0,70.0,70.0,94.0,57.0,160.0,78.0,111.0,70.0 +Ski Brule,Michigan,Michigan,1860,500,1360,0,0,0,0,0,5,7,12,17.0,3.0,1.0,150.0,150.0,164.0,62.0,150.0,49.0,165.0,40.0 +Snow Snake Mountain Ski Area,Michigan,Michigan,1230,210,1020,0,0,0,0,1,0,5,6,12.0,2.0,0.0,40.0,40.0,,72.0,,35.0,,40.0 +Swiss Valley,Michigan,Michigan,1200,225,975,0,0,0,2,1,0,4,7,11.0,2.0,0.1,60.0,60.0,89.0,51.0,60.0,42.0,80.0,60.0 +The Homestead,Michigan,Michigan,900,320,580,0,0,0,0,2,1,2,5,15.0,1.0,0.2,16.0,16.0,47.0,34.0,150.0,50.0,42.0,16.0 +Timber Ridge,Michigan,Michigan,850,250,600,0,0,0,1,1,2,4,8,16.0,2.0,0.3,50.0,50.0,80.0,58.0,,45.0,,50.0 +Afton Alps,Minnesota,Minnesota,1530,350,1180,0,0,0,1,3,14,4,22,48.0,5.0,0.5,250.0,250.0,135.0,56.0,60.0,60.0,135.0,250.0 +Andes Tower Hills Ski Area,Minnesota,Minnesota,1620,290,1330,0,0,0,1,2,0,3,6,15.0,2.0,0.2,35.0,35.0,100.0,38.0,55.0,45.0,110.0,35.0 +Buck Hill,Minnesota,Minnesota,1225,309,919,0,0,0,2,1,0,5,8,16.0,,0.2,45.0,45.0,115.0,65.0,60.0,47.0,112.0,45.0 +Buena Vista Ski Area,Minnesota,Minnesota,1510,230,1280,0,0,0,0,2,2,2,6,17.0,,0.3,30.0,30.0,57.0,70.0,78.0,44.0,60.0,30.0 +Coffee Mill Ski & Snowboard Resort,Minnesota,Minnesota,1150,425,725,0,0,0,0,0,2,1,3,14.0,1.0,1.0,40.0,35.0,57.0,39.0,48.0,37.0,56.0,35.0 +Elm Creek Winter Recreation Area,Minnesota,Minnesota,928,60,868,0,0,0,0,0,0,3,3,3.0,,1.0,15.0,20.0,105.0,13.0,45.0,17.0,102.0,15.0 +Giants Ridge Resort,Minnesota,Minnesota,1972,500,1472,0,0,1,1,1,2,2,7,35.0,2.0,0.8,202.0,202.0,120.0,35.0,85.0,58.0,125.0,121.0 +Hyland Ski & Snowboard Area,Minnesota,Minnesota,1075,175,900,0,0,0,2,1,0,5,8,14.0,1.0,1.0,35.0,35.0,110.0,61.0,55.0,35.34,115.0,35.0 +Lutsen Mountains,Minnesota,Minnesota,1688,825,800,1,1,0,0,1,4,1,8,62.0,2.0,2.0,393.0,231.0,135.0,71.0,120.0,84.0,127.0, +Mount Kato Ski Area,Minnesota,Minnesota,540,240,300,0,0,0,5,0,3,2,10,19.0,4.0,1.0,55.0,55.0,115.0,43.0,50.0,46.0,120.0,50.0 +Powder Ridge Ski Area,Minnesota,Minnesota,790,300,500,0,0,0,1,0,2,3,6,15.0,4.0,,60.0,60.0,97.0,58.0,45.0,48.0,113.0,60.0 +Spirit Mountain,Minnesota,Minnesota,1320,700,620,0,0,1,1,2,1,2,7,22.0,3.0,1.0,175.0,175.0,100.0,45.0,100.0,59.0,125.0,144.0 +Welch Village,Minnesota,Minnesota,1060,360,700,0,0,0,3,1,4,2,10,50.0,1.0,0.8,125.0,125.0,114.0,54.0,45.0,60.0,122.0,100.0 +Wild Mountain Ski & Snowboard Area,Minnesota,Minnesota,1113,300,813,0,0,0,4,0,0,4,8,26.0,4.0,0.9,100.0,100.0,130.0,47.0,50.0,55.0,140.0,100.0 +Hidden Valley Ski Area,Missouri,Missouri,2566,310,2316,0,0,0,2,2,0,3,7,17.0,,0.1,30.0,30.0,,37.0,26.0,49.0,,17.0 +Snow Creek,Missouri,Missouri,1100,300,800,0,0,0,0,2,1,2,5,14.0,2.0,0.3,30.0,30.0,69.0,33.0,20.0,47.0,85.0,30.0 +Blacktail Mountain Ski Area,Montana,Montana,6676,1440,5236,0,0,0,0,1,2,1,4,27.0,,0.7,1000.0,,,21.0,250.0,42.0,, +Bridger Bowl,Montana,Montana,8700,2600,6100,0,0,0,1,6,1,3,11,105.0,2.0,1.5,2000.0,100.0,122.0,64.0,350.0,63.0,133.0, +Discovery Ski Area,Montana,Montana,8150,2380,5770,0,0,0,0,5,2,1,8,74.0,1.0,1.5,2400.0,25.0,116.0,46.0,225.0,49.0,116.0, +Great Divide,Montana,Montana,7330,1580,5750,0,0,0,0,0,5,1,6,110.0,6.0,3.0,1600.0,150.0,94.0,78.0,180.0,48.0,100.0,100.0 +Lost Trail - Powder Mtn,Montana,Montana,8200,1800,6400,0,0,0,0,0,5,3,8,69.0,2.0,2.5,1800.0,,84.0,81.0,325.0,46.0,80.0, +Maverick Mountain,Montana,Montana,8520,2020,6500,0,0,0,0,0,1,1,2,22.0,,1.3,255.0,,,83.0,160.0,39.0,, +Montana Snowbowl,Montana,Montana,7600,2600,5000,0,0,0,0,0,2,2,4,37.0,,1.2,950.0,20.0,,58.0,300.0,50.0,,10.0 +Red Lodge Mountain,Montana,Montana,9416,2400,7016,0,0,2,0,1,3,1,7,70.0,2.0,2.5,1635.0,496.0,142.0,59.0,250.0,67.0,136.0, +Showdown Montana,Montana,Montana,8200,1400,6800,0,0,0,0,1,2,1,4,36.0,1.0,1.8,640.0,,86.0,83.0,250.0,47.0,85.0, +Teton Pass Ski Resort,Montana,Montana,7200,1010,6190,0,0,0,0,0,1,2,3,43.0,1.0,3.0,330.0,,40.0,54.0,250.0,39.0,150.0, +Big Mountain Resort,Montana,Montana,6817,2353,4464,0,0,3,2,6,0,3,14,105.0,4.0,3.3,3000.0,600.0,123.0,72.0,333.0,81.0,123.0,600.0 +Diamond Peak,Sierra Nevada,Nevada,8540,1840,6700,0,0,1,2,0,3,1,7,30.0,3.0,2.5,655.0,492.0,100.0,53.0,300.0,99.0,122.0, +Elko SnoBowl,Nevada,Nevada,7000,700,6300,0,0,0,0,0,1,1,2,10.0,,1.0,60.0,2.0,19.0,23.0,24.0,20.0,30.0, +Lee Canyon,Nevada,Nevada,11289,860,8510,0,0,0,2,1,0,0,3,24.0,1.0,0.3,195.0,50.0,144.0,56.0,161.0,70.0,150.0, +Mt. Rose - Ski Tahoe,Sierra Nevada,Nevada,9700,1800,8260,0,2,0,2,2,0,2,8,65.0,5.0,2.5,1200.0,330.0,152.0,55.0,350.0,135.0,150.0, +Attitash,New Hampshire,New Hampshire,2350,1750,600,0,0,2,1,3,2,1,9,68.0,3.0,3.0,311.0,240.0,115.0,54.0,120.0,89.0,130.0, +Black Mountain,New Hampshire,New Hampshire,2350,1100,1250,0,0,0,0,1,1,3,5,45.0,,1.6,143.0,120.0,110.0,84.0,125.0,59.0,107.0, +Bretton Woods,New Hampshire,New Hampshire,3100,1500,1600,0,0,4,1,1,0,3,9,63.0,2.0,2.0,464.0,427.0,180.0,46.0,200.0,99.0,180.0,45.0 +Cannon Mountain,New Hampshire,New Hampshire,4080,2180,1900,1,0,1,2,3,1,3,11,97.0,3.0,2.3,285.0,192.0,124.0,81.0,160.0,79.0,143.0, +Crotched Mountain,New Hampshire,New Hampshire,2066,1016,1050,0,0,1,1,1,1,1,5,25.0,3.0,1.2,100.0,100.0,105.0,16.0,105.0,69.0,100.0,100.0 +Dartmouth Skiway,New Hampshire,New Hampshire,1943,969,974,0,0,0,1,0,1,2,4,28.0,1.0,1.1,107.0,54.0,104.0,63.0,100.0,50.0,105.0, +Gunstock,New Hampshire,New Hampshire,2300,1400,900,0,0,1,2,2,0,1,6,55.0,4.0,1.5,227.0,176.0,106.0,82.0,120.0,92.0,,60.0 +King Pine,New Hampshire,New Hampshire,850,350,500,0,0,0,0,3,0,3,6,17.0,2.0,0.3,48.0,45.0,105.0,57.0,120.0,58.0,107.0,23.0 +Mount Sunapee,New Hampshire,New Hampshire,2743,1510,1233,0,0,2,1,2,1,4,10,66.0,4.0,0.8,232.0,215.0,130.0,71.0,100.0,93.0,136.0, +Pats Peak,New Hampshire,New Hampshire,1460,770,690,0,0,0,0,4,2,5,11,28.0,3.0,1.5,115.0,115.0,109.0,56.0,100.0,72.0,112.0,93.0 +Ragged Mountain Resort,New Hampshire,New Hampshire,2250,1250,1000,0,1,1,0,1,0,3,6,57.0,3.0,0.7,250.0,200.0,,54.0,100.0,84.0,140.0, +Waterville Valley,New Hampshire,New Hampshire,4004,2020,1984,0,0,2,0,2,3,4,11,62.0,4.0,1.9,265.0,220.0,142.0,54.0,148.0,93.0,142.0, +Whaleback Mountain,New Hampshire,New Hampshire,1800,700,1100,0,0,0,0,0,1,3,4,30.0,1.0,1.0,85.0,60.0,105.0,64.0,110.0,45.0,105.0,55.0 +Wildcat Mountain,New Hampshire,New Hampshire,4062,2112,1950,0,0,1,0,3,0,1,5,48.0,,2.8,225.0,200.0,156.0,61.0,200.0,89.0,150.0, +Mountain Creek Resort,New Jersey,New Jersey,1480,1040,440,1,0,2,2,1,1,3,10,46.0,3.0,2.0,167.0,167.0,90.0,54.0,65.0,79.99,100.0,167.0 +Angel Fire Resort,New Mexico,New Mexico,10677,2077,8600,0,0,2,0,0,3,2,7,81.0,3.0,3.0,560.0,230.0,101.0,53.0,210.0,77.0,101.0,50.0 +Enchanted Forest Ski Area,New Mexico,New Mexico,10078,400,9820,0,0,0,0,0,0,0,0,33.0,,2.5,600.0,,130.0,34.0,240.0,20.0,140.0, +Pajarito Mountain Ski Area,New Mexico,New Mexico,10441,1410,9031,0,0,0,1,1,3,1,6,45.0,2.0,0.6,750.0,35.0,89.0,62.0,163.0,49.0,117.0, +Red River,New Mexico,New Mexico,10350,1600,8750,0,0,0,1,3,1,2,7,63.0,3.0,2.5,209.0,,110.0,60.0,214.0,79.0,, +Sandia Peak,New Mexico,New Mexico,10378,1700,8678,0,0,0,0,0,4,1,5,39.0,1.0,2.0,200.0,30.0,32.0,82.0,100.0,55.0,38.0, +Sipapu Ski Resort,New Mexico,New Mexico,9255,1055,8200,0,0,0,1,2,0,3,6,42.0,4.0,0.5,200.0,140.0,127.0,67.0,190.0,47.0,143.0, +Ski Apache,New Mexico,New Mexico,11500,1900,9600,1,0,0,2,6,0,2,11,55.0,3.0,2.0,750.0,270.0,133.0,58.0,185.0,74.0,124.0, +Ski Santa Fe,New Mexico,New Mexico,12075,1725,10350,0,0,0,1,2,2,2,7,83.0,1.0,3.0,660.0,275.0,107.0,73.0,225.0,80.0,130.0, +Taos Ski Valley,New Mexico,New Mexico,12481,3281,9200,1,0,1,3,4,1,4,14,111.0,1.0,5.0,1294.0,647.0,137.0,64.0,300.0,110.0,136.0, +Belleayre,New York,New York,3429,1404,2025,1,0,1,1,1,2,2,8,50.0,2.0,2.2,175.0,168.0,154.0,70.0,130.0,72.0,150.0, +Brantling Ski Slopes,New York,New York,850,250,600,0,0,0,0,0,0,5,5,10.0,,0.1,20.0,16.0,,19.0,110.0,32.0,, +Bristol Mountain,New York,New York,2200,1200,1000,0,0,2,1,1,1,1,6,34.0,3.0,2.0,160.0,148.0,129.0,55.0,60.0,76.0,129.0,154.0 +Buffalo Ski Club Ski Area,New York,New York,3429,500,2025,0,0,0,0,0,2,4,6,43.0,1.0,,225.0,150.0,,12.0,,50.0,,100.0 +Catamount,New York,New York,2000,1000,1000,0,0,0,1,1,2,3,7,36.0,5.0,2.0,133.0,130.0,100.0,80.0,108.0,69.0,90.0,55.0 +Dry Hill Ski Area,New York,New York,950,300,650,0,0,0,0,0,1,2,3,7.0,1.0,0.2,35.0,26.0,,55.0,125.0,35.0,,26.0 +Gore Mountain,New York,New York,3600,2537,998,1,0,2,2,3,2,4,14,110.0,7.0,4.5,439.0,338.0,142.0,55.0,150.0,88.0,,15.0 +Greek Peak,New York,New York,2100,952,1148,0,0,0,1,1,4,2,8,56.0,4.0,1.5,220.0,184.0,110.0,62.0,122.0,63.2,113.0,175.0 +Holiday Mountain,New York,New York,1550,400,1150,0,0,0,1,0,1,2,4,9.0,,0.4,37.0,37.0,75.0,60.0,50.0,42.0,85.0,37.0 +Holiday Valley,New York,New York,2250,750,1500,0,0,3,8,0,0,2,13,60.0,5.0,1.0,290.0,266.0,116.0,62.0,180.0,78.0,129.0,189.0 +Holimont Ski Area,New York,New York,2260,700,1560,0,0,1,1,2,3,1,8,53.0,3.0,1.5,135.0,135.0,110.0,57.0,180.0,75.0,119.0, +Hunt Hollow Ski Club,New York,New York,2030,825,1000,0,0,0,0,1,1,1,3,19.0,1.0,1.0,400.0,400.0,,52.0,130.0,58.0,75.0,400.0 +Hunter Mountain,New York,New York,3200,1600,1600,0,2,1,2,2,2,4,13,67.0,4.0,2.0,320.0,320.0,148.0,59.0,120.0,89.0,155.0, +Kissing Bridge,New York,New York,1700,550,1150,0,0,0,2,1,4,3,10,39.0,5.0,0.5,700.0,550.0,103.0,59.0,120.0,60.0,100.0,650.0 +Labrador Mt.,New York,New York,1825,700,1125,0,0,0,0,1,2,1,4,23.0,1.0,1.0,250.0,237.0,,62.0,125.0,59.0,100.0,180.0 +Maple Ski Ridge,New York,New York,1200,450,750,0,0,0,0,1,1,1,3,10.0,,0.3,25.0,25.0,,57.0,,38.0,,20.0 +McCauley Mountain Ski Center,New York,New York,2250,633,1563,0,0,0,0,0,1,4,5,23.0,1.0,0.3,70.0,55.0,105.0,61.0,200.0,30.0,105.0, +Mount Peter Ski Area,New York,New York,1250,450,750,0,0,0,1,0,2,2,5,14.0,1.0,1.0,69.0,69.0,100.0,83.0,50.0,54.0,100.0,69.0 +Oak Mountain,New York,New York,2400,650,1750,0,0,0,1,0,0,3,4,22.0,1.0,1.2,46.0,18.0,,71.0,120.0,40.0,,12.0 +Peek'n Peak,New York,New York,1800,400,1400,0,0,0,0,8,0,2,10,27.0,4.0,2.4,110.0,110.0,110.0,55.0,225.0,63.0,,110.0 +Plattekill Mountain,New York,New York,3500,1100,2400,0,0,0,0,1,1,2,4,38.0,1.0,2.0,110.0,75.0,65.0,26.0,175.0,67.0,65.0, +Royal Mountain Ski Area,New York,New York,1800,550,1250,0,0,0,0,0,3,0,3,14.0,,0.3,35.0,28.0,,63.0,90.0,45.0,, +Snow Ridge,New York,New York,2000,650,1350,0,0,0,0,0,4,2,6,21.0,2.0,0.8,130.0,65.0,73.0,74.0,230.0,48.0,100.0,40.0 +Song Mountain,New York,New York,1940,700,1240,0,0,0,0,1,1,3,5,24.0,,0.4,93.0,70.0,90.0,55.0,125.0,59.0,122.0,70.0 +Swain,New York,New York,1970,650,1320,0,0,0,3,0,1,1,5,35.0,3.0,1.0,130.0,90.0,102.0,72.0,120.0,59.0,100.0,80.0 +Thunder Ridge,New York,New York,1270,500,770,0,0,0,0,1,2,3,6,30.0,,0.4,100.0,100.0,121.0,60.0,,57.0,121.0,100.0 +Titus Mountain,New York,New York,2025,1200,825,0,0,0,0,2,6,2,10,50.0,3.0,2.0,200.0,150.0,101.0,59.0,150.0,49.0,100.0,70.0 +Toggenburg Mountain,New York,New York,2000,700,1300,0,0,0,0,1,1,3,5,22.0,2.0,0.4,85.0,,,66.0,130.0,55.0,122.0,73.0 +West Mountain,New York,New York,1470,1010,460,0,0,0,0,1,2,2,5,29.0,1.0,0.6,124.0,105.0,,58.0,80.0,59.0,120.0,105.0 +Whiteface Mountain Resort,New York,New York,4650,3430,1220,1,0,1,1,2,5,2,12,86.0,5.0,2.1,288.0,220.0,122.0,61.0,168.0,96.0,141.0, +Willard Mountain,New York,New York,1415,505,910,0,0,0,0,0,2,3,5,16.0,,0.4,50.0,35.0,85.0,19.0,80.0,46.0,120.0,35.0 +Windham Mountain,New York,New York,3100,1600,1500,0,1,2,0,3,1,5,12,54.0,6.0,2.0,285.0,280.0,123.0,59.0,105.0,95.0,130.0,56.0 +Woods Valley Ski Area,New York,New York,1400,500,900,0,0,0,0,0,2,4,6,21.0,,0.3,25.0,16.0,,55.0,180.0,39.0,,15.0 +Appalachian Ski Mountain,North Carolina,North Carolina,4000,365,3635,0,0,0,2,0,1,2,5,12.0,3.0,0.5,27.0,27.0,100.0,57.0,50.0,64.0,100.0,27.0 +Cataloochee Ski Area,North Carolina,North Carolina,5400,740,4660,0,0,0,1,1,1,2,5,18.0,2.0,1.0,50.0,50.0,141.0,58.0,50.0,70.0,108.0,50.0 +Sapphire Valley,North Carolina,North Carolina,3450,200,3200,0,0,0,1,0,0,2,3,,1.0,1.0,8.0,8.0,53.0,55.0,24.0,43.0,60.0,8.0 +Beech Mountain Resort,North Carolina,North Carolina,5506,830,4675,0,0,0,3,0,3,2,8,17.0,1.0,1.0,95.0,95.0,98.0,52.0,31.0,68.0,,95.0 +Sugar Mountain Resort,North Carolina,North Carolina,5300,1200,4100,0,1,0,0,1,4,2,8,21.0,1.0,1.5,125.0,125.0,114.0,50.0,77.0,75.0,120.0,95.0 +Wolf Ridge Ski Resort,North Carolina,North Carolina,4700,720,4000,0,0,0,1,0,1,2,4,15.0,1.0,0.6,65.0,65.0,,49.0,65.0,65.0,100.0,60.0 +Alpine Valley,Ohio,Ohio,1500,230,1260,0,0,0,1,2,1,1,5,11.0,1.0,0.2,72.0,72.0,105.0,53.0,120.0,43.0,,72.0 +Boston Mills,Ohio,Ohio,871,264,631,0,0,0,0,4,2,2,8,7.0,2.0,0.3,40.0,40.0,92.0,56.0,51.0,44.0,110.0,40.0 +Brandywine,Ohio,Ohio,871,240,631,0,0,0,2,7,2,5,16,11.0,2.0,0.3,85.0,85.0,92.0,56.0,51.0,44.0,110.0,85.0 +Mad River Mountain,Ohio,Ohio,1460,300,1160,0,0,0,1,2,3,6,12,20.0,4.0,0.5,144.0,144.0,99.0,57.0,36.0,44.0,90.0,144.0 +Snow Trails,Ohio,Ohio,1475,301,1174,0,0,0,0,4,2,3,9,17.0,3.0,0.2,80.0,80.0,101.0,58.0,50.0,52.0,70.0,80.0 +Anthony Lakes Mountain Resort,Oregon,Oregon,8000,900,7100,0,0,0,0,1,0,2,3,21.0,2.0,1.5,1100.0,,75.0,56.0,300.0,40.0,80.0, +Cooper Spur,Mt. Hood,Oregon,4000,350,3500,0,0,0,0,0,1,1,2,10.0,,0.1,50.0,,78.0,66.0,100.0,39.0,90.0, +Hoodoo Ski Area,Oregon,Oregon,5703,1035,4668,0,0,0,3,1,1,0,5,34.0,,0.4,806.0,,80.0,81.0,350.0,59.0,108.0,200.0 +Mt. Ashland,Oregon,Oregon,7533,1150,6383,0,0,0,0,2,2,1,5,23.0,2.0,1.0,220.0,,94.0,55.0,300.0,52.0,92.0,40.0 +Mt. Bachelor,Oregon,Oregon,9065,3365,5700,0,0,8,0,3,0,0,11,101.0,5.0,4.0,4318.0,20.0,185.0,61.0,462.0,99.0,185.0, +Mt. Hood Skibowl,Mt. Hood,Oregon,5100,1500,3600,0,0,0,0,0,4,5,9,65.0,2.0,3.0,960.0,29.0,125.0,82.0,300.0,70.0,144.0,317.0 +Willamette Pass,Oregon,Oregon,6683,1563,5120,0,1,0,0,3,0,1,5,29.0,,2.1,555.0,60.0,3.0,78.0,430.0,60.0,100.0, +Bear Creek Mountain Resort,Pennsylvania,Pennsylvania,1100,510,600,0,0,0,3,1,0,2,6,23.0,3.0,1.0,86.0,86.0,91.0,52.0,30.0,60.0,90.0,86.0 +Ski Big Bear,Pennsylvania,Pennsylvania,1250,650,600,0,0,0,0,0,4,2,6,18.0,1.0,1.5,26.0,26.0,75.0,43.0,69.0,62.0,75.0,26.0 +Big Boulder,Pennsylvania,Pennsylvania,2175,600,1700,0,0,0,0,2,5,1,8,16.0,8.0,,55.0,55.0,76.0,72.0,50.0,65.0,95.0,55.0 +Blue Knob,Pennsylvania,Pennsylvania,3146,1072,2074,0,0,0,0,2,2,2,6,34.0,1.0,2.0,100.0,84.0,87.0,56.0,120.0,68.0,105.0,42.0 +Blue Mountain Resort,Pennsylvania,Pennsylvania,1600,1082,460,0,1,1,1,1,3,9,16,39.0,5.0,1.2,164.0,164.0,122.0,42.0,33.0,65.0,112.0,164.0 +Camelback Mountain Resort,Pennsylvania,Pennsylvania,2100,800,1250,0,0,2,0,3,5,6,16,37.0,5.0,1.0,166.0,166.0,100.0,56.0,50.0,70.0,100.0,160.0 +Elk Mountain Ski Resort,Pennsylvania,Pennsylvania,2693,1000,1693,0,0,0,1,0,5,1,7,27.0,2.0,0.7,180.0,146.0,,60.0,60.0,69.0,100.0,90.0 +Jack Frost,Pennsylvania,Pennsylvania,2000,600,1400,0,0,0,1,2,5,1,9,20.0,1.0,1.0,100.0,100.0,96.0,47.0,50.0,65.0,105.0, +Liberty,Pennsylvania,Pennsylvania,1190,620,570,0,0,0,5,0,0,3,8,16.0,3.0,1.0,100.0,100.0,107.0,54.0,31.0,77.0,97.0,100.0 +Mount Pleasant of Edinboro,Pennsylvania,Pennsylvania,1540,340,1200,0,0,0,0,1,0,1,2,10.0,,0.5,40.0,35.0,75.0,48.0,100.0,33.0,90.0,35.0 +Roundtop Mountain Resort,Pennsylvania,Pennsylvania,1400,600,800,0,0,0,3,2,0,3,8,20.0,2.0,0.4,103.0,103.0,,55.0,30.0,73.0,,100.0 +Seven Springs,Pennsylvania,Pennsylvania,2994,750,2240,0,2,0,3,5,0,4,14,33.0,7.0,1.2,285.0,285.0,99.0,87.0,135.0,87.0,115.0,200.0 +Shawnee Mountain Ski Area,Pennsylvania,Pennsylvania,1350,700,650,0,0,1,1,0,4,4,10,23.0,2.0,1.6,125.0,125.0,100.0,44.0,50.0,65.0,122.0,120.0 +Ski Sawmill,Pennsylvania,Pennsylvania,2215,515,1700,0,0,0,0,1,1,3,5,14.0,1.0,0.1,15.0,13.0,,50.0,24.0,44.0,90.0,15.0 +Tussey Mountain,Pennsylvania,Pennsylvania,1750,520,1230,0,0,0,1,0,1,3,5,8.0,1.0,0.3,38.0,30.0,100.0,39.0,41.0,45.0,100.0,30.0 +Whitetail Resort,Pennsylvania,Pennsylvania,1800,935,865,0,0,1,3,0,2,2,8,23.0,2.0,1.0,120.0,120.0,116.0,28.0,40.0,71.0,100.0,120.0 +Deer Mountain Ski Resort,South Dakota,South Dakota,6850,940,6040,0,0,0,0,1,1,2,4,63.0,2.0,1.6,500.0,50.0,69.0,51.0,200.0,45.0,81.0, +Terry Peak Ski Area,South Dakota,South Dakota,7100,1100,5900,0,0,3,0,1,0,1,5,30.0,1.0,1.2,450.0,225.0,114.0,65.0,150.0,58.0,120.0, +Ober Gatlinburg Ski Resort,Tennessee,Tennessee,3300,600,2700,0,0,0,2,0,1,1,4,10.0,1.0,1.0,,,83.0,44.0,35.0,65.0,94.0, +Alta Ski Area,Salt Lake City,Utah,11068,2538,8530,0,0,3,0,1,2,0,6,116.0,,1.3,2614.0,140.0,150.0,81.0,545.0,116.0,140.0, +Beaver Mountain,Utah,Utah,8600,1600,7232,0,0,0,0,1,3,1,5,48.0,2.0,0.8,464.0,,120.0,81.0,400.0,50.0,120.0, +Brian Head Resort,Utah,Utah,10970,1548,9600,0,0,1,0,6,1,0,8,71.0,2.0,0.6,650.0,216.0,149.0,54.0,360.0,59.0,148.0, +Brighton Resort,Salt Lake City,Utah,10500,1745,8755,0,0,3,1,1,0,2,7,66.0,4.0,1.2,1050.0,200.0,138.0,83.0,500.0,85.0,138.0,200.0 +Deer Valley Resort,Salt Lake City,Utah,9570,3000,6570,1,0,13,0,5,2,0,21,103.0,,2.8,2026.0,660.0,,39.0,300.0,169.0,, +Eagle Point,Utah,Utah,10600,1500,9100,0,0,0,1,1,2,1,5,40.0,1.0,0.9,650.0,,,9.0,400.0,60.0,109.0, +Powder Mountain,Utah,Utah,9422,2522,6900,0,0,1,4,1,0,3,9,167.0,2.0,3.5,8464.0,,120.0,47.0,500.0,88.0,146.0,300.0 +Snowbasin,Utah,Utah,9350,2900,6450,3,1,2,0,3,0,2,11,107.0,4.0,3.5,3000.0,625.0,143.0,79.0,300.0,115.0,138.0, +Snowbird,Salt Lake City,Utah,11000,3240,7760,1,0,6,0,0,4,3,14,170.0,1.0,2.5,2500.0,,188.0,48.0,500.0,125.0,180.0,2.0 +Solitude Mountain Resort,Salt Lake City,Utah,10488,2494,7994,0,0,4,2,1,1,1,9,80.0,,3.0,1200.0,150.0,161.0,62.0,500.0,119.0,148.0, +Sundance,Utah,Utah,8250,2150,6100,0,0,0,2,2,0,1,5,45.0,1.0,0.6,450.0,112.0,128.0,50.0,320.0,80.0,129.0, +Nordic Valley Resort,Utah,Utah,6400,960,5440,0,0,0,0,0,2,2,4,23.0,1.0,0.4,140.0,84.0,105.0,51.0,300.0,50.0,105.0,140.0 +Bolton Valley,Vermont,Vermont,3150,1704,1446,0,0,0,2,0,3,1,6,71.0,3.0,0.6,300.0,90.0,133.0,53.0,300.0,79.0,132.0,50.0 +Bromley Mountain,Vermont,Vermont,3284,1334,1950,0,0,1,1,0,4,3,9,47.0,1.0,2.5,178.0,153.0,,83.0,168.0,91.0,152.0, +Burke Mountain,Vermont,Vermont,3267,2011,1210,0,0,2,1,0,0,3,6,50.0,3.0,2.2,178.0,125.0,110.0,62.0,217.0,73.0,125.0, +Jay Peak,Vermont,Vermont,3968,2153,1815,1,0,1,3,1,1,2,9,79.0,2.0,3.0,385.0,300.0,155.0,64.0,349.0,89.0,160.0, +Killington Resort,Vermont,Vermont,4241,3050,1165,3,1,5,4,3,1,5,22,155.0,6.0,6.0,1515.0,600.0,192.0,61.0,250.0,119.0,, +Magic Mountain,Vermont,Vermont,2850,1500,1350,0,0,0,0,0,3,3,6,50.0,1.0,1.6,205.0,95.0,76.0,59.0,150.0,74.0,80.0, +Pico Mountain,Vermont,Vermont,3967,1967,2000,0,0,2,0,2,2,1,7,59.0,1.0,4.0,260.0,156.0,,82.0,250.0,81.0,, +Smugglers' Notch Resort,Vermont,Vermont,3640,2610,1030,0,0,0,0,0,6,2,8,78.0,6.0,3.0,1000.0,192.0,136.0,63.0,280.0,79.0,135.0, +Sugarbush,Vermont,Vermont,4083,2600,1483,0,0,5,5,2,1,3,16,111.0,4.0,3.0,581.0,406.0,150.0,61.0,250.0,119.0,156.0, +Suicide Six,Vermont,Vermont,1200,650,550,0,0,0,0,0,2,1,3,24.0,,0.4,100.0,50.0,100.0,85.0,90.0,75.0,106.0, +Bryce Resort,Virginia,Virginia,1750,500,1250,0,0,0,1,0,1,5,7,8.0,,0.4,25.0,25.0,100.0,54.0,30.0,68.0,95.0,20.0 +49 Degrees North,Washington,Washington,5774,1851,3932,0,0,0,1,0,5,1,7,89.0,1.0,2.0,2325.0,,101.0,48.0,301.0,62.0,135.0,250.0 +Bluewood,Washington,Washington,5670,1125,4545,0,0,0,0,2,0,1,3,24.0,2.0,2.0,355.0,,70.0,40.0,300.0,47.0,110.0, +Crystal Mountain,Washington,Washington,7012,3100,4400,1,2,2,1,2,2,0,10,57.0,1.0,2.5,2600.0,10.0,,57.0,486.0,99.0,, +Mt. Baker,Washington,Washington,5000,1500,3500,0,0,0,8,0,0,2,10,38.0,,0.7,1000.0,,143.0,66.0,663.0,60.01,165.0, +Mt. Spokane Ski and Snowboard Park,Washington,Washington,5889,2000,4200,0,0,0,0,1,5,1,7,52.0,3.0,0.6,1704.0,,100.0,81.0,300.0,59.0,103.0,45.0 +The Summit at Snoqualmie,Washington,Washington,3865,1025,2840,0,0,3,3,4,10,7,27,112.0,5.0,0.8,1994.0,5.0,120.0,82.0,428.0,95.0,140.0,541.0 +White Pass,Washington,Washington,6550,2050,4500,0,0,2,1,1,2,2,8,45.0,2.0,2.5,1402.0,30.0,148.0,67.0,400.0,69.0,144.0,90.0 +Canaan Valley Resort,West Virginia,West Virginia,4280,850,3430,0,0,0,1,2,0,1,4,47.0,1.0,1.2,95.0,75.0,,48.0,160.0,68.0,93.0, +Snowshoe Mountain Resort,West Virginia,West Virginia,4848,1500,3348,0,0,3,2,6,0,3,14,60.0,5.0,1.5,257.0,257.0,125.0,46.0,180.0,87.0,138.0,86.0 +Timberline Four Seasons,West Virginia,West Virginia,4265,1000,3268,0,0,0,0,2,1,1,4,40.0,1.0,2.0,100.0,100.0,97.0,37.0,150.0,92.0,115.0,27.0 +Winterplace Ski Resort,West Virginia,West Virginia,3600,603,2997,0,0,0,2,3,2,2,9,27.0,2.0,1.2,90.0,90.0,120.0,36.0,100.0,72.0,120.0,74.0 +Alpine Valley Resort,Wisconsin,Wisconsin,1040,388,820,0,0,3,0,3,1,5,12,21.0,3.0,0.2,90.0,90.0,100.0,55.0,80.0,65.0,120.0,90.0 +Bruce Mound,Wisconsin,Wisconsin,1375,375,1000,0,0,0,0,1,0,4,5,12.0,2.0,0.5,40.0,30.0,42.0,71.0,42.0,25.0,42.0,30.0 +Cascade Mountain,Wisconsin,Wisconsin,1280,460,820,0,0,2,2,3,2,3,12,47.0,4.0,1.1,175.0,175.0,120.0,57.0,56.0,64.0,120.0, +Christie Mountain,Wisconsin,Wisconsin,1650,350,1300,0,0,0,0,0,1,5,6,30.0,4.0,0.8,45.0,41.0,92.0,43.0,48.0,38.0,120.0,35.0 +Devils Head,Wisconsin,Wisconsin,995,500,495,0,0,0,3,1,6,2,12,27.0,1.0,1.0,260.0,260.0,110.0,48.0,45.0,65.0,135.0,200.0 +Grand Geneva,Wisconsin,Wisconsin,1086,211,875,0,0,0,0,0,3,3,6,20.0,1.0,0.2,30.0,30.0,90.0,25.0,25.0,49.0,93.0,30.0 +Granite Peak Ski Area,Wisconsin,Wisconsin,1942,700,1242,0,1,2,0,2,0,2,7,75.0,4.0,0.6,220.0,160.0,136.0,82.0,75.0,92.0,135.0,200.0 +Mount La Crosse,Wisconsin,Wisconsin,1110,516,594,0,0,0,0,0,3,1,4,19.0,1.0,0.4,100.0,100.0,115.0,60.0,40.0,56.0,100.0,90.0 +Nordic Mountain,Wisconsin,Wisconsin,1137,265,872,0,0,0,0,1,1,5,7,18.0,4.0,1.0,60.0,60.0,68.0,43.0,80.0,47.0,90.0,60.0 +Sunburst,Wisconsin,Wisconsin,1100,214,866,0,0,0,0,0,3,6,9,13.0,4.0,0.5,37.0,37.0,99.0,59.0,50.0,44.0,115.0,37.0 +Trollhaugen,Wisconsin,Wisconsin,1200,260,920,0,0,0,2,0,1,5,8,24.0,4.0,0.5,86.0,86.0,130.0,69.0,50.0,54.0,120.0,86.0 +Tyrol Basin,Wisconsin,Wisconsin,1160,300,860,0,0,0,0,3,0,2,5,18.0,5.0,0.5,32.0,32.0,112.0,61.0,41.0,48.0,103.0,32.0 +Whitecap Mountain,Wisconsin,Wisconsin,1750,400,1295,0,0,0,1,0,4,0,5,43.0,1.0,1.0,400.0,300.0,105.0,57.0,200.0,60.0,118.0, +Wilmot Mountain,Wisconsin,Wisconsin,1030,230,800,0,0,0,3,2,2,3,10,23.0,2.0,0.5,135.0,135.0,125.0,81.0,70.0,66.0,139.0,135.0 +Grand Targhee Resort,Wyoming,Wyoming,9920,2270,7851,0,0,2,2,0,0,1,5,95.0,1.0,2.7,2602.0,,152.0,50.0,500.0,90.0,152.0, +Hogadon Basin,Wyoming,Wyoming,8000,640,7400,0,0,0,0,0,1,1,2,28.0,1.0,0.6,92.0,32.0,121.0,61.0,80.0,48.0,95.0, +Sleeping Giant Ski Resort,Wyoming,Wyoming,7428,810,6619,0,0,0,0,1,1,1,3,48.0,1.0,1.0,184.0,18.0,61.0,81.0,310.0,42.0,77.0, +Snow King Resort,Wyoming,Wyoming,7808,1571,6237,0,0,0,1,1,1,0,3,32.0,2.0,1.0,400.0,250.0,121.0,80.0,300.0,59.0,123.0,110.0 +Snowy Range Ski & Recreation Area,Wyoming,Wyoming,9663,990,8798,0,0,0,0,1,3,1,5,33.0,2.0,0.7,75.0,30.0,131.0,59.0,250.0,49.0,, +White Pine Ski Area,Wyoming,Wyoming,9500,1100,8400,0,0,0,0,2,0,0,2,25.0,,0.4,370.0,,,81.0,150.0,49.0,, diff --git a/data/state_summary.csv b/data/state_summary.csv new file mode 100644 index 000000000..f6ffb6572 --- /dev/null +++ b/data/state_summary.csv @@ -0,0 +1,36 @@ +state,resorts_per_state,state_total_skiable_area_ac,state_total_days_open,state_total_terrain_parks,state_total_nightskiing_ac,state_population,state_area_sg_miles +Alaska,3,2280.0,345.0,4.0,580.0,731545,665384 +Arizona,2,1577.0,237.0,6.0,80.0,7278717,113990 +California,21,25948.0,2738.0,81.0,587.0,39512223,163695 +Colorado,22,43682.0,3258.0,74.0,428.0,5758736,104094 +Connecticut,5,358.0,353.0,10.0,256.0,3565278,5543 +Idaho,12,16396.0,1136.0,27.0,415.0,1787065,83569 +Illinois,4,191.0,221.0,6.0,191.0,12671821,57914 +Indiana,2,165.0,157.0,4.0,165.0,6732219,36420 +Iowa,3,140.0,100.0,5.0,140.0,3155070,56273 +Maine,9,3216.0,865.0,17.0,388.0,1344212,35380 +Maryland,1,172.0,121.0,3.0,118.0,6045680,12406 +Massachusetts,11,1166.0,671.0,18.0,583.0,6892503,10554 +Michigan,28,4406.0,2389.0,63.0,1946.0,9986857,96714 +Minnesota,14,1560.0,1490.0,29.0,1020.0,5639632,86936 +Missouri,2,60.0,69.0,2.0,47.0,6137428,69707 +Montana,12,21410.0,951.0,27.0,710.0,1068778,147040 +Nevada,4,2110.0,415.0,9.0,0.0,3080156,110572 +New Hampshire,16,3427.0,1847.0,43.0,376.0,1359711,9349 +New Jersey,2,190.0,170.0,4.0,181.0,8882190,8723 +New Mexico,9,5223.0,966.0,18.0,50.0,2096829,121590 +New York,33,5514.0,2384.0,72.0,2836.0,19453561,54555 +North Carolina,6,370.0,506.0,9.0,335.0,10488084,53819 +Ohio,5,421.0,489.0,12.0,421.0,11689100,44826 +Oregon,10,11774.0,1180.0,22.0,1127.0,4217737,98379 +Pennsylvania,19,1888.0,1404.0,47.0,1528.0,12801989,46054 +Rhode Island,1,30.0,100.0,1.0,30.0,1059361,1545 +South Dakota,2,950.0,183.0,3.0,0.0,884659,77116 +Tennessee,1,0.0,83.0,1.0,0.0,6829174,42144 +Utah,13,30508.0,1544.0,26.0,642.0,3205958,84897 +Vermont,15,7239.0,1777.0,50.0,50.0,623989,9616 +Virginia,4,269.0,366.0,4.0,135.0,8535519,42775 +Washington,10,15330.0,1022.0,21.0,1997.0,7614893,71298 +West Virginia,4,542.0,342.0,9.0,187.0,1792147,24230 +Wisconsin,15,1750.0,1519.0,40.0,1065.0,5822434,65496 +Wyoming,8,6523.0,716.0,14.0,110.0,578759,97813 From a379729878588bfec85a449e8b2301f0676702d6 Mon Sep 17 00:00:00 2001 From: jiahui-01 Date: Sun, 30 Apr 2023 22:49:29 -0500 Subject: [PATCH 5/7] Finished the code part3 --- .DS_Store | Bin 0 -> 6148 bytes Notebooks/.DS_Store | Bin 0 -> 6148 bytes Notebooks/03_exploratory_data_analysis.ipynb | 1408 ++++++++++++------ data/ski_data_step3_features.csv | 278 ++++ 4 files changed, 1232 insertions(+), 454 deletions(-) create mode 100644 .DS_Store create mode 100644 Notebooks/.DS_Store create mode 100644 data/ski_data_step3_features.csv diff --git a/.DS_Store b/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..aec78b8a22fa872b0f761d5500ab1c9bdffe324a GIT binary patch literal 6148 zcmeH~PjAyO7{*_BVNDoFJ%F?eQY5ZbDJw8dT(Yh^Z~&nN!2wW7mN24ban+>cP*uu# zd=(_Fd=kD3CwTm4Q<@cVL#XmA*^lklZ!G^@+cgof;XHas)FC1pNvL%b*%}jmk*--w zx9mWf_{Ou8pN1(9Q5PRHW(XJp|2F}#cP)x2pn`(N{yl`R_e+|b#8tnr%%^&ve-Ec= zk{A8{57yeUZfv*hw!LG&_doH{FM?v84};lTQG3OC8eW!z@O2WGVA*vS2Ydal`)KfFxpeHi_a8hx z8Bfylj9)114Cj)x+gdN>3kp~B`RvcKlxJsX6aBX-p>q&9qnPprlW*|XnK<-~$F z#_NCAEwRq^aU43KV>+Y}J%{$N_R;DH@DY8j?F3Xe!1Ug*#Tj7C5HJJ`fjR+kKDbCi zJ*|~ed2}F?PXMTeW@#wPzy45HG(bJAl~T08mKR|3;{!6qX;l-!t9Tbl8hoxOKs~LMQnbL#9|4KMWQM>$CGZ=#*yJMs literal 0 HcmV?d00001 diff --git a/Notebooks/.DS_Store b/Notebooks/.DS_Store new file mode 100644 index 0000000000000000000000000000000000000000..b61761b87bf3caf9d864fcad0d1cbc1742bd5765 GIT binary patch literal 6148 zcmeHKJx{|h5PdF16tR?z1r)(v@wtbp49xujC21>!2u;<3pj&o+48M;F-knWR63PZb z=uSF6$GLkKKSyy4z;z!+M?f1ui!RvMWb=i|ees$#!pJ(&DMx~PBpBckvs$zb{6z(1 z?e=hpW3JkWYxlW+2`0Ekh8sm$)10e%i!tLm9GzmpJLzSX57R79$s;e(Ilc3y#vZUw z?h|s4@x+WwIi!kkElM?|Uc!h4=479LQ{$ylstate_total_terrain_parks\n", " state_total_nightskiing_ac\n", " state_population\n", - " state_area_sq_miles\n", + " state_area_sg_miles\n", " \n", " \n", " \n", @@ -538,7 +538,7 @@ "3 3258.0 74.0 \n", "4 353.0 10.0 \n", "\n", - " state_total_nightskiing_ac state_population state_area_sq_miles \n", + " state_total_nightskiing_ac state_population state_area_sg_miles \n", "0 580.0 731545 665384 \n", "1 80.0 7278717 113990 \n", "2 587.0 39512223 163695 \n", @@ -546,7 +546,7 @@ "4 256.0 3565278 5543 " ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -578,7 +578,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -594,7 +594,16 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "state_summary.rename(columns={\"state_area_sg_miles\":\"state_area_sq_miles\"},inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, "metadata": {}, "outputs": [ { @@ -609,7 +618,7 @@ "Name: state_area_sq_miles, dtype: int64" ] }, - "execution_count": 9, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -634,7 +643,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -649,7 +658,7 @@ "Name: state_population, dtype: int64" ] }, - "execution_count": 10, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -674,7 +683,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -689,7 +698,7 @@ "Name: resorts_per_state, dtype: int64" ] }, - "execution_count": 11, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -714,7 +723,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -729,7 +738,7 @@ "Name: state_total_skiable_area_ac, dtype: float64" ] }, - "execution_count": 12, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -754,7 +763,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -769,7 +778,7 @@ "Name: state_total_nightskiing_ac, dtype: float64" ] }, - "execution_count": 13, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -794,7 +803,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -809,7 +818,7 @@ "Name: state_total_days_open, dtype: float64" ] }, - "execution_count": 14, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -843,7 +852,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 35, "metadata": {}, "outputs": [ { @@ -960,7 +969,7 @@ "4 256.0 0.140242 90.203861 " ] }, - "execution_count": 15, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } @@ -1152,17 +1161,151 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resorts_per_statestate_total_skiable_area_acstate_total_days_openstate_total_terrain_parksstate_total_nightskiing_acresorts_per_100kcapitaresorts_per_100ksq_mile
state
Alaska32280.0345.04.0580.00.4100910.450867
Arizona21577.0237.06.080.00.0274771.754540
California2125948.02738.081.0587.00.05314812.828736
Colorado2243682.03258.074.0428.00.38202821.134744
Connecticut5358.0353.010.0256.00.14024290.203861
\n", + "
" + ], + "text/plain": [ + " resorts_per_state state_total_skiable_area_ac \\\n", + "state \n", + "Alaska 3 2280.0 \n", + "Arizona 2 1577.0 \n", + "California 21 25948.0 \n", + "Colorado 22 43682.0 \n", + "Connecticut 5 358.0 \n", + "\n", + " state_total_days_open state_total_terrain_parks \\\n", + "state \n", + "Alaska 345.0 4.0 \n", + "Arizona 237.0 6.0 \n", + "California 2738.0 81.0 \n", + "Colorado 3258.0 74.0 \n", + "Connecticut 353.0 10.0 \n", + "\n", + " state_total_nightskiing_ac resorts_per_100kcapita \\\n", + "state \n", + "Alaska 580.0 0.410091 \n", + "Arizona 80.0 0.027477 \n", + "California 587.0 0.053148 \n", + "Colorado 428.0 0.382028 \n", + "Connecticut 256.0 0.140242 \n", + "\n", + " resorts_per_100ksq_mile \n", + "state \n", + "Alaska 0.450867 \n", + "Arizona 1.754540 \n", + "California 12.828736 \n", + "Colorado 21.134744 \n", + "Connecticut 90.203861 " + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 1#\n", "#Create a new dataframe, `state_summary_scale` from `state_summary` whilst setting the index to 'state'\n", - "state_summary_scale = state_summary.set_index(___)\n", + "state_summary_scale = state_summary.set_index('state')\n", "#Save the state labels (using the index attribute of `state_summary_scale`) into the variable 'state_summary_index'\n", - "state_summary_index = state_summary_scale.___\n", + "state_summary_index = state_summary_scale.index\n", "#Save the column names (using the `columns` attribute) of `state_summary_scale` into the variable 'state_summary_columns'\n", - "state_summary_columns = state_summary_scale.___\n", + "state_summary_columns = state_summary_scale.columns\n", "state_summary_scale.head()" ] }, @@ -1177,11 +1320,34 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 49, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 35 entries, 0 to 34\n", + "Data columns (total 8 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 state 35 non-null object \n", + " 1 resorts_per_state 35 non-null int64 \n", + " 2 state_total_skiable_area_ac 35 non-null float64\n", + " 3 state_total_days_open 35 non-null float64\n", + " 4 state_total_terrain_parks 35 non-null float64\n", + " 5 state_total_nightskiing_ac 35 non-null float64\n", + " 6 resorts_per_100kcapita 35 non-null float64\n", + " 7 resorts_per_100ksq_mile 35 non-null float64\n", + "dtypes: float64(6), int64(1), object(1)\n", + "memory usage: 2.3+ KB\n" + ] + } + ], "source": [ - "state_summary_scale = scale(state_summary_scale)" + "state_summary_scale = scale(state_summary_scale)\n", + "state_summary.info()" ] }, { @@ -1193,14 +1359,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 52, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 35 entries, 0 to 34\n", + "Data columns (total 7 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 resorts_per_state 35 non-null float64\n", + " 1 state_total_skiable_area_ac 35 non-null float64\n", + " 2 state_total_days_open 35 non-null float64\n", + " 3 state_total_terrain_parks 35 non-null float64\n", + " 4 state_total_nightskiing_ac 35 non-null float64\n", + " 5 resorts_per_100kcapita 35 non-null float64\n", + " 6 resorts_per_100ksq_mile 35 non-null float64\n", + "dtypes: float64(7)\n", + "memory usage: 2.0 KB\n" + ] + } + ], "source": [ "#Code task 2#\n", "#Create a new dataframe from `state_summary_scale` using the column names we saved in `state_summary_columns`\n", - "state_summary_scaled_df = pd.DataFrame(___, columns=___)\n", - "state_summary_scaled_df.head()" + "state_summary_scaled_df = pd.DataFrame(state_summary_scale,columns=state_summary_columns)\n", + "state_summary_scaled_df.info()" ] }, { @@ -1226,13 +1413,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 53, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "resorts_per_state 1.189525e-17\n", + "state_total_skiable_area_ac -1.169699e-17\n", + "state_total_days_open 1.427430e-17\n", + "state_total_terrain_parks 6.344132e-18\n", + "state_total_nightskiing_ac -9.516197e-18\n", + "resorts_per_100kcapita 0.000000e+00\n", + "resorts_per_100ksq_mile 1.586033e-17\n", + "dtype: float64" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 3#\n", "#Call `state_summary_scaled_df`'s `mean()` method\n", - "state_summary_scaled_df.___" + "state_summary_scaled_df.mean()" ] }, { @@ -1251,13 +1456,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 54, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "resorts_per_state 1.014599\n", + "state_total_skiable_area_ac 1.014599\n", + "state_total_days_open 1.014599\n", + "state_total_terrain_parks 1.014599\n", + "state_total_nightskiing_ac 1.014599\n", + "resorts_per_100kcapita 1.014599\n", + "resorts_per_100ksq_mile 1.014599\n", + "dtype: float64" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 4#\n", "#Call `state_summary_scaled_df`'s `std()` method\n", - "state_summary_scaled_df.___" + "state_summary_scaled_df.std()" ] }, { @@ -1271,13 +1494,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 55, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "resorts_per_state 1.0\n", + "state_total_skiable_area_ac 1.0\n", + "state_total_days_open 1.0\n", + "state_total_terrain_parks 1.0\n", + "state_total_nightskiing_ac 1.0\n", + "resorts_per_100kcapita 1.0\n", + "resorts_per_100ksq_mile 1.0\n", + "dtype: float64" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 5#\n", "#Repeat the previous call to `std()` but pass in ddof=0 \n", - "state_summary_scaled_df.___(___)" + "state_summary_scaled_df.std(ddof=0)" ] }, { @@ -1303,7 +1544,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 56, "metadata": {}, "outputs": [], "source": [ @@ -1319,9 +1560,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 57, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAGDCAYAAABjkcdfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABIEUlEQVR4nO3dd5gV5fn/8ffNLktvS+9LlaqIsFgj9l4STeygWGIsiTHFxF+sMdUUTb4qsaBgjcaGir0XpArSEalL7x223b8/ZhYOhy1ncc/Ont3P67r22jP13DNnyj3PPPOMuTsiIiIiUrlqRR2AiIiISE2kJExEREQkAkrCRERERCKgJExEREQkAkrCRERERCKgJExEREQkAkrCKpCZ3WlmT32H6WeZ2dCKi6jimdmtZvZo1HFUNDPbZmZdo46jiJk9YWb3JDjum2Y2PAkxZJmZm1l6CcMXm9mJFf29UjWZWT0ze83MNpvZC1HHI5IoMxtpZrcdwHSdwnNDWjLigmqShJnZxWY2OVxZK8OT0tFRx1Wa4k6y7t7X3T+KKKSEuPsf3f2qqOP4LszsIzPbZxncvaG7L4wqpu/C3U9z99FRx3GgzGyomRWG++9WM5tnZlfEDM8IL3C+MbPtYfI3ysyy4ubzhJnlm1m7Sl+IFFGe5L4Y5wOtgebu/sMKDGs/5U3wD3S5zOwdMzu5vNNVpOKOR7JXeX9bM7vczD6L7efu17r77xOYdp/tzt2XhueGgvJFnbiUT8LM7GbgPuCPBAeITsCDwDkRhlUtlVQiUpWkQoxSrBXu3hBoDNwCPGJmfcJh/wPOBi4GmgCHAFOAE4omNrMGwHnAZuCSSoy7JukMzHf3/PJOWBX3y3CbOQz4uJhhSY/XAil/Dk5EVfz9qwx3T9k/ggPyNuCHpYzzBHBPTPdQICemezHwK+BrYDvwGEEy9yawFXgPaFbctDHTnxh+vhN4KmbYC8AqghPDJ0DfsP81QB6QG8b/Wuy8gHbATiAzZl6HAuuA2mH3CGAOsBF4G+hcwvK/BdwQ12868IPw8/3AMmALwYntmJjx7iQ4AT4VDr8q0WWMWfcPAG+E63IC0C1meF/gXWADsBq4NexfC/gN8C2wHng+dl3ELctQIIfgxL0KeBJoBrwOrA3Xz+tAh3D8PwAFwK5w3f9f2N+B7jHb1Zhw+iXA74BaJXx/ibECDwH/ixn3L8D7gMXEfWv4uy4GLiluuy1tecLhHwFXhZ8vBz4D/haOuwg4LW6feQxYCSwH7gHSwmFp4XTrgIXA9eF6SS9h2RcDvwVmh9/1OFA3HDYTOCtm3NrhfAeU9BvG9VtLUPJyIsG+0LGMY8Ewgu34Z8DMMsatB/w9/G03h+urXjjsbGAWsClcr70P8FiRFa67a4AV4fr+Rcy86hBcPK4I/+4D6sRt078A1oTTXhE37d+ApQT7zciY+EuclpKPO7eE28JWYB5wQjHr7K5wurxw2isJtv3fhetxDcE+0yRu+a8M4/ykmHm2INiWNxEcAz4N5/kkUBj+7tuAXx/g8bQd8CLBtrQI+Gnc958NjC3lWFfavtKdIHnbTLBd/zdmvkcCk8Jhk4Aj4/bVPwCfh8v3NMUcj+LirBvGtT5cV5OA1vHnn/hzUMxvcAXBvrERuBYYTLANb4r9PoJjx+fAP8NhC8NluTycfg0wPGb8M4CvwvW1DLgzZth+vz/BeeDGuGX7GjiX4Jj4z/A7Nof9+5Xy2xYdc7cSHH++H/bvHa7LgnD8TcUcTxPe7mKWIz2cNpPgOLciXJ+vlDbP0o5De9ZBIiNV1T/gVCCfEk4S8Ss/9iAVd2D9kuBg2j7cCKYSJD11gA+AO4qbNn4nYP8EZQTQiL0H3GklxVXMvD4Aro4Zdi8wMvx8LrAg3ODSCQ6EX5Sw/MOAz2O6+4QbStEB/1KgeTifXxAc5OrGLE9e+H21CE5e5V3GDUB2OP+ngefCYY0IT0wEB5lGwJBw2E3hb9IhnO9/gGdLWL6h4Tbwl3DceuHynAfUD+f7AuHO4nsPhFfFzSc2CRsDvBpOmwXMB64s4ftLjDX8/vkEB7FjCA7WHeLi/kc43bEEJ/aDijloJLw84XflAVcTJFU/IThgWDj8lTDGBkArYCLw43DYtcBcoCPBweZDyk7CZsaM/3lMzL9m3xPTOcCMUn7DnPBzLeD74TIcBPwZ+DiBY8H7wF8J9uN8YGAp4z4QrrP24To6MvwNeoa/wUkESeOvCfazjAM4VmSF6+7ZcF33J0gGivbvu8N5tQJaAl8Av4/bNu4O4zgd2MHeBO8+YGy4zhsBrwF/SnDaJ9j3eHgQwQm0XUzc3UpYb3ey/76/AOgKNAReAp6MW/4x4fLXK2Z+fyJIIGuHf8ewdztdTExyUd7jKcF2NAW4HcgIY1wInBIzzkj2bvt3sv+x7hVK3leeBf5fOG5d4OiwfybByfkygmPeRWF385h9dSnBBWh6uNwfEXc8ilvuH4e/cX2C7fUwoHFx64nik7CRYYwnEyQor4TLU7QNHxtz7MgnSNrSCJLOpQT7S51w+q1Aw5htrX+4Dg4muCA4t6TfH/gRMCEm1kMIEssM4JTw92pKkJD1BtoW99uG/X5IkGTXAi4g2G/bxizHZ3Hj75kH5dju2D8JewP4L8GFce2YdVfiPMs8diUyUlX9I7jtsKqMcfb5ASk+CYstgXgReCim+0b2Zrv7TBv/oxF3kIobr2n4YzYpZcOKnddVwAfhZyM4UH4v7H6TmKQg3BB3UExpGMFBa3vRMIKrsFGlrK+NwCExy/NJ3PDyLuOjMcNPB+aGny8CviphPnOIuRoH2hIcIPdLBsLfJJcwcSxhfgOAjTHdH1FCEkZw8NkN9IkZ9mPgowOJlSAB3UBQWnBRXNz5QIOYfs8Dt5W0fSSyPAQHoAUxw+qHy9aGIHnYTcwJMfwdPgw/fwBcGzPsZMpOwmLHPx34NvzcjuCAXXSy+B9hiUYJv2Ehe68ipwEXhsMeIUzcS/l9O4XTDwi73wbuL2HcWgRXuocUM+w24Pm4cZcDQ2OWN9FjRVa47nrFDP8r8Fj4+Vvg9JhhpwCLY9bHztj1TnCyPJzgWLCdfUuUjwAWlTVtcdsVwTa/hqDEsXYZ6/lO9k3C3geui+k+iHDbj1n+rqXM726Ci53uJWxbJ5YybVNKOZ4CQ4ClcdP8Fng8pnsJYQkrccc6yt5XxgAPE1MiHfa/DJgY1288cHnMvnp33PCPKD0JG0GQpB9c1nqi+CSsfczw9cAFcdvwTeHny4FvYob1D6dvHTf9gBLivA/4Z9x3d40ZXodg/+4Rdv8NeDD8fDzBBevhxJUgxf+2JXz3NOCcmOUoLQlLeLuLWY50gmN7IeEFTaLbcll/qX4/ej3QogLuN6+O+byzmO6G5Z2hmaWZ2Z/N7Fsz20Lw40JQbJmI/wFHhJWMv0ewIXwaDusM3G9mm8xsE8GGbQRXNvtw960E2fuFYa8LCUqkiuL8hZnNCZ942kRQBB8b47LvuIyrYj7vYO+67EhwIipOZ+DlmOWbQ1C83LqE8de6+66YuOqb2X/MbEkY1ydA0wSfcGlBcGW2JKbfEopZt4nE6u4TCa7AjSDJirXR3bfHfc9+lcoPYHn2rHN33xF+bBjGWhtYGRPvfwiuigm/O/b3jl0HJYkfv134vSsISsbOM7OmwGnEbHfFWOHuTd09090HuPtzYf/1BAe/0lwGzHH3aWH308DFZla7mHFbEJQKFLfttSNmmd29kGD5Yn/78h4ril0/8d/F/r/9et+37lXRvtOSILGeEvMbvhX2L2va/bj7AoLS3DuBNWb2XDkebChuGdLZdz8t8fhBULq/AHjHzBaa2W9KGvEAjqedgXZF6yhcT7cWxWZm/YEt7h4b37K46UvbV35NsE9PtOCp9hFh//h1AvsfP0pbJ8V5kuDC4jkzW2Fmfy1h2y5JebbZ+GG4e7Hjm9kQM/vQzNaa2WaCkvT432PPsrr7boJj4KVhXbiLwmXD3T8A/o+g1G21mT1sZo1LWiAzG2Zm02J+m37FfHdJEt7u4nQENrj7xgqcZ8onYeMJilfPLWWc7QQHrSJtvsP37TOv8CTYsoRxLya4BXMiQWKTVTRZ+N9L+yJ33wS8Q1CEezHBLa6iaZYRFIs3jfmr5+5flDC7Z4GLzOwIgmLhD8P4jyGoD/Ijguy+KcH9eIuZtrQ4y1rG0iwDupUy7LS45avr7stLGD8+xl8QXJUPcffGBElsbFylLdM6gqv5zjH9OhGUiJQ7VjO7nuAKcAXBgTtWs7BycOz3rCjmO8pankQtI7i6bxETa2N37xsOX0lwoImNpyzx48fGP5rgdvcPgfGl/H6leQ/INrMOpYwzDOhqZqvMbBXBLd4WBIlfvHUEx4zitr0VxPzuZmYEy3cgcRcpaf3s812U/NvHW0dwIuwb8xs28eChhkTst+27+zPufnQYjxPc2k9EccuQz74n8hL3NXff6u6/cPeuwFnAzWZ2QgnTlfd4uoygdDB2v2zk7qeHw08nuDjdJ6S46UvcV9x9lbtf7e7tCErKHzSz7sWsE9j/+BEfa1nngjx3v8vd+xDcOj+TYJuHij2/ldczBLfFO7p7E4LbcfHHpPhlG01wB+sEYIe7j98zovu/3P0wglu1PQnqX+43DzPrTFBCfgPBbd6mBNUiEj23lme7i7UMyAwvKsszz1KldBLm7psJ7vk/YGbnhiUGtc3sNDP7azjaNOB0M8s0szYEV30Haj5Q18zOCK9Efkdwgi1OI4KdeD3BTvLHuOGrCeoplOYZgp3tvPBzkZHAb82sL4CZNTGz0h4ZH0dwYLiboJ5OYUyM+QR1VdLN7HaCp9MSVdYyluZ1oI2Z3WRmdcyskZkNCYeNBP4Q7myYWUszO6ecce0ENplZJnBH3PAS170HjyI/H35/ozCGmwkqxhanxFjNrCdBvYpLCUprfm1mA+Kmv8uCJhiOITi4Ftf+UlnLkxB3X0mQ2P/dzBqbWS0z62Zmx4ajPA/81Mw6mFkzgsqvZbk+HD+ToKThvzHDXgEGElSWH3OAMb9H8PDGy2Z2mJmlh7/LtWY2Iryw6EZw23dA+NePYH8ZXsz8CoFRwD/MrF1YwnKEmdUJl/8MMzsh3L9/QbB9l3Rxk4jbwuNSX4K6NkXr51ngd+H20oLgOFZmG4Nh/I8A/zSzVgBm1t7MTkkwnn22fTM7yMyOD5d/F8F2lujj+M8CPzezLmbWkGD//68n+PSkmZ1pZt3DZHdL+L1F3x2/j5b3eDoR2GJmt1jQvlmamfUzs8Hh8DMIjovFKmtfMbMfxlwYbCQ4eReE8+xpQbNJ6WZ2AUE93NdLWRWlngvM7Dgz6x9e9G8huEgsWk/TgAvD894ggodZKksjgpKhXWaWTZAolypMugoJHox5sqi/mQ0OS9ZqEySWRZXrYf/104Bgfa8Np72CYJ8nZvwOZpZRXAzl3O5iY19JUBXoQTNrFq7z7yUwz1KldBIG4O7/IDhJ/o7gR1lGkCG/Eo7yJMHTgIsJdqr/7jeTxL9rM3Ad8CjBlc12gieRijOGoBh6OcHTG1/GDX8M6GNBceorFG8s0ANY7e7TY+J4meBq9TkLiuZnUvxVf9H4uwkqzZ7Ivsnc2wQb1fww1l2Ur6i8rGUsUXib9CSCq4ZVwDfAceHg+wmW/R0z2xrOd0hx8ynBfQQlfuvCad+KG34/cL6ZbTSzfxUz/Y0Ev+1CgifnniE4cRen2FgtuEX+FPAXd5/u7t8QJClPhic8wuXeSHD1/DRB/aq5B7A85TGM4HZr0RON/2Pv7b5HCLaJ6QQVzl9KYH7PEOxXC8O/Pe35uPtOgjonXRKcV0nOJzi5/ZegpHYmMIiglGw48Kq7zwhLJ1a5+yqC3+XMMDmM90tgBsFTZhsI9qVa7j6PIGH+N8G6PovgCc/c7xD7xwS3Kd4H/ubu74T97wEmEzwFNoNgfSfaFtIt4Ty/DPf/9whKShMRf9ypQ/DwwzqC7bEVwXaaiFEEx9dPCJ4+3EWw7ySqB0Hs2wjuajzoe9tJ/BNBkrrJzH5JOY+n4cXUWQRJ+aJw+R4FmphZE4KK32Ul16XtK4OBCWa2jWD//5m7L3L39QQXU78gSBh/DZzp7utK+Z6yjkdtwu/eQlDd4WP2Juy3EVyEbCR4gvWZYqZPluuAu8Pj3u3sX92iJGMI6pvFXnQ0Jjj+bCT4ndcT1BmD/X/b2QRJ3HiCpKk/QdWHIh8QPOG8ysyKW+/l2e7iXUaQBM8lqEt5UwLzLFXREwEiUokseDPCU+5e2m22lBeWrvZ090ujjqUyWdCQ7CKCyu7lbldLksfMfgSc7+4/ijqWmsjMhgHXhLfAazw1oCYiSRGWQl1JcPUoUlVsImiTSiqZmdUnKEF7MOpYqoqUvx0pIlWPmV1NcGv7TXf/JOp4RIq4+zuxFcKlcoT1FtcS3EKszNumVZpuR4qIiIhEQCVhIiIiIhFQEiYiIiISgZSrmN+iRQvPysqKOgwRERGRMk2ZMmWduxfbsHvKJWFZWVlMnjw56jBEREREymRmJb4CTrcjRURERCKgJExEREQkAkrCRERERCKgJExEREQkAkrCRERERCKgJExEREQkAkrCRERERCKgJExEREQkAkrCRERERCKQtCTMzEaZ2Rozm1nCcDOzf5nZAjP72swGJisWERERkaommSVhTwCnljL8NKBH+HcN8FASYxERERGpUpL27kh3/8TMskoZ5RxgjLs78KWZNTWztu6+MlkxiYiISPXk7hQUOnkFTm5+IbkFheTF/OXm+97PBYXkFThtGtfloDaNIos5yhd4tweWxXTnhP32S8LM7BqC0jI6depUKcGJiIhIkNzkFeyfwOTlx3UXFJIXJj+5+Xv77UmGwn77JkcejhvTvWf6oukSmyavoBD38i3bpYd34p5z+ydnxSUgyiTMiulX7Opz94eBhwEGDRpUzlUsIiJSNbk7+YVhyU1MArM7rjt3n4Sn9OQkd0/CU0huTPIUXxq0Z3hcQrN7n+6gXzKk1zJqp9WidpqRkV4r/Bx0106rFdPPaFQ7nTr7jFOLjHTbtzucrnZ6XHfYL6OYaVo1qpOUZUt4HUT43TlAx5juDsCKiGIREZFqrqSEJzbRif28O35YfkHcuEVJT0FCSVSxnw+g9KYstdP2T072SXLS9yYo9TMSS2iCBMhihteidnpcd1EClR7XvWf6ovkZtWvVolat4spiapYok7CxwA1m9hwwBNis+mAiItVHfkEZSU0xw/KKGWdPQlNKwpNXXEIVP30FJzwZYWlNxp5Slv0/N6yTTkb9vd1FJTwZYWKy37Qx3XuHp+0pLcqITXDChCYjJnmqnWaYKblJFUlLwszsWWAo0MLMcoA7gNoA7j4SGAecDiwAdgBXJCsWERFJrtz8Qr7O2cSERRuYuGgDU5ZsZNvu/AqbfyIJT4M66TRNKz6pKSvhKWmedcIkKH4aJTtSEZL5dORFZQx34Ppkfb+IiCTPztwCvlq6cU/SNXXpRnbnFwLQs3VDzhnQjjaN6+5b+rMnqSk74Ykv+VHCI9VRlLcjRUQkRWzdlceUJXuTrq9zNpFX4JhBn7aNuWRIZ7K7ZDI4qxnNG0Zb2VkkVSgJExGR/WzcnsukxRv2JF2zVmym0IMn2g7u0IQrj+7KkC6ZHJbVjMZ1a0cdrkhKUhImIiKs2bqLiWHCNWHhBuat3gpARnotDu3YlBuO78GQLpkc2qkp9TN06hCpCNqTRERqoOWbdjJh4fo9idfCddsBqJ+RxmGdm3HWIW0Z0rU5B3doQp30tIijFamelISJiFRz7s7i9TuYuGg9ExYGtxiXb9oJQOO66WR3yeTC7I4M6dKcvu0ak56WzNcKi0gRJWEiItVMYaHzzZptTFy0ni/Dkq61W3cD0KJhBtldMrn6mC5kd2lOrzaN1GimSESUhImIpLiCQmf2ii1MWBTcXpy0eAMbd+QB0LZJXY7q1pzsLs3J7pJJt5YN1NyDSBWhJExEJMXk5hcyY/nehlEnL97bMGrn5vU5sXdrhnRtzpAumXRoVk9Jl0gVpSRMRKSK25VXwFdLN+0p6Zq6dCO78oKGUXu0ChpGHdK1OdlZmbRpUjfiaEUkUUrCRESqmG2784OGUcOnF6fHNYx6UXYnhnTJZHBWphpGFUlhSsJERCK2aUcukxZvDJ5eXLSBWSu2UFDopNcy+ndowoijuwQNo3bOpEk9NYwqUl0oCRMRqWRrt+4O2+cKkq55q7fiHjSMOqBjU64f2o3sLs05tFNTGtTRYVqkutLeLSKSZCs27dxTn2vCog0sXLtvw6hn9N/bMGrd2moYVaSmUBImIlKB3J0l63cwcdEGvgwTr5yNQcOojeqmk52VyQWDOjKka9Awam01jCpSYykJExH5DgoLnQVrtzFh0YY9FenXhA2jNm8QNIx65dFdyO6SSa82jUlTw6giElISJiJSDgWFzpyVW8I2uoKkq6hh1DaN63JEt6BR1CFdMunWsqHa6BKREikJExEpRV5BIV/nbN5TkX7y4o1sDRtG7ZRZnxN6t2ZIl0yGdGlOx0w1jCoiiVMSJiISY1deAdOWbWLCwg1MXLyeqUs2sTOvAIDurRpy1oB2DOmSSXaXTNo2qRdxtCKSypSEiUiNN3P5Zt6auYoJi9YzfdlmcgsKMYPebRpzweCOQcOoXTJpoYZRRaQCKQkTkRopN7+Qt2atYvQXi5myZCNptYz+7ZtwxVFZZHfJZFDnTJrUV8OoIpI8SsJEpEZZs2UXz0xcyjMTlrJm626ymtfntjP7cP7ADkq6RKRSKQkTkWrP3Zm6dCOjv1jCmzNXklfgDD2oJX85Motje7SklpqNEJEIKAkTkWprV14BY6evYMz4xcxcvoVGddO57PAshh3RmawWDaIOT0RqOCVhIlLt5GzcwVNfLuW/k5aycUcePVs35A/f78e5A9rrXYwiUmXoaCQi1YK788W36xn9xWLem7MagJP7tGH4kVkc3jVT7XeJSJWjJExEUtr23fm8NDWH0eOXsGDNNjIbZHDtsd245PDOtG+qdrxEpOpSEiYiKWnh2m2MGb+EF6fksHV3Pgd3aMLff3gIZxzclrq106IOT0SkTErCRCRlFBQ6H81bw+jxS/hk/lpqpxln9G/L8COzGNCxqW45ikhKURImIlXe5h15PD95GU9+uYSlG3bQunEdbj6pJxdld6JlI7ViLyKpSUmYiFRZc1ZuYcz4xbz81XJ25RWSnZXJr089iFP6tqF2Wq2owxMR+U6UhIlIlZJXUMi7s1fzxBeLmbhoA3Vr1+LcAe0ZdkQWfdo1jjo8EZEKoyRMRKqEddt28+yEpTw9YSmrtuyiQ7N63Hp6L340qCNN62dEHZ6ISIVTEiYikZq2bBOjv1jMG1+vJLegkGN6tOCec/txXK9WpOl1QiJSjSkJE5FKtzu/gDe+XsnoLxYzPWczDeukc/GQTlx2RGe6tWwYdXgiIpVCSZiIVJqVm3fy1JdLeG7iMtZvz6VbywbcfU5ffjCwAw31OiERqWF01BORpHJ3JizawOgvFvPO7NW4Oyf0bs3wI7I4qntzte0lIjWWkjARSYodufm88tUKxoxfzNxVW2lavzZXHdOFS4d0pmNm/ajDExGJnJIwEalQS9Zv58nxS3h+8jK27MqnT9vG/PW8gzl7QDu9TkhEJIaSMBH5zgoLnU++WcuY8Uv4cN4a0sw4tV8bLj8yi8M6N9MtRxGRYigJE5EDtmVXHv+bnMOTXy5h0brttGxUh58e34OLh3SideO6UYcnIlKlKQkTkXKbv3orY8Yv5qWpy9mRW8DATk256cIBnNavLRnpep2QiEgilISJSELyCwp5b84axoxfzBffricjvRZnH9KO4Udk0b9Dk6jDExFJOUrCRKRUG7bn8tykpTz95VKWb9pJ+6b1uOXUXlwwuCOZDfQ6IRGRA6UkTESKNSNnM6PHL2bs9BXk5hdyZLfm3H5WH07o1Yr0NN1yFBH5rpSEicgeufmFvDkzeJ3Q1KWbqJ+Rxo8GdWD4EVn0aN0o6vBERKoVJWEiwuotu3h6wlKembCUddt206VFA24/sw/nD+pA47q1ow5PRKRaUhImUkO5O5OXbGT0F4t5a+YqCtw57qBWDD8yi2O6t6BWLbXtJSKSTErCRGqYnbkFjJ2+nNFfLGH2yi00rpvO5UdmcdkRnencvEHU4YmI1BhKwkRqiGUbdvDUl0v47+RlbNqRR682jfjj9/tz7qHtqJ+hQ4GISGXTkVekGnN3PluwjtFfLOH9uaupZcYpfVsz/Igssrtk6nVCIiIRUhImUg1t253Pi1NyGDN+Md+u3U7zBhlcP7Q7lxzeibZN6kUdnoiIoCRMpFr5du02xnyxmBenLmfb7nwO6diUf/zoEM44uC110tOiDk9ERGIoCRNJcQWFzodz1zB6/GI+/WYdGWm1OPPgtgw7MosBHZtGHZ6IiJRASZhIitq0I5f/TlrGk18uIWfjTto0rssvT+7JhdmdaNGwTtThiYhIGZSEiaSYXXkF3PPGbF6YnMPu/EKyu2Ry6+m9OalPa2rrdUIiIilDSZhICikodG5+fhrjZqziwsEdGX5kFr3bNo46LBEROQBKwkRShLtz92uzGDdjFb87ozdXHdM16pBEROQ70L0LkRTx0MffMnr8Eq4+posSMBGRakBJmEgKeGHyMv761jzOGdCO357WO+pwRESkAiQ1CTOzU81snpktMLPfFDO8mZm9bGZfm9lEM+uXzHhEUtGH89bwm5dmcHT3Ftx7/iF6sbaISDWRtCTMzNKAB4DTgD7ARWbWJ260W4Fp7n4wMAy4P1nxiKSiacs2cd1TU+ndthEjLzuMjHQVXouIVBfJPKJnAwvcfaG75wLPAefEjdMHeB/A3ecCWWbWOokxiaSMhWu3MeKJSbRsVIfHL8+mYR09RyMiUp0kMwlrDyyL6c4J+8WaDvwAwMyygc5Ah/gZmdk1ZjbZzCavXbs2SeGKVB1rtu5i2KiJGDB6RDYtG6nxVRGR6iaZSVhxFVc8rvvPQDMzmwbcCHwF5O83kfvD7j7I3Qe1bNmywgMVqUq27srjiscnsWF7LqMuH0yXFg2iDklERJIgmfc3coCOMd0dgBWxI7j7FuAKADMzYFH4J1Ij5eYXcu1TU5i3aiuPDh/EIXr3o4hItZXMkrBJQA8z62JmGcCFwNjYEcysaTgM4CrgkzAxE6lxCgudX74wnc8XrOcv5x3M0INaRR2SiIgkUdJKwtw938xuAN4G0oBR7j7LzK4Nh48EegNjzKwAmA1cmax4RKq6P46bw9jpK7jl1F6cd9h+VSNFRKSaSerjVu4+DhgX129kzOfxQI9kxiCSCh75ZCGPfraIy4/M4tpj1Rq+iEhNoEaHRCL2ylfL+cO4OZxxcFtuP7MPQfVIERGp7pSEiUTok/lr+eUL0zm8ayb/+JFawxcRqUmUhIlEZEbOZn7y1BS6t2rIw8MGUSc9LeqQRESkEikJE4nAkvXbueKJiTStn8HoEdk0rls76pBERKSSKQkTqWTrtu1m2KiJFBQ6Y67MpnXjulGHJCIiEdDL6EQq0fbd+Yx4YhKrt+zimasPp1vLhlGHJCIiEVESJlJJ8goK+cnTU5m1YgsPX3YYAzs1izokERGJkG5HilQCd+eW/33NJ/PX8sfv9+OE3q2jDklERCKmJEykEvzlrXm89NVyfnFSTy4Y3CnqcEREpApQEiaSZKM+W8TIj7/l0sM7ccPx3aMOR0REqgglYSJJ9Nr0Ffz+jdmc2rcNd53dT63hi4jIHkrCRJLkiwXr+MXz0xncOZP7LhxAmlrDFxGRGGUmYWbW2sweM7M3w+4+ZnZl8kMTSV2zVmzmmienkNWiPo8MG0Td2moNX0RE9pVISdgTwNtAu7B7PnBTkuIRSXnLNuzg8scn0ahuOqNHZNOkvlrDFxGR/SWShLVw9+eBQgB3zwcKkhqVSIrasD2X4aMmkptfyJgR2bRtUi/qkEREpIpKJAnbbmbNAQcws8OBzUmNSiQF7cgNWsNfvmknjw0fRI/WjaIOSUREqrBEWsy/GRgLdDOzz4GWwPlJjUokxeQXFHLDM1/xdc4mHrr0MAZlZUYdkoiIVHFlJmHuPtXMjgUOAgyY5+55SY9MJEW4O7e+PIMP5q7hnnP7cUrfNlGHJCIiKSCRpyOvBxq6+yx3nwk0NLPrkh+aSGr4x7vzeX5yDj89oQeXHt456nBERCRFJFIn7Gp331TU4e4bgauTFpFICnly/GL+/cECLhzckZ+f2CPqcEREJIUkkoTVsphmvs0sDchIXkgiqeGtmSu5fewsTuzdinvOVWv4IiJSPolUzH8beN7MRhI8IXkt8FZSoxKp4iYsXM9Pn5vGoR2b8u+LBpKeppdPiIhI+SSShN0C/Bj4CUHF/HeAR5MZlEhVNnfVFq4aM5mOzerx2PDB1MtQa/giIlJ+iTwdWQg8FP6J1GjLN+3k8lGTqJ+RxugR2TRroDvzIiJyYMpMwszsKOBOoHM4vgHu7l2TG5pI1bJpR9Aa/vbcfF649gg6NKsfdUgiIpLCErkd+Rjwc2AKel2R1FC78gq4avRklq7fwZgrs+nVpnHUIYmISIpLJAnb7O5vJj0SkSoqv6CQG5/9iilLN/LAxQM5vGvzqEMSEZFqIJEk7EMzuxd4Cdhd1NPdpyYtKpEqwt257dVZvDt7NXee1YfT+7eNOiQREakmEknChoT/B8X0c+D4ig9HpGr51/sLeHbiUq4b2o3Lj+oSdTgiIlKNJPJ05HGVEYhIVfPsxKX88735nDewA7865aCowxERkWomkZIwzOwMoC9Qt6ifu9+drKBEovbu7NX8v5dnMPSglvz5vP5qDV9ERCpcIi/wHglcANxI0DzFDwmaqxCplqYs2cANz0ylf/smPHjJQGqrNXwREUmCRM4uR7r7MGCju98FHAF0TG5YItFYsGYrI56YTLum9Rh1+WDqZyRUWCwiIlJuiSRhO8P/O8ysHZAHqIayVDurNu9i2GMTyUivxZgR2TRvWCfqkEREpBpL5DL/dTNrCtwLTCV4MlLvjpRqZfPOPIaPmsiWXfk8d83hdMxUa/giIpJciTwd+fvw44tm9jpQ1903JzcskcqzK6+Aq8dMZuG6bTxxRTb92jeJOiQREakBSkzCzOx4d//AzH5QzDDc/aXkhiaSfAWFzs3PT2Piog3cf+EAjureIuqQRESkhiitJOxY4APgrGKGOUEL+iIpy92567VZjJuxit+d0ZtzBrSPOiQREalBSkzC3P0OM6sFvOnuz1diTCKV4sGPvmXM+CVc872uXHVM16jDERGRGqbUpyPdvRC4oZJiEak0L0xexr1vz+PcAe34zam9og5HRERqoESaqHjXzH5pZh3NLLPoL+mRiSTJh3PX8JuXZnBMjxb89fxDqFVLreGLiEjlS6SJihHh/+tj+jmg+zeScr5aupHrnp5K77aNeOjSw8hIV2v4IiISjUSaqFDDrFItLFy7jRFPTKJlozo8fnk2DeuoNXwREYlOoi/w7gf0Yd8XeI9JVlAiFW3Nll0MGzWRWmaMGZFNy0ZqDV9ERKJVZhJmZncAQwmSsHHAacBngJIwSQlbduUx/PFJbNiey3PXHE5WiwZRhyQiIpJQxfzzgROAVe5+BXAIoGIESQm78wu49skpfLN6Kw9dehgHd2gadUgiIiJAgi/wDpuqyDezxsAaVClfUkBhofPLF77mi2/X89fzD+bYni2jDklERGSPROqETQ5f4P0IMAXYBkxMZlAi35W7c88bc3ht+gp+c1ovfjCwQ9QhiYiI7CORpyOvCz+ONLO3gMbu/nVywxL5bh75dCGjPl/EFUdl8ePvqeBWRESqnjJvR5rZq2Z2sZk1cPfFSsCkqnv5qxz+OG4uZxzcltvO6IOZGmMVEZGqJ5E6Yf8AjgZmm9kLZna+mdUtayKRKHwyfy2/euFrjujanH/8SK3hi4hI1ZXI7ciPgY/NLA04HrgaGAU0TnJsIuXydc4mrn1qCj1aN+I/ww6jTnpa1CGJiIiUKNHGWusBZwEXAAOB0ckMSqS8Fq/bzhWPT6JZ/QxGXzGYxnVrRx2SiIhIqRJprPW/wBDgLeAB4KOwyQqRKmHt1t0Mf3wihe6MuTKbVo11t1xERKq+RErCHgcudveCZAcjUl7bducz4olJrN6yi2evPpxuLRtGHZKIiEhCEqkT9lZlBCJSXrn5hfzkqSnMXrmFhy87jEM7NYs6JBERkYQl8nSkSJVTWOjc8uLXfPrNOv70/f6c0Lt11CGJiIiUi5IwSUl/eXsuL3+1nF+e3JMfDe4YdTgiIiLllujTkWcD3ws7P3b315IXkkjpHvtsEf/5eCGXHd6Z64/rHnU4IiIiBySRFvP/BPwMmB3+/TTsVyYzO9XM5pnZAjP7TTHDm5jZa2Y23cxmmdkV5V0AqVnGTl/B71+fzal923Dn2X3VGr6IiKSsRErCzgAGFDVLYWajga+A35Y2Udi46wPASUAOMMnMxrr77JjRrgdmu/tZZtYSmGdmT7t77gEsi1RzXyxYxy+en0Z2l0zuu3AAaWoNX0REUliidcKaxnxukuA02cACd18YJlXPAefEjeNAIwuKMxoCG4D8BOcvNcisFZu55skpdG3RkEeGDaJubbWGLyIiqS2RkrA/AV+Z2YeAEdQNK7UULNQeWBbTnUPQ6Gus/wPGAiuARsAFxTUEa2bXANcAdOrUKYGvlupk2YYdXP74JBrXTeeJEYNpUk+t4YuISOorsyTM3Z8FDgdeCv+OcPfnEph3cfeKPK77FGAa0A4YAPyfme33Tkp3f9jdB7n7oJYtWybw1VJdrN+2m2GjJpKbX8joEdm0bVIv6pBEREQqRIlJmJn1Cv8PBNoSlGQtA9qF/cqSA8S2HdCBoMQr1hXASx5YACwCeiUevlRnO3LzGTF6Mis27eSx4YPo0bpR1CGJiIhUmNJuR95McAvw78UMc+D4MuY9CehhZl2A5cCFwMVx4ywFTgA+NbPWwEHAwgTilmour6CQ65+eyoycTTx06WEMysqMOiQREZEKVWIS5u7XhB9Pc/ddscPMrMw3JLt7vpndALwNpAGj3H2WmV0bDh8J/B54wsxmENy+vMXd1x3Yokh14e7c+tIMPpy3lj98vx+n9G0TdUgiIiIVLpGK+V8A8bcfi+u3H3cfB4yL6zcy5vMK4OQEYpAa5O/vzOeFKTn87IQeXDKkc9ThiIiIJEWJSZiZtSF4wrGemR3K3or2jYH6lRCb1EBjxi/m/z5cwEXZHbnpxB5RhyMiIpI0pZWEnQJcTlCh/h8x/bcCtyYxJqmhxs1YyR1jZ3Fi79b8/px+ag1fRESqtdLqhI0GRpvZee7+YiXGJDXQlwvXc9Nz0xjYqRn/vuhQ0tP0bnkREaneyqwT5u4vmtkZQF+gbkz/u5MZmNQcc1dt4eoxk+nUvD6PDR9EvQy1hi8iItVfIi/wHglcANxIUC/sh4BqS0uFWL5pJ8NHTaR+RhqjR2TTtH5G1CGJiIhUikTu+Rzp7sOAje5+F3AE+zbCKnJANm7PZdhjE9iRW8DoEdm0b6rW8EVEpOZIJAkraiNsh5m1A/KALskLSWqCnbkFXDl6Ess27OSRYYPo1Wa/t1WJiIhUa4m0E/aamTUF7gWmErSW/0gyg5LqLb+gkBuf/Yqvlm3igYsHcnjX5lGHJCIiUulKTcLMrBbwvrtvAl40s9eBuu6+uTKCk+rH3bnt1Vm8N2c1d53dl9P7t406JBERkUiUejvS3QuJeXeku+9WAibfxf3vf8OzE5dy/XHdGH5kVtThiIiIRCaROmHvmNl5ppYz5Tt6ZsJS7nvvG84/rAO/PPmgqMMRERGJVCJ1wm4GGgD5ZraLoJkKd3fVpJaEvTNrFb97ZQbHHdSSP/2gv1rDFxGRGi+RxlobVUYgUn1NWbKBG5/9iv4dmvLAJQOprdbwRUREErodKXLAduUV8PP/TqdNk7qMGj6I+hmJFL6KiIhUfzojSlI9/MlClm7YwdNXDaF5wzpRhyMiIlJlqCRMkmbZhh088OECzujflqO6t4g6HBERkSoloSTMzI42syvCzy3NTC3mS5l+//psapnx/87oHXUoIiIiVU4iL/C+A7gF+G3YqzbwVDKDktT30bw1vDN7NTee0J12eiekiIjIfhIpCfs+cDawHcDdVwB6YlJKtDu/gLtem03XFg248mgVmoqIiBQnkSQs192d4J2RmFmD5IYkqe7RTxexaN127ji7L3XS06IOR0REpEpKJAl73sz+AzQ1s6uB99ALvKUEyzft5P8+WMApfVtzbM+WUYcjIiJSZSXSWOvfzOwkYAtwEHC7u7+b9MgkJf3hjdk4zm1n9ok6FBERkSqtzCTMzH4OvKDES8ry2TfrGDdjFb84qScdmtWPOhwREZEqLZHbkY2Bt83sUzO73sxaJzsoST25+YXcMXYmnZvX5+rvdY06HBERkSqvzCTM3e9y977A9UA74GMzey/pkUlKefzzRXy7djt3nNWHurVVGV9ERKQs5Wkxfw2wClgPtEpOOJKKVm3exf3vf8OJvVtxfC8VlIqIiCQikcZaf2JmHwHvAy2Aq9394GQHJqnjj+PmkF/o3H5m36hDERERSRmJvMC7M3CTu09LciySgsZ/u56x01fw0xN60Km5KuOLiIgkqsQkzMwau/sW4K9hd2bscHffkOTYpIrLKwgq43doVo/rhnaLOhwREZGUUlpJ2DPAmcAUgtbyLWaYA3oEroYb/cVi5q/exsOXHabK+CIiIuVUYhLm7meG//XyP9nPmq27uO+9bxh6UEtO6qPK+CIiIuWVSMX89xPpJzXLn8fNDdoGO6svZlb2BCIiIrKP0uqE1QXqAy3MrBl7b0c2JmgvTGqoSYs38NJXy7n+uG50aaH3uYuIiByI0uqE/Ri4iSDhmsLeJGwL8EByw5KqKr+gkNtemUm7JnW5/rjuUYcjIiKSskqrE3Y/cL+Z3eju/67EmKQKe+rLJcxdtZWHLhlI/YxEWjgRERGR4pR5FnX3f5tZP6APUDem/5hkBiZVz7ptu/n7u/M5unsLTu3XJupwREREUlqZSZiZ3QEMJUjCxgGnAZ8BSsJqmL+8OZddeQXcebYq44uIiHxXibw78nzgBGCVu18BHALUSWpUUuVMWbKRF6bkMOLoLnRv1TDqcERERFJeIknYTncvBPLNrDHBi7zVUGsNUlDo3DF2Jq0b1+Gnx/eIOhwREZFqIZGa1ZPNrCnwCMFTktuAickMSqqWZycuZebyLfzrokNpUEeV8UVERCpCIhXzrws/jjSzt4DG7v51csOSqmLD9lzufXseR3RtzlkHt406HBERkWqjtMZaB5Y2zN2nJickqUrufXsu23fnc9c5qowvIiJSkUorCft7KcMcOL6CY5EqZvqyTTw3aRlXHtWFnq0bRR2OiIhItVJaY63HVWYgUrUUFjq3vzqTFg3r8LMTVRlfRESkoiXSTtiw4vqrsdbq7fnJy5ies5l/XnAIjerWjjocERGRaieRR90Gx3yuS9Bm2FTUWGu1tWlHLn95ay7ZWZmcO6B91OGIiIhUS4k8HXljbLeZNQGeTFpEErm/vTOPzTvzVBlfREQkiRJprDXeDkCVhKqpmcs38/SEpQw7IovebRtHHY6IiEi1lUidsNcInoaEIGnrAzyfzKAkGkWV8Zs3yODnJ/WMOhwREZFqLZE6YX+L+ZwPLHH3nCTFIxF6cWoOU5du4t7zD6ZJPVXGFxERSaZE6oR9DBC+NzI9/Jzp7huSHJtUos078/jzm3MZ2Kkp5w3sEHU4IiIi1V4ityOvAX4P7AQKASO4PamXeFcj/3x3Pht25DJ6RDa1aqkyvoiISLIlcjvyV0Bfd1+X7GAkGnNWbmHM+MVcMqQT/do3iTocERGRGiGRpyO/JXgiUqoh96AyfpN6tfnlyQdFHY6IiEiNkUhJ2G+BL8xsArC7qKe7/zRpUUmleWXaciYt3siff9CfpvUzog5HRESkxkgkCfsP8AEwg6BOmFQTW3fl8cdxczmkQxN+NKhj1OGIiIjUKIkkYfnufnPSI5FKd/9737Bu224eHTZIlfFFREQqWSJ1wj40s2vMrK2ZZRb9JT0ySar5q7fy+BeLuXBwRw7p2DTqcERERGqcRErCLg7//zamn5qoSGFFlfEb1U3nV6f0ijocERGRGimRxlq7HOjMzexU4H4gDXjU3f8cN/xXwCUxsfQGWqoh2OR67euVfLlwA/ec24/MBqqMLyIiEoVEGmsdVlx/dx9TxnRpwAPASUAOMMnMxrr77Jh53AvcG45/FvBzJWDJtX13Pn94Yzb92jfmouxOUYcjIiJSYyVyO3JwzOe6wAnAVKDUJAzIBha4+0IAM3sOOAeYXcL4FwHPJhCPfAf/+uAbVm/ZzYOXHEaaKuOLiIhEJpHbkTfGdptZE+DJBObdHlgW050DDCluRDOrD5wK3FDC8GuAawA6dVLpzYFasGYbj326iB8e1oHDOjeLOhwREZEaLZGnI+PtAHokMF5xxSxewrhnAZ+XdCvS3R9290HuPqhly5YJhimx3J07x86iXkYat5ymyvgiIiJRS6RO2GvsTZ5qAX2A5xOYdw4Q2wJoB2BFCeNeiG5FJtVbM1fx2YJ13HlWH1o0rBN1OCIiIjVeInXC/hbzOR9Y4u45CUw3CehhZl2A5QSJ1sXxI4W3N48FLk1gnnIAduTm8/vXZ9OrTSMuPbxz1OGIiIgIpSRhZtYdaO3uH8f1P8bM6rj7t6XN2N3zzewG4G2CJipGufssM7s2HD4yHPX7wDvuvv27LIiU7IEPF7Bi8y7uv+hQ0tMO5A60iIiIVLTSSsLuA24tpv/OcNhZZc3c3ccB4+L6jYzrfgJ4oqx5yYFZtG47j3yyiB8c2p7BWXrRgYiISFVRWrFIlrt/Hd/T3ScDWUmLSCpMUWX8jPRa/EaV8UVERKqU0pKwuqUMq1fRgUjFe3f2aj6ev5abTuxBq8al/ZwiIiJS2UpLwiaZ2dXxPc3sSmBK8kKSirArr4C7X59Nz9YNGX5kVtThiIiISJzS6oTdBLxsZpewN+kaBGQQVKaXKuzBj74lZ+NOnr36cGqrMr6IiEiVU2IS5u6rgSPN7DigX9j7DXf/oFIikwO2dP0ORn78LWcd0o4jujWPOhwREREpRiKvLfoQ+LASYpEKcvfrs6hdy/h/p/eOOhQREREpge5TVTMfzF3Ne3PW8NMTetCmiSrji4iIVFVKwqqRXXkF3Dl2Nt1aNuCKo7pEHY6IiIiUIpHXFkmKeOSThSzdsIOnrhxCRrryaxERkapMZ+pqImfjDh74aAGn92/D0T1aRB2OiIiIlEFJWDXx+9dnYxi/O6NP1KGIiIhIApSEVQMfz1/L27NWc8Px3WnXVC8zEBERSQVKwlLc7vwC7hw7iy4tGnDVMaqMLyIikiqUhKW4xz5bxKJ127njrD7USU+LOhwRERFJkJKwFLZi007+/f4CTu7TmqEHtYo6HBERESkHJWEp7A9vzKHQndvOVGV8ERGRVKMkLEV99s063pixkuuGdqdjZv2owxEREZFyUhKWgnLzC7lj7Ew6Zdbnx8d2jTocEREROQBKwlLQE18s4tu1QWX8urVVGV9ERCQVKQlLMau37OL+977hhF6tOKF366jDERERkQOkJCzF/OGNOeQVOrefpcr4IiIiqUxJWAr5cuF6xk5fwbXf60rn5g2iDkdERES+AyVhKSKvoJA7Xp1F+6b1+MnQ7lGHIyIiIt+RkrAUMWb8Euat3srtZ/WhXoYq44uIiKQ6JWEpYM3WXdz37ny+17MlJ/dRZXwREZHqQElYCvjzm3PZlV/AnWf1wcyiDkdEREQqgJKwKm7y4g28NHU5Vx/Tla4tG0YdjoiIiFQQJWFVWH5BIbe9Oot2Tepyw/GqjC8iIlKdKAmrwp6esJQ5K7fwuzP7UD8jPepwREREpAIpCaui1m3bzd/fmcdR3ZtzWr82UYcjIiIiFUxJWBX117fmsiO3gLvO7qvK+CIiItWQkrAqaOrSjTw/OYcrj+5C91aNog5HREREkkBJWBVTUOjc/upMWjeuw40n9Ig6HBEREUkSJWFVzHOTljJz+RZuPb03DeuoMr6IiEh1pSSsCtm4PZd7357HkC6ZnH1Iu6jDERERkSRSElaF/PXteWzdlc/d5/RTZXwREZFqTklYFfF1ziaem7SUy4/M4qA2qowvIiJS3SkJqwIKC53bXp1F8wZ1+NmJqowvIiJSEygJqwJemLKM6cs2cevpvWhct3bU4YiIiEglUBIWsU07cvnLW/MYnNWM7x/aPupwREREpJIoCYvY39+Zz6Ydudx1tirji4iI1CRKwiI0c/lmnp6whMsO70yfdo2jDkdEREQqkZKwiBSGLeM3q5/BzScfFHU4IiIiUsmUhEXkpa+WM3XpJm45rRdN6qkyvoiISE2jJCwCm3fm8ec353Bop6acP7BD1OGIiIhIBPRywgj88935rN+ey+OXZ1Orlirji4iI1EQqCatkc1ZuYcz4xVyc3Yn+HZpEHY6IiIhERElYJXJ37nh1Fk3q1eZXp6gyvoiISE2mJKwSvTptBRMXb+DXp/aiaf2MqMMRERGRCCkJqyRbd+Xxh3FzOLhDE340qGPU4YiIiEjEVDG/kvzr/W9Yt203jwwbRJoq44uIiNR4KgmrBN+s3srjny/mgkEdGdCxadThiIiISBWgJCzJ3J3bX51Fgzrp/PrUXlGHIyIiIlWEkrAke/3rlYxfuJ5fntyTzAaqjC8iIiIBJWFJtH13Pn94Yw592zXm4iGdow5HREREqhBVzE+if3+wgFVbdvHAJQNVGV9ERET2oZKwJPl27TYe+2wh5x/WgcM6N4s6HBEREalilIQlgbtz59hZ1K2dxi2qjC8iIiLFUBKWBG/PWsWn36zj5pN60rJRnajDERERkSooqUmYmZ1qZvPMbIGZ/aaEcYaa2TQzm2VmHycznsqwM7eA378+h15tGnHZ4aqMLyIiIsVLWsV8M0sDHgBOAnKASWY21t1nx4zTFHgQONXdl5pZq2TFU1ke+HAByzft5PkfH0F6mgoaRUREpHjJzBKygQXuvtDdc4HngHPixrkYeMndlwK4+5okxpN0i9Zt5+FPFnLugHZkd8mMOhwRERGpwpKZhLUHlsV054T9YvUEmpnZR2Y2xcyGFTcjM7vGzCab2eS1a9cmKdzvxt2567VZZKTX4tbTe0cdjoiIiFRxyUzCimsYy+O604HDgDOAU4DbzKznfhO5P+zug9x9UMuWLSs+0grw3pw1fDRvLTed2INWjetGHY6IiIhUcclsrDUH6BjT3QFYUcw469x9O7DdzD4BDgHmJzGuCrcrr4C7XptFz9YNGX5kVtThiIiISApIZknYJKCHmXUxswzgQmBs3DivAseYWbqZ1QeGAHOSGFNSPPTRt+Rs3MmdZ/eltirji4iISAKSVhLm7vlmdgPwNpAGjHL3WWZ2bTh8pLvPMbO3gK+BQuBRd5+ZrJiSYen6HTz08beceXBbjuzWIupwREREJEUk9d2R7j4OGBfXb2Rc973AvcmMI5nufn026bWM/3eGKuOLiIhI4nTv7Dv4cO4a3puzmp+e0IO2TepFHY6IiIikECVhB2hXXgF3vjaLri0bMOKoLlGHIyIiIikmqbcjq7NHPlnIkvU7ePLKbDLSlcuKiIhI+Sh7OAA5G3fwwEcLOK1fG47pUTXbLRMREZGqTUnYAbjn9TkYxu/O7BN1KCIiIpKilISV0yfz1/LWrFXccHx32jdVZXwRERE5MErCymF3fgF3jp1FVvP6XHWMKuOLiIjIgVPF/HIY9dliFq7bzuNXDKZOelrU4YiIiEgKU0lYglZu3sm/P/iGk/q05riDWkUdjoiIiKQ4JWEJuueNORQUOrerMr6IiIhUACVhCfh8wTre+HolPxnajY6Z9aMOR0RERKoBJWFlyCso5I6xs+iYWY9rj+0WdTgiIiJSTSgJK8MTny9mwZpt3HFmX+rWVmV8ERERqRhKwkqxessu7ntvPsf3asWJfVpHHY6IiIhUI0rCSvHHcXPIK1BlfBEREal4SsJKMGHhel6dtoIfH9uVrBYNog5HREREqhklYcXIDyvjt29aj+uGdo86HBEREamGlIQVY8z4JcxdtZXbzuxDvQxVxhcREZGKpyQszpqtu/jnu/M5pkcLTumryvgiIiKSHErC4mzZmUf31g256+y+mFnU4YiIiEg1pRd4x+neqhEv/eRIJWAiIiKSVCoJK4YSMBEREUk2JWEiIiIiEVASJiIiIhIBJWEiIiIiEVASJiIiIhIBJWEiIiIiEVASJiIiIhIBJWEiIiIiEVASJiIiIhIBJWEiIiIiEVASJiIiIhIBJWEiIiIiEVASJiIiIhIBc/eoYygXM1sLLKmEr2oBrKuE76kptD4rntZpxdL6rHhapxVL67PiVcY67ezuLYsbkHJJWGUxs8nuPijqOKoLrc+Kp3VasbQ+K57WacXS+qx4Ua9T3Y4UERERiYCSMBEREZEIKAkr2cNRB1DNaH1WPK3TiqX1WfG0TiuW1mfFi3Sdqk6YiIiISARUEiYiIiISASVhcczsVDObZ2YLzOw3UceT6sxslJmtMbOZUcdSHZhZRzP70MzmmNksM/tZ1DGlOjOra2YTzWx6uE7vijqm6sDM0szsKzN7PepYqgMzW2xmM8xsmplNjjqeVGdmTc3sf2Y2NzyeHhFJHLoduZeZpQHzgZOAHGAScJG7z440sBRmZt8DtgFj3L1f1PGkOjNrC7R196lm1giYApyrbfTAmZkBDdx9m5nVBj4DfubuX0YcWkozs5uBQUBjdz8z6nhSnZktBga5u9oJqwBmNhr41N0fNbMMoL67b6rsOFQStq9sYIG7L3T3XOA54JyIY0pp7v4JsCHqOKoLd1/p7lPDz1uBOUD7aKNKbR7YFnbWDv90dfodmFkH4Azg0ahjEYlnZo2B7wGPAbh7bhQJGCgJi9ceWBbTnYNOcFJFmVkWcCgwIeJQUl5462wasAZ41921Tr+b+4BfA4URx1GdOPCOmU0xs2uiDibFdQXWAo+Ht8wfNbMGUQSiJGxfVkw/XRFLlWNmDYEXgZvcfUvU8aQ6dy9w9wFAByDbzHTr/ACZ2ZnAGnefEnUs1cxR7j4QOA24PqzqIQcmHRgIPOTuhwLbgUjqgCsJ21cO0DGmuwOwIqJYRIoV1lt6EXja3V+KOp7qJLwl8RFwarSRpLSjgLPDOkzPAceb2VPRhpT63H1F+H8N8DJB9Rk5MDlATkyJ9/8IkrJKpyRsX5OAHmbWJayodyEwNuKYRPYIK5E/Bsxx939EHU91YGYtzaxp+LkecCIwN9KgUpi7/9bdO7h7FsEx9AN3vzTisFKamTUIH8QhvG12MqAnzg+Qu68ClpnZQWGvE4BIHm5Kj+JLqyp3zzezG4C3gTRglLvPijislGZmzwJDgRZmlgPc4e6PRRtVSjsKuAyYEdZhArjV3cdFF1LKawuMDp+OrgU87+5qVkGqktbAy8E1GOnAM+7+VrQhpbwbgafDApeFwBVRBKEmKkREREQioNuRIiIiIhFQEiYiIiISASVhIiIiIhFQEiYiIiISASVhIiIiIhFQEiYikTOzNmb2nJl9a2azzWycmfWMOq7vwsyGmtmRCYw3Pvz/SviCdhGpIZSEiUikwgZoXwY+cvdu7t4HuJWgbaRUNhQoNQkzs+7AgnAdtHH3lZURmIhUDUrCRCRqxwF57j6yqIe7T3P3Ty1wr5nNNLMZZnYB7Cll+tjMnjez+Wb2ZzO7xMwmhuN1C8d7wsxGmtmn4Xhnhv3rmtnj4bhfmdlxYf/LzewlM3vLzL4xs78WxWRmJ5vZeDObamYvhO/vxMwWm9ldYf8ZZtYrfLn6tcDPzWyamR0Tu8BmVi9sbPcDgmRtDtAzHHdAktaziFQxajFfRKLWDyjpZc8/AAYAhwAtgElm9kk47BCgN7CBoMXrR90928x+RtAa9k3heFnAsUA34MOw9Ol6AHfvb2a9gHdibn8OAA4FdgPzzOzfwE7gd8CJ7r7dzG4BbgbuDqdZ5+4Dzew64JfufpWZjQS2ufvf4hfK3XcCA8zsQYLXUPUHGrj7AwmuMxGpBlQSJiJV2dHAs+5e4O6rgY+BweGwSe6+0t13A98C74T9ZxAkXkWed/dCd/+GIFnrFc73SQB3nwssAYqSsPfdfbO77yJ4n1xn4HCgD/B5WII1POxfpOhF6lPivrss/QneAdgfmFaO6USkGlBJmIhEbRZwfgnDrJTpdsd8LozpLmTfY1v8u9m8HPMtCOdlwLvuflEZ0xSNXyozux04j6B0bgLQFTjZzN5y91+VNb2IVA8qCRORqH0A1DGzq4t6mNlgMzsW+AS4wMzSzKwl8D1gYjnn/0MzqxXWE+sKzAvne0n4XT2BTmH/knwJHBXeysTM6ifw9OZWoFFxA9z9buAq4HFgCDDd3fsrAROpWZSEiUik3N2B7wMnhU1UzALuBFYQPDX5NTCdIFn7tbuvKudXzCO4jfkmcG14m/FBIM3MZgD/BS4Pb2uWFONa4HLgWTP7miAp61XG974GfL+4ivmhY4FPgexwfiJSw1hw/BMRqX7M7AngdXf/X9SxiIjEU0mYiIiISARUEiYiIiISAZWEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBJSEiYiIiERASZiIiIhIBP4/yDaq5+wJupcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "#Code task 6#\n", "#Call the `cumsum()` method on the 'explained_variance_ratio_' attribute of `state_pca` and\n", @@ -1330,10 +1584,10 @@ "#title to 'Cumulative variance ratio explained by PCA components for state/resort summary statistics'\n", "#Hint: remember the handy ';' at the end of the last plot call to suppress that untidy output\n", "plt.subplots(figsize=(10, 6))\n", - "plt.plot(state_pca.explained_variance_ratio_.___)\n", - "plt.xlabel(___)\n", - "plt.ylabel(___)\n", - "plt.title(___);" + "plt.plot(state_pca.explained_variance_ratio_.cumsum())\n", + "plt.xlabel('Component #')\n", + "plt.ylabel('Cumulative ratio variance')\n", + "plt.title('Cumulative variance ratio explained by PCA components for state/resort summarystatistics');" ] }, { @@ -1359,18 +1613,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "metadata": {}, "outputs": [], "source": [ "#Code task 7#\n", "#Call `state_pca`'s `transform()` method, passing in `state_summary_scale` as its argument\n", - "state_pca_x = state_pca.___(___)" + "state_pca_x = state_pca.transform(state_summary_scale)" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 61, "metadata": {}, "outputs": [ { @@ -1379,7 +1633,7 @@ "(35, 7)" ] }, - "execution_count": 29, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -1406,12 +1660,12 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 62, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHwCAYAAAAvoPKcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhV5dn+/e9FQIgMUhAHwDL4tIJkhIR5CKhERC1OFQQE/SHV4gsiTRUn0JaWR1ERq3WocxFQQWjhqVAkkUkLgYRREJGIBYeAJjIEDOF+/1gr2wSSsANJdracn+PYh3tN97r2yo45ue81mHMOEREREQlfNUJdgIiIiIicGgU6ERERkTCnQCciIiIS5hToRERERMKcAp2IiIhImFOgExEREQlzCnQSlsxsuJktL2XZYDNbVNU1iYQTM+thZltDXUdlM7OWZubMrGYQ61baMTGzV83sj5XRtggo0Ek1ZmbdzWylmeWa2bdmtsLMEk+0nXNuunOu70nsL83MRpRj/Ylm9vfy7keOV+SP7n7/lWVm9xZZbmY22sw2mtkBM/uvmb1tZtHHtDPRb6djOfe/qci+95vZETP7p7+sxzHL9vv7uK6UtqaY2TYz22dmW8zs5iLLzjKzhWaWY2bTzSyiyLIXzeya8tR9Kpxzy5xzF1XV/sKBjomEMwU6qZbMrAEwH3gaaAQ0Ax4GDoeyLglOML0hpWjonKsHDAIeMrPL/flPAWOA0Xjfh18Cc4H+RfZpwFDgW2BYeXbqnGvnnKvn77s+sBN421+2rHCZv/xKYD/wXinNHQCuAs7y63jKzLr6y34DZADnAi2Ba/zauwDnO+feLU/dJ+sUfj4iUk0p0El19UsA59wM51yBcy7PObfIObe+pJXN7DEzW+73gJQ1HFvHzP5uZnv9XpLVZnaumU0CegB/8Xtg/uKv/5SZfWFm35vZGjPr4c+/HLgPuNFff50//ywze8nMvjSzXWb2x8JeGDP7HzP7wO9x3GNms8pTo78sy8wuLbJuoJewSC/XLX7N35nZ7WaWaGbr/bb+UmTb4X6v55P+ss/MrKs//wsz+8bMhhVZv7+ZZfjH4gszm1hkWeG+/5+Z7QSWmNkCM/v/jvls681sQMk/8h855z4ENgFRZvYLYBQwyDm3xDl32Dl30O+JnVxksx5AU7zgN9DMzjjRfkrREzgHmF3K8mHAO865A6XUPsE5t8U5d9Q59x9gGdDFX9wKSHXOHfbnt/a/H0/6dZfKzO41s3eOmfeUmU3z399iZh/7PYOfmdlviqyXZF6v5j1m9hXwSuG8Y9rf7m+/uWhvYeHvlN/7+J2Z7TCzfkWWNzKzV8xst798bpFlV5pZpv8dW2lmMWV8xjZm9m/zeuS3mtmv/fkX+vPa+9NN/d+hJH86zcz+bGar/N+veWbWqJR9nPA4FZnOMrPf+d/bXDObZWZ1gvlsZhZvZmv9/cwCAtuJVArnnF56VbsX0ADYC7wG9AN+dszy4cByvH+UvAgsBM4suqyUdn8D/BM4E4gAOgAN/GVpwIhj1h8CNAZqAuOAr4A6/rKJwN+PWX8u8DxQFy8UrAJ+4y+bAdzv11wH6H4SNWYBlxZZN1ADXo+PA57z2+8LHPJrOgevl/MboFeR43QEuMXfzx/xeqaeAWr72+8D6vnrJwHRfv0xwNfAgGP2/br/2SOBXwP/KVJrrP8zPaOEz1y4fU3AgG7AQeAS4Hbg8yC+My8BbwG1/P1ce5LfvZeBV0tZdqZ/TJKCbCsS+BK43J8eBTzmz1+B18M4FpgQRFst/GNS+F2I8Nvu7E/3By70j18vf932RX52R4D/9X+2kf68/xZp/wa8QFwDuBGvp/H8It+VfOA2f793ALsB85cvAGYBP/OPf+F3rL3/nevkbzcM7ztcu4TPVxf4wv8+1vS33QO085ffBnzs/wwWAlOKbJsG7AKi/HZmc/zvRc0gj1PRY5KF9zvcFK9n+GPg9hN9NuAM4HP/Z1sLuN4/fn+s7P936nX6vkJegF56lfYC2gKvAv/1/xj9AzjXXzYc+I//R2Q2RUICZQe6W4GVQEwJy9I4JtCVsM53QKz/fiJFAh3eMNphILLIvEF4PTLghZ0XgOYn2EdZNWZx4kDXrMjyvcCNRaZnA3cVOU7biiyL9rc/95jt40qpcyrw5DH7bl1keW284c9f+NNTgGdLaatw+xz/GH8MjPaX3Q98dIJjdibwPT8GzOeBeSfxnStsJ6mU5UOBHfhBJoj2XsMbmi0MPnX878B6YDLQHFiLNzz7V2ApZfzRx/tHzM3++8uA7WWsOxcY479PAn7A/8dIkXn/LWP7TOBXRb4rnx5znBxwHnA+cJRj/tHlr/dX4A/HzNuKH/iOmX8jsOyYec9TJOzi/T9gg3/8aheZnwZMLjJ9sf95Izgm0AVxnI4NdEOKTD8KPHeiz4bXyxsIvP6ylWX9bPXS61RfGnKVass597Fzbrhzrjnev7yb4oWIQv8D/Ap42Dn3Q5DNvoH3r/uZ/vDQo2ZWq7SVzWycPzyTa2Y5eH94zy5l9RZ4/xr/0h+CycH7g3SOv/z3eL0Cq8w7Cf/WiqixBF8XeZ9XwnS9MtbFOVfi+mbWycxSzSzbzHLxes6OPRZfFL5x3rDiW8AQM6uBF27fOEHtZzvnfuaca+ucm+bP24sXGspyDV7o/z9/ejrQz8yanGC7Y12LF0I/KGX5MOB155w7UUNm9hje9/bXhes75w4550Y652Kcc/fiDbXeBwzGCx+9gE7247mDx3oT7zgC3ORPF+6vn5l95A9N5gBXUPznk+2cO1RGvTcXGT7M8Wsvuv1XhW+ccwf9t/WAC4BvnXPfldBsC2BcYZt+uxfg/S6XtG6nY9YdjBcaC73o1/W0//0q6osi7z/H+1087nc1iON0rK+KvD/Ij78/ZX22psCuY74nn5exD5FTpkAnYcE5twWvty6qyOyP8YZn/mVmQV2Z5pzLd8497Jy7GOiKd4J74VWIxf5Im3e+3D14Q4c/c841BHLxQtlx6+P9QTmMF0oa+q8Gzrl2/r6/cs7d5pxrijes+qyZ/U85azyA1ztS6Lxjt69Eb+L1kFzgnDsLb2jXjlnn2GPyGt4f5UuAg847N6683geam1lCGesMw/tDu9M/R+xtvD/og8rYprR2SgxsZnYBXg/O6ydqxMwexjtVoK9z7vtS1rkcrwfnPbze0XR/v+l4Q9oleRtIMrPmeCH2Tb+t2ni9r1Pwelgb4oXboj+fUkOombXAC0t3Ao397Tdy/M+3JF8AjcysYSnLJhX5fWjonDvTOTejlHU/OGbdes65O/wa6+H9g+4lYGIJ58hdUOT9z/GGOPcc8zmDOU7BKuuzfQk0M7Oi7f78JPYhEjQFOqmW/JOjx/l/uAr/mA4CPiq6nv8/z/uAxWZ2YRDt9jazaPNORP8e73/6Bf7ir4HWRVavj9frkw3UNLOH8M7to8j6Lf3eJ5xzXwKLgMfNrIGZ1fBP5u7l7/uGws+DN6zoiuw72Boz8U74r+UHnOtP9JkrUH28nphD5t0W5KYTbeAHuKPA45y4d660NrYBzwIz/JPWzzDvwpGB5p3I3wwvMF4JxPmvWLzzxYZBsYs2Wpa2H/9n0xsvhJZkKLDSObe9rHrNbDzesbnMObe3lHXq4A25jvVn7cALamfgnT/4WUnbOeey8YYXXwF2OOc+9hedgTfEnQ0cMe+ChfLcuqcu3vcx26/vFor/46lU/vf+X3j/QPmZ/93s6S9+Ebjd7901M6tr3sU19Utoaj7wSzMb6rdRy7wLetr6y58C1jjnRuCds/fcMdsPMbOLzexM4BG8C1eO/f061eNUVFmf7UO8/3eMNrOaZnYtUK5b6YiUlwKdVFf78E42/o+ZHcALchvxLkwoxjn3Gt7/wJeU9Qfbdx7wDl5Q+hhvaK3wXnJPAdebd5XeNLxhz38Bn+ANlxyi+LDO2/5/95rZWv/9zXh/NDbjhbZ3+HG4MNH/PPvxerrGOOd2lLPGB/FO6P4O7zYub5awfWX5LfCIme0DHsIbTg3G63g9UKdyz77RwF/wLtjIAbbj9VD9Ey9oZTrvKuivCl/ANCDGzKLwem8+xztxvjRDgQ/LCGw3U0LYM+9G1puKzPoTXm/MNvvxvnX3HbPZfcB051zh9+l5vGG/bLxzRsu6fcmbwKUU+dk75/bhHaO38L4bN+F9x4LinNuMF7o/xPuHSjTeRRvBGor3D48teBcK3OW3m453McNf/Lo+xTsfr6Qa9uGFq4F45599hX8Rh5n9Crgcb5gf4G6gvZkNLtLEG3i9+F/hnas4upR9nPRxOqatUj+bfwrItf70d3jnB845mf2IBKvwRF0RkUph3o11RzrnuoewhgfwziF7PlQ1SOUxszS8i4P+FupaREJFN5cUkUrjD3/9Fm/INGScc3rkkoj8pGnIVUQqhZkl4w0hfk3VDg2LiJx2NOQqIiIiEubUQyciIiIS5hToRERERMJcWF0UcfbZZ7uWLVuGugwRERGRE1qzZs0e51x5n1hzUsIq0LVs2ZL09PRQlyEiIiJyQmZWZY9805CriIiISJhToBMREREJcwp0IiIiImFOgU5EREQkzCnQiYiIiIQ5BToRERGRMBfS25aYWRawDygAjjjnEkJZj4iIiEg4qg73oevtnNsT6iJEREREwpWGXEVERETCXKgDnQMWmdkaMxsZ4lpEREREwlKoA10351x7oB8wysx6HruCmY00s3QzS8/Ozq76CkVEJKSSkpJYuHBhsXlTp07lt7/9bYgq+rGGgwcPhrQGkUIhDXTOud3+f78B3gU6lrDOC865BOdcQpMmVfJ8WxERqUYGDRrEzJkzi82bOXMmgwYNOuG2BQUFlVWWAp1UKyELdGZW18zqF74H+gIbQ1WPiIhUT9dffz3z58/n8OHDAGRlZbF7924OHjxIly5daN++PTfccAP79+8HoGXLljzyyCN0796dt99+m5YtW3LffffRpUsXEhISWLt2LcnJyVx44YU899xzADjnSElJISoqiujoaGbNmgVAWloaSUlJXH/99bRp04bBgwfjnGPatGns3r2b3r1707t379AcGJEiQtlDdy6w3MzWAauABc6590JYj4iIVEONGzemY8eOvPee9ydi5syZXHLJJUyaNInFixezdu1aEhISeOKJJwLb1KlTh+XLlzNw4EAALrjgAj788EN69OjB8OHDeeedd/joo4946KGHAJgzZw6ZmZmsW7eOxYsXk5KSwpdffglARkYGU6dOZfPmzXz22WesWLGC0aNH07RpU1JTU0lNTa3iIyJyvJDdtsQ59xkQG6r9i4hI+Cgcdv3Vr37FzJkzufbaa/nnP/9Jt27dAPjhhx/o0qVLYP0bb7yx2PZXX301ANHR0ezfv5/69etTv3596tSpQ05ODsuXL2fQoEFERERw7rnn0qtXL1avXk2DBg3o2LEjzZs3ByAuLo6srCy6d+9eRZ9cJDjV4T50IiIix5mbsYvHFm5ld04e50b+jI8X/pu1a9eSl5dHfHw8l112GTNmzChx27p16xabrl27NgA1atQIvC+cPnLkCM65Uusoun5ERARHjhw5lY8lUilCfZWriIjIceZm7GL8nA3sysnDAV/lgTvvYq4bNJRBgwbRuXNnVqxYwaeffgrAwYMH+eSTT056fz179mTWrFkUFBSQnZ3N0qVL6djxuOv0iqlfvz779u076X2KVCQFOhERqXYeW7iVvPziV6jWadODrE82M3DgQJo0acKrr77KoEGDiImJoXPnzmzZsuWk93fNNdcQExNDbGwsffr04dFHH+W8884rc5uRI0fSr18/XRQh1YKV1c1c3SQkJLj09PRQlyEiIpWs1b0LKOmvkwE7Jvev6nJEToqZramq59Srh05ERKqdpg0jyzVf5HSnQCciItVOSvJFRNaKKDYvslYEKckXhagikepNV7mKiEi1MyC+GUDgKtemDSNJSb4oMF9EilOgExGRamlAfDMFOJEgachVREREJMwp0ImIiIiEOQU6ERERkTCnQCciIiIS5hToRERERMKcAp2IiIhImFOgExEREQlzCnQiIiIiYU6BTkRERCTMKdCJiIiIhDkFOhEREZEwp0AnIiIiEuYU6ERERETCnAKdiIiISJhToBMREREJcwp0IiIiImFOgU5EREQkzCnQiYiIiIQ5BToRERGRMKdAJyIiIhLmFOhEREREwpwCnYiIiEiYU6ATERERCXMKdCIiIiJhToFOREREJMwp0ImIiIiEOQU6ERERkTCnQCciIiIS5hToRERERMKcAp2IiIhImFOgExEREQlzCnQiIiIiYU6BTkRERCTMKdCJiIiIhDkFOhEREZEwp0AnIiIiEuYU6ERERETCnAKdiIiISJhToBMREREJcwp0IiIiImFOgU5EREQkzCnQiYiIiIQ5BToRERGRMKdAJyIiIhLmFOhEREREwpwCnYiIiEiYC3mgM7MIM8sws/mhrkVEREQkHIU80AFjgI9DXYSIiIhIuAppoDOz5kB/4G+hrENEREQknIW6h24q8HvgaGkrmNlIM0s3s/Ts7Oyqq0xEREQkTIQs0JnZlcA3zrk1Za3nnHvBOZfgnEto0qRJFVUnIiIiEj5C2UPXDbjazLKAmUAfM/t7COsRERERCUshC3TOufHOuebOuZbAQGCJc25IqOoRERERCVehPodORERERE5RzVAXAOCcSwPSQlyGiIiISFhSD52IiIhImFOgExEREQlzCnQiIiIiYU6BTkRERCTMKdCJiIiIhDkFOhEREZEwp0AnIiIiEuYU6ERERETCnAKdiIiISJhToBMREREJcwp0IiIiImFOgU5EREQkzCnQiYiIiIQ5BToRERGRMKdAJyIiIhLmFOhEREREwpwCnYiIiEiYU6ATERERCXMKdCIiIiJhToFOREREJMwp0ImIiIiEOQU6ERERkTCnQCciIiIS5hToRERERMKcAp2IiIhImFOgExEREQlzCnQiIiIiYU6BTkRERCTMKdCJiIiIhDkFOhERCZqZMW7cuMD0lClTmDhxYoW1n5WVRVRUVLF5EydOZMqUKRW2j2CVtd+uXbtWcTUiZVOgExGRoNWuXZs5c+awZ8+eUJcSUitXrjxuXkFBQQgqEfEo0ImISNBq1qzJyJEjefLJJ49blp2dzXXXXUdiYiKJiYmsWLECgOjoaHJycnDO0bhxY15//XUAhg4dyuLFi8u1/xdffJHExERiY2O57rrrOHjwIADDhw/njjvuoHfv3rRu3ZoPPviAW2+9lbZt2zJ8+PDA9vXq1WPcuHG0b9+eSy65hOzsbACmTZvGxRdfTExMDAMHDgysv3nzZpKSkmjdujXTpk0r1g5AWloavXv35qabbiI6OpqCggJSUlJITEwkJiaG559/vlyfT+RkKdCJiEi5jBo1iunTp5Obm1ts/pgxYxg7diyrV69m9uzZjBgxAoBu3bqxYsUKNm3aROvWrVm2bBkAH330EZ07dz6u/e3btxMXFxd4Pffcc4Fl1157LatXr2bdunW0bduWl156KbDsu+++Y8mSJTz55JNcddVVjB07lk2bNrFhwwYyMzMBOHDgAO3bt2ft2rX06tWLhx9+GIDJkyeTkZHB+vXri+1vy5YtLFy4kFWrVvHwww+Tn59/XL2rVq1i0qRJbN68mZdeeomzzjqL1atXs3r1al588UV27NhxsodaJGg1Q12AiIiElwYNGnDzzTczbdo0IiMjA/MXL17M5s2bA9Pff/89+/bto0ePHixdupQWLVpwxx138MILL7Br1y4aNWoU6Okq6sILLwwEMKDYOXobN27kgQceICcnh/3795OcnBxYdtVVV2FmREdHc+655xIdHQ1Au3btyMrKIi4ujho1anDjjTcCMGTIEK699loAYmJiGDx4MAMGDGDAgAGBNvv370/t2rWpXbs255xzDl9//TXNmzcvVm/Hjh1p1aoVAIsWLWL9+vW88847AOTm5rJt27bAcpHKokAnIiJlmpuxi8cWbmV3Th55+QXMzdjFXXfdRfv27bnlllsC6x09epQPP/ywWMgD6NmzJ8888ww7d+5k0qRJvPvuu7zzzjv06NGj3LUMHz6cuXPnEhsby6uvvkpaWlpgWe3atQGoUaNG4H3h9JEjR0psz8wAWLBgAUuXLuUf//gHf/jDH9i0aVOxNgEiIiJKbKdu3bqB9845nn766WJBU6QqaMhVRERKNTdjF+PnbGBXTh4OcA7Gz9nA0s/z+PWvf11syLNv37785S9/CUwX9rJdcMEF7Nmzh23bttG6dWu6d+/OlClTTirQ7du3j/PPP5/8/HymT59e7u2PHj0a6D1788036d69O0ePHuWLL76gd+/ePProo4Hev5ORnJzMX//618DQ7CeffMKBAwdOqi2R8lAPnYiIlOqxhVvJyy9+9WZefgGPLdzKnHHjigW4adOmMWrUKGJiYjhy5Ag9e/YMnI/WqVOnwFWgPXr0YPz48XTv3r3c9fzhD3+gU6dOtGjRgujoaPbt21eu7evWrcumTZvo0KEDZ511FrNmzaKgoIAhQ4aQm5uLc46xY8fSsGHDctcGMGLECLKysmjfvj3OOZo0acLcuXNPqi2R8jDnXKhrCFpCQoJLT08PdRkiIqeNVvcuoKS/EgbsmNy/qss5ZfXq1Tvp3jeR8jKzNc65hKrYl4ZcRUSkVE0bRpZrvoiEhgKdiIiUKiX5IiJrRRSbF1krgpTki0JU0alR75z8VOkcOhERKdWA+GYAgatcmzaMJCX5osB8EakeFOhERKRMA+KbKcCJVHMachUREREJcwp0IiIiImFOgU5EREQkzCnQiYiIiIQ5BToRERGRMKdAJyIiIhLmFOhEREREwpwCnYiIiEiYU6ATERERCXMKdCIiIiJhToFOREREJMyFLNCZWR0zW2Vm68xsk5k9HKpaRERERMJZzRDu+zDQxzm338xqAcvN7F/OuY9CWJOIiIhI2AlZoHPOOWC/P1nLf7lQ1SMiIiISrkJ6Dp2ZRZhZJvAN8G/n3H9CWY+IiIhIOAppoHPOFTjn4oDmQEczizp2HTMbaWbpZpaenZ1d9UWKiIiIVHPV4ipX51wOkAZcXsKyF5xzCc65hCZNmlR5bSIiIiLVXSivcm1iZg3995HApcCWUNUjIiIiEq5CeZXr+cBrZhaBFyzfcs7ND2E9IiIiImEplFe5rgfiQ7V/ERERkZ+KanEOnYiIiIicPAU6ERERkTCnQCciIiIS5hToRERERMKcAp2IiIhImFOgExEREQlzCnQiIiIiYU6BTkRERCTMKdCJiIiIhDkFOhEREZEwp0AnIiIiEuYU6ERERETCnAKdiIiISJhToBMREREJcwp0IiIiImFOgU5EREQkzCnQiYiIiIQ5BToRERGRMKdAJyIiIhLmFOhEREREwpwCnYiIiEiYU6ATERERCXMKdCIiIiJhToFOREREJMwp0ImIiIiEOQU6ERERkTCnQCciIiIS5hToRERERMKcAp2IiIhImDthoDOz/w1mnoiIiIiERjA9dJeVMK9fRRciIiIiIienZmkLzOwO4LdAazNbX2RRfWBFZRcmIiIiIsEpNdABbwL/Av4M3Ftk/j7n3LeVWpWIiIiIBK3UQOecywVygUFmFgGc669fz8zqOed2VlGNIiIiIlKGsnroADCzO4GJwNfAUX+2A2IqrywRERERCdYJAx1wF3CRc25vZRcjIiIiIuUXzFWuX+ANvYqIiIhINRRMD91nQJqZLQAOF850zj1RaVWJiIiISNCCCXQ7/dcZ/ktEREREqpETBjrn3MMAZlbXOXeg8ksSERERkfII5tFfXcxsM/CxPx1rZs9WemUiIiIiEpRgLoqYCiQDewGcc+uAnpVZlIiIiIgEL5hAh3Pui2NmFVRCLSIiIiJyEoK5KOILM+sKODM7AxiNP/wqIiIiIqEXTA/d7cAooBnwXyDOnxYRERGRaiCYq1z3AIOroBYREREROQnBPMu1CXAb0LLo+s65WyuvLBEREREJVjDn0M0DlgGL0cUQIiIiItVOMIHuTOfcPZVeiYiIiIiclGAuiphvZldUeiUiIiIiclKCCXRj8ELdITPb57++r+zCRERERCQ4wVzlWr8qChERERGRkxPMOXSY2dX8+LivNOfc/MorSURERETK44RDrmY2GW/YdbP/GuPPExEREZFqIJgeuiuAOOfcUQAzew3IAO49lR2b2QXA68B5wFHgBefcU6fSpoiIiMjpKJiLIgAaFnl/VgXt+wgwzjnXFugMjDKziyuobREREZHTRjA9dH8GMswsFTC8c+nGn+qOnXNfAl/67/eZ2cd4z4vdfKpti4iIiJxOgrnKdYaZpQGJ/qx7nHNfVWQRZtYSiAf+U8KykcBIgJ///OcVuVsRERGRn4Rgh1y7AElAL/99hTGzesBs4C7n3HH3t3POveCcS3DOJTRp0qQidy0iIiLykxDMVa7PArcDG4CNwG/M7JmK2LmZ1cILc9Odc3Mqok0RERGR000w59D1AqKccw4CV7luONUdm5kBLwEfO+eeONX2RERERE5XwQy5bgWKnrx2AbC+AvbdDRgK9DGzTP+lZ8aKiIiIlFMwPXSNgY/NbJU/nQh8aGb/AHDOXX0yO3bOLce7alZERERETkEwge6hSq9CRERERE5aMLct+QDAzBoUXd85920l1iUiIiIiQTphoPPvA/cHIA/vEV0GOKB15ZYmIiIiIsEIZsg1BWjnnNtT2cWIiIiISPkFc5XrduBgZRciIiIiIicnmB668cBKM/sPcLhwpnNudKVVJSIiIiJBCybQPQ8swbuZ8NHKLUdEREREyiuYQHfEOXd3pVciIiIiIiclmHPoUs1spJmdb2aNCl+VXpmIiIiIBCWYHrqb/P+OLzJPty0RERERqSaCubFwq6ooREREREROTjA3Fq4F3AH09GelAc875/IrsS4RERERCVIwQ65/BWoBz/rTQ/15IyqrKBEREREJXjCBLtE5F1tkeomZrausgkRERESkfIK5yrXAzC4snDCz1kBB5ZUkIiIiIuUR7LNcU83sM8CAFsAtlVqViIiIiAQtmKtc300IHdMAACAASURBVDezXwAX4QW6Lc65wyfYTERERESqyAmHXM1sFBDpnFvvnFsHnGlmv6380kREREQkGMGcQ3ebcy6ncMI59x1wW+WVJCIiIiLlEUygq2FmVjhhZhHAGZVXkoiIiIiURzAXRSwE3jKz5/Ae+XU78F6lViUiIiIiQQsm0N0DjMR7WoQBi4C/VWZRIiIiIhK8YK5yPQo8579EREREpJoJ5hw6EREREanGFOhEREREwpwCnYiIiEiYK/UcOjP7J95VrSVyzl1dKRWJiIiISLmU1UM3BXgc2AHkAS/6r/3AxsovTSR8jB07lqlTpwamk5OTGTFiRGB63LhxPPHEE5Wy7xEjRrB58+ZKaVtERMJDqYHOOfeBc+4DIN45d6Nz7p/+6yage9WVKFL9de3alZUrVwJw9OhR9uzZw6ZNmwLLV65cSbdu3Spl33/729+4+OKLK6VtEREJD8GcQ9fEzFoXTphZK6BJ5ZUkEn66desWCHSbNm0iKiqK+vXr891333H48GE+/vhj7rrrLjIzM4tts379er799lsGDBhATEwMnTt3Zv369QBMnDiRYcOG0bdvX1q2bMmcOXP4/e9/T3R0NJdffjn5+fkAJCUlkZ6eDkC9evW4//77iY2NpXPnznz99dcAbN++nc6dO5OYmMhDDz1EvXr1qvLwiIhIJQsm0I0F0swszczSgFTgrkqtSiTMNG3alJo1a7Jz505WrlxJly5d6NSpEx9++CHp6enExMRw++238+qrrwLwySefcPjwYWJiYpgwYQLx8fGsX7+eP/3pT9x8882Bdrdv386CBQuYN28eQ4YMoXfv3mzYsIHIyEgWLFhwXB0HDhygc+fOrFu3jp49e/Liiy8CMGbMGMaMGcPq1atp2rRplRwTERGpOicMdM6594BfAGP810XOuYWVXZhIuCnspSsMdF26dAlMd+3alRtuuIH58+eTn5/Pyy+/zPDhwwFYvnw5Q4cOBaBPnz7s3buX3NxcAPr160etWrWIjo6moKCAyy+/HIDo6GiysrKOq+GMM87gyiuvBKBDhw6BdT788ENuuOEGAG666aZKPAoiIhIKwTz6C6AD0NJfP9bMcM69XmlViYSBuRm7eGzhVnbn5NG0YSTtLriYlStXsmHDBqKiorjgggt4/PHHadCgAbfeeitnnnkml112GfPmzeOtt94KDJM6d/zF5GYGQO3atQGoUaMGtWrVCsyvUaMGR44cOW67outERESUuI6IiPz0nLCHzszewLvitTuQ6L8SKrkukWptbsYuxs/ZwK6cPBywKyePf+9tyFtz5tGoUSMiIiJo1KgROTk5fPjhh3Tp0gXwrkgdPXo0iYmJNGrUCICePXsyffp0ANLS0jj77LNp0KBBhdbbuXNnZs+eDcDMmTMrtG0REQm9YHroEoCLXUndCCKnqccWbiUvv6DYvKM/u4A9e/bQufPQwLzo6Gj279/P2WefDXjDoA0aNOCWW24JrDNx4kRuueUWYmJiOPPMM3nttdcqvN6pU6cyZMgQHn/8cfr3789ZZ51V4fsQEZHQsRPlNDN7GxjtnPuyakoqXUJCgiscphIJpVb3LijxrtsG7Jjcv9Ttdu/eTVJSElu2bKFGjap7UMvBgweJjIzEzJg5cyYzZsxg3rx5VbZ/EZHTkZmtcc5VyahmMD10ZwObzWwVcLhwpp4UIaezpg0j2ZWTV+L80rz++uvcf//9PPHEE1Ua5gDWrFnDnXfeiXOOhg0b8vLLL1fp/kVEpHIF00PXq6T5/k2Hq5R66KS6KDyHruiwa2StCP58bTQD4puFsDIREakuqlUPnXPuAzM7F+9iCIBVzrlvKrcskeqtMLQVvco1JfkihTkREQmJEwY6M/s18BiQhneK0NNmluKce6eSaxOp1gbEN1OAExGRaiGYc+juBxILe+XMrAmwGFCgExEREakGgjkzu8YxQ6x7g9xORERERKpAMD1075nZQmCGP30j8K/KK0lEREREyiOYiyJSzOxavCdFGPCCc+7dSq9MRERERIISzEURrYD/c87N8acjzaylcy6rsosTERERkRML5ly4t4GjRaYL/HkiIiIiUg0EE+hqOud+KJzw359ReSWJiIiISHkEE+iyzSzwmC8z+xWwp/JKEhEREZHyCCbQ3Q7cZ2ZfmNlO4B7gN5VblpwOvvrqKwYOHMiFF17IxRdfzBVXXMEnn3wSsnqmTp3KwYMHA9NXXHEFOTk55W4nKyuLN998syJLExERKdMJA51zbrtzrjPQFmjnnOvqnPu08kuTnzLnHNdccw1JSUls376dzZs386c//Ymvv/46ZDUdG+j+7//+j4YNG5a7HQU6ERGpaicMdGZ2rpm9BLztnNtnZheb2f+rgtrkJyw1NZVatWpx++23B+bFxcXRvXt3UlJSiIqKIjo6mlmzZgGQlpZGUlIS119/PW3atGHw4ME45wBo2bIlEyZMoH379kRHR7NlyxYADhw4wK233kpiYiLx8fHMmzcPgIKCAn73u98RHR1NTEwMTz/9NNOmTWP37t307t2b3r17B9rds8c7u+D1118nJiaG2NhYhg4dCsDw4cN5550fH5hSr149AO69916WLVtGXFwcTz75ZGUeRhERESC4IddXgYVAU3/6E+CuyipITg8bN26kQ4cOx82fM2cOmZmZrFu3jsWLF5OSksKXX34JQEZGBlOnTmXz5s189tlnrFixIrDd2Wefzdq1a7njjjuYMmUKAJMmTaJPnz6sXr2a1NRUUlJSOHDgAC+88AI7duwgIyOD9evXM3jwYEaPHk3Tpk1JTU0lNTW1WE2bNm1i0qRJLFmyhHXr1vHUU0+V+dkmT55Mjx49yMzMZOzYsad6qDCzQIgEOHLkCE2aNOHKK6885bZPRlpaWqXuOycnh2effTYwrR5PEZETCybQne2cewv/1iXOuSN4ty4RqXDLly9n0KBBREREcO6559KrVy9Wr14NQMeOHWnevDk1atQgLi6OrKyswHbXXnstAB06dAjMX7RoEZMnTyYuLo6kpCQOHTrEzp07Wbx4Mbfffjs1a3q3YWzUqFGZNS1ZsoTrr7+es88+O6j1K1rdunXZuHEjeXl5APz73/+mWbNmVVpDVVKgExEpv2AC3QEzaww4ADPrDORWxM7N7GUz+8bMNlZEe1L9zc3YRbfJS/jTyn28PPd95mbsKra8cBi1JLVr1w68j4iI4MiRI8ctKzrfOcfs2bPJzMwkMzOTnTt30rZtW5xzmFnQNZe2fs2aNTl69GhgnR9++OG4dSpKv379WLBgAQAzZsxg0KBBgWWrVq2ia9euxMfH07VrV7Zu3Qp4PYsdO3YkLi6OmJgYtm3bxoEDB+jfvz+xsbFERUUFhrQfeeQREhMTiYqKYuTIkYGfw6effsqll15KbGws7du3Z/v27QDs37+/1OHvwmHq9PR0kpKSAPjggw+Ii4sjLi6O+Ph49u3bB8Bjjz1GYmIiMTExTJgwAfCGrLdv305cXBwpKSnHDWGX9LlERE53wQS6u4F/ABea2QrgdeD/q6D9vwpcXkFtSTU3N2MX4+dsYFdOHrVbxHLo8GHueODRQKhbvXo1P/vZz5g1axYFBQVkZ2ezdOlSOnbseFL7S05O5umnnw6EjYyMDAD69u3Lc889Fwh+3377LQD169cPBI2iLrnkEt566y327t1bbP2WLVuyZs0aAObNm0d+fn6Z7ZyKgQMHMnPmTA4dOsT69evp1KlTYFmbNm1YunQpGRkZPPLII9x3330APPfcc4wZM4bMzEzS09Np3rw57733Hk2bNmXdunVs3LiRyy/3fv3uvPNOVq9eHegJnD9/PgCDBw9m1KhRrFu3jpUrV3L++ecDZQ9/l2TKlCk888wzZGZmsmzZMiIjI1m0aBHbtm1j1apVZGZmsmbNGpYuXcrkyZO58MILyczM5LHHHjtuCLukzyUicroL5irXtUAvoCve7UraOefWV8TOnXNLgW8roi2p/h5buJW8fG+03sxocs39fL99LQMvTaRdu3ZMnDiRm266KXDxQZ8+fXj00Uc577zzTmp/Dz74IPn5+cTExBAVFcWDDz4IwIgRI/j5z38e2E/hcN7IkSPp169f4KKIQu3ateP++++nV69exMbGcvfddwNw22238cEHH9CxY0f+85//ULduXQBiYmKoWbMmsbGxJ31RRGFPZqt7F5CXX8BnBY3JyspixowZXHHFFcXWzc3N5YYbbiAqKoqxY8eyadMmALp06cKf/vQn/vd//5fPP/+cyMhIoqOjWbx4Mffccw/Lli3jrLPOAryLVDp16kR0dDRLlixh06ZN7Nu3j127dnHNNdcAUKdOHc4880yg7OHvknTr1o27776badOmkZOTQ82aNVm0aBGLFi0iPj6e9u3bs2XLlqB620r6XCIipz3nXIkvIBE4r8j0zcA8YBrQqLTtyvsCWgIbg1m3Q4cOTsJXy3vmuxYlvFreMz/UpVUr7679r2vzwL8Cx8dq1XFtHviXG3j7ONeoUSO3fv16l5qa6vr37++cc27YsGHuqaeecs45t2PHDteiRYtAW59++ql76qmnXKtWrdz777/vnHNu79697o033nDdunVzDz/8sMvLy3PnnHOO27lzp3POuQkTJrgJEya43Nxc16xZs+PqK7pv55wbNWqUe+WVV5xzzl144YXu66+/ds45t2zZMterV6/AeuvXr3eTJ092zZo1cx9//LG7++673XPPPXdc+zt27HDt2rUrdX+lfS4RkeoGSHcVlJdO9Cqrh+554AcAM+sJTMYbbs0FXqiUdFkCMxtpZulmlp6dnV1Vu5VK0LRhyT0ppc0/XRXtySyUl1/AtoaJPPTQQ0RHRxdblpubG7hI4tVXXw3M/+yzz2jdujWjR4/m6quvZv369ezevZszzzyTIUOG8Lvf/Y61a9dy6NAhwLtSeP/+/YFbsTRo0IDmzZszd+5cAA4fPlzsPn0lKToMPXv27MD87du3Ex0dzT333ENCQgJbtmwhOTmZl19+mf379wOwa9cuvvnmm+OGrI+dLulziYic7soKdBHOucLh0BuBF5xzs51zDwL/U/mleZxzLzjnEpxzCU2aNKmq3UolSEm+iMhaEcXmRdaKICX5ohBVVD3tzskrcf5eV48xY8YcN//3v/8948ePp1u3bhQU/BgEZ82aRVRUFHFxcWzZsoWbb76ZDRs2BC4omDRpEg888AANGzbktttuIzo6mgEDBpCYmBho44033mDatGnExMTQtWtXvvrqqzJrnzBhAmPGjKFHjx5ERPz4s546dSpRUVHExsYSGRlJv3796Nu3LzfddBNdunQhOjqa66+/nn379tG4cWO6detGVFQUKSkpxw1hl/S5REROd+ZKuarQv/I0zjl3xMy2ACOdd84bZrbRORdVIQWYtQTmB9NeQkKCS09Pr4jdSojMzdjFYwu3sjsnj6YNI0lJvogB8T/dW3CcjG6Tl7CrhFDXrGEkK+7tE4KKRETkZJjZGudcQlXsq2YZy2YAH5jZHiAPWOYX9z9U3G1LZgBJwNlm9l9ggnPupYpoW6qnAfHNFOBOICX5IsbP2VBs2FU9mSIiUpZSA51zbpKZvQ+cDyxyP3bl1aCCblvinBt04rVETi+FgVc9mSIiEqyyeuhwzn1UwrxPKq8cEQH1ZIqISPkEc2NhEREREanGFOhCKCIigri4OKKiorjqqqvIyckBTv3h5+XdPisri6iosq9JqVev3knXU959iYiISPko0IVQZGQkmZmZbNy4kUaNGvHMM8+EuiQREREJQwp01USXLl3YtevHB9WX9vDz999/n/j4eKKjo7n11ls5fPgwAO+99x5t2rShe/fuzJkzJ9DOgQMHuPXWW0lMTCQ+Pp558+aVWceJHny+f/9+LrnkEtq3b090dHSgvaysLNq2bcttt91Gu3bt6Nu3L3l53q031qxZQ2xsLF26dFFoFRERqQQKdNVAQUEB77//PldffXVgXkkPPz906BDDhw9n1qxZbNiwgSNHjvDXv/6VQ4cOcdttt/HPf/6TZcuWFbv566RJk+jTpw+rV68mNTWVlJQUDhw4UGotJ3rweZ06dXj33XdZu3YtqampjBs3LhA2t23bxqhRo9i0aRMNGzYMPCnglltuYdq0aXz44YcVedhERETEp0AXQnl5ecTFxdG4cWO+/fZbLrvsssCykh5+vnXrVlq1asUvf/lLAIYNG8bSpUvZsmULrVq14he/+AVmxpAhQwLtLFq0iMmTJxMXF0dSUhKHDh1i586dpdZ0ogefO+e47777iImJ4dJLL2XXrl18/fXXALRq1Yq4uDgAOnToQFZWFrm5ueTk5NCrVy8Ahg4dWjEHT0RERAIU6KrY3IxddJu8hFb3LoCaZzDxlQV8/vnn/PDDD8WGI2vXrh14HxERwZEjRyjtqR4AZlbifOccs2fPJjMzk8zMTHbu3Enbtm1Lbeemm27iH//4B5GRkSQnJ7NkyZJiy6dPn052djZr1qwhMzOTc889N/As0NJqLq02ERERqRgKdFVobsYuxs/ZwK6cPBzgHIyfs4HUz/Yzbdo0pkyZQn5+fqnbt2nThqysLD799FPAe85mr169aNOmDTt27GD79u0AzJgxI7BNcnIyTz/9dCAMZmRklFnjiR58npubyznnnEOtWrVITU3l888/L7O9hg0bctZZZ7F8+XLAC4QiIiJSsRToqtBjC7cWe5wTQF5+AY8t3Ep8fDyxsbHMnDmz1O3r1KnDK6+8wg033EB0dDQ1atTg9ttvp06dOrzwwgv079+f7t2706JFi8A2Dz74IPn5+cTExBAVFcWDDz5YZo0nevD54MGDSU9PJyEhgenTp9OmTZsTfu5XXnmFUaNG0aVLl+OGcEVEROTUWVnDeNVNQkKCS09PD3UZJ63VvQso6WgbsGNy/6ouR0RERCqRma1xziVUxb7UQ1eFmjYsuXeqtPkiIiIiwVCgq0IpyRcRWSui2LzIWhGkJF8UoopERETkp6BmqAs4nRQ+bP2xhVvZnZNH04aRpCRfpIewi4iIyClRoKtiA+KbKcCJiIhIhdKQq4iIiEiYU6ATERERCXMKdCKVxMyKPersyJEjNGnShCuvvLLM7dLT0xk9enRllyciIj8hOodOpJLUrVuXjRs3kpeXR2RkJP/+979p1uzE508mJCSQkFAlty0SEZGfCPXQiVSifv36sWDBAsB7JNugQYMCy1atWkXXrl2Jj4+na9eubN26FYC0tLRAL97EiRO59dZbSUpKonXr1kybNi2w/d///nc6duxIXFwcv/nNbygoKP4UEhEROX0o0IlUooEDBzJz5kwOHTrE+vXr6dSpU2BZmzZtWLp0KRkZGTzyyCPcd999JbaxZcsWFi5cyKpVq3j44YfJz8/n448/ZtasWaxYsYLMzEwiIiL0nFwRkdOYhlxFKtDcjF2B+wzm5RfwWUFjsrKymDFjBldccUWxdXNzcxk2bBjbtm3DzMjPzy+xzf79+1O7dm1q167NOeecw9dff83777/PmjVrSExMBCAvL49zzjmn0j+fiIhUTwp0IhVkbsYuxs/ZQF6+N/TpHIyfs4G4xCR+97vfkZaWxt69ewPrP/jgg/Tu3Zt3332XrKwskpKSSmy3du3agfcREREcOXIE5xzDhg3jz3/+c6V+JhERCQ8achWpII8t3BoIc4Xy8gvY1jCRhx56iOjo6GLLcnNzAxdJvPrqq+Xa1yWXXMI777zDN998A8C3337L559/fvLFi4hIWFOgE6kgu3PySpy/19VjzJgxx83//e9/z/jx4+nWrVu5L2i4+OKL+eMf/0jfvn2JiYnhsssu48svvzypukVEJPyZcy7UNQQtISHBpaenh7oMkRJ1m7yEXSWEumYNI1lxb58QVHR6MzOGDBnCG2+8AXj3ATz//PPp1KkT8+fPL3d7OTk5vPnmm/z2t7+t6FJF5CfKzNY456rkPlTqoROpICnJFxFZK6LYvMhaEaQkXxSiik5vRe8DCAR9H8DS5OTk8Oyzz1ZUeSIiFUqBTqSCDIhvxp+vjaZZw0gMr2fuz9dGMyD+5EOEnJqy7gP47bffMmDAAGJiYujcuTPr168HSr/337333sv27duJi4sjJSWF/fv3c8kll9C+fXuio6OZN28eAFlZWbRt25bbbruNdu3a0bdv30CofPHFF0lMTCQ2NpbrrruOgwcPVuXhEJGfMudc2Lw6dOjgRESCUbduXbdu3Tp33XXXuby8PBcbG+tSU1Nd//79nXPO3XnnnW7ixInOOefef/99Fxsb65xzbsKECa5Lly7u0KFDLjs72zVq1Mj98MMPbseOHa5du3aB9vPz811ubq5zzrns7Gx34YUXuqNHj7odO3a4iIgIl5GR4Zxz7oYbbnBvvPGGc865PXv2BLa///773bRp0yr/QIhIyADprooykm5bIiI/WTExMaXeB3D58uXMnj0bgD59+rB3715yc3OBku/9dyznHPfddx9Lly6lRo0a7Nq1K7Beq1atiIuLA6BDhw5kZWUBsHHjRh544AFycnLYv38/ycnJlfXRReQ0o0AnIj8Zx97YeW7GLq6++uoS7wPoSrggzMyAku/9d6zp06eTnZ3NmjVrqFWrFi1btuTQoUMlbl845Dp8+HDmzp1LbGwsr776KmlpaRXyuUVEdA6diPwkFN7YeVdOHo4fb+zctGO/Eu8D2LNnz8Dj0tLS0jj77LNp0KBBqe3Xr1+fffv2BaZzc3M555xzqFWrFqmpqUHdB3Dfvn2cf/755Ofn61FtIlKh1EMnIj8Jpd3Y+ZXMfay49/j7AE6cOJFbbrmFmJgYzjzzTF577bUy22/cuDHdunUjKiqKfv36cc8993DVVVeRkJBAXFwcbdq0OWGNf/jDH+jUqRMtWrQgOjq6WEAUETkVug+diPwktLp3ASX938yAHZP7V3U5IiK6D52ISHk1bRhZrvkiIj8lCnQi8pOgGzuLyOlM59CJyE9C4Q2cC69ybdowkpTki3RjZxE5LSjQichPxoD4ZgpwInJa0pCriIiISJhToBMREREJcwp0IiIiImFOgU5EREQkzCnQiYiIiIQ5BToRERGRMKdAJyJVql69eiXOHz58OO+8806Z2yYlJaHH/4mIHE+BTqQMZsa4ceMC01OmTGHixIkV1n5WVhZmxoMPPhiYt2fPHmrVqsWdd955Um0+9NBDLF68uKJKFBGRMKBAJ1KG2rVrM2fOHPbs2VNp+2jdujXz588PTL/99tu0a9fupNt75JFHuPTSSyuitErlnOPOO+/k4osvpn///nzzzTeBZY888giJiYlERUUxcuRInHOBZW+//TYdO3bkl7/8JcuWLQPg0KFD3HLLLURHRxMfH09qamqVfx4RkVBSoBMpQ82aNRk5ciRPPvnkccuys7O57rrrSExMJDExkRUrVgAQHR1NTk4OzjkaN27M66+/DsDQoUNL7DmLjIykbdu2gaHEWbNm8etf//qE+/nVr34VaPv5559n8ODBQPGhy9WrV9O1a1diY2Pp2LEj+/btqzbh591332Xr1q1s2LCBF198kZUrVwaW3XnnnaxevZqNGzeSl5dXLPAeOXKEVatWMXXqVB5++GEAnnnmGQA2bNjAjBkzGDZsGIcOHaraDyQiEkIKdKepsWPHMnXq1MB0cnIyI0aMCEyPGzeOJ554olxtpqWlFfujXCgrK4vmzZtz9OjRYvPj4uJYtWoVI0aMYPPmzeXa13PPPRcIM6VJT09n9OjR5Wq3JKNGjWL69Onk5uYWmz9mzBjGjh3L6tWrmT17duD4devWjRUrVrBp0yZat24d6EX66KOP6Ny5c4n7GDhwIDNnzuS///0vERERNG3a9IT7eeGFF3jkkUdYtmwZjz/+OE8//XSxNn/44QduvPFGnnrqKdatW8fixYuJjIysNuFn6dKlDBo0KPB5+/TpE1iWmppKp06diI6OZsmSJWzatCmw7NprrwWgQ4cOZGVlAbB8+XKGDh0KQJs2bWjRogWffPJJ1X0YEZEQ07NcT1Ndu3bl7bff5q677uLo0aPs2bOH77//PrB85cqVxQJfMNLS0qhXrx5du3YtNr9ly5ZccMEFLFu2jF69egGwZcsW9u3bx//P3p2HVVWtDxz/bg7DYVZBURRRnAg4h0EURRHUCqcMp5yuSl71Os+WVhbaoCmmUd1Mfw6lpORsDpkkiFMJyCCYQyqoOIQKyCwc9u8PLjsQMDVFrfV5Hp/L2Wfvtdfe3ut9WcP7tm3blrZt21bZnk6nQ6VSVfnd2LFj/7Q/np6eeHp6PtQzVMXCwoLhw4cTEhKCsbGxcjw8PLxCIHrnzh2ys7Px8fEhKioKe3t7xo0bx4oVK0hLS6NOnTrVbgjo1q0bc+fOxcbGhoEDB1b4rrr72NjYMH/+fDp37sy2bduoU6dOhevOnDlDgwYNaNOmjfIcUBr8TJo0CagY/Gi12r/wlu5ve1wai/ed4WpmPvlFOrbHpQGlaxTvVVBQwPjx44mJicHOzo6goKAKAaeRkREAKpWK4uJigApTsoIgCP9EYoTuH6pDhw7KaFpycjIuLi6Ym5uTkZFBYWEhv/76K+7u7sTGxuLr60vr1q3x9/fn2rVrAISEhODk5IRWq2XQoEGkpKSwfPlyli5dipubmzIqVWbw4MFs3LhR+bxx40YGDx4MVNy5aGZmxrvvvouXlxfHjh1j1apVtGzZEj8/P0aPHq1sFAgKCiI4OFi5/s0336y0rioyMpJevXoBcPz4cby9vXF3d8fb25szZ85U+262x6XRYeEBms7erQQfU6dOZdWqVeTm5irnlZSUcOzYMeLj44mPjyctLQ1zc3M6derEoUOHOHToEH5+ftStW5fNmzfj4+NT7T0NDQ1p3bo1S5YsoV+/fhW+q+4+UDrKZmVlxdWrVyu1Kctyv9HJ7QAAIABJREFUlQFTTQc/2+PSmLP1JGmZ+ciALMOcrScxauTMxo0b0el0XLt2TZn6LQverK2tycnJ+dOdrwCdOnUiNDQUgLNnz3Lp0iVatWr1xJ5JEAThWSMCun8oW1tb9PX1uXTpEkePHqV9+/ZKEBUTE4NWq0WSJCZNmsTmzZuJjY1l5MiRvP322wAsXLiQuLg4EhMTWb58OU2aNGHs2LFMmzaN+Pj4SsHLa6+9xvbt25URlbCwMAYNGlSpX7m5ubi4uPDLL7/g4ODA+++/z88//8z+/fs5ffp0tc9T1bqq8hwdHYmKiiIuLo758+fz1ltvVdlOdcFHVGo+r732GqtWrVLOffnll/n888+Vz/Hx8QDY2dlx8+ZNzp07h4ODAx07diQ4OPi+AR2UTnN//PHHWFlZVThe3X2OHz/O3r17iYuLIzg4mIsXL1Z65qtXrxIdHQ1AdnY2xcXFNR78LN53hvwiXYVj+UU6DhU50KJFCzQaDePGjVNGb2vVqsXo0aPRaDQEBAQoI4z3M378eHQ6HRqNhoEDB7J27VplJE8QBOGfQEy5/oOVjdIdPXqU6dOnk5aWxtGjR7G0tFRGsZKSknjppZeA0inQBg0aAKDVahk6dCgBAQEEBAT86b3q16+Ps7MzP/30EzY2NhgYGODi4lLpPJVKpYxQHT9+HF9fX2UqccCAAdWui6pqXVV5WVlZjBgxgnPnziFJEkVFRVW2U13wsXjfGbbOmFEhsAoJCWHChAlotVolUFq+fDkAXl5e6HSl7fj4+DBnzhw6dux4v1eEs7Nzlbtbq7rPp59+yujRo1mzZg22trYsWbKEkSNHcuDAAeU6Q0NDwsLCmDRpEvn5+RgbGxMeHs748eMZO3YsGo0GfX39Jx78XM3Mr/C58fTSEbdrWQUV3md5H3zwAR988EGl45GRkcrP1tbWyt+1Wq1m7dq1j6W/giAIzyMR0NWQDz/8kG+//RaVSoWenh5fffUVXl5eD91OZGQkhoaGyjq1wMBAevXqRf/+/e97nUqlQqPRcDs7n1t5xRi90JlaZnXI2vEjV8+cxMXFBTs7O5YsWYKFhQUjR47k+PHjqFQqZUSovN27dxMVFcXOnTt5//33SU5O5ueff6ZTp07V9qFs2tXGxkaZbr2XWq1W1s09zNRgVeuqyps7d66y1iwlJQU/P78q26ku+LiamY+NjQ15eXnKd9bW1oSFhVXZzrp165Sfvb29K20IKdOkSROSkpIqHQ8MDCQwMPC+90lISFB+7t27N7179waoENi0adOGn3/+udK1NRn82NYyJu2e91p2XBAEQXg8nuqUqyRJ3SRJOiNJ0m+SJM1+mn15ko4dO8auXbs4ceIEiYmJhIeHY2dn90htVbeT9M8YGxsTtGY3pkM+pU7/+eRfiCH90m/8+MNedAamqFQq6tSpQ2ZmJseOHaN9+/bY2dlx9+5djh07BkBRURHJycmUlJRw+fJlOnfuzKJFi8jMzCQnJ4fjx4+TkZFRbR/69evHnj17qp1uvVfbtm05ePAgGRkZFBcXs2XLlod+7jJZWVk0bNgQuH8wU12QIYKPRzfLvxXGBhU3txgbqJjlL9a4CYIgPC5PLaCTJEkFfAF0B5yAwZIkOT2t/jxJ165dw9raWhlFsra2VtJS/PTTT7i7u6PRaBg5ciSFhYVA6chNWTLbmJgY/Pz8qt14EBUVhbe3Nw4ODvddQF42nagyrUWdbpPIPX2Y4rwsfldZ4ePjg4eHBykpKRgaGmJtbY2BgQEeHh68+eabtGjRAgsLC3bs2MH+/ftxcXFBrVZTr149Jk2axDfffEN2djafffYZZmZmHDp0iHHjxuHp6YmzszPvvfcetWrVol27dtjY2NC0adM/fW8NGzbkrbfewsvLixdffBEnJycsLS0f6e/gjTfeYM6cOXTo0EGZCq2KCD4evwD3hizoq6FhLWMkoGEtYxb01RDg3vBpd00QBOHvQ5blp/IHaA/sK/d5DjDnfte0bt1afh5lZ2fLrq6ucosWLeRx48bJkZGRsizLcn5+vtyoUSMZkKdPny4PGzZMXrp0qbx48WLZ0tJSTk9Pl2VZlqOjo2VfX19ZlmX5vffekxcvXqy0PWLECLl///6yTqeTk5OT5WbNmlW6/8WLF2U9PT25yZu7ZPtyf/SMTOVGE9fJjadvlvPz82VZluWzZ8/KZe85IiJC7tmzp3zkyBHZw8NDTk1NVfp85swZWZZlpc+yLMv29vZKn2VZlm/duiXLsiwXFxfLvr6+ckJCwiO9O1mW5aKiIrlXr17y1q1bH7qNh7XtxBXZe8FPcpM3d8neC36St5248sTvKQiCIPz9ADFyDcVVT3MNXUPgcrnPV4CHX1T2DCufe6vBa4vpXzeToitJDBw4kIULF+Lu7k7Tpk1JT09n69atLFmyhPXr11fK4/ZnAgIC0NPTw8nJiRs3blR73r1rmcpWqNU3N2D06NHEx8ejUqkqbDz49ddfGTNmDD/++CO2trYkJCTQtGlTWrZsCcCIESP44osvmDp1aqX7fffdd6xYsYLi4mKuXbvGqVOnHjrXWVBQEOHh4RQUFPDyyy8/0AaMvyrAvaEYPRIEQRCeK09zDV3lBFl/xBh/nCRJYyRJipEkKSY9Pb0GuvV43Jv+4uqdu4ReMsc9YAyff/45W7ZsURb9l5WXKj9dqqenR0lJCenp6cyYMYPY2FjatGnDpUuXgD/KS0Fpkt2yqgkFBQXVFmaf5d8KtQoyIlZzddVE5Lv53P3tF5pei+Tu3btYWVnh6OhIfn4+ubm5zJ49m+vXr3P+/Hk+/fRToDRnXUJCgpKX7tatW+Tm5uLh4aHc59y5c7i4uBAcHMxPP/1EYmIiPXv2fKRqBMHBwcTHx3P69GlCQkKqzKsmCIIgCP90TzOguwKU3xnQCKiUHVWW5RWyLHvKsuxZt27dGuvcX1U+/UXRrSsU3U5T0l/Ex8djb2+Po6MjKSkplJSUMGHCBHbu3KlUTahVqxaxsbFMmTIFGxsbWrduzZYtW9i1axfZ2dlKeamMjAzq1aunrKfT6XTVlpcKcG9IFykJM2MjVGa1aeg7CPPUKEyKMrGysiI6OloJzH744QesrKzo3LkzKSkp7N69m/DwcEJCQjA3NycsLEzJS9ejRw8sLS0xMDAgOzubNWvW0KtXL0xNTbG0tOTGjRvs3bu3Bt66IAiCIPwzPc0p12ighSRJTYE0YBAw5Cn257Eqn/6ipKiAjP3LKSnM5aqeCpuO7gRMnEfXZUe56/0f8r+bi6Z1W5o3b05+fj7m5ub4+voyZcoULl68SO3atcnLy6N3795IksSWLVvIzs7mzp073LhxA39/f06cOEFaWhqSJFVZXqqkpAQ3NzcuXLhAYWEhVlZWWN3WcSf/Dj4+PnzwwQeoVCoyMjIwNTVFo9EQGxuLqakpZ8+eZc+ePXTp0oVr165Rv359NBqNUnx+7NixWFtbs3LlSrp3705qaipXrlzh+vXrODs74+DgQIcOHWry9QuCIAjCP8pTC+hkWS6WJGkisA9QAatlWU7+k8ueG+XXqxnVb079YaVlqhrWMma4fyvmbD1JfpEOdRM3JH0jTAYtY0bXRswN7MXrr7+Ovb09a9aswdramtTU1Ao1RAEuX77MwIEDadq0KTNnzmTKlCls3ryZadOmVdkfZ2dn4uPj6devH2PGjMHf37/C902bNiU4OJgFCxawYMECtm3bxo0bN/j444+ZM2eOMnKo1WqVNCbl9evXj3nz5rF48WJCQ0OxsrJS0oOYmZmRk5Pzl96nIAiCIAjVe6p56GRZ3iPLcktZlpvJsvzh0+zL43a/9BfVVSNY/vPvT7y8lL+/P19++aVSKeHs2bMV6pOWWb16Nd7e3uTl5TFz5kySkpIwNDQkPT29Ul46KE0I7O/vz7hx43j99dcf9DUJgiAIgvAYiFquT8j9cm/dW42gzNXMfGbMmKHkn4PSsk9ltVWdnJyU0lJQWl6qbLepj48PaWlpVZaXKi4uVnLgjRo1CicnJzw8PHBxceE///lPpcoKOTk5HD16lJs3b7Jw4UI+/PBDJk6ciJ6eHps3b2bKlCmYmppiYWFB9+7dlUTHZZskZs+ejYuLi7Kur8zNmzdp3749u3fvJiUlRcl95+Hh8UjJkgVBEARBKCWV7bR8Hnh6esoxMTFPuxt/WYeFB6oshdSwljFHZnd5bPeRJInp06crxdjbtm1LTk4OQUFB971u/fr1REREsGrVKry9vfn888+pU6cOvXr1Iikpiby8PPT09FCr1Zw7d47BgwcTExPDK6+8wv79+7ly5Yqy7s/c3BwzMzPOnz9P7969+eCDD3jppZeqbUMQBEEQ/i4kSYqVZdmzJu4lRuiegpqqRmBkZMSqVat4++23mTNnzgNft2HDBqU016BBg9iwYUOF74uKihg9ejQajYYBAwZw6tQp+vTpw6lTpyguLmbRokWcPHkSc3Nz5fyuXbuyaNEiXnrppWrbEARBEATh0TzNXa7/WGVJa/u1a07jaZuxrWXMLP9Wjz2Zrb6+Pm+++SY5OTm4u7vz008/Kd+lp6czduxYJa9d3/Fv8/01M44vHExJXhbRJxIwMdLnypUr2NjY0KpVKy5cuIC7uztZWVn4+/uTkJBAeno69evXJyUlhRdffJHdu3dTv359hg0bhqGhIVAavJmbm7Nv3z58fX0BWLp0KTY2NiQkJFBSUoJarX6szy4IgiAI/yRihO4pCXBviLGBiosLe3JkdpcHDub8/PzYt29fhWPLli3DwcGBhQsXVjp/woQJhIaGkpWVVeH4lClTGDZsGPb29oyZ9wVBsyZz9U4h+rVtMbRthdWo/2P8/M/w8/MjPz8fCwsLmjZtSlxcHM2aNePUqVPo6ekxdOhQAOLi4mjXrh1paWkMHz6cf//737Rp04bY2FiMjY3Jzs4mISFB6WNWVhYNGjRAT0+PdevW3be+qiAIgiAI9ydG6B4DSZL417/+xbp164DSTQgNGjTAy8uLXbt2/en1sizzxhtvsHfvXiRJ4p133mHgwIGMHz+ebt26YWFhwaBBg+jRoweDBw9m/vz5HDp0iA8++ICAgAD2799P3bp1qVOnToVyY/lFOvafyWD48OGEhIRgbGxMfHw8EydOJDw8XJnm3DtqCLrCXEoK8ygpyEGS9Mgv0rFsxdfMGzGQ3r17ExISQmpqKhqNhtzcXNLT02nXrh0XL15UUqro6emhUqno3LkztWrVwsPDA1dXVwoKCrh8+TJffvklH3zwARYWFowfP55+/fqxadMmOnfujKmp6ZP7CxIEQRCEv7uaKhr7OP6UFY1/km7evCm7urrKrq6uso2NjWxra6t8LiwsVM4D5H/961+yLMuyqamp7OrqKltbW8s9e/aU9+zZIzdp0kRu1arVfe9lamoqy7Isb968We7SpYtcXFwsX79+Xbazs5OvXr0qb9iwQZ45c6YcEREhW1payl5eXvLNmzdlIyMjeefOnbIsy3JcXJxsZ2cnL1++XDazqCXX7TpKNmrkJJt7vioj6cm1vfrKi9fvkQ0NDWVbW1u5ZcuWsr6+vmxlZSX/+uuvsrOzs9zkzV2yVY+psnHL9rK6qYeMnko28+gp61vayDdv3pTt7e1lb29veceOHfKrr74qt2jRQjYxMZG/+uor2dXVVb5w4YLyTLVr15bT09PliIgIuUOHDnJubq4sy7Ls6+srR0REPM6/KkEQBEF4pgExcg3FSGKE7h5WVlZKrregoCDMzMyYOXNmpfNMTU1JSkoiP790t2qrVq2U2qobNmxg7NixStqO48ePM3XqVPLz88kvUWHy4iQyDKzJKyjE+6VeXD9/CiMjIwIDA+nfvz++vr5ER0cTFhbGqVOncHZ2xtzcHBsbG3755ReKioqYNGkSCxYsQJZl8vPzmTNnDjl3Mrl76hBFty6hy74NKgMs/Eby3syJGBgYcOvWLVSq0s0YL7/8Ml9//TVQmgQ5OSudohsXaPB6CJmHvyUn4QfMGzliZWUFwJ07d2jYsCGrV69mxowZ/Pbbb4SEhNC+fXtCQ0N555132Lt3LxkZGUDplGrt2rUxMTHh9OnT/Pzzz0/wb00QBEEQ/tlEQPcAYmNjmT59Ojk5OVhbWysVEG7fvs3gwYPJz89n9+7d1KtXj5KSEiIjI/nll1+4dOkSLVq0oEWLFvz888/YN3ck7ffb6P47ET3T2si6Yo79tBczcws83LQcOnSITZs2Icsy+/bt4/bt26hUKiZOnEhubi5TpkwhISEBAwMDfv/9d+7evcu1a9cYNmwY+/fvB6A4Iw25pJjinNtIkkRxzm3yrl8kPj6O9u3bK2vVQkJCCAwM5LfffqPuirHcLTFGbe+KnpEppk5+ZMfs4KXOnZR38MYbbzBgwACKi4spKCggLy8PlUrFkiVLWLJkCR4eHvj6+tK4cWMAunXrxvLly9FqtbRq1ara+rKCIAiCIPx1YlPEn5BlmUmTJrF582ZiY2OVgvS6EplbOjW7o44jqwwwtazDjRs3SEtLQ6vVcuPGDerWrcvJkyeVYOt6Zg5FuZlIxhYY27sCEgZ1m2DT9d/ExMQQFhYGQO3atenVqxc6nQ4fHx+MjIwwNFLzzQVj3g76gMJimYKCAkpKSoDSOq3NmzcHQN2sDQZW9kgqfWr5BXL36hkklT7Ozs7k5eUxZcoUAKytrfn8889p3rw5ly+cZdTrgZiZlCZBdnhBS+uOXZk4rK/yHrp3787q1atp3LgxKSkpys5ZIyMjfvzxR06cOMHSpUtJTU3F2toaIyMj9u7dS2JiIps2bSIyMhI/P78a+3sTBEEQhH8SMUL3P+U3E5SlEQEoLCwkKSlJyZ+m0+lQmdWhsLgEQz1DkPSQS3QU2XogZ/7Er7/+yoABA7h8+TJZWVmo1WoMDQ3Jy8vDoJGWwsyf0GVcJSf7JiBTdOsyubUdMDU1pVOnTty9exedTseePXswMzMjKSmJrKw76EpKOLlyBhQXAiADv//+OwCbNm1SniMvObL0W0kP3Z10TGrXQ1+lR4sWLTAxMcHExKTK529qASa/n+T8wp4A9Dr8SaVzxDSqIAiCIDybxAgdpcHcnK0nScvMRwbSMvOZs/Ukp6/dQZZlpbB90JrdWAz9lEzfN5Rrjew0oCvGsGV7iiQVLVq0oFGjRujr/xErm5ubo1KpMNTlIhffBcB29AosO41A0tMnfcObpKeno1KpaNasGdnZ2RQVFVG/fn2GDBmCun5TkEtH4/RMa2PQoCWSoTGyLCNJEm3atMHS0hIDAwP6/3sSJg2aAdDQpR3zRwVQp3Yt6tSpg1qtJiEhQckPV17t2rXp3r37fd9Tt27dKC4uRpIkevfurUyjBgcH/2n1iXtFRkZWKPcVGBjI5s2b//S669evM2jQIJo1a4aTkxM9evTg7NmzD3XvqqSkpODi4gJATEwMkydP/sttCoIgCEJNEQEdsHjfGfKLKuZByy/SceT8LYyMjEhPT2fh2p3M2XqSK7eyuZueqpxn0twL9PQxsLKjBImmTZtWar9hw4bodDpq6zJAlkFSIZcUo6c2Rd+sNmbGRtjY2GBpaYmhoSE6nY4+ffpw9epVhgwZgp5taaCBXIK6iTtF184i381HUpsjyzI6nY7mzZujp6fHhbjDzJs+FpWeRP2Le/m/oIlkZWWRkJDAmTNnKCkpQZIkXFxceOWVV5g7dy5Qmt8uMjISgOTkZH7//XemTp2KVqtl//79FaZRjYyMKCoqYvPmzY80jVpcXFwpoHsQsizTp08f/Pz8OH/+PKdOneKjjz7ixo0bD3x92TT1/Xh6ehISEvJQfRMEQRCEp0kEdMDVKuqqAmQXFCkF6RfMe4fzX43j2prJFKb9qpyjMq2F/aztpT9LknK8Vq1aOHn50WHhAeLPXACgsKCAF9zaoDJUc339TDJ/WomqMIucrExMTU25ceMGt2/fpqSkhPXr13P37l06duxI4Zn/FbnXFZH3axRIpTtV5cJcJElClmWlzFZcXBzz588HIDc3lytXrihBoiRJGBoaYm9vz6RJk1CpVAwbNowePXoou3UBli9fzpQpU4iPjycmJoZGjRpVeC/6+vqMGTOGpUuXVnpnqampdO3aFa1WS9euXZVKFIGBgUyfPp3OnTszcOBAli9fztKlS3Fzc1N2A0dFReHt7Y2Dg0OVo3UREREYGBgwduxY5Zibmxs+Pj7k5OTQtWtXPDw80Gg07NixAygdeXvhhRcYP348Hh4eXL58mVmzZuHi4oJGo1HWLZYXGRlJr169gNKdziNHjsTPzw8HB4cKgV5AQACtW7fG2dmZFStWVGpHEARBEGqKCOgoTdtRFedeo5g5cyZubm7UGbgA25GfYzvqv5i7daPx9M3UH7IQowYtADCzrMN3USfZtWsXgYGBTAr+hostB5GWmY/dxPVIBmpMBy9jyPiZdHvRD11OBiXFd+no3R5vb2+Sk5NRqVTodDrGjRtHcXExPj4+bDx2HpvOI0BPhWSgxsC6MXX7voWhlR2mZuY0b94cAwMD4uLi6NmzJ6NHj8bOzg4TExP8/f1JS0vDzc0NMzMzOnToQGFhIT179qR///7Ex8czcOBAzMzMKgQ27du356OPPuLjjz8mNTVVSRxcXnUVKCZOnMjw4cNJTExk6NChFaYuz549S3h4OFu2bGHs2LFMmzaN+Ph4fHx8ALh27RqHDx9m165dzJ49u9I9k5KSaN26dZV/V2q1mm3btnHixAkiIiKYMWMGpSmA4MyZMwwfPpy4uDhiYmKIj48nISGB8PBwZs2axbVr1+73Xw9Onz7Nvn37OH78OPPmzaOoqAiA1atXExsbS0xMDCEhIdy6deu+7QiCIAjCkyICOmCWfyuMDVQVjhkbqJSNEVB90AfQsJYxC/pqKpTvqm4ad2P05QrHzp07h5eXF2q1mlGjRlFSUsLBgwextbXlTpEec7aeJK9cO7U6DiFz/3KKMtLw6dAeExMTbt++zQsvvIC+vj4GBgb07duX4uJiDAwMaNq0KSYmJuTm5nL16lXMzMyA0uDIx8eH77//noMHD3Lu3DnlHkOGDGHnzp0YGxvj7+/PgQMHKj2zhYWFUoEiMzOTjRs30qJFC/bs2UNMTAx3795FlmV++OEH5ZoBAwYoefBCQ0MrjApC6YiXnp4eTk5ODzyNWkaWZd566y20Wi0vvvgiaWlpShv29vbKer/Dhw8zePBgVCoVNjY2Ss6/++nZsydGRkZYW1tTr149pd2QkBBcXV1p164dly9frvAOBUEQBKEmiV2uoARi9+5yLR+gzfJvxZytJysEacYGqkqBXJl7p3EbTy+dQsyt04pR4wbSYeEBLl+7QVraNb5ev4FNmzah0+kwNTUlJCSEJUuWkNFxOjcz8zHTvMjt/csBMGnRDtW1ZApPR7J3714iIyOZMGECvr6+ODg4EBMTA4BGo8HKygq1Ws3evXsxMzNj+PDhREdHk5CQwHfffceaNWuUqdCyaU+ACxcu4ODgwOTJk7lw4QKJiYncqd2qQkmx7XFpTJ06FXd3d4qLi/H09GTHjh1YWVmRk5PD22+/jaOjI1K5aejy5b2GDh1aaeTPyMhI+blsdK08Z2fnajdOhIaGkp6eTmxsLAYGBjRp0oSCgoJK962q3T9Tvl8qlUpZAxgeHs6xY8cwMTHBz89PuZ8gCIIg1DQxQvc/Ae4NOTK7CxcX9uTI7C6VgrQA94Ys6KuhYa3SXG1VjcqVV92IXi0TA2VHbe6ZI5g4d8Fq1P+xbNsRLl++TNOmTTl8+DBQ9dq+vN+Oc/t8Ag0aNFCO1alTh+3bt1NYWEhRURHbtm3Dxsamyvs7Ojqi1Wq5cuUK48eP56OPPqpUbzYsLAwXFxfc3Nw4ffo0Vm4vVtgFLMswZ+tJolLzadeuHbdu3cLd3R2ADh060L59e1avXs3BgwepXbs23bp1Y+vWrUqtWygd3Sob6frkk0/YsWMH06dPZ9myZVX2G6BLly4UFhaycuVK5Vh0dDQHDx4kKyuLevXqYWBgQEREBKmpqVW20alTJ8LCwtDpdKSnpxMVFUXbtm2rvWd1RAoXQRAE4VkiArqH8GdBX3nVTePKMsooX+6pg5i0bE9+kY7F+84A0K9fP7799lugclDYePpm7kRvQ7qbi4GBAW5ubhw4cIBDhw4RGBjIZ599xpEjRxg1ahQ7d+6kR48eyrU5OTkASJLE4sWL+eyzzygoKGDlypU4OjoqOe8A5syZQ3JyMvHx8fzwww8s//n3KqePF+87g1arpbi4WDkeEhLCxo0bycvL4+eff0ZfX5+wsDBeffVVjh49yuXLpVPOJiYm7N69m5YtW/L555/To0cPPvzwQ1auXElcXFyV71SSJLZt28b+/ftp1qwZzs7OBAUFYWtry9ChQ4mJicHT05PQ0FAcHR2rbKNPnz5otVpcXV3p0qULixYton79+tX+PVanLIWLVqtl7ty5ohKGIAiC8FRJjzIF9bR4enrKZVOKz4OqkhVPC4unqjcuARf/l9S3/PUPM837pDSdvbvKPgNIyXvQWBaxc33FXZ5ubm78+9//JjExURlR6969O2+//TYdO3akSZMmxMTEEBoayq1bt5SduXPnzqVu3boiD5wgCILw3JMkKVaWZc+auJdYQ/cEBbg3rBR4Ld53hrQqplKrmqJ9kLV9NcG2lnGVfQbIM7UlPGoj2+PSlH7duXOHy5cvo1Kpqlx/Vt7z9AuFIAiCIDyrxJRrDXuQHbXlPcw075NSVZ/LqO1d0RUVMGvBZ0BpabQZM2YQGBhYbZmx8jp16sT27dvJy8sjNzeXbdu2KWlMBEEQBEF4MCKgq2EPu7niWVC+z/eSJIm6fd4m7cQBWrRoQcuWLVGr1Xz00UcP1LaHhweBgYG0bdsWLy8vRo0apWywEIQnYdq0aRU23/imoneMAAAgAElEQVT7+zNq1Cjl84wZM5g/fz4LFy58Gt3j6tWr9O/f/6ncWxCE55dYQyc8lA4LD1Q5/dqwljFHZnd5Cj0ShIezadMmNm3axHfffUdJSQlt2rTB0NCQY8eOAaWJtZctW4aXl9dT7qkgCM+7mlxDJ0bohIfysFPGgvCs6dChg1JHODk5GRcXF8zNzcnIyKCwsJBff/2VhIQEJk6cCJQGgC4uLri6utKpUyegdGnBzJkz0Wg0aLVaPvusdMnBTz/9hLu7OxqNhpEjR1JYWAhAkyZNeO+995TSdKdPnwbg4MGDuLm54ebmhru7O9nZ2aSkpODiUlq/ee3atfTt25du3brRokUL3njjjRp9V4IgPD/EpgjhoTwrGzWEvw9JkvjXv/6l5CksLi6mQYMGeHl5sWvXLnbu3MmpU6eqLAf3KGxtbdHX1+fSpUscPXqU9u3bk5aWxrFjx7C0tESr1WJoaKicP3/+fN577z0aNmyIk5MTACtWrODixYvExcWhr6/P7du3KSgoYNiwYZiamnLu3DmGDx/Ol19+SWZmJnfu3OH8+fPs2rWL7du3ExwczP/93/8RHBzMF198QYcOHcjJyUGtVjNo0KAKVVTi4+OJi4vDyMiIVq1aMWnSJOzs7B7LuxAE4e9DBHTCQ6tq964gPCpTU1OSkpLIz8/H2NiY/fv307DhH//96t27N7179/7L9ymfRii3VnM+/XYXN3/9henTp5OWlsbRo0extLTE29u7wnUdOnRg9uzZeHh4sHx5acWW8PBwxo4di75+6T+hderUISEhgUaNGpGXlwfAiBEj+OKLL9BqtQCcP3+eq1ev0rp1a7Zu3aq0PX36dIYOHUrfvn1p1KhRpX537doVS0tLAJycnEhNTRUBnSAIlYiAThCEp6579+7s3r2b/v37s2HDBgYPHqyUo1u7di0xMTF8/vnnBAYGYmFhQUxMDNevX2fRokX079+fyMhIgoKCsLa2JikpidatW7N+/XokSSI2NpbhYyZw/uotJLU5Vj2nUVKvBV9++SXF189x4sQJmjdvzp07d1Cr1dy6dYvQ0FCKiooYM2YMs2fPZtOmTfzwww80aNCArVu3cvXqVSZNmoSxsTFWVlaEhob+aQqexMREhg4diizL1K9fn/nz5/P999+TkZHB+vXrWbRoEeHh4UBp6p+2bdty6dKlCgFmVal/BEEQQKyhEwThGTBo0CA2btxIQUEBiYmJ992QcO3aNQ4fPsyuXbsqTMPGxcWxbNkyTp06xYULFzhy5AhFRUVMmjQJ0+5vUH/EMsy0L5EZ9Q1GDZ3Iv3wK40YvcPLkSdasWUNmZiaRkZF06tSJ999/n3bt2jF8+HB0Oh2TJk3ivffew9nZmUaNGjFgwABcXFyIjo5m0KBBzJs3D0dHR9LS0pR1c+vWrcPX11fpn5ubG6GhoXz77bfo6ekxceJENm7cyG+//UarVq1o1KiRsrZOlmWOHz/O4MGDiY6OfkJvXRCEvxMR0AmC8NRptVpSUlLYsGFDhZJ1VQkICEBPTw8nJyelHjBA27ZtadSoEXp6eri5uZGSksKZM2dISkoifuVMrq6ZRNbRMHTZtzCoaw9AXuZN1q9fj76+PhqNBp1Ox9ixYwFo1KgRt27dYurUqXz55ZcEBwfTqVMnXF1d6dy5M9HR0ZiZmTFhwgQiIiJQq9UsXryYK1euoNFo0NPTU9qqSkREBN7e3qjVajZu3Eh+fj7du3cHwMLCAijdTHHnzp2/9G4FQfhnEFOugiDUuPLr2fKLdGyPS6N3797MnDmTyMhIbt26Ve215auPlJ/mrKoqiSzLODs7o/fqh5XS7TSeuQ3zjHPExsby/vvvK/WLAQIDAwkMDGTHjh2EhobyySefYGZmxsyZM4HSXHafffYZvXv3JjIykokz59Bh4QGu/G5IiaEp73/zg7LO9Pbt2yxdupQ1a9YA4OnpyQ8//IC9vT0xMTHY2dkRFBSkPINarea7774DYOjQoSxdulTp865dux76XQuC8M8gRugEQahRZTWK0zLzkQFZhjlbT2LbtjvvvvsuGo3msd2rVatWpKen80r9HIwNVMi6Yu6mpyLLJejnZ/DB+EEsWrSIzMxMcnJy6NSpE6GhoQBERkZibW2NhYUF5ubmZGdnK+1mZWUpGzfe/+RLLqTnkpaZj2RoDCa1mbzkG7bHpXH79m1++OEHOnbsWKGNgoICAKytrcnJyWHz5s2P7ZkFQfhnEgGdIAg1avG+M+QX6Socyy/SsSY+mylTpjzWexkaGrJ582b2rA6mIGw66d9M4W7ar9haGGF4+AvmDu+Gu7s706ZNo1atWgQFBRETE4NWq2X27Nl8/fXXALzyyits27YNNzc3Dh06RFBQEAMGDMDHx4fTmVBSbqTQqud0fj+0gaE9fenSpQvvvfcezZo1IzAwkLFjx+Lm5oaRkRGjR49Go9EQEBBAmzZtHuh5VCoVbm5uuLi4MGDAAGVH7dOwdu1aJVff4yKqZAjCoxOVIgRBqFFNZ++mqn91JODiwp413Z2/rCafx8zMjJycHKB0OrZ169ZMnz79sd7jQZXffSwIQtVEpQhBEP62bKuoCXy/48+6p/U8Pj4+/Pbbb+Tm5jJy5EjatGmDu7s7O3bsAO5fZcLMzIy3334bV1dX2rVrp2wuqaoqho+Pj7K2EEpz5yUmJiqfs7KyaNKkCSUlJQDk5eVhZ2dHUVERK1eupE2bNri6utKvXz9lRDEwMJDJkyfj7e2Ng4ODMuVcvkpGSkoKPj4+eHh44OHhoVT3EAShaiKgEwShRv3dysc9jecpLi5m7969aDQaPvzwQ7p06UJ0dDQRERHMmjWL3NxcoLTKRFhYGCdPniQsLIzLly8DkJubS7t27UhISKBTp06sXLkSKK2KsW/fPhISEti5cycAo0aNYu3atQCcPXuWwsJCJVkygKWlJa6urhw8eBCA77//Hn9/fwwMDOjbty/R0dEkJCTwwgsvsGrVKuW66tLPlKlXrx779+/nxIkThIWFMXny5Mf/IgXhb0QEdIIg1KgA94Ys6KuhYS1jJKBhLWMW9NU8t9VHavJ58vPzcXNzw9PTk8aNG/Pvf/+bH3/8kYULF+Lm5oafnx8FBQVcunQJ+KPKhFqtVqpMQOnawl69egHQunVrUlJSgNLRt8DAQFauXIlOV7rOccCAAezatYuioiJWr15NYGBgpX4NHDiQsLAwADZu3MjAgQMBSEpKwsfHB41GQ2hoKMnJyX+8t2rSz5QpKipS1hkOGDCAU6dOPZ6XKAh/UyJtiSAINe7vVj7uST5P+RQv6BsStGZ3hXvJssyWLVto1ariiOAvv/xSZSoXAAMDAyRJqnR8+fLl/PLLL+zevRs3Nzfi4+OxsrLipZdeYseOHXz33XdUtY65d+/ezJkzh9u3bxMbG0uXLl2A0qnV7du34+rqytq1a4mMjFSuqS79TJmlS5diY2NDQkICJSUlqNXqh311gvCPIkboBEEQnlHVpXjZHpemnOPv789nn32mBEVxcXGPfL/z58/j5eXF/Pnzsba2VqZoR40axeTJk2nTpg116tSpdJ2ZmRlt27ZlypQp9OrVC5WqdAo6OzubBg0aUFRUpKSDeVBZWVk0aNAAPT091q1bp4wYCoJQNRHQCYIgPKOqS/GyeN8Z5fPcuXMpKipCq9Xi4uLC3LlzH/l+s2bNQqPR4OLiolTFgNJpWQsLC15//fVqrx04cCDr169XplsB3n//fby8vHjppZdwdHR8qL6MHz+er7/+mnbt2nH27FlMTU0f7aEE4R9CpC0RBOEvuXLlChMmTODUqVOUlJTQq1cvFi9ejKGh4dPu2nPvWUnxcvXqVfz8/Dh9+jR6emIcQBAelEhbIgjCc0GWZfr27UtAQADnzp3j7Nmz5OTk8Pbbb1c4r2yNlvBwnoUUL9988w1eXl58+OGHIpgThGeY+F+nIAiP7MCBA6jVamUqTqVSsXTpUlavXs1///tfBgwYwCuvvMLLL79cbb60vLw8XnvtNbRaLQMHDsTLy0tZeL9hwwZlCvDNN99U7ltdHrW/m2chxcvw4cO5fPkyAwYMqLF7CoLw8ERAJwjCI0tOTqZ169YVjllYWNC4cWOKi4s5duwYX3/9NQcOHKg2X9p///tfateuTWJiInPnziU2NhYoneZ78803OXDgAPHx8URHR7N9+3ag+jxqfzd/txQvgvC4XL9+nUGDBtGsWTOcnJzo0aMHZ8+erfLc8gmrH7egoCCCg4OfSNsPS6QtEQThkcmyrKS/qOr4Sy+9pOyK/PHHH9m5c6fyj19ZvrTDhw8rNVxdXFyUpLXR0dH4+flRt25doLTUVVRUFAEBAZXyqO3fv/+JP+vT8ndL8SIIf5Usy/Tp04cRI0awceNGoDSJ9o0bN2jZsuVfbr+4uBh9/ecvPHr+eiwIwlNVPi+ayc27cKJiSaY7d+5w+fJlVCpVhZ2J1eVLq25j1v02bFWXR00QhL+/iIgIDAwMGDt2rHLMzc0NWZaZNWsWe/fuRZIk3nnnnQq7rqH0F8lx48YRExODvr4+n3zyCZ07d2bt2rXs3r2bgoICcnNz2blzJ6+++ioZGRkUFRXxwQcf8OqrrwLw4Ycf8s0332BnZ0fdunWVWYr4+HjGjh1LXl4ezZo1Y/Xq1TX3UhBTroIgPIR786LlWL3Aheu3mfL+pwDodDpmzJhBYGAgJiYmFa6tLl9ax44d+e677wA4deoUJ0+eBMDLy4uDBw9y8+ZNdDodGzZswNfXt4aeVBCEZ1VSUlKlpR4AW7duJT4+noSEBMLDw5k1axbXrl2rcM4XX3wBwMmTJ9mwYQMjRoygoKAAoMISEbVazbZt2zhx4gQRERHMmDEDWZaJjY1l48aNxMXFsXXrVqKjo5W2hw8fzscff0xiYiIajYZ58+Y9wbdQmQjoBEF4YPfmRZMkCauAt1j37UZatGhBy5YtUavVfPTRR5WurS5f2vjx40lPT0er1fLxxx+j1WqxtLSkQYMGLFiwgM6dO+Pq6oqHh4fyG7IgCMK9Dh8+zODBg1GpVNjY2ODr61sh4Co7Z9iwYQA4Ojpib2+vrL0rv0RElmXeeusttFotL774Imlpady4cYNDhw7Rp08fTExMsLCwoHfv3kBpIuzMzEzll84RI0YQFRVVU48OiClXQRAewtXM/ErH9C3qYvnqO5y7Jy9aYGBghbqfxsbGfPXVV5WuV6vVrF+/HrVazfnz5+natSv29vYADBkyhCFDhlS6JicnR/m5f//+9O/f/1EfSRCE50DlpR7HKp3zIHl173dO+SUioaGhpKenExsbi4GBAU2aNFFG8qpaN/wsECN0giA8sCeRFy0vL4+OHTvi6upKnz59+PLLL0VSYkEQFJWXejhy4UYm4+cuUs6Jjo6mdu3ahIWFodPpSE9PJyoqirZt21Zoq1OnTkoZurNnz3Lp0qVK63qhdMStXr16GBgYEBERQWpqqnL9tm3byM/PJzs7m++//x4AS0tLateuzaFDhwBYt25djS8RESN0giA8sFn+rZiz9WSFade/mhfN3Ny8yoLvgiAIUP1Sj+92rGbft1+hVqtp0qQJy5YtIycnB1dXVyRJYtGiRdSvX5+UlBTl2vHjxzN27Fg0Gg36+vqsXbsWIyOjSvccOnQor7zyCp6enri5uSml6zw8PBg4cCBubm7Y29vj4+OjXPP1118rmyIcHBxYs2YNy5Yte3Iv5h6i9JcgCA+l/NSHbS1jZvm3Emk1BEF4Yp6VEniPoiZLf4kROkEQHorIiyYIQk2yrWVMWhXrd2uyBN7z4KmsoZMkaYAkScmSJJVIklQjkasgCIIgCM+fZ6EE3vPgaY3QJQF9gcpb3gRBEARBEP6nbEZALPW4v6cS0Mmy/Cs8u1t/BUEQBEF4doilHn9OpC0RBEEQBEF4zj2xETpJksKB+lV89bYsyzseop0xwBiAxo0bP6beCYIgCIIg/H08sYBOluUXH1M7K4AVUJq25HG0KQiCIAiC8HciplwFQRAEQRCec08rbUkfSZKuAO2B3ZIk7Xsa/RAEQRCE55EkSUqReYDi4mLq1q1Lr169ANi5cycLFy6s9vqUlBRcXFyq/O7dd98lPDz88XZYeOKe1i7XbcC2p3FvQRAEQXjemZqakpSURH5+PsbGxuzfv5+GDf/YBdq7d2969+79SG3Pnz//cXVTqEFiylUQBEEQnkPdu3dn9+7dAGzYsIHBgwcr361du5aJEycCcOPGDfr06YOrqyuurq4cPXoUAJ1Ox+jRo3F2dubll18mP7+0GkNgYCCbN28GYM+ePTg6OtKxY0cmT56sjAAeP34cb29v3N3d8fb25syZM8p9+/btS7du3WjRogVvvPFGzbwMQQR0giAIgvA8GjRoEBs3bqSgoIDExES8vLyqPG/y5Mn4+vqSkJDAiRMncHZ2BuDcuXNMmDCB5ORkatWqxZYtWypcV1BQwH/+8x/27t3L4cOHSU9PV75zdHQkKiqKuLg45s+fz1tvvaV8Fx8fT1hYGCdPniQsLIzLly8/gacX7iVquQqCIAjCc0ir1ZKSksKGDRvo0aNHtecdOHCAb775BgCVSoWlpSUZGRk0bdoUNzc3AFq3bk1KSkqF606fPo2DgwNNmzYFYPDgwaxYsQKArKwsRowYwblz55AkiaKiIuW6rl27YmlpCYCTkxOpqanY2dk9tucWqiYCOkEQBEF4DmyPS1PKX+UX6dgel0bv3r2ZOXMmkZGR3Lp166HaMzIyUn5WqVTKlGsZWa4+U9jcuXPp3Lkz27ZtIyUlBT8/v2rbLS4ufqh+CY9GTLkKgiAIwjNue1wac7aeJC0zHxmQZZiz9SS2bbvz7rvvotFoqr22a9eufPnll0Dpurk7d+480D0dHR25cOGCMnIXFhamfJeVlaVswli7du0jPZPweImAThAEQRCecYv3nSG/SPfHAVnm0uaPmDj0Vb766it69OhR7Vq1Tz/9lJkzZ6LRaNBqtbz66qvKd4MHD0ar1RIVFVXpOmNjY/773//SrVs3OnbsiI2NjTKV+sYbbzBnzhw6dOiATlfar5iYGEJDQx/jUwsPQ7rfkOqzxtPTU46JiXna3RAEQRCEGtV09m7K/t9almWur5+JmUtXLNx7cHFhT+Lj48nOzsbHx6fK683MzMjJyalw7Pr163h5eZGamlrtfXNycjAzM0OWZSZMmICDgwMzZ858XI/1tydJUqwsy541cS8xQicIgiAIzzjbWsbKzwWXEpH09DF376Ecd3Nzw93dna5du+Lh4YFGo2HHjspl08snFH755Zf5/fffcXNz49ChQ8THx9OuXTu0Wi19+vQhIyODlStXYmZmRt26ddm8eTNFRUX4+fnx5ptv0rZtW1q2bMmhQ4cAiIyM/NO0JsKTIwI6QRAEQXjGzfJvhbGBCoCi9FQM6zfH2EDFLP9WyjlqtZpt27Zx4sQJIiIimDFjxn03NuzcuZNmzZoRHx+Pj48Pw4cP5+OPPyYxMRGNRsO8efOYNm0anp6evPbaa/z+++/MmTMHKK1Mcfz4cZYtW8a8efMqtX2/tCbCkyF2uQqCIAjCMy7AvXQDwuJ9Z8gGzIz0WdBXoxyH0qnYt956i6ioKPT09EhLS+PGjRvUr1//T9vPysoiMzMTX19fAEaMGMGAAQOU7wcOHFjh/L59+wJVpzspa6+6tCbCkyFG6ARBEAThGVc+ZUn9Ji2onXelQjAHEBoaSnp6OrGxscTHx2NjY0NBQcFjub+pqWmFz2WpSapLS1KW1iQpKYnvv//+sfVDqJ4I6ARBEAThGXZvypIcK0cu3Mhk/NxFyjnR0dGkpqZSr149DAwMiIiIuO9mh3tZWlpSu3ZtZT3cunXrlNG6RyHSmtQ8EdAJgiAIwjPs3pQlkiRhFfAW3+3YQ7NmzXB2diYoKIgePXoQExODp6cnoaGhODo6PtR9vv76a2bNmoVWqyU+Pp533333kftcVVqTZ5EkScyYMUP5HBwcTFBQ0GNp+3+jks6SJClJAiVJekOSpOUP2LcgSZIeeEuxSFsiCIIgCM+w8ilLypOAiwt71nR3/lbUajUNGjQgOjoaa2trgoODycnJeWxBnSRJ54AbQCfAFogCPGVZzviT6/SBd4AcWZaDH+ReYoROEARBEJ5h5VOWPMhx4cHp6+szZswYli5dWum79PR0+vXrR5s2bWjTpg1HjhwBQKPRkJmZiSzLWFlZKXVyhw0bRnh4+L3N3AGuAcOBpUAQYCFJ0k+SJCX+7z8bA0iStFaSpE8kSYoAPi7fiCRJoyVJ2itJUrV/6SKgEwThuTRt2jSWLVumfPb392fUqFHK5xkzZvDJJ588cHtBQUEEB1f9i7C3t/cj9zMyMpKjR48+8vWCUD5lSZl7U5YIj27ChAmEhoaSlZVV4fiUKVOYNm0a0dHRbNmyRfn3pUOHDhw5coTk5GQcHByUdYc///wz7dq1q+oWU4EPgbqyLK8DPge+kWVZC4QCIeXObQm8KMuyMg8sSdJE4BUgQJbligV3yxFpSwRBeC55e3uzadMmpk6dSklJCTdv3qxQo/Lo0aMVAr6/4q8EZJGRkZiZmf2loFD4ZyufsuRqZj62tYyZ5d+q0i5X4dFYWFgwfPhwQkJCMDb+YwAsPDycU6dOKZ/v3LmjVOOIiorC3t6ecePGsWLFCtLS0qhTpw5mZmaV2pdl+aokSQeAXf871B7o+7+f1wGLyp2+SZbl8osOhwFXKA3m7pv7RYzQCYLwXOrQoYMSaCUnJ+Pi4oK5uTkZGRkUFhby66+/sm/fPtq0aYOLiwtjxoxRkqyGhITg5OSEVqtl0KBBSpunTp3Cz88PBwcHQkL++KW57B/pyMhI/Pz86N+/P46OjgwdOlRpc8+ePTg6OtKxY0cmT55Mr169SElJYfny5SxdulTJxp+amkrXrl3RarV07dqVS5cuARAYGMjkyZPx9vbGwcGBzZs318h7FJ4PAe4NOTK7CxcX9uTI7C4imPsLtsel0WHhAZrO3k1+kY7tcWlMnTqVVatWkZubq5xXUlLCsWPHiI+PJz4+nrS0NMzNzenUqROHDh3i0KFD+Pn5KVU0qiu7Vtbc//5UpfwSydx7vksCmgCN/uy5REAnCMJzydbWFn19fS5dusTRo0dp3749Xl5eHDt2jJiYGLRaLRMnTiQ6OpqkpCTy8/PZtav0F+SFCxcSFxdHYmIiy5f/seHs9OnT7Nu3j+PHjzNv3rwqk6HGxcWxbNkyTp06xYULFzhy5AgFBQX85z//Ye/evRw+fJj09HQAmjRpwtixY5k2bZqSjX/ixIkMHz6cxMREhg4dyuTJk5W2r127xuHDh9m1axezZ89+wm9QEP557k0BI8swZ+tJolLzee2111i1apVy7ssvv8znn3+ufI6PjwfAzs6Omzdvcu7cORwcHOjYsSPBwcF/FtCVdxQo+01yKHD4PufGAf8BdkqSZHu/RkVAJwjCc6tslK4soGvfvr3y2dvbm4iICLy8vNBoNBw4cIDk5GQAtFotQ4cOZf369ejr/7HypGfPnhgZGWFtbU29evW4ceNGpXu2bduWRo0aoaenh5ubGykpKZw+fRoHBweaNm0KwODBg6vt87FjxxgyZAhQuoj68OE//i0PCAhAT08PJyenKu8tCMJfc28KGID8Ih2L951hxowZ3Lx5UzkeEhKi/HLo5ORU4Zc/Ly8vWrZsCYCPjw9paWl07NjxQbsxGXhdkqRESqdUp9zvZFmWDwMzgd2SJFlXd55YQycIwnOlfMZ8KceKrB0/cvXMSVxcXLCzs2PJkiVYWFgwcuRIRo0aRUxMDHZ2dgQFBSnZ6nfv3k1UVBQ7d+7k/fffVwK9suz3UH0G/KrO+SvpnyRJqrLt5ymllCA8L65mVtxT0Hj6ZuW4jY0NeXl5ynfW1taEhYVV2c66deuUn729vSkpqW42tZQsy4Hlfk4ButzvnP99Dir38z5g3/3uIUboBEF4btw7XVJQpwU//vD/7d1/rNV1Hcfx56srjRtcY3TJQgxaQ5FxEVKYoH+I2ryZmhmNTEpHY65wKZUV2Za2OZe45qCYSYk0TWqlkTpTShxtQv5IBAx0hjlIN3J2r/eEA7n33R/nc+EAh8thXPh+P/B6bI5zvuf7+ZzX/YDnvu/3872fz2N0DxhEU1MTQ4cOpaOjg9WrVzNlyhSg+qFcqVR235PW09PDli1bmDZtGrfffjsdHR1UKpXDyjVmzBg2b968e0/L2m8CLS0tdHV17X4+depUli1bBlS3ajqEn+rN7DAdy0vA+AqdmWVj3+mSAcNGsmt7J28PGrn7WFtbG5VKhdbWVmbPnk1bWxujRo1i0qRJAHR3dzNz5kw6OzuJCObOncuQIUMOK1dzczOLFi2ivb2d1tZWJk+evPu1Sy+9lOnTp7N8+XIWLlzIggULmDVrFvPnz2fYsGEsWbLksN7bzBp340WnMe/B9Xt9jhwrS8B4pwgzy0aZV8yvVCoMHjyYiGDOnDmMHj2auXPnFprJzPZXe9vGkV4CRtLzEXHWEel8H75CZ2bZGD6kmX937L+uZhmmSxYvXszSpUvZuXMnEydO5Nprry06kpnVcfnEk4/JZV98hc7MstF7D92+0yW3XdF2TH5Am1nefIXOzKwOr5hvZlafCzozy8qxOl1iZnY4vGyJmZmZWeZc0JmZmZllzgWdmZmZWeZc0JmZmZllzgWdmZmZWeZc0JmZmZllzgWdmZmZWeZc0JmZmZllzgWdmZmZWeZc0JmZmZllzgWdmZmZWeZc0JmZmZllzgWdmZmZWeZc0JmZmZllzgWdmZmZWeYUEUVnaJik/wCvF52jD63AW0WHyIDHqTEep8Z4nBrjcWqMx6kxHqfGjIyIYUfjjbIq6MpO0nMRcVbROcrO49QYj1NjPE6N8Tg1xuPUGPiup08AAAZoSURBVI9T+XjK1czMzCxzLujMzMzMMueCrn/dXXSATHicGuNxaozHqTEep8Z4nBrjcSoZ30NnZmZmljlfoTMzMzPLnAu6fiRpvqRNktZJekjSkKIzlZWkL0h6SVKPJP+mVA1J7ZJelvSqpO8VnaesJN0jaZukDUVnKTNJp0haKWlj+n/u+qIzlZGkgZKekfRiGqdbis5UZpKaJL0g6ZGis1iVC7r+tQIYFxHjgVeAeQXnKbMNwBXAqqKDlImkJuBnwKeBscCVksYWm6q07gXaiw6RgV3AtyLidOBsYI7/TdW1Azg/Is4AJgDtks4uOFOZXQ9sLDqE7eGCrh9FxBMRsSs9XQOMKDJPmUXExoh4uegcJTQZeDUiNkfETmAZ8NmCM5VSRKwC3i46R9lFxJsR8ff0uIvqN+GTi01VPlFVSU8HpP98k3kdkkYAnwF+UXQW28MF3ZEzC3is6BCWnZOBLTXPt+JvvtZPJI0CJgJ/KzZJOaVpxLXANmBFRHic6rsT+A7QU3QQ2+OEogPkRtKfgY/UeemmiFiezrmJ6jTH/UczW9k0Mla2H9U55qsEdtgkDQZ+D9wQEe8UnaeMIqIbmJDuf35I0riI8D2aNSRdAmyLiOclnVd0HtvDBd0hiogL+3pd0tXAJcAFcZyvCXOwsbK6tgKn1DwfAbxRUBY7RkgaQLWYuz8iHiw6T9lFRIekp6jeo+mCbm/nAJdJuhgYCJwo6b6ImFlwruOep1z7kaR24LvAZRGxveg8lqVngdGSPi7p/cAXgT8WnMkyJknAL4GNEfGTovOUlaRhvSsTSGoGLgQ2FZuqfCJiXkSMiIhRVD+fnnQxVw4u6PrXT4EWYIWktZLuKjpQWUn6nKStwBTgUUmPF52pDNIv1VwHPE715vXfRsRLxaYqJ0kPAKuB0yRtlfTVojOV1DnAl4Hz0+fS2nR1xfb2UWClpHVUf7BaERFeksOy4Z0izMzMzDLnK3RmZmZmmXNBZ2ZmZpY5F3RmZmZmmXNBZ2ZmZpY5F3RmZmZmmXNBZ2ZHhaTummUz1koaJenpQ+zjBkkfOFIZy0TS5ZLGFp3DzPLgZUvM7KiQVImIwQ2c15S2YKr32r+AsyLirf7OVzaS7gUeiYjfFZ3FzMrPV+jMrDCSKunP8yStlPRrYL2kQZIelfSipA2SZkj6BjCc6uKvK+v0NUnS06nNM5JaJA2UtETSekkvSJqWzr1G0h8kPSzpNUnXSfpmOmeNpKHpvKck3Zn63SBpcjo+NLVfl84fn47fLOme1G5zytybb2bKtVbSzyU19Y6BpFtT7jWSTpI0FbgMmJ/O/8QR/Ysws+y5oDOzo6W5Zrr1oTqvTwZuioixVPfQfCMizoiIccCfImIB1X1tp0XEtNqGaZu03wDXR8QZVLdteheYAxARbcCVwFJJA1OzccCX0vveCmyPiIlUd5/4Sk33gyJiKvB14J507BbghYgYD3wf+FXN+WOAi1K/P5Q0QNLpwAzgnIiYAHQDV/X2D6xJuVcBsyPiaapbvt0YERMi4p8HG1wzO76dUHQAMztuvJuKmQN5JiJeS4/XA3dI+jHVace/HqTv04A3I+JZgIh4B0DSucDCdGyTpNeBU1OblRHRBXRJ6gQernnv8TV9P5Dar5J0Ytrv81zg8+n4k5I+JOmD6fxHI2IHsEPSNuAk4ALgTODZ6taqNAPb0vk7gd4tpp4HPnWQr9XMbD8u6MysLP7X+yAiXpF0JnAxcJukJyLiR320FVDvhmD10WZHzeOemuc97P3ZuG+/cYB+e8+r7bc79SVgaUTMq9PuvdhzM3Pv+WZmh8RTrmZWOpKGU50CvQ+4A/hkeqkLaKnTZBMwXNKk1L5F0glUpzCvSsdOBT4GvHyIcWak9ucCnRHRuU+/5wFv9V4VPIC/ANMlfTi1GSpp5EHe90Bfq5nZfvyToJmVURvVXwjoAd4DvpaO3w08JunN2vvoImKnpBnAQknNVO+fuxBYBNwlaT2wC7gmInakac9G/Tctr3IiMCsduxlYImkdsB24uq8OIuIfkn4APCHpfelrmgO83kezZcDi9IsV030fnZn1xcuWmJkdgKSngG9HxHNFZzEz64unXM3MzMwy5yt0ZmZmZpnzFTozMzOzzLmgMzMzM8ucCzozMzOzzLmgMzMzM8ucCzozMzOzzLmgMzMzM8vc/wHjHVE1dWn6zgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHwCAYAAAAvoPKcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACHWElEQVR4nOzde3zO9f/H8cd7M9uYM8kpp0TsyOZ8GCqJJBESVl/5KiJJUV8lnXyjSPVN9at0EMqxqJRsOZaNzTGHMDTSHDbGxg7v3x/XdrWxMbLNlef9drturutzeH9en882e+19NNZaRERERMR1uRV1ACIiIiLy9yihExEREXFxSuhEREREXJwSOhEREREXp4RORERExMUpoRMRERFxcUroxCUZY8KMMavy2NfPGPN9Ycck4kqMMW2MMTuKOo6CZoypZYyxxphi+Ti2wJ6JMWaGMebFgihbBJTQyVXMGNPaGLPGGJNojDlmjFltjAm52HnW2pnW2tsu43oRxphBl3D8eGPMZ5d6HTlftl+6SZmvWGPMmGz7jTFmuDFmizHmlDHmd2PMl8YYv3PKGZ9ZTtNLvP7WbNdOMsakGWO+ztzX5px9SZnXuCePsiYbY3YZY04aY7YbYwZk21fGGLPUGJNgjJlpjHHPtu99Y8zdlxL332GtXWmtrV9Y13MFeibiypTQyVXJGFMaWAy8CZQHqgHPA2eKMi7Jn/zUhuShrLXWB+gLPGuMuT1z+xvACGA4ju+Hm4CFQJds1zRAf+AYMPBSLmqtbWSt9cm8dilgP/Bl5r6VWfsy93cFkoDv8ijuFHAnUCYzjjeMMS0z9/0biAYqA7WAuzNjbwFUsdYuuJS4L9ff+PqIyFVKCZ1crW4CsNbOstamW2uTrbXfW2s35XawMWaSMWZVZg3IhZpjvYwxnxljjmbWkkQaYyobY14C2gBvZdbAvJV5/BvGmAPGmBPGmPXGmDaZ228HngZ6Zx6/MXN7GWPMB8aYQ8aYOGPMi1m1MMaYG40xP2XWOB4xxsy5lBgz98UaY27JdqyzljBbLdcDmTEfN8YMMcaEGGM2ZZb1VrZzwzJrPadk7ttjjGmZuf2AMeZPY8zAbMd3McZEZz6LA8aY8dn2ZV37X8aY/cByY8wSY8yj59zbJmNM91y/4tlYa9cCWwFfY0w9YCjQ11q73Fp7xlp7OrMmdmK209oAVXEkfn2MMcUvdp08tAWuA+blsX8gMNdaeyqP2J+z1m631mZYa38BVgItMnfXBsKttWcyt9fJ/P6Ykhl3nowxY4wxc8/Z9oYxZlrm+weMMb9m1gzuMcb8O9txocZRq/mUMeYP4KOsbeeUvzvz/G3ZawuzfqYyax+PG2P2GmM6Z9tf3hjzkTHmYOb+hdn2dTXGxGR+j60xxvhf4B4bGGN+MI4a+R3GmHszt9fN3NY483PVzJ+h0MzPEcaYV4wx6zJ/vhYZY8rncY2LPqdsn2ONMU9kft8mGmPmGGO88nNvxpggY8yGzOvMAZzniRQIa61eel11L6A0cBT4GOgMlDtnfxiwCscfJe8DS4ES2fflUe6/ga+BEoA70AQonbkvAhh0zvH3AxWAYsAo4A/AK3PfeOCzc45fCLwLlMSRFKwD/p25bxbwTGbMXkDry4gxFrgl27HOGHDU+Fhgemb5twEpmTFdh6OW80+gXbbnlAY8kHmdF3HUTL0NeGaefxLwyTw+FPDLjN8fOAx0P+fan2TeuzdwL/BLtlgDMr+mxXO556zziwEGaAWcBjoCQ4B9+fie+QD4AvDIvE6Py/ze+xCYkce+EpnPJDSfZXkDh4DbMz8PBSZlbl+No4ZxJPBcPsqqmflMsr4X3DPLbp75uQtQN/P5tcs8tnG2r10a8N/Mr6135rbfs5XfC0dC7Ab0xlHTWCXb90oq8FDmdR8GDgImc/8SYA5QLvP5Z32PNc78nmuWed5AHN/DnrncX0ngQOb3Y7HMc48AjTL3PwT8mvk1WApMznZuBBAH+GaWM4/zfy6K5fM5ZX8msTh+hqviqBn+FRhysXsDigP7Mr+2HkDPzOf3YkH/36nXtfsq8gD00iuvF3AzMAP4PfOX0VdA5cx9YcAvmb9E5pEtSeDCCd2DwBrAP5d9EZyT0OVyzHEgIPP9eLIldDia0c4A3tm29cVRIwOOZOc9oPpFrnGhGGO5eEJXLdv+o0DvbJ/nAY9le067su3zyzy/8jnnB+YR51RgyjnXrpNtvyeO5s96mZ8nA//Lo6ys8xMyn/GvwPDMfc8AP1/kmZUATvBXgvkusOgyvueyygnNY39/YC+ZiUw+yvsYR9NsVuLjlfk9sAmYCFQHNuBonn0HWMEFfunj+CNmQOb7W4HdFzh2ITAi830ocJbMP0aybfv9AufHAHdl+1757ZznZIHrgSpABuf80ZV53DvAC+ds20FmwnfO9t7AynO2vUu2ZBfH/wGbM5+fZ7btEcDEbJ8bZt6vO+ckdPl4TucmdPdn+/wqMP1i94ajlteZ8GbuW3Ohr61eev3dl5pc5aplrf3VWhtmra2O4y/vqjiSiCw3AncBz1trz+az2E9x/HU/O7N56FVjjEdeBxtjRmU2zyQaYxJw/OKtmMfhNXH8NX4oswkmAccvpOsy9z+Jo1ZgnXF0wn/wSsSYi8PZ3ifn8tnnAsdirc31eGNMM2NMuDEm3hiTiKPm7NxncSDrjXU0K34B3G+MccOR3H56kdgrWmvLWWtvttZOy9x2FEfScCF340j6v8n8PBPobIypdJHzztUDRxL6Ux77BwKfWGvtxQoyxkzC8X17b9bx1toUa+1ga62/tXYMjqbWp4F+OJKPdkAz81ffwXN9juM5AtyX+Tnrep2NMT9nNk0mAHeQ8+sTb61NuUC8A7I1HyZkxp79/D+y3lhrT2e+9QFqAMestcdzKbYmMCqrzMxya+D4Wc7t2GbnHNsPR9KY5f3MuN7M/P7K7kC29/tw/Cye97Oaj+d0rj+yvT/NXz8/F7q3qkDcOd8n+y5wDZG/TQmduARr7XYctXW+2Tb/iqN55ltjTL5GpllrU621z1trGwItcXRwzxqFmOOXtHH0l3sKR9NhOWttWSARR1J23vE4fqGcwZGUlM18lbbWNsq89h/W2oestVVxNKv+zxhz4yXGeApH7UiW6889vwB9jqOGpIa1tgyOpl1zzjHnPpOPcfxS7gicto6+cZfqR6C6MSb4AscMxPGLdn9mH7EvcfxC73uBc/IqJ9eEzRhTA0cNzicXK8QY8zyOrgK3WWtP5HHM7ThqcL7DUTsalXndKBxN2rn5Egg1xlTHkcR+nlmWJ47a18k4aljL4khus3998kxCjTE1cSRLw4AKmedv4fyvb24OAOWNMWXz2PdStp+HstbaEtbaWXkc+9M5x/pYax/OjNEHxx90HwDjc+kjVyPb+xtwNHEeOec+8/Oc8utC93YIqGaMyV7uDZdxDZF8U0InV6XMztGjMn9xZf0y7Qv8nP24zP88nwaWGWPq5qPc9sYYP+PoiH4Cx3/66Zm7DwN1sh1eCketTzxQzBjzLI6+fWQ7vlZm7RPW2kPA98BrxpjSxhi3zM7c7TKv3SvrfnA0K9ps185vjDE4Ovx7ZCY4PS92z1dQKRw1MSnGMS3IfRc7ITOBywBe4+K1c3mVsQv4HzArs9N6ceMYONLHODryV8ORMHYFAjNfATj6iw2EHIM2auV1ncyvTXscSWhu+gNrrLW7LxSvMWYsjmdzq7X2aB7HeOFoch2ZuWkvjkStOI7+g3tyO89aG4+jefEjYK+19tfMXcVxNHHHA2nGMWDhUqbuKYnj+zE+M74HyPnHU54yv++/xfEHSrnM7822mbvfB4Zk1u4aY0xJ4xhcUyqXohYDNxlj+meW4WEcA3puztz/BrDeWjsIR5+96eecf78xpqExpgQwAcfAlXN/vv7uc8ruQve2Fsf/HcONMcWMMT2AS5pKR+RSKaGTq9VJHJ2NfzHGnMKRyG3BMTAhB2vtxzj+A19+oV/Yma4H5uJIlH7F0bSWNZfcG0BP4xilNw1Hs+e3wE4czSUp5GzW+TLz36PGmA2Z7wfg+KWxDUfSNpe/mgtDMu8nCUdN1whr7d5LjHEcjg7dx3FM4/J5LucXlEeACcaYk8CzOJpT8+MTHDVQf2fOvuHAWzgGbCQAu3HUUH2NI9GKsY5R0H9kvYBpgL8xxhdH7c0+HB3n89IfWHuBhG0AuSR7xjGR9dZsm17GURuzy/w1b93T55z2NDDTWpv1/fQujma/eBx9RhdcIM7PgVvI9rW31p7E8Yy+wPG9cR+O77F8sdZuw5F0r8Xxh4ofjkEb+dUfxx8e23EMFHgss9woHIMZ3sqM6zcc/fFyi+EkjuSqD47+Z3+QOYjDGHMXcDuOZn6Ax4HGxph+2Yr4FEct/h84+ioOz+Mal/2czikrz3vL7ALSI/PzcRz9A+dfznVE8iuro66ISIEwjol1B1trWxdhDP/B0Yfs3aKKQQqOMSYCx+Cg/yvqWESKiiaXFJECk9n89QiOJtMiY63Vkksi8o+mJlcRKRDGmE44mhAPU7hNwyIi1xw1uYqIiIi4ONXQiYiIiLg4JXQiIiIiLs6lBkVUrFjR1qpVq6jDEBEREbmo9evXH7HWXuqKNZfFpRK6WrVqERUVVdRhiIiIiFyUMabQlnxTk6uIiIiIi1NCJyIiIuLilNCJiIiIuDgldCIiIiIuTgmdiIiIiItTQiciIiLi4op02hJjTCxwEkgH0qy1wUUZj4iIiIgruhrmoWtvrT1S1EGIiIiIuCo1uYqIiIi4uKJO6CzwvTFmvTFmcBHHIiIiIuKSijqha2WtbQx0BoYaY9qee4AxZrAxJsoYExUfH1/4EYqISJEKDQ1l6dKlObZNnTqVRx55pIgi+iuG06dPF2kMIlmKNKGz1h7M/PdPYAHQNJdj3rPWBltrgytVKpT1bUVE5CrSt29fZs+enWPb7Nmz6du370XPTU9PL6iwlNDJVaXIEjpjTEljTKms98BtwJaiikdERK5OPXv2ZPHixZw5cwaA2NhYDh48yOnTp2nRogWNGzemV69eJCUlAVCrVi0mTJhA69at+fLLL6lVqxZPP/00LVq0IDg4mA0bNtCpUyfq1q3L9OnTAbDWMnr0aHx9ffHz82POnDkAREREEBoaSs+ePWnQoAH9+vXDWsu0adM4ePAg7du3p3379kXzYESyKcoausrAKmPMRmAdsMRa+10RxiMiIlehChUq0LRpU777zvErYvbs2XTs2JGXXnqJZcuWsWHDBoKDg3n99ded53h5ebFq1Sr69OkDQI0aNVi7di1t2rQhLCyMuXPn8vPPP/Pss88CMH/+fGJiYti4cSPLli1j9OjRHDp0CIDo6GimTp3Ktm3b2LNnD6tXr2b48OFUrVqV8PBwwsPDC/mJiJyvyKYtsdbuAQKK6voiIuI6sppd77rrLmbPnk2PHj34+uuvadWqFQBnz56lRYsWzuN79+6d4/xu3boB4OfnR1JSEqVKlaJUqVJ4eXmRkJDAqlWr6Nu3L+7u7lSuXJl27doRGRlJ6dKladq0KdWrVwcgMDCQ2NhYWrduXUh3LpI/V8M8dCIiIudZGB3HpKU7OJiQTGXvcvy69Ac2bNhAcnIyQUFB3HrrrcyaNSvXc0uWLJnjs6enJwBubm7O91mf09LSsNbmGUf2493d3UlLS/s7tyVSIIp6lKuIiMh5FkbHMXb+ZuISkrHAH8lgr2/IPX3707dvX5o3b87q1av57bffADh9+jQ7d+687Ou1bduWOXPmkJ6eTnx8PCtWrKBp0/PG6eVQqlQpTp48ednXFLmSlNCJiMhVZ9LSHSSn5hyh6tWgDbE7t9GnTx8qVarEjBkz6Nu3L/7+/jRv3pzt27df9vXuvvtu/P39CQgIoEOHDrz66qtcf/31Fzxn8ODBdO7cWYMi5KpgLlTNfLUJDg62UVFRRR2GiIgUsNpjlpDbbycD7J3YpbDDEbksxpj1hbVOvWroRETkqlO1rPclbRe51imhExGRq87oTvXx9nDPsc3bw53RneoXUUQiVzeNchURkatO96BqAM5RrlXLejO6U33ndhHJSQmdiIhclboHVVMCJ5JPanIVERERcXFK6ERERERcnBI6ERERERenhE5ERETExSmhExEREXFxSuhEREREXJwSOhEREREXp4RORERExMUpoRMRERFxcUroRERERFycEjoRERERF6eETkRERMTFKaETERERcXFK6ERERERcnBI6ERERERenhE5ERETExSmhExEREXFxSuhEREREXJwSOhEREREXp4RORERExMUpoRMRERFxcUroRERERFycEjoRERERF6eETkRERMTFKaETERERcXFK6ERERERcnBI6ERERERenhE5ERETExSmhExEREXFxSuhEREREXJwSOhEREREXp4RORERExMUpoRMRERFxcUroRERERFycEjoRERERF6eETkRERMTFKaETERERcXFK6ERERERcnBI6ERERERenhE5ERETExSmhExEREXFxSuhEREREXJwSOhEREREXp4RORERExMUpoRMRERFxcUroRERERFxckSd0xhh3Y0y0MWZxUcciIiIi4oqKPKEDRgC/FnUQIiIiIq6qSBM6Y0x1oAvwf0UZh4iIiIgrK+oauqnAk0BGXgcYYwYbY6KMMVHx8fGFFpiIiIiIqyiyhM4Y0xX401q7/kLHWWvfs9YGW2uDK1WqVEjRiYiIiLiOoqyhawV0M8bEArOBDsaYz4owHhERERGXVGQJnbV2rLW2urW2FtAHWG6tvb+o4hERERFxVUXdh05ERERE/qZiRR0AgLU2Aogo4jBEREREXJJq6ERERERcnBI6ERERERenhE5ERETExSmhExEREXFxSuhEREREXJwSOhEREREXp4RORERExMUpoRMRERFxcUroRERERFycEjoRERERF6eETkRERMTFKaETERERcXFK6ERERERcnBI6ERERERenhE5ERETExSmhExEREXFxSuhEREREXJwSOhEREREXp4RORERExMUpoRMRERFxcUroRERERFycEjoRERERF6eETkRERMTFKaETERERcXFK6ERERERcnBI6ERERERenhE5ERETExSmhExEREXFxSuhEREREXJwSOhERyTdjDKNGjXJ+njx5MuPHj79i5cfGxuLr65tj2/jx45k8efIVu0Z+Xei6LVu2LORoRC5MCZ2IiOSbp6cn8+fP58iRI0UdSpFas2bNedvS09OLIBIRByV0IiKSb8WKFWPw4MFMmTLlvH3x8fHcc889hISEEBISwurVqwHw8/MjISEBay0VKlTgk08+AaB///4sW7bskq7//vvvExISQkBAAPfccw+nT58GICwsjIcffpj27dtTp04dfvrpJx588EFuvvlmwsLCnOf7+PgwatQoGjduTMeOHYmPjwdg2rRpNGzYEH9/f/r06eM8ftu2bYSGhlKnTh2mTZuWoxyAiIgI2rdvz3333Yefnx/p6emMHj2akJAQ/P39effddy/p/kQulxI6ERG5JEOHDmXmzJkkJibm2D5ixAhGjhxJZGQk8+bNY9CgQQC0atWK1atXs3XrVurUqcPKlSsB+Pnnn2nevPl55e/evZvAwEDna/r06c59PXr0IDIyko0bN3LzzTfzwQcfOPcdP36c5cuXM2XKFO68805GjhzJ1q1b2bx5MzExMQCcOnWKxo0bs2HDBtq1a8fzzz8PwMSJE4mOjmbTpk05rrd9+3aWLl3KunXreP7550lNTT0v3nXr1vHSSy+xbds2PvjgA8qUKUNkZCSRkZG8//777N279zKftEj+FSvqAERExLWULl2aAQMGMG3aNLy9vZ3bly1bxrZt25yfT5w4wcmTJ2nTpg0rVqygZs2aPPzww7z33nvExcVRvnx5Z01XdnXr1nUmYECOPnpbtmzhP//5DwkJCSQlJdGpUyfnvjvvvBNjDH5+flSuXBk/Pz8AGjVqRGxsLIGBgbi5udG7d28A7r//fnr06AGAv78//fr1o3v37nTv3t1ZZpcuXfD09MTT05PrrruOw4cPU7169RzxNm3alNq1awPw/fffs2nTJubOnQtAYmIiu3btcu4XKShK6ERE5IIWRscxaekODiYkk5yazsLoOB577DEaN27MAw884DwuIyODtWvX5kjyANq2bcvbb7/N/v37eemll1iwYAFz586lTZs2lxxLWFgYCxcuJCAggBkzZhAREeHc5+npCYCbm5vzfdbntLS0XMszxgCwZMkSVqxYwVdffcULL7zA1q1bc5QJ4O7unms5JUuWdL631vLmm2/mSDRFCoOaXEVEJE8Lo+MYO38zcQnJWMBaGDt/Myv2JXPvvffmaPK87bbbeOutt5yfs2rZatSowZEjR9i1axd16tShdevWTJ48+bISupMnT1KlShVSU1OZOXPmJZ+fkZHhrD37/PPPad26NRkZGRw4cID27dvz6quvOmv/LkenTp145513nE2zO3fu5NSpU5dVlsilUA2diIjkadLSHSSn5hy9mZyazqSlO5g/alSOBG7atGkMHToUf39/0tLSaNu2rbM/WrNmzZyjQNu0acPYsWNp3br1Jcfzwgsv0KxZM2rWrImfnx8nT568pPNLlizJ1q1badKkCWXKlGHOnDmkp6dz//33k5iYiLWWkSNHUrZs2UuODWDQoEHExsbSuHFjrLVUqlSJhQsXXlZZIpfCWGuLOoZ8Cw4OtlFRUUUdhojINaP2mCXk9lvCAHsndinscP42Hx+fy659E7lUxpj11trgwriWmlxFRCRPVct6X9J2ESkaSuhERCRPozvVx9vDPcc2bw93RneqX0QR/T2qnZN/KvWhExGRPHUPqgbgHOVataw3ozvVd24XkauDEjoREbmg7kHVlMCJXOXU5CoiIiLi4pTQiYiIiLg4JXQiIiIiLk4JnYiIiIiLU0InIiIi4uKU0ImIiIi4OCV0IiIiIi5OCZ2IiIiIi1NCJyIiIuLilNCJiIiIuDgldCIiIiIursgSOmOMlzFmnTFmozFmqzHm+aKKRURERMSVFSvCa58BOlhrk4wxHsAqY8y31tqfizAmEREREZdTZAmdtdYCSZkfPTJftqjiEREREXFVRdqHzhjjboyJAf4EfrDW/lKU8YiIiIi4oiJN6Ky16dbaQKA60NQY43vuMcaYwcaYKGNMVHx8fKHHKCIiInK1uypGuVprE4AI4PZc9r1nrQ221gZXqlSpsEMTERERueoV5SjXSsaYspnvvYFbgO1FFY+IiIiIqyrKUa5VgI+NMe44EssvrLWLizAeEREREZdUlKNcNwFBRXV9ERERkX+Kq6IPnYiIiIhcPiV0IiIiIi5OCZ2IiIiIi1NCJyIiIuLilNCJiIiIuDgldCIiIiIuTgmdiIiIiItTQiciIiLi4pTQiYiIiLg4JXQiIiIiLk4JnYiIiIiLU0InIiIi4uKU0ImIiIi4OCV0IiIiIi5OCZ2IiIiIi1NCJyIiIuLilNCJiIiIuDgldCIiIiIuTgmdiIiIiItTQiciIiLi4pTQiYiIiLg4JXQiIiIiLk4JnYiIiIiLU0InIiIi4uKU0ImIiIi4OCV0IiIiIi5OCZ2IiIiIi1NCJyIiIuLilNCJiIiIuLiLJnTGmP/mZ5uIiIiIFI381NDdmsu2zlc6EBERERG5PMXy2mGMeRh4BKhjjNmUbVcpYHVBByYiIiIi+ZNnQgd8DnwLvAKMybb9pLX2WIFGJSIiIiL5lmdCZ61NBBKBvsYYd6By5vE+xhgfa+3+QopRRERERC7gQjV0ABhjhgHjgcNARuZmC/gXXFgiIiIikl8XTeiAx4D61tqjBRyLiIiIiFyG/IxyPYCj6VVERERErkL5qaHbA0QYY5YAZ7I2WmtfL7CoRERERCTf8pPQ7c98Fc98iYiIiMhV5KIJnbX2eQBjTElr7amCD0lERERELkV+lv5qYYzZBvya+TnAGPO/Ao9MRERERPIlP4MipgKdgKMA1tqNQNsCjElERERELkF+EjqstQfO2ZReALGIiIiIyGXIz6CIA8aYloA1xhQHhpPZ/CoiIiIiRS8/NXRDgKFANeB3IDDzs4iIiIhcBfIzyvUI0K8QYhERERGRy5CftVwrAQ8BtbIfb619sODCEhEREZH8yk8fukXASmAZGgwhIiIictXJT0JXwlr7VIFHIiIiIiKXJT+DIhYbY+4o8EhERERE5LLkJ6EbgSOpSzHGnMx8nSjowEREREQkf/IzyrVUYQQiIiIiIpcnP33oMMZ046/lviKstYsLLiQRERERuRQXbXI1xkzE0ey6LfM1InObiIiIiFwF8lNDdwcQaK3NADDGfAxEA2P+zoWNMTWAT4DrgQzgPWvtG3+nTBEREZFrUX4GRQCUzfa+zBW6dhowylp7M9AcGGqMaXiFyhYRERG5ZuSnhu4VINoYEw4YHH3pxv7dC1trDwGHMt+fNMb8imO92G1/t2wRERGRa0l+RrnOMsZEACGZm56y1v5xJYMwxtQCgoBfctk3GBgMcMMNN1zJy4qIiIj8I+S3ybUFEAq0y3x/xRhjfIB5wGPW2vPmt7PWvmetDbbWBleqVOlKXlpERETkHyE/o1z/BwwBNgNbgH8bY96+Ehc3xnjgSOZmWmvnX4kyRURERK41+elD1w7wtdZacI5y3fx3L2yMMcAHwK/W2tf/bnkiIiIi16r8NLnuALJ3XqsBbLoC124F9Ac6GGNiMl9aM1ZERETkEuWnhq4C8KsxZl3m5xBgrTHmKwBrbbfLubC1dhWOUbMiIiIi8jfkJ6F7tsCjEBEREZHLlp9pS34CMMaUzn68tfZYAcYlIiIiIvl00YQucx64F4BkHEt0GcACdQo2NBERERHJj/w0uY4GGllrjxR0MCIiIiJy6fIzynU3cLqgAxERERGRy5OfGrqxwBpjzC/AmayN1trhBRaViIiIiORbfhK6d4HlOCYTzijYcERERETkUuUnoUuz1j5e4JGIiIiIyGXJTx+6cGPMYGNMFWNM+axXgUcmIiIiIvmSnxq6+zL/HZttm6YtEREREblK5Gdi4dqFEYiIiIiIXJ78TCzsATwMtM3cFAG8a61NLcC4RERERCSf8tPk+g7gAfwv83P/zG2DCiooEREREcm//CR0IdbagGyflxtjNhZUQCIiIiJyafIzyjXdGFM364Mxpg6QXnAhiYiIiMilyO9aruHGmD2AAWoCDxRoVCIiIiKSb/kZ5fqjMaYeUB9HQrfdWnvmIqeJiIiISCG5aJOrMWYo4G2t3WSt3QiUMMY8UvChiYiIiEh+5KcP3UPW2oSsD9ba48BDBRaRiIiIiFyS/CR0bsYYk/XBGOMOFC+4kERERETkUuRnUMRS4AtjzHQcS34NAb4r0KhEREREJN/yk9A9BQzGsVqEAb4H/q8ggxIRERGR/MvPKNcMYHrmS0RERESuMvnpQyciIiIiVzEldCIiIiIuTgmdiIiIiIvLsw+dMeZrHKNac2Wt7VYgEYmIiIjIJblQDd1k4DVgL5AMvJ/5SgK2FHxoIq5j5MiRTJ061fm5U6dODBo0yPl51KhRvP766wVy7UGDBrFt27YCKVtERFxDngmdtfYna+1PQJC1tre19uvM131A68ILUeTq17JlS9asWQNARkYGR44cYevWrc79a9asoVWrVgVy7f/7v/+jYcOGBVK2iIi4hvz0oatkjKmT9cEYUxuoVHAhibieVq1aORO6rVu34uvrS6lSpTh+/Dhnzpzh119/5bHHHiMmJibHOZs2beLYsWN0794df39/mjdvzqZNmwAYP348AwcO5LbbbqNWrVrMnz+fJ598Ej8/P26//XZSU1MBCA0NJSoqCgAfHx+eeeYZAgICaN68OYcPHwZg9+7dNG/enJCQEJ599ll8fHwK8emIiEhBy09CNxKIMMZEGGMigHDgsYIMSsTVVK1alWLFirF//37WrFlDixYtaNasGWvXriUqKgp/f3+GDBnCjBkzANi5cydnzpzB39+f5557jqCgIDZt2sTLL7/MgAEDnOXu3r2bJUuWsGjRIu6//37at2/P5s2b8fb2ZsmSJefFcerUKZo3b87GjRtp27Yt77//PgAjRoxgxIgRREZGUrVq1UJ5JiIiUngumtBZa78D6gEjMl/1rbVLCzowEVeTVUuXldC1aNHC+blly5b06tWLxYsXk5qayocffkhYWBgAq1aton///gB06NCBo0ePkpiYCEDnzp3x8PDAz8+P9PR0br/9dgD8/PyIjY09L4bixYvTtWtXAJo0aeI8Zu3atfTq1QuA++67rwCfgoiIFIX8LP0F0ASolXl8gDEGa+0nBRaViAtYGB3HpKU7OJiQTNWy3jSq0ZA1a9awefNmfH19qVGjBq+99hqlS5fmwQcfpESJEtx6660sWrSIL774wtlMau35g8mNMQB4enoC4ObmhoeHh3O7m5sbaWlp552X/Rh3d/dcjxERkX+ei9bQGWM+xTHitTUQkvkKLuC4RK5qC6PjGDt/M3EJyVggLiGZH46W5Yv5iyhfvjzu7u6UL1+ehIQE1q5dS4sWLQDHiNThw4cTEhJC+fLlAWjbti0zZ84EICIigooVK1K6dOkrGm/z5s2ZN28eALNnz76iZYuISNHLTw1dMNDQ5laNIHKNmrR0B8mp6Tm2ZZSrwZEjR2jevL9zm5+fH0lJSVSsWBFwNIOWLl2aBx54wHnM+PHjeeCBB/D396dEiRJ8/PHHVzzeqVOncv/99/Paa6/RpUsXypQpc8WvISIiRcdcLE8zxnwJDLfWHiqckPIWHBxss5qpRIpS7TFLcp112wB7J3bJ87yDBw8SGhrK9u3bcXMrvIVaTp8+jbe3N8YYZs+ezaxZs1i0aFGhXV9E5FpkjFlvrS2UVs381NBVBLYZY9YBZ7I2aqUIuZZVLetNXEJyrtvz8sknn/DMM8/w+uuvF2oyB7B+/XqGDRuGtZayZcvy4YcfFur1RUSkYOWnhq5dbtszJx0uVKqhk6tFVh+67M2u3h7uvNLDj+5B1YowMhERuVpcVTV01tqfjDGVcQyGAFhnrf2zYMMSubplJW3ZR7mO7lRfyZyIiBSJiyZ0xph7gUlABI4uQm8aY0Zba+cWcGwiV7XuQdWUwImIyFUhP33ongFCsmrljDGVgGWAEjoRERGRq0B+ema7ndPEejSf54mIiIhIIchPDd13xpilwKzMz72BbwsuJBERERG5FPkZFDHaGNMDx0oRBnjPWrugwCMTERERkXzJz6CI2sA31tr5mZ+9jTG1rLWxBR2ciIiIiFxcfvrCfQlkZPucnrlNRERERK4C+Unoillrz2Z9yHxfvOBCEhEREZFLkZ+ELt4Y41zmyxhzF3Ck4EISERERkUuRn4RuCPC0MeaAMWY/8BTw74INS64Ff/zxB3369KFu3bo0bNiQO+64g507dxZZPFOnTuX06dPOz3fccQcJCQmXXE5sbCyff/75FYxMRETkwi6a0Flrd1trmwM3A42stS2ttb8VfGjyT2at5e677yY0NJTdu3ezbds2Xn75ZQ4fPlxkMZ2b0H3zzTeULVv2kstRQiciIoXtogmdMaayMeYD4Etr7UljTENjzL8KITb5BwsPD8fDw4MhQ4Y4twUGBtK6dWtGjx6Nr68vfn5+zJkzB4CIiAhCQ0Pp2bMnDRo0oF+/flhrAahVqxbPPfccjRs3xs/Pj+3btwNw6tQpHnzwQUJCQggKCmLRokUApKen88QTT+Dn54e/vz9vvvkm06ZN4+DBg7Rv35727ds7yz1yxNG74JNPPsHf35+AgAD69+8PQFhYGHPn/rVgio+PDwBjxoxh5cqVBAYGMmXKlIJ8jCIiIkD+mlxnAEuBqpmfdwKPFVA8co3YsmULTZo0OW/7/PnziYmJYePGjSxbtozRo0dz6NAhAKKjo5k6dSrbtm1jz549rF692nlexYoV2bBhAw8//DCTJ08G4KWXXqJDhw5ERkYSHh7O6NGjOXXqFO+99x579+4lOjqaTZs20a9fP4YPH07VqlUJDw8nPDw8R0xbt27lpZdeYvny5WzcuJE33njjgvc2ceJE2rRpQ0xMDCNHjvy7jwpjjDOJBEhLS6NSpUp07dr1b5d9OSIiIgr02gkJCfzvf/9zflaNp4jIxeUnoatorf2CzKlLrLVpOKYuEbniVq1aRd++fXF3d6dy5cq0a9eOyMhIAJo2bUr16tVxc3MjMDCQ2NhY53k9evQAoEmTJs7t33//PRMnTiQwMJDQ0FBSUlLYv38/y5YtY8iQIRQr5piGsXz58heMafny5fTs2ZOKFSvm6/grrWTJkmzZsoXk5GQAfvjhB6pVq1aoMRQmJXQiIpcuPwndKWNMBcACGGOaA4lX4uLGmA+NMX8aY7ZcifLk6rcwOo5WE5fz8pqTfLjwRxZGx+XYn9WMmhtPT0/ne3d3d9LS0s7bl327tZZ58+YRExNDTEwM+/fv5+abb8ZaizEm3zHndXyxYsXIyMhwHnP27NnzjrlSOnfuzJIlSwCYNWsWffv2de5bt24dLVu2JCgoiJYtW7Jjxw7AUbPYtGlTAgMD8ff3Z9euXZw6dYouXboQEBCAr6+vs0l7woQJhISE4Ovry+DBg51fh99++41bbrmFgIAAGjduzO7duwFISkrKs/k7q5k6KiqK0NBQAH766ScCAwMJDAwkKCiIkydPAjBp0iRCQkLw9/fnueeeAxxN1rt37yYwMJDRo0ef14Sd232JiFzr8pPQPQ58BdQ1xqwGPgEevULXnwHcfoXKkqvcwug4xs7fTFxCMp41A0g5c4aH//OqM6mLjIykXLlyzJkzh/T0dOLj41mxYgVNmza9rOt16tSJN99805lsREdHA3Dbbbcxffp0Z+J37NgxAEqVKuVMNLLr2LEjX3zxBUePHs1xfK1atVi/fj0AixYtIjU19YLl/B19+vRh9uzZpKSksGnTJpo1a+bc16BBA1asWEF0dDQTJkzg6aefBmD69OmMGDGCmJgYoqKiqF69Ot999x1Vq1Zl48aNbNmyhdtvd/z4DRs2jMjISGdN4OLFiwHo168fQ4cOZePGjaxZs4YqVaoAF27+zs3kyZN5++23iYmJYeXKlXh7e/P999+za9cu1q1bR0xMDOvXr2fFihVMnDiRunXrEhMTw6RJk85rws7tvkRErnX5GeW6AWgHtMQxXUkja+2mK3Fxa+0K4NiVKEuufpOW7iA51dFab4yh0t3PcGL3BvrcEkKjRo0YP3489913n3PwQYcOHXj11Ve5/vrrL+t648aNIzU1FX9/f3x9fRk3bhwAgwYN4oYbbnBeJ6s5b/DgwXTu3Nk5KCJLo0aNeOaZZ2jXrh0BAQE8/vjjADz00EP89NNPNG3alF9++YWSJUsC4O/vT7FixQgICLjsQRFZNZm1xywhOTWdPekViI2NZdasWdxxxx05jk1MTKRXr174+voycuRItm7dCkCLFi14+eWX+e9//8u+ffvw9vbGz8+PZcuW8dRTT7Fy5UrKlCkDOAapNGvWDD8/P5YvX87WrVs5efIkcXFx3H333QB4eXlRokQJ4MLN37lp1aoVjz/+ONOmTSMhIYFixYrx/fff8/333xMUFETjxo3Zvn17vmrbcrsvEZFrnrU21xcQAlyf7fMAYBEwDSif13mX+gJqAVvyc2yTJk2suK5aTy22NXN51XpqcVGHdlVZsOF32+A/3zqfj/Hwsg3+863tM2SULV++vN20aZMNDw+3Xbp0sdZaO3DgQPvGG29Ya63du3evrVmzprOs3377zb7xxhu2du3a9scff7TWWnv06FH76aef2latWtnnn3/eJicn2+uuu87u37/fWmvtc889Z5977jmbmJhoq1Wrdl582a9trbVDhw61H330kbXW2rp169rDhw9ba61duXKlbdeunfO4TZs22YkTJ9pq1arZX3/91T7++ON2+vTp55W/d+9e26hRozyvl9d9iYhcbYAoe4XypYu9LlRD9y5wFsAY0xaYiKO5NRF4r0Cyy1wYYwYbY6KMMVHx8fGFdVkpAFXL5l6Tktf2a1X2mswsyanp7CobwrPPPoufn1+OfYmJic5BEjNmzHBu37NnD3Xq1GH48OF069aNTZs2cfDgQUqUKMH999/PE088wYYNG0hJSQEcI4WTkpKcU7GULl2a6tWrs3DhQgDOnDmTY56+3GRvhp43b55z++7du/Hz8+Opp54iODiY7du306lTJz788EOSkpIAiIuL488//zyvyfrcz7ndl4jIte5CCZ27tTarObQ38J61dp61dhxwY8GH5mCtfc9aG2ytDa5UqVJhXVYKwOhO9fH2cM+xzdvDndGd6hdRRFengwnJuW4/an0YMWLEeduffPJJxo4dS6tWrUhP/ysRnDNnDr6+vgQGBrJ9+3YGDBjA5s2bnQMKXnrpJf7zn/9QtmxZHnroIfz8/OjevTshISHOMj799FOmTZuGv78/LVu25I8//rhg7M899xwjRoygTZs2uLv/9bWeOnUqvr6+BAQE4O3tTefOnbntttu47777aNGiBX5+fvTs2ZOTJ09SoUIFWrVqha+vL6NHjz6vCTu3+xIRudYZm8eowsyRp4HW2jRjzHZgsHX0ecMYs8Va63tFAjCmFrA4P+UFBwfbqKioK3FZKSILo+OYtHQHBxOSqVrWm9Gd6tM96J87BcflaDVxOXG5JHXVynqzekyHIohIREQuhzFmvbU2uDCuVewC+2YBPxljjgDJwMrM4G7kyk1bMgsIBSoaY34HnrPWfnAlyparU/egakrgLmJ0p/qMnb85R7OrajJFRORC8kzorLUvGWN+BKoA39u/qvLcuELTllhr+178KJFrS1bCq5pMERHJrwvV0GGt/TmXbTsLLhwRAdVkiojIpcnPxMIiIiIichVTQleE3N3dCQwMxNfXlzvvvJOEhATg7y9+fqnnx8bG4ut74TEpPj4+lx3PpV5LRERELo0SuiLk7e1NTEwMW7ZsoXz58rz99ttFHZKIiIi4ICV0V4kWLVoQF/fXQvV5LX7+448/EhQUhJ+fHw8++CBnzpwB4LvvvqNBgwa0bt2a+fPnO8s5deoUDz74ICEhIQQFBbFo0aILxnGxhc+TkpLo2LEjjRs3xs/Pz1lebGwsN998Mw899BCNGjXitttuIznZMfXG+vXrCQgIoEWLFkpaRURECoASuqtAeno6P/74I926dXNuy23x85SUFMLCwpgzZw6bN28mLS2Nd955h5SUFB566CG+/vprVq5cmWPy15deeokOHToQGRlJeHg4o0eP5tSpU3nGcrGFz728vFiwYAEbNmwgPDycUaNGOZPNXbt2MXToULZu3UrZsmWdKwU88MADTJs2jbVr117JxyYiIiKZlNAVoeTkZAIDA6lQoQLHjh3j1ltvde7LbfHzHTt2ULt2bW666SYABg4cyIoVK9i+fTu1a9emXr16GGO4//77neV8//33TJw4kcDAQEJDQ0lJSWH//v15xnSxhc+ttTz99NP4+/tzyy23EBcXx+HDhwGoXbs2gYGBADRp0oTY2FgSExNJSEigXbt2APTv3/+KPDsRERH5ixK6QrYwOo5WE5dTe8wSKFac8R8tYd++fZw9ezZHc6Snp6fzvbu7O2lpaeS1qgeAMSbX7dZa5s2bR0xMDDExMezfv5+bb745z3Luu+8+vvrqK7y9venUqRPLly/PsX/mzJnEx8ezfv16YmJiqFy5snMt0Lxizis2ERERuTKU0BWihdFxjJ2/mbiEZCxgLYydv5nwPUlMmzaNyZMnk5qamuf5DRo0IDY2lt9++w1wrLPZrl07GjRowN69e9m9ezcAs2bNcp7TqVMn3nzzTWcyGB0dfcEYL7bweWJiItdddx0eHh6Eh4ezb9++C5ZXtmxZypQpw6pVqwBHQigiIiJXlhK6QjRp6Y4cyzkBJKemM2npDoKCgggICGD27Nl5nu/l5cVHH31Er1698PPzw83NjSFDhuDl5cV7771Hly5daN26NTVr1nSeM27cOFJTU/H398fX15dx48ZdMMaLLXzer18/oqKiCA4OZubMmTRo0OCi9/3RRx8xdOhQWrRocV4TroiIiPx95kLNeFeb4OBgGxUVVdRhXLbaY5aQ29M2wN6JXQo7HBERESlAxpj11trgwriWaugKUdWyuddO5bVdREREJD+U0BWi0Z3q4+3hnmObt4c7ozvVL6KIRERE5J+gWFEHcC3JWmx90tIdHExIpmpZb0Z3qq9F2EVERORvUUJXyLoHVVMCJyIiIleUmlxFREREXJwSOhEREREXp4ROpIAYY3IsdZaWlkalSpXo2rXrBc+Liopi+PDhBR2eiIj8g6gPnUgBKVmyJFu2bCE5ORlvb29++OEHqlW7eP/J4OBggoMLZdoiERH5h1ANnUgB6ty5M0uWLAEcS7L17dvXuW/dunW0bNmSoKAgWrZsyY4dOwCIiIhw1uKNHz+eBx98kNDQUOrUqcO0adOc53/22Wc0bdqUwMBA/v3vf5OennMVEhERuXYooRMpQH369GH27NmkpKSwadMmmjVr5tzXoEEDVqxYQXR0NBMmTODpp5/OtYzt27ezdOlS1q1bx/PPP09qaiq//vorc+bMYfXq1cTExODu7q51ckVErmFqchW5ghZGxznnGUxOTWdPegViY2OZNWsWd9xxR45jExMTGThwILt27cIYQ2pqaq5ldunSBU9PTzw9Pbnuuus4fPgwP/74I+vXryckJASA5ORkrrvuugK/PxERuTopoRO5QhZGxzF2/maSUx1Nn9bC2PmbCQwJ5YknniAiIoKjR486jx83bhzt27dnwYIFxMbGEhoammu5np6ezvfu7u6kpaVhrWXgwIG88sorBXpPIiLiGtTkKnKFTFq6w5nMZUlOTWdX2RCeffZZ/Pz8cuxLTEx0DpKYMWPGJV2rY8eOzJ07lz///BOAY8eOsW/fvssPXkREXJoSOpEr5GBCcq7bj1ofRowYcd72J598krFjx9KqVatLHtDQsGFDXnzxRW677Tb8/f259dZbOXTo0GXFLSIirs9Ya4s6hnwLDg62UVFRRR2GSK5aTVxOXC5JXbWy3qwe06EIIrq2GWO4//77+fTTTwHHPIBVqlShWbNmLF68+JLLS0hI4PPPP+eRRx650qGKyD+UMWa9tbZQ5qFSDZ3IFTK6U328PdxzbPP2cGd0p/pFFNG1Lfs8gEC+5wHMS0JCAv/73/+uVHgiIleUEjqRK6R7UDVe6eFHtbLeGBw1c6/08KN70OUnEfL3XGgewGPHjtG9e3f8/f1p3rw5mzZtAvKe+2/MmDHs3r2bwMBARo8eTVJSEh07dqRx48b4+fmxaNEiAGJjY7n55pt56KGHaNSoEbfddpszqXz//fcJCQkhICCAe+65h9OnTxfm4xCRfzJrrcu8mjRpYkVE8qNkyZJ248aN9p577rHJyck2ICDAhoeH2y5dulhrrR02bJgdP368tdbaH3/80QYEBFhrrX3uuedsixYtbEpKio2Pj7fly5e3Z8+etXv37rWNGjVylp+ammoTExOttdbGx8fbunXr2oyMDLt3717r7u5uo6OjrbXW9urVy3766afWWmuPHDniPP+ZZ56x06ZNK+jHICJFCIiyhZQjadoSEfnH8vf3z3MewFWrVjFv3jwAOnTowNGjR0lMTARyn/vvXNZann76aVasWIGbmxtxcXHO42rXrk1gYCAATZo0ITY2FoAtW7bwn//8h4SEBJKSkujUqVMB3bmIXGuU0InIP8a5EzsvjI6jW7duuc4DaHMZEGaMAXKf++9cM2fOJD4+nvXr1+Ph4UGtWrVISUnJ9fysJtewsDAWLlxIQEAAM2bMICIi4orct4iI+tCJyD9C1sTOcQnJWP6a2Llq0865zgPYtm1b53JpERERVKxYkdKlS+dZfqlSpTh58qTzc2JiItdddx0eHh6Eh4fnax7AkydPUqVKFVJTU7VUm4hcUaqhE5F/hLwmdv4o5iSrx5w/D+D48eN54IEH8Pf3p0SJEnz88ccXLL9ChQq0atUKX19fOnfuzFNPPcWdd95JcHAwgYGBNGjQ4KIxvvDCCzRr1oyaNWvi5+eXI0EUEfk7NA+diPwj1B6zhNz+NzPA3oldCjscERHNQycicqmqlvW+pO0iIv8kSuhE5B9BEzuLyLVMfehE5B8hawLnrFGuVct6M7pTfU3sLCLXBCV0IvKP0T2omhI4EbkmqclVRERExMUpoRMRERFxcUroRERERFycEjoRERERF6eETkRERMTFKaETERERcXFK6ESkUPn4+OS6PSwsjLlz517w3NDQULT8n4jI+ZTQiVyAMYZRo0Y5P0+ePJnx48dfsfJjY2MxxjBu3DjntiNHjuDh4cGwYcMuq8xnn32WZcuWXakQRUTEBSihE7kAT09P5s+fz5EjRwrsGnXq1GHx4sXOz19++SWNGjW67PImTJjALbfcciVCK1DWWoYNG0bDhg3p0qULf/75p3PfhAkTCAkJwdfXl8GDB2Otde778ssvadq0KTfddBMrV64EICUlhQceeAA/Pz+CgoIIDw8v9PsRESlKSuhELqBYsWIMHjyYKVOmnLcvPj6ee+65h5CQEEJCQli9ejUAfn5+JCQkYK2lQoUKfPLJJwD0798/15ozb29vbr75ZmdT4pw5c7j33nsvep277rrLWfa7775Lv379gJxNl5GRkbRs2ZKAgACaNm3KyZMnr5rkZ8GCBezYsYPNmzfz/vvvs2bNGue+YcOGERkZyZYtW0hOTs6R8KalpbFu3TqmTp3K888/D8Dbb78NwObNm5k1axYDBw4kJSWlcG9IRKQIKaG7Ro0cOZKpU6c6P3fq1IlBgwY5P48aNYrXX3/9ksqMiIjI8Us5S2xsLNWrVycjIyPH9sDAQNatW8egQYPYtm3bJV1r+vTpzmQmL1FRUQwfPvySys3N0KFDmTlzJomJiTm2jxgxgpEjRxIZGcm8efOcz69Vq1asXr2arVu3UqdOHWct0s8//0zz5s1zvUafPn2YPXs2v//+O+7u7lStWvWi13nvvfeYMGECK1eu5LXXXuPNN9/MUebZs2fp3bs3b7zxBhs3bmTZsmV4e3tfNcnPihUr6Nu3r/N+O3To4NwXHh5Os2bN8PPzY/ny5WzdutW5r0ePHgA0adKE2NhYAFatWkX//v0BaNCgATVr1mTnzp2FdzMiIkVMa7leo1q2bMmXX37JY489RkZGBkeOHOHEiRPO/WvWrMmR8OVHREQEPj4+tGzZMsf2WrVqUaNGDVauXEm7du0A2L59OydPnqRp06Y0bdo01/LS09Nxd3fPdd+QIUMuGk9wcDDBwcGXdA+5KV26NAMGDGDatGl4e3s7ty9btixHInrixAlOnjxJmzZtWLFiBTVr1uThhx/mvffeIy4ujvLly+c5IOD2229n3LhxVK5cmd69e+fYl9d1KleuzIQJE2jfvj0LFiygfPnyOc7bsWMHVapUISQkxHkf4Eh+Hn30USBn8uPv7/83ntKFLYyOY9LSHRxMSCY5NZ2F0XGAo4/iuVJSUnjkkUeIioqiRo0ajB8/PkfC6enpCYC7uztpaWkAOZpkRUSuRaqhu0a1atXKWZu2detWfH19KVWqFMePH+fMmTP8+uuvBAUFsX79etq1a0eTJk3o1KkThw4dAmDatGk0bNgQf39/+vTpQ2xsLNOnT2fKlCkEBgY6a6Wy9O3bl9mzZzs/z549m759+wI5Ry76+Pjw7LPP0qxZM9auXcsHH3zATTfdRGhoKA899JBzoMD48eOZPHmy8/ynnnrqvH5VERERdO3aFYB169bRsmVLgoKCaNmyJTt27Mjz2SyMjqPVxOXUHrPEmXw89thjfPDBB5w6dcp5XEZGBmvXriUmJoaYmBji4uIoVaoUbdu2ZeXKlaxcuZLQ0FAqVarE3LlzadOmTZ7XLF68OE2aNOG1117jnnvuybEvr+uAo5atQoUKHDx48LwyrbW5JkyFnfwsjI5j7PzNxCUkYwFrYez8zXhWb8Ts2bNJT0/n0KFDzqbfrOStYsWKJCUlXXTkK0Dbtm2ZOXMmADt37mT//v3Ur1+/wO5JRORqo4TuGlW1alWKFSvG/v37WbNmDS1atHAmUVFRUfj7+2OM4dFHH2Xu3LmsX7+eBx98kGeeeQaAiRMnEh0dzaZNm5g+fTq1atViyJAhjBw5kpiYmPOSl3vvvZeFCxc6a1TmzJlDnz59zovr1KlT+Pr68ssvv1CnTh1eeOEFfv75Z3744Qe2b9+e5/3k1q8quwYNGrBixQqio6OZMGECTz/9dK7l5JV8rNiXzL333ssHH3zgPPa2227jrbfecn6OiYkBoEaNGhw5coRdu3ZRp04dWrduzeTJky+Y0IGjmfu///0vFSpUyLE9r+usW7eOb7/9lujoaCZPnszevXvPu+eDBw8SGRkJwMmTJ0lLSyv05GfS0h0kp6bn2Jacms7K1DrUq1cPPz8/Hn74YWftbdmyZXnooYfw8/Oje/fuzhrGC3nkkUdIT0/Hz8+P3r17M2PGDGdNnojItUBNrtewrFq6NWvW8PjjjxMXF8eaNWsoU6aMsxZry5Yt3HrrrYCjCbRKlSoA+Pv7069fP7p370737t0veq3rr7+eRo0a8eOPP1K5cmU8PDzw9fU97zh3d3dnDdW6deto166dsymxV69eefaLyq1fVXaJiYkMHDiQXbt2YYwhNTU113LySj4mLd3B/FGjciRW06ZNY+jQofj7+zsTpenTpwPQrFkz0tMd5bRp04axY8fSunXrCz0iGjVqlOvo1tyu88Ybb/DQQw/x0UcfUbVqVV577TUefPBBli9f7jyvePHizJkzh0cffZTk5GS8vb1ZtmwZjzzyCEOGDMHPz49ixYoVePJzMCE5x+cbHnfUuB1KTMnxPLN78cUXefHFF8/bHhER4XxfsWJF59fay8uLGTNmXJF4RURckRK6QvLSSy/x+eef4+7ujpubG++++y7NmjW75HIiIiIoXry4s59aWFgYXbt2pWfPnhc8z93dHT8/P46dTObo6TQ8b25PWZ/yJC76noM7NuPr60uNGjV47bXXKF26NA8++CDr1q3D3d3dWSOU3ZIlS1ixYgVfffUVL7zwAlu3buXnn3+mbdu2ecaQ1exauXJlZ3Pruby8vJz95i6laTC3flXZjRs3ztnXLDY2ltDQ0FzLySv5OJiQTOXKlTl9+rRzX8WKFZkzZ06u5Xz66afO9y1btjxvQEiWWrVqsWXLlvO2h4WFERYWdsHrbNy40fm+W7dudOvWDSBHYhMSEsLPP/983rmFmfxULetN3DnPNWu7iIhcGUXa5GqMud0Ys8MY85sxZkxRxlKQ1q5dy+LFi9mwYQObNm1i2bJl1KhR47LKymsk6cV4e3sz/qMllLzvDcr3nEDyniji9//G9999S7pHSdzd3SlfvjwJCQmsXbuWFi1aUKNGDc6ePcvatWsBSE1NZevWrWRkZHDgwAHat2/Pq6++SkJCAklJSaxbt47jx4/nGcM999zDN998k2dz67maNm3KTz/9xPHjx0lLS2PevHmXfN9ZEhMTqVatGnDhZCavJEPJx+Ub3ak+3h45B7d4e7gzupP6uImIXClFltAZY9yBt4HOQEOgrzGmYVHFU5AOHTpExYoVnbVIFStWdE5L8eOPPxIUFISfnx8PPvggZ86cARw1N1mT2UZFRREaGprnwIMVK1bQsmVL6tSpc8EO5FnNie4ly1L+9kc5tX0VaacT+dO9Am3atKFx48bExsZSvHhxKlasiIeHB40bN+app56iXr16lC5dmkWLFvHDDz/g6+uLl5cX1113HY8++iiffPIJJ0+e5M0338THx4eVK1fy8MMPExwcTKNGjXjuuecoW7YszZs3p3LlytSuXfuiz61atWo8/fTTNGvWjFtuuYWGDRtSpkyZy/oaPPnkk4wdO5ZWrVo5m0Jzo+TjyuseVI1XevhRraw3BqhW1ptXevjRPahaUYcmIvLPYa0tkhfQAlia7fNYYOyFzmnSpIl1RSdPnrQBAQG2Xr169uGHH7YRERHWWmuTk5Nt9erVLWAff/xx279/fztlyhQ7adIkW6ZMGRsfH2+ttTYyMtK2a9fOWmvtc889ZydNmuQse+DAgbZnz542PT3dbt261datW/e86+/du9e6ubnZWk8ttjWzvdw8S9rqwz61Nzw+1yYnJ1trrd25c6fNes7h4eG2S5cudvXq1bZx48Z23759zph37NhhrbXOmK21tmbNms6YrbX26NGj1lpr09LSbLt27ezGjRsv69lZa21qaqrt2rWrnT9//iWXcakWbPjdtnzlR1vrqcW25Ss/2gUbfi/wa4qIyD8PEGULKa8qyj501YAD2T7/Dlx6p7KrWPa5t6rcO4melRJI/X0LvXv3ZuLEiQQFBVG7dm3i4+OZP38+r732Gp999tl587hdTPfu3XFzc6Nhw4YcPnw4z+PO7cuU1UPt+lIePPTQQ8TExODu7p5j4MGvv/7K4MGD+f7776latSobN26kdu3a3HTTTQAMHDiQt99+m8cee+y8633xxRe89957pKWlcejQIbZt23bJc52NHz+eZcuWkZKSwm233ZavARh/V/egaqo9EhERl1KUfejOnyDrrxzjr4OMGWyMiTLGRMXHxxdCWFfGudNfHDxxlpn7SxHUfTBvvfUW8+bNc3b6z1peKntzqZubGxkZGcTHxzNq1CjWr19PSEgI+/fvB/5aXgock+xmrZqQkpKS58LsozvVx8sdjod/yMEPhmHPJnP2t1+ofSiCs2fPUqFCBRo0aEBycjKnTp1izJgx/PHHH+zevZs33ngDcMxZt3HjRue8dEePHuXUqVM0btzYeZ1du3bh6+vL5MmT+fHHH9m0aRNdunS5rNUIJk+eTExMDNu3b2fatGm5zqsmIiJyrSvKhO53IPvIgOrAebOjWmvfs9YGW2uDK1WqVGjB/V3Zp79IPfo7qcfinNNfxMTEULNmTRo0aEBsbCwZGRkMHTqUr776yrlqQtmyZVm/fj0jRoygcuXKNGnShHnz5rF48WJOnjzpXF7q+PHjXHfddc7+dOnp6XkuL9U9qBodzBZ8vD1x9ylHtXZ9KLVvBSVSE6hQoQKRkZHOxOy7776jQoUKtG/fntjYWJYsWcKyZcuYNm0apUqVYs6cOc556e644w7KlCmDh4cHJ0+e5KOPPqJr166ULFmSMmXKcPjwYb799ttCeOoiIiLXpqJsco0E6hljagNxQB/gviKM54rKPv1FRmoKx3+YTsaZUxx0c6dy6yC6D3uejlPXcLblv0n+Yhx+TZpy4403kpycTKlSpWjXrh0jRoxg7969lCtXjtOnT9OtWzeMMcybN4+TJ09y4sQJDh8+TKdOndiwYQNxcXEYY3JdXiojI4PAwED27NnDmTNnqFChAhWOpXMi+QRt2rThxRdfxN3dnePHj1OyZEn8/PxYv349JUuWZOfOnXzzzTd06NCBQ4cOcf311+Pn5+dcfH7IkCFUrFiR999/n86dO7Nv3z5+//13/vjjDxo1akSdOnVo1apVYT5+ERGRa0qRJXTW2jRjzDBgKeAOfGit3XqR01xG9v5qntffyPX9HctUVSvrzYBO9Rk7fzPJqel41QrEFPOkRJ+pjOpYnXFhXXnggQeoWbMmH330ERUrVmTfvn051hAFOHDgAL1796Z27do88cQTjBgxgrlz5zJy5Mhc42nUqBExMTHcc889DB48mE6dOuXYX7t2bSZPnswrr7zCK6+8woIFCzh8+DD//e9/GTt2rLPm0N/f3zmNSXb33HMPzz//PJMmTWLmzJlUqFDBOT2Ij48PSUlJf+t5ioiISN6KdB46a+031tqbrLV1rbUvFWUsV9qFpr/IazWC6T//WeDLS3Xq1Il33nnHuVLCzp07c6xPmuXDDz+kZcuWnD59mieeeIItW7ZQvHhx4uPjz5uXDhwTAnfq1ImHH36YBx54IJ9PSURERK4EreVaQC4099a5qxFkOZiQzKhRo5zzz4Fj2aestVUbNmzoXFoKHMtLZY02bdOmDXFxcbkuL5WWluacA2/QoEE0bNiQxo0b4+vry7///e/zVlZISkpizZo1HDlyhIkTJ/LSSy8xbNgw3NzcmDt3LiNGjKBkyZKULl2azp07Oyc6zhokMWbMGHx9fZ39+rIcOXKEFi1asGTJEmJjY51z3zVu3PiyJksWERERB5M10tIVBAcH26ioqKIO429rNXF5rkshVSvrzeoxHa7YdYwxPP74487F2Js2bUpSUhLjx4+/4HmfffYZ4eHhfPDBB7Rs2ZK33nqL8uXL07VrV7Zs2cLp06dxc3PDy8uLXbt20bdvX6Kiorjzzjv54Ycf+P333539/kqVKoWPjw+7d++mW7duvPjii9x66615liEiIvJPYYxZb60NLoxrqYauCBTWagSenp588MEHPPPMM4wdOzbf582aNcu5NFefPn2YNWtWjv2pqak89NBD+Pn50atXL7Zt28bdd9/Ntm3bSEtL49VXX2Xz5s2UKlXKeXzHjh159dVXufXWW/MsQ0RERC5PUY5yvWZlTVp7T/MbuWHkXKqW9WZ0p/pXfDLbYsWK8dRTT5GUlERQUBA//vijc198fDxDhgxxzmvX45Fn+PqQD+sm9iXjdCKRGzZSwrMYv//+O5UrV6Z+/frs2bOHoKAgEhMT6dSpExs3biQ+Pp7rr7+e2NhYbrnlFpYsWcL1119P//79KV68OOBI3kqVKsXSpUtp164dAFOmTKFy5cps3LiRjIwMvLy8rui9i4iIXEtUQ1dEugdVw9vDnb0Tu7B6TId8J3OhoaEsXbo0x7apU6dSp04dJk6ceN7xQ4cOZebMmSQmJubYPmLECPr370/NmjUZ/PzbjB89nIMnzlCsXFWKV61PhUH/xyMT3iQ0NJTk5GRKly5N7dq1iY6Opm7dumzbtg03Nzf69esHQHR0NM2bNycuLo4BAwbwr3/9i5CQENavX4+3tzcnT55k48aNzhgTExOpUqUKbm5ufPrppxdcX1VEREQuTDV0V4Axhvvvv59PP/0UcAxCqFKlCs2aNWPx4sUXPd9ay5NPPsm3336LMYb//Oc/9O7dm0ceeYTbb7+d0qVL06dPH+644w769u3LhAkTWLlyJS+++CLdu3fnhx9+oFKlSpQvXz7HcmPJqen8sOM4AwYMYNq0aXh7exMTE8OwYcNYtmyZs5nz20H3kX7mFBlnTpORkoQxbiSnpjP1vY95fmBvunXrxrRp09i3bx9+fn6cOnWK+Ph4mjdvzt69e51Tqri5ueHu7k779u0pW7YsjRs3JiAggJSUFA4cOMA777zDiy++SOnSpXnkkUe45557+PLLL2nfvj0lS5YsuC+QiIjIP11hLRp7JV5Zi8YXpCNHjtiAgAAbEBBgK1eubKtWrer8fObMGedxgL3//vuttdaWLFnSBgQE2IoVK9ouXbrYb775xtaqVcvWr1//gtcqWbKktdbauXPn2g4dOti0tDT7xx9/2Bo1atiDBw/aWbNm2SeeeMKGh4fbMmXK2GbNmtkjR45YT09P+9VXX1lrrY2OjrY1atSw06dPtz6ly9pKHQdZz+oNbanguyzGzZZr1sNO+uwbW7x4cVu1alV700032WLFitkKFSrYX3/91TZq1MjWemqxrXDHY9b7phbWq3Zji5u79WncxRYrU9keOXLE1qxZ07Zs2dIuWrTI3nXXXbZevXq2RIkS9t1337UBAQF2z549znsqV66cjY+Pt+Hh4bZVq1b21KlT1lpr27VrZ8PDw6/kl0pEROSqBkTZQsqRVEN3jgoVKjjnehs/fjw+Pj488cQT5x1XsmRJtmzZQnKyY7Rq/fr1nWurzpo1iyFDhjin7Vi3bh2PPfYYycnJJGe4U+KWRznuUZHTKWdoeWtX/ti9DU9PT8LCwujZsyft2rUjMjKSOXPmsG3bNho1akSpUqWoXLkyv/zyC6mpqTz66KO88sorWGtJTk5m7NixJJ1I4Oy2laQe3U/6yWPg7kHp0Ad57olheHh4cPToUdzdHYMxbrvtNj7++GPAMQny1sR4Ug/vocoD00hY9TlJG7+jVPUGVKhQAYATJ05QrVo1PvzwQ0aNGsVvv/3GtGnTaNGiBTNnzuQ///kP3377LcePHwccTarlypWjRIkSbN++nZ9//rnAvmYiIiLXOiV0+bB+/Xoef/xxkpKSqFixonMFhGPHjtG3b1+Sk5NZsmQJ1113HRkZGURERPDLL7+wf/9+6tWrR7169fj555+peWMD4v48Rvr/huFWshw2PY21P36LT6nSNA70Z+XKlXz55ZdYa1m6dCnHjh3D3d2dYcOGcerUKUaMGMHGjRvx8PDgzz//5OzZsxw6dIj+/fvzww8/AJB2PA6bkUZa0jGMMaQlHeP0H3uJiYmmRYsWzr5q06ZNIywsjN9++41K7w3hbIY3XjUDcPMsScmGoZyMWsSt7ds6n8GTTz5Jr169SEtLIyUlhdOnT+Pu7s5rr73Ga6+9RuPGjWnXrh033HADALfffjvTp0/H39+f+vXr57m+rIiIiPx9GhRxEdZaHn30UebOncv69eudC9KnZ1iOpnuxZMU6rLsHJcuU5/Dhw8TFxeHv78/hw4epVKkSmzdvdiZbfyQkkXoqAeNdGu+aAYDBo1ItKnf8F1FRUcyZMweAcuXK0bVrV9LT02nTpg2enp4U9/Tikz3ePDP+Rc6kWVJSUsjIyAAc67TeeOONAHjVDcGjQk2MezHKhoZx9uAOjHsxGjVqxOnTpxkxYgQAFStW5K233uLGG2/kwJ6dDHogDJ8SjkmQ69zsT5PWHRnWv4fzOXTu3JkPP/yQG264gdjYWOfIWU9PT77//ns2bNjAlClT2LdvHxUrVsTT05Nvv/2WTZs28eWXXxIREUFoaGihfd1ERESuJaqhy5R9MEHWNCIAZ86cYcuWLc7509LT03H3Kc+ZtAyKuxUH44bNSCe1amNswo/8+uuv9OrViwMHDpCYmIiXlxfFixfn9OnTeFT350zCj6QfP0jSySOAJfXoAU6Vq0PJkiVp27YtZ8+eJT09nW+++QYfHx+2bNlCYuIJ0jMy2Pz+KEg7A4AF/vzzTwC+/PJL532c3hrh2GvcSD8RT4ly11HM3Y169epRokQJSpQokev91y4NJf7czO6JXQDouur1845RM6qIiMjVSTV0OJK5sfM3E5eQjAXiEpIZO38z2w+dwFrrXNh+/EdLKN3vDRLaPek817OGH6SnUfymFqQad+rVq0f16tUpVuyvXLlUqVK4u7tTPP0UNu0sAFUfeo8ybQdi3IoRP+sp4uPjcXd3p27dupw8eZLU1FSuv/567rvvPryurw3WURvnVrIcHlVuwhT3xlqLMYaQkBDKlCmDh4cHPf/1KCWq1AWgmm9zJgzqTvlyZSlfvjxeXl5s3LjROT9cduXKlaNz584XfE633347aWlpGGPo1q2bsxl18uTJF1194lwRERE5lvsKCwtj7ty5Fz3vjz/+oE+fPtStW5eGDRtyxx13sHPnzku6dm5iY2Px9fUFICoqiuHDh//tMkVERAqLEjpg0tIdJKfmnActOTWd1buP4unpSXx8PBNnfMXY+Zv5/ehJzsbvcx5X4sZm4FYMjwo1yMBQu3bt88qvVq0a6enplEs/DtaCccdmpOHmVZJiPuXw8fakcuXKlClThuLFi5Oens7dd9/NwYMHue+++3Cr6kg0sBl41Qoi9dBO7NlkjFcprLWkp6dz44034ubmxp7oVTz/+BDc3QzX7/2W/xs/jMTERDZu3MiOHTvIyMjAGIOvry933nkn48aNAxzz20VERACwdetW/vzzTx577DH8/f354YcfcjSjenp6kpqayty5cy+rGTUtLe28hC4/rLXcfffdhIaGsnv3brZt28bLL7/M4cOH831+VjP1hQQHBzNt2rRLik1ERKQoKaEDDuayrirAyZRU54L0rzz/H3a/+zCHPhrOmbhfnce4lyxLzdELHe+NcW4vW7YsDZuF0mricmJ27AHgTEoKNweG4F7ciz8+e4KEH9/H/UwiSYkJlCxZksOHD3Ps2DEyMjL47LPPOHv2LK1bt+bMjsxF7tNTOf3rCjCOkar2zCmMMVhrnctsRUdHM2HCBABOnTrF77//7kwSjTEUL16cmjVr8uijj+Lu7k7//v254447nKN1AaZPn86IESOIiYkhKiqK6tWr53guxYoVY/DgwUyZMuW8Z7Zv3z46duyIv78/HTt2dK5EERYWxuOPP0779u3p3bs306dPZ8qUKQQGBjpHA69YsYKWLVtSp06dXGvrwsPD8fDwYMiQIc5tgYGBtGnThqSkJDp27Ejjxo3x8/Nj0aJFgKPm7eabb+aRRx6hcePGHDhwgNGjR+Pr64ufn5+z32J2ERERdO3aFXCMdH7wwQcJDQ2lTp06ORK97t2706RJExo1asR77713XjkiIiKFRQkdjmk7ctOo6yCeeOIJAgMDKd/7Fao++BZVB/2PUoG3c8Pjc7n+vol4VqkHgE+Z8nyxYjOLFy8mLCyMRyd/wt6b+hCXkEyNYZ9hPLwo2Xcq9z3yBLffEkp60nEy0s7SumULWrZsydatW3F3dyc9PZ2HH36YtLQ02rRpw+y1u6ncfiC4uWM8vPCoeAOVejxN8Qo1KOlTihtvvBEPDw+io6Pp0qULDz30EDVq1KBEiRJ06tSJuLg4AgMD8fHxoVWrVpw5c4YuXbrQs2dPYmJi6N27Nz4+PjkSmxYtWvDyyy/z3//+l3379jknDs4urxUohg0bxoABA9i0aRP9+vXL0XS5c+dOli1bxrx58xgyZAgjR44kJiaGNm3aAHDo0CFWrVrF4sWLGTNmzHnX3LJlC02aNMn1a+Xl5cWCBQvYsGED4eHhjBo1CscUQLBjxw4GDBhAdHQ0UVFRxMTEsHHjRpYtW8bo0aM5dOjQhb492L59O0uXLmXdunU8//zzpKamAvDhhx+yfv16oqKimDZtGkePHr1gOSIiIgVFCR0wulN9vD3cc2zz9nB3DoyAvJM+gGplvXmlh1+O5bvyasadHXkgx7Zdu3bRrFkzvLy8GDRoEBkZGfz0009UrVqVE6lujJ2/mdPZyinb+j4SfphO6vE42rRqQYkSJTh27Bg333wzxYoVw8PDgx49epCWloaHhwe1a9emRIkSnDp1ioMHD+Lj4wM4kqM2bdrw9ddf89NPP7Fr1y7nNe677z6++uorvL296dSpE8uXLz/vnkuXLu1cgSIhIYHZs2dTr149vvnmG6Kiojh79izWWr777jvnOb169XLOgzdz5swctYLgqPFyc3OjYcOG+W5GzWKt5emnn8bf359bbrmFuLg4Zxk1a9Z09vdbtWoVffv2xd3dncqVKzvn/LuQLl264OnpScWKFbnuuuuc5U6bNo2AgACaN2/OgQMHcjxDERGRwqRRruBMxM4d5Zo9QRvdqT5j52/OkaR5e7ifl8hlObcZ94bHHU2Ip8rXZ9DDvWk1cTkHDh0mLu4QH382iy+//JL09HRKlizJtGnTeO211zje+nGOJCTj43cLx36YDkCJes1xP7SVM9sj+Pbbb4mIiGDo0KG0a9eOOnXqEBUVBYCfnx8VKlTAy8uLb7/9Fh8fHwYMGEBkZCQbN27kiy++4KOPPnI2hWY1ewLs2bOHOnXqMHz4cPbs2cOmTZs4Ua5+jiXFFkbH8dhjjxEUFERaWhrBwcEsWrSIChUqkJSUxDPPPEODBg0w2Zqhsy/v1a9fv/Nq/jw9PZ3vs2rXsmvUqFGeAydmzpxJfHw869evx8PDg1q1apGSknLedXMr92Kyx+Xu7u7sA7hs2TLWrl1LiRIlCA0NdV5PRESksKmGLlP3oGqsHtOBvRO7sHpMh/OStO5B1Xilhx/VyjrmasutVi67vGr0ypbwcI6oPbVjNSUadaDCoP9j6oLVHDhwgNq1a7Nq1Sog9759p39bx7HdG6lSpYpzW/ny5Vm4cCFnzpwhNTWVBQsWULly5Vyv36BBA/z9/fn999955JFHePnll89bb3bOnDn4+voSGBjI9u3bqRB4S45RwNbC2PmbWbEvmebNm3P06FGCgoIAaNWqFS1atODDDz/kp59+oly5ctx+++3Mnz/fudYtOGq3smq6Xn/9dRYtWsTjjz/O1KlTc40boEOHDpw5c4b333/fuS0yMpKffvqJxMRErrvuOjw8PAgPD2ffvn25ltG2bVvmzJlDeno68fHxrFixgqZNm+Z5zbxoChcREbmaKKG7BBdL+rLLqxnXWpy1fKe2/USJm1qQnJrOpKU7ALjnnnv4/PPPgfOTwhsen8uJyAWYs6fw8PAgMDCQ5cuXs3LlSsLCwnjzzTdZvXo1gwYN4quvvuKOO+5wnpuUlASAMYZJkybx5ptvkpKSwvvvv0+DBg2cc94BjB07lq1btxITE8N3333H9J//zLX5eNLSHfj7+5OWlubcPm3aNGbPns3p06f5+eefKVasGHPmzOGuu+5izZo1HDjgaHIuUaIES5Ys4aabbuKtt97ijjvu4KWXXuL9998nOjo612dqjGHBggX88MMP1K1bl0aNGjF+/HiqVq1Kv379iIqKIjg4mJkzZ9KgQYNcy7j77rvx9/cnICCADh068Oqrr3L99dfn+XXMS9YULv7+/owbN04rYYiISJEyl9MEVVSCg4NtVpOiK8htsuKRc2LI7YkbYG/mpL7Zz7+UZt6CUnvMklxjBjBbv8GvTCpffZZzlGdgYCD/+te/2LRpk7NGrXPnzjzzzDO0bt2aWrVqERUVxcyZMzl69KhzZO64ceOoVKmS5oETERGXZ4xZb60NLoxrqQ9dAeoeVO28xGvS0h3E5dKUmlsTbX769hWGqmW9c40Z4HTJqixbMZuF0XHOuE6cOMGBAwdwd3fPtf9Zdq70B4WIiMjVSk2uhSw/I2qzu5Rm3oKSW8xZvGoGkJ6awuhX3gQcS6ONGjWKsLCwPJcZy65t27YsXLiQ06dPc+rUKRYsWOCcxkRERETyRwldIbvUwRVXg+wxn8sYQ6W7nyFuw3Lq1avHTTfdhJeXFy+//HK+ym7cuDFhYWE0bdqUZs2aMWjQIOcAC5GCMHLkyByDbzp16sSgQYOcn0eNGsWECROYOHFiEUQHBw8epGfPnkVybRFxXepDJ5ek1cTluTa/VivrzeoxHYogIpFL8+WXX/Lll1/yxRdfkJGRQUhICMWLF2ft2rWAY2LtqVOn0qxZsyKOVERcXWH2oVMNnVySS20yFrnatGrVyrmO8NatW/H19aVUqVIcP36cM2fO8Ouvv7Jx40aGDRsGOBJAX19fAgICaNu2LeDoWvDEE0/g5+eHv78/b77p6HLw448/EhQUhJ+fHw8++CBnzpwBoFatWjz33HPOpem2b98OwE8//URgYCCBgYEEBQVx8uRJYmNj8fV1rN88Y8YMevTowe233069evV48sknC/VZiYjr0KAIuSRXy0AN+ecwxnD//fc75ylMS0ujSpUqNGvWjMWLF/PVV1+xbdu2XJeDuxxVq1alWLFi7N+/nzVr1tCiRQvi4uJYu3YtZcqUwd/fn+LFizuPnzBhAs899xzVqlWjYcOGALz33nvs3buX6OhoihUrxrFjx0hJSaF///6ULFmSXbt2MWDAAN555x0SEhI4ceIEu3fvZvHixSxcuJDJkyfzf//3f0yePJm3336bVq1akZSUhJeXF3369MmxikpMTAzR0dF4enpSv359Hn30UWrUqHFFnoWI/HMooZNLltvoXZHLVbJkSbZs2UJycjLe3t788MMPVKv21/dXt27d6Nat29++TvZphE6VvZE3Pl/MkV9/4fHHHycuLo41a9ZQpkwZWrZsmeO8Vq1aMWbMGBo3bsz06Y4VW5YtW8aQIUMoVszxX2j58uXZuHEj1atX5/Tp0wAMHDiQt99+G39/fwB2797NwYMHadKkCfPnz3eW/fjjj9OvXz969OhB9erVz4u7Y8eOlClTBoCGDRuyb98+JXQich4ldCJS5Dp37sySJUvo2bMns2bNom/fvs7l6GbMmEFUVBRvvfUWYWFhlC5dmqioKP744w9effVVevbsSUREBOPHj6dixYps2bKFJk2a8Nlnn2GMYf369QwYPJTdB49ivEpRoctIMq6rxzvvvEPaH7vYsGEDN954IydOnMDLy4ujR48yc+ZMUlNTGTx4MGPGjOHLL7/ku+++o0qVKsyfP5+DBw/y6KOP4u3tTYUKFZg5c+ZFp+DZtGkT/fr1w1rL9ddfz4QJE/j66685fvw4n332Ga+++irLli0DHFP/NG3alP379+dIMHOb+kdEBNSHTkSuAn369GH27NmkpKSwadOmCw5IOHToEKtWrWLx4sU5mmGjo6OZOnUq27ZtY8+ePaxevZrU1FQeffRRSnZ+kusHTsXH/1YSVnyCZ7WGJB/Yhnf1m9m8eTMfffQRCQkJRERE0LZtW1544QWaN2/OgAEDSE9P59FHH+W5556jUaNGVK9enV69euHr60tkZCR9+vTh+eefp0GDBsTFxTn7zX366ae0a9fOGV9gYCAzZ87k888/x83NjWHDhjF79mx+++036tevT/Xq1Z1966y1rFu3jr59+xIZGVlAT11E/kmU0IlIkfP39yc2NpZZs2blWLIuN927d8fNzY2GDRs61wMGaNq0KdWrV8fNzY3AwEBiY2PZsWMHW7ZsIeb9Jzj40aMkrplD+smjeFSqCcDphCN89tlnFCtWDD8/P9LT0xkyZAgA1atX5+jRozz22GO88847TJ48mbZt2xIQEED79u2JjIzEx8eHoUOHEh4ejpeXF5MmTeL333/Hz88PNzc3Z1m5CQ8Pp2XLlnh5eTF79mySk5Pp3LkzAKVLlwYcgylOnDjxt56tiFwb1OQqIoUue3+25NR0FkbH0a1bN5544gkiIiI4evRonudmX30kezNnbquSWGtp1KgRbne9dN50Ozc8sYBSx3exfv16XnjhBef6xQBhYWGEhYWxaNEiZs6cyeuvv46Pjw9PPPEE4JjL7s0336Rbt25EREQw7ImxtJq4nN//LE5G8ZK88Ml3zn6mx44dY8qUKXz00UcABAcH891331GzZk2ioqKoUaMG48ePd96Dl5cXX3zxBQD9+vVjypQpzpgXL158qY9aRK4RqqETkUKVtUZxXEIyFrAWxs7fTNWmnXn22Wfx8/O7YteqX78+8fHx3Hl9Et4e7tj0NM7G78PaDIolH+fFR/rw6quvkpCQQFJSEm3btmXmzJkAREREULFiRUqXLk2pUqU4efKks9zExETnwI0XXn+HPfGniEtIxhT3hhLlGP7aJyyMjuPYsWN89913tG7dOkcZKSkpAFSsWJGkpCTmzp17xe5ZRK5NSuhEpFBNWrqD5NT0HNuSU9P5KOYkI0aMuKLXKl68OHPnzuWbDyeTMudx4j8Zwdm4X6la2pPiq95m3IDbCQoKYuTIkZQtW5bx48cTFRWFv78/Y8aM4eOPPwbgzjvvZMGCBQQGBrJy5UrGjx9Pr169aNOmDdsTICNbTWGFLo/z58pZ9OvSjg4dOvDcc89Rt25dwsLCGDJkCIGBgXh6evLQQw/h5+dH9+7dCQkJydf9uLu7ExgYiK+vL7169XKOqC0KM2bMcM7Vd6VolQyRy6eVIkSkUNUes4Tc/tcxwN6JXQo7nL+tMO/Hx8eHpKQkwNEc26RJEx5//PEreo38yj76WERyp5UiROQfq2ouawJfaPvVrqjup02bNvz222+cOnWKBx98kJCQEIKCgli0aBFw4VUmfHx8eOaZZwgICKB58+bOwSW5rYrRpk0bZ99CcMydt2nTJufnxMREatWqRUZGBgCnT5+mRo0apKam8v777xMSEkJAQAD33HOPs0YxLCyM4cOH07JlS+rUqeNscs6+SkZsbCxt2rShcePGNG7c2Lm6h4jkTgmdiBSqf9rycUVxP2lpaXz77bf4+fnx0ksv0aFDByIjIwkPD2f06NGcOnUKcKwyMWfOHDZv3sycOXM4cOAAAKdOnaJ58+Zs3LiRtm3b8v777wOOVTGWLl3Kxo0b+eqrrwAYNGgQM2bMAGDnzp2cOXPGOVkyQJkyZQgICOCnn34C4Ouvv6ZTp054eHjQo0cPIiMj2bhxIzfffDMffPCB87y8pp/Jct111/HDDz+wYcMG5syZw/Dhw6/8gxT5B1FCJyKFqntQNV7p4Ue1st4YoFpZb17p4eeyq48U5v0kJycTGBhIcHAwN9xwA//617/4/vvvmThxIoGBgYSGhpKSksL+/fuBv1aZ8PLycq4yAY6+hV27dgWgSZMmxMbGAo7at7CwMN5//33S0x39HHv16sXixYtJTU3lww8/JCws7Ly4evfuzZw5cwCYPXs2vXv3BmDLli20adMGPz8/Zs6cydatW/96bnlMP5MlNTXV2c+wV69ebNu27co8RJF/KE1bIiKF7p+2fFxB3k/2KV4oVpzxHy3JcS1rLfPmzaN+/Zw1gr/88kuuU7kAeHh4YIw5b/v06dP55ZdfWLJkCYGBgcTExFChQgVuvfVWFi1axBdffEFu/Zi7devG2LFjOXbsGOvXr6dDhw6Ao2l14cKFBAQEMGPGDCIiIpzn5DX9TJYpU6ZQuXJlNm7cSEZGBl5eXpf66ESuKaqhExG5SuU1xcvC6DjnMZ06deLNN990JkXR0dGXfb3du3fTrFkzJkyYQMWKFZ1NtIMGDWL48OGEhIRQvnz5887z8fGhadOmjBgxgq5du+Lu7miCPnnyJFWqVCE1NdU5HUx+JSYmUqVKFdzc3Pj000+dNYYikjsldCIiV6m8pniZtHSH8/O4ceNITU3F398fX19fxo0bd9nXGz16NH5+fvj6+jpXxQBHs2zp0qV54IEH8jy3d+/efPbZZ87mVoAXXniBZs2aceutt9KgQYNLiuWRRx7h448/pnnz5uzcuZOSJUte3k2JXCM0bYmI/C2///47Q4cOZdu2bWRkZNC1a1cmTZpE8eLFizo0l3e1TPFy8OBBQkND2b59O25uqgcQyS9NWyIiLsFaS48ePejevTu7du1i586dJCUl8cwzz+Q4LquPllyaq2GKl08++YRmzZrx0ksvKZkTuYrpp1NELtvy5cvx8vJyNsW5u7szZcoUPvzwQ/73v//Rq1cv7rzzTm677bY850s7ffo09957L/7+/vTu3ZtmzZo5O97PmjXL2QT41FNPOa+b1zxq/zRXwxQvAwYM4MCBA/Tq1avQrikil04JnYhctq1bt9KkSZMc20qXLs0NN9xAWloaa9eu5eOPP2b58uV5zpf2v//9j3LlyrFp0ybGjRvH+vXrAUcz31NPPcXy5cuJiYkhMjKShQsXAnnPo/ZP80+b4kXkSvnjjz/o06cPdevWpWHDhtxxxx3s3Lkz12OzT1h9pY0fP57JkycXSNmXStOWiMhls9Y6p7/Ibfutt97qHBX5/fff89VXXzn/88uaL23VqlXONVx9fX2dk9ZGRkYSGhpKpUqVAMdSVytWrKB79+7nzaP2ww8/FPi9FpV/2hQvIn+XtZa7776bgQMHMnv2bMAxifbhw4e56aab/nb5aWlpFCvmeumR60UsIkUq+7xoJY6chQ05l2Q6ceIEBw4cwN3dPcfIxLzmS8trYNaFBmzlNY+aiPzzhYeH4+HhwZAhQ5zbAgMDsdYyevRovv32W4wx/Oc//8kx6hocf0g+/PDDREVFUaxYMV5//XXat2/PjBkzWLJkCSkpKZw6dYqvvvqKu+66i+PHj5OamsqLL77IXXfdBcBLL73EJ598Qo0aNahUqZKzlSImJoYhQ4Zw+vRp6taty4cfflh4DwU1uYrIJTh3XrSkCjez549jjHjhDQDS09MZNWoUYWFhlChRIse5ec2X1rp1a7744gsAtm3bxubNmwFo1qwZP/30E0eOHCE9PZ1Zs2bRrl27QrpTEblabdmy5byuHgDz588nJiaGjRs3smzZMkaPHs2hQ4dyHPP2228DsHnzZmbNmsXAgQNJSUkByNFFxMvLiwULFrBhwwbCw8MZNWoU1lrWr1/P7NmziY6OZv78+URGRjrLHjBgAP/973/ZtGkTfn5+PP/88wX4FM6nhE5E8u3cedGMMVTo/jSffj6bevXqcdNNN+Hl5cXLL7983rl5zZf2yCOPEB8fj7+/P//973/x9/enTJkyVKlShVdeeYX27dsTEBBA48aNnX8hi4ica9WqVfTt2xd3d3cqV65Mu3btciRcWcf0798fgAYNGlCzZk1n37vsXUSstTz99NP4+/tzyy23EBcXx+HDh1m5ciV33303JUqUoHTp0nTr1g1wTISdkJDg/KNz4MCBrFixorBuHVCTq4hcgoMJyedtK1a6EmXu+g+7zpkXLSwsLMe6n97e3rz77rvnne/l5cVnn32Gl5cXu3fvpmPHjtSsWROA++67j/vuu++8c5KSkpzve/bsSc+ePS/3lkTEBZzf1WPtecfkZ17dCx2TvYvIzJkziY+PZ/369Xh4eFCrVi1nTV5u/YavBqqhE5F8K4h50U6fPk3r1q0JCAjg7rvv5p133tGkxCLidH5XjwbsOZzAI+NedR4TGRlJuXLlmDNnDunp6cTHx7NixQqaNm2ao6y2bds6l6HbuXMn+/fvP69fLzhq3K677jo8PDwIDw9n3759zvMXLFhAcnIyJ0+e5OuvvwagTJkylCtXjpUrVwLw6aefFnoXEdXQiUi+je5Un7HzN+dodv2786KVKlUq1wXfRUQg764eXyz6kKWfv4uXlxe1atVi6tSpJCUlERAQgDGGV199leuvv57Y2FjnuY888ghDhgzBz8+PYsWKMWPGDDw9Pc+7Zr9+/bjzzjsJDg4mMDDQuXRd48aN6d27N4GBgdSsWZM2bdo4z/n444+dgyLq1KnDRx99xNSpUwvsuZxLS3+JyCXJ3vRRtaw3ozvV17QaIlJgrpYl8C5HYS79pRo6EbkkmhdNRApT1bLexOXSf7cwl8BzBUXSh84Y08sYs9UYk2GMKZTMVURERFzP1bAEnisoqhq6LUAP4PwhbyIiIiKZsloE1NXjwookobPW/gpX79BfERERuXqoq8fFadoSERERERdXYDV0xphlwPW57HrGWrvoEsoZDAwGuOGGG65QdCIiIiL/HAWW0Flrb7lC5bwHvAeOaUuuRJkiIiIi/yRqchURERFxcUU1bcndxpjfgRbAEmPM0qKIQ0RExBUZY5yLzAOkpaVRqVIlunbtCsBXX33FxIkT8zw/NjYWX1/fXPc9++yzLFu27MoGLAWuqEa5LgAWFMW1RUREXF3JkiXZsmULycnJeHt788MPP1Ct2l+jQLt160a3bt0uq+wJEyZcqTClEKnJVURExAV17tyZJUuWADBr1iz69u3r3DdjxgyGDRsGwOHDh7n77rsJCAggICCANWvWAJCens5DDz1Eo0aNuO2220hOdqzGEBYWxty5cwH45ptvaNCgAa1bt2b48OHOGsB169bRsmVLgoKCaNmyJTt27HBet0ePHtx+++3Uq1ePJ598snAehiihExERcUV9+vRh9uzZpKSksGnTJpo1a5brccOHD6ddu3Zs3LiRDRs20KhRIwB27drF0KFD2bp1K2XLlmXevHk5zktJSeHf//433377LatWrSI+Pt65r0GDBqxYsYLo6GgmTJjA008/7dwXExPDnDlz2Lx5M3PmzOHAgQMFcPdyLq3lKiIi4oL8/f2JjY1l1qxZ3HHHHXket3z5cj755BMA3N3dKVOmDMePH6d27doEBgYC0KRJE2JjY3Oct337durUqUPt2rUB6Nu3L++99x4AiYmJDBw4kF27dmGMITU11Xlex44dKVOmDAANGzZk37591KhR40rdtuRBCZ2IiIgLWBgd51z+Kjk1nYXRcXTr1o0nnniCiIgIjh49eknleXp6Ot+7u7s7m1yzWJv3TGHjxo2jffv2LFiwgNjYWEJDQ/MsNy0t7ZLiksujJlcREZGr3MLoOMbO30xcQjIWsBbGzt9M1aadefbZZ/Hz88vz3I4dO/LOO+8Ajn5zJ06cyNc1GzRowJ49e5w1d3PmzHHuS0xMdA7CmDFjxmXdk1xZSuhERESucpOW7iA5Nf2vDdayf+7LDOt3F++++y533HFHnn3V3njjDZ544gn8/Pzw9/fnrrvucu7r27cv/v7+rFix4rzzvL29+d///sftt99O69atqVy5srMp9cknn2Ts2LG0atWK9HRHXFFRUcycOfMK3rVcCnOhKtWrTXBwsI2KiirqMERERApV7TFLyPptba3lj8+ewMe3I6WD7mDvxC7ExMRw8uRJ2rRpk+v5Pj4+JCUl5dj2xx9/0KxZM/bt25fndZOSkvDx8cFay9ChQ6lTpw5PPPHElbqtfzxjzHprbXBhXEs1dCIiIle5qmW9ne9T9m/CuBWjVNAdzu2BgYEEBQXRsWNHGjdujJ+fH4sWnb9sevYJhW+77Tb+/PNPAgMDWblyJTExMTRv3hx/f3/uvvtujh8/zvvvv4+Pjw+VKlVi7ty5pKamEhoaylNPPUXTpk256aabWLlyJQAREREXndZECo4SOhERkavc6E718fZwByA1fh/Fr78Rbw93Rneq7zzGy8uLBQsWsGHDBsLDwxk1atQFBzZ89dVX1K1bl5iYGNq0acOAAQP473//y6ZNm/Dz8+P5559n5MiRBAcHc++99/Lnn38yduxYwLEyxbp165g6dSrPP//8eWVfaFoTKRga5SoiInKV6x7kGIAwaekOTgI+nsV4pYefczs4mmKffvppVqxYgZubG3FxcRw+fJjrr7/+ouUnJiaSkJBAu3btABg4cCC9evVy7u/du3eO43v06AHkPt1JVnl5TWsiBUM1dCIiIle57FOWXF+rHuVO/54jmQOYOXMm8fHxrF+/npiYGCpXrkxKSsoVuX7JkiVzfM6amiSvaUmypjXZsmULX3/99RWLQ/KmhE5EROQqdu6UJUkVGrDncAKPjHvVeUxkZCT79u3juuuuw8PDg/Dw8AsOdjhXmTJlKFeunLM/3Keffuqsrbscmtak8CmhExERuYqdO2WJMYYK3Z/mi0XfULduXRo1asT48eO54447iIqKIjg4mJkzZ9KgQYNLus7HH3/M6NGj8ff3JyYmhmefffayY85tWpOrkTGGUaNGOT9PnjyZ8ePHX5GyM2slGxljnJMEGmOeNMZMz2ds440x+R5SrGlLRERErmLZpyzJzgB7J3Yp7HD+Uby8vKhSpQqRkZFUrFiRyZMnk5SUdMWSOmPMLuAw0BaoCqwAgq21xy9yXjHgP0CStXZyfq6lGjoREZGrWPYpS/KzXfKvWLFiDB48mClTppy3Lz4+nnvuuYeQkBBCQkJYvXo1AH5+fiQkJGCtpUKFCs51cvv378+yZcvOLeYEcAgYAEwBxgOljTE/GmM2Zf57A4AxZoYx5nVjTDjw3+yFGGMeMsZ8a4zJ84uuhE5EXNLIkSOZOnWq83OnTp0YNGiQ8/OoUaN4/fXX813e+PHjmTw59z+EW7ZsedlxRkREsGbNmss+XyT7lCVZzp2yRC7f0KFDmTlzJomJiTm2jxgxgpEjRxIZGcm8efOc/7+0atWK1atXs3XrVurUqePsd/jzzz/TvHnz3C7xGPASUMla+ynwFvCJtdYfmAlMy3bsTcAt1lpnO7AxZhhwJ9DdWptzwd1sNG2JiLikli1b8uWXX/LYY4+RkZHBkSNHcqxRuWbNmhwJ39/xdxKyiIgIfHx8/lZSKNe27FOWHExIpmpZb0Z3qn/eKFe5PKVLl2bAgAFMmzYNb++/KsCWLVvGtm3bnJ9PnDjhXI1jxYoV1KxZk4cffpj33nuPuLg4ypcvj4+Pz3nlW2sPGmOWA4szN7UAemS+/xR4NdvhX1prs3c67A/8jiOZu+DcL6qhExGX1KpVK2eitXXrVnx9fSlVqhTHjx/nzJkz/PrrryxdupSQkBB8fX0ZPHiwc5LVadOm0bBhQ/z9/enTp4+zzG3bthEaGkqdOnWYNu2vP5qz/pOOiIggNDSUnj170qBBA/r16+cs85tvvqFBgwa0bt2a4cOH07VrV2JjY5k+fTpTpkxxzsa/b98+OnbsiL+/Px07dmT//v0AhIWFMXz4cFq2bEmdOnWYO3duoTxHcQ3dg6qxekwH9k7swuoxHZTM/Q0Lo+NoNXE5tccsITk1nYXRcTz22GN88MEHnDp1ynlcRkYGa9euJSYmhpiYGOLi4ihVqhRt27Zl5cqVrFy5ktDQUOcqGnktu5ZVXOYrN9m7SJ46Z98WoBZQ/WL3pYRORFxS1apVKVasGPv372fNmjW0aNGCZs2asXbtWqKiovD392fYsGFERkayZcsWkpOTWbzY8QfyxIkTiY6OZtOmTUyf/teAs+3bt7N06VLWrVvH888/n+tkqNHR0UydOpVt27axZ88eVq9eTUpKCv/+97/59ttvWbVqFfHx8QDUqlWLIUOGMHLkSOds/MOGDWPAgAFs2rSJfv36MXz4cGfZhw4dYtWqVSxevJgxY8YU8BMUufacOwWMtTB2/mZW7Evm3nvv5YMPPnAee9ttt/HWW285P8fExABQo0YNjhw5wq5du6hTpw6tW7dm8uTJF0voslsDZP0l2Q9YdYFjo4F/A18ZY6peqFAldCLisrJq6bISuhYtWjg/t2zZkvDwcJo1a4afnx/Lly9n69atAPj7+9OvXz8+++wzihX7q+dJly5d8PT0pGLFilx33XUcPnz4vGs2bdqU6tWr4+bmRmBgILGxsWzfvp06depQu3ZtAPr27ZtnzGvXruW+++4DHJ2oV6366//y7t274+bmRsOGDXO9toj8PedOAQOQnJrOpKU7GDVqFEeOHHFunzZtmvOPw4YNG+b4469Zs2bcdNNNALRp04a4uDhat26d3zCGAw8YYzbhaFIdcaGDrbWrgCeAJcaYinkdpz50IuJSss+Yb5IqkLjoew7u2Iyvry81atTgtddeo3Tp0jz44IMMGjSIqKgoatSowfjx452z1S9ZsoQVK1bw1Vdf8cILLzgTvazZ7yHvGfBzO+bvTP9kjMm1bFeaUkrEVRxMyDmm4IbH5zq3V65cmdOnTzv3VaxYkTlz5uRazqeffup837JlSzIy8mpNdbDWhmV7Hwt0uNAxmZ/HZ3u/FFh6oWuohk5EXMa5zSUp5evx/f+3d/+xVtd1HMefr640bnCN0SULMWgNRcZFSGGC/iFq82ZqZjQyKR2NucKlVFZkW9rmXOKag2IqJdI0qZVG6vxBiaNNyB+JgIHOMAfpRs7u9Z5wIPe+++N8Lh7gcDmMC9/vB16PzXHO93w/n/O6H/Dc9/1+vvfzeexRugcMoqmpiaFDh9LR0cHq1auZMmUKUP1QrlQqu+9J6+npYcuWLUybNo1bb72Vjo4OKpXKIeUaM2YMmzdv3r2nZe03gZaWFrq6unY/nzp1KsuWLQOqWzUdxE/1ZnaIjuYlYHyFzsyysfd0yYBhI9m1vZO3B43cfaytrY1KpUJrayuzZ8+mra2NUaNGMWnSJAC6u7uZOXMmnZ2dRARz585lyJAhh5SrubmZRYsW0d7eTmtrK5MnT9792sUXX8z06dNZvnw5CxcuZMGCBcyaNYv58+czbNgwlixZckjvbWaNu/6CU5j3wPo9PkeOliVgvFOEmWWjzCvmVyoVBg8eTEQwZ84cRo8ezdy5cwvNZGb7qr1t43AvASPp+Yg447B0vhdfoTOzbAwf0sy/O/ZdV7MM0yWLFy9m6dKl7Ny5k4kTJ3L11VcXHcnM6rh04olH5bIvvkJnZtnovYdu7+mSWy5rOyo/oM0sb75CZ2ZWh1fMNzOrzwWdmWXlaJ0uMTM7FF62xMzMzCxzLujMzMzMMueCzszMzCxzLujMzMzMMueCzszMzCxzLujMzMzMMueCzszMzCxzLujMzMzMMueCzszMzCxzLujMzMzMMueCzszMzCxzLujMzMzMMueCzszMzCxzLujMzMzMMueCzszMzCxzioiiMzRM0n+A14vO0YdW4K2iQ2TA49QYj1NjPE6N8Tg1xuPUGI9TY0ZGxLAj8UZZFXRlJ+m5iDij6Bxl53FqjMepMR6nxnicGuNxaozHqXw85WpmZmaWORd0ZmZmZplzQde/7io6QCY8To3xODXG49QYj1NjPE6N8TiVjO+hMzMzM8ucr9CZmZmZZc4FXT+SNF/SJknrJD0oaUjRmcpK0pckvSSpR5J/U6qGpHZJL0t6VdIPis5TVpLulrRN0oais5SZpJMkrZS0Mf0/d23RmcpI0kBJz0h6MY3TTUVnKjNJTZJekPRw0VmsygVd/1oBjIuI8cArwLyC85TZBuAyYFXRQcpEUhPwC+CzwFjgcklji01VWvcA7UWHyMAu4DsRcSpwJjDH/6bq2gGcGxGnAROAdklnFhup1K4FNhYdwt7ngq4fRcQTEbErPV0DjCgyT5lFxMaIeLnoHCU0GXg1IjZHxE5gGfD5gjOVUkSsAt4uOkfZRcSbEfH39LiL6jfhE4tNVT5RVUlPB6T/fJN5HZJGAJ8Dfll0FnufC7rDZxbwaNEhLDsnAltqnm/F33ytn0gaBUwE/lZwlFJK04hrgW3AiojwONV3O/A9oKfgHFbjuKID5EbSn4GP1XnphohYns65geo0x31HMlvZNDJWtg/VOearBHbIJA0G/gBcFxHvFJ2njCKiG5iQ7n9+UNK4iPA9mjUkXQRsi4jnJZ1TcByr4YLuIEXE+X29LulK4CLgvDjG14Q50FhZXVuBk2qejwDeKCiLHSUkDaBazN0XEQ8UnafsIqJD0lNU79F0Qbens4BLJF0IDASOl3RvRMwsONcxz1Ou/UhSO/B94JKI2F50HsvSs8BoSZ+U9EHgy8CfCs5kGZMk4FfAxoj4WdF5ykrSsN6VCSQ1A+cDmwoNVUIRMS8iRkTEKKqfT0+6mCsHF3T96+dAC7BC0lpJdxQdqKwkfUHSVmAK8Iikx4vOVAbpl2quAR6nevP67yLipWJTlZOk+4HVwCmStkr6etGZSuos4KvAuelzaW26umJ7+jiwUtI6qj9YrYgIL8lh2fBOEWZmZmaZ8xU6MzMzs8y5oDMzMzPLnAs6MzMzs8y5oDMzMzPLnAs6MzMzs8y5oDOzI0JSd82yGWsljZL09EH2cZ2kDx2ujGUi6VJJY4vOYWZ58LIlZnZESKpExOAGzmtKWzDVe+1fwBkR8VZ/5ysbSfcAD0fE74vOYmbl5yt0ZlYYSZX05zmSVkr6DbBe0iBJj0h6UdIGSTMkfQsYTnXx15V1+pok6enU5hlJLZIGSloiab2kFyRNS+deJemPkh6S9JqkayR9O52zRtLQdN5Tkm5P/W6QNDkdH5rar0vnj0/Hb5R0d2q3OWXuzTcz5Vor6U5JTb1jIOnmlHuNpBMkTQUuAean8z91WP8izCx7LujM7EhprplufbDO65OBGyJiLNU9NN+IiNMiYhzwWEQsoLqv7bSImFbbMG2T9lvg2og4jeq2Te8CcwAiog24HFgqaWBqNg74Snrfm4HtETGR6u4TX6vpflBETAW+Cdydjt0EvBAR44EfAr+uOX8McEHq98eSBkg6FZgBnBURE4Bu4Ire/oE1KfcqYHZEPE11y7frI2JCRPzzAGNrZse444oOYGbHjHdTMbM/z0TEa+nxeuA2ST+lOu341wP0fQrwZkQ8CxAR7wBIOhtYmI5tkvQ6cHJqszIiuoAuSZ3AQzXvPb6m7/tT+1WSjk/7fZ4NfDEdf1LSRyR9OJ3/SETsAHZI2gacAJwHnA48W91alWZgWzp/J9C7xdTzwGcO8LWame3DBZ2ZlcX/eh9ExCuSTgcuBG6R9ERE/KSPtgLq3RCsPtrsqHncU/O8hz0/G/fuN/bTb+95tf12p74ELI2IeXXavRfv38zce76Z2UHxlKuZlY6k4VSnQO8FbgM+nV7qAlrqNNkEDJc0KbVvkXQc1SnMK9Kxk4FPAC8fZJwZqf3ZQGdEdO7V7znAW71XBffjL8B0SR9NbYZKGnmA993f12pmtg//JGhmZdRG9RcCeoD3gG+k43cBj0p6s/Y+uojYKWkGsFBSM9X7584HFgF3SFoP7AKuiogdadqzUf9Ny6scD8xKx24ElkhaB2wHruyrg4j4h6QfAU9I+kD6muYAr/fRbBmwOP1ixXTfR2dmffGyJWZm+yHpKeC7EfFc0VnMzPriKVczMzOzzPkKnZmZmVnmfIXOzMzMLHMu6MzMzMwy54LOzMzMLHMu6MzMzMwy54LOzMzMLHMu6MzMzMwy93/jHVE1O47KoQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1452,24 +1706,41 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 63, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "state\n", + "Alaska 57.333333\n", + "Arizona 83.500000\n", + "California 81.416667\n", + "Colorado 90.714286\n", + "Connecticut 56.800000\n", + "Name: AdultWeekend, dtype: float64" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 8#\n", "#Calculate the average 'AdultWeekend' ticket price by state\n", - "state_avg_price = ski_data.groupby(___)[___].___\n", + "state_avg_price = ski_data.groupby('state')['AdultWeekend'].mean()\n", "state_avg_price.head()" ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 64, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZxcVZ338c83CxDokIhhWghLRDPOYKIILQqo03HUYTU+Dio8yKLjE3HcBYUZFRE3fBRmUBwQFRlciAqoGKKIDA1EREgQEkLEYSAjWQSBIaRjFAO/+eOcJjfVVd3VSd1e6n7fr1e9+i7nnvs7596uX91TVbcUEZiZWXWNG+kAzMxsZDkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTwRgm6UJJH21RXXtJ6pU0Ps/3SHpbK+rO9f1Y0omtqm8I+/2kpIcl/W64920gaaWkV7Wwvl5J+7SqPkucCEap/A+0UdJ6SY9JulnSyZKePmYRcXJEfKLJugb8Z4yI30ZER0Q82YLYz5T0zZr6D4uIf9/WuocYx57AKcC+EfGsIW47pCcwSZdI+uRQY7ShyefofSMdR7txIhjdjoqIycDewNnAacDXWr0TSRNaXecosTfwSEQ8NNKBjBZ9V3xjTRufo6NDRPgxCh/ASuBVNcsOBJ4CZuX5S4BP5ulpwALgMeBR4CZSov9G3mYj0At8CJgBBPAPwG+BGwvLJuT6eoDPALcC64AfArvkdd3AqnrxAocCTwB/zvu7s1Df2/L0OOAjwH8DDwGXAlPyur44TsyxPQx8eIB+mpK3/32u7yO5/lflNj+V47ikzrZN91ku/z3gd7k/bgSen5fPy+19Ipf/UV6+O3BFju1+4D0DtOMI4FfA48ADwJmFdT8B3lVT/k7g9Xn6r4BrcxvuAd5YKHcJcAGwENiQ+6XhvvI2J+S+fAT4KIVzMffP6cB/5fXf7Tsv8vrjC9t+mDrncU1sF+bY1wM3AHsX1gfwTuA/gfsLy56bpycB5+T9rQMWAZPyupcCN+djeyfQXaj3JOC+vM/7geNG+v99pB8jHoAfDQ5Mg38g0pPjO/L0JWxOBJ/J/1QT8+PlgOrVxeYn20uBnfI/VN+yYiJYDczKZa4AvpnXddMgEeTpM/vKFtb3sDkRvBW4F9gH6ACuBL5RE9tXclwvBP4E/HWDfrqUlKQm521/A/xDozhrtm26zwpxTwa2B/4VuKOw7uljkefHAUuAM4DtclvvA/6uQSzdwOy83QuAB4HX5XUnAD8vlN2X9AS3fT42DwBvASYA+5OS5/MLca0DDsl17zDIvvYlJbOX5bg/T0pyfcf2fcAtwB55/18GLqvZ9hV53bnAptp+rOmz9YXy5wGLCuuDlCR2YfMTfDERfIl0Xk0HxgMH53qmkxLR4bmNr87zu+b+ehx4Xq5jt76+qvLDQ0NjzxrSP0atP5NO6r0j4s8RcVPkM30AZ0bEhojY2GD9NyLirojYQHpl+MYWDS0cB5wbEfdFRC/wT8AxNZf/H4+IjRFxJ+kV3QtrK8mxvAn4p4hYHxErSa8Qj28yjiH1WURcnPfzJ1Kye6GkKQ2KvxjYNSLOiognIo1rfwU4pkHdPRGxLCKeioilwGXA3+TV3wf2k7R3nj8OuDLHcSSwMiK+HhGbIuJ2UtI+ulD9DyPi57nuPw6yr6NJVzSLIuIJUiIr9snbSVdoqwr9cHQ+dkcDCyLixrzuo6Qrq4FcXSj/YeCg/N5On89ExKO152h+r+ytwHsjYnVEPBkRN+d63gwsjIiFuY3XAotJiYEc0yxJkyJibUQsHyTGtudEMPZMJw0B1Poc6VX2TyXdJ+n0Jup6YAjr/5v0qnlaU1EObPdcX7HuCUBnYVnxUz5/IF051JpGetVaW9f0JuNous8kjZd0tqT/kvQ46YqhL4Z69gZ2z2/0PybpMeCf2bKNxfpfIul6Sb+XtA44ua/uiFgPXM3mJHIM8K3Cfl5Ss5/jgOKb41sc54H2RTo2T5ePiD+QXk0X2/X9wr5WAE/mdtVuu6Fm23qK5XtJ5/bujWIvmEa6uvmvOuv2Bt5Q0ycvA3bLMb0pt3mtpKsl/dUgMbY9J4IxRNKLSU9yi2rX5Veqp0TEPsBRwAck/W3f6gZVDnbFUHxlthfpFfTDpLHmHQtxjSdddjdb7xrSP2ux7k2kIYqheDjHVFvX6mY2HmKf/V9gLmmMfQppGApADco/QBrXnlp4TI6Iw6nv28BVwJ4RMYU0ZKXC+suAYyUdRBoyu76wnxtq9tMREe8oNnUI+1pLGvZJjZMmAc+saddhNfvbISJW5233LGy7Y8229RTLd5CudtcMEHufh4E/As+ps+4B0tVsMcadIuJsgIi4JiJeTboa/DXpSq3SnAjGAEk7SzoSmE8ae19Wp8yRkp4rSaQx0CfzA9IT7NZ89vrNkvbN/9BnAZdH+njpb4AdJB0haSLpDdrtC9s9CMwoftS1xmXA+yU9O//zfxr4TkRsGkpwOZbvAp+SNDkPnXwA+ObAWyZD7LPJpPcqHiElwU/XVFdb/lbgcUmnSZqUryhm5WRez2Tg0Yj4o6QDSYmnaCEp4Z1F6qu+IZcFwF9KOl7SxPx4saS/HqDpA+3rcuAoSQdL2g74OFsmpAtJ/b03gKRdJc0tbHukpJflbc9i8OeYwwvlPwH8MiIGu1Ilt/9i4FxJu+f+PUjS9qTjf5Skv8vLd5DULWkPSZ2SXitpJ9Lx7GXzMa8sJ4LR7UeS1pNe4XyY9ObbWxqUnQn8jHRi/wL4t4joyes+A3wkXyafOoT9f4P0ht7vSJfh7wGIiHXAPwJfJb363gCsKmz3vfz3EUm316n34lz3jaRPbfwRePcQ4ip6d97/faQrpW/n+psxlD67lDTstBq4m/SGadHXgH1z+R/kJHUUsB+pjQ+T+qvRewr/CJyVj/cZpAT3tDz2fSXpiuTbheXrgdeQhovWkI7VZ9kyMTe9rzxe/m7Si461pDdzHyI9aUJ6Q/cq0nDa+twPLyls+84c31rgf9jyvKjn28DHSENCB5CGtZp1KrAMuC1v/1lgXE4kc0lDcb8n/f98kPR8N4703ZI1eZu/yf1RaX2fkDAz6ydfsT0GzIyI+1tc9yWkT3V9pJX12tD5isDMtiDpKEk75uGTz5Neda8c2aisTE4EZlZrLmnoZA1p+OyYJj6KbGOYh4bMzCrOVwRmZhU35m7kNG3atJgxY0a/5Rs2bGCnnXYa/oBGgNvanqrUVqhWe0dDW5csWfJwROxab92YSwQzZsxg8eLF/Zb39PTQ3d09/AGNALe1PVWprVCt9o6Gtkr670brPDRkZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYVV1oiyLd+vVXSnZKWS/p4nTKS9AVJ90paKmn/suIxM7P6yvwewZ+AV0ZEb75n/SJJP46I4u17DyPdy2Qm6Va2F+S/ZmY2TEq7IoikN8/2/Th47Y2N5gKX5rK3AFMl7VZWTGZm1l+pN53LP2G4BHgu8KWIOK1m/QLg7IhYlOevA06LiMU15eYB8wA6OzsPmD9/fr999fb20tFR72dt289It3XZ6nVNlZs9vdFvsDRvpNs6nNq9rbXnTeckeHBj/3KtOG9Gm9FwbOfMmbMkIrrqrSv1FhP5V5r2kzSV9IPXsyLirkIR1dusTj0XARcBdHV1Rb2vao+Gr3APl5Fu60mnX91UuZXHdW/zvka6rcOp3dtae96cMnsT5yzr/xTUivNmtBntx3ZYPjUUEY8BPcChNatWseUPpO/Blj9cbWZmJSvzU0O75isBJE0i/dbqr2uKXQWckD899FJgXUSsLSsmMzPrr8yhod2Af8/vE4wDvhsRCySdDBARFwILgcOBe4E/0PiH2c3MrCSlJYKIWAq8qM7yCwvTAbyzrBjMzGxw/maxmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFlZYIJO0p6XpJKyQtl/TeOmW6Ja2TdEd+nFFWPGZmVt+EEuveBJwSEbdLmgwskXRtRNxdU+6miDiyxDjMzGwApV0RRMTaiLg9T68HVgDTy9qfmZltHUVE+TuRZgA3ArMi4vHC8m7gCmAVsAY4NSKW19l+HjAPoLOz84D58+f320dvby8dHR0lRD/6jHRbl61e11S52dOnbPO+Rrqtw6nd21p73nROggc39i/XivNmtBkNx3bOnDlLIqKr3rrSE4GkDuAG4FMRcWXNup2BpyKiV9LhwHkRMXOg+rq6umLx4sX9lvf09NDd3d26wEexkW7rjNOvbqrcyrOP2OZ9jXRbh1O7t7X2vDll9ibOWdZ/dLoV581oMxqOraSGiaDUTw1Jmkh6xf+t2iQAEBGPR0Rvnl4ITJQ0rcyYzMxsS2V+akjA14AVEXFugzLPyuWQdGCO55GyYjIzs/7K/NTQIcDxwDJJd+Rl/wzsBRARFwJHA++QtAnYCBwTw/GmhZmZPa20RBARiwANUuZ84PyyYjAzs8H5m8VmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnGlJQJJe0q6XtIKScslvbdOGUn6gqR7JS2VtH9Z8ZiZWX0TSqx7E3BKRNwuaTKwRNK1EXF3ocxhwMz8eAlwQf5rZmbDpLQrgohYGxG35+n1wApgek2xucClkdwCTJW0W1kxmZlZf4qI8ncizQBuBGZFxOOF5QuAsyNiUZ6/DjgtIhbXbD8PmAfQ2dl5wPz58/vto7e3l46OjgHjWLZ6XdMxz54+pemyzWh2383st7e3l/vXPdmy+oZqKP24rTonwYMb0/RoPiat0Mw5PJbV9nfx2BYNV38Pp9FwbOfMmbMkIrrqrStzaAgASR3AFcD7ikmgb3WdTfplpoi4CLgIoKurK7q7u/tt1NPTQ73lRSedfnVTMQOsPG7guoaq2X03s9+enh7OWbShZfUN1VD6cVudMnsT5yxLp+loPiat0Mw5PJbV9nfx2BYNV38Pp9F+bEv91JCkiaQk8K2IuLJOkVXAnoX5PYA1ZcZkZmZbKvNTQwK+BqyIiHMbFLsKOCF/euilwLqIWFtWTGZm1l+ZQ0OHAMcDyyTdkZf9M7AXQERcCCwEDgfuBf4AvKXEeMzMrI7SEkF+A7jeewDFMgG8s6wYzMxscP5msZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVVxTiSD/ctigy8zMbOwZ8O6jknYAdgSmSXoGm+8mujOwe8mxmZnZMBjsNtRvB95HetJfwuZE8DjwpRLjMjOzYTJgIoiI84DzJL07Ir44TDGZmdkwauqHaSLii5IOBmYUt4mIS0uKy8zMhklTiUDSN4DnAHcAT+bFATgRmJmNcc3+VGUXsG/+aUkzM2sjzX6P4C7gWWUGYmZmI6PZK4JpwN2SbgX+1LcwIl5bSlRmZjZsmk0EZ5YZhJmZjZxmPzV0Q9mBmJnZyGj2U0PrSZ8SAtgOmAhsiIidywrMzMyGR7NXBJOL85JeBxxYSkRmZjasturuoxHxA+CVA5WRdLGkhyTd1WB9t6R1ku7IjzO2JhYzM9s2zQ4Nvb4wO470vYLBvlNwCXA+A3/p7KaIOLKZGMzMrBzNfmroqML0JmAlMHegDSLiRkkztioqMzMbNirzy8I5ESyIiFl11nUDVwCrgDXAqRGxvEE984B5AJ2dnQfMnz+/X5ne3l46OjoGjGfZ6nVNxz57+pSmyzaj2X03s9/e3l7uX/fkoOWarW+ohtKP26pzEjy4MU2P5mPSCs2cw2NZbX8Xj23RcPX3cBoNx3bOnDlLIqKr3rqmEoGkPYAvAoeQhoQWAe+NiFWDbDeDxolgZ+CpiOiVdDhwXkTMHCyWrq6uWLx4cb/lPT09dHd3D7jtjNOvHqz6p608+4imyzaj2X03s9+enh5O+smGltU3VEPpx211yuxNnLMsXbiO5mPSCs2cw2NZbX8Xj23RcPX3cBoNx1ZSw0TQ7JvFXweuIv0uwXTgR3nZVouIxyOiN08vBCZKmrYtdZqZ2dA1mwh2jYivR8Sm/LgE2HVbdizpWZKUpw/MsTyyLXWamdnQNftm8cOS3gxcluePZZAnbUmXAd2kn7lcBXyM9EU0IuJC4GjgHZI2ARuBY3x3UzOz4ddsIngr6aOg/0J6j+Bm4C0DbRARxw6y/vxcp5mZjaBmE8EngBMj4n8AJO0CfJ6UIMzMbAxr9j2CF/QlAYCIeBR4UTkhmZnZcGo2EYyT9Iy+mXxF0OzVhJmZjWLNPpmfA9ws6XLSewRvBD5VWlRmZjZsmr376KWSFpNuNCfg9RFxd6mRmZnZsGh6eCc/8fvJ38yszWzVbajNzKx9OBGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVVcaYlA0sWSHpJ0V4P1kvQFSfdKWipp/7JiMTOzxsq8IrgEOHSA9YcBM/NjHnBBibGYmVkDpSWCiLgReHSAInOBSyO5BZgqabey4jEzs/oUEeVVLs0AFkTErDrrFgBnR8SiPH8dcFpELK5Tdh7pqoHOzs4D5s+f329fvb29dHR0DBjPstXrmo599vQpTZUbSp2t0jkJHtw47LsdEVVva7PnYasNx3k9XMe21X24NX3TqrZuS1vmzJmzJCK66q2bsNW1bjvVWVY3K0XERcBFAF1dXdHd3d2vTE9PD/WWF510+tVNB7fyuIHr2po6W+WU2Zs4Z9lIHrrhU/W2NnsettpwnNfDdWxb3Ydb0zetamtZ58NIfmpoFbBnYX4PYM0IxWJmVlkjmQiuAk7Inx56KbAuItaOYDxmZpVU2nWZpMuAbmCapFXAx4CJABFxIbAQOBy4F/gD8JayYjEzs8ZKSwQRcewg6wN4Z1n7NzOz5vibxWZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFVdqIpB0qKR7JN0r6fQ667slrZN0R36cUWY8ZmbW34SyKpY0HvgS8GpgFXCbpKsi4u6aojdFxJFlxWFmZgMr84rgQODeiLgvIp4A5gNzS9yfmZltBUVEORVLRwOHRsTb8vzxwEsi4l2FMt3AFaQrhjXAqRGxvE5d84B5AJ2dnQfMnz+/3/56e3vp6OgYMKZlq9c1Hf/s6VOaKjeUOlulcxI8uHHYdzsiqt7WZs/DVhuO83q4jm2r+3Br+qZVbd2WtsyZM2dJRHTVW1fa0BCgOstqs87twN4R0SvpcOAHwMx+G0VcBFwE0NXVFd3d3f0q7unpod7yopNOv7qZuAFYedzAdW1Nna1yyuxNnLOszEM3elS9rc2eh602HOf1cB3bVvfh1vRNq9pa1vlQ5tDQKmDPwvwepFf9T4uIxyOiN08vBCZKmlZiTGZmVqPMRHAbMFPSsyVtBxwDXFUsIOlZkpSnD8zxPFJiTGZmVqO067KI2CTpXcA1wHjg4ohYLunkvP5C4GjgHZI2ARuBY6KsNy3MzKyuUgfo8nDPwpplFxamzwfOLzMGMzMbmL9ZbGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYVV2oikHSopHsk3Svp9DrrJekLef1SSfuXGY+ZmfVXWiKQNB74EnAYsC9wrKR9a4odBszMj3nABWXFY2Zm9ZV5RXAgcG9E3BcRTwDzgbk1ZeYCl0ZyCzBV0m4lxmRmZjUUEeVULB0NHBoRb8vzxwMviYh3FcosAM6OiEV5/jrgtIhYXFPXPNIVA8DzgHvq7HIa8HDLGzI6ua3tqUpthWq1dzS0de+I2LXeigkl7lR1ltVmnWbKEBEXARcNuDNpcUR0NR/e2OW2tqcqtRWq1d7R3tYyh4ZWAXsW5vcA1mxFGTMzK1GZieA2YKakZ0vaDjgGuKqmzFXACfnTQy8F1kXE2hJjMjOzGqUNDUXEJknvAq4BxgMXR8RySSfn9RcCC4HDgXuBPwBv2YZdDjh01Gbc1vZUpbZCtdo7qtta2pvFZmY2NvibxWZmFedEYGZWcWM2EUgaL+lX+bsISNpF0rWS/jP/fcZIx9gKklZKWibpDkmL87J2betUSZdL+rWkFZIOauO2Pi8f077H45Le18btfb+k5ZLuknSZpB3auK3vze1cLul9edmobuuYTQTAe4EVhfnTgesiYiZwXZ5vF3MiYr/C55Dbta3nAT+JiL8CXkg6vm3Z1oi4Jx/T/YADSB+W+D5t2F5J04H3AF0RMYv04ZFjaM+2zgL+H+nOCi8EjpQ0k9He1ogYcw/S9w2uA14JLMjL7gF2y9O7AfeMdJwtautKYFrNsrZrK7AzcD/5Awzt3NY6bX8N8PN2bS8wHXgA2IX0ScUFuc3t2NY3AF8tzH8U+NBob+tYvSL4V1LnPlVY1hn5Owj571+MRGAlCOCnkpbkW21Ae7Z1H+D3wNfzkN9XJe1Ee7a11jHAZXm67dobEauBzwO/BdaSvi/0U9qwrcBdwCskPVPSjqSPx+/JKG/rmEsEko4EHoqIJSMdyzA5JCL2J92p9Z2SXjHSAZVkArA/cEFEvAjYwGi7fC5B/rLla4HvjXQsZcnj4XOBZwO7AztJevPIRlWOiFgBfBa4FvgJcCewaUSDasKYSwTAIcBrJa0k3dH0lZK+CTzYd+fS/PehkQuxdSJiTf77EGkM+UDas62rgFUR8cs8fzkpMbRjW4sOA26PiAfzfDu291XA/RHx+4j4M3AlcDDt2VYi4msRsX9EvAJ4FPhPRnlbx1wiiIh/iog9ImIG6ZL6PyLizaTbVZyYi50I/HCEQmwZSTtJmtw3TRpXvYs2bGtE/A54QNLz8qK/Be6mDdta41g2DwtBe7b3t8BLJe0oSaRju4L2bCuS/iL/3Qt4Pen4juq2julvFkvqBk6NiCMlPRP4LrAX6cR7Q0Q8OpLxbStJ+5CuAiANnXw7Ij7Vjm0FkLQf8FVgO+A+0i1HxtGGbQXIY8gPAPtExLq8rF2P7ceBN5GGSX4FvA3ooD3behPwTODPwAci4rrRflzHdCIwM7NtN+aGhszMrLWcCMzMKs6JwMys4pwIzMwqzonAzKzinAjakKSQ9I3C/ARJv++7U+swx9It6eBWldvKGC6RdPQgZU6SdH6efp2kfcuIpc5+u8s4LpJ6JPX7sfR8h9MdC/MLJU0doJ5B+65Qdqqkf9y6iLeo5yxJr9rWeqx5TgTtaQMwS9KkPP9qYPUIxdJN+hZpq8oNh9cBw5IIRsD7gKcTQUQcHhGPtajuqcA2JQJJ4yPijIj4WYtisiY4EbSvHwNH5Oktvr2av7F8saTb8g3e5ublMyTdJOn2/Dg4L+/OrzD7fivgW/kboluQ9B5Jd0taKmm+pBnAycD78z33Xy7pKEm/zPv9maTOBuV2lXRFjvE2SYfU2V+jeCXp/BzL1RRu8KX0+w7T8nSXpJ6aOg8m3fvnczmW5xTWjZd0X65/qqSnlO/9lON47gB9O17S5/LypZLeXqc9L87b7CPpAEk3KN1s8Bptvj1Bj6TPSrpV0m8kvTwvn5T7fKmk7wCT6tT/HtK9fq6XdH2d/jghb3+nCleUhe0/ka8Qxkn6YKEtH89Fzgaek/vtc3WO1a8l/Xve5nLlK5McwxmSFgFvUOEqJPfJzTmmWyVNbqYvbYhG+vanfrT+AfQCLyDdr2cH4A7SK+6+W3Z/Gnhznp4K/AbYifRKcYe8fCawOE93A+tIt/8eB/wCeFmd/a4Btu+rN/89k/Tt774yz2DzFxnfBpzToNy3+/ZB+jbmijr7axTv60k3/RpPeuJ7DDg6r1tJvq030AX05OmTgPPz9CV95evs8yfA84EjgduADwPbk+6lM1DfzgM+kpdvDywm3YStm3Rb5oOBJbmtE4GbgV1z+TcBF+fpnkKfHQ78LE9/oFDmBaRv8HbVif/p9hfnc5vuKfTNLsW+AP4/8GVApFudXJSnx+X4XwHMAO5q0G8zSHfSPSTPX9x3vHMMHyqU7dtn3zfMX5yX70z6hn3dvhzp/7ux/JiAtaWIWJpfaR8LLKxZ/RrSjftOzfM7kJ6A1gDnK93q4UngLwvb3BoRqwAk3UH6x15UU+9S4FuSfgD8oEFoewDfya9wtyP9BkE9rwL2LVx47CxpckSsL5SZ2CDeVwCXRcSTwBpJ/9FgH1vjplz/s4HPkH6E5AZSUoDGffsa4AXaPN4+hZS8ngD+mvTE+pqIWKP04yazgGtz+8eTbt/c58r8dwnpOJBj+gI8feyXDrFdrwQuj4iHcx3F2x98FPhlRMwDkPSa3J5f5fUduS2/HWQfD0TEz/P0N0k/VvP5PP+dOuWfB6yNiNtyTI8X9l+vLxudSzYIJ4L2dhXpH62bdO+TPgL+PiLuKRaWdCbwIOmXlcYBfyys/lNh+knqnztHkJ6QXgt8VNLz65T5InBuRFyldK+oMxvEPg44KCI2NuYmXIkAAAKJSURBVFgP8P4B4m1075RNbB4S3WGAuhu5iTSMtTtwBvBBUv/emNc36lsB746Ia2qWd5Oe5HcAXkRKxgKWR8RBDWLoOxa1x2Fb7hejAba/DThA0i45QQj4TER8eYsK0guPgdTWX5zfMISY6valbT2/R9DeLgbOiohlNcuvAd6dn5yQ9KK8fArpFdhTwPGkV6JNkTQO2DMirif9aNBU0ivF9cDkQtEpbH7j+sTC8tpyPwXeVah/vzq7bRTvjcAxeSx5N2BOYZuVpJ+GBPj7Bs2pjaXol6RhnKci4o+kYbe3kxIENO7ba4B3SJqYl/+l0h1lIQ1dHQF8OieGe4BdJR2Uy05skFSLbgSOy+VnkYaHhtK264A3Kt0cDUm7FNb9hDT+f7XS3XCvAd4qqSOXna50x82B+g1gr742ka5Ua68oa/0a2F3Si/N+JkuawMB9aVvBiaCNRcSqiDivzqpPkIZVlkq6K88D/BtwoqRbSMMs9V6lNTIe+KakZaQhg3+J9GmUHwH/J7+B+HLSFcD3lO7Q+HBh+9py7wG68puBd5NehddqFO/3SfeAXwZcQBq66fNx4Ly8/ycbtGU+8MH8xu1ziisi4k+kO4bekhfdRHry60u2jfr2q6Tbat+el3+Zwqv5SL9HcBTwJdKVwdHAZyXdSUo2g32i6gKgIw8JfQi4tUG5i4Af971ZXNj/cuBTwA15n+fWrP8e8BXSVeZNpPdwfpGP9+XA5Ih4BPi50g+3b/FmcbaCdLyWkn628oKBGhQRT5DeH/lijula0pXTgH1pQ+e7j5pZ6fKw0YJIP15vo4yvCMzMKs5XBGZmFecrAjOzinMiMDOrOCcCM7OKcyIwM6s4JwIzs4r7X1y4KY5KaoH6AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiiklEQVR4nO3deZxcVZ338c83CxDokIhhWghLRDPOYKIILQqo03HUYTU+Dio8yKLjE3HcBYUZFRE3fBRmUBwQFRlciAqoGKKIDA1EREgQEkLEYSAjWQSBIaRjFAO/+eOcJjfVVd3VSd1e6n7fr1e9+i7nnvs7596uX91TVbcUEZiZWXWNG+kAzMxsZDkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTwRgm6UJJH21RXXtJ6pU0Ps/3SHpbK+rO9f1Y0omtqm8I+/2kpIcl/W64920gaaWkV7Wwvl5J+7SqPkucCEap/A+0UdJ6SY9JulnSyZKePmYRcXJEfKLJugb8Z4yI30ZER0Q82YLYz5T0zZr6D4uIf9/WuocYx57AKcC+EfGsIW47pCcwSZdI+uRQY7ShyefofSMdR7txIhjdjoqIycDewNnAacDXWr0TSRNaXecosTfwSEQ8NNKBjBZ9V3xjTRufo6NDRPgxCh/ASuBVNcsOBJ4CZuX5S4BP5ulpwALgMeBR4CZSov9G3mYj0At8CJgBBPAPwG+BGwvLJuT6eoDPALcC64AfArvkdd3AqnrxAocCTwB/zvu7s1Df2/L0OOAjwH8DDwGXAlPyur44TsyxPQx8eIB+mpK3/32u7yO5/lflNj+V47ikzrZN91ku/z3gd7k/bgSen5fPy+19Ipf/UV6+O3BFju1+4D0DtOMI4FfA48ADwJmFdT8B3lVT/k7g9Xn6r4BrcxvuAd5YKHcJcAGwENiQ+6XhvvI2J+S+fAT4KIVzMffP6cB/5fXf7Tsv8vrjC9t+mDrncU1sF+bY1wM3AHsX1gfwTuA/gfsLy56bpycB5+T9rQMWAZPyupcCN+djeyfQXaj3JOC+vM/7geNG+v99pB8jHoAfDQ5Mg38g0pPjO/L0JWxOBJ/J/1QT8+PlgOrVxeYn20uBnfI/VN+yYiJYDczKZa4AvpnXddMgEeTpM/vKFtb3sDkRvBW4F9gH6ACuBL5RE9tXclwvBP4E/HWDfrqUlKQm521/A/xDozhrtm26zwpxTwa2B/4VuKOw7uljkefHAUuAM4DtclvvA/6uQSzdwOy83QuAB4HX5XUnAD8vlN2X9AS3fT42DwBvASYA+5OS5/MLca0DDsl17zDIvvYlJbOX5bg/T0pyfcf2fcAtwB55/18GLqvZ9hV53bnAptp+rOmz9YXy5wGLCuuDlCR2YfMTfDERfIl0Xk0HxgMH53qmkxLR4bmNr87zu+b+ehx4Xq5jt76+qvLDQ0NjzxrSP0atP5NO6r0j4s8RcVPkM30AZ0bEhojY2GD9NyLirojYQHpl+MYWDS0cB5wbEfdFRC/wT8AxNZf/H4+IjRFxJ+kV3QtrK8mxvAn4p4hYHxErSa8Qj28yjiH1WURcnPfzJ1Kye6GkKQ2KvxjYNSLOiognIo1rfwU4pkHdPRGxLCKeioilwGXA3+TV3wf2k7R3nj8OuDLHcSSwMiK+HhGbIuJ2UtI+ulD9DyPi57nuPw6yr6NJVzSLIuIJUiIr9snbSVdoqwr9cHQ+dkcDCyLixrzuo6Qrq4FcXSj/YeCg/N5On89ExKO152h+r+ytwHsjYnVEPBkRN+d63gwsjIiFuY3XAotJiYEc0yxJkyJibUQsHyTGtudEMPZMJw0B1Poc6VX2TyXdJ+n0Jup6YAjr/5v0qnlaU1EObPdcX7HuCUBnYVnxUz5/IF051JpGetVaW9f0JuNous8kjZd0tqT/kvQ46YqhL4Z69gZ2z2/0PybpMeCf2bKNxfpfIul6Sb+XtA44ua/uiFgPXM3mJHIM8K3Cfl5Ss5/jgOKb41sc54H2RTo2T5ePiD+QXk0X2/X9wr5WAE/mdtVuu6Fm23qK5XtJ5/bujWIvmEa6uvmvOuv2Bt5Q0ycvA3bLMb2J1Oa1kq6W9FeDxNj2nAjGEEkvJj3JLapdl1+pnhIR+wBHAR+Q9Ld9qxtUOdgVQ/GV2V6kV9APk8aadyzENZ502d1svWtI/6zFujeRhiiG4uEcU21dq5vZeIh99n+BuaQx9imkYSgANSj/AGlce2rhMTkiDqe+bwNXAXtGxBTSkJUK6y8DjpV0EGnI7PrCfm6o2U9HRLyj2NQh7GstadgnNU6aBDyzpl2H1exvh4hYnbfds7DtjjXb1lMs30G62l0zQOx9Hgb+CDynzroHSFezxRh3ioizASLimoh4Nelq8NekK7VKcyIYAyTtLOlIYD5p7H1ZnTJHSnquJJHGQJ/MD0hPsFvz2es3S9o3/0OfBVwe6eOlvwF2kHSEpImkN2i3L2z3IDCj+FHXGpcB75f07PzP/2ngOxGxaSjB5Vi+C3xK0uQ8dPIB4JsDb5kMsc8mk96reISUBD9dU11t+VuBxyWdJmlSvqKYlZN5PZOBRyPij5IOJCWeooWkhHcWqa/6hlwWAH8p6XhJE/PjxZL+eoCmD7Svy4GjJB0saTvg42yZkC4k9ffeAJJ2lTS3sO2Rkl6Wtz2LwZ9jDi+U/wTwy4gY7EqV3P6LgXMl7Z779yBJ25OO/1GS/i4v30FSt6Q9JHVKeq2knUjHs5fNx7yynAhGtx9JWk96hfNh0ptvb2lQdibwM9KJ/Qvg3yKiJ6/7DPCRfJl86hD2/w3SG3q/I12GvwcgItYB/wh8lfTqewOwqrDd9/LfRyTdXqfei3PdN5I+tfFH4N1DiKvo3Xn/95GulL6d62/GUPrsUtKw02rgbtIbpkVfA/bN5X+Qk9RRwH6kNj5M6q9G7yn8I3BWPt5nkBLc0/LY95WkK5JvF5avB15DGi5aQzpWn2XLxNz0vvJ4+btJLzrWkt7MfYj0pAnpDd2rSMNp63M/vKSw7TtzfGuB/2HL86KebwMfIw0JHUAa1mrWqcAy4La8/WeBcTmRzCUNxf2e9P/zQdLz3TjSd0vW5G3+JvdHpfV9QsLMrJ98xfYYMDMi7m9x3ZeQPtX1kVbWa0PnKwIz24KkoyTtmIdPPk961b1yZKOyMjkRmFmtuaShkzWk4bNjmvgoso1hHhoyM6s4XxGYmVXcmLuR07Rp02LGjBn9lm/YsIGddtpp+AMaAW5re6pSW6Fa7R0NbV2yZMnDEbFrvXVjLhHMmDGDxYsX91ve09NDd3f38Ac0AtzW9lSltkK12jsa2irpvxut89CQmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVXGmJIN/69VZJd0paLunjdcpI0hck3StpqaT9y4rHzMzqK/N7BH8CXhkRvfme9Ysk/TgiirfvPYx0L5OZpFvZXpD/mpnZMCntiiCS3jzb9+PgtTc2mgtcmsveAkyVtFtZMZmZWX+l3nQu/4ThEuC5wJci4rSa9QuAsyNiUZ6/DjgtIhbXlJsHzAPo7Ow8YP78+f321dvbS0dHvZ+1bT8j3dZlq9c1VW729Ea/wdK8kW7rcGr3ttaeN52T4MGN/cu14rwZbUbDsZ0zZ86SiOiqt67UW0zkX2naT9JU0g9ez4qIuwpFVG+zOvVcBFwE0NXVFfW+qj0avsI9XEa6rSedfnVT5VYe173N+xrptg6ndm9r7XlzyuxNnLOs/1NQK86b0Wa0H9th+dRQRDwG9ACH1qxaxZY/kL4HW/5wtZmZlazMTw3tmq8EkDSJ9Furv64pdhVwQv700EuBdRGxtqyYzMysvzKHhnYD/j2/TzAO+G5ELJB0MkBEXAgsBA4H7gX+QOMfZjczs5KUlggiYinwojrLLyxMB/DOsmIwM7PB+ZvFZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYVV1oikLSnpOslrZC0XNJ765TplrRO0h35cUZZ8ZiZWX0TSqx7E3BKRNwuaTKwRNK1EXF3TbmbIuLIEuMwM7MBlHZFEBFrI+L2PL0eWAFML2t/Zma2dRQR5e9EmgHcCMyKiMcLy7uBK4BVwBrg1IhYXmf7ecA8gM7OzgPmz5/fbx+9vb10dHSUEP3oM9JtXbZ6XVPlZk+fss37Gum2Dqd2b2vtedM5CR7c2L9cK86b0WY0HNs5c+YsiYiueutKTwSSOoAbgE9FxJU163YGnoqIXkmHA+dFxMyB6uvq6orFixf3W97T00N3d3frAh/FRrqtM06/uqlyK88+Ypv3NdJtHU7t3tba8+aU2Zs4Z1n/0elWnDejzWg4tpIaJoJSPzUkaSLpFf+3apMAQEQ8HhG9eXohMFHStDJjMjOzLZX5qSEBXwNWRMS5Dco8K5dD0oE5nkfKisnMzPor81NDhwDHA8sk3ZGX/TOwF0BEXAgcDbxD0iZgI3BMDMebFmZm9rTSEkFELAI0SJnzgfPLisHMzAbnbxabmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcWVlggk7SnpekkrJC2X9N46ZSTpC5LulbRU0v5lxWNmZvVNKLHuTcApEXG7pMnAEknXRsTdhTKHATPz4yXABfmvmZkNk9KuCCJibUTcnqfXAyuA6TXF5gKXRnILMFXSbmXFZGZm/Skiyt+JNAO4EZgVEY8Xli8Azo6IRXn+OuC0iFhcs/08YB5AZ2fnAfPnz++3j97eXjo6OgaMY9nqdU3HPHv6lKbLNqPZfTez397eXu5f92TL6huqofTjtuqcBA9uTNOj+Zi0QjPn8FhW29/FY1s0XP09nEbDsZ0zZ86SiOiqt67MoSEAJHUAVwDvKyaBvtV1NumXmSLiIuAigK6uruju7u63UU9PD/WWF510+tVNxQyw8riB6xqqZvfdzH57eno4Z9GGltU3VEPpx211yuxNnLMsnaaj+Zi0QjPn8FhW29/FY1s0XP09nEb7sS31U0OSJpKSwLci4so6RVYBexbm9wDWlBmTmZltqcxPDQn4GrAiIs5tUOwq4IT86aGXAusiYm1ZMZmZWX9lDg0dAhwPLJN0R172z8BeABFxIbAQOBy4F/gD8JYS4zEzszpKSwT5DeB67wEUywTwzrJiMDOzwfmbxWZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFNJYL8y2GDLjMzs7FnwLuPStoB2BGYJukZbL6b6M7A7iXHZmZmw2Cw21C/HXgf6Ul/CZsTwePAl8oLy8zMhsuAiSAizgPOk/TuiPjiMMVkZmbDqKkfpomIL0o6GJhR3CYiLi0pLjMzGyZNJQJJ3wCeA9wBPJkXB+BEYGY2xjX7U5VdwL75pyXNzKyNNPs9gruAZ5UZiJmZjYxmrwimAXdLuhX4U9/CiHhtKVGZmdmwaTYRnFlmEGZmNnKa/dTQDWUHYmZmI6PZTw2tJ31KCGA7YCKwISJ2LiswMzMbHs1eEUwuzkt6HXBgGQGZmdnw2qq7j0bED4BXDlRG0sWSHpJ0V4P13ZLWSbojP87YmljMzGzbNDs09PrC7DjS9woG+07BJcD5DPyls5si4shmYjAzs3I0+6mhowrTm4CVwNyBNoiIGyXN2LqwzMxsuKjMLwvnRLAgImbVWdcNXAGsAtYAp0bE8gb1zAPmAXR2dh4wf/78fmV6e3vp6OgYMJ5lq9c1Hfvs6VOaLtuMZvfdzH57e3u5f92Tg5Zrtr6hGko/bqvOSfDgxjQ9mo9JKzRzDo9ltf1dPLZFw9Xfw2k0HNs5c+YsiYiueuuaSgSS9gC+CBxCGhJaBLw3IlYNst0MGieCnYGnIqJX0uHAeRExc7BYurq6YvHixf2W9/T00N3dPeC2M06/erDqn7by7COaLtuMZvfdzH57eno46ScbWlbfUA2lH7fVKbM3cc6ydOE6mo9JKzRzDo9ltf1dPLZFw9Xfw2k0HFtJDRNBs28Wfx24ivS7BNOBH+VlWy0iHo+I3jy9EJgoadq21GlmZkPXbCLYNSK+HhGb8uMSYNdt2bGkZ0lSnj4wx/LIttRpZmZD1+ybxQ9LejNwWZ4/lkGetCVdBnSTfuZyFfAx0hfRiIgLgaOBd0jaBGwEjvHdTc3Mhl+zieCtpI+C/gvpPYKbgbcMtEFEHDvI+vNznWZmNoKaTQSfAE6MiP8BkLQL8HlSgjAzszGs2fcIXtCXBAAi4lHgReWEZGZmw6nZRDBO0jP6ZvIVQbNXE2ZmNoo1+2R+DnCzpMtJ7xG8EfhUaVGZmdmwafbuo5dKWky60ZyA10fE3aVGZmZmw6Lp4Z38xO8nfzOzNrNVt6E2M7P24URgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxTgRmZhXnRGBmVnFOBGZmFedEYGZWcU4EZmYV50RgZlZxpSUCSRdLekjSXQ3WS9IXJN0raamk/cuKxczMGivziuAS4NAB1h8GzMyPecAFJcZiZmYNlJYIIuJG4NEBiswFLo3kFmCqpN3KisfMzOpTRJRXuTQDWBARs+qsWwCcHRGL8vx1wGkRsbhO2XmkqwY6OzsPmD9/fr999fb20tHRMWA8y1avazr22dOnNFVuKHW2SuckeHDjsO92RFS9rc2eh602HOf1cB3bVvfh1vRNq9q6LW2ZM2fOkojoqrduwlbXuu1UZ1ndrBQRFwEXAXR1dUV3d3e/Mj09PdRbXnTS6Vc3HdzK4waua2vqbJVTZm/inGUjeeiGT9Xb2ux52GrDcV4P17FtdR9uTd+0qq1lnQ8j+amhVcCehfk9gDUjFIuZWWWNZCK4Cjghf3ropcC6iFg7gvGYmVVSaddlki4DuoFpklYBHwMmAkTEhcBC4HDgXuAPwFvKisXMzBorLRFExLGDrA/gnWXt38zMmuNvFpuZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVVypiUDSoZLukXSvpNPrrO+WtE7SHflxRpnxmJlZfxPKqljSeOBLwKuBVcBtkq6KiLtrit4UEUeWFYeZmQ2szCuCA4F7I+K+iHgCmA/MLXF/Zma2FRQR5VQsHQ0cGhFvy/PHAy+JiHcVynQDV5CuGNYAp0bE8jp1zQPmAXR2dh4wf/78fvvr7e2lo6NjwJiWrV7XdPyzp09pqtxQ6myVzknw4MZh3+2IqHpbmz0PW204zuvhOrat7sOt6ZtWtXVb2jJnzpwlEdFVb11pQ0OA6iyrzTq3A3tHRK+kw4EfADP7bRRxEXARQFdXV3R3d/eruKenh3rLi046/eomwk5WHjdwXVtTZ6ucMnsT5ywr89CNHlVva7PnYasNx3k9XMe21X24NX3TqraWdT6UOTS0CtizML8H6VX/0yLi8YjozdMLgYmSppUYk5mZ1SgzEdwGzJT0bEnbAccAVxULSHqWJOXpA3M8j5QYk5mZ1SjtuiwiNkl6F3ANMB64OCKWSzo5r78QOBp4h6RNwEbgmCjrTQszM6ur1AG6PNyzsGbZhYXp84Hzy4zBzMwG5m8Wm5lVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFORGYmVWcE4GZWcU5EZiZVZwTgZlZxTkRmJlVnBOBmVnFlZoIJB0q6R5J90o6vc56SfpCXr9U0v5lxmNmZv2VlggkjQe+BBwG7AscK2nfmmKHATPzYx5wQVnxmJlZfWVeERwI3BsR90XEE8B8YG5NmbnApZHcAkyVtFuJMZmZWQ1FRDkVS0cDh0bE2/L88cBLIuJdhTILgLMjYlGevw44LSIW19Q1j3TFAPA84J46u5wGPNzyhoxObmt7qlJboVrtHQ1t3Tsidq23YkKJO1WdZbVZp5kyRMRFwEUD7kxaHBFdzYc3drmt7alKbYVqtXe0t7XMoaFVwJ6F+T2ANVtRxszMSlRmIrgNmCnp2ZK2A44BrqopcxVwQv700EuBdRGxtsSYzMysRmlDQxGxSdK7gGuA8cDFEbFc0sl5/YXAQuBw4F7gD8BbtmGXAw4dtRm3tT1Vqa1QrfaO6raW9maxmZmNDf5msZlZxTkRmJlV3JhNBJLGS/pV/i4CknaRdK2k/8x/nzHSMbaCpJWSlkm6Q9LivKxd2zpV0uWSfi1phaSD2ritz8vHtO/xuKT3tXF73y9puaS7JF0maYc2but7czuXS3pfXjaq2zpmEwHwXmBFYf504LqImAlcl+fbxZyI2K/wOeR2bet5wE8i4q+AF5KOb1u2NSLuycd0P+AA0oclvk8btlfSdOA9QFdEzCJ9eOQY2rOts4D/R7qzwguBIyXNZLS3NSLG3IP0fYPrgFcCC/Kye4Dd8vRuwD0jHWeL2roSmFazrO3aCuwM3E/+AEM7t7VO218D/Lxd2wtMBx4AdiF9UnFBbnM7tvUNwFcL8x8FPjTa2zpWrwj+ldS5TxWWdUb+DkL++xcjEFcZAvippCX5VhvQnm3dB/g98PU85PdVSTvRnm2tdQxwWZ5uu/ZGxGrg88BvgbWk7wv9lDZsK3AX8ApJz5S0I+nj8Xsyyts65hKBpCOBhyJiyUjHMkwOiYj9SXdqfaekV4x0QCWZAOwPXBARLwI2MNoun0uQv2z5WuB7Ix1LWfJ4+Fzg2cDuwE6S3jyyUZUjIlYAnwWuBX4C3AlsGtGgmjDmEgFwCPBaSStJdzR9paRvAg/23bk0/31o5EJsnYhYk/8+RBpDPpD2bOsqYFVE/DLPX05KDO3Y1qLDgNsj4sE8347tfRVwf0T8PiL+DFwJHEx7tpWI+FpE7B8RrwAeBf6TUd7WMZcIIuKfImKPiJhBuqT+j4h4M+l2FSfmYicCPxyhEFtG0k6SJvdNk8ZV76IN2xoRvwMekPS8vOhvgbtpw7bWOJbNw0LQnu39LfBSSTtKEunYrqA924qkv8h/9wJeTzq+o7qtY/qbxZK6gVMj4khJzwS+C+xFOvHeEBGPjmB420zSPqSrAEhDJ9+OiE+1Y1sBJO0HfBXYDriPdMuRcbRhWwHyGPIDwD4RsS4va9dj+3HgTaRhkl8BbwM6aM+23gQ8E/gz8IGIuG60H9cxnQjMzGzbjbmhITMzay0nAjOzinMiMDOrOCcCM7OKcyIwM6s4J4I2JCkkfaMwP0HS7/vu1DrMsXRLOrhV5bYyhkskHT1ImZMknZ+nXydp3zJiqbPf7jKOi6QeSf1+LD3f4XTHwvxCSVMHqGfQviuUnSrpH7cq4C3rOUvSq7a1HmueE0F72gDMkjQpz78aWD1CsXSTvkXaqnLD4XXAsCSCEfA+4OlEEBGHR8RjLap7KrBNiUDS+Ig4IyJ+1pqQrBlOBO3rx8AReXqLb6/mbyxfLOm2fIO3uXn5DEk3Sbo9Pw7Oy7vzK8y+3wr4Vv6G6BYkvUfS3ZKWSpovaQZwMvB+pXvuv1zSUZJ+mff7M0mdDcrtKumKHONtkg6ps79G8UrS+TmWqync4Evp9x2m5ekuST01dR5MuvfP53IszymsGy/pvlz/VElPKd/7Kcfx3AH6drykz+XlSyW9vU57Xpy32UfSAZJuULrZ4DXafHuCHkmflXSrpN9IenlePin3+VJJ3wEm1an/PaR7/Vwv6fo6/XFC3v5OFa4oC9t/Il8hjJP0wUJbPp6LnA08J/fb5+ocq19L+ve8zeXKVyY5hjMkLQLeoMJVSO6Tm3NMt0qa3Exf2hCN9O1P/Wj9A+gFXkC6X88OwB2kV9x9t+z+NPDmPD0V+A2wE+mV4g55+UxgcZ7uBtaRbv89DvgF8LI6+10DbN9Xb/57Junb331lnsHmLzK+DTinQblv9+2D9G3MFXX21yje15Nu+jWe9MT3GHB0XreSfFtvoAvoydMnAefn6Uv6ytfZ50+A5wNHArcBHwa2J91LZ6C+nQd8JC/fHlhMuglbN+m2zAcDS3JbJwI3A7vm8m8CLs7TPYU+Oxz4WZ7+QKHMC0jf4O2qE//T7S/O5zbdU+ibXYp9Afx/4MuASLc6uShPj8vxvwKYAdzVoN9mkO6ke0iev7jveOcYPlQo27fPvm+Yvzgv35n0Dfu6fTnS/3dj+TEBa0sRsTS/0j4WWFiz+jWkG/edmud3ID0BrQHOV7rVw5PAXxa2uTUiVgFIuoP0j72opt6lwLck/QD4QYPQ9gC+k1/hbkf6DYJ6XgXsW7jw2FnS5IhYXygzsUG8rwAui4gngTWS/qPBPrbGTbn+ZwOfIf0IyQ2kpACN+/Y1wAu0ebx9Cil5PQH8NemJ9TURsUbpx01mAdfm9o8n3b65z5X57xLScSDH9AV4+tgvHWK7XglcHhEP5zqKtz/4KPDLiJgHIOk1uT2/yus7clt+O8g+HoiIn+fpb5J+rObzef47dco/D1gbEbflmB4v7L9eXzY6l2wQTgTt7SrSP1o36d4nfQT8fUTcUyws6UzgQdIvK40D/lhY/afC9JPUP3eOID0hvRb4qKTn1ynzReDciLhK6V5RZzaIfRxwUERsbLAe4P0DxNvo3imb2DwkusMAdTdyE2kYa3fgDOCDpP69Ma9v1LcC3h0R19Qs7yY9ye8AvIiUjAUsj4iDGsTQdyxqj8O23C9GA2x/G3CApF1yghDwmYj48hYVpBceA6mtvzi/YQgx1e1L23p+j6C9XQycFRHLapZfA7w7Pzkh6UV5+RTSK7CngONJr0SbImkcsGdEXE/60aCppFeK64HJhaJT2PzG9YmF5bXlfgq8q1D/fnV22yjeG4Fj8ljybsCcwjYrST8NCfD3DZpTG0vRL0nDOE9FxB9Jw25vJyUIaNy31wDvkDQxL/9LpTvKQhq6OgL4dE4M9wC7Sjool53YIKkW3Qgcl8vPIg0PDaVt1wFvVLo5GpJ2Kaz7CWn8/2qlu+FeA7xVUkcuO13pjpsD9RvAXn1tIl2p1l5R1vo1sLukF+f9TJY0gYH70raCE0Ebi4hVEXFenVWfIA2rLJV0V54H+DfgREm3kIZZ6r1Ka2Q88E1Jy0hDBv8S6dMoPwL+T34D8eWkK4DvKd2h8eHC9rXl3gN05TcD7ya9Cq/VKN7vk+4Bvwy4gDR00+fjwHl5/082aMt84INKb9w+p7giIv5EumPoLXnRTaQnv75k26hvv0q6rfbtefmXKbyaj/R7BEcBXyJdGRwNfFbSnaRkM9gnqi4AOvKQ0IeAWxuUuwj4cd+bxYX9Lwc+BdyQ93luzfrvAV8hXWXeRHoP5xf5eF8OTI6IR4CfK/1w+xZvFmcrSMdrKelnKy8YqEER8QTp/ZEv5piuJV05DdiXNnS++6iZlS4PGy2I9OP1Nsr4isDMrOJ8RWBmVnG+IjAzqzgnAjOzinMiMDOrOCcCM7OKcyIwM6u4/wVcuCmOdQXJ5QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1503,16 +1774,91 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 66, "metadata": {}, - "outputs": [], - "source": [ - "#Code task 9#\n", - "#Create a dataframe containing the values of the first two PCA components\n", - "#Remember the first component was given by state_pca_x[:, 0],\n", + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PC1PC2
state
Alaska-1.336533-0.182208
Arizona-1.839049-0.387959
California3.537857-1.282509
Colorado4.402210-0.898855
Connecticut-0.9880271.020218
\n", + "
" + ], + "text/plain": [ + " PC1 PC2\n", + "state \n", + "Alaska -1.336533 -0.182208\n", + "Arizona -1.839049 -0.387959\n", + "California 3.537857 -1.282509\n", + "Colorado 4.402210 -0.898855\n", + "Connecticut -0.988027 1.020218" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Code task 9#\n", + "#Create a dataframe containing the values of the first two PCA components\n", + "#Remember the first component was given by state_pca_x[:, 0],\n", "#and the second by state_pca_x[:, 1]\n", "#Call these 'PC1' and 'PC2', respectively and set the dataframe index to `state_summary_index`\n", - "pca_df = pd.DataFrame({'PC1': ___, 'PC2': ___}, index=__)\n", + "pca_df = pd.DataFrame({'PC1': state_pca_x[:,0], 'PC2': state_pca_x[:,1]}, index=state_summary_index)\n", "pca_df.head()" ] }, @@ -1525,7 +1871,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 67, "metadata": {}, "outputs": [ { @@ -1540,7 +1886,7 @@ "Name: AdultWeekend, dtype: float64" ] }, - "execution_count": 34, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } @@ -1552,7 +1898,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 68, "metadata": {}, "outputs": [ { @@ -1618,7 +1964,7 @@ "Connecticut 56.800000" ] }, - "execution_count": 35, + "execution_count": 68, "metadata": {}, "output_type": "execute_result" } @@ -1637,14 +1983,96 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 70, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PC1PC2AdultWeekend
state
Alaska-1.336533-0.18220857.333333
Arizona-1.839049-0.38795983.500000
California3.537857-1.28250981.416667
Colorado4.402210-0.89885590.714286
Connecticut-0.9880271.02021856.800000
\n", + "
" + ], + "text/plain": [ + " PC1 PC2 AdultWeekend\n", + "state \n", + "Alaska -1.336533 -0.182208 57.333333\n", + "Arizona -1.839049 -0.387959 83.500000\n", + "California 3.537857 -1.282509 81.416667\n", + "Colorado 4.402210 -0.898855 90.714286\n", + "Connecticut -0.988027 1.020218 56.800000" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 10#\n", "#Use pd.concat to concatenate `pca_df` and `state_avg_price` along axis 1\n", "# remember, pd.concat will align on index\n", - "pca_df = ___([___, ___], axis=___)\n", + "pca_df = pd.concat([pca_df, state_avg_price], axis=1)\n", "pca_df.head()" ] }, @@ -1657,7 +2085,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 71, "metadata": {}, "outputs": [ { @@ -1686,6 +2114,13 @@ " AdultWeekend\n", " Quartile\n", " \n", + " \n", + " state\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1729,6 +2164,7 @@ ], "text/plain": [ " PC1 PC2 AdultWeekend Quartile\n", + "state \n", "Alaska -1.336533 -0.182208 57.333333 (53.1, 60.4]\n", "Arizona -1.839049 -0.387959 83.500000 (78.4, 93.0]\n", "California 3.537857 -1.282509 81.416667 (78.4, 93.0]\n", @@ -1736,7 +2172,7 @@ "Connecticut -0.988027 1.020218 56.800000 (53.1, 60.4]" ] }, - "execution_count": 37, + "execution_count": 71, "metadata": {}, "output_type": "execute_result" } @@ -1748,7 +2184,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 72, "metadata": {}, "outputs": [ { @@ -1761,7 +2197,7 @@ "dtype: object" ] }, - "execution_count": 38, + "execution_count": 72, "metadata": {}, "output_type": "execute_result" } @@ -1781,7 +2217,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 73, "metadata": {}, "outputs": [ { @@ -1810,6 +2246,13 @@ " AdultWeekend\n", " Quartile\n", " \n", + " \n", + " state\n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", @@ -1825,10 +2268,11 @@ ], "text/plain": [ " PC1 PC2 AdultWeekend Quartile\n", + "state \n", "Rhode Island -1.843646 0.761339 NaN NaN" ] }, - "execution_count": 39, + "execution_count": 73, "metadata": {}, "output_type": "execute_result" } @@ -1853,20 +2297,20 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 74, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "PC1 -1.84365\n", - "PC2 0.761339\n", - "AdultWeekend 64.1244\n", - "Quartile NA\n", + "PC1 -1.843646\n", + "PC2 0.761339\n", + "AdultWeekend 64.124388\n", + "Quartile NA\n", "Name: Rhode Island, dtype: object" ] }, - "execution_count": 40, + "execution_count": 74, "metadata": {}, "output_type": "execute_result" } @@ -1896,12 +2340,12 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 75, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHwCAYAAAAvoPKcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxU1f3/8dcnCwQIO4hA0AguZUkIEARkSQIF1CoqoIjKokWr1aIUUKlfUbtpK4Kl/KxWsaBFUEGFalutRZBVCRIBgbIZIYhIkC1AgCTn98edjAlJYBJIJmPez8djHs4999xzPnMzMR/Ouedec84hIiIiIqErLNgBiIiIiMjZUUInIiIiEuKU0ImIiIiEOCV0IiIiIiFOCZ2IiIhIiFNCJyIiIhLilNBJSDKzkWa2tIR9t5rZBxUdk0goMbOeZva/YMdR3sws1sycmUUEULfczomZzTCz35ZH2yKghE4qMTPrYWbLzeygmX1nZsvMrPOZjnPOzXLO9StDf4vMbFQp6j9uZn8vbT9SVIE/ulm+V7qZPVxgv5nZaDNbb2ZHzCzDzN40s7hT2nnc187lpez/iwJ9Z5lZjpn9w7ev5yn7snx9DCqhrUlmtsXMDpvZJjMbXmBfXTN738wOmNksMwsvsO9FM7uhNHGfDefcEufcZRXVXyjQOZFQpoROKiUzqwO8C/wZaAA0B54AjgczLglMIKMhJajnnIsGhgITzexKX/mfgPuB0Xjfh0uBd4CfFOjTgGHAd8CI0nTqnGvrnIv29V0b2AG86du3JH+fb/81QBbw7xKaOwJcC9T1xfEnM7vCt+9nwBqgCRAL3OCLvRvQ1Dn3dmniLquz+PmISCWlhE4qq0sBnHOznXO5zrljzrkPnHNri6tsZk+b2VLfCMjppmOjzOzvZrbPN0qyysyamNnvgJ7ANN8IzDRf/T+Z2U4zO2Rmq82sp6/8SuBXwBBf/c995XXNbLqZ7TazXWb22/xRGDO72MwW+0YcM83s9dLE6NuXbmY/LlDXP0pYYJTrdl/M+83sbjPrbGZrfW1NK3DsSN+o5xTfvu1mdoWvfKeZfWtmIwrU/4mZrfGdi51m9niBffl9/9TMdgALzew9M/vFKZ9trZldX/yP/HvOuRXAF0A7M7sEuBcY6pxb6Jw77pw76huJfarAYT2BZniJ381mVu1M/ZSgF3AeMK+E/SOAuc65IyXE/phzbpNzLs859wmwBOjm230R8JFz7rivvKXv+zHFF3eJzOxhM5t7StmfzGyq7/3tZrbRNzK43cx+VqBesnmjmg+Z2TfA3/LLTml/m+/4DQVHC/N/p3yjj/vN7Eszu6rA/gZm9jcz+9q3/50C+64xszTfd2y5mcWf5jP+yMz+Y96I/P/M7CZfeStfWUffdjPf71Cyb3uRmT1pZp/6fr/mm1mDEvo443kqsJ1uZuN839uDZva6mUUF8tnMrIOZfebr53XAf5xIuXDO6aVXpXsBdYB9wEzgKqD+KftHAkvx/lHyIvA+ULPgvhLa/RnwD6AmEA50Aur49i0CRp1S/zagIRABjAW+AaJ8+x4H/n5K/XeAF4BaeEnBp8DPfPtmA4/4Yo4CepQhxnTgxwXq+mPAG/FxwPO+9vsB2b6YzsMb5fwWSCpwnnKA2339/BZvZOr/AdV9xx8Gon31k4E4X/zxwB7g+lP6fsX32WsANwGfFIi1ve9nWq2Yz5x/fARgQHfgKNAHuBv4KoDvzHTgDSDS18/AMn73XgZmlLCvpu+cJAfYVg1gN3Clb/te4Glf+TK8EcYxwGMBtHWh75zkfxfCfW139W3/BGjlO39JvrodC/zscoA/+H62NXxlGQXavxEvIQ4DhuCNNDYt8F05Cdzp6/ce4GvAfPvfA14H6vvOf/53rKPvO9fFd9wIvO9w9WI+Xy1gp+/7GOE7NhNo69t/J7DR9zN4H5hU4NhFwC6gna+deRT9vYgI8DwVPCfpeL/DzfBGhjcCd5/pswHVgK98P9tIYLDv/P22vP/fqVfVfQU9AL30KukFtAZmABm+P0YLgCa+fSOBT3x/ROZRIEng9AndHcByIL6YfYs4JaErps5+oL3v/eMUSOjwptGOAzUKlA3FG5EBL9n5KxBzhj5OF2M6Z07omhfYvw8YUmB7HvBAgfO0pcC+ON/xTU45PqGEOJ8FppzSd8sC+6vjTX9e4tueBDxXQlv5xx/wneONwGjfvkeAlWc4ZzWBQ3yfYL4AzC/Ddy6/neQS9g8DvsSXyATQ3ky8qdn8xCfK9x1YCzwFxACf4U3P/gX4mNP80cf7R8xw3/u+wLbT1H0HuN/3Phk4ge8fIwXKMk5zfBpwXYHvytZTzpMDzgeaAnmc8o8uX72/AL85pex/+BK+U8qHAEtOKXuBAsku3v8D1vnOX/UC5YuApwpst/F93nBOSegCOE+nJnS3Fdj+I/D8mT4b3iivP+H17Vt+up+tXnqd7UtTrlJpOec2OudGOudi8P7l3Qwvich3MXAd8IRz7kSAzb6K96/7Ob7poT+aWWRJlc1srG965qCZHcD7w9uohOoX4v1rfLdvCuYA3h+k83z7H8QbFfjUvIvw7zgXMRZjT4H3x4rZjj5NXZxzxdY3sy5m9pGZ7TWzg3gjZ6eei535b5w3rfgGcJuZheElt6+eIfZGzrn6zrnWzrmpvrJ9eEnD6dyAl/T/07c9C7jKzBqf4bhTDcRLQheXsH8E8Ipzzp2pITN7Gu97e1N+fedctnPuLudcvHPuYbyp1l8Bt+IlH0lAF/v+2sFTvYZ3HgFu8W3n93eVma30TU0eAK6m8M9nr3Mu+zTxDi8wfXjAF3vB47/Jf+OcO+p7Gw20AL5zzu0vptkLgbH5bfrabYH3u1xc3S6n1L0VL2nM96Ivrj/7vl8F7Szw/iu838Uiv6sBnKdTfVPg/VG+//053WdrBuw65Xvy1Wn6EDlrSugkJDjnNuGN1rUrULwRb3rmX2YW0Mo059xJ59wTzrk2wBV4F7jnr0Is9EfavOvlHsKbOqzvnKsHHMRLyorUx/uDchwvKanne9VxzrX19f2Nc+5O51wzvGnV58zs4lLGeARvdCTf+aceX45ewxshaeGcq4s3tWun1Dn1nMzE+6PcBzjqvGvjSuu/QIyZJZ6mzgi8P7Q7fNeIvYn3B33oaY4pqZ1iEzYza4E3gvPKmRoxsyfwLhXo55w7VEKdK/FGcP6NNzqa6us3FW9KuzhvAslmFoOXxL7ma6s63ujrJLwR1np4yW3Bn0+JSaiZXYiXLN0HNPQdv56iP9/i7AQamFm9Evb9rsDvQz3nXE3n3OwS6i4+pW60c+4eX4zReP+gmw48Xsw1ci0KvL8Ab4oz85TPGch5CtTpPttuoLmZFWz3gjL0IRIwJXRSKfkujh7r+8OV/8d0KLCyYD3f/zx/BXxoZq0CaDfFzOLMuxD9EN7/9HN9u/cALQtUr4036rMXiDCziXjX9lGgfqxv9Ann3G7gA+AZM6tjZmG+i7mTfH3fmP958KYVXYG+A40xDe+C/0hfgjP4TJ/5HKqNNxKTbd5tQW450wG+BC4PeIYzj86V1MYW4Dlgtu+i9WrmLRy52bwL+ZvjJYzXAAm+V3u868VGQKFFG7El9eP72aTgJaHFGQYsd85tO128ZjYB79z0dc7tK6FOFN6U6xhf0Zd4iVo1vOsHtxd3nHNuL9704t+AL51zG327quFNce8FcsxbsFCaW/fUwvs+7vXFdzuF//FUIt/3/l94/0Cp7/tu9vLtfhG42ze6a2ZWy7zFNbWLaepd4FIzG+ZrI9K8BT2tffv/BKx2zo3Cu2bv+VOOv83M2phZTeDXeAtXTv39OtvzVNDpPtsKvP93jDazCDMbCJTqVjoipaWETiqrw3gXG39iZkfwErn1eAsTCnHOzcT7H/jC0/3B9jkfmIuXKG3Em1rLv5fcn4DB5q3Sm4o37fkvYDPedEk2had13vT9d5+ZfeZ7Pxzvj8YGvKRtLt9PF3b2fZ4svJGu+51zX5YyxkfxLujej3cbl9eKOb68/Bz4tZkdBibiTacG4hW8EaizuWffaGAa3oKNA8A2vBGqf+AlWmnOWwX9Tf4LmArEm1k7vNGbr/AunC/JMGDFaRK24RST7Jl3I+svChT9Hm80Zot9f9+6X51y2K+AWc65/O/TC3jTfnvxrhk93e1LXgN+TIGfvXPuMN45egPvu3EL3ncsIM65DXhJ9wq8f6jE4S3aCNQwvH94bMJbKPCAr91UvMUM03xxbcW7Hq+4GA7jJVc3411/9g2+RRxmdh1wJd40P8AvgY5mdmuBJl7FG8X/Bu9axdEl9FHm83RKWyV+Nt8lIAN92/vxrg98qyz9iAQq/0JdEZFyYd6Nde9yzvUIYgz/h3cN2QvBikHKj5ktwlsc9FKwYxEJFt1cUkTKjW/66+d4U6ZB45zTI5dE5AdNU64iUi7MrD/eFOIeKnZqWESkytGUq4iIiEiI0widiIiISIhTQiciIiIS4kJqUUSjRo1cbGxssMMQEREROaPVq1dnOudK+8SaMgmphC42NpbU1NRghyEiIiJyRmZWYY9805SriIiISIhTQiciIiIS4pTQiYiIiIS4kLqGTkREREp28uRJMjIyyM7ODnYoVUpUVBQxMTFERkYGLQYldCIiIj8QGRkZ1K5dm9jYWMws2OFUCc459u3bR0ZGBhdddFHQ4tCUq4iIyA9EdnY2DRs2VDJXgcyMhg0bBn1UNKgjdGaWDhwGcoEc51xiMOMREREJdUrmKl5lOOeVYco1xTmXGewgREREREKVplxFRESqqNw8x+LNe3llRTqLN+8lN8+ddZvHjh0jKSmJ3Nxcf9mhQ4do3rw59913n79s2rRpXHzxxZgZmZklj+vs2LGDfv360bp1a9q0aUN6evpp+58xYwaNGzcmISGBhIQEXnrpJQC++uorOnXqREJCAm3btuX5558v9viPP/6Yjh07EhERwdy5c/3l27ZtIyEhgejo6EBOQ4UL9gidAz4wMwe84Jz7a5DjERERqRK2783ilpc+4XD2SXJyHRHhRu2oSF4b1YWWjcuetLz88ssMHDiQ8PBwf9mjjz5KUlJSoXrdu3fnmmuuITk5+bTtDR8+nEceeYS+ffuSlZVFWNiZx6KGDBnCtGnTCpU1bdqU5cuXU716dbKysmjXrh0DBgygWbNmhepdcMEFzJgxg0mTJhUqb9WqFWlpaZU2oQv2CF1351xH4CrgXjPrdWoFM7vLzFLNLHXv3r0VH6GIiARVcnIy77//fqGyZ599lp///OdBiuj7GI4ePRrUGMoqN89xy0ufsOdgNkeO53I8J48jx3PZcyibW1/65KxG6mbNmsV1113n3169ejV79uyhX79+hep16NCBMz2ffcOGDeTk5NC3b18AoqOjqVmzZpniqlatGtWrVwfg+PHj5OXlFVsvNjaW+Pj4gBLHyiSo0Trnvvb991vgbeDyYur81TmX6JxLbNy4Qp5vKyIilcjQoUOZM2dOobI5c+YwdOjQMx5bcNrvXAvlhG7p1kwOZ5/k1LTNOTiUfZKlW8t2afuJEyfYvn27P1HLy8tj7NixPP3002Vqb/PmzdSrV4+BAwfSoUMHxo8fH9DPdN68ecTHxzN48GB27tzpL9+5cyfx8fG0aNGChx56qMjoXCgLWkJnZrXMrHb+e6AfsD5Y8YiISOXhcnI4vHAhmc8/T+/sbN6dP5/jx48DkJ6eztdff83Ro0fp1q0bHTt25MYbbyQrKwvwRlh+/etf06NHD958801iY2P51a9+Rbdu3UhMTOSzzz6jf//+tGrVyn8dlXOO8ePH065dO+Li4nj99dcBWLRoEcnJyQwePJgf/ehH3HrrrTjnmDp1Kl9//TUpKSmkpKQE5ySdha/2HSEnt/hRuNxcx459R8rUbmZmJvXq1fNvP/fcc1x99dW0aNGiTO3l5OSwZMkSJk2axKpVq9i+fTszZsw47THXXnst6enprF27lh//+MeMGDHCv69FixasXbuWrVu3MnPmTPbs2VOmuCqjYI7QNQGWmtnnwKfAe865fwcxHhERqQSyFi9mS4+efD3+QfZO/TM5L75Em5xcZvbuzck9e5gzZw59+vThd7/7HR9++CGfffYZiYmJTJ482d9GVFQUS5cu5eabbwa8P+QrVqygZ8+ejBw5krlz57Jy5UomTpwIwFtvvUVaWhqff/45H374IePHj2f37t0ArFmzhmeffZYNGzawfft2li1bxujRo2nWrBkfffQRH330UcWfpLN0YcNaRIQXf6uN8HDjgoa1ytRujRo1Ct2PbcWKFUybNo3Y2FjGjRvHK6+8wsMPPxxwezExMXTo0IGWLVsSERHB9ddfz2effXbaYxo2bOifWr3zzjtZvXp1kTrNmjWjbdu2LFmyJOBYKrugLYpwzm0H2gerfxERqXyOLF9Oxv0P4ArepDUvj6tr1WL++vWk3DSEOd/tY+CNN/KPf/yD7t27A95UX7du3fyHDBkypFC7AwYMACAuLo6srCxq165N7dq1iYqK4sCBAyxdupShQ4cSHh5OkyZNSEpKYtWqVdSpU4fLL7+cmJgYABISEkhPT6dHjx7lfCbKV4+LG1E7KpKjJ3JxBQbqzKBOVCQ9Lm5Upnbr169Pbm4u2dnZREVFMWvWLP++GTNmkJqaylNPPRVwe507d2b//v3s3buXxo0bs3DhQhITvVvWTpgwgcsvv5wbbrih0DG7d++madOmACxYsIDWrVsD3lM0GjZsSI0aNdi/fz/Lli3jl7/8ZZk+Z2UUWlf8iYjID5Zzjt2PPV44mfPpU7s2K48cYe3XX5P17bd06NCBvn37kpaWRlpaGhs2bGD69On++rVqFR5hyh+xCQsL87/P387JycG5khcBFKwfHh5OTk5OmT9jZREeZrw2qgtN6kRRq3o4URFh1Koezvl1opg1qgvhYWW/UW6/fv1YunTpGetNnTqVmJgYMjIyiI+PZ9SoUQCkpqb634eHhzNp0iT69OlDXFwczjnuvPNOANatW8f5559fbLtt27alffv2TJ061T9Fu3HjRrp06UL79u1JSkpi3LhxxMXFATBx4kQWLFgAwKpVq4iJieHNN9/kZz/7GW3bti3zuahIwb5tiYiICADZ678gZ9++YvfVCgujc82aPLJzB1c1bkzXrl2599572bp1KxdffDFHjx4lIyODSy+9tEx99+rVixdeeIERI0bw3Xff8fHHH/P000+zadOmEo+pXbs2hw8fplGjso1mBVvLxtEse6g3S7dmsmPfES5oWIseFzc6q2QO4L777mPy5Mn8+Mc/LlQ+cuRIRo4c6d8ePXo0o0ePLnJ8YmKi/95xAH379mXt2rVF6p08ebLQqGy+J598kieffLJIeUntAPz617/2v+/cuTMZGRnF1qvMNEInIiKVwsmMnd6cXwl+UrsO/zt+nCsjImnUoAEzZsxg6NChxMfH07Vr19MmX2dyww03EB8fT/v27enduzd//OMfix39Keiuu+7iqquuCslFEfnCw4ykSxszrFssSZc2PutkDrzbkaSkpJTrCmOgyK1sylv+jYWbNGlSof0Gyk43zFzZJCYmutTU1GCHISIi5SBr8WJ2jR1Hnm+1aokiI/nR2s8rxfMzK5uNGzf6rxmTilXcuTez1RX1nHqN0ImISKVQ8/LLcWca1QkLo3ZKipI5kVMooRMRkUohrEYN6t96KxYVVWIdq1aNhnfdVYFRiYQGJXQiIlJpnPfA/dTq2ROrUaPwjogILCqKpr/5NTXahcaqQ5GKpFWuIiJSaVhEBDFT/8SR5cv57uW/kf2//2GRkdTu04cGw26j2oUXBjtEkUpJI3QiIlKpmBnR3btzwfSXuHTpEi75aCHn/98jSubONedg+yKYdRNMS/T+u33RWTd77NgxkpKS/Ktcw8PDSUhIICEhwX+DZ4Cf/vSntG/f3v/M1awSFsNceeWV1KtXj2uuuSbgGN544w3atGlD27ZtueWWW/zlM2fO5JJLLuGSSy5h5syZp21j7ty5mBn5izHzV7lGR0cHHEdF0gidiIhIVeMc/OtBWPN3OHnUK8vcAulLoMMwuPqPZW765ZdfZuDAgYSHhwPe48DS0tKK1JsyZQp16tQB4Je//CXTpk0r9rFg48eP5+jRo7zwwgsB9b9lyxaefPJJli1bRv369fn2228B+O6773jiiSdITU3FzOjUqRMDBgygfv36Rdo4fPgwU6dOpUuXLv6yVq1akZaWVmkTOo3QiYiIVDVfLi6czOU7eRTWvHpWI3WzZs3iuuuuO2O9/GTOOcexY8dKXLncp08fateuHXD/L774Ivfee68/UTvvvPMA7751ffv2pUGDBtSvX5++ffvy738X/wj5Rx99lAcffJCo0yzQqWyU0ImIiFQ1K54rmszlO3nU218GJ06cYPv27cTGxvrLsrOzSUxMpGvXrrzzzjuF6t9+++2cf/75bNq0iV/84hdl6vNUmzdvZvPmzXTv3p2uXbv6k7Zdu3bRokULf72YmBh27dpV5Pg1a9awc+fOUk3xVgaachUREalq9m8/w/4vy9RsZmYm9erVK1S2Y8cOmjVrxvbt2+nduzdxcXG0atUKgL/97W/k5ubyi1/8gtdff53bb7+9TP0WlJOTw5YtW1i0aBEZGRn07NmT9evXF/u83lNHBfPy8hgzZoz/+a+hRCN0IiIiVU39lqff3+CiMjVbo0YNsrOzC5U1a9YMgJYtW5KcnMyaNWsK7Q8PD2fIkCHMmzevTH2eKiYmhuuuu47IyEguuugiLrvsMrZs2UJMTAw7d+7018vIyPDHlu/w4cOsX7+e5ORkYmNjWblyJQMGDCAUnlKlhE5ERKSq6fZziKxZ/L7ImtD152Vqtn79+uTm5vqTuv3793P8+HHAG71btmwZbdq0wTnH1q1bAe8aun/84x/86Ec/KlVfEyZM4O233y5Sfv311/PRRx/5+9y8eTMtW7akf//+fPDBB+zfv5/9+/fzwQcf0L9//0LH1q1bl8zMTNLT00lPT6dr164sWLCAxMQKeXrXWVFCJyIiUtVclOStZj01qYusCR2HQcvkMjfdr18/li5dCnjPN01MTKR9+/akpKTw8MMP+xO6ESNGEBcXR1xcHLt372bixIkApKamMmrUKH97PXv25MYbb+S///0vMTExvP/++wCsW7eO888/v0j//fv3p2HDhrRp04aUlBSefvppGjZsSIMGDXj00Ufp3LkznTt3ZuLEiTRo0ACAiRMnsmDBgjJ/5srAiptTrqwSExNdKAx7ioiIBENxD4g/re2LvAUQ+7+E+hd5I3ctk88qhjVr1jB58mReffXVs2rnTPr37+9P7ipSdHR0sffMK+7cm9lq51yFDO9pUYSIiEhV1TL5rBO4U3Xo0IGUlBRyc3P996IrDxWdzG3bto1BgwbRpEmTCu03UEroRERE5Jy64447gh3COZd/Y+HKStfQiYiIiIQ4JXQiIiIiIU4JnYiIiEiIU0InIiJShWWdyGLn4Z1knSi6clNChxI6ERGRKijjcAajF44m6fUkBi8YTNLrSdy/8H4yDmecVbvHjh0jKSmJ3NxcwHv0V79+/WjdujVt2rQhPT0dgC+//JIuXbpwySWXMGTIEE6cOFFim4cOHaJ58+bcd999Z+x/zJgxJCQkkJCQwKWXXlroUWQPPvggbdu2pXXr1owePbrYx4Hlmzt3Lmbmf0rEtm3bSEhIIDo6OpDTUOGU0ImIiFQxGYczGPLuEBZnLOZE3gmO5hzlRN4JFmUsYsi7Q84qqXv55ZcZOHCg/5Ylw4cPZ/z48WzcuJFPP/2U8847D4CHHnqIMWPGsGXLFurXr8/06dNLbPPRRx8lKSkpoP6nTJlCWloaaWlp/OIXv2DgwIEALF++nGXLlrF27VrWr1/PqlWrWLx4cbFtHD58mKlTp9KlSxd/mVa5ioiISKXyx1V/JOtkFnkur1B5nssj62QWk1InlbntWbNmcd111wGwYcMGcnJy6Nu3L+DdlLdmzZo451i4cCGDBw8GYMSIEbzzzjvFtrd69Wr27NlDv379Sh3L7NmzGTp0KABmRnZ2NidOnOD48eOcPHmyxHvKPfroozz44INERUWVus9gUUInIiJShWSdyGLZrmVFkrl8eS6PJRlLynRN3YkTJ9i+fTuxsbEAbN68mXr16jFw4EA6dOjA+PHjyc3NZd++fdSrV4+ICO92uDExMezatatoLHl5jB07lqeffrrUsXz11Vd8+eWX9O7dG4Bu3bqRkpJC06ZNadq0Kf379y/2qRpr1qxh586dXHPNNaXuM5iU0ImIiFQh+4/vJyLs9M8VCA8LZ//x/aVuOzMzs9A1azk5OSxZsoRJkyaxatUqtm/fzowZM4q9ds3MipQ999xzXH311bRo0aLUscyZM4fBgwf7p363bt3Kxo0bycjIYNeuXSxcuJCPP/640DF5eXmMGTOGZ555ptT9BZsSOhERkSqkfvX65OTlnLZObl4u9avXL3XbNWrUIDs7278dExNDhw4daNmyJREREVx//fV89tlnNGrUiAMHDpCT48WRkZFBs2bNirS3YsUKpk2bRmxsLOPGjeOVV17h4YcfDiiWOXPm+KdbAd5++226du1KdHQ00dHRXHXVVaxcubLQMYcPH2b9+vUkJycTGxvLypUrGTBgAKHwHHkldCIiIlVIdLVoejTvQZgVnwKEWRg9Y3oSXa30qznr169Pbm6uP6nr3Lkz+/fvZ+/evQAsXLiQNm3aYGakpKQwd+5cAGbOnOm/7q6gWbNmsWPHDtLT05k0aRLDhw/nqaeeAmDChAm8/fbbxcbxv//9j/3799OtWzd/2QUXXMDixYvJycnh5MmTLF68uMiUa926dcnMzCQ9PZ309HS6du3KggULSExMLPW5qGhK6ERERKqY8Z3HEx0ZXSSpC7MwakfWZlziuDK33a9fP5YuXQpAeHg4kyZNok+fPsTFxeGc48477wTgD3/4A5MnT+biiy9m3759/PSnPwUgNTWVUaNGnbGfdevWcf755xe7b/bs2dx8882FpnEHDx5Mq1atiIuLo3379rRv355rr70WgIkTJ6NcNkgAACAASURBVLJgwYIyf+bKwE53D5bKJjEx0YXCsKeIiEgwbNy4sdgL/YuTcTiDp1c9zdJdSwkPCyc3L5eeMT0ZlziOmNoxZY5hzZo1TJ48mVdffbXMbQSif//+vP/+++XaR3Gio6PJyiq6YKS4c29mq51zFTK8d/qrIkVEROQHKaZ2DH/q/SeyTmSx//h+6levX6Zp1lN16NCBlJQUcnNz/QsSykNFJ3Pbtm1j0KBBJd7qJNiU0ImIiFRh0dWiz0kiV9Add9xxTturDHRjYREREREpV0roREREREKcEjoRERGREKdr6ERERKqo7M2bOTjvLU7u3k1k06bUHTSQqEsvDXZYUgYaoRMREali8rKz2Xn3PaTfNITv/v53Dn/wAd/9/e+k3zSEnXffQ16Bpz2U1rFjx0hKSiI3N5ePPvqIhIQE/ysqKop33nkHgP/+97907NiRhIQEevTowdatW0ts89ChQzRv3pz77rvvjP1/9dVX9OnTh/j4eJKTk8nIyPCXd+rUiYSEBNq2bcvzzz9f7PHHjx9nyJAhXHzxxXTp0oX09HTAW+WakJBAdPS5XUByriihExERqWJ2PTCGIytW4LKzITfXK8zNxWVnc2TFCnaNGVPmtl9++WUGDhxIeHg4KSkppKWlkZaWxsKFC6lZsyb9+vUD4J577mHWrFmkpaVxyy238Nvf/rbENh999FGSkpIC6n/cuHEMHz6ctWvXMnHiRCZMmABA06ZNWb58OWlpaXzyySc89dRTfP3110WOnz59OvXr12fr1q2MGTOGhx56CNAqVxEREalEsjdv5sjKlbjjx4vd744f58iKlRzfsqVM7c+aNavYx3jNnTuXq666ipo1awJgZhw6dAiAgwcPFvssV4DVq1ezZ88efyJ4Jhs2bKBPnz4ApKSkMH/+fACqVatG9erVAW8ULi8vr9jj58+fz4gRIwDv6RL//e9/CYWHMCihExERqUIOznsLd/Lkaeu4kyc5MG9eqds+ceIE27dvJzY2tsi+OXPmMHToUP/2Sy+9xNVXX01MTAyvvvoqDz/8cJFj8vLyGDt2LE8//XTAMbRv3555vtjffvttDh8+zL59+wDYuXMn8fHxtGjRgoceeqjYJHLXrl20aNECgIiICOrWres/vjJTQiciIlKFnNy9+/tp1pLk5nJy9zelbjszM5N69eoVKd+9ezfr1q2jf//+/rIpU6bwz3/+k4yMDG6//XZ++ctfFjnuueee4+qrr/YnWIGYNGkSixcvpkOHDixevJjmzZsTEeGtAW3RogVr165l69atzJw5kz179hQ5vrjRuILPhK2stMpVRESkCols2hTCw0+f1IWHe/VKqUaNGmQXs6DijTfe4IYbbiAyMhKAvXv38vnnn9OlSxcAhgwZwpVXXlnkuBUrVrBkyRKee+45srKyOHHiBNHR0Tz11FMlxtCsWTPeeustALKyspg3bx5169YtUqdt27YsWbKEwYMHF9oXExPDzp07iYmJIScnh4MHD9KgQYPSnYgg0AidiIhIFVJ30EDMl1iVxCIjqTdoYKnbrl+/Prm5uUWSutmzZxeabq1fvz4HDx5k8+bNAPznP/8p8mB78K7H27FjB+np6UyaNInhw4f7k7kJEybw9ttvFzkmMzPTf33ck08+6X8MWUZGBseOHQNg//79LFu2jMsuu6zI8QMGDGDmzJmAd91f7969Q2KETgmdiIhIFRJ16aXU6toV8y0QOJVVr06tbl2pfsklZWq/X79+LF261L+dnp7Ozp07C61SjYiI4MUXX2TQoEG0b9+eV1991X+dXGpqKqNGjTpjP+vWreP8888vUr5o0SIuu+wyLr30Uvbs2cMjjzwCwMaNG+nSpQvt27cnKSmJcePGERcXB8DEiRNZsGABAD/96U/Zt28fF198MZMnTz7taGBlYqGwciNfYmKiS01NDXYYIiIildLGjRuLHek6VV52NrvGjOHIipXeAoncXAgPxyIjqdWtK82nTCEsKqpMMaxZs4bJkyfz6quvlun4QPXv35/333+/XPsoTnR0NFlZWUXKizv3ZrbaOZdYEXHpGjoREZEqJiwqihZ/+cv3T4r45hsimzal3qCBZR6Zy9ehQwdSUlLIzc0lPDz8HEVcVEUnc9u2bWPQoEE0adKkQvsNlBI6ERGRKirq0kuJmlD0diFnK/+6tR8S3VhYRERERMqVEjoRERGREKeETkRERCTEKaETERGp4s7lHS/MjLFjx/q3J02axOOPP16oTvv27Qvdl07OnhZFiIiIVEEnsnNY8/4O1n+8i+wjJ4mqFUm7Xs3p0P8CqkWVPT2oXr06b731FhMmTKBRo0ZF9m/cuJG8vDw+/vhjjhw5Qq1atc7mY4hP0EfozCzczNaY2bvBjkVERKQqOJGdw9w/pLLmPzvIPnISgOwjJ1nznx3M/UMqJ7Jzytx2REQEd911F1OmTCl2/2uvvcawYcPo16+f/2a+cvaCntAB9wMbgx2EiIhIVbHm/R0c2ptNbk5eofLcnDwO7c1mzQc7zqr9e++9l1mzZnHw4MEi+15//XWGDBnC0KFDmT179ln1I98LakJnZjHAT4CXghmHiIhIVbL+411Fkrl8uTl5rF+866zar1OnDsOHD2fq1KmFyletWkXjxo258MIL6dOnD5999hn79+8/q77EE+wRumeBB4Hiv1WAmd1lZqlmlrp3796Ki0xEROQHyDnnn2YtSfaRk2e9UOKBBx5g+vTpHDlyxF82e/ZsNm3aRGxsLK1ateLQoUPMmzfvrPoRT9ASOjO7BvjWObf6dPWcc391ziU65xIbN25cQdGJiIj8MJkZUbUiT1snqlYkZnZW/TRo0ICbbrqJ6dOnA5CXl8ebb77J2rVrSU9PJz09nfnz52va9RwJ5ghdd2CAmaUDc4DeZvb3IMYjIiJSJbTr1ZzwiOJTgPCIMNolNT8n/YwdO5bMzEwAPv74Y5o3b07z5t+33atXLzZs2MDu3bvPSX9VWdBuW+KcmwBMADCzZGCcc+62YMUjIiJSVXTofwHb0r4tsjAiPCKMOo2j6NDvgjK3nZWV5X/fpEkTjh496t9euXJlobrh4eFK5s6RYF9DJyIiIhWsWlQEgx9KpEO/C/zTr1G1IunQ7wIGP5R4Vvehk+CoFD8x59wiYFGQwxAREakyqkVF0GVAS7oMaIlz7qyvmZPg0gidiIhIFadkLvQpoRMREfkBOZfPZZXAVIZzroRORETkByIqKop9+/ZVigSjqnDOsW/fPqKiooIaR6W4hk5ERETOXkxMDBkZGehG/BUrKiqKmJiYoMaghE5EROQHIjIykosuuijYYUgQaMpVREREJMQpoRMREREJcUroREREREKcEjoRERGREKeETkRERCTEKaETERERCXFK6ERERERCnBI6ERERkRCnhE5EREQkxCmhExEREQlxSuhEREREQpwSOhEREZEQp4ROREREJMQpoRMREREJcUroREREREKcEjoRERGREKeETkRERCTEKaETERERCXFK6ERERERCnBI6ERERkRCnhE5EREQkxCmhExEREQlxSuhEREREQpwSOhEREZEQp4ROREQCZmaMHTvWvz1p0iQef/zxc9Z+eno67dq1K1T2+OOPM2nSpHPWR6BO1+8VV1xRwdGInJ4SOhERCVj16tV56623yMzMDHYoQbV8+fIiZbm5uUGIRMSjhE5ERAIWERHBXXfdxZQpU4rs27t3L4MGDaJz58507tyZZcuWARAXF8eBAwdwztGwYUNeeeUVAIYNG8aHH35Yqv5ffPFFOnfuTPv27Rk0aBBHjx4FYOTIkdxzzz2kpKTQsmVLFi9ezB133EHr1q0ZOXKk//jo6GjGjh1Lx44d6dOnD3v37gVg6tSptGnThvj4eG6++WZ//Q0bNpCcnEzLli2ZOnVqoXYAFi1aREpKCrfccgtxcXHk5uYyfvx4OnfuTHx8PC+88EKpPp9IWSmhExGREi3/ejl3/PsOOr3aiU6vduJ47nEuH3Q5s2bN4uDBg4Xq3n///YwZM4ZVq1Yxb948Ro0aBUD37t1ZtmwZX3zxBS1btmTJkiUArFy5kq5duxbpc9u2bSQkJPhfzz//vH/fwIEDWbVqFZ9//jmtW7dm+vTp/n379+9n4cKFTJkyhWuvvZYxY8bwxRdfsG7dOtLS0gA4cuQIHTt25LPPPiMpKYknnngCgKeeeoo1a9awdu3aQv1t2rSJ999/n08//ZQnnniCkydPFon3008/5Xe/+x0bNmxg+vTp1K1bl1WrVrFq1SpefPFFvvzyy7KefpGARQQ7ABERqZyeS3uOGV/M4FjOMX9Znsvj4U8fpl3/dkydOpUaNWr493344Yds2LDBv33o0CEOHz5Mz549+fjjj7nwwgu55557+Otf/8quXbto0KCBf6SroFatWvkTMKDQNXrr16/n//7v/zhw4ABZWVn079/fv+/aa6/FzIiLi6NJkybExcUB0LZtW9LT00lISCAsLIwhQ4YAcNtttzFw4EAA4uPjufXWW7n++uu5/vrr/W3+5Cc/oXr16lSvXp3zzjuPPXv2EBMTUyjeyy+/nIsuugiADz74gLVr1zJ37lwADh48yJYtW/z7RcqLRuhERKSItG/T+Nv6vxVK5vJl52azq8Munn/xeY4cOeIvz8vLY8WKFaSlpZGWlsauXbuoXbs2vXr1YsmSJSxZsoTk5GQaN27M3Llz6dmzZ6njGjlyJNOmTWPdunU89thjZGdn+/dVr14dgLCwMP/7/O2cnJxi2zMzAN577z3uvfdeVq9eTadOnfz1C7YTHh5ebDu1atXyv3fO8ec//9l/Dr788kv69etX6s8pUlpK6EREpIiX17/M8dzjJe7Pq5FHsyuaFZry7NevH9OmTfNv54+ytWjRgszMTLZs2ULLli3p0aMHkyZNKlNCd/jwYZo2bcrJkyeZNWtWqY/Py8vzj5699tpr9OjRg7y8PHbu3ElKSgp//OMf/aN/ZdG/f3/+8pe/+KdmN2/eXCjpFSkvmnIVEZEi1u5di8OVuD+PPKL6RJG54PvVrlOnTuXee+8lPj6enJwcevXq5b8erUuXLv5VoD179mTChAn06NGj1HH95je/oUuXLlx44YXExcVx+PDhUh1fq1YtvvjiCzp16kTdunV5/fXXyc3N5bbbbuPgwYM45xgzZgz16tUrdWwAo0aNIj09nY4dO+Kco3HjxrzzzjtlakukNMy5kn9hK5vExESXmpoa7DBERH7w+rzZh2+PfnvaOk1rNeWDwR9UUETnRnR0dJlH30RKy8xWO+cSK6IvTbmKiEgRyTHJRFjJkziRYZH0vqB3BUYkIqejhE5ERIoY3nY4EWElJ3ThFs6trW+twIjODY3OyQ+VEjoRESniwjoX8nTS00SFR1EtrJq/vHp4daLCo3gm+Rla1G4RxAhFpCAtihARkWIlt0jmvYHv8cb/3mDJLu9mwEnNk7jpRzfRqEajIEcnIgVpUYSIiIhIOdCiCBEREREJmBI6ERERkRCnhE5EREQkxCmhExEREQlxSuhEREREQpwSOhEREZEQp4ROREREJMQpoRMREREJcUroREREREKcEjoRERGREBe0hM7MoszsUzP73My+MLMnghWLiIiISCiLCGLfx4HezrksM4sElprZv5xzK4MYk4iIiEjICVpC55xzQJZvM9L3csGKR0RERCRUBfUaOjMLN7M04FvgP865T4IZj4iIiEgoCmpC55zLdc4lADHA5WbW7tQ6ZnaXmaWaWerevXsrPkgRERGRSq5SrHJ1zh0AFgFXFrPvr865ROdcYuPGjSs8NhEREZHKLpirXBubWT3f+xrAj4FNwYpHREREJFQFc5VrU2CmmYXjJZZvOOfeDWI8IiIiIiEpmKtc1wIdgtW/iIiIyA9FpbiGTkRERETKTgmdiIiISIhTQiciIiIS4pTQiYiIiIQ4JXQiIiIiIU4JnYiIiEiIU0InIiIiEuKU0ImIiIiEOCV0IiIiIiFOCZ2IiIhIiFNCJyIiIhLilNCJiIiIhDgldCIiIiIhTgmdiIiISIhTQiciIiIS4pTQiYiIiIQ4JXQiIiIiIU4JnYiIiEiIU0InIiIiEuKU0ImIiIiEOCV0IiIiIiFOCZ2IiIhIiFNCJyIiIhLilNCJiIiIhDgldCIiIiIhTgmdiIiISIhTQiciIiIS4pTQiYiIiIQ4JXQiIiIiIe6MCZ2Z/SGQMhEREREJjkBG6PoWU3bVuQ5ERERERMomoqQdZnYP8HOgpZmtLbCrNrCsvAMTERERkcCUmNABrwH/Ap4EHi5Qftg59125RiUiIiIiASsxoXPOHQQOAkPNLBxo4qsfbWbRzrkdFRSjiIiIiJzG6UboADCz+4DHgT1Anq/YAfHlF5aIiIiIBOqMCR3wAHCZc25feQcjIiIiIqUXyCrXnXhTryIiIiJSCQUyQrcdWGRm7wHH8wudc5PLLSoRERERCVggCd0O36ua7yUiIiIilcgZEzrn3BMAZlbLOXek/EMSERERkdII5NFf3cxsA7DRt93ezJ4r98hEREREJCCBLIp4FugP7ANwzn0O9CrPoEREREQkcIEkdDjndp5SlFsOsYiIiIhIGQSyKGKnmV0BODOrBozGN/0qIiIiIsEXyAjd3cC9QHMgA0jwbYuIiIhIJRDIKtdM4NYKiEVEREREyiCQZ7k2Bu4EYgvWd87dUX5hiYiIiEigArmGbj6wBPgQLYYQERERqXQCSehqOuceKvdIRERERKRMAlkU8a6ZXV3ukYiIiIhImQSS0N2Pl9Rlm9lh3+tQeQcmIiIiIoEJZJVr7YoIRERERETKJpBr6DCzAXz/uK9Fzrl3yy8kERERESmNM065mtlTeNOuG3yv+31lIiIiIlIJBDJCdzWQ4JzLAzCzmcAa4OGz6djMWgCvAOcDecBfnXN/Ops2RURERKqiQBZFANQr8L7uOeo7BxjrnGsNdAXuNbM256htERERkSojkBG6J4E1ZvYRYHjX0k04246dc7uB3b73h81sI97zYjecbdsiIiIiVUkgq1xnm9kioLOv6CHn3DfnMggziwU6AJ8Us+8u4C6ACy644Fx2KyIiIvKDEOiUazcgGUjyvT9nzCwamAc84Jwrcn8759xfnXOJzrnExo0bn8uuRURERH4QAlnl+hxwN7AOWA/8zMz+37no3Mwi8ZK5Wc65t85FmyIiIiJVTSDX0CUB7ZxzDvyrXNedbcdmZsB0YKNzbvLZticiIiJSVQUy5fo/oODFay2Ateeg7+7AMKC3maX5XnpmrIiIiEgpBTJC1xDYaGaf+rY7AyvMbAGAc25AWTp2zi3FWzUrIiIiImchkIRuYrlHISIiIiJlFshtSxYDmFmdgvWdc9+VY1wiIiIiEqAzJnS++8D9BjiG94guAxzQsnxDExEREZFABDLlOh5o65zLLO9gRERERKT0Alnlug04Wt6BiIiIiEjZBDJCNwFYbmafAMfzC51zo8stKhEREREJWCAJ3QvAQrybCeeVbzgiIiIiUlqBJHQ5zrlflnskIiIiIlImgVxD95GZ3WVmTc2sQf6r3CMTERERkYAEMkJ3i++/EwqU6bYlIiIiIpVEIDcWvqgiAhERERGRsgnkxsKRwD1AL1/RIuAF59zJcoxLRERERAIUyJTrX4BI4Dnf9jBf2ajyCkpEREREAhdIQtfZOde+wPZCM/u8vAISERERkdIJZJVrrpm1yt8ws5ZAbvmFJCIiIiKlEeizXD8ys+2AARcCt5drVCIiIiISsEBWuf7XzC4BLsNL6DY5546f4TARERERqSBnnHI1s3uBGs65tc65z4GaZvbz8g9NRERERAIRyDV0dzrnDuRvOOf2A3eWX0giIiIiUhqBJHRhZmb5G2YWDlQrv5BEREREpDQCWRTxPvCGmT2P98ivu4F/l2tUIiIiIhKwQBK6h4C78J4WYcAHwEvlGZSIiIiIBC6QVa55wPO+l4iIiIhUMoFcQyciIiIilZgSOhEREZEQp4ROREREJMSVeA2dmf0Db1VrsZxzA8olIhEREREpldON0E0CngG+BI4BL/peWcD68g9NJHSMGTOGZ5991r/dv39/Ro0a5d8eO3YskydPLpe+R40axYYNG8qlbRERCQ0lJnTOucXOucVAB+fcEOfcP3yvW4AeFReiSOV3xRVXsHz5cgDy8vLIzMzkiy++8O9fvnw53bt3L5e+X3rpJdq0aVMubYuISGgI5Bq6xmbWMn/DzC4CGpdfSCKhp3v37v6E7osvvqBdu3bUrl2b/fv3c/z4cTZu3MgDDzxAWlpaoWPWrl3Ld999x/XXX098fDxdu3Zl7dq1ADz++OOMGDGCfv36ERsby1tvvcWDDz5IXFwcV155JSdPngQgOTmZ1NRUAKKjo3nkkUdo3749Xbt2Zc+ePQBs27aNrl270rlzZyZOnEh0dHRFnh4RESlngSR0Y4BFZrbIzBYBHwEPlGtUIqEgIxXeugum96VZ6pNEmGPHjh0sX76cbt260aVLF1asWEFqairx8fHcfffdzJgxA4DNmzdz/Phx4uPjeeyxx+jQoQNr167l97//PcOHD/d3sW3bNt577z3mz5/PbbfdRkpKCuvWraNGjRq89957RUI6cuQIXbt25fPPP6dXr168+OKLANx///3cf//9rFq1imbNmlXI6RERkYpzxoTOOfdv4BLgft/rMufc++UdmEil9p/HYOY1sO5N2PkprJlF9wbfsXzmE/6Erlu3bixfvpzly5dzxRVXcOONN/Luu+9y8uRJXn75ZUaOHAnA0qVLGTZsGAC9e/dm3759HDx4EICrrrqKyMhI4uLiyM3N5corrwQgLi6O9PT0ImFVq1aNa665BoBOnTr566xYsYIbb7wRgFtuuaUcT4yIiARDII/+AugExPrqtzcznHOvlFtUIpXZ9sXw6V/h5LHvy1wuVzSH5f+czbojF9GuXTtatGjBM888Q506dbjjjjuoWbMmffv2Zf78+bzxxhv+aVLnii4mNzMAqlevDkBYWBiRkZH+8rCwMHJycoocV7BOeHh4sXVEROSH54wjdGb2Kt6K1x5AZ98rsZzjEqm8Vv4/OHm0SHH3C8J5d9NxGoRlER4eToMGDThw4AArVqygW7dugLcidfTo0XTu3JkGDRoA0KtXL2bNmgXAokWLaNSoEXXq1DmnIXft2pV58+YBMGfOnHPatoiIBF8gI3SJQBtX3DCCSFW0b3uxxXHnhZF5NI9bLqj2fVlcHFlZWTRq1AjwpkHr1KnD7bff7q/z+OOPc/vttxMfH0/NmjWZOXPmOQ/52Wef5bbbbuOZZ57hJz/5CXXr1j3nfYiISPDYmfI0M3sTGO2c210xIZUsMTHR5U9TiQTN3wfB1g+L32fh0HEYXPunYnd//fXXJCcns2nTJsLCKu5BLUePHqVGjRqYGXPmzGH27NnMnz+/wvoXEamKzGy1c65CZjUDGaFrBGwws0+B4/mFelKEVFld74Gvlhc77Up4JHS+s9jDXnnlFR555BEmT55cockcwOrVq7nvvvtwzlGvXj1efvnlCu1fRETKVyAjdEnFlftuOlyhNEInlYJz8M9xkPba90mdhUFEdej1EPQcE9z4RESkUqhUI3TOucVm1gRvMQTAp865b8s3LJFKzAyungStB8Anz8OBHdD4Muh6L8R0CnZ0IiJSBZ0xoTOzm4CngUWAAX82s/HOubnlHJtI5WUGLZO8l4iISJAFcg3dI0Dn/FE5M2sMfAgooRMRERGpBAK5MjvslCnWfQEeJyIiIiIVIJARun+b2fvAbN/2EOBf5ReSiIiIiJRGIIsixpvZQLwnRRjwV+fc2+UemYiIiIgEJJBFERcB/3TOveXbrmFmsc659PIOTkRERETOLJBr4d4E8gps5/rKRERERKQSCCShi3DOncjf8L2vdpr6IiIiIlKBAkno9pqZ/zFfZnYdkFl+IYmIiIhIaQSS0N0N/MrMdprZDuAh4GflG5ZUBd988w0333wzrVq1ok2bNlx99dVs3rw5aPE8++yzHD36/fNZr776ag4cOFDqdtLT03nttdfOZWgiIiKndcaEzjm3zTnXFWgNtHXOXeGc21r+ockPmXOOG264geTkZLZt28aGDRv4/e9/z549e4IW06kJ3T//+U/q1atX6naU0ImISEU7Y0JnZk3MbDrwpnPusJm1MbOfVkBs8gP20UcfERkZyd133+0vS0hIoEePHowfP5527doRFxfH66+/DsCiRYtITk5m8ODB/OhHP+LWW2/FOQdAbGwsjz32GB07diQuLo5NmzYBcOTIEe644w46d+5Mhw4dmD9/PgC5ubmMGzeOuLg44uPj+fOf/8zUqVP5+uuvSUlJISUlxd9uZqZ3dcErr7xCfHw87du3Z9iwYQCMHDmSuXO/f2BKdHQ0AA8//DBLliwhISGBKVOmlOdpFBERAQKbcp0BvA80821vBh4or4DkByw3Bza9B4ueYv27L9ApvnWRKm+99RZpaWl8/vnnfPjhh4wfP57du3cDsGbNGp599lk2bNjA9u3bWbZsmf+4Rv+fvfuOr/n6Hzj++tybcbOETDvD10pyswdRErRifyn9KmpU8TVrVVtUjS5aStOl+lNa9UVtpUqRCEUlkYSkNYrYNEgiO3ec3x+pW2kSo42EOs/HI4/mfsY55/O52r6d8T5OThw+fJiRI0cyb948AN566y3atWtHfHw8MTExTJ48mby8PBYvXsyZM2dISkriyJEj9O/fnxdffJG6desSExNDTExMqTalpaXx1ltvsXv3blJSUvjggw/u+Jhz5syhdevWJCcnM2HChL/71lAUxRREAuj1epydnenatevfLvuviI2NfaB1Z2Vl8cknn5g+yx5PSZKku7uXgM5JCPENv6cuEULoKUldIkn3LuM4LPCG9cMh9h04/h0c5GmObgAAIABJREFUXg77Fpa6bN++ffTt2xe1Wo2rqysRERHEx8cDEBoaSv369VGpVPj7+5Oenm667+mnnwYgKCjIdHzHjh3MmTMHf39/IiMjKSws5Ny5c+zcuZMRI0ZgZlaShtHBweGOTd+9eze9e/fGycnpnq6vbDY2NqSmplJQUADADz/8QL169aq0DVVJBnSSJEn3714CujxFURwBAaAoSgsguzIqVxTlC0VRflMUJbUyypMeUvoiWNYFcq9CcS4A3o5GEi8Ww565cOw706W3hlHLY2lpafpdrVaj1+vLnLv9uBCCdevWkZycTHJyMufOnaN58+YIIVAU5Z6bX9H1ZmZmGI1G0zXFxcVlrqksnTp1YuvWrQCsXLmSvn37ms4dOnSI8PBwAgICCA8P5/jx40BJz2JoaCj+/v74+vpy8uRJ8vLy6NKlC35+fvj4+JiGtGfPnk1ISAg+Pj4MHz7c9D38+uuvPPnkk/j5+REYGMipU6cAyM3NrXD4+9YwdUJCApGRkQDs2bMHf39//P39CQgIICcnB4D33nuPkJAQfH19mTFjBlAyZH3q1Cn8/f2ZPHlymSHs8p5LkiTpcXcvAd1EYDPQSFGUH4GvgLGVVP8yoGMllSU9rH75FnQF/P53AgDaeagpMgg+P5gFe+YAEB8fT61atVi9ejUGg4GMjAzi4uIIDQ39S9VGRUXx4YcfmoKNpKQkADp06MCiRYtMgd+NGzcAsLOzMwUat2vfvj3ffPMN169fL3W9u7s7iYmJAGzatAmdTnfHcu5Z6jr4OBRm1YK36oKhmGe7PcmqVasoLCzkyJEjhIWFmS5v1qwZcXFxJCUlMXv2bKZOnQrAokWLGDduHMnJySQkJFC/fn2+//576tatS0pKCqmpqXTsWPKv35gxY4iPjzf1BG7ZsgWA/v37M3r0aFJSUti/fz916tQxvcuKhr/LM2/ePD7++GOSk5PZu3cvVlZW7Nixg5MnT3Lo0CGSk5NJTEwkLi6OOXPm0KhRI5KTk3nvvffKDGGX91ySJEmPu3tZ5XoYiADCKUlX4i2EOFIZlQsh4oAblVGW9BC7cMjUM3eLoihs6GPND6f1NJryI97e3sycOZN+/fqZFh+0a9eOd999l9q1a/+laqdPn45Op8PX1xcfHx+mT58OwNChQ2nYsKGpnlvDecOHD6dTp06mRRG3eHt7M23aNCIiIvDz82PixIkADBs2jD179hAaGspPP/2EjY0NAL6+vpiZmeHn53f/iyJ2vwmbxpQMUQsj6PLAqMN3339JP32SlStX0rlz51K3ZGdn88wzz+Dj48OECRNIS0sDoGXLlrz99tvMnTuXs2fPYmVlhVarZefOnbzyyivs3bsXe3t7oGSRSlhYGFqtlt27d5OWlkZOTg4XL16kZ8+eAGg0GqytrYE7D3+Xp1WrVkycOJHo6GiysrIwMzNjx44d7Nixg4CAAAIDAzl27Ng99baV91ySJEmPPSFEuT9ACFD7ts8DgU1ANOBQ0X33+wO4A6n3cm1QUJCQHkG73xZiloMQM2qU//N2g+pu4cMh86wQbziXeT825ggxy0HM6hsiHBwcxJEjR0RMTIzo0qWLEEKIQYMGiQ8++EAIIcSZM2eEm5ubqchff/1VfPDBB8LDw0Ps2rVLCCHE9evXxfLly0WrVq3ErFmzREFBgXBxcRHnzp0TQggxY8YMMWPGDJGdnS3q1atXppm31y2EEKNHjxZLly4VQgjRqFEjcfXqVSGEEHv37hURERGm644cOSLmzJkj6tWrJ3755RcxceJEsWjRojLlnzlzRnh7e1dYX0XPJUmS9LABEkQlxUt3+7lTD91nQDGAoihtgDmUDLdmA4sfSHRZDkVRhiuKkqAoSkJGRkZVVStVJm1vUJmVf05lDn59qrY9D6vU9VDRHEKjniH1TvP666+j1WpLncrOzjYtkli2bJnp+OnTp/H09OTFF1+ke/fuHDlyhEuXLmFtbc1zzz3HSy+9xOHDhyksLARKVgrn5uaaUrHUqFGD+vXrs3HjRgCKiopK5ekrz+3D0OvWrTMdP3XqFFqtlldeeYXg4GCOHTtGVFQUX3zxBbm5Jb23Fy9e5LfffiszZP3nz+U9lyRJ0uPuTgGdWghxazi0D7BYCLFOCDEd+NeDb1oJIcRiIUSwECLY2dm5qqqVKpNTYwgcCObWpY+rzMDaAdpMrp52PWzyr4Oh4oUV9W10jBtbdvrqyy+/zJQpU2jVqhUGwx8L0FevXo2Pjw/+/v4cO3aMgQMHcvToUdOCgrfeeovXXnuNmjVrMmzYMLRaLT169CAkJMRUxvLly4mOjsbX15fw8HCuXLlyx0eYMWMG48aNo3Xr1qjVatPxhQsX4uPjg5+fH1ZWVnTq1IkOHTrQr18/WrZsiVarpXfv3uTk5ODo6EirVq3w8fFh8uTJZYawy3suSZKkx50iKugR+H3lqb8QQq8oyjFguCiZ84aiKKlCCJ9KaYCiuANb7qW84OBgkZCQUBnVSlVNCDj8FcTNg+xzYKYp6blr9zrYuVZ36x4Oqetg84tl5hua1HSD8bI3SpIk6VGhKEqiECK4KuqqYBwMgJXAHkVRrgEFwN7fG/cvKi9tyUogEnBSFOUCMEMIsaQyypYeMooCQYNKfowGUFQlx6Q/NOsG371cfkBnbi17MiVJkqQKVRjQCSHeUhRlF1AH2CH+6MpTUUlpS4QQfe9+lfSPo1Lf/ZrHkZkFDPoWvuxakruvOLdkWFplBoEDIOC56m6hJEmS9JC6Uw8dQoiD5Rw78eCaI0mPOVcvmPgL/LwJLiaAphb4/gccG1V3yyRJkqSH2B0DOkmSqoGZZUkQ5/uf6m6JJEmS9Ii4l50ipAdErVbj7++Pj48P3bp1IysrC/j7m5/f7/3p6en4+Nx5TYqtre1fbs/91iVJkiRJ0v2RAV01srKyIjk5mdTUVBwcHPj444+ru0mSJEmSJD2CZED3kGjZsiUXL140fa5o8/Ndu3YREBCAVqtlyJAhFBUVAfD999/TrFkznnjiCdavX28qJy8vjyFDhhASEkJAQACbNm26YzvutvF5bm4u7du3JzAwEK1WayovPT2d5s2bM2zYMLy9venQoQMFBQUAJCYm4ufnR8uWLWXQKkmSJEkPgAzoqsnt+f8MBgO7du2ie/fupmPlbX5eWFjI4MGDWb16NUePHkWv1/Ppp59SWFjIsGHD+Pbbb9m7d2+p5K9vvfUW7dq1Iz4+npiYGCZPnkxeXl6F7brbxucajYYNGzZw+PBhYmJimDRpkulZTp48yejRo0lLS6NmzZqmnQKef/55oqOjOXDgQKW8O0mSJEmSSpMBXRUqLtTz06bTLJm0l09GxpCfX0ATDy8cHR25ceMGTz31lOna8jY/P378OB4eHjRp0gSAQYMGERcXx7Fjx/Dw8KBx48YoisJzz/2R3mLHjh3MmTMHf39/IiMjKSws5Ny5cxW28W4bnwshmDp1Kr6+vjz55JNcvHiRq1evAuDh4YG/vz8AQUFBpKenk52dTVZWFhEREQAMGDCgcl6mJEmSJEkmMqCrIsWFetbOTSDph3MU5ukAMFdbMLHLJ8wbuZaiwqJSw5GWlpam39VqNXq9nop29QBQKkjSK4Rg3bp1JCcnk5yczLlz52jevHmF5fTr14/NmzdjZWVFVFQUu3fvLnV+xYoVZGRkkJiYSHJyMq6urqa9QCtqc0VtkyRJkiSpcsiArookbT/HzYxCDHpjqeMGvRF9jhnDn3mFefPmodPpKiyjWbNmpKen8+uvvwIl+2xGRETQrFkzzpw5w6lTpwBYuXKl6Z6oqCg+/PBDUzCYlJR0x3bebePz7OxsXFxcMDc3JyYmhrNnz96xvJo1a2Jvb8++ffuAkoBQkiRJkqTKJQO6KpIad7FMMHeLQW9Ed74mfn5+rFq1qsIyNBoNS5cu5ZlnnkGr1aJSqRgxYgQajYbFixfTpUsXnnjiCdzc3Ez3TJ8+HZ1Oh6+vLz4+PkyfPv2O7bzbxuf9+/cnISGB4OBgVqxYQbNmze767EuXLmX06NG0bNmyzBCuJEmSJEl/n3KnYbyHTXBwsEhISKjuZtw3IQSfjIy563WjPm0rhyclSZIk6R9CUZREIURwVdQle+iqgKIoaGzM73iNxsZcBnOSJEmSJP0lMqCrIj5t6qE2K/91q81U+ETUq+IWSZIkSZL0TyEDuioSENWQGs6aMkGd2kxFDWcNAR0aVlPLJEmSJEl61MmAropYaMzo/UowAR0amoZfNTbmBHRoSO9XgrHQmFVzCyVJkiRJelTJKKIKWWjMCOvuSVh3T5mfTZIkSZKkSiN76KqJDOYkSZIkSaosMqCTpAdEUZRSW53p9XqcnZ3p2rXrHe9LSEjgxRdffNDNkyRJkv5B5JCrJD0gNjY2pKamUlBQgJWVFT/88AP16t19NXNwcDDBwVWStkiSJEn6h5A9dJJUifRGPenZ6ZzPOQ9Ap06d2Lp1K1CyJVvfvn1N1x46dIjw8HACAgIIDw/n+PHjAMTGxpp68WbOnMmQIUOIjIzE09OT6Oho0/1ff/01oaGh+Pv789///heDwVBVjylJkiQ9ZGRAJ0mVQAjBV2lfEflNJP/Z8h+e3vQ0hfpCGrRuwKpVqygsLOTIkSOEhYWZ7mnWrBlxcXEkJSUxe/Zspk6dWm7Zx44dY/v27Rw6dIhZs2ah0+n45ZdfWL16NT/++CPJycmo1Wq5T64kSdJjTA65SlIlmJ84n2+OfUOBocB0TCD44voXZB7PZOXKlXTu3LnUPdnZ2QwaNIiTJ0+iKAo6na7csrt06YKlpSWWlpa4uLhw9epVdu3aRWJiIiEhIQAUFBTg4uLy4B5QkiRJeqjJgE6S/qbf8n9j5S8rKTYWlzlXaCikqGkRL730ErGxsVy/ft10bvr06bRt25YNGzaQnp5OZGRkueVbWlqafler1ej1eoQQDBo0iHfeeafSn0eSJEl69MghV0n6m3ad23XHNDROEU4MGj8IrVZb6nh2drZpkcSyZcvuq8727duzdu1afvvtNwBu3LjB2bNn76/hkiRJ0j+GDOgk6W/K0+WhN+orPK9x1NBtULcyx19++WWmTJlCq1at7ntBg5eXF2+++SYdOnTA19eXp556isuXL9932yVJkqR/BkUIUd1tuGfBwcEiISGhupshSaUcuHSA8THjydfnl3veQm3Btz2+pa5t3Spu2eNNURSee+45li9fDpTkAaxTpw5hYWFs2bLlvsvLysrif//7H6NGjarspkqS9A+lKEqiEKJK8lDJHjpJ+pvC6oRRS1MLhbLDruYqc0JcQ2QwVw1uzwMI3HMewIpkZWXxySefVFbzJEmSKpUM6CTpb1IpKhY/tRhHK0eszaxNx63NrHGv4c7cNnOrsXWPtzvlAbxx4wY9evTA19eXFi1acOTIEaDi3H+vvvoqp06dwt/fn8mTJ5Obm0v79u0JDAxEq9WyadMmANLT02nevDnDhg3D29ubDh06mILKzz//nJCQEPz8/OjVqxf5+eX36kqSJN03IcQj8xMUFCQk6WFVpC8Sm3/dLCbvmSym7p0q9pzfI/QGfXU367FlY2MjUlJSRK9evURBQYHw8/MTMTExokuXLkIIIcaMGSNmzpwphBBi165dws/PTwghxIwZM0TLli1FYWGhyMjIEA4ODqK4uFicOXNGeHt7m8rX6XQiOztbCCFERkaGaNSokTAajeLMmTNCrVaLpKQkIYQQzzzzjFi+fLkQQohr166Z7p82bZqIjo5+8C9CkqRqAySIKoqRZNoSSaokFmoLujXqRrdGZRdASA9e7PHfiN51kuNXc7C3MkdnEDRp7k16enq5eQD37dvHunXrAGjXrh3Xr18nOzsbKD/3358JIZg6dSpxcXGoVCouXrxous7DwwN/f38AgoKCSE9PByA1NZXXXnuNrKwscnNziYqKelCvQ5Kkx4wM6CRJeuQt+/EMc78/RoHOCEBekQGdwUjfxQfp0rVbuXkARTkLwm6lnykv99+frVixgoyMDBITEzE3N8fd3Z3CwsJy77815Dp48GA2btyIn58fy5YtIzY29u8/vCRJEnIOnSRJj7jsfB3vbPsjmLvdsSs51A3tzOuvv14mD2CbNm1M26XFxsbi5OREjRo1KqzHzs6OnJycP+rNzsbFxQVzc3NiYmLuKQ9gTk4OderUQafTya3aJEmqVLKHTpKkR9quY1dRq8pP7FygM7AjXce6cePKnJs5cybPP/88vr6+WFtb8+WXX96xHkdHR1q1aoWPjw+dOnXilVdeoVu3bgQHB+Pv70+zZs3u2tY33niDsLAw3Nzc0Gq1pQJESZKkv0PmoZMk6ZH29cGzvLn1ZwrL6aEDaFbbju/Ht6niVkmSJMk8dJIkSfcsxN2hwnMWaoWIJs5V2BpJkqTqIQM6SZIeaU1r2xHsVgtLs7L/OTM3UzG4lXvVN0qSJKmKyYBOkqRH3uKBwbRt5oKFmQo7jRnWFmrcHKxZPbwldeytqrt5kiRJD5xcFCFJ0iPP2sKMRc8F8dvNQk7+lkstawua17EzpSGRJEn6p5MBnSRJ/xguNTS41NBUdzMkSZKqnBxylSRJkiRJesTJgE6SJEmSJOkRJwM6SZIkSZKkR5wM6CRJkiRJkh5xMqCTJEmSJEl6xMmATpKkKmVra1vu8cGDB7N27do73hsZGYnc/k+SJKksGdBJ0h0oisKkSZNMn+fNm8fMmTMrrfz09HQURWH69OmmY9euXcPc3JwxY8b8pTJff/11du7cWVlNlCRJkh4BMqCTpDuwtLRk/fr1XLt27YHV4enpyZYtW0yf16xZg7e3918ub/bs2Tz55JOV0bQHSgjBmDFj8PLyokuXLvz222+mc7NnzyYkJAQfHx+GDx+OEMJ0bs2aNYSGhtKkSRP27t0LQGFhIc8//zxarZaAgABiYmKq/HkkSZKqkwzoJOkOzMzMGD58OAsWLChzLiMjg169ehESEkJISAg//vgjAFqtlqysLIQQODo68tVXXwEwYMCAcnvOrKysaN68uWkocfXq1fznP/+5az3//ve/TWV/9tln9O/fHyg9dBkfH094eDh+fn6EhoaSk5NT9cGP0QAndsCWibD1JRAGEIINGzZw/Phxjh49yueff87+/ftNt4wZM4b4+HhSU1MpKCgoFfDq9XoOHTrEwoULmTVrFgAff/wxAEePHmXlypUMGjSIwsLCB/tckiRJDxEZ0D2mJkyYwMKFC02fo6KiGDp0qOnzpEmTeP/99++rzNjY2FL/U74lPT2d+vXrYzQaSx339/fn0KFDDB06lJ9//vm+6lq0aJEpmKlIQkICL7744n2VW2wo5vv07/k05VNWHluJQDB69GhWrFhBdnZ2qWvHjRvHhAkTiI+PZ926dab316pVK3788UfS0tLw9PQ09SIdPHiQFi1alFvvs88+y6pVq7hw4QJqtZq6devetZ7Fixcze/Zs9u7dy/z58/nwww9LP0txMX369OGDDz4gJSWFnTt3YmVlVbXBT0EmLHoC1j4PCUsg/nPQF8GSp4iL2UXfvn1Nz9uuXTvTbTExMYSFhaHVatm9ezdpaWmmc08//TQAQUFBpKenA7Bv3z4GDBgAQLNmzXBzc+PEiRMP5pkkSZIeQnLrr8dUeHg4a9asYfz48RiNRq5du8bNmzdN5/fv318q4LsXsbGx2NraEh4eXuq4u7s7DRo0YO/evURERABw7NgxcnJyCA0NJTQ0tNzyDAYDarW63HMjRoy4a3uCg4MJDg6+5/YfunyI8THjMQgDBfoCLNQWFOoL+fLUlwwYMIDo6GisrP7Y6H3nzp2lAtGbN2+Sk5ND69atiYuLw83NjZEjR7J48WIuXryIg4NDhQsCOnbsyPTp03F1daVPnz6lzlVUj6urK7Nnz6Zt27Zs2LABBweHUvcdP36cOnXqEBISAkCNGjWAkuBn7NixQOngx9fX957f1T1bPxyu/QrG4j+OCQFXjsCZqyiBZb+fwsJCRo0aRUJCAg0aNGDmzJmlAk5LS0sA1Go1er3+9yJFmXIkSZIeJ7KH7jEiDAbyDh4ke/Nm/C0sTL1paWlp+Pj4YGdnR2ZmJkVFRfzyyy8EBASQmJhIREQEQUFBREVFcfnyZQCio6Px8vLC19eXZ599lvT0dBYtWsSCBQvw9/c39Urd0rdvX1atWmX6vGrVKvr27QuUXrloa2vL66+/TlhYGAcOHGDJkiU0adKEyMhIhg0bZlooMHPmTObNm2e6/5VXXikzryo2NpauXbsCcOjQIcLDwwkICCA8PJzjx4+Xal96djpjdo8hR5dDvj4fgaDIUATAV2lf0aBzA5YsWUJeXp7pHqPRyIEDB0hOTiY5OZmLFy9iZ2dHmzZt2Lt3L3v37iUyMhJnZ2fWrl1L69atK/xuLCwsCAoKYv78+fTq1avUuYrqgZJeNkdHRy5dulT2+xai3M3pqyz4uXkJzuwpHczdoi+ijd05Vv3vawwGA5cvXzYN/d4K3pycnMjNzb3ryleANm3asGLFCgBOnDjBuXPnaNq0aeU9iyRJ0kNOBnSPieytWzn5RGsujB7D5ZmzMM5+A5GRwdFFn7F//35atmxpCqISEhLw9fVFURTGjh3L2rVrSUxMZMiQIUybNg2AOXPmkJSUxJEjR1i0aBHu7u6MGDGCCRMmkJycXCZ4+c9//sPGjRtNPSqrV6/m2WefLdPOvLw8fHx8+Omnn/D09OSNN97g4MGD/PDDDxw7dqzC5ytvXtXtmjVrRlxcHElJScyePZupU6eWOr80bSnFhnICD6DQUMjys8vp/UxvlixZYjreoUMHPvroI9Pn5ORkABo0aMC1a9c4efIknp6ePPHEE8ybN++OAR2UDHPPnTsXR0fHUscrqufQoUNs27aNpKQk5s2bx5kzZ8o886VLl4iPjwcgJycHvV5fdcHPtZOgtqzwdE+tLY3rO6PVahk5cqSp97ZmzZoMGzYMrVZLjx49TD2MdzJq1CgMBgNarZY+ffqwbNkyU0+eJEnS40AOuT4GsjZt5sqMGYjbhq0EEGCpYcc775Dg1pBXP/yQixcvsn//fuzt7U29WKmpqTz11FNAyRBonTp1APD19aV///706NGDHj163LUNtWvXxtvbm127duHq6oq5uTk+Pj5lrlOr1aYeqkOHDhEREWEaSnzmmWcqnBdV3ryq22VnZzNo0CBOnjyJoijodLpS5/ec34NBGCpsf7GhmN5De/PJx5+YjkVHRzN69Gh8fX1NgdKiRYsACAsLw2AoKa9169ZMmTKFJ554osLyAby9vctd3VpePR988AHDhg1j6dKl1K1bl/nz5zNkyBB2795tus/CwoLVq1czduxYCgoKsLKyYufOnYwaNYoRI0ag1WoxMzN7cMGPjTMY9WUO504tGfpVjDo+Wjgf7OuVuebNN9/kzTffLHM8NjbW9LuTk5Ppu9ZoNCxbtqxSmi1JkvQokgFdFXnrrbf43//+h1qtRqVS8dlnnxEWFnbf5cTGxmJhYWGapzZ48GC6du1K7969y71eFBdz9Y038E5JprGlJXohMFMU/l3DHn8rDUk3b5KSkIBXo0Y0aNCA+fPnU6NGDYYMGcKhQ4dQq9WmHqHbbd26lbi4ODZv3swbb7xBWloaBw8epE2bNhW2/dawq6urq2m49c80Go1p3tz9DA2WN6/qdtOnTzfNNUtPTycyMrLUeaMwlrkHwOszLwAUFGo51yI/P990zsnJidWrV5d73/Lly02/h4eHl1kQcou7uzupqalljg8ePJjBgwffsZ6UlBTT7927d6d79+4ApQKbkJAQDh48WObeKgl+XJpDjTpw/VQ5JxVw9Sk3mJMkSZLuX7UOuSqK0lFRlOOKovyqKMqr1dmWB+nAgQNs2bKFw4cPc+TIEXbu3EmDBg3+UlkVrSStSG5cHEIILBWFDe4efOvhyf/Vb0BcXi4niorYk5dLTbUZ+TGxODg4kJWVxYEDB2jZsiUNGjSguLiYAwcOAKDT6UhLS8NoNHL+/Hnatm3Lu+++S1ZWFrm5uRw6dIjMzMwK29KrVy++++67Codb/yw0NJQ9e/aQmZmJXq9n3bp19/zcf5adnU29eiXBQ3nBTFidMFRKxf86KIqCp73nX67/saQo0GsJWNiActvfHVXmYGkHPT6tvrZJkiT9w1RbQKcoihr4GOgEeAF9FUXxqq72PEiXL1/GycnJ1Ivk5ORkSkuxa9cuAgIC0Gq1DBkyhKKikon47u7upmS2CQkJREZGVrjwIC4ujvDwcDw9PctMINddugx/Gl50NDNjlmtttt+8SabBgIeZGVETJxAYGEh6ejoWFhY4OTlhbm5OYGAgr7zyCo0bN6ZGjRps2rSJH374AR8fHzQaDS4uLowdO5avvvqKnJwcPvzwQ2xtbdm7dy8jR44kODgYb29vZsyYQc2aNWnRogWurq54eHjc9b3Vq1ePqVOnEhYWxpNPPomXlxf29vZ/6Tt4+eWXmTJlCq1atTINhd5uqHYoFiqLcu/VmGkY6DUQc7X5X6r7sVY3AEb8CIHPga0r2NWBkCEw6iA4y0ULkiRJlUYIUS0/QEtg+22fpwBT7nRPUFCQeFRczy0SH+46IXp/+qN47tMY4dnUWzRu3FiMHDlSxMbGCiGEKCgoEPXr1xeAmDhxohgwYIBYsGCBeO+994S9vb3IyMgQQggRHx8vIiIihBBCzJgxQ7z33numegYNGiR69+4tDAaDSEtLE40aNSrVjqzNm8VOL2+hgPi5abNSPzVUKhHX6F/isK+vuPTVciGEECdOnBC33nNMTIzo0qWL+PHHH0VgYKA4e/asqc3Hjx8XQghTm4UQws3NzdRmIYS4fv26EEIIvV4vIiIiREpKyn2/x5ycHCGEEDqdTnTt2lWsX7/+vsu4VzvO7BDBy4NF8PJg4bMFFo8oAAAgAElEQVTMR/h96SeClgeJ1/a+JgxGwwOrV5IkSfpnAhJEFcVV1TmHrh5w/rbPF4D7n1T2EDpxNYfen+6nSG+kSF8yd8qq91zqF53FQXOFPn36MGfOHAICAvDw8CAjI4P169czf/58vv766zJ53O6mR48eqFQqvLy8uHr1aqlztm3bQgXzt27NUNMbjLy05VuOvDsXtVpdauHBL7/8wvDhw9mxYwd169YlJSUFDw8PmjRpAsCgQYP4+OOPGT9+fJnyv/nmGxYvXoxer+fy5cv8/PPP953rbObMmezcuZPCwkI6dOhwTwsw/qqn3J8itE4om09t5kTmCRw1jnRv1B3PmnKoVZIkSXq4VWdAVzZB1h8xxh8XKcpwYDhAw4YNH3SbKsXIrxPJKdSXepgCPVzQeDKgU2c+9NWyNDqaet7eFJ8+jRoY+txzpYZLVSoVRqORjIwMJk2axOHDhwkJCUGr1eLl5YVWqzUNuY4YMQKDwcDAgQMpLCxk586dpr081ba22PfuDW++AYBBCN7PyODHvFzyjEZ2FRaQ69YQPeDo6Ejt2rVJSUkhLy+PV199lStXrmA0Gvnggw+YO3cuaWlppKSkEBQUhJOTEy+88AJ5eXkEBgaa2n7y5El69uxJYWEh8fHx1KpVi8GDB/+l3Qhu5ZqrKvaW9gzwGlCldUqSJEnS31WdiyIuALevDKgPlMmOKoRYLIQIFkIEOzs7V1nj/qrjV3K4lFVYKpjTXb+A7sZFCnQG1u46Suxrr1Hr2HGcY2I5e/UqxuJiojZsZNP69aZdE2rWrEliYiLjxo3D1dWVoKAg1q1bx5YtW8jJyTFtL5WZmYmLi4spuDMYDGW2l3Ic8jwoCoqFBevz8lAr4GRhwTBnZzYIwY2GDXF0dCQ+Pt4UmH3//fc4OjrStm1b0tPT2bp1Kzt37iQ6Oho7OztWr15tykvXuXNn7O3tMTc3Jycnh6VLl9K1a1dsbGywt7fn6tWrbNu2rUrevyRJkiQ9jqqzhy4eaKwoigdwEXgW6FeN7akU13KLMFMrcNs6BKOukMwfFmEsykOVf4MCMzWzXFywVBTeql2HoRfO0+/kSRqqFDJTjuAcFEhERATjxo3jzJkz1KpVki6je/fuKIrCunXryMnJ4ebNm1y9epWoqCgOHz7MxYsXURSlzPZSiqIghKCP0cDp69co1umoZWtLjrMzOfn5tG7ThjfffBO1Wk1mZiY2NjZotVoSExOxsbHhxIkTfPfdd7Rr147Lly9Tu3ZttFqtafP5ESNG4OTkxOeff06nTp04e/YsFy5c4MqVK3h7e+Pp6UmrVq2q+JuQJEmSpMdHtQV0Qgi9oihjgO2AGvhCCJF2l9seeo2cbSnWl56zZln7X9QeMI/gq7/wWsLXWOqKTOda2tigURQ2eXiQZTDwzMYNDG3aBDc3N5YuXYqTkxNnz54ttYcowPnz5+nTpw8eHh689NJLjBs3jrVr1zJhwoRy2+Xt7U1Kaiq9evVi+PDhREVFlTrv4eHBvHnzeOedd3jnnXfYsGEDV69eZe7cuUyZMsXUc+jr62tKY3K7Xr16MWvWLN577z1WrFiBo6OjKT2Ira0tubm59/0uJUmSJEm6N9Wah04I8Z0QookQopEQ4q3qbEtlqW2voXVjJyzUZacIdjyfWCqY+7OaajVRNWqwZPFi07HK3l4qKiqKTz/91LRTwokTJ0rtT3rLF198QXh4OPn5+bz00kukpqZiYWFBRkZGmbx0UJIQOCoqipEjR/L888/fsQ2SJEmSJFUuuZfrA7Cgjz9+DWpiZa7GwkyFtYUaSzMV3rblrza93ZA6dbl+44bpc3R0tGlvVS8vL9PWUlCyvdSt1aatW7fm4sWL5W4vpdfrTTnwhg4dipeXF4GBgfj4+PDf//63zM4Kubm57N+/n2vXrjFnzhzeeustxowZg0qlYu3atYwbNw4bGxtq1KhBp06dTImOo6KiuH79Oq+++io+Pj6meX23XLt2jZYtW7J161bS09Np3bo1gYGBBAYG3leyZEmSJEmSSlPEfWyvVN2Cg4NFQkJCdTfjnh29kE18+g1sLc14ysuVovfnkrn6Gyhna6pbFEtLGu3Yjrmr69+uX1EUJk6caNqMPTQ0lNzcXGbOnFn24vwbcOkwqC35Ou4UMXF7WbJkCeHh4Xz00Uc4ODjQtWtXUlNTyc/PR6VSodFoOHnyJH379iUhIYFu3brxww8/cOHCBdO8Pzs7O2xtbTl16hTdu3fnzTff5KmnnqqwDEmSJEn6p1AUJVEIEVwVdcm9XB8gbX17tPX/2NmgqF8/stauQ1QU0CkKVn6+lRLMQcn+pkuWLGH79u0sX76cXbt2lb1IXwzfvQRHVoHaEhCs/PIa48eOBeDZZ59l5cqVjB492nSLTqdjzJgxJCcnm/LW9ezZk59//hm9Xs+7775Lv3798Pf3N13fvn17Pv74YyIiIiosQ5IkSZKkv0YGdFXIslEj7J/uSfbGTYiCAoJOHCexyR/bH6msrak9ffpfLl8YjeQdOEBuTAyiWIeZovDypEnkFRYSEBBQKqDLyMhgxIgRnEuJg8IsFnawoGWDQtwX5vJbniB12vsob3/Jhas3cHV1pWnTppw+fZqAgACys7OJiooiJSWFjIwMateuTXp6Ok8++SRbt26ldu3aDBgwAAuLkq20dDoddnZ2bN++3RTQLViwAFdXV1JSUjAajWg0mr/83JIkSZL0uJNz6KpY7ddfx3H4cFS2tiiKUvJPjSUab2/c/vc/LBs3vuP9kZGRbN++vdSxhQsX4tGwIS83bcrFsS+S+fUKsr75BlFcTNS69Xz9xRdkZ2eXumfcuHEM6BmFm+VN1j2jYei3hagUhX85qGhRX83Z8bas7m1DZGQkBQUF1KhRAw8PD5KSkmjUqBE///wzKpWK/v37A5CUlESLFi24ePEiAwcO5IUXXiAkJITExESsrKzIyckhJSWFOXPmAJCdnU2dOnVQqVQsX7683P1VJUmSJEm6NzKgqwSKojBgwB+7C+j1epydnenatWu51zqPHEGT/T+iWFpS9913cV+/nk88PQju9TRarZbVq1cDMGrUKDZv3kxsbCy1a9dmyJAh9O3bl9mzZ/Paa68BJdt+TZs2Dd3Vq9jm5mHMzzfVJYTAoqCALkIwf9o0oGSV7JgxY9i5cycz33iLX28Y6b4yn5tFgpwiQWaBILe4ZF7lqvjf6NPtKWbOnEl0dDRnz55Fq9Vy6tQpDh8+TIsWLTh69KgppYpKpUKtVtO2bVvWrVuHpaUlfn5+FBYWcv78eV599VViYmL45JNPGDVqFF9++SUtWrTgxIkT2NjYPJgvR5IkSZIeB1W1aWxl/NzaNP5BunbtmvDz8xN+fn7C1dVV1K1b1/S5qKjIdB0gnnvuOSGEEDY2NsLPz084OTmJLl26iO+++064u7uLpk2blin/em6ROHDqmjidkStsbGyEEEKsXbtWtGvXTuj1enHlyhXRoEEDcenSJbFy5Urx0ksviZiYGGFvby/CwsLEtWvXhKWlpdi8ebMQQoikpCRRz8FBzKxXX9irVGKys7MI1FiJQbVqCRWIQbVqiW/c3ISFSiXq1q0rmjRpIszMzISjo6P4Ze0c4e1iJsSMGmLpvzWiZzMzEdVILcxViNEh5sK9pkpcO5Ui3NzcRHh4uNi0aZP497//LRo3biysra3FZ599Jvz8/MTp06dNz1erVi2RkZEhYmJiRKtWrUReXp4QQoiIiAgRExPzoL42SZIkSXroAAmiimIkOYfuTxwdHU253mbOnImtrS0vvfRSqWuMRUXYaDQkbdvGiYGDEDodjd3dycrKAmDlypWMGDHClLbj0KFDjBs3ntNXb3CzWEWDHhNR1apHfmEx3Xs+TWpKMpaWlgwePJjevXsTERFBfHw8q1ev5ueff8bb2xsrGyvyNfmMXzaeYl0xo8eO5p133kEIQUFODu9nZXHTaGR7Tg6niorIMOixAF5xcaVn+hnUQnD92jXUajVQkt/uyx/Pc2v73HPZRpKvGEj6ry0zYwv5/LCOkIbWOHpoAbh58yb16tXjiy++YNKkSfz6669ER0fTsmVLVqxYwWuvvca2bdvIzMwESoZUa9WqhbW1NceOHePgwYMP+quTJEmSpMeWDOhuU2wopkBfgJ2FHSrlj9HoxMREJk6cSG5uLg7W1swoKEQUF3NDr2fkhvUUFhezdfNmXJydMRqNxMbG8tNPP3Hu3DkaN25M48aNOfjTQSyd3dEX5XFqyQRUNrUQBh3fbtqEQ62aprxta9asQQjB9u3buXHjBmq1muEjh6Mr1KFqrWL7we0IleDCpQvk5ueSmZFJdycnfvw9kDpbXIwe+E2nQ1EUMvR6ThQVsaFJU/qeO2uaqxYdHc3gwYP5NRO8PsnD1Rrae5hhr1Ho72vBwp90hLfrBEpJguSXX36ZZ555Br1eT2FhIfn5+ajVaubPn8/8+fMJDCzZrqxhw4YAdOzYkUWLFuHr60vTpk3L7C8rSZIkSVLlkQEdcDr7NAsSFrDv0j4UFDRmGvo164fBaEAIwdixY9m0aRPWags+Cw3m/WsZCCFwUKs5VVSEBeCgVnM1IwO7kyfx9fVl3759ODs7c/ToUezs7EAIDPpiDHnZqO0csXLzI+f6BSxd3Bk9cRzzZ01h9+7dREREUKtWLTp37szSpUv5V/C/+DXtVzAHTRMNl+ddBgWEXpBTlAOAotHgZm7OdYOBCBsbThUXk67TMd7RiZSCAswUhUYWFuRmZjIvOppp06bh5OTERx99VJJb7r0uLPv8UxIuG8HCluBGFnRp3YSn+o0xvaNOnTrRoEEDXnvtNXbs2IG1tTWRkZFYWlqyY8cO03ULFiww/b5t27Yq+w4lSZIk6XH22Ad0JzJPMPC7geTr8xG/Dz/qinUsS1uG7pSOp5s9TWpqKj6hrTFmZVKz4CYu6pLeO2uVinyjwABE2tqxMTuLY6dO0WfQIM6fP092djYajQYLCwv0ej0aN3/yUndhyLxEbs41QFB07TxOjXywsbGhTZs2FBcXYzAY+O6777CxseHUsVMYCgwg4MzcM4jiPxJB63NK8tltu3LFlNvu25wcBCWrXS7pdbiam6MCOp87i11QENbW1mVfQqe5ZB6tybaPP4IBG6FuAOztUeYyOYwqSZIkSQ+nx36V66z9s8jT55mCuVuKDEVcK7jGiRsnsHR2o2b/BXze1I/N7u78X4OGpuuCra3QAVF2tlioVLhZWFDX2Rkzsz9iZTs7O1BUGAtuIvTFANQdthj7NoNQ1GZMf6EXGRkZqNVqGjVqRE5ODjqdDgcXB5xaOqGpr4Hfdw1T26vReGhQaVS3pr8RHBqKnYUFZsBwBwea/b7NVysbW/ysrbBTq3Fq2BCNRkNKSoopP9ztarnUoVO3ntAgBNTlx/kdO3ZEr9ejKArdu3c3DaPOmzev/N0n7iA2NrbUdl+DBw9m7dq1d73vypUrPPvsszRq1AgvLy86d+5cKUmJ09PT8fHxASAhIYEXX3zxb5cpSZIkSVXlsQ7oruRd4Xjm8QrP64w6kq4fJTvzOjfPpqExFKMTgpNFRaZr2tnaYg40srBEBdS3sEDo9RiNgpxCPe3nx5KjrgHCiCH7CggBihph1GNubYO1vSOWFua4urpib2+PhYUFBoOBnj17knElA6dWTtg0L0npIYwCW29bCs8UYiw0orIp+fqMRiNN/P1RqVTE5eXTzdEJgMU3bjD++nVy1WqO/PILx48fx2g0oigKPj4+dOvWjem/JzKOjIwkNjYWgLS0NH777TfGjx+Pr68vP/zwA05OTlhaWrJt2zYsLS3R6XSsXbuWyMjI+37ver2+TEB3L4QQ9OzZk8jISE6dOsXPP//M22+/zdWrV+/5fqPx7vvpBgcHEx0dfV9tkyRJkqTq9FgHdNcLrmOuMr/jNXm6PGo/PYXM2GUMPZbC0+lnSC4oMJ13NDMjpWmzP25QqTBYWHIuT8HYIIBTGXkUZmcAIHTFaOp7oTa35NpXE8nc+TkUZHHjxg1sbGy4evUqN27cwGg08vXXX6PX6UmblUb2wd+TAush+1C26Vsz5pcEJ0IIatSsiWJuzrHiIj7NvIGiUiEaeXLN1hYLS0sMBgOKomBhYYGbmxtjx45FrVYzYMAAOnfuTMFtz7Ro0SLGjRtHcnIyCQkJ1K9fv9Q7MTMzY/jw4aXmy91y9uxZ2rdvj6+vL+3bt+fcuXNASQ/cxIkTadu2LX369GHRokUsWLAAf39/02rguLg4wsPD8fT0LLe3LiYmBnNzc0aMGGE65u/vT+vWrcnNzaV9+/YEBgai1WrZtGkTUNLz1rx5c0aNGkVgYCDnz59n8uTJ+Pj4lMr5d7vY2FhTDsGZM2cyZMgQIiMj8fT0LBXo9ejRg6CgILy9vVm8eHGZciRJkiSpqjzWAZ2rjSvFhuKKz/d0xbtnKDZ1GlO7/1y8+r3Nmn815ZmaNUls0pQvG7rhoylJqlvLzIx9Xt58M306Fl7tce7zJvbtSwKPBmO+RjHX0KrXVF5zqskTlmpSmjch1dsbP0tLwpo3Jy0tDbVajcFgYOTIkej1euo0DaDZvOG4PF0XVKCyVKGpq6Hh2IZY1rFEbaWmgWcDzM3NSUpKokuXLgwbNoyGHh5Y29jQsUcPLl68iL+/P7a2trRq1YqioiK6dOlC7969SU5Opk+fPtja2pYKbFq2bMnbb7/N3LlzOXv2LJYaS3ad3cXz3z9Pp3WdKDIU4ftvX1asWFFmB4oxY8YwcOBAjhw5Qv/+/UsNXZ44cYKdO3eybt06RowYwYQJE0hOTqZ169YAXL58mX379rFlyxZeffXVMt9HamoqQUFB5X5XGo2GDRs2cPjwYWJiYpg0aRIlKYDg+PHjDBw4kKSkJBISEkhOTiYlJYWdO3cyefJkLl++fMc/J8eOHWP79u0cOnSIWbNmodPpAPjiiy9ITEwkISGB6Ohorl+/fsdyJEmSJOlBeawDOicrJwJdA0ulKLmdlZkVw/0GY/g9MDhRqyE7GoZQqC7bq6eYm2Netw6O//0vq+PPU6grPbSnEkbm7f2YutfPgdGIyMtFFBaSnp1N06tXKdi4kaFDh2I0GtmzZw81nVy5UaSQf7kTxiIXUzkuPVy4vPwyRVeK8Ar0wsHOgRs3btC8eXPMzMwwNzfn6aefRq/XY25ujoeHB9bW1uTl5XHp0iVsbW2BkuCodevWfPvtt+zZs4eTJ0+a6ujXrx+bN2/GysqKqKgoes7vyZR9U0i4msCF3AsYhZFZSbOo3aY2H3zwAVlZWaxatYrGjRvz3XffkZCQQHFxMUIIvv/+e1O5zzzzjCkP3ooVK0r1CkJJj5dKpcLLy+ueh1FvEUIwdepUfH19efLJJ7l48aKpDDc3N9N8v3379tG3b1/UajWurq6mnH930qVLFywtLXFycsLFxcVUbnR0NH5+frRo0YLz58+XeoeSJEmSVJUe64AOYGb4TGpY1MBMKb0QwEptxRP1nqB7k6eY1rk5VuZqFOBT3578n083bmhqYLCwRGVjg6LRYP90T9zXrEFta0uB/k/7kgrBLp9ArAzFtLC24dP6DQDIMhi4bjDwfWYmPgMHsmXzZmxsbIiOjkZxbIhTr9cBMyzrz0BRWyCECusmIdQN8sXe3p4je4+wcOFCACIiIujUqZOpSq1Wi6OjIxqNhm3btmFtbc3AgQPp2LEjKSkpDBo0iNmzZ2Nvb8/UqVMpum1e4OnTp/H09OTFF1+kcavGJCUnUaAvHXwV6AsoCi/iw88+ZOnSpTRt2pSTJ09Ss2ZNcnNzmfb7VmPK73nsgFLbe/Xv39+0Zdgtlr8v5ih5ZaUXqQB4e3uTmJhY7ve4YsUKMjIySExMJDk5GVdXVwoLC8vUW165d3N7u9RqtWkO4M6dOzlw4AApKSkEBASY6pMkSZKkqvbYB3T1bOuxvvt6+jTrg525HWaKGW413JgSNoV5EfNQKSoGhbuz/IVQnvJ2pZGLLbquPbFcv5UmmzfitvJ/NDmwnzqzZqG2swOgXVMXzNV/BDLaa6ewLc4vU/f2nJt0r2HPrkb/YldzL5Jem46Hhwf79u1Dp7898FAAFQgzrsd4k30sh3p165nOOjg4sHHjRoqKitDpdGzYsAFXV9dyn7dZs2b4+vpy4cIFRo0axdtvv82WLVtKXbN69Wp8fHzw9/cn4WgCNi3L32dVb6XH3N2c69evExAQAECrVq1o2bIlX3zxBXv27KFWrVp07NiR9evXs3z5ctO90dHRpp6u999/n02bNjFx4kRTgFqedu3aUVRUxOeff246Fh8fz549e8jOzsbFxQVzc3NiYmI4e/ZsuWW0adOG1atXYzAYyMjIIC4ujtDQ0ArrrIhM4SJJkiQ9TB77PHQAztbOvBr6Kq+Glp23dUuwuwPB7g5/OupU7rXD2niyJvECeoMeATTKvoSZMJS57rubNxnq6AiAKCoiPymJXr168emnn1LDyglFKVkUe0vDiWv5bdVUNMV5mJs74e/vT/fu3dm7dy/vv/8+H374IQBDhw5l/PjxpKen88knnwCQm5vLvHnzUBSF9957D09PT959910+//xztFotOTk5pKamAjBlyhSmTJmCwWjAf7n/Hd+dsY4R/e858KAkUBsyZAj5+fkcPHgQMzMzVq9ezZgxY/j+++85f/48DRo0wNramq1bt7Jp0yb0ej2dO3emY8eOzJkzh4iIiHLrUhSFDRs2MH78eObMmYNGo8Hd3Z2FCxfi7e1Nt27dCA4Oxt/fn2bNmpVbRs+ePTlw4AB+fn4oisK7775L7dq1SU9Pv+Nz/pncCUOSJEl6mCh/ZQiqugQHB4uEhITqbsY9+fW3HKasP0ry+Sy6nN7P4CObsTTo7niP7ZNP0uCjkqDs50s36fXpfgp0fwSCigI1NObsnhSBo61lRcVUGiEEwV8HU2yseOHIte+zaa5/kt1rvih13N/fnxdeeIEjR46YetQ6derEtGnTeOKJJ3B3dychIYEVK1Zw/fp1Zs+eDcD06dNxdnaWeeAkSZKkR56iKIlCiOCqqOuxH3J9UP7lYseaEeEkvPYUr0wfiMbszq9asbGhRlSU6bNX3Rp89UIoTV1tMVMpmKkUQtwd2DAqvEqCOSjpEevk0Qm1oi73vDCqUNfUcvCneHakXTEdv3nzJufPn0etVpc7/6xUGY/QXygkSZIk6WElA7oHzN7KnDpeTbAKCACzike4VRbm2EV1KHUsxN2B7RMiSJz+FCkzOvDNf1vi6Wz7oJtcymj/0diY26D60x8VYVQQRivMHPpj0BXy6tyPADAYDEyaNInBgweXv83Yn7Rp04aNGzeSn59PXl4eGzZsMKUxkSRJkiTp3siArorUW/A+5vXqoVhpSh1XLCxQ2drScMkSVOVsyQUlQaGNZfVMd6xjW4eVXVYSWicUhBnCYIkwmmHIb0z+mTFgsMe55zRO/bSTxo0b06RJEzQaDW+//fY9lR8YGMjgwYMJDQ0lLCyMoUOHmhZYSNKDMGHChFKLb6Kiohg6dKjp86RJk5g9ezZz5sypjuZx6dIlevfuXS11S5L06JJz6KqQsaCArI0byfzyK/QZGahsbLDv9TQO/fph5uxc3c27q96Lt3P44nmEvgbCUHrla1DDWqwbFV5NLZOke7dmzRrWrFnDN998g9FoJCQkBAsLCw4cOACUJNZeuHAhYWFh1dxSSZIedXIO3T+UysoKh759afT9NpomJtA4bg8u48Y9EsEcwPi2QVga65cJ5qzM1Yxp969qapUk3Z9WrVqZ9hFOS0vDx8cHOzs7MjMzKSoq4pf/b+/e43Os/weOv9472MZsDkNCNIVmR8xm5tRKSL6IkGKV5BuR0EFfJX07yS9SSVQm9kUHcioihKaMzBhyakjIabPZxg6f3x/37W5rG3PafS/v5+PRo/u+ruvzud73lW7v+3N9rvdn5062bt3KkCFDAEsC6O/vT1BQEK1btwYsUwtGjhxJQEAAgYGBtifMv//+e0JCQggICODRRx+11XesV68eL7/8sm1pul27dgHwww8/EBwcTHBwMCEhIaSlpZGcnIy/vz8AMTExdO/enQ4dOnD77bfz7LPPluq1UkqVHVq2RJVY5O0+PN+xEW98uxMXJ8tvgezcPEa0b0C7RtUv0VqpookIDz30kK1OYU5ODjVr1iQsLIwlS5awaNEiduzYUeRycCWWvB7WvAGHf+FmFzdcstM4uPMX4uLiadGiBYcPH2bDhg14e3sTGBhIuXzTH8aNG8fLL79MrVq18PPzA2DatGn89ttvbNmyBRcXF06dOkVWVhYPP/wwFSpUYM+ePfTr148PP/yQlJQUzpw5w759+1iyZAlff/01EyZM4OOPP2bChAl88MEHtGzZkvT0dNzd3endu3eBVVQSEhLYsmULbm5uNGzYkKeeeoo6depc+bVQSv0jaUKnLkv/iHrc37Q2cXtPYICI+lWp6F54KTSlSqpChQps376dzMxMPDw8WLFiBbVq/VU4u0uXLnTp0uXKT7B1HiweBhdWO8nOoGWNLOL+25E404ZnnnuRw4cPExcXh7e3NxERBacOtGzZkueff54mTZowdepUAFauXMmgQYNwsT7oVKVKFbZu3Urt2rXJyLAUEe/fvz8ffPABgYGBAOzbt48//viDpk2bMn/+fFvfzzzzDH379qV79+7Url27UPhRUVF4e3sD4Ofnx4EDBzShU0oVogmdumyebi60b3yTvcNQ/yAdO3Zk6dKl9OjRgzlz5tCnTx/WrVsHWG47btq0iffff5/o6Gi8vLzYtGkTR48eZfz48fTo0YM1a9YwduxYfHx82L59O02bNmX27NlIdiabPxrMM9+kkH7e4FNeiPmXBxG1nfhw/Sl+PjKfX7bt5LbbbuPMmTO4u7tz8uRJYmNjybQXJQIAACAASURBVM7OZuDAgTz//PN88cUXLFu2jJo1azJ//nz++OMPnnrqKTzc3fEG3q5/G0f+OMy5ffvIrVCBvCKWgUtMTKRv374YY7jpppsYN24cixcv5vTp08yePZvx48ezcuVKwFL6p3nz5hw8eLBAgllU6R+llAKdQ6eUspOc3DxSMyzFtnv37s3cuXPJysoiMTHxog8kHDlyhPXr17NkyZICt2G3bNnCpEmT2LFjB/v37+fHH38ke+cynlqaxpc9Pdg80JNHg8vx4qpztLzFmR8P5RBR24ltiYnMmDGDlJQU1qxZQ+vWrXn11VcJDw+nX79+5Obm8tRTT/Hyyy/TuHFjateuTc+ePfG77TbmVKlK1KnTvPP9Sm45eYojqalkHDvG3rvuJubDDwusehIcHExsbCz/+9//cHJyYsiQIcydO5e9e/fSsGFDateubZtbZ4xh48aN9OnTh/j4+Ov0X0Ap9U+iI3RKqVKVcT6HN77ZxZebfycnL4/M87msOubOb8nJzJkzh06dOl20fdeuXXFycsLPz8+2HjBA8+bNbbcsg4ODSU5OplK5Q2w/ls3dsyyjWrkGanoKAdUtv2WPnMlh9qzP6Nr9fgICAkhKSmLQoEGsXbuW2rVrs3nzZp5++mk2btyIiNCrVy+CgoLIy87m/0aPJuj8eYyBOq6uuDk5MbJ6dcYcPUrnTfEEeHszcNo03po8ucjPsXr1ap588klSU1PJzc3Fz8+Pjh078uabb+Ll5QVYHqY4c+bMVV9zpdQ/nyZ0SqlSk5dneHD6z+w8coZzOXkAGOCjtfvwvjWUkSNHsmbNGk6ePFlsH/lXH8lfdqmoVUlMrQY0ru7Chkc9CvVz7j8VWXvSh0VbEnj1tddJSkoiISEBgOjoaKKjo1m4cCGxsbG88847eHp6MnLkSACGDRjAf2rVoq1rOTZmnOWDEycAuNOzIv/nfJyF9W5FPDzIWrGCU6dOMXHiRGbMmAFAs2bNWLZsGXXr1mXTpk3UqVOHsWPH2j6Du7s7n3/+OQB9+/Zl4sSJtpiXLFlS4mutlLqx6C1XpVSpWbf3BLuPpdmSuQsys/P4s2YEg595joCAgGt2voYt7+N4lgsbDlveZ+cakv7MJc8YDmW40W7Aq4wfP56UlBTS09Np3bo1sbGxAKxZswYfHx+8vLyoWLEiaWlptn5P/f471XItn+Hr1L9G0Co4OVHN2YUNZ89iMjP5bUYMy5YtIzIyskAfWdY5dj4+PqSnp/Pll19es8+slLoxaUKnlCo1K3YcJeN8bpH7XL18qN/ugWt6vnLlyvHlwqU8twaCPsog+KMM4v5wItfJjYeWeRDQ701CQkIYPnw4lSpVYuzYsWzatInAwECef/55Zs6cCcB9993HggULCA4OZt26dQz19WX4H4d56OABKjsXXOv4jZo1+ejkSbol/0bf9et4+eWXqV+/PtHR0QwaNIjg4GDc3Nx4/PHHCQgIoGvXroSGhpbo8zg7OxMcHIy/vz89e/a0PVFrDzExMbZafdeKrpKh1JXTlSKUUqVm7KIkZm5IpqivHXdXJ/5zrx8Phde99ic2Bg5ugEM/g2sFuKMzeN18xd0deOQRMjb8dMnjyt1+G/UXL77i8/ydp6cn6enpgOV2bNOmTXnmmWeuWf+XI//Tx0qpoulKEUqpf6R7A2vi4epc5D5jIOqO61SgWgTqRkDkcAgbeFXJHEDlXr2RChUueox4eFC5z4NXdZ6LadWqFXv37uXs2bM8+uijhIaGEhISwsKFC4GLrzLh6enJiy++SFBQEOHh4baHS4paFaNVq1a2uYVgqZ2XmJhoe5+amkq9evXIy7Pcgs7IyKBOnTpkZ2czffp0QkNDCQoK4v7777eNKEZHRzN06FAiIiLw9fW13XLOv0pGcnIyrVq1okmTJjRp0sS2uodSqmia0CmlSk2zupWJqF8Vd9eCXz0ers70a1GPmt6FH15wRBWj7sSlkjc4FfMVKoKTuzveV1EQ2RjDt799S8/FPQn/Xzh3f3E3OXk5pJ1PIycnh2+//ZaAgABee+017rzzTuLj41m9ejWjRo3i7NmzgGWViXnz5rFt2zbmzZvHoUOHADh79izh4eFs3bqV1q1bM336dMCyKsby5cvZunUrixYtAmDAgAHExMQAsHv3bs6dO2crlgzg7e1NUFAQP/zwAwCLFy/mnnvuwdXVle7duxMfH8/WrVu54447+OSTT2ztiis/c0H16tVZsWIFv/zyC/PmzWPo0KFXfC2VuhFoQqeUKjUiwtSHmvLM3Q24ycsdV2ehXtXyvPqvxozu1Mje4ZWYuLpSd9YsXGrUQMqXL7jPwwPnSpWoO3sWzp4XH8UrjjGG0etH83Lcy+w6tYuz2Wc5mnGUc1nnqNWwFiFNQ7jlllt47LHH+O6773jzzTcJDg6mbdu2ZGVlcfDgQeCvVSbc3d1tq0yAZW5h586dAWjatCnJycmAZfQtOjqa6dOnk5trmevYs2dPlixZQnZ2Np9++inR0dGF4u3Vqxfz5s0DYO7cufTq1QuA7du306pVKwICAoiNjSUpKcnWprjyMxdkZ2fb5hn27NmTHTt2XNG1VOpGoWVLlFKlysXZiYGt6zOwdX17h3JVXG++mfrLviVt+XJOzY4l58QJnCtVonKvXnjf1xmnvyV6l+OH33/g+4Pfk5mTWWC7Uzkn6o+rT8d6HXm91euAJfn76quvaNiwYYFjf/755yJLuQC4uroiIoW2T506lZ9//pmlS5cSHBxMQkICVatW5e6772bhwoV8/vnnFDWPuUuXLrzwwgucOnWKzZs3c+eddwKWW6tff/01QUFBxMTEsGbNGlub4srPXDBx4kRq1KjB1q1bycvLw93dvcTXT6kbkY7QKaXUFXJyc8O7Sxdu/Xwet6/6Ht/5X1G51wNXlcwBzEyaWSiZuyAnL4fvDnxn23/PPffw3nvv2ZKiLVu2XPF59+3bR1hYGOPGjcPHx8d2i3bAgAEMHTqU0NBQqlSpUqidp6cnzZs3Z9iwYXTu3Bln65O/aWlp1KxZk+zsbFs5mJJKTU2lZs2aODk5MWvWLNuIoVKqaJrQKaWUg/k97feL7ncSJ05lnQJgzJgxZGdnExgYiL+/P2PGjLni844aNYqAgAD8/f1p3bo1QUFBgOW2rJeXF4888kixbXv16sXs2bNtt1sBXn31VcLCwrj77rtp1Ojybqk/+eSTzJw5k/DwcHbv3k2FSzyEotSNTsuWKKWuyu+//87gwYPZsWMHeXl5dO7cmbfffpty5crZO7Qyq8+SPmw/ub3Y/a5OrqzttRbPcp6lEs8ff/xB27Zt2bVrF07FPQiilCpEy5YopcoEYwzdu3ena9eu7Nmzh927d5Oens6LL75Y4LgLc7RUyTx4x4N4uBT9xK+TOBFxc0SpJXOfffYZYWFhvPbaa5rMKeXA9P9OpdQVW7VqFe7u7rZbcc7OzkycOJFPP/2UKVOm0LNnT+677z7at29fbL20jIwMHnjgAQIDA+nVqxdhYWG2ifdz5syx3QJ87rnnbOctro7aP0WHWzvgV9UPN2e3AtudcKKia0Web164zMf10q9fPw4dOkTPnj1L7ZxKqcunCZ1S6vKc2APr3oFVr5G0Zj5NmzQpsNvLy4tbbrmFnJwcNmzYwMyZM1m1alWx9dKmTJlC5cqVSUxMZMyYMWzevBmw3OZ77rnnWLVqFQkJCcTHx/P1118DxddR+6dwdXJl2t3TGBAwAG83b5zFGVcnVzre2pHP7/uc2hVr2ztEpezq6NGj9O7dm/r16+Pn50enTp3YvXt3kcfmL1h9rY0dO5YJEyZcl74vl5YtUUqVTF4ufP1v2LEQ8nIgLwezBSS9HKQ8A5VusR1qjEFEuPvuu21PRX733XcsWrTI9uV3oV7a+vXrGTZsGAD+/v62orXx8fG0bduWatWqAZalrtauXUvXrl0L1VFbsWJFqV2G0lLOuRyDggbxROATZOVmUc6pHM5ORa+yodSNxBhDt27d6N+/P3PnzgUsRbSPHTtGgwYNrrr/nJwcXFzKXnqkI3RKqZJZ9V/YuQhysiwJHdC4Sg6bfjsNMZ3BuvTTmTNnOHToEM7OzgWeTLxQLy0hIYGEhAQOHjzIHXfcUWQNsgvHF6e4Omr/RCKCh4uHJnPqhpZz4gQpX83n1KzZLH3nHVxdXBg0aJBtf3BwMJGRkYwaNQp/f38CAgJsxa7zy8rK4pFHHiEgIICQkBBWr14NWJbKyz9FJD09naioKJo0aUJAQIBtigjAa6+9RsOGDbnrrrv49ddfbdsTEhIIDw8nMDCQbt26cfr06et4RQrThE4pdWnZWbDxI8guWBst6lZnMrINn/14CPZ9T25uLiNGjCA6Opryf6vFVly9tMjISD7//HMAduzYwbZt2wAICwvjhx9+4MSJE+Tm5jJnzhzatGlzvT+pUsqB5GVmcnjECPbeGcXR//6XP99+mw2T3sV3zx5S5s8vcOz8+fNJSEhg69atrFy5klGjRnHkyJECx3zwwQcAbNu2jTlz5tC/f3+ysrIACkwRcXd3Z8GCBfzyyy+sXr2aESNGYIxh8+bNzJ07ly1btjB//nzi4+Ntfffr14+33nqLxMREAgICeOWVV67z1SlIEzql1KWd3ANS+OtCRFjQqzxfJKZze7veNGjQAHd3d15//fVCxxZXL+3JJ5/k+PHjBAYG8tZbbxEYGIi3tzc1a9bkjTfeoF27dgQFBdGkSRP+9a9/XfePqpRyDCY7mwPR0aSt/B5z/jwmM9Py7/PnMOfPc3Tcq5ye+9co3Pr16+nTpw/Ozs7UqFGDNm3aFEi4Lhzz8MMPA9CoUSPq1q1rm3uXf4qIMYbRo0cTGBjIXXfdxeHDhzl27Bjr1q2jW7dulC9fHi8vL7pY12tOTU0lJSXF9qOzf//+rF279rpfo/zK3k1ipVTpc/GwzKErQh1vJxb39YK2L0Drkbbt0dHRBdb99PDw4KOPPirU3t3dndmzZ+Pu7s6+ffuIioqibt26ADz44IM8+OCDhdqkp6fbXvfo0YMePXpc6SdTSjmoM8uWcW73Hsy5cwW231bOje/S0jBZWRx7803LUnsVKlx0msYFFzsm/xSR2NhYjh8/zubNm3F1daVevXq2kbwL0z0cjY7QKaUurWp9KO9T/H4nF7ijyxV1nZGRQWRkJEFBQXTr1o0PP/xQixIrpTj5yaeYzMJL4IWXL895Y/giJQVESF26lPj4eCpXrsy8efPIzc3l+PHjrF27lubNmxdo27p1a9sydLt37+bgwYOF1kEGy4hb9erVcXV1ZfXq1Rw4cMDWfsGCBWRmZpKWlsbixYsB8Pb2pnLlyqxbtw6AWbNmlfoUER2hU0pdmgh0ehu+iIa/rzHq6gENOkG1K3u6rGLFikUu+K6UurGdtyZRfycivFerFm/8+ScfJ23HY8gQbgsNZdKkSaSnpxMUFISIMH78eG666SaSk5NtbZ988kkGDRpEQEAALi4uxMTE4ObmVugcffv25b777qNZs2YEBwfblq5r0qQJvXr1Ijg4mLp169KqVStbm5kzZzJo0CAyMjLw9fVlxowZTJo06dpelIvQpb+UUiX36zL4ZiRknAQnZ8uTraEDIOolcNbfh0qpa+fX0ObkpaVd/CARqkRHU+O5Z0snqMtUmkt/6TewUqrkGnaABvfAyb2QnQE+DSwjdEopdY1VaBVJ2rLltpJIRREPDzzbti29oByYXebQiUhPEUkSkTwRKZXMVSl1jYiAz+1QM0iTOaXUdVP1sceQi82nFcGlalXKNw8tvaAcmL0eitgOdAdK95lepZRSSpUJHo0bU/2Z4Yi7e+GdLi44eXlR56OPHPap09Jml4TOGLPTGPPrpY9USiml1I2qSr9+1Jk6lfJhzcHZGVxdEQ8PKvfpg++iRbj53mrvEB2GzqFTSimllMOqEB5GhfAw8s6fx2Rl4eTpiThp1bW/u24JnYisBG4qYteLxpiFRWwvrp+BwECAW2655RJHK6WUUuqfyKlcOdAalcW6bgmdMeaua9TPNGAaWMqWXIs+lVJKKaX+SXTMUimllFKqjLNX2ZJuIvI70AJYKiLL7RGHUkopVRaJiG2ReYCcnByqVatG586dAVi0aBFvvvlmse2Tk5Px9/cvct9LL73EypUrr23A6rqzy0MRxpgFwAJ7nFsppZQq6ypUqMD27dvJzMzEw8ODFStWUKtWLdv+Ll260KXLla2vPG7cuGsVpipFestVKaWUKoM6duzI0qVLAZgzZw59+vSx7YuJiWHIkCEAHDt2jG7duhEUFERQUBBxcXEA5Obm8vjjj9O4cWPat29PZqZlnebo6Gi+/PJLAL755hsaNWpEZGQkQ4cOtY0Abty4kYiICEJCQoiIiODXX3+1nbd79+506NCB22+/nWefdcwluf6JNKFTSimlyoj0czmcPZcDQO/evZk7dy5ZWVkkJiYSFhZWZJuhQ4fSpk0btm7dyi+//ELjxo0B2LNnD4MHDyYpKYlKlSrx1VdfFWiXlZXFE088wbfffsv69es5fvy4bV+jRo1Yu3YtW7ZsYdy4cYwePdq2LyEhgXnz5rFt2zbmzZvHoUOHrvVlUEXQOnRKKaWUg/tp/0nGLd7B7mOWxeqzsvPIqlib5ORk5syZQ6dOnYptu2rVKj777DMAnJ2d8fb25vTp09x6660EBwcD0LRpU5KTkwu027VrF76+vtx6q6V4b58+fZg2bRoAqamp9O/fnz179iAiZGdn29pFRUXh7e0NgJ+fHwcOHKBOnTrX5kKoYukInVJKKeXA4vaeIHrGRnYcOUNOniEnz5BnDP0+/ZmQVncxcuTIArdbS8rNzc322tnZmZycnAL7jSm+UtiYMWNo164d27dvZ/HixWRlZZW4X3V9aEKnlFJKObCXFyWRlZ1XaHtWdh57vJvx0ksvERAQUGz7qKgoPvzwQ8Ayb+7MmTMlOm+jRo3Yv3+/beRu3rx5tn2pqam2hzBiYmJK+EnU9aS3XJVSSikHdSL9HAdOZhTeYQzHF77F4aN7OHpTJZYvX17sKN27775LrVq1+OSTT8jLy6N69erMmDEDsNxGTUpKol69ejRp0qRAOw8PD6ZMmUKHDh3w8fGhefPmtn3PPvss/fv355133uHOO+8EYNOmTcTGxtKwYcNr9OnV5ZCLDak6mmbNmplNmzbZOwyllFKqVPyZlkXkW6s5n/PXCJ0xhqOzR+LpH0WVZvfy0wtRHNq7k7S0NFq1alVkP56enqSnpxfYdvToUcLCwjhw4ECx509PT8fT0xNjDIMHD8bX15eRI0demw93AxCRzcaYZqVxLr3lqpRSSjmoap5u3OTlDsZw09mT1D1zBLN/E+LkQsWQTtSuXJ6qnm4EBwcTEhJCVFQUTZo0ISAggIULCy+bnr+gcPv27fnzzz8JDg5m3bp1JCQkEB4eTmBgIN26deP06dNMnz4dT09PqlWrxpdffkl2djZt27blueeeo3nz5jRo0IB169YBsGbNmkuWNVHXj95yVUoppRyUiPBGhUPkzJ2K17l0csWJz0/8SXw5L7Jy0nmpc6jtWHd3dxYsWICXlxcnTpwgPDycLl26ICJF9r1o0SI6d+5MQkICAIGBgbz33nu0adOGl156iVdeeYVJkyaxcOFC/Pz8mDJlCgDLly8nJyeHjRs38s033/DKK68UWlniQlkTFxcXVq5cyejRowuVRVHXliZ0SimllIP6c+Ikqn72GcZa9BfAxeRSO/04z61/l4aj2tm2G2MYPXo0a9euxcnJicOHD3Ps2DFuuummS54nNTWVlJQU2rRpA0D//v3p2bOnbX+vXr0KHN+9e3eg6HInF/orrqyJuj70lqtSSinlgM7t2cOpmTMLJHMAt5VzY2dWJs5pZzj23//atsfGxnL8+HE2b95MQkICNWrUKFBO5GpUqFChwPsLpUmKK0tysbIm6vrQhE4ppZRyQKdmfoYpYmQrvHx5zhvDFydPkv7DD+ScPk18fDwHDhygevXquLq6snr16os+7PB33t7eVK5c2TYfbtasWbbRuiuhZU1KnyZ0SimllAPK3LYNcnMLbRcR3qtVi7iMs7Tf/SuBzZoxduxYOnXqxKZNm2jWrBmxsbE0atToss43c+ZMRo0aRWBgIAkJCbz00ktXHPuzzz7LCy+8QMuWLckt4jM4ChFhxIgRtvcTJkxg7Nix16Rv66hkYxGxFQkUkWdFZGoJYxsrIiV+pFjLliillFIO6LcHepGVmHjRY5wqVOCWmTPx8G9cSlH9s7i7u1OzZk3i4+Px8fFhwoQJpKenX7OkTkT2AMeA1sDNwFqgmTHm9CXauQD/AdKNMRNKci4doVNKKaUckNe9nRAPj4sf5OKCeyMt5HulXFxcGDhwIBMnTiy07/jx49x///2EhoYSGhrKjz/+CEBAQAApKSkYY6hataptndyHH3640NO+wBngCNAPmAiMBbxE5HsRSbT++xYAEYkRkXdEZDXwVv5ORORxEflWRIr9A6EJnVKqTBo+fDiTJk2yvb/nnnsYMGCA7f2IESN45513Stzf2LFjmTCh6B/CERERVxznmjVriIuLu+L26sZVqVs3xNm52P3i4UHVxx5DXLRgxWXJzoKUg3AuDYDBgwcTGxtLampqgcOGDRvG8OHDiY+P56uvvrJ9v7Rs2ZIff/yRpKQkfH19bfMOf/rpJ8LDw4s649PAa0A1Y8ws4H3gM2NMIBALTM53bAPgLmOM7T6wiAwB7gO6GmMKPiGTj/4pUEqVSREREXzxxRc8/fTT5OXlceLEiQJrVMbFxRVI+K7G1SRka9aswdPT86qSQnVjcvby4pZPPubgYwMw2dmYc+csO0QQd3cq3nUXVQc8Zt8gy5JzafDdf2DrPBCBvFzIOYeXSaNfv35MnjwZj3wjoitXrmTHjh2292fOnLGtxrF27Vrq1q3Lv//9b6ZNm8bhw4epUqUKnp6ehU5rjPlDRFYBS6ybWgDdra9nAePzHf6FMSb/pMOHgd+xJHMXrf2iI3RKqTKpZcuWtkQrKSkJf39/KlasyOnTpzl37hw7d+5k+fLlhIaG4u/vz8CBA7kwZ3jy5Mn4+fkRGBhI7969bX3u2LGDtm3b4uvry+TJf/1ovvAlvWbNGtq2bUuPHj1o1KgRffv2tfX5zTff0KhRIyIjIxk6dCidO3cmOTmZqVOnMnHiRFs1/gMHDhAVFUVgYCBRUVEcPHgQgOjoaIYOHUpERAS+vr58+eWXpXIdlWPzCAqi/orv8Hny35SrXx/XWrXwbNuWOlOncvP4txAn/Wu8RHLOw4yOkDAHcjIhOwNyz0FeDkxrw9MDHuKTTz7h7NmztiZ5eXls2LCBhIQEEhISOHz4MBUrVqR169asW7eOdevW0bZtW9sqGsUtu3ahO+s/Rcn/MMPZv+3bDtQDal/qI+qfBKVUmXEk/QiTf5nM0FVD+fjAxxgnw4EDB4iLi6NFixaEhYWxYcMGNm3aRGBgIEOGDCE+Pp7t27eTmZnJkiWWH8hvvvkmW7ZsITExkalT/3rgbNeuXSxfvpyNGzfyyiuvFFkMdcuWLUyaNIkdO3awf/9+fvzxR7KysnjiiSf49ttvWb9+PcePHwegXr16DBo0iOHDh5OQkECrVq0YMmQI/fr1IzExkb59+zJ06NC/Pt+RI6xfv54lS5bw/PPPX+erqcoKl8qV8XniCeovXcJt36+kzodTqBDWvNgVIFQRdiyEk/stSdzfZaZSZdcsHnjgAT755BPb5vbt2/P+++/b3l9YUaNOnTqcOHGCPXv24OvrS2RkJBMmTLhUQpdfHHDhl2RfYP1Fjt0CPAEsEpGbL9apJnRKqTIhZnsMnb/uTExSDKsPrear3V+RVSeLgdMHsv7H9bRo0YIWLVoQFxdHXFwcERERrF69mrCwMAICAli1ahVJSUmAZYmjvn37Mnv2bFzyzT+69957cXNzw8fHh+rVq3Ps2LFCcTRv3pzatWvj5OREcHAwycnJ7Nq1C19fX2699VYA+vTpU+zn2LBhAw8++CBgmUS9fv1f3+Vdu3bFyckJPz+/Is+tlLpCv3wG2X8f/LLKOw9b5zJixAhOnDhh2zx58mTbj0M/P78CP/7CwsJo0KABAK1ateLw4cNERkaWNJqhwCMikojlluqwix1sjFkPjASWiohPccfpHDqllMP74dAPfJDwAedzz9u25ZGHm68bCRsTcD7gTIx/DHXq1OH//u//8PLy4tFHH2XAgAFs2rSJOnXqMHbsWFu1+qVLl7J27VoWLVrEq6++akv0LlS/h+Ir4Bd1zNWUf8o/ypK/77JUUkoph3c+rcjN6aO9LC9yMqlRowYZGRm2fT4+PsybN6/IdrNmzbK9joiIIC+vuLupFsaY6Hyvk4E7L3aM9f3YfK+XA8svdg4doVNKObz3E94nK7fw0kHlby/P6YTTpLumk5GbQZUqVUhJSWHDhg20aNECsHwpp6en2+ak5eXlcejQIdq1a8f48eNJSUkhPT39quJr1KgR+/fvt61pmf8vgYoVK5KW9tdfJhEREcydOxewLNV0Gb/qlVJXql4kOJcrfv/NIaUXy3WiCZ1SyqFl52az+/TuIve513EnNy0Xr9u82Hp8K2CpEeXt7Y2Pjw+PP/44AQEBdO3aldDQUAByc3N56KGHCAgIICQkhOHDh1OpUqWritHDw4MpU6bQoUMHIiMjqVGjBt7e3gDcd999LFiwwPZQxOTJk5kxYwaBgYHMmjWLd99996rOrZQqgeZPgFMxNyVdPaD1s6Ubz3WgK0UopRza+dzzhMaGkmeKv6Xh6erJW63fonXt1qUYWUHp6el4enpijGHw4MHcfvvtDB8+3G7xKKX+Zt8qmPcQGGN5ytXF3bK9/WvQfMDF214hEdlsjGl2XTr/G51Dp5RyaOWcy1HPqx77CBkfAwAACHJJREFUU/cXe8z53PME+gSWYlSFTZ8+nZkzZ3L+/HlCQkJ44okn7BqPUupv6t8JI3ZD0nw4sQe8bgb/HuBZzd6RXRM6QqeUcnjLk5czZv0YMnMLF0l3c3ajfd32vN7qdTtEppRSxSvNETqdQ6eUcnj31LuHvnf0xc3ZDWf5aymk8i7l8avqx5gWY+wYnVJK2Z/eclVKlQnDmg7jXt97+d+u/7E3ZS9V3avSs0FPwm8Ox0n0t6lS6samCZ1Sqsy4rfJtvNTiJXuHoZRSDkd/1iqllFJKlXGa0CmllFJKlXGa0CmllFJKlXGa0CmllFJKlXGa0CmllFJKlXGa0CmllFJKlXGa0CmllFJKlXGa0CmllFJKlXGa0CmllFJKlXGa0CmllFJKlXGa0CmllFJKlXGa0CmllFJKlXGa0CmllFJKlXGa0CmllFJKlXFijLF3DCUmIseBA/aO4yJ8gBP2DqIM0OtUMnqdSkavU8nodSoZvU4lo9epZOoaY6qVxonKVELn6ERkkzGmmb3jcHR6nUpGr1PJ6HUqGb1OJaPXqWT0OjkeveWqlFJKKVXGaUKnlFJKKVXGaUJ3bU2zdwBlhF6nktHrVDJ6nUpGr1PJ6HUqGb1ODkbn0CmllFJKlXE6QqeUUkopVcZpQncNicjbIrJLRBJFZIGIVLJ3TI5KRHqKSJKI5ImIPimVj4h0EJFfRWSviDxv73gclYh8KiJ/ish2e8fiyESkjoisFpGd1v/nhtk7JkckIu4islFEtlqv0yv2jsmRiYiziGwRkSX2jkVZaEJ3ba0A/I0xgcBu4AU7x+PItgPdgbX2DsSRiIgz8AHQEfAD+oiIn32jclgxQAd7B1EG5AAjjDF3AOHAYP0zVaRzwJ3GmCAgGOggIuF2jsmRDQN22jsI9RdN6K4hY8x3xpgc69ufgNr2jMeRGWN2GmN+tXccDqg5sNcYs98Ycx6YC/zLzjE5JGPMWuCUveNwdMaYI8aYX6yv07D8JVzLvlE5HmORbn3rav1HJ5kXQURqA/cCH9s7FvUXTeiun0eBb+0dhCpzagGH8r3/Hf3LV10jIlIPCAF+tm8kjsl6GzEB+BNYYYzR61S0ScCzQJ69A1F/cbF3AGWNiKwEbipi14vGmIXWY17EcpsjtjRjczQluVaqEClim44SqKsmIp7AV8DTxpgz9o7HERljcoFg6/znBSLib4zROZr5iEhn4E9jzGYRaWvveNRfNKG7TMaYuy62X0T6A52BKHOD14S51LVSRfodqJPvfW3gDzvFov4hRMQVSzIXa4yZb+94HJ0xJkVE1mCZo6kJXUEtgS4i0glwB7xEZLYx5iE7x3XD01uu15CIdACeA7oYYzLsHY8qk+KB20XkVhEpB/QGFtk5JlWGiYgAnwA7jTHv2DseRyUi1S5UJhARD+AuYJd9o3I8xpgXjDG1jTH1sHw/rdJkzjFoQndtvQ9UBFaISIKITLV3QI5KRLqJyO9AC2CpiCy3d0yOwPpQzRBgOZbJ658bY5LsG5VjEpE5wAagoYj8LiKP2TsmB9USeBi40/q9lGAdXVEF1QRWi0gilh9WK4wxWpJDlRm6UoRSSimlVBmnI3RKKaWUUmWcJnRKKaWUUmWcJnRKKaWUUmWcJnRKKaWUUmWcJnRKKaWUUmWcJnRKqVIhIrn5ymYkiEg9EYm7zD6eFpHy1ytGRyIiXUXEz95xKKXKBi1bopQqFSKSbozxLMFxztYlmIralww0M8acuNbxORoRiQGWGGO+tHcsSinHpyN0Sim7EZF067/bishqEfkfsE1EKojIUhHZKiLbRaSXiAwFbsZS/HV1EX2Fikictc1GEakoIu4iMkNEtonIFhFpZz02WkS+FpHFIvKbiAwRkWesx/wkIlWsx60RkUnWfreLSHPr9irW9onW4wOt28eKyKfWdvutMV+I7yFrXAki8pGIOF+4BiLymjXun0SkhohEAF2At63H17+u/yGUUmWeJnRKqdLike9264Ii9jcHXjTG+GFZQ/MPY0yQMcYfWGaMmYxlXdt2xph2+Rtal0mbBwwzxgRhWbYpExgMYIwJAPoAM0XE3drMH3jQet7XgAxjTAiW1Sf65eu+gjEmAngS+NS67RVgizEmEBgNfJbv+EbAPdZ+XxYRVxG5A+gFtDTGBAO5QN8L/QM/WeNeCzxujInDsuTbKGNMsDFm36UurlLqxuZi7wCUUjeMTGsyU5yNxpjfrK+3ARNE5C0stx3XXaLvhsARY0w8gDHmDICIRALvWbftEpEDQANrm9XGmDQgTURSgcX5zh2Yr+851vZrRcTLut5nJHC/dfsqEakqIt7W45caY84B50TkT6AGEAU0BeItS6viAfxpPf48cGGJqc3A3Zf4rEopVYgmdEopR3H2wgtjzG4RaQp0At4Qke+MMeMu0laAoiYEy0XanMv3Oi/f+zwKfjf+vV9TTL8Xjsvfb661LwFmGmNeKKJdtvlrMvOF45VS6rLoLVellMMRkZux3AKdDUwAmlh3pQEVi2iyC7hZREKt7SuKiAuWW5h9rdsaALcAv15mOL2s7SOBVGNM6t/6bQucuDAqWIzvgR4iUt3apoqI1L3EeYv7rEopVYj+ElRKOaIALA8E5AHZwL+t26cB34rIkfzz6Iwx50WkF/CeiHhgmT93FzAFmCoi24AcINoYc85627OkTlvLq3gBj1q3jQVmiEgikAH0v1gHxpgdIvIf4DsRcbJ+psHAgYs0mwtMtz5Y0UPn0SmlLkbLliilVDFEZA0w0hizyd6xKKXUxegtV6WUUkqpMk5H6JRSSimlyjgdoVNKKaWUKuM0oVNKKaWUKuM0oVNKKaWUKuM0oVNKKaWUKuM0oVNKKaWUKuM0oVNKKaWUKuP+H1M387PdOxvpAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHwCAYAAAAvoPKcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACpPUlEQVR4nOzdeViUVfvA8e9hWAVcwRUVNVd2BXcFNSW1zK3MzCVf9WdpmqmVlaa+LVaWRpvVa2lmarmkrZoL7qaouO+KewaKCMg2M+f3x4wTCCgubHF/rmuu5tnOuecZjJtznnOO0lojhBBCCCGKL7vCDkAIIYQQQtwbSeiEEEIIIYo5SeiEEEIIIYo5SeiEEEIIIYo5SeiEEEIIIYo5SeiEEEIIIYo5SehEsaSUGqSU2pTLsX5KqVUFHZMQxYlSqo1S6khhx5HflFLeSimtlLLPw7n5dk+UUnOUUm/kR9lCgCR0oghTSrVWSm1RSiUopa4opTYrpUJud53Wer7WutNd1BeplBpyB+dPVkp9e6f1iOwy/dJNsr5ilFIvZzqulFKjlFL7lVLJSqlzSqkflFJ+N5Uz2VpO0zus/0CmupOUUkal1E/WY21uOpZkraNXLmVNV0odU0olKqUOK6UGZDpWRim1Uil1VSk1XyllyHTsS6VUjzuJ+15orTdqresXVH3FgdwTUZxJQieKJKVUaeBn4COgPFANmAKkFWZcIm/y0hqSi7JaazegLzBJKfWQdf+HwGhgFJafh3rAj0DXTHUqoD9wBRh4J5VqrX201m7Wut2BM8AP1mMbbxyzHn8YSAJ+z6W4ZOARoIw1jg+VUi2tx/4P2A1UAryBHtbYWwBVtNbL7iTuu3UP348QooiShE4UVfUAtNYLtNYmrXWK1nqV1npvTicrpd5TSm2ytoDcqjvWWSn1rVLqsrWVZIdSqpJS6k2gDfCxtQXmY+v5Hyqlziqlrimldiql2lj3PwS8AvSxnr/Hur+MUmq2UuqiUuq8UuqNG60wSqkHlFLrrS2OcUqpRXcSo/VYjFLqwUzn2loJM7VyPW2NOV4pNVwpFaKU2mst6+NM1w6ytnrOsB47qZRqad1/Vin1t1JqYKbzuyqldlvvxVml1ORMx27U/R+l1BlgrVLqF6XUczd9tr1Kqe45fuOZaK23AgcAX6VUXWAE0FdrvVZrnaa1vm5tiZ2W6bI2QFUsid8TSinH29WTi7ZARWBJLscHAou11sm5xP661vqw1tqstf4T2Ai0sB6uBazTWqdZ99e2/nzMsMadK6XUy0qpxTft+1ApFWF9/7RS6pC1ZfCkUur/Mp0Xpiytmi8ppf4Cvr6x76byT1ivP5i5tfDGvylr62O8UuqUUqpzpuPllVJfK6UuWI//mOnYw0qpaOvP2BallP8tPmMDpdQfytIif0Qp9bh1fx3rvsbW7arWf0Nh1u1IpdTbSqnt1n9fy5VS5XOp47b3KdN2jFJqnPXnNkEptUgp5ZyXz6aUClJK7bLWswiwXSdEvtBay0teRe4FlAYuA3OBzkC5m44PAjZh+aPkS2AlUCrzsVzK/T/gJ6AUYACaAKWtxyKBITed/xRQAbAHxgJ/Ac7WY5OBb286/0fgc8AVS1KwHfg/67EFwKvWmJ2B1ncRYwzwYKZzbTFgafHRwCxr+Z2AVGtMFbG0cv4NhGa6T0bgaWs9b2BpmfoEcLJenwi4Wc8PA/ys8fsDl4DuN9X9jfWzuwCPA39mijXA+p065vCZb1xvDyigFXAd6AAMB07n4WdmNvA94GCtp+dd/ux9BczJ5Vgp6z0Jy2NZLsBF4CHr9gjgPev+zVhaGMcAr+ehrJrWe3LjZ8FgLbu5dbsrUMd6/0Kt5zbO9N0ZgXes362Ldd+5TOU/hiUhtgP6YGlprJLpZyUDGGqt9xngAqCsx38BFgHlrPf/xs9YY+vPXDPrdQOx/Aw75fD5XIGz1p9He+u1cYCP9fhQ4JD1O1gJTM90bSRwHvC1lrOE7P8u7PN4nzLfkxgs/4arYmkZPgQMv91nAxyB09bv1gHobb1/b+T3/zvlVXJfhR6AvOSV2wtoCMwBzll/Ga0AKlmPDQL+tP4SWUKmJIFbJ3SDgS2Afw7HIrkpocvhnHggwPp+MpkSOizdaGmAS6Z9fbG0yIAl2fkC8LpNHbeKMYbbJ3TVMh2/DPTJtL0EeD7TfTqW6Zif9fpKN10fmEucM4EZN9VdO9NxJyzdn3Wt29OBT3Mp68b1V633+BAwynrsVWDbbe5ZKeAa/ySYnwPL7+Jn7kY5Ybkc7w+cwprI5KG8uVi6Zm8kPs7Wn4G9wDTAC9iFpXv2M2ADt/ilj+WPmAHW9x2BE7c490dgtPV9GJCO9Y+RTPvO3eL6aODRTD8rx2+6TxqoDFQBzNz0R5f1vM+A/9607wjWhO+m/X2AjTft+5xMyS6W/wfss94/p0z7I4FpmbYbWT+vgZsSujzcp5sTuqcybb8LzLrdZ8PSymtLeK3Httzqu5WXvO71JV2uosjSWh/SWg/SWnth+cu7KpYk4oYHgEeBKVrr9DwWOw/LX/cLrd1D7yqlHHI7WSk11to9k6CUuorlF69HLqfXxPLX+EVrF8xVLL+QKlqPv4ilVWC7sjyEP/h+xJiDS5nep+Sw7XaLc9Fa53i+UqqZUmqdUipWKZWApeXs5ntx9sYbbelW/B54SillhyW5nXeb2D201uW01g211hHWfZexJA230gNL0v+rdXs+0Fkp5Xmb627WE0sSuj6X4wOBb7TW+nYFKaXew/Jz+/iN87XWqVrrYVprf631y1i6Wl8B+mFJPkKBZuqfZwdv9h2W+wjwpHX7Rn2dlVLbrF2TV4EuZP1+YrXWqbeId0Cm7sOr1tgzX//XjTda6+vWt25AdeCK1jo+h2JrAmNvlGkttzqWf8s5ndvspnP7YUkab/jSGtdH1p+vzM5men8ay7/FbP9W83CfbvZXpvfX+effz60+W1Xg/E0/J6dvUYcQ90wSOlEsaK0PY2mt8820+xCW7pnflFJ5Gpmmtc7QWk/RWjcCWmJ5wP3GKMQsv6SV5Xm5l7B0HZbTWpcFErAkZdnOx/ILJQ1LUlLW+iqttfax1v2X1nqo1roqlm7VT5VSD9xhjMlYWkduqHzz9fnoOywtJNW11mWwdO2qm865+Z7MxfJLuQNwXVuejbtTawAvpVTwLc4ZiOUX7RnrM2I/YPmF3vcW1+RWTo4Jm1KqOpYWnG9uV4hSagqWRwU6aa2v5XLOQ1hacH7H0joaZa03CkuXdk5+AMKUUl5YktjvrGU5YWl9nY6lhbUsluQ28/eTaxKqlKqJJVkaCVSwXr+f7N9vTs4C5ZVSZXM59mamfw9ltdaltNYLcjl3/U3nummtn7HG6IblD7rZwOQcnpGrnul9DSxdnHE3fc683Ke8utVnuwhUU0plLrfGXdQhRJ5JQieKJOvD0WOtv7hu/DLtC2zLfJ71f56vAKuVUnXyUG47pZSfsjyIfg3L//RN1sOXgNqZTnfH0uoTC9grpSZhebaPTOd7W1uf0FpfBFYB7yulSiul7KwPc4da637sxufB0q2oM9Wd1xijsTzw72BNcHrf7jPfR+5YWmJSlWVakCdvd4E1gTMD73P71rncyjgGfAossD607qgsA0eeUJYH+athSRgfBgKtrwAsz4sNhCyDNrxzq8f63bTDkoTmpD+wRWt94lbxKqUmYLk3HbXWl3M5xxlLl+sY665TWBI1RyzPD57M6TqtdSyW7sWvgVNa60PWQ45YurhjAaOyDFi4k6l7XLH8PMZa43uarH885cr6c/8blj9Qyll/NttaD38JDLe27iqllKuyDK5xz6Gon4F6Sqn+1jIclGVAT0Pr8Q+BnVrrIVie2Zt10/VPKaUaKaVKAVOxDFy5+d/Xvd6nzG712bZi+X/HKKWUvVKqJ3BHU+kIcackoRNFVSKWh43/VEolY0nk9mMZmJCF1noulv+Br73VL2yrysBiLInSISxdazfmkvsQ6K0so/QisHR7/gYcxdJdkkrWbp0frP+9rJTaZX0/AMsvjYNYkrbF/NNdGGL9PElYWrpGa61P3WGME7E80B2PZRqX73K4Pr88C0xVSiUCk7B0p+bFN1haoO5lzr5RwMdYBmxcBU5gaaH6CUuiFa0to6D/uvECIgB/pZQvltab01genM9Nf2DrLRK2AeSQ7CnLRNYHMu16C0trzDH1z7x1r9x02SvAfK31jZ+nz7F0+8VieWZ02S3i/A54kEzfvdY6Ecs9+h7Lz8aTWH7G8kRrfRBL0r0Vyx8qflgGbeRVfyx/eBzGMlDgeWu5UVgGM3xsjes4lufxcoohEUty9QSW58/+wjqIQyn1KPAQlm5+gBeAxkqpfpmKmIelFf8vLM8qjsqljru+TzeVletnsz4C0tO6HY/l+cCld1OPEHl140FdIYTIF8oyse4wrXXrQozhNSzPkH1eWDGI/KOUisQyOOh/hR2LEIVFJpcUQuQba/fXs1i6TAuN1lqWXBJC/KtJl6sQIl8opcKxdCFeomC7hoUQosSRLlchhBBCiGJOWuiEEEIIIYo5SeiEEEIIIYq5YjUowsPDQ3t7exd2GEIIIYQQt7Vz5844rfWdrlhzV4pVQuft7U1UVFRhhyGEEEIIcVtKqQJb8k26XIUQQgghijlJ6IQQQgghijlJ6IQQQgghirli9QydEEIIIXKXkZHBuXPnSE1NLexQShRnZ2e8vLxwcHAotBgkoRNCCCH+Jc6dO4e7uzve3t4opQo7nBJBa83ly5c5d+4ctWrVKrQ4pMtVCCGE+JdITU2lQoUKkswVIKUUFSpUKPRW0UJtoVNKxQCJgAkwaq2DCzMeIYQQoriTZK7gFYV7XhS6XNtpreMKOwghhBBCiOJKulyFEEKIEspk1qw/Gss3W2NYfzQWk1nfc5kpKSmEhoZiMpls+65du0a1atUYOXKkbd/HH3/MAw88gFKKuLjc23XOnDlDp06daNiwIY0aNSImJuaW9c+ZMwdPT08CAwMJDAzkf//7HwCnT5+mSZMmBAYG4uPjw6xZs3K8fsOGDTRu3Bh7e3sWL15s23/ixAkCAwNxc3PLy20ocIXdQqeBVUopDXyutf6ikOMRQgghSoSTsUk8+b8/SUzNwGjS2BsU7s4OfDekGbU97z5p+eqrr+jZsycGg8G2b+LEiYSGhmY5r1WrVjz88MOEhYXdsrwBAwbw6quv0rFjR5KSkrCzu31bVJ8+ffj444+z7KtSpQpbtmzBycmJpKQkfH196datG1WrVs1yXo0aNZgzZw7Tp0/Psr9OnTpER0cX2YSusFvoWmmtGwOdgRFKqbY3n6CUGqaUilJKRcXGxhZ8hEIIIQpVWFgYK1euzLJv5syZPPvss4UU0T8xXL9+vVBjuFsms+bJ//3JpYRUktNMpBnNJKeZuHQtlX7/+/OeWurmz5/Po48+atveuXMnly5dolOnTlnOCwoK4nbrsx88eBCj0UjHjh0BcHNzo1SpUncVl6OjI05OTgCkpaVhNptzPM/b2xt/f/88JY5FSaFGq7W+YP3v38AyoGkO53yhtQ7WWgd7ehbI+rZCCCGKkL59+7Jw4cIs+xYuXEjfvn1ve23mbr/7rTgndJuOx5GYmsHNaZvWcC01g03H7+7R9vT0dE6ePGlL1MxmM2PHjuW99967q/KOHj1K2bJl6dmzJ0FBQYwfPz5P3+mSJUvw9/end+/enD171rb/7Nmz+Pv7U716dV566aVsrXPFWaEldEopV6WU+433QCdgf2HFI4QQoujQRiOJa9cSN2sW7VNT+Xn5ctLS0gCIiYnhwoULXL9+nRYtWtC4cWMee+wxkpKSAEsLy9SpU2ndujU//PAD3t7evPLKK7Ro0YLg4GB27dpFeHg4derUsT1HpbVm/Pjx+Pr64ufnx6JFiwCIjIwkLCyM3r1706BBA/r164fWmoiICC5cuEC7du1o165d4dyke3D6cjJGU86tcCaT5szl5LsqNy4ujrJly9q2P/30U7p06UL16tXvqjyj0cjGjRuZPn06O3bs4OTJk8yZM+eW1zzyyCPExMSwd+9eHnzwQQYOHGg7Vr16dfbu3cvx48eZO3culy5duqu4iqLCbKGrBGxSSu0BtgO/aK1/L8R4hBBCFAFJ69dzrHUbLox/kdiIjzB++T8aGU3Mbd+ejEuXWLhwIR06dODNN99k9erV7Nq1i+DgYD744ANbGc7OzmzatIknnngCsPwi37p1K23atGHQoEEsXryYbdu2MWnSJACWLl1KdHQ0e/bsYfXq1YwfP56LFy8CsHv3bmbOnMnBgwc5efIkmzdvZtSoUVStWpV169axbt26gr9J96hmBVfsDTlPtWEwKGpUcL2rcl1cXLLMx7Z161Y+/vhjvL29GTduHN988w0vv/xynsvz8vIiKCiI2rVrY29vT/fu3dm1a9ctr6lQoYKta3Xo0KHs3Lkz2zlVq1bFx8eHjRs35jmWoq7QBkVorU8CAYVVvxBCiKInecsWzo1+Hp15klazmS6urizfv592j/dh4ZXL9HzsMX766SdatWoFWLr6WrRoYbukT58+Wcrt1q0bAH5+fiQlJeHu7o67uzvOzs5cvXqVTZs20bdvXwwGA5UqVSI0NJQdO3ZQunRpmjZtipeXFwCBgYHExMTQunXrfL4T+av1Ax64OztwPd2EztRQpxSUdnag9QMed1VuuXLlMJlMpKam4uzszPz5823H5syZQ1RUFNOmTctzeSEhIcTHxxMbG4unpydr164lONgyZe2ECRNo2rQpPXr0yHLNxYsXqVKlCgArVqygYcOGgGUVjQoVKuDi4kJ8fDybN2/mhRdeuKvPWRQVryf+hBBC/Gtprbn4+uSsyZxVB3d3tiUns/fCBZL+/pugoCA6duxIdHQ00dHRHDx4kNmzZ9vOd3XN2sJ0o8XGzs7O9v7GttFoROvcBwFkPt9gMGA0Gu/6MxYVBjvFd0OaUam0M65OBpzt7XB1MlC5tDPzhzTDYHf3E+V26tSJTZs23fa8iIgIvLy8OHfuHP7+/gwZMgSAqKgo23uDwcD06dPp0KEDfn5+aK0ZOnQoAPv27aNy5co5luvj40NAQAARERG2LtpDhw7RrFkzAgICCA0NZdy4cfj5+QEwadIkVqxYAcCOHTvw8vLihx9+4P/+7//w8fG563tRkAp72hIhhBACgNT9BzBevpzjMVc7O0JKleLVs2fo7OlJ8+bNGTFiBMePH+eBBx7g+vXrnDt3jnr16t1V3W3btuXzzz9n4MCBXLlyhQ0bNvDee+9x+PDhXK9xd3cnMTERD4+7a80qbLU93dj8Uns2HY/jzOVkalRwpfUDHveUzAGMHDmSDz74gAcffDDL/kGDBjFo0CDb9qhRoxg1alS264ODg21zxwF07NiRvXv3ZjsvIyMjS6vsDW+//TZvv/12tv25lQMwdepU2/uQkBDOnTuX43lFmbTQCSGEKBIyzp219Pnloqt7aY6kpfGQvQMe5cszZ84c+vbti7+/P82bN79l8nU7PXr0wN/fn4CAANq3b8+7776bY+tPZsOGDaNz587FclDEDQY7RWg9T/q38Ca0nuc9J3NgmY6kXbt2+TrCGMg2lU1+uzGxcKVKlQq03rxSt2pmLmqCg4N1VFRUYYchhBAiHyStX8/5seMwW0er5srBgQZ79xSJ9TOLmkOHDtmeGRMFK6d7r5TaWVDr1EsLnRBCiCKhVNOm6Nu16tjZ4d6unSRzQtxEEjohhBBFgp2LC+X69UM5O+d6jnJ0pMKwYQUYlRDFgyR0QgghioyKz4/GtU0blItL1gP29ihnZ6r8dyouvsVj1KEQBUlGuQohhCgylL09XhEfkrxlC1e++prUI0dQDg64d+hA+f5P4VizZmGHKESRJC10QgghihSlFG6tWlFj9v+ot2kjddetpfJrr0oyd79pDScjYf7j8HGw5b8nI++52JSUFEJDQ22jXA0GA4GBgQQGBtomeAb4z3/+Q0BAgG3N1aRcBsM89NBDlC1blocffjjPMXz//fc0atQIHx8fnnzySdv+uXPnUrduXerWrcvcuXNvWcbixYtRSnFjMOaNUa5ubm55jqMgSQudEEIIUdJoDb+9CLu/hYzrln1xxyBmIwT1hy7v3nXRX331FT179sRgMACW5cCio6OznTdjxgxKly4NwAsvvMDHH3+c47Jg48eP5/r163z++ed5qv/YsWO8/fbbbN68mXLlyvH3338DcOXKFaZMmUJUVBRKKZo0aUK3bt0oV65ctjISExOJiIigWbNmtn116tQhOjq6yCZ00kInhBBClDSn1mdN5m7IuA67591TS938+fN59NFHb3vejWROa01KSkquI5c7dOiAu7t7nuv/8ssvGTFihC1Rq1ixImCZt65jx46UL1+ecuXK0bFjR37/Pecl5CdOnMiLL76I8y0G6BQ1ktAJIYQQJc3WT7MnczdkXLccvwvp6emcPHkSb29v277U1FSCg4Np3rw5P/74Y5bzn376aSpXrszhw4d57rnn7qrOmx09epSjR4/SqlUrmjdvbkvazp8/T/Xq1W3neXl5cf78+WzX7969m7Nnz95RF29RIF2uQgghREkTf/I2x0/dVbFxcXGULVs2y74zZ85QtWpVTp48Sfv27fHz86NOnToAfP3115hMJp577jkWLVrE008/fVf1ZmY0Gjl27BiRkZGcO3eONm3asH///hzX6725VdBsNjNmzBjb+q/FibTQCSGEECVNudq3Pl6+1l0V6+LiQmpqapZ9VatWBaB27dqEhYWxe/fuLMcNBgN9+vRhyZIld1Xnzby8vHj00UdxcHCgVq1a1K9fn2PHjuHl5cXZs2dt5507d84W2w2JiYns37+fsLAwvL292bZtG926daM4rFIlCZ0QQghR0rR4FhxK5XzMoRQ0f/auii1Xrhwmk8mW1MXHx5OWlgZYWu82b95Mo0aN0Fpz/PhxwPIM3U8//USDBg3uqK4JEyawbNmybPu7d+/OunXrbHUePXqU2rVrEx4ezqpVq4iPjyc+Pp5Vq1YRHh6e5doyZcoQFxdHTEwMMTExNG/enBUrVhAcXCCrd90TSeiEEEKIkqZWqGU0681JnUMpaNwfaofdddGdOnVi06ZNgGV90+DgYAICAmjXrh0vv/yyLaEbOHAgfn5++Pn5cfHiRSZNmgRAVFQUQ4YMsZXXpk0bHnvsMdasWYOXlxcrV64EYN++fVSuXDlb/eHh4VSoUIFGjRrRrl073nvvPSpUqED58uWZOHEiISEhhISEMGnSJMqXLw/ApEmTWLFixV1/5qJA5dSnXFQFBwfr4tDsKYQQQhSGnBaIv6WTkZYBEPGnoFwtS8vdPSRzYBlU8MEHHzBv3rx7Kud2wsPDbcldQXJzc8txzryc7r1SaqfWukCa92RQhBBCCFFS1Q675wTuZkFBQbRr1w6TyWSbiy4/FHQyd+LECXr16kWlSpUKtN68koROCCGEEPfV4MGDCzuE++7GxMJFlTxDJ4QQQghRzElCJ4QQQghRzElCJ4QQQghRzElCJ4QQQpRgSelJnE08S1J69pGboviQhE4IIYQogc4lnmPU2lGELgql94rehC4KZfTa0ZxLPHdP5aakpBAaGorJZAIsS3916tSJhg0b0qhRI2JiYgA4deoUzZo1o27duvTp04f09PRcy7x27RrVqlVj5MiRt61/zJgxBAYGEhgYSL169bIsRfbiiy/i4+NDw4YNGTVqVI7Lgd2wePFilFK2VSJOnDhBYGAgbm5uebgLBU8SOiGEEKKEOZd4jj4/92H9ufWkm9O5brxOujmdyHOR9Pm5zz0ldV999RU9e/a0TVkyYMAAxo8fz6FDh9i+fTsVK1YE4KWXXmLMmDEcO3aMcuXKMXv27FzLnDhxIqGhoXmqf8aMGURHRxMdHc1zzz1Hz549AdiyZQubN29m79697N+/nx07drB+/focy0hMTCQiIoJmzZrZ9skoVyGEEEIUKe/ueJekjCTM2pxlv1mbScpIYnrU9Lsue/78+Tz66KMAHDx4EKPRSMeOHQHLpLylSpVCa83atWvp3bs3AAMHDuTHH3/MsbydO3dy6dIlOnXqdMexLFiwgL59+wKglCI1NZX09HTS0tLIyMjIdU65iRMn8uKLL+Ls7HzHdRYWSeiEEEKIEiQpPYnN5zdnS+ZuMGszG89tvKtn6tLT0zl58iTe3t4AHD16lLJly9KzZ0+CgoIYP348JpOJy5cvU7ZsWeztLdPhenl5cf78+eyxmM2MHTuW9957745jOX36NKdOnaJ9+/YAtGjRgnbt2lGlShWqVKlCeHh4jqtq7N69m7Nnz/Lwww/fcZ2FSRI6IYQQogSJT4vH3u7W6woY7AzEp8XfcdlxcXFZnlkzGo1s3LiR6dOns2PHDk6ePMmcOXNyfHZNKZVt36effkqXLl2oXr36HceycOFCevfubev6PX78OIcOHeLcuXOcP3+etWvXsmHDhizXmM1mxowZw/vvv3/H9RU2SeiEEEKIEqScUzmMZuMtzzGZTZRzKnfHZbu4uJCammrb9vLyIigoiNq1a2Nvb0/37t3ZtWsXHh4eXL16FaPREse5c+eoWrVqtvK2bt3Kxx9/jLe3N+PGjeObb77h5ZdfzlMsCxcutHW3AixbtozmzZvj5uaGm5sbnTt3Ztu2bVmuSUxMZP/+/YSFheHt7c22bdvo1q0bxWEdeUnohBBCiBLEzdGN1tVaY6dyTgHslB1tvNrg5njnoznLlSuHyWSyJXUhISHEx8cTGxsLwNq1a2nUqBFKKdq1a8fixYsBmDt3ru25u8zmz5/PmTNniImJYfr06QwYMIBp06YBMGHCBJYtW5ZjHEeOHCE+Pp4WLVrY9tWoUYP169djNBrJyMhg/fr12bpcy5QpQ1xcHDExMcTExNC8eXNWrFhBcHDwHd+LgiYJnRBCCFHCjA8Zj5uDW7akzk7Z4e7gzrjgcXdddqdOndi0aRMABoOB6dOn06FDB/z8/NBaM3ToUADeeecdPvjgAx544AEuX77Mf/7zHwCioqIYMmTIbevZt28flStXzvHYggULeOKJJ7J04/bu3Zs6derg5+dHQEAAAQEBPPLIIwBMmjSJFStW3PVnLgrUreZgKWqCg4N1cWj2FEIIIQrDoUOHcnzQPyfnEs/x3o732HR+EwY7AyaziTZebRgXPA4vd6+7jmH37t188MEHzJs3767LyIvw8HBWrlyZr3XkxM3NjaSk7ANGcrr3SqmdWusCad679VORQgghhPhX8nL34sP2H5KUnkR8WjzlnMrdVTfrzYKCgmjXrh0mk8k2ICE/FHQyd+LECXr16pXrVCeFTRI6IYQQogRzc3S7L4lcZoMHD76v5RUFMrGwEEIIIYTIV5LQCSGEEEIUc5LQCSGEEEIUc/IMnRBCCFFCpR49SsKSpWRcvIhDlSqU6dUT53r1CjsscRekhU4IIYQoYcypqZwd/gwxj/fhyrffkrhqFVe+/ZaYx/twdvgzmDOt9nCnUlJSCA0NxWQysW7dOgIDA20vZ2dnfvzxRwDWrFlD48aNCQwMpHXr1hw/fjzXMq9du0a1atUYOXLkbes/ffo0HTp0wN/fn7CwMM6dO2fb36RJEwIDA/Hx8WHWrFk5Xp+WlkafPn144IEHaNasGTExMYBllGtgYCBubvd3AMn9IgmdEEIIUcKcf34MyVu3olNTwWSy7DSZ0KmpJG/dyvkxY+667K+++oqePXtiMBho164d0dHRREdHs3btWkqVKkWnTp0AeOaZZ5g/fz7R0dE8+eSTvPHGG7mWOXHiREJDQ/NU/7hx4xgwYAB79+5l0qRJTJgwAYAqVaqwZcsWoqOj+fPPP5k2bRoXLlzIdv3s2bMpV64cx48fZ8yYMbz00kuAjHIVQgghRBGSevQoydu2odPScjyu09JI3rqNtGPH7qr8+fPn57iM1+LFi+ncuTOlSpUCQCnFtWvXAEhISMhxLVeAnTt3cunSJVsieDsHDx6kQ4cOALRr147ly5cD4OjoiJOTE2BphTObzTlev3z5cgYOHAhYVpdYs2YNxWERBknohBBCiBIkYclSdEbGLc/RGRlcXbLkjstOT0/n5MmTeHt7Zzu2cOFC+vbta9v+3//+R5cuXfDy8mLevHm8/PLL2a4xm82MHTuW9957L88xBAQEsMQa+7Jly0hMTOTy5csAnD17Fn9/f6pXr85LL72UYxJ5/vx5qlevDoC9vT1lypSxXV+USUInhBBClCAZFy/+082aG5OJjIt/3XHZcXFxlC1bNtv+ixcvsm/fPsLDw237ZsyYwa+//sq5c+d4+umneeGFF7Jd9+mnn9KlSxdbgpUX06dPZ/369QQFBbF+/XqqVauGvb1lDGj16tXZu3cvx48fZ+7cuVy6dCnb9Tm1xmVeE7aoklGuQgghRAniUKUKGAy3TuoMBst5d8jFxYXUHAZUfP/99/To0QMHBwcAYmNj2bNnD82aNQOgT58+PPTQQ9mu27p1Kxs3buTTTz8lKSmJ9PR03NzcmDZtWq4xVK1alaVLlwKQlJTEkiVLKFOmTLZzfHx82LhxI717985yzMvLi7Nnz+Ll5YXRaCQhIYHy5cvf2Y0oBNJCJ4QQQpQgZXr1RFkTq9woBwfK9up5x2WXK1cOk8mULalbsGBBlu7WcuXKkZCQwNGjRwH4448/si1sD5bn8c6cOUNMTAzTp09nwIABtmRuwoQJLFu2LNs1cXFxtufj3n77bdsyZOfOnSMlJQWA+Ph4Nm/eTP369bNd361bN+bOnQtYnvtr3759sWihk4ROCCGEKEGc69XDtXlzlHWAwM2UkxOuLZrjVLfuXZXfqVMnNm3aZNuOiYnh7NmzWUap2tvb8+WXX9KrVy8CAgKYN2+e7Tm5qKgohgwZctt69u3bR+XKlbPtj4yMpH79+tSrV49Lly7x6quvAnDo0CGaNWtGQEAAoaGhjBs3Dj8/PwAmTZrEihUrAPjPf/7D5cuXeeCBB/jggw9u2RpYlKjiMHLjhuDgYB0VFVXYYQghhBBF0qFDh3Js6bqZOTWV82PGkLx1m2WAhMkEBgPKwQHXFs2pNmMGds7OdxXD7t27+eCDD5g3b95dXZ9X4eHhrFy5Ml/ryImbmxtJSUnZ9ud075VSO7XWwQURlzxDJ4QQQpQwds7OVP/ss39WivjrLxyqVKFsr5533TJ3Q1BQEO3atcNkMmEwGO5TxNkVdDJ34sQJevXqRaVKlQq03ryShE4IIYQooZzr1cN5QvbpQu7VjefW/k1kYmEhhBBCCJGvJKETQgghhCjmJKETQgghhCjmJKETQgghSrj7OeOFUoqxY8fatqdPn87kyZOznBMQEJBlXjpx72RQhBBCCFECpaca2b3yDPs3nCc1OQNnVwd821YjKLwGjs53nx44OTmxdOlSJkyYgIeHR7bjhw4dwmw2s2HDBpKTk3F1db2XjyGsCr2FTillUErtVkr9XNixCCGEECVBeqqRxe9EsfuPM6QmZwCQmpzB7j/OsPidKNJTjXddtr29PcOGDWPGjBk5Hv/uu+/o378/nTp1sk3mK+5doSd0wGjgUGEHIYQQQpQUu1ee4VpsKiajOct+k9HMtdhUdq86c0/ljxgxgvnz55OQkJDt2KJFi+jTpw99+/ZlwYIF91SP+EehJnRKKS+gK/C/woxDCCGEKEn2bzifLZm7wWQ0s3/9+Xsqv3Tp0gwYMICIiIgs+3fs2IGnpyc1a9akQ4cO7Nq1i/j4+HuqS1gUdgvdTOBFIOefKkApNUwpFaWUioqNjS2wwIQQQoh/I621rZs1N6nJGfc8UOL5559n9uzZJCcn2/YtWLCAw4cP4+3tTZ06dbh27RpLliy5p3qERaEldEqph4G/tdY7b3We1voLrXWw1jrY09OzgKITQggh/p2UUji7OtzyHGdXB5RS91RP+fLlefzxx5k9ezYAZrOZH374gb179xITE0NMTAzLly+Xbtf7pDBb6FoB3ZRSMcBCoL1S6ttCjEcIIYQoEXzbVsNgn3MKYLC3wze02n2pZ+zYscTFxQGwYcMGqlWrRrVq/5Tdtm1bDh48yMWLF+9LfSVZoU1borWeAEwAUEqFAeO01k8VVjxCCCFESREUXoMT0X9nGxhhsLejtKczQZ1q3HXZSUlJtveVKlXi+vXrtu1t27ZlOddgMEgyd58U9jN0QgghhChgjs729H4pmKBONWzdr86uDgR1qkHvl4LvaR46UTiKxDemtY4EIgs5DCGEEKLEcHS2p1m32jTrVhut9T0/MycKl7TQCSGEECWcJHPFnyR0QgghxL/I/VyXVeRNUbjnktAJIYQQ/xLOzs5cvny5SCQYJYXWmsuXL+Ps7FyocRSJZ+iEEEIIce+8vLw4d+4cMhF/wXJ2dsbLy6tQY5CETgghhPiXcHBwoFatWoUdhigE0uUqhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBBCCFHMSUInhBAiz5RSjB071rY9ffp0Jk+efN/Kj4mJwdfXN8u+yZMnM3369PtWR17dqt6WLVsWcDRC3JokdEIIIfLMycmJpUuXEhcXV9ihFKotW7Zk22cymQohEiEsJKETQgiRZ/b29gwbNowZM2ZkOxYbG0uvXr0ICQkhJCSEzZs3A+Dn58fVq1fRWlOhQgW++eYbAPr378/q1avvqP4vv/ySkJAQAgIC6NWrF9evXwdg0KBBPPPMM7Rr147atWuzfv16Bg8eTMOGDRk0aJDtejc3N8aOHUvjxo3p0KEDsbGxAERERNCoUSP8/f154oknbOcfPHiQsLAwateuTURERJZyACIjI2nXrh1PPvkkfn5+mEwmxo8fT0hICP7+/nz++ed39PmEuFuS0AkhhMjVlgtbGPz7YJrMa0KTeU1IM6XRtFdT5s+fT0JCQpZzR48ezZgxY9ixYwdLlixhyJAhALRq1YrNmzdz4MABateuzcaNGwHYtm0bzZs3z1bniRMnCAwMtL1mzZplO9azZ0927NjBnj17aNiwIbNnz7Ydi4+PZ+3atcyYMYNHHnmEMWPGcODAAfbt20d0dDQAycnJNG7cmF27dhEaGsqUKVMAmDZtGrt372bv3r1Z6jt8+DArV65k+/btTJkyhYyMjGzxbt++nTfffJODBw8ye/ZsypQpw44dO9ixYwdffvklp06dusu7L0Te2Rd2AEIIIYqmT6M/Zc6BOaQYU2z7zNrMy9tfxjfcl4iICFxcXGzHVq9ezcGDB23b165dIzExkTZt2rBhwwZq1qzJM888wxdffMH58+cpX768raUrszp16tgSMCDLM3r79+/ntdde4+rVqyQlJREeHm479sgjj6CUws/Pj0qVKuHn5weAj48PMTExBAYGYmdnR58+fQB46qmn6NmzJwD+/v7069eP7t270717d1uZXbt2xcnJCScnJypWrMilS5fw8vLKEm/Tpk2pVasWAKtWrWLv3r0sXrwYgISEBI4dO2Y7LkR+kRY6IYQQ2UT/Hc3X+7/OkszdkGpK5XzQeWZ9OYvk5GTbfrPZzNatW4mOjiY6Oprz58/j7u5O27Zt2bhxIxs3biQsLAxPT08WL15MmzZt7jiuQYMG8fHHH7Nv3z5ef/11UlNTbcecnJwAsLOzs72/sW00GnMsTykFwC+//MKIESPYuXMnTZo0sZ2fuRyDwZBjOa6urrb3Wms++ugj2z04deoUnTp1uuPPKcSdkoROCCFENl/t/4o0U1qux80uZqq2rJqly7NTp058/PHHtu0brWzVq1cnLi6OY8eOUbt2bVq3bs306dPvKqFLTEykSpUqZGRkMH/+/Du+3mw221rPvvvuO1q3bo3ZbObs2bO0a9eOd99919b6dzfCw8P57LPPbF2zR48ezZL0CpFfpMtVCCFENntj96LRuR43Y8a5gzNxK/4Z7RoREcGIESPw9/fHaDTStm1b2/NozZo1s40CbdOmDRMmTKB169Z3HNd///tfmjVrRs2aNfHz8yMxMfGOrnd1deXAgQM0adKEMmXKsGjRIkwmE0899RQJCQlorRkzZgxly5a949gAhgwZQkxMDI0bN0ZrjaenJz/++ONdlSXEnVBa5/4PtqgJDg7WUVFRhR2GEEL863X4oQN/X//7ludUca3Cqt6rCiii+8PNze2uW9+EuFNKqZ1a6+CCqEu6XIUQQmQT5hWGvcq9E8fBzoH2NdoXYERCiFuRhE4IIUQ2A3wGYG+Xe0JnUAb6NexXgBHdH9I6J/6tJKETQgiRTc3SNXkv9D2cDc442jna9jsZnHA2OPN+2PtUd69eiBEKITKTQRFCCCFyFFY9jF96/sL3R75n43nLZMCh1UJ5vMHjeLh4FHJ0QojMZFCEEEIIIUQ+kEERQgghhBAizyShE0IIIYQo5iShE0IIIYQo5iShE0IIIYQo5iShE0IIIYQo5iShE0IIIYQo5iShE0IIIYQo5iShE0IIIYQo5iShE0IIIYQo5iShE0IIIYQo5gotoVNKOSultiul9iilDiilphRWLEIIIYQQxZl9IdadBrTXWicppRyATUqp37TW2woxJiGEEEKIYqfQEjqttQaSrJsO1pcurHiEEEIIIYqrQn2GTillUEpFA38Df2it/yzMeIQQQgghiqNCTei01iatdSDgBTRVSvnefI5SaphSKkopFRUbG1vgMQohhBBCFHVFYpSr1voqEAk8lMOxL7TWwVrrYE9Pz4IOTQghhBCiyCvMUa6eSqmy1vcuwIPA4cKKRwghhBCiuCrMUa5VgLlKKQOWxPJ7rfXPhRiPEEIIIUSxVJijXPcCQYVVvxBCCCHEv0WReIZOCCGEEELcPUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKOUnohBBCCCGKudsmdEqpd/KyTwghhBBCFI68tNB1zGFf5/sdiBBCCCGEuDv2uR1QSj0DPAvUVkrtzXTIHdic34EJIYQQQoi8yTWhA74DfgPeBl7OtD9Ra30lX6MSQgghhBB5lmtCp7VOABKAvkopA1DJer6bUspNa32mgGIUQgghhBC3cKsWOgCUUiOBycAlwGzdrQH//AtLCCGEEELk1W0TOuB5oL7W+nI+xyKEEEIIIe5CXka5nsXS9SqEEEIIIYqgvLTQnQQilVK/AGk3dmqtP8i3qIQQQgghRJ7lJaE7Y305Wl9CCCGEEKIIuW1Cp7WeAqCUctVaJ+d/SEIIIYQQ4k7kZemvFkqpg8Ah63aAUurTfI9MCCGEEELkSV4GRcwEwoHLAFrrPUDbfIxJCCGEEELcgbwkdGitz960y5QPsQghhBBCiLuQl0ERZ5VSLQGtlHIERmHtfhVCCCGEEIUvLy10w4ERQDXgHBBo3RZCCCGEEEVAXka5xgH9CiAWIYQQQghxF/KylqsnMBTwzny+1npw/oUlhBBCCCHyKi/P0C0HNgKrkcEQQgghhBBFTl4SulJa65fyPRIhhBBCCHFX8jIo4melVJd8j0QIIYQQQtyVvCR0o7EkdalKqUTr61p+ByaEEEIIIfImL6Nc3QsiECGEEEIIcXfy8gwdSqlu/LPcV6TW+uf8C0kIIYQQQtyJ23a5KqWmYel2PWh9jbbuE0IIIYQQRUBeWui6AIFaazOAUmousBt4+V4qVkpVB74BKgNm4Aut9Yf3UqYQQgghREmUl0ERAGUzvS9zn+o2AmO11g2B5sAIpVSj+1S2EEIIIUSJkZcWureB3UqpdYDC8izdhHutWGt9EbhofZ+olDqEZb3Yg/dathBCCCFESZKXUa4LlFKRQIh110ta67/uZxBKKW8gCPgzh2PDgGEANWrUuJ/VCiGEEEL8K+S1y7UFEAaEWt/fN0opN2AJ8LzWOtv8dlrrL7TWwVrrYE9Pz/tZtRBCCCHEv0JeRrl+CgwH9gH7gf9TSn1yPypXSjlgSebma62X3o8yhRBCCCFKmrw8QxcK+GqtNdhGue6714qVUgqYDRzSWn9wr+UJIYQQQpRUeelyPQJkfnitOrD3PtTdCugPtFdKRVtfsmasEEIIIcQdyksLXQXgkFJqu3U7BNiqlFoBoLXudjcVa603YRk1K4QQQggh7kFeErpJ+R6FEEIIIYS4a3mZtmQ9gFKqdObztdZX8jEuIYQQQgiRR7dN6KzzwP0XSMGyRJcCNFA7f0MTQgghhBB5kZcu1/GAj9Y6Lr+DEUIIIYQQdy4vo1xPANfzOxAhhBBCCHF38tJCNwHYopT6E0i7sVNrPSrfohJCCCGEEHmWl4Tuc2AtlsmEzfkbjhBCCCGEuFN5SeiMWusX8j0SIYQQQghxV/LyDN06pdQwpVQVpVT5G698j0wIIYQQQuRJXlronrT+d0KmfTJtiRBCCCFEEZGXiYVrFUQgQgghhBDi7uRlYmEH4BmgrXVXJPC51jojH+MSQgghhBB5lJcu188AB+BT63Z/674h+RWUEEIIIYTIu7wkdCFa64BM22uVUnvyKyAhhBBCCHFn8jLK1aSUqnNjQylVGzDlX0hCCCGEEOJO5HUt13VKqZOAAmoCT+drVEIIIYQQIs/yMsp1jVKqLlAfS0J3WGuddpvLhBBCCCFEAbltl6tSagTgorXeq7XeA5RSSj2b/6EJIYQQQoi8yMszdEO11ldvbGit44Gh+RaREEIIIYS4I3lJ6OyUUurGhlLKADjmX0hCCCGEEOJO5GVQxErge6XULCxLfg0Hfs/XqIQQQgghRJ7lJaF7CRiGZbUIBawC/pefQQkhhBBCiLzLyyhXMzDL+hJCCCGEEEVMXp6hE0IIIYQQRZgkdEIIIYQQxZwkdEIIIYQQxVyuz9AppX7CMqo1R1rrbvkSkRBCCCGEuCO3aqGbDrwPnAJSgC+tryRgf/6HJkTxMWbMGGbOnGnbDg8PZ8iQIbbtsWPH8sEHH+RL3UOGDOHgwYP5UrYQQojiIdeETmu9Xmu9HgjSWvfRWv9kfT0JtC64EIUo+lq2bMmWLVsAMJvNxMXFceDAAdvxLVu20KpVq3yp+3//+x+NGjXKl7KFEEIUD3l5hs5TKVX7xoZSqhbgmX8hCVH8tGrVypbQHThwAF9fX9zd3YmPjyctLY1Dhw7x/PPPEx0dneWavXv3cuXKFbp3746/vz/Nmzdn7969AEyePJmBAwfSqVMnvL29Wbp0KS+++CJ+fn489NBDZGRkABAWFkZUVBQAbm5uvPrqqwQEBNC8eXMuXboEwIkTJ2jevDkhISFMmjQJNze3Arw7Qggh8lteEroxQKRSKlIpFQmsA57Pz6CEKBbORcHSYTC7I1Wj3sZeac6cOcOWLVto0aIFzZo1Y+vWrURFReHv78/w4cOZM2cOAEePHiUtLQ1/f39ef/11goKC2Lt3L2+99RYDBgywVXHixAl++eUXli9fzlNPPUW7du3Yt28fLi4u/PLLL9lCSk5Opnnz5uzZs4e2bdvy5ZdfAjB69GhGjx7Njh07qFq1aoHcHiGEEAXntgmd1vp3oC4w2vqqr7Vemd+BCVGk/fE6zH0Y9v0AZ7fD7vm0Kn+FLXOn2BK6Fi1asGXLFrZs2ULLli157LHH+Pnnn8nIyOCrr75i0KBBAGzatIn+/fsD0L59ey5fvkxCQgIAnTt3xsHBAT8/P0wmEw899BAAfn5+xMTEZAvL0dGRhx9+GIAmTZrYztm6dSuPPfYYAE8++WQ+3hghhBCFIS9LfwE0Abyt5wcopdBaf5NvUQlRlJ1cD9u/gIyUf/ZpEy2rwZZfF7AvuRa+vr5Ur16d999/n9KlSzN48GBKlSpFx44dWb58Od9//72tm1Tr7IPJlVIAODk5AWBnZ4eDg4Ntv52dHUajMdt1mc8xGAw5niOEEOLf57YtdEqpeVhGvLYGQqyv4HyOS4iia9snkHE92+5WNQz8fDiN8nZJGAwGypcvz9WrV9m6dSstWrQALCNSR40aRUhICOXLlwegbdu2zJ8/H4DIyEg8PDwoXbr0fQ25efPmLFmyBICFCxfe17KFEEIUvry00AUDjXROzQhClESXT+a426+iHXHXzTxZw/GffX5+JCUl4eHhAVi6QUuXLs3TTz9tO2fy5Mk8/fTT+Pv7U6pUKebOnXvfQ545cyZPPfUU77//Pl27dqVMmTL3vQ4hhBCFR90uT1NK/QCM0lpfLJiQchccHKxvdFMJUWi+7QXHV+d8TBmgcX945MMcD1+4cIGwsDAOHz6MnV3BLdRy/fp1XFxcUEqxcOFCFixYwPLlywusfiGEKImUUju11gXSq5mXFjoP4KBSajuQdmOnrBQhSqzmz8DpLTl2u2JwgJChOV72zTff8Oqrr/LBBx8UaDIHsHPnTkaOHInWmrJly/LVV18VaP1CCCHyV15a6EJz2m+ddLhASQudKBK0hl/HQfR3/yR1yg7snaDtS9BmTOHGJ4QQokgoUi10Wuv1SqlKWAZDAGzXWv+dv2EJUYQpBV2mQ8Nu8OcsuHoGPOtD8xHg1aSwoxNCCFEC3TahU0o9DrwHRAIK+EgpNV5rvTifYxOi6FIKaodaXkIIIUQhy8szdK8CITda5ZRSnsBqQBI6IYQQQogiIC9PZtvd1MV6OY/XCSGEEEKIApCXFrrflVIrgQXW7T7Ab/kXkhBCCCGEuBN5GRQxXinVE8tKEQr4Qmu9LN8jE0IIIYQQeZKXQRG1gF+11kut2y5KKW+tdUx+ByeEEEIIIW4vL8/C/QCYM22brPuEEEIIIUQRkJeEzl5rnX5jw/re8RbnCyGEEEKIApSXhC5WKWVb5ksp9SgQl38hCSGEEEKIO5GXhG448IpS6qxS6gzwEvB/+RuWKAn++usvnnjiCerUqUOjRo3o0qULR48eLbR4Zs6cyfXr/6zP2qVLF65evXrH5cTExPDdd9/dx8iEEEKIW7ttQqe1PqG1bg40BHy01i211sfzPzTxb6a1pkePHoSFhXHixAkOHjzIW2+9xaVLlwotppsTul9//ZWyZcvecTmS0AkhhChot03olFKVlFKzgR+01olKqUZKqf8UQGziX2zdunU4ODgwfPhw277AwEBat27N+PHj8fX1xc/Pj0WLFgEQGRlJWFgYvXv3pkGDBvTr1w+tNQDe3t68/vrrNG7cGD8/Pw4fPgxAcnIygwcPJiQkhKCgIJYvXw6AyWRi3Lhx+Pn54e/vz0cffURERAQXLlygXbt2tGvXzlZuXJzl6YJvvvkGf39/AgIC6N+/PwCDBg1i8eJ/Fkxxc3MD4OWXX2bjxo0EBgYyY8aM/LyNQgghBJC3Ltc5wEqgqnX7KPB8PsUj/s1MRjj8C0ROY//Pn9PEv2G2U5YuXUp0dDR79uxh9erVjB8/nosXLwKwe/duZs6cycGDBzl58iSbN2+2Xefh4cGuXbt45plnmD59OgBvvvkm7du3Z8eOHaxbt47x48eTnJzMF198walTp9i9ezd79+6lX79+jBo1iqpVq7Ju3TrWrVuXJaYDBw7w5ptvsnbtWvbs2cOHH354y485bdo02rRpQ3R0NGPGjLnXu4ZSypZEAhiNRjw9PXn44Yfvuey7ERkZma91X716lU8//dS2LS2eQghxe3lJ6Dy01t9jnbpEa23EMnWJEHkXewRm+MDSYRD5Nhz5FXbNg00zs5y2adMm+vbti8FgoFKlSoSGhrJjxw4AmjZtipeXF3Z2dgQGBhITE2O7rmfPngA0adLEtn/VqlVMmzaNwMBAwsLCSE1N5cyZM6xevZrhw4djb2+ZhrF8+fK3DH3t2rX07t0bDw+PPJ1/v7m6urJ//35SUlIA+OOPP6hWrVqBxlCQJKETQog7l5eELlkpVQHQAEqp5kDC/ahcKfWVUupvpdT++1GeKKKMaTCnKyRdgvQkAHwqmNl5Ph3WvwOHf7WdeqMbNSdOTk629waDAaPRmO1Y5v1aa5YsWUJ0dDTR0dGcOXOGhg0borVGKZXn8HM7397eHrPZbDsnPT092zn3S+fOnfnll18AWLBgAX379rUd2759Oy1btiQoKIiWLVty5MgRwNKy2LRpUwIDA/H39+fYsWMkJyfTtWtXAgIC8PX1tXVpT506lZCQEHx9fRk2bJjtezh+/DgPPvggAQEBNG7cmBMnTgCQlJSUa/f3jW7qqKgowsLCAFi/fj2BgYEEBgYSFBREYmIiAO+99x4hISH4+/vz+uuvA5Yu6xMnThAYGMj48eOzdWHn9LmEEKKky0tC9wKwAqijlNoMfAM8d5/qnwM8dJ/KEkXVoZ8gIwXr3wQAtK9lIM2k+XLbVVg/DYAdO3ZQrlw5Fi1ahMlkIjY2lg0bNtC0adO7qjY8PJyPPvrIlmzs3r0bgE6dOjFr1ixb4nflyhUA3N3dbYlGZh06dOD777/n8uXLWc739vZm586dACxfvpyMjIxblpNn+5fAJ01hSjl4syqY0nnikQdZuHAhqamp7N27l2bNmtlOb9CgARs2bGD37t1MnTqVV155BYBZs2YxevRooqOjiYqKwsvLi99//52qVauyZ88e9u/fz0MPWf75jRw5kh07dthaAn/++WcA+vXrx4gRI9izZw9btmyhSpUqtnuZW/d3TqZPn84nn3xCdHQ0GzduxMXFhVWrVnHs2DG2b99OdHQ0O3fuZMOGDUybNo06deoQHR3Ne++9l60LO6fPJYQQJV1eRrnuAkKBllimK/HRWu+9H5VrrTcAV+5HWaIIO7fd1jJ3g1KKZX1K8cdJI3UmbMbHx4fJkyfz5JNP2gYftG/fnnfffZfKlSvfVbUTJ04kIyMDf39/fH19mThxIgBDhgyhRo0atnpudOcNGzaMzp072wZF3ODj48Orr75KaGgoAQEBvPDCCwAMHTqU9evX07RpU/78809cXV0B8Pf3x97enoCAgDsfFLH2DVg+0tJFrc2QkQzmDPw3/R8xJ4+xYMECunTpkuWShIQEHnvsMXx9fRkzZgwHDhwAoEWLFrz11lu88847nD59GhcXF/z8/Fi9ejUvvfQSGzdupEyZMoBlkEqzZs3w8/Nj7dq1HDhwgMTERM6fP0+PHj0AcHZ2plSpUsCtu79z0qpVK1544QUiIiK4evUq9vb2rFq1ilWrVhEUFETjxo05fPhwnlrbcvpcQghR4mmtc3wBIUDlTNsDgOVABFA+t+vu9AV4A/vzcm6TJk20KIbWvqX1lPJav14659db1Qs7wqIh/rTW//XMdn9cHdB6Snk9pW+ILl++vN67d69et26d7tq1q9Za64EDB+oPP/xQa631qVOndM2aNW1FHj9+XH/44Ye6Vq1aes2aNVprrS9fvqznzZunW7VqpadMmaJTUlJ0xYoV9ZkzZ7TWWr/++uv69ddf1wkJCbpatWrZwsxct9ZajxgxQn/99ddaa63r1KmjL126pLXWeuPGjTo0NNR23t69e/W0adN0tWrV9KFDh/QLL7ygZ82ala38U6dOaR8fn1zry+1zCSFEUQNE6fuUL93udasWus+BdAClVFtgGpbu1gTgi3zJLnOglBqmlIpSSkXFxsYWVLXifvLrDXb2OR+zc4CAPgUbT1G1fynk9gyh2cjgaieZNGkSfn5+WQ4lJCTYBknMmTPHtv/kyZPUrl2bUaNG0a1bN/bu3cuFCxcoVaoUTz31FOPGjWPXrl2kpqYClpHCSUlJtqlYSpcujZeXFz/++CMAaWlpWebpy0nmbuglS5bY9p84cQI/Pz9eeuklgoODOXz4MOHh4Xz11VckJVlab8+fP8/ff/+drcv65u2cPpcQQpR0t0roDFrrG92hfYAvtNZLtNYTgQfyPzQLrfUXWutgrXWwp6dnQVUr7iePutB4ADiUyrrfzh5KlYe24wsnrqLm+mUw5T6wwss1g9HPZX989cUXX2TChAm0atUKk+mfAeiLFi3C19eXwMBADh8+zIABA9i3b59tQMGbb77Ja6+9RtmyZRk6dCh+fn50796dkJAQWxnz5s0jIiICf39/WrZsyV9//XXLj/D6668zevRo2rRpg8FgsO2fOXMmvr6+BAQE4OLiQufOnenUqRNPPvkkLVq0wM/Pj969e5OYmEiFChVo1aoVvr6+jB8/PlsXdk6fSwghSjqlc2kRsI48DdRaG5VSh4Fh2vLMG0qp/Vpr3/sSgFLewM95KS84OFhHRUXdj2pFQdMadn0DG6ZDwhmwd7a03LWfBO6VCju6omH/ElgxKtvzhjZla8Lz0holhBDFhVJqp9Y6uCDqyqUfDIAFwHqlVByQAmy0BvcA92/akgVAGOChlDoHvK61nn0/yhZFjFLQZKDlZTaBsrPsE/9o8Aj8+mLOCZ1DKWnJFEIIkatcEzqt9ZtKqTVAFWCV/qcpz477NG2J1rrv7c8S/zp2htufUxLZO8LAn2Duw5a5+9KTLN3SdvbQuD8EPVXYEQohhCiibtVCh9Z6Ww77juZfOEKUcJUawQuH4OByOB8FzuXA/3GoUKewIxNCCFGE3TKhE0IUAnsnSxLn/3hhRyKEEKKYyMtKESKfGAwGAgMD8fX15ZFHHuHq1avAvS9+fqfXx8TE4Ot76zEpbm5udx3PndYlhBBCiDsjCV0hcnFxITo6mv3791O+fHk++eSTwg5JCCGEEMWQJHRFRIsWLTh//rxtO7fFz9esWUNQUBB+fn4MHjyYtLQ0AH7//XcaNGhA69atWbp0qa2c5ORkBg8eTEhICEFBQSxfvvyWcdxu4fOkpCQ6dOhA48aN8fPzs5UXExNDw4YNGTp0KD4+PnTq1ImUlBQAdu7cSUBAAC1atJCkVQghhMgHktAVkszz/5lMJtasWUO3bt1s+3Ja/Dw1NZVBgwaxaNEi9u3bh9Fo5LPPPiM1NZWhQ4fy008/sXHjxiyTv7755pu0b9+eHTt2sG7dOsaPH09ycnKucd1u4XNnZ2eWLVvGrl27WLduHWPHjrV9lmPHjjFixAgOHDhA2bJlbSsFPP3000RERLB169b7cu+EEEIIkZUkdAUoPdXIn8tPMnvsRj59Zh3Xr6dQr1YjKlSowJUrV+jYsaPt3JwWPz9y5Ai1atWiXr16AAwcOJANGzZw+PBhatWqRd26dVFK8dRT/0xvsWrVKqZNm0ZgYCBhYWGkpqZy5syZXGO83cLnWmteeeUV/P39efDBBzl//jyXLl0CoFatWgQGBgLQpEkTYmJiSEhI4OrVq4SGhgLQv3//+3IvhRBCCPEPSegKSHqqkcXvRLH7jzOkJmcA4GBw5IWunzL9mcWkpaZl6Y50cnKyvTcYDBiNRnJb1QNA5TJJr9aaJUuWEB0dTXR0NGfOnKFhw4a5lvPkk0+yYsUKXFxcCA8PZ+3atVmOz58/n9jYWHbu3El0dDSVKlWyrQWaW8y5xSaEEEKI+0MSugKye+UZrsWmYjKas+w3Gc0YE+0Z9thLTJ8+nYyMjFzLaNCgATExMRw/fhywrLMZGhpKgwYNOHXqFCdOnABgwYIFtmvCw8P56KOPbMng7t27bxnn7RY+T0hIoGLFijg4OLBu3TpOnz59y/LKli1LmTJl2LRpE2BJCIUQQghxf0lCV0D2bzifLZm7wWQ0k3G2LAEBASxcuDDXMpydnfn666957LHH8PPzw87OjuHDh+Ps7MwXX3xB165dad26NTVr1rRdM3HiRDIyMvD398fX15eJEyfeMs7bLXzer18/oqKiCA4OZv78+TRo0OC2n/3rr79mxIgRtGjRIlsXrhBCCCHunbpVN15RExwcrKOiogo7jDumtebTZ9bd9rxnP2sn3ZNCCCHEv4RSaqfWOrgg6pIWugKglMLZ1eGW5zi7OkgyJ4QQQoi7IgldAfFtWw2Dfc6322Bvh29otQKOSAghhBD/FpLQFZCg8BqU9nTOltQZ7O0o7elMUKcahRSZEEIIIYo7SegKiKOzPb1fCiaoUw1b96uzqwNBnWrQ+6VgHJ3tCzlCIYQQQhRXkkUUIEdne5p1q02zbrVlfjYhhBBC3DfSQldIJJkTQgghxP0iCZ0Q+UQplWWpM6PRiKenJw8//PAtr4uKimLUqFH5HZ4QQoh/EelyFSKfuLq6sn//flJSUnBxceGPP/6gWrXbj2YODg4mOLhApi0SQgjxLyEtdELcR0azkZiEGM4mngWgc+fO/PLLL4BlSba+ffvazt2+fTstW7YkKCiIli1bcuTIEQAiIyNtrXiTJ09m8ODBhIWFUbt2bSIiImzXf/vttzRt2pTAwED+7//+D5PJVFAfUwghRBEjCZ0Q94HWmm8OfEPY92E8/vPj9Fzek1RjKtXbVGfhwoWkpqayd+9emjVrZrumQYMGbNiwgd27dzN16lReeeWVHMs+fPgwK1euZPv27UyZMoWMjAwOHTrEokWL2Lx5M9HR0RgMBlknVwghSjDpchXiPnh/5/t8f/h7Ukwptn0azVeXvyL+SDwLFiygS5cuWa5JSEhg4MCBHDt2DKUUGRkZOZbdtWtXnJyccHJyomLFily6dIk1a9awc+dOQkJCAEhJSaFixYr59wGFEEIUaZLQCXGP/r7+NwsOLSDdnJ7tWKoplbT6aYwbN47IyEguX75sOzZx4kTatWvHsmXLiImJISwsLMfynZycbO8NBgNGoxGtNQMHDuTtt9++759HCCFE8SNdrkLcozVn1txyGhqPUA8GPj8QPz+/LPsTEhJsgyTmzJlzR3V26NCBxYsX8/fffwNw5coVTp8+fWeBCyGE+NeQhE6Ie5SckYzRbMz1uHMFZx4Z+Ei2/S+++CITJkygVatWdzygoVGjRrzxxht06tQJf39/OnbsyMWLF+84diGEEP8OSmtd2DHkWXBwsI6KiirsMITIYuuFrTy/7nmuG6/neNzR4MhP3X+iqlvVAo6sZFNK8dRTTzFv3jzAMg9glSpVaNasGT///PMdl3f16lW+++47nn322fsdqhDiX0optVNrXSDzUEkLnRD3qFmVZpRzLocie7erg50DIZVCJJkrBJnnAQTyPA9gbq5evcqnn356v8ITQoj7ShI6Ie6RnbLji45fUMGlAqXsS9n2l7IvhXdpb95p+04hRley3WoewCtXrtC9e3f8/f1p3rw5e/fuBXKf++/ll1/mxIkTBAYGMn78eJKSkujQoQONGzfGz8+P5cuXAxATE0PDhg0ZOnQoPj4+dOrUyZZUfvnll4SEhBAQEECvXr24fj3nVl0hhLhjWuti82rSpIkWoqhKM6bpFcdX6PHrx+tXNr6i159dr40mY2GHVWK5urrqPXv26F69eumUlBQdEBCg161bp7t27aq11nrkyJF68uTJWmut16xZowMCArTWWr/++uu6RYsWOjU1VcfGxury5cvr9PR0ferUKe3j42MrPyMjQyckJGittY6NjdV16tTRZrNZnzp1ShsMBr17926ttdaPPfaYnjdvntZa67i4ONv1r776qo6IiMjv2yCEKERAlC6gHEmmLRHiPnE0OPJInUd4pE72ARAi/0Ue+ZuINcc4cimRMi4OZJg09Rr6EBMTk+M8gJs2bWLJkiUAtG/fnsuXL5OQkADkPPffzbTWvPLKK2zYsAE7OzvOnz9vO69WrVoEBgYC0KRJE2JiYgDYv38/r732GlevXiUpKYnw8PB8uhtCiJJGEjohRLE3Z/Mp3vn9MCkZZgCS00xkmMz0/WIbXR9+JMd5AHUOA8JuTD+T09x/N5s/fz6xsbHs3LkTBwcHvL29SU1NzfH6G12ugwYN4scffyQgIIA5c+YQGRl57x9eCCGQZ+iEEMVcwvUM3v7tn2Qus8N/JVK1aRcmTZqUbR7Atm3b2pZLi4yMxMPDg9KlS+daj7u7O4mJif/Um5BAxYoVcXBwYN26dXmaBzAxMZEqVaqQkZEhS7UJIe4raaETQhRraw5fwmCX88TOKRkmVsVksGT06GzHJk+ezNNPP42/vz+lSpVi7ty5t6ynQoUKtGrVCl9fXzp37sxLL73EI488QnBwMIGBgTRo0OC2sf73v/+lWbNm1KxZEz8/vywJohBC3AuZh04IUax9u+00b/xykNQcWugAGlR25/fn2xZwVEIIIfPQCSFEnoV4l8/1mKNBEVrPswCjEUKIwiEJnRCiWKtf2Z3gmuVwss/+vzMHezsGtfIu+KCEEKKASUInhCj2vhgQTLsGFXG0t8Pd2Z5SjgZqli/FomEtqFLGpbDDE0KIfCeDIoQQxV4pR3tmPdWEv6+lcuzvJMqVcqRhFXfbNCRCCPFvJwmdEOJfo2JpZyqWdi7sMIQQosBJl6sQQgghRDEnCZ0QQgghRDEnCZ0QQgghRDEnCZ0QQgghRDEnCZ0QQgghRDEnCZ0QokC5ubnluH/QoEEsXrz4lteGhYUhy/8JIUR2ktAJcQtKKcaOHWvbnj59OpMnT75v5cfExKCUYuLEibZ9cXFxODg4MHLkyLsqc9KkSaxevfp+hSiEEKIYkIROiFtwcnJi6dKlxMXF5VsdtWvX5ueff7Zt//DDD/j4+Nx1eVOnTuXBBx+8H6HlK601I0eOpFGjRnTt2pW///7bdmzq1KmEhITg6+vLsGHD0Frbjv3www80bdqUevXqsXHjRgBSU1N5+umn8fPzIygoiHXr1hX45xFCiMIkCZ0Qt2Bvb8+wYcOYMWNGtmOxsbH06tWLkJAQQkJC2Lx5MwB+fn5cvXoVrTUVKlTgm2++AaB///45tpy5uLjQsGFDW1fiokWLePzxx29bz6OPPmor+/PPP6dfv35A1q7LHTt20LJlSwICAmjatCmJiYkFn/yYTXB0Ffz8AvwyDrQJtGbZsmUcOXKEffv28eWXX7JlyxbbJSNHjmTHjh3s37+flJSULAmv0Whk+/btzJw5kylTpgDwySefALBv3z4WLFjAwIEDSU1Nzd/PJYQQRYgkdCXUmDFjmDlzpm07PDycIUOG2LbHjh3LBx98cEdlRkZGZvmlfENMTAxeXl6YzeYs+wMDA9m+fTtDhgzh4MGDd1TXrFmzbMlMbqKiohg1atQdlZtuSuf3mN/5bM9nLDi8AI1mxIgRzJ8/n4SEhCznjh49mjFjxrBjxw6WLFliu3+tWrVi8+bNHDhwgNq1a9takbZt20bz5s1zrPeJJ55g4cKFnDt3DoPBQNWqVW9bzxdffMHUqVPZuHEj77//Ph999FHWz5KeTp8+ffjwww/Zs2cPq1evxsXFpWCTn5R4mNUaFj8NUbNhx5dgTIPZHdmwbg19+/a1fd727dvbLlu3bh3NmjXDz8+PtWvXcuDAAduxnj17AtCkSRNiYmIA2LRpE/379wegQYMG1KxZk6NHj+bPZxJCiCJIlv4qoVq2bMkPP/zA888/j9lsJi4ujmvXrtmOb9myJUvClxeRkZG4ubnRsmXLLPu9vb2pXr06GzduJDQ0FIDDhw+TmJhI06ZNadq0aY7lmUwmDAZDjseGDx9+23iCg4MJDg7Oc/zbL27n+XXPY9ImUowpOBocSTWmMvfEXPr3709ERAQuLv8s9L569eosiei1a9dITEykTZs2bNiwgZo1a/LMM8/wxRdfcP78ecqXL5/rgICHHnqIiRMnUqlSJfr06ZPlWG71VKpUialTp9KuXTuWLVtG+fLls1x35MgRqlSpQkhICAClS5cGLMnPc889B2RNfvz9/fN8r/Js6TCIOw7m9H/2aQ1/7YVTl1CNs38/qampPPvss0RFRVG9enUmT56cJeF0cnICwGAwYDQarUXqbOUIIURJIi10JYg2mUjeto2EFSsIdHS0taYdOHAAX19f3N3diY+PJy0tjUOHDhEUFMTOnTsJDQ2lSZMmhIeHc/HiRQAiIiJo1KgR/v7+PPHEE8TExDBr1ixmzJhBYGCgrVXqhr59+7Jw4ULb9sKFC+nbty+QdeSim5sbkyZNolmzZmzdupXZs2dTr149wsLCGDp0qG2gwOTJk5k+fbrt+pdeeinbc1WRkZE8/PDDAGzfvp2WLVsSFBREy5YtOXLkSJb4YhJiGLl2JIkZiVw3XkejSTOlAfDNgW+o3qU6s2fPJjk52XaN2Wxm69atREdHEx0dzfnz53F3d6dt27Zs3LiRjRs3EhYWhqenJ4sXL6ZNmza5fjeOjo40adKE999/n169emU5lls9YGllq1ChAhcuXMj+fWud4+L0BZb8XLsAp9ZnTeZuMKbR1v0MC7/7FpPJxMWLF21dvzeSNw8PD5KSkm478hWgbdu2zJ8/H4CjR49y5swZ6tevf/8+ixBCFHGS0JUQCb/8wrHWbTg3YiQXJ0/BPPW/6NhY9s36nC1bttCiRQtbEhUVFYW/vz9KKZ577jkWL17Mzp07GTx4MK+++ioA06ZNY/fu3ezdu5dZs2bh7e3N8OHDGTNmDNHR0dmSl8cff5wff/zR1qKyaNEinnjiiWxxJicn4+vry59//knt2rX573//y7Zt2/jjjz84fPhwrp8vp+eqMmvQoAEbNmxg9+7dTJ06lVdeeSXL8a8PfE26KYfEA0g1pTLv9Dx6P9ab2bNn2/Z36tSJjz/+2LYdHR0NQPXq1YmLi+PYsWPUrl2b1q1bM3369FsmdGDp5n7nnXeoUKFClv251bN9+3Z+++03du/ezfTp0zl16lS2z3zhwgV27NgBQGJiIkajseCSn7hjYHDK9XAPPzfqenni5+fHM888Y2u9LVu2LEOHDsXPz4/u3bvbWhhv5dlnn8VkMuHn50efPn2YM2eOrSVPCCFKAulyLQGuLl/BX6+/js7UbaWBICdnVr39NlE1a/DyRx9x/vx5tmzZQpkyZWytWPv376djx46ApQu0SpUqAPj7+9OvXz+6d+9O9+7dbxtD5cqV8fHxYc2aNVSqVAkHBwd8fX2znWcwGGwtVNu3byc0NNTWlfjYY4/l+lxUTs9VZZaQkMDAgQM5duwYSikyMjKyHF9/dj0mbco1/nRTOr2H9ObTTz617YuIiGDEiBH4+/vbEqVZs2YB0KxZM0wmS3lt2rRhwoQJtG7dOtfyAXx8fHIc3ZpTPR9++CFDhw7l66+/pmrVqrz//vsMHjyYtWvX2q5zdHRk0aJFPPfcc6SkpODi4sLq1at59tlnGT58OH5+ftjb2+df8uPqCWZjtt1Jr1i6fpU5g49nvg9lqmU754033uCNN97Itj8yMtL23sPDw/ZdOzs7M2fOnPsSthBCFEeS0BWQN998k++++w6DwYCdnR2ff/45zZo1u+NyIiMjcXR0tD2nNmjQIB5++GF69+6d4/k6PZ1L//0vPnuiqevkhFFr7JXi0dJlCHRxZve1a+yJiqJRnTpUr16d999/n9KlSzN48GC2b9+OwWCwtQhl9ssvv7BhwwZWrFjBf//7Xw4cOMC2bdto27ZtrrHf6HatVKmSrbv1Zs7Ozrbn5u6kazCn56oymzhxou1Zs5iYGMLCwrIcN2tztmsAGn3eCACFopxnOa5fv2475uHhwaJFi3K8bt68ebb3LVu2zDYg5AZvb2/279+fbf+gQYMYNGjQLevZs2eP7X23bt3o1q0bQJbEJiQkhG3btmW7tkCSn4oNoXQVuHwih4MKKvnmmMwJIYS4c4Xa5aqUekgpdUQpdVwp9XJhxpKftm7dys8//8yuXbvYu3cvq1evpnr16ndVVm4jSXOTtGEDWmuclGKZdy1+qlWb/3lVZ0NyEkfT0lifnERZgz3X10VSvnx5rl69ytatW2nRogXVq1cnPT2drVu3ApCRkcGBAwcwm82cPXuWdu3a8e6773L16lWSkpLYvn078fHxucbSq1cvfv3111y7W2/WtGlT1q9fT3x8PEajkSVLluT5c98sISGBatUsyUNOyUyzKs2wU7n/c1BKUbtM7buuv0RSCnrNBkdXUJn+drRzACd36P5Z4cUmhBD/MoWW0CmlDMAnQGegEdBXKdWosOLJTxcvXsTDw8PWiuTh4WGblmLNmjUEBQXh5+fH4MGDSUuzPIjv7e1tm8w2KiqKsLCwXAcebNiwgZYtW1K7du1sD5BnXLgIN3UvVrC3Z0qlyqy8do14k4la9vaEvzCGxo0bExMTg6OjIx4eHjg4ONC4cWNeeukl6tatS+nSpVm+fDl//PEHvr6+ODs7U7FiRZ577jm++eYbEhMT+eijj3Bzc2Pjxo0888wzBAcH4+Pjw+uvv07ZsmVp3rw5lSpVolatWre9b9WqVeOVV16hWbNmPPjggzRq1IgyZcrc1Xfw4osvMmHCBFq1amXrCs1siN8QHO0cc7zW2d6ZAY0G4GBwuKu6S7SqQTB8MzR+CtwqgXsVCBkMz24DTxm0IIQQ943WulBeQAtgZabtCcCEW13TpEkTXVxcTkrTH605qnt/tlk/9dk6Xbu+j65bt65+5plndGRkpNZa65SUFO3l5aUB/cILL+j+/fvrGTNm6Pfee0+XKVNGx8bGaq213rFjhw4NDdVaa/3666/r9957z1bPwIEDde/evbXJZNIHDhzQderUyRLH1RUr9OpGPlqBPli/QZZXaTs7vaHOA3qXv7++8M08rbXWR48e1Tfu87p163TXrl315s2bdePGjfXp06dtMR85ckRrrW0xa611zZo1bTFrrfXly5e11lobjUYdGhqq9+zZc8f3MTExUWutdUZGhn744Yf10qVL77iMvFp1apUOnhesg+cFa985vjpgboBuMq+Jfm3ja9pkNuVbvUIIIf6dgChdQHlVYT5DVw04m2n7HHDnD5UVQUcvJdL7sy2kGc2kGS3PTrn0fgevtNOUd/6LPn36MG3aNIKCgqhVqxaxsbEsXbqU999/n2+//TbbPG630717d+zs7GjUqBGXLl3KcsytXTvI5fmtG0+oGU1mxv38E3vffQeDwZBl4MGhQ4cYNmwYq1atomrVquzZs4datWpRr149AAYOHMgnn3zC888/n63877//ni+++AKj0cjFixc5ePDgHc91NnnyZFavXk1qaiqdOnXK0wCMu9XRuyNNqzRlxYkVHI0/SgXnCnSr043aZaWrVQghRNFWmAld9gmy/skx/jlJqWHAMIAaNWrkd0z3xTPf7iQx1Zjlw6QY4Zxzbfp37sJH/n58HRFBNR8f0k+exAAMeeqpLN2ldnZ2mM1mYmNjGTt2LLt27SIkJAQ/Pz8aNWqEn5+frct1+PDhmEwmBgwYQGpqKqtXr7at5Wlwc6NM797wxn8BMGnNB7GxbE5OItlsZk1qCkk1a2AEKlSoQOXKldmzZw/Jycm8/PLL/PXXX5jNZj788EPeeecdDhw4wJ49e2jSpAkeHh785z//ITk5mcaNG9tiP3bsGD169CA1NZUdO3ZQrlw5Bg0adFerEdyYa66glHEqQ/9G/Qu0TiGEEOJeFeagiHNA5pEBXkC22VG11l9orYO11sGenp4FFtzdOvJXIheupmZJ5jIunyPjynlSMkwsXrOPyNdeo9zhI3iui+T0pUuY09MJX/Yjy5cuta2aULZsWXbu3Mno0aOpVKkSTZo0YcmSJfz8888kJibalpeKj4+nYsWKtuTOZDJlW16qwuCnQSmUoyNLk5MxKPBwdGSopyfLtOZKjRpUqFCBHTt22BKz33//nQoVKtCuXTtiYmL45ZdfWL16NREREbi7u7No0SLbvHRdunShTJkyODg4kJiYyNdff83DDz+Mq6srZcqU4dKlS/z2228Fcv+FEEKIkqgwW+h2AHWVUrWA88ATwJOFGM99EZeUhr1BQaZxCOaMVOL/mIU5LRm761dIsTcwpWJFnJTizcpVGHLuLE8eO0YNO0X8nr14NmlMaGgoo0eP5tSpU5QrZ5kuo1u3biilWLJkCYmJiVy7do1Lly4RHh7Orl27OH/+PEqpbMtLKaXQWtPHbOLk5TjSMzIo5+ZGoqcnidev06ZtW9544w0MBgPx8fG4urri5+fHzp07cXV15ejRo/z666+0b9+eixcvUrlyZfz8/GyLzw8fPhwPDw++/PJLOnfuzOnTpzl37hx//fUXPj4+1K5dm1atWhXwNyGEEEKUHIWW0GmtjUqpkcBKwAB8pbU+cJvLirw6nm6kG7M+s+ZU+QEq959O8KVDvBb1LU4ZabZjLVxdcVaK5bVqcdVk4rEflzGkfj1q1qzJ119/jYeHB6dPn86yhijA2bNn6dOnD7Vq1WLcuHGMHj2axYsXM2bMmBzj8vHxYc/+/fTq1Ythw4YRHh6e5XitWrWYPn06b7/9Nm+//TbLli3j0qVLvPPOO0yYMMHWcujv72+bxiSzXr16MWXKFN577z3mz59PhQoVbNODuLm5kZSUdMf3UgghhBB5U6jz0Gmtf9Va19Na19Fav1mYsdwvlcs406auB46G7I8IPnR2Z5Zk7mZlDQbCS5dm9hdf2Pbd7+WlwsPD+eyzz2wrJRw9ejTL+qQ3fPXVV7Rs2ZLr168zbtw49u/fj6OjI7GxsdnmpQPLhMDh4eE888wzPP3007eMQQghhBD3l6zlmg9m9AkkoHpZXBwMONrbUcrRgJO9HT5uOY82zWxwlapcvnLFth0REWFbW7VRo0a2paXAsrzUjdGmbdq04fz58zkuL2U0Gm1z4A0ZMoRGjRrRuHFjfH19+b//+79sKyskJSWxZcsW4uLimDZtGm+++SYjR47Ezs6OxYsXM3r0aFxdXSldujSdO3e2TXQcHh7O5cuXefnll/H19bU913dDXFwcLVq04JdffiEmJoY2bdrQuHFjGjdufEeTJQshhBAiK6XvYHmlwhYcHKyjoqIKO4w823cugR0xV3Bzsqdjo0qkffAO8Yu+hxyWprpBOTlRZ9VKHCpVuuf6lVK88MILtsXYmzZtSlJSEpMnT85+8vUrcGEXGJz4dsMJ1m3YyOzZs2nZsiUff/wx5cuX5+GHH2b//v1cv34dOzs7nJ2dOXbsGH379iUqKopHHnmEP/74g3Pnztme+3N3d8fNzY0TJ07QrVs33njjDTp27JhrGUIIIcS/hVJqp9Y6uCDqkrVc85GfVxn8vP5Z2SDtySe5ungJOreETilcAvzvSzIHlvVNZ8+ezcqVK5k3bx5r1qzJfpIxHX4dB3sXgsEJ0CyYG8fzzz0HwBNPPMGCBQsYMWKE7ZKMjAxGjhxJdHS0bd66Hj16cPDgQYxGI++++y5PPvkkgYGBtvM7dOjAJ598QmhoaK5lCCGEEOLuSEJXgJzq1KFMzx4k/LgcnZJCk6NH2Fnvn+WP7EqVovLEiXddvjabSd66laR169DpGdgrxYtjx5KcmkpQUFCWhC42Npbhw4dzZs8GSL3KzE6OtKieivfMJP5O1ux/9QPUW3M5d+kKlSpVon79+pw8eZKgoCASEhIIDw9nz549xMbGUrlyZWJiYnjwwQf55ZdfqFy5Mv3798fR0bKUVkZGBu7u7qxcudKW0M2YMYNKlSqxZ88ezGYzzs7Od/25hRBCiJJOnqErYJUnTaLCsGHYubmhlLL819kJZx8fan73HU51697y+rCwMFauXJll38yZM6lVowYv1q/P+edGEf/tfK5+/z06PZ3wJUv59quvSEhIyHLN6NGj6d8jnJpO11jymDNDfkrFTikeKG9Hcy8Dp593Y1FvV8LCwkhJSaF06dLUqlWL3bt3U6dOHQ4ePIidnR39+vUDYPfu3TRv3pzz588zYMAA/vOf/xASEsLOnTtxcXEhMTGRPXv2MG3aNAASEhKoUqUKdnZ2zJs3L8f1VYUQQgiRN5LQ3QdKKfr3/2d1AaPRiKenJw8//HCO53o+M5x6WzajnJyo+u67eC9dyqe1axHcqyd+fn4sWrQIgGeffZYVK1YQGRlJ5cqVGTx4MH379mXq1Km89tprgGXZr1dffZWMS5dwS0rGfP26rS6tNY4pKXTVmvdffRWwjJIdOXIkq1evZvJ/3+T4FTPdFlznWpomMU0Tn6JJSrc8V7lwx9/0eaQjkydPJiIigtOnT+Pn58eJEyfYtWsXzZs3Z9++fbYpVezs7DAYDLRr144lS5bg5OREQEAAqampnD17lpdffpl169bx6aef8uyzzzJ37lyaN2/O0aNHcXV1zZ8vRwghhCgJCmrR2PvxurFofH6Ki4vTAQEBOiAgQFeqVElXrVrVtp2WlmY7D9BPPfWU1lprV1dXHRAQoD08PHTXrl31r7/+qr29vXX9+vWzlX85KU1vPRGnT8YmaVdXV6211osXL9bt27fXRqNR//XXX7p69er6woULesGCBXrcuHF63bp1ukyZMrpZs2Y6Li5OOzk56RUrVmittd69e7euVr68nlzNS5exs9PjPT11Y2cXPbBcOW0HemC5cvr7mjW1o52drlq1qq5Xr562t7fXFSpU0IcWT9M+Fe21fr20/vpRZ92jgb0Or2PQDnboESEO2rusnY47sUfXrFlTt2zZUi9fvlw/+uijum7durpUqVL6888/1wEBAfrkyZO2z1euXDkdGxur161bp1u1aqWTk5O11lqHhobqdevW5dfXJoQQQhQ5QJQuoBxJnqG7SYUKFWxzvU2ePBk3NzfGjRuX5RxzWhquzs7s/u03jg4YiM7IoK63N1evXgVgwYIFDB8+3DZtx/bt2xk9+nlOXrrCtXQ7qnd/Abty1biemk63Hj3ZvycaJycnBg0aRO/evQkNDWXHjh0sWrSIgwcP4uPjg4urC9edr/P8nOdJz0hnxHMjePvtt9Fak5KYyAdXr3LNbGZlYiIn0tKINRlxBF6qWIkeMacwaM3luDgMBgNgmd9u7uaz3Fg+90yCmei/TOz+PzcmR6by5a4MQmqUokItPwCuXbtGtWrV+Oqrrxg7dizHjx8nIiKCFi1aMH/+fF577TV+++034uPjAUuXarly5ShVqhSHDx9m27Zt+fvFCSGEECWYJHSZpJvSSTGm4O7ojp36pzd6586dvPDCCyQlJVG+VCleT0lFp6dzxWjkmWVLSU1P55cVK6jo6YnZbCYyMpI///yTM2fOULduXerWrcu2P7fh5OmNMS2ZE7PHYOdaDm3K4Kflyylfrqxt3rYffvgBrTUrV67kypUrGAwGhj0zjIzUDOza2LFy20q0nebchXMkXU8iPjaebh4ebLYmUqfT0zECf2dkoJQi1mjkaFoay+rVp++Z07Zn1SIiIhg0aBDH46HRp8lUKgUdatlTxlnRz9+RmX9m0LJ9Z1CWCZJffPFFHnvsMYxGI6mpqVy/fh2DwcD777/P+++/T+PGluXKatSoAcBDDz3ErFmz8Pf3p379+tnWlxVCCCHE/SMJHXAy4SQzomaw6cImFApne2eebPAkJrMJrTXPPfccy5cvp5TBkc+bBvNBXCxaa8obDJxIS8MRKG8wcCk2Fvdjx/D392fTpk14enqyb98+3N3dQWtMxnRMyQkY3CvgUjOAxMvncKrozYgXRvP+lAmsXbuW0NBQypUrR5cuXfj66695IPgBjh84Dg7gXM+Zi9MvggJt1CSmJQKgnJ2p6eDAZZOJUFdXTqSnE5ORwfMVPNiTkoK9UtRxdCQpPp7pERG8+uqreHh48PHHH1vmlnuvK3O+/Iyoi2ZwdCO4jiNd29Sj45Mjbfeoc+fOVK9enddee41Vq1ZRqlQpwsLCcHJyYtWqVbbzZsyYYXv/22+/Fdh3KIQQQpRkJT6hOxp/lAG/DuC68Tra2v2YkZ7BnANzyDiRQc8GPdm/fz++TdtgvhpP2ZRrVDRYWu9K2dlx3awxAWFu7vyYcJXDJ07QZ+BAzp49S0JCAs7Ozjg6OmI0GnGuGUjy/jWY4i+QlBgHaNLizuJRxxdXV1fatm1Leno6JpOJX3/9FVdXV04cPoEpxQQaTr1zCp3+z0TQxkTLfHa//fWXbW67nxIT0VhGu1wwZlDJwQE7oMuZ07g3aUKpUqWy34TO7xC/ryy/ffIx9P8RqgbBxu7ZTpNuVCGEEKJoKvGjXKdsmUKyMdmWzN2QZkojLiWOo1eO4uRZk7L9ZvBl/QBWeHvzv+o1bOcFl3IhAwh3d8PRzo6ajo5U9fTE3v6fXNnd3R2UHeaUa2hjOgBVh35BmbYDUQZ7Jv6nF7GxsRgMBurUqUNiYiIZGRmUr1gejxYeOHs5g3XVMEMZA861nLFztrvx+BvBTZvi7uiIPTCsfHkaWJf5auXqRkApF9wNBjxq1MDZ2Zk9e/bY5ofLrFzFKnR+pAdUDwFDznn+Qw89hNFoRClFt27dbN2o06dPz3n1iVuIjIzMstzXoEGDWLx48W2v++uvv3jiiSeoU6cOjRo1okuXLvdlUuKYmBh8fX0BiIqKYtSoUfdcphBCCFFQSnRC91fyXxyJP5Lr8QxzBrsv7yMh/jLXTh/A2ZROhtYcS0uzndPezQ0HoI6jE3aAl6Mj2mjEbNYkphrp8H4kiYbSoM2YEv4CrUEZ0GYjDqVcKVWmAk6ODlSqVIkyZcrg6OiIyWSiR48exP4Vi0crD1wbWqb00GaNm48bqadSMaeasXO1fH1ms5l6gYHY2dmxIfk6j1TwAOCLK1d4/vJlkgwG9h46xJEjRzCbzSil8PX15ZFHHmGidSLjsLAwIiMjAThw4AB///03zz//PP7+/vzxxx94eHjg5OTEb7/9hpOTExkZGSxevJiwsLA7vu9GozFbQpcXWmt69OhBWFgYJ06c4ODBg7z11ltcunQpz9ebzbdfTzc4OJiIiIg7ik0IIYQoTCU6obucchkHO4dbnpOckUzlnhOIj5zDkMN76BlziuiUFNvxCvb27Knf4J8L7OwwOTpxJllhrh7EidhkUhNiAdAZ6Th7NcLg4ETcNy8Qv/pLSLnKlStXcHV15dKlS1y5cgWz2cy3336LMcPIgSkHSNhmnRTYCAnbE2zfmvm6JTnRWlO6bFmUgwOH09P4LP4Kys4OXac2cW5uODo5YTKZUErh6OhIzZo1ee655zAYDPTv358uXbqQkukzzZo1i9GjRxMdHU1UVBReXl5Z7om9vT3Dhg3L8rzcDadPn6ZDhw74+/vToUMHzpw5A1ha4F544QXatWtHnz59mDVrFjNmzCAwMNA2GnjDhg20bNmS2rVr59hat27dOhwcHBg+fLhtX2BgIG3atCEpKYkOHTrQuHFj/Pz8WL58OWBpeWvYsCHPPvssjRs35uzZs4wfPx5fX98sc/5lFhkZaZtDcPLkyQwePJiwsDBq166dJdHr3r07TZo0wcfHhy+++CJbOUIIIURBKdEJXSXXSqSb0nM/3qMSPj2a4lqlLpX7vUOjJ9/ihwfq81jZsuysV5+5NWri62yZVLecvT2bGvnw/cSJODbqgGefNyjTwZJ4VB/5LcrBmVa9XuE1j7K0djKwp2E99vv4EODkRLOGDTlw4AAGgwGTycQzzzyD0WikSv0gGkwfRsWeVcEO7JzscK7qTI3nauBUxQmDi4Hqtavj4ODA7t276dq1K0OHDqVGrVqUcnXloe7dOX/+PIGBgbi5udGqVSvS0tLo2rUrvXv3Jjo6mj59+uDm5pYlsWnRogVvvfUW77zzDqdPn8bJ2Yk1p9fw9O9P03lJZ9JMafg/6s/8+fOzrUAxcuRIBgwYwN69e+nXr1+WrsujR4+yevVqlixZwvDhwxkzZgzR0dG0adMGgIsXL7Jp0yZ+/vlnXn755Wzfx/79+2nSpEmO35WzszPLli1j165drFu3jrFjx2KZAgiOHDnCgAED2L17N1FRUURHR7Nnzx5Wr17N+PHjuXjx4i1/Tg4fPszKlSvZvn07U6ZMISMjA4CvvvqKnTt3EhUVRUREBJcvX75lOUIIIUR+KdEJnYeLB40rNc4yRUlmLvYuDAsYhMmaGBwtV4NVNUJINWRv1VMODjhUrUKF//s/Fu04S2pG1q49O21m+sZPqHr5DJjN6OQkdGoqMQkJ1L90iZQff2TIkCGYzWbWr19PWY9KXElTXL/YGXNaRVs5FbtX5OK8i6T9lUajxo0o716eK1eu0LBhQ+zt7XFwcKBnz54YjUYcHByoVasWpUqVIjk5mQsXLuDm5gZYkqM2bdrw008/sX79eo4dO2ar48knn2TFihW4uLgQHh5Oj/d7MGHTBKIuRXEu6RxmbWbK7ilUbluZDz/8kKtXr7Jw4ULq1q3Lr7/+SlRUFOnp6Wit+f33323lPvbYY7Z58ObPn5+lVRAsLV52dnY0atQoz92oN2iteeWVV/D39+fBBx/k/PnztjJq1qxpe95v06ZN9O3bF4PBQKVKlWxz/t1K165dcXJywsPDg4oVK9rKjYiIICAggObNm3P27Nks91AIIYQoSCU6oQOY3HIypR1LY6+yDgRwMbjQulprutXryKtdGuLiYEABn/n34H++j3DFuTQmRyfsXF1Rzs6U6dkD7x9+wODmRorxpnVJtWaNb2NcTOk0L+XKZ17VAbhqMnHZZOL3+Hh8Bwzg5xUrcHV1JSIiAlWhBh69JgH2OHm9jjI4orUdpeqFULWJP2XKlGHvxr3MnDkTgNDQUDp37myr0s/PjwoVKuDs7Mxvv/1GqVKlGDBgAA899BB79uxh4MCBTJ06lTJlyvDKK6+Qlum5wJMnT1K7dm1GjRpF3VZ12R29mxRj1uQrxZhCWss0Pvr8I77++mvq16/PsWPHKFu2LElJSbxqXWpMWeexA7Is79WvXz/bkmE3OFkHc1huWdZBKgA+Pj7s3Lkzx+9x/vz5xMbGsnPnTqKjo6lUqRKpqanZ6s2p3NvJHJfBYLA9A7h69Wq2bt3Knj17CAoKstUnhBBCFLQSn9BVc6vG0m5L6dOgD+4O7tgre2qWrsmEZhOYHjodO2XHwJbezPtPUzr6VKJORTcyHu6B09JfqLfiR2ou+I56W7dQZcoUDO7uALSvXxEHwz+JjF/cCdzSr2ere2XiNbqVLsOaOg+wpmEjdr82kVq1arFp0yYyjJkTDwXYgbbn8jofEg4nUq1qNdvR8uXL8+OPP5KWlkZGRgbLli2jUqVKOX7eBg0a4O/vz7lz53j22Wd56623+Pnnn7Ocs2jRInx9fQkMDCRqXxSuLXJeZ9XoYsTB24HLly8TFBQEQKtWrWjRogVfffUV69evp1y5cjz00EMsXbqUefPm2a6NiIiwtXR98MEHLF++nBdeeMGWoOakffv2pKWl8eWXX9r27dixg/Xr15OQkEDFihVxcHBg3bp1nD59Oscy2rZty6JFizCZTMTGxrJhwwaaNm2aa525kSlchBBCFCUlfh46AM9Snrzc9GVebpr9ua0bgr3LE+xd/qa9HjmeO7RtbX7YeQ6jyYgG6iRcwF6bsp3367VrDKlQAQCdlsb13bvp1asXn332GaVdPFDKMij2hhovLObvha/gnJ6Mg4MHgYGBdOvWjY0bN/LBBx/w0UcfATBkyBCef/55YmJi+PTTTwFISkpi+vTpKKV47733qF27Nu+++y5ffvklfn5+JCYmsn//fgAmTJjAhAkTMJlNBM4LvOW9M1cxY7TOgQeWRG3w4MFcv36dbdu2YW9vz6JFixg5ciS///47Z8+epXr16pQqVYpffvmF5cuXYzQa6dKlCw899BDTpk0jNDQ0x7qUUixbtoznn3+eadOm4ezsjLe3NzNnzsTHx4dHHnmE4OBgAgMDadCgQY5l9OjRg61btxIQEIBSinfffZfKlSsTExNzy895M1kJQwghRFGi7qYLqrAEBwfrqKiowg4jT47/nciEpfuIPnuVrie3MGjvCpxMGbe8xu3BB6n+sSUpO3jhGr0+20JKxj+JoFJQ2tmBtWNDqeDmlFsx943WmuBvg0k35z5wJO73BBoaH2TtD19l2R8YGMh//vMf9u7da2tR69y5M6+++iqtW7fG29ubqKgo5s+fz+XLl5k6dSoAEydOxNPTU+aBE0IIUewppXZqrYMLoq4S3+WaXx6o6M4Pw1sS9VpHXpo4AGf7W99q5epK6fBw23ajqqX55j9NqV/JDXs7hb2dIsS7PMuebVkgyRxYWsQ61+qMQRlyPK7NdhjK+rHtzx2sOvCXbf+1a9c4e/YsBoMhx+fPspRRjP6gEEIIIYoqSejyWRkXB6o0qodLUBDY597DbefogHt4pyz7QrzLs3JMKDsndmTP6534/v9aUNvTLb9DzmJE4AhcHVyxu+lHRZsV2uyCffl+mDJSefmdjwEwmUyMHTuWQYMG5bzM2E3atm3Ljz/+yPXr10lOTmbZsmW2aUyEEEIIkTeS0BWQajM+wKFaNZSLc5b9ytEROzc3asyejV0OS3KBJSl0dSqcxx2ruFVhQdcFNK3SFLQ92uSENttjul6X66dGgqkMnj1e5cSfq6lbty716tXD2dmZt956K0/lN27cmEGDBtG0aVOaNWvGkCFDbAMshMgPY8aMyTL4Jjw8nCFDhti2x44dy9SpU5k2bVohRAcXLlygd+/ehVK3EKL4kmfoCpA5JYWrP/5I/NxvMMbGYufqSplePSn/5JPYe3oWdni31fuLlew6fxZtLI02ZR352qRGOZY827KQIhMi73744Qd++OEHvv/+e8xmMyEhITg6OrJ161bAMrH2zJkzadasWSFHKoQo7uQZun8pOxcXyvftS53ff6P+zijqblhPxdGji0UyB/B8uyY4mb2yJXMuDgZGtn+gkKIS4s60atXKto7wgQMH8PX1xd3dnfj4eNLS0jh06ND/t3fv8TnX/QPHX+8dbGM2hyEhmkKzI2Yzc2olJDcipFgluSMSOuhW0t1JfnGrJO4ysRsdyKmIWKMpIzMmOTUk5Dibbezw+f1xXa62tjGnXdfyfj4ePbqu7/f7+Xzf1zdd3tfn+/m+P2zdupVhw4YBlgTQ39+foKAg2rZtC1imFowePZqAgAACAwNtT5h/++23hISEEBAQwKOPPmqr79igQQNefvll29J0O3fuBOC7774jODiY4OBgQkJCSE9PJzU1FX9/fwBiYmLo2bMnnTp14vbbb+fZZ58t02ullCo/tGyJKrXI2314vnMT3vj6Z1ycLL8FcvLyGdWxER2a1LxEa6WKJyI89NBDtjqFubm51K5dm7CwMJYtW8aSJUvYsWNHscvBlVrqeoh7Aw79xM0ubrjkpHPg559ISEikVatWHDp0iA0bNuDt7U1gYCAVCkx/mDBhAi+//DJ16tTBz88PgBkzZvDrr7+yZcsWXFxcOHnyJNnZ2Tz88MNUqlSJ3bt3M2DAAD744ANOnz7NmTNn2Lt3L8uWLePLL79k0qRJ/Pe//2XSpEm8//77tG7dmoyMDNzd3enbt2+hVVSSkpLYsmULbm5uNG7cmKeeeop69epd+bVQSv0taUKnLsvAiAbc37wuCXuOY4CIhtWp7F50KTSlSqtSpUps376drKwsPDw8WLVqFXXq/Fk4u1u3bnTr1u3KT7B1ASwdARdWO8nJpHWtbBL+3ZkE045nnnuRQ4cOkZCQgLe3NxERhacOtG7dmueff55mzZoxffp0AFavXs2QIUNwsT7oVK1aNbZu3UrdunXJzLQUER84cCDvv/8+gYGBAOzdu5fff/+d5s2bs3DhQlvfzzzzDP3796dnz57UrVu3SPhRUVF4e3sD4Ofnx/79+zWhU0oVoQmdumyebi50bHqTvcNQfyOdO3dm+fLl9OrVi3nz5tGvXz/WrVsHWG47btq0iffee4/o6Gi8vLzYtGkTR44cYeLEifTq1Yu4uDjGjx+Pj48P27dvp3nz5sydOxfJyWLzh0N55qvTZJw3+FQUYv7hQURdJz5Yf5IfDy/kp20/c9ttt3HmzBnc3d05ceIEsbGx5OTkMHjwYJ5//nk+++wzVqxYQe3atVm4cCG///47Tz31FB7u7ngDbze8jcO/H+Lc3r3kVapEfjHLwCUnJ9O/f3+MMdx0001MmDCBpUuXcurUKebOncvEiRNZvXo1YCn907JlSw4cOFAowSyu9I9SSoHOoVNK2UluXj5pmZZi23379mX+/PlkZ2eTnJx80QcSDh8+zPr161m2bFmh27BbtmxhypQp7Nixg3379vH999+T8/MKnlqezue9Pdg82JNHgyvw4ppztL7Fme8P5hJR14ltycnMmjWL06dPExcXR9u2bXn11VcJDw9nwIAB5OXl8dRTT/Hyyy/TtGlT6tatS+/evfG77TbmVatO1MlTvPPtam45cZLDaWlkHj3KnrvuJuaDDwqtehIcHExsbCz/+9//cHJyYtiwYcyfP589e/bQuHFj6tata5tbZ4xh48aN9OvXj8TExOv0X0Ap9XeiI3RKqTKVeT6XN77ayeebfyM3P5+s83msOerOr6mpzJs3jy5duly0fffu3XFycsLPz8+2HjBAy5Ytbbcsg4ODSU1NpUqFg2w/msPdcyyjWnkGansKATUtv2UPn8ll7pxP6N7zfgICAkhJSWHIkCHEx8dTt25dNm/ezNNPP83GjRsREfr06UNQUBD5OTn839ixBJ0/jzFQz9UVNycnRtesybgjR+i6KZEAb28Gz5jBW1OnFvs51q5dy5NPPklaWhp5eXn4+fnRuXNn3nzzTby8vADLwxRnzpy56muulPr704ROKVVm8vMND878kZ8Pn+Fcbj4ABvgwfi/et4YyevRo4uLiOHHiRIl9FFx9pGDZpeJWJTF1GtG0pgsbHvUo0s+5f1Um/oQPS7Yk8eprr5OSkkJSUhIA0dHRREdHs3jxYmJjY3nnnXfw9PRk9OjRAIwYNIh/1alDe9cKbMw8y/vHjwNwp2dl/s/5GIsb3Ip4eJC9ahUnT55k8uTJzJo1C4AWLVqwYsUK6tevz6ZNm6hXrx7jx4+3fQZ3d3c+/fRTAPr378/kyZNtMS9btqy0l1opdYPRW65KqTKzbs9xdh1NtyVzF2Tl5PNH7QiGPvMcAQEB1+x8jVvfx7FsFzYcsrzPyTOk/JFHvjEczHSjw6BXmThxIqdPnyYjI4O2bdsSGxsLQFxcHD4+Pnh5eVG5cmXS09Nt/Z787Tdq5Fk+w5dpf46gVXJyooazCxvOnsVkZfHrrBhWrFhBZGRkoT6yrXPsfHx8yMjI4PPPP79mn1kpdWPShE4pVWZW7ThC5vm8Yve5evnQsMMD1/R8FSpU4PPFy3kuDoI+zCT4w0wSfnciz8mNh1Z4EDDgTUJCQhg5ciRVqlRh/PjxbNq0icDAQJ5//nlmz54NwH333ceiRYsIDg5m3bp1DPf1ZeTvh3jowH6qOhde6/iN2rX58MQJeqT+Sv/163j55Zdp2LAh0dHRDBkyhODgYNzc3Hj88ccJCAige/fuhIaGlurzODs7ExwcjL+/P71797Y9UWsPMTExtlp914qukqHUldOVIpRSZWb8khRmb0iluK8dd1cn/nWvHw+F17/2JzYGDmyAgz+CayW4oyt43XzF3e1/5BEyN/xwyeMq3H4bDZcuveLz/JWnpycZGRmA5XZs8+bNeeaZZ65Z/5ej4NPHSqni6UoRSqm/pXsDa+Ph6lzsPmMg6o7rVKBaBOpHQORICBt8VckcQNU+fZFKlS56jHh4ULXfg1d1notp06YNe/bs4ezZszz66KOEhoYSEhLC4sWLgYuvMuHp6cmLL75IUFAQ4eHhtodLilsVo02bNra5hWCpnZecnGx7n5aWRoMGDcjPt9yCzszMpF69euTk5DBz5kxCQ0MJCgri/vvvt40oRkdHM3z4cCIiIvD19bXdci64SkZqaipt2rShWbNmNGvWzLa6h1KqeJrQKaXKTIv6VYloWB1318JfPR6uzgxo1YDa3kUfXnBElaPuxKWKNziV8BUqgpO7O95XURDZGMPXv35N76W9Cf9fOHd/dje5+bmkn08nNzeXr7/+moCAAF577TXuvPNOEhMTWbt2LWPGjOHs2bOAZZWJBQsWsG3bNhYsWMDBgwcBOHv2LOHh4WzdupW2bdsyc+ZMwLIqxsqVK9m6dStLliwBYNCgQcTExACwa9cuzp07ZyuWDODt7U1QUBDfffcdAEuXLuWee+7B1dWVnj17kpiYyNatW7njjjv46KOPbO1KKj9zQc2aNVm1ahU//fQTCxYsYPjw4Vd8LZW6EWhCp5QqMyLC9Iea88zdjbjJyx1XZ6FB9Yq8+o+mjO3SxN7hlZq4ulJ/zhxcatVCKlYsvM/DA+cqVag/dw7OnhcfxSuJMYax68fycsLL7Dy5k7M5ZzmSeYRz2eeo07gOIc1DuOWWW3jsscf45ptvePPNNwkODqZ9+/ZkZ2dz4MAB4M9VJtzd3W2rTIBlbmHXrl0BaN68OampqYBl9C06OpqZM2eSl2eZ69i7d2+WLVtGTk4OH3/8MdHR0UXi7dOnDwsWLABg/vz59OnTB4Dt27fTpk0bAgICiI2NJSUlxdampPIzF+Tk5NjmGfbu3ZsdO3Zc0bVU6kahZUuUUmXKxdmJwW0bMrhtQ3uHclVcb76Zhiu+Jn3lSk7OjSX3+HGcq1Shap8+eN/XFae/JHqX47vfvuPbA9+SlZtVaLtTBScaTmhI5wadeb3N64Al+fviiy9o3LhxoWN//PHHYku5ALi6uiIiRbZPnz6dH3/8keXLlxMcHExSUhLVq1fn7rvvZvHixXz66acUN4+5W7duvPDCC5w8eZLNmzdz5513ApZbq19++SVBQUHExMQQFxdna1NS+ZkLJk+eTK1atdi6dSv5+fm4u7uX+vopdSPSETqllLpCTm5ueHfrxq2fLuD2Nd/iu/ALqvZ54KqSOYDZKbOLJHMX5Obn8s3+b2z777nnHt59911bUrRly5YrPu/evXsJCwtjwoQJ+Pj42G7RDho0iOHDhxMaGkq1atWKtPP09KRly5aMGDGCrl274mx98jc9PZ3atWuTk5NjKwdTWmlpadSuXRsnJyfmzJljGzFUShVPEzqllHIwv6X/dtH9TuLEyeyTAIwbN46cnBwCAwPx9/dn3LhxV3zeMWPGEBAQgL+/P23btiUoKAiw3Jb18vLikUceKbFtnz59mDt3ru12K8Crr75KWFgYd999N02aXN4t9SeffJLZs2cTHh7Orl27qHSJh1CUutFp2RKl1FX57bffGDp0KDt27CA/P5+uXbvy9ttvU6FCBXuHVm71W9aP7Se2l7jf1cmV+D7xeFbwLJN4fv/9d9q3b8/OnTtxKulBEKVUEVq2RClVLhhj6NmzJ927d2f37t3s2rWLjIwMXnzxxULHXZijpUrnwTsexMOl+Cd+ncSJiJsjyiyZ++STTwgLC+O1117TZE4pB6b/dyqlrtiaNWtwd3e33YpzdnZm8uTJfPzxx0ybNo3evXtz33330bFjxxLrpWVmZvLAAw8QGBhInz59CAsLs028nzdvnu0W4HPPPWc7b0l11P4uOt3aCb/qfrg5uxXa7oQTlV0r83zLomU+rpcBAwZw8OBBevfuXWbnVEpdPk3olFKX5/huWPcOrHmNlLiFNG/WrNBuLy8vbrnlFnJzc9mwYQOzZ89mzZo1JdZLmzZtGlWrViU5OZlx48axefNmwHKb77nnnmPNmjUkJSWRmJjIl19+CZRcR+3vwtXJlRl3z2BQwCC83bxxFmdcnVzpfGtnPr3vU+pWrmvvEJWyqyNHjtC3b18aNmyIn58fXbp0YdeuXcUeW7Bg9bU2fvx4Jk2adF36vlxatkQpVTr5efDlP2HHYsjPhfxczBaQjApw+hmocovtUGMMIsLdd99teyrym2++YcmSJbYvvwv10tavX8+IESMA8Pf3txWtTUxMpH379tSoUQOwLHUVHx9P9+7di9RRW7VqVZldhrJSwbkCQ4KG8ETgE2TnZVPBqQLOTsWvsqHUjcQYQ48ePRg4cCDz588HLEW0jx49SqNGja66/9zcXFxcyl96pCN0SqnSWfNv+HkJ5GZbEjqgabVcNv16CmK6gnXppzNnznDw4EGcnZ0LPZl4oV5aUlISSUlJHDhwgDvuuKPYGmQXji9JSXXU/o5EBA8XD03m1A0t9/hxTn+xkJNz5rL8nXdwdXFhyJAhtv3BwcFERkYyZswY/P39CQgIsBW7Lig7O5tHHnmEgIAAQkJCWLt2LWBZKq/gFJGMjAyioqJo1qwZAQEBtikiAK+99hqNGzfmrrvu4pdffrFtT0pKIjw8nMDAQHr06MGpU6eu4xUpShM6pdSl5WTDxg8hp3BttKhbncnMMXzy/UHY+y15eXmMGjWK6OhoKv6lFltJ9dIiIyP59NNPAdixYwfbtm0DICwsjO+++47jx4+Tl5fHvHnzaNeu3fX+pEopB5KflcWhUaPYc2cUR/79b/54+202TPkPvrt3c3rhwkLHLly4kKSkJLZu3crq1asZM2YMhw8fLnTM+++/D8C2bduYN28eAwcOJDs7G6DQFBF3d3cWLVrETz/9xNq1axk1ahTGGDZv3sz8+fPZsmULCxcuJDEx0db3gAEDeOutt0hOTiYgIIBXXnnlOl+dwjShU0pd2ondIEW/LkSERX0q8llyBrd36EujRo1wd3fn9ddfL3JsSfXSnnzySY4dO0ZgYCBvvfUWgYGBeHt7U7t2bd544w06dOhAUFAQzZo14x//+Md1/6hKKcdgcnLYHx1N+upvMefPY7KyLP8+fw5z/jxHJrzKqfl/jsKtX7+efv364ezsTK1atWjXrl2hhOvCMQ8//DAATZo0oX79+ra5dwWniBhjGDt2LIGBgdx1110cOnSIo0ePsm7dOnr06EHFihXx8vKim3W95rS0NE6fPm370Tlw4EDi4+Ov+zUqqPzdJFZKlT0XD8scumLU83ZiaX8vaP8CtB1t2x4dHV1o3U8PDw8+/PDDIu3d3d2ZO3cu7u7u7N27l6ioKOrXrw/Agw8+yIMPPlikTUZGhu11r1696NWr15V+MqWUgzqzYgXndu3GnDtXaPttFdz4Jj0dk53N0TfftCy1V6nSRadpXHCxYwpOEYmNjeXYsWNs3rwZV1dXGjRoYBvJuzDdw9HoCJ1S6tKqN4SKPiXvd3KBO7pdUdeZmZlERkYSFBREjx49+OCDD7QosVKKEx99jMkqugReeMWKnDeGz06fBhHSli8nMTGRqlWrsmDBAvLy8jh27Bjx8fG0bNmyUNu2bdvalqHbtWsXBw4cKLIOMlhG3GrWrImrqytr165l//79tvaLFi0iKyuL9PR0li5dCoC3tzdVq1Zl3bp1AMyZM6fMp4joCJ1S6tJEoMvb8Fk0/HWNUVcPaNQFalzZ02WVK1cudsF3pdSN7bw1iforEeHdOnV4448/+G/KdjyGDeO20FCmTJlCRkYGQUFBiAgTJ07kpptuIjU11db2ySefZMiQIQQEBODi4kJMTAxubm5FztG/f3/uu+8+WrRoQXBwsG3pumbNmtGnTx+Cg4OpX78+bdq0sbWZPXs2Q4YMITMzE19fX2bNmsWUKVOu6TW5GF36SylVer+sgK9GQ+YJcHK2PNkaOgiiXgJn/X2olLp2fgltSX56+sUPEqFadDS1nnu2bIK6TGW59Jd+AyulSq9xJ2h0D5zYAzmZ4NPIMkKnlFLXWKU2kaSvWGkriVQc8fDAs337sgvKgdllDp2I9BaRFBHJF5EyyVyVUteICPjcDrWDNJlTSl031R97DLnYfFoRXKpXp2LL0LILyoHZ66GI7UBPoGyf6VVKKaVUueDRtCk1nxmJuLsX3enigpOXF/U+/NBhnzota3ZJ6IwxPxtjfrn0kUoppZS6UVUbMIB606dTMawlODuDqyvi4UHVfv3wXbIEN99b7R2iw9A5dEoppZRyWJXCw6gUHkb++fOY7GycPD0RJ6269lfXLaETkdXATcXsetEYs7iY7SX1MxgYDHDLLbdc4millFJK/R05VagAWqOyRNctoTPG3HWN+pkBzABL2ZJr0adSSiml1N+JjlkqpZRSSpVz9ipb0kNEfgNaActFZKU94lBKKaXKIxGxLTIPkJubS40aNejatSsAS5Ys4c033yyxfWpqKv7+/sXue+mll1i9evW1DVhdd3Z5KMIYswhYZI9zK6WUUuVdpUqV2L59O1lZWXh4eLBq1Srq1Klj29+tWze6dbuy9ZUnTJhwrcJUZUhvuSqllFLlUOfOnVm+fDkA8+bNo1+/frZ9MTExDBs2DICjR4/So0cPgoKCCAoKIiEhAYC8vDwef/xxmjZtSseOHcnKsqzTHB0dzeeffw7AV199RZMmTYiMjGT48OG2EcCNGzcSERFBSEgIERER/PLLL7bz9uzZk06dOnH77bfz7LOOuSTX35EmdEoppVQ5kXEul7PncgHo27cv8+fPJzs7m+TkZMLCwoptM3z4cNq1a8fWrVv56aefaNq0KQC7d+9m6NChpKSkUKVKFb744otC7bKzs3niiSf4+uuvWb9+PceOHbPta9KkCfHx8WzZsoUJEyYwduxY276kpCQWLFjAtm3bWLBgAQcPHrzWl0EVQ+vQKaWUUg7uh30nmLB0B7uOWharz87JJ7tyXVJTU5k3bx5dunQpse2aNWv45JNPAHB2dsbb25tTp05x6623EhwcDEDz5s1JTU0t1G7nzp34+vpy662W4r39+vVjxowZAKSlpTFw4EB2796NiJCTk2NrFxUVhbe3NwB+fn7s37+fevXqXZProEqmI3RKKaWUA0vYc5zoWRvZcfgMufmG3HxDvjEM+PhHQtrcxejRowvdbi0tNzc322tnZ2dyc3ML7Tem5Eph48aNo0OHDmzfvp2lS5eSnZ1d6n7V9aEJnVJKKeXAXl6SQnZOfpHt2Tn57PZuwUsvvURAQECJ7aOiovjggw8Ay7y5M2fOlOq8TZo0Yd++fbaRuwULFtj2paWl2R7CiImJKeUnUdeT3nJVSimlHNTxjHPsP5FZdIcxHFv8FoeO7ObITVVYuXJliaN0//nPf6hTpw4fffQR+fn51KxZk1mzZgGW26gpKSk0aNCAZs2aFWrn4eHBtGnT6NSpEz4+PrRs2dK279lnn2XgwIG888473HnnnQBs2rSJ2NhYGjdufI0+vboccrEhVUfTokULs2nTJnuHoZRSSpWJP9KziXxrLedz/xyhM8ZwZO5oPP2jqNbiXn54IYqDe34mPT2dNm3aFNuPp6cnGRkZhbYdOXKEsLAw9u/fX+L5MzIy8PT0xBjD0KFD8fX1ZfTo0dfmw90ARGSzMaZFWZxLb7kqpZRSDqqGpxs3ebmDMdx09gT1zxzG7NuEOLlQOaQLdatWpLqnG8HBwYSEhBAVFUWzZs0ICAhg8eKiy6YXLCjcsWNH/vjjD4KDg1m3bh1JSUmEh4cTGBhIjx49OHXqFDNnzsTT05MaNWrw+eefk5OTQ/v27Xnuuedo2bIljRo1Yt26dQDExcVdsqyJun70lqtSSinloESENyodJHf+dLzOZZAnTnx6/A8SK3iRnZvBS11Dbce6u7uzaNEivLy8OH78OOHh4XTr1g0RKbbvJUuW0LVrV5KSkgAIDAzk3XffpV27drz00ku88sorTJkyhcWLF+Pn58e0adMAWLlyJbm5uWzcuJGvvvqKV155pcjKEhfKmri4uLB69WrGjh1bpCyKurY0oVNKKaUc1B+Tp1D9k08w1qK/AC4mj7oZx3hu/X9oPKaDbbsxhrFjxxIfH4+TkxOHDh3i6NGj3HTTTZc8T1paGqdPn6Zdu3YADBw4kN69e9v29+nTp9DxPXv2BIovd3Khv5LKmqjrQ2+5KqWUUg7o3O7dnJw9u1AyB3BbBTd+zs7COf0MR//9b9v22NhYjh07xubNm0lKSqJWrVqFyolcjUqVKhV6f6E0SUllSS5W1kRdH5rQKaWUUg7o5OxPMMWMbIVXrMh5Y/jsxAkyvvuO3FOnSExMZP/+/dSsWRNXV1fWrl170Ycd/srb25uqVava5sPNmTPHNlp3JbSsSdnThE4ppZRyQFnbtkFeXpHtIsK7deqQkHmWjrt+IbBFC8aPH0+XLl3YtGkTLVq0IDY2liZNmlzW+WbPns2YMWMIDAwkKSmJl1566Ypjf/bZZ3nhhRdo3bo1ecV8BkchIowaNcr2ftKkSYwfP/6a9G0dlWwqIrYigSLyrIhML2Vs40Wk1I8Ua9kSpZRSygH9+kAfspOTL3qMU6VK3DJ7Nh7+Tcsoqr8Xd3d3ateuTWJiIj4+PkyaNImMjIxrltSJyG7gKNAWuBmIB1oYY05dop0L8C8gwxgzqTTn0hE6pZRSygF53dsF8fC4+EEuLrg30UK+V8rFxYXBgwczefLkIvuOHTvG/fffT2hoKKGhoXz//fcABAQEcPr0aYwxVK9e3bZO7sMPP1zkaV/gDHAYGABMBsYDXiLyrYgkW/99C4CIxIjIOyKyFnirYCci8riIfC0iJf6B0IROKVUujRw5kilTptje33PPPQwaNMj2ftSoUbzzzjul7m/8+PFMmlT8D+GIiIgrjjMuLo6EhIQrbq9uXFV69ECcnUvcLx4eVH/sMcRFC1ZclpxsOH0AzqUDMHToUGJjY0lLSyt02IgRIxg5ciSJiYl88cUXtu+X1q1b8/3335OSkoKvr69t3uEPP/xAeHh4cWd8GngNqGGMmQO8B3xijAkEYoGpBY5tBNxljLHdBxaRYcB9QHdjTOEnZArQPwVKqXIpIiKCzz77jKeffpr8/HyOHz9eaI3KhISEQgnf1biahCwuLg5PT8+rSgrVjcnZy4tbPvovBx4bhMnJwZw7Z9khgri7U/muu6g+6DH7BlmenEuHb/4FWxeACOTnQe45vEw6AwYMYOrUqXgUGBFdvXo1O3bssL0/c+aMbTWO+Ph46tevzz//+U9mzJjBoUOHqFatGp6enkVOa4z5XUTWAMusm1oBPa2v5wATCxz+mTGm4KTDh4HfsCRzF639oiN0SqlyqXXr1rZEKyUlBX9/fypXrsypU6c4d+4cP//8MytXriQ0NBR/f38GDx7MhTnDU6dOxc/Pj8DAQPr27Wvrc8eOHbRv3x5fX1+mTv3zR/OFL+m4uDjat29Pr169aNKkCf3797f1+dVXX9GkSRMiIyMZPnw4Xbt2JTU1lenTpzN58mRbNf79+/cTFRVFYGAgUVFRHDhwAIDo6GiGDx9OREQEvr6+fP7552VyHZVj8wgKouGqb/B58p9UaNgQ1zp18GzfnnrTp3PzxLcQJ/1rvFRyz8OszpA0D3KzICcT8s5Bfi7MaMfTgx7io48+4uzZs7Ym+fn5bNiwgaSkJJKSkjh06BCVK1embdu2rFu3jnXr1tG+fXvbKholLbt2oTvrP8Up+DDD2b/s2w40AOpe6iPqnwSlVLlxOOMwU3+ayvA1w/nv/v9inAz79+8nISGBVq1aERYWxoYNG9i0aROBgYEMGzaMxMREtm/fTlZWFsuWWX4gv/nmm2zZsoXk5GSmT//zgbOdO3eycuVKNm7cyCuvvFJsMdQtW7YwZcoUduzYwb59+/j+++/Jzs7miSee4Ouvv2b9+vUcO3YMgAYNGjBkyBBGjhxJUlISbdq0YdiwYQwYMIDk5GT69+/P8OHD//x8hw+zfv16li1bxvPPP3+dr6YqL1yqVsXniSdouHwZt327mnofTKNSWMsSV4BQxdixGE7ssyRxf5WVRrWdc3jggQf46KOPbJs7duzIe++9Z3t/YUWNevXqcfz4cXbv3o2vry+RkZFMmjTpUgldQQnAhV+S/YH1Fzl2C/AEsEREbr5Yp5rQKaXKhZjtMXT9sisxKTGsPbiWL3Z9QXa9bAbPHMz679fTqlUrWrVqRUJCAgkJCURERLB27VrCwsIICAhgzZo1pKSkAJYljvr378/cuXNxKTD/6N5778XNzQ0fHx9q1qzJ0aNHi8TRsmVL6tati5OTE8HBwaSmprJz5058fX259dZbAejXr1+Jn2PDhg08+OCDgGUS9fr1f36Xd+/eHScnJ/z8/Io9t1LqCv30CeT8dfDLKv88bJ3PqFGjOH78uG3z1KlTbT8O/fz8Cv34CwsLo1GjRgC0adOGQ4cOERkZWdpohgOPiEgylluqIy52sDFmPTAaWC4iPiUdp3PolFIO77uD3/F+0vuczztv25ZPPm6+biRtTMJ5vzMx/jHUq1eP//u//8PLy4tHH32UQYMGsWnTJurVq8f48eNt1eqXL19OfHw8S5Ys4dVXX7Uleheq30PJFfCLO+Zqyj8VHGUp2Hd5KimllMM7n17s5oyxXpYXuVnUqlWLzMxM2z4fHx8WLFhQbLs5c+bYXkdERJCfX9LdVAtjTHSB16nAnRc7xvp+fIHXK4GVFzuHjtAppRzee0nvkZ1XdOmgirdX5FTSKTJcM8jMy6RatWqcPn2aDRs20KpVK8DypZyRkWGbk5afn8/Bgwfp0KEDEydO5PTp02RkZFxVfE2aNGHfvn22NS0L/iVQuXJl0tP//MskIiKC+fPnA5almi7jV71S6ko1iATnCiXvvzmk7GK5TjShU0o5tJy8HHad2lXsPvd67uSl5+F1mxdbj20FLDWivL298fHx4fHHHycgIIDu3bsTGhoKQF5eHg899BABAQGEhIQwcuRIqlSpclUxenh4MG3aNDp16kRkZCS1atXC29sbgPvuu49FixbZHoqYOnUqs2bNIjAwkDlz5vCf//znqs6tlCqFlk+AUwk3JV09oO2zZRvPdaArRSilHNr5vPOExoaSb0q+peHp6slbbd+ibd22ZRhZYRkZGXh6emKMYejQodx+++2MHDnSbvEopf5i7xpY8BAYY3nK1cXdsr3ja9By0MXbXiER2WyMaXFdOv8LnUOnlHJoFZwr0MCrAfvS9pV4zPm88wT6BJZhVEXNnDmT2bNnc/78eUJCQnjiiSfsGo9S6i8a3gmjdkHKQji+G7xuBv9e4FnD3pFdEzpCp5RyeCtTVzJu/Tiy8ooWSXdzdqNj/Y683uZ1O0SmlFIlK8sROp1Dp5RyePc0uIf+d/THzdkNZ/lzKaSKLhXxq+7HuFbj7BidUkrZn95yVUqVCyOaj+Be33v5387/sef0Hqq7V6d3o96E3xyOk+hvU6XUjU0TOqVUuXFb1dt4qdVL9g5DKaUcjv6sVUoppZQq5zShU0oppZQq5zShU0oppZQq5zShU0oppZQq5zShU0oppZQq5zShU0oppZQq5zShU0oppZQq5zShU0oppZQq5zShU0oppZQq5zShU0oppZQq5zShU0oppZQq5zShU0oppZQq5zShU0oppZQq5zShU0oppZQq58QYY+8YSk1EjgH77R3HRfgAx+0dRDmg16l09DqVjl6n0tHrVDp6nUpHr1Pp1DfG1CiLE5WrhM7RicgmY0wLe8fh6PQ6lY5ep9LR61Q6ep1KR69T6eh1cjx6y1UppZRSqpzThE4ppZRSqpzThO7ammHvAMoJvU6lo9epdPQ6lY5ep9LR61Q6ep0cjM6hU0oppZQq53SETimllFKqnNOE7hoSkbdFZKeIJIvIIhGpYu+YHJWI9BaRFBHJFxF9UqoAEekkIr+IyB4Red7e8TgqEflYRP4Qke32jsWRiUg9EVkrIj9b/58bYe+YHJGIuIvIRhHZar1Or9g7JkcmIs4iskVEltk7FmWhCd21tQrwN8YEAruAF+wcjyPbDvQE4u0diCMREWfgfaAz4Af0ExE/+0blsGKATvYOohzIBUYZY+4AwoGh+meqWOeAO40xQUAw0ElEwu0bkkMbAfxs7yDUnzShu4aMMd8YY3Ktb38A6tozHkdmjPnZGPOLveNwQC2BPcaYfcaY88B84B92jskhGWPigZP2jsPRGWMOG2N+sr5Ox/KXcB37RuV4jEWG9a2r9R+dZF4MEakL3Av8196xqD9pQnf9PAp8be8gVLlTBzhY4P1v6F++6hoRkQZACPCjnUNxSNbbiEnAH8AqY4xep+JNAZ4F8u0chyrAxd4BlDcishq4qZhdLxpjFluPeRHLbY7YsozN0ZTmWqkipJhtOkqgrpqIeAJfAE8bY87YOx5HZIzJA4Kt858XiYi/MUbnaBYgIl2BP4wxm0WkvZ3DUQVoQneZjDF3XWy/iAwEugJR5gavCXOpa6WK9RtQr8D7usDvdopF/U2IiCuWZC7WGLPQ3vE4OmPMaRGJwzJHUxO6wloD3USkC+AOeInIXGPMQ3aO64ant1yvIRHpBDwHdDPGZNo7HlUuJQK3i8itIlIB6AsssXNMqhwTEQE+An42xrxj73gclYjUuFCZQEQ8gLuAnXYNygEZY14wxtQ1xjTA8v20RpM5x6AJ3bX1HlAZWCUiSSIy3d4BOSoR6SEivwGtgOUistLeMTkC60M1w4CVWCavf2qMSbFvVI5JROYBG4DGIvKbiDxm75gcVGvgYeBO6/dSknV0RRVWG1grIslYflitMsZoSQ5VbuhKEUoppZRS5ZyO0CmllFJKlXOa0CmllFJKlXOa0CmllFJKlXOa0CmllFJKlXOa0CmllFJKlXOa0CmlyoSI5BUom5EkIg1EJOEy+3haRCperxgdiYh0FxE/e8ehlCoftGyJUqpMiEiGMcazFMc5W5dgKm5fKtDCGHP8WsfnaEQkBlhmjPnc3rEopRyfjtAppexGRDKs/24vImtF5H/ANhGpJCLLRWSriGwXkT4iMhy4GUvx17XF9BUqIgnWNhtFpLKIuIvILBHZJiJbRKSD9dhoEflSRJaKyK8iMkxEnrEe84OIVLMeFyciU6z9bheRltbt1aztk63HB1q3jxeRj63t9lljvhDfQ9a4kkTkQxFxvnANROQ1a9w/iEgtEYkAugFvW49veF3/Qyilyj1N6JRSZcWjwO3WRcXsbwm8aIzxw7KG5u/GmCBjjD+wwhgzFcu6th2MMR0KNrQuk7YAGGGMCcKybFMWMBTAGBMA9ANmi4i7tZk/8KD1vK8BmcaYECyrTwwo0H0lY0wE8CTwsXXbK8AWY0wgMBb4pMDxTYB7rP2+LCKuInIH0AdobYwJBvKA/hf6B36wxh0PPG6MScCy5NsYY0ywMWbvJa6tUuoG52LvAJRSN4wsazJTko3GmF+tr7cBk0TkLSy3Hdddou/GwGFjTCKAMeYMgIhEAu9at+0Ukf1AI2ubtcaYdCBdRNKApQXOHVig73nW9vEi4mVd7zMSuN+6fY2IVBcRb+vxy40x54BzIvIHUAuIApoDiZalVfEA/rAefx64sMTUZuDuS3xWpZQqQhM6pZSjOHvhhTFml4g0B7oAb4jIN8aYCRdpK0BxE4LlIm3OFXidX+B9PoW/G//arymh3wvHFew3z9qXALONMS8U0y7H/DmZ+cLxSil1WfSWq1LK4YjIzVhugc4FJgHNrLvSgcrFNNkJ3Cwiodb2lUXEBcstzP7WbY2AW4BfLjOcPtb2kUCaMSbtL/22B45fGBUswbdALxGpaW1TTUTqX+K8JX1WpZQqQn8JKqUcUQCWBwLygRzgn9btM4CvReRwwXl0xpjzItIHeFdEPLDMn7sLmAZMF5FtQC4QbYw5Z73tWVqnrOVVvIBHrdvGA7NEJBnIBAZerANjzA4R+RfwjYg4WT/TUGD/RZrNB2ZaH6zopfPolFIXo2VLlFKqBCISB4w2xmyydyxKKXUxestVKaWUUqqc0xE6pZRSSqlyTkfolFJKKaXKOU3olFJKKaXKOU3olFJKKaXKOU3olFJKKaXKOU3olFJKKaXKOU3olFJKKaXKuf8HUzfzs6NkdFUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1949,9 +2393,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 78, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt4AAAJcCAYAAADO7KOMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAC3dUlEQVR4nOzdeXxOV+LH8c+RRBJi34ogqNqyktjVVkGramtVtbaiuqqqrkPpdPGbKqramhotbRW1VVtd1FZrhyBirVhiidQuhIQs5/fHE8+IxB5PhO/79cprcs+995xzb2L6zXnOPddYaxERERERkZsrT053QERERETkTqDgLSIiIiLiAgreIiIiIiIuoOAtIiIiIuICCt4iIiIiIi6g4C0iIiIi4gIK3iK3IGNMT2PM8kvs62aMme/qPonkJsaYxsaYv3K6HzebMcbPGGONMe5XcexNuyfGmEnGmHduRt0itxMFb5EcYoxpZIxZaYyJN8YcM8asMMaEXek8a+0Ua234dbS3xBjT5xqOH2aM+eZa25HMLghHCelfMcaY1y7Yb4wxLxhjNhljThtj9htjZhhjAi6qZ1h6PXWusf3NF7SdYIxJMcb8mL6v8UX7EtLb6HSJukYaY6KNMaeMMduMMd0v2FfIGPObMeaEMWaKMcbtgn0TjDEdrqXfN8Jau8xaW9VV7eUGuiciOU/BWyQHGGMKAj8BHwNFgbLAcOBsTvZLrs7VjC5eQmFrrQ/QFRhqjGmdXv4RMAB4Acfvwz3A98ADF7RpgCeAY0CPa2nUWlvTWuuT3nYBYC8wI33fsvP70ve3BRKAXy9R3WngQaBQej8+MsY0SN/3FLAeKAX4AR3S+14fKG2tnXMt/b5eN/DzERG5qRS8RXLGPQDW2qnW2lRrbaK1dr61Niqrg40xHxhjlqePKF5uGoqXMeYbY8zR9FHHNcaYUsaYd4HGwLj0Ec1x6cd/ZIzZZ4w5aYxZa4xpnF7eGngD6JJ+/Ib08kLGmInGmDhjTKwx5p3zo5rGmLuNMX+kj+AfMcZMv5Y+pu+LMcbcd8GxzlH3C0aNe6X3+bgxpr8xJswYE5Ve17gLzu2Z/inC6PR9u4wxDdLL9xljDhljelxw/APGmPXp92KfMWbYBfvOt/2kMWYvsMgYM88Y8/xF1xZljGmf5U/8AtbaVcBmwN8YUwV4FuhqrV1krT1rrT2T/snGiAtOawyUwRHQHzXG5L1SO5dwL1ASmHWJ/T2Amdba05fo+1vW2m3W2jRr7X+BZUD99N0VgcXW2rPp5ZXSfz9Gp/f7kowxrxljZl5U9pExZmz6972MMVvTR9p3GWOeuuC4psbxKcGrxpi/gS/Pl11U/87087dcOPp+/t9U+mj+cWPMbmNMmwv2FzXGfGmMOZC+//sL9rU1xkSm/46tNMYEXuYaqxljfjeOT7j+MsY8kl5eOb2sVvp2mfR/Q03Tt5cYY943xqxO//c11xhT9BJtXPE+XbAdY4x5Of33Nt4YM90Y43U112aMCTHGrEtvZzrgPE9ELsNaqy996cvFX0BB4CgwGWgDFLlof09gOY4/jicAvwH5Ltx3iXqfAn4E8gFuQG2gYPq+JUCfi45/HCgGuAODgL8Br/R9w4BvLjr+e+DfQH4c4W018FT6vqnAm+l99gIaXUcfY4D7LjjW2QccI6gWGJ9efziQlN6nkjg+NTgENLngPqUAvdLbeQfHSO8ngGf6+acAn/TjmwIB6f0PBA4C7S9q+6v0a/cGHgH+e0Ffg9J/pnmzuObz57sDBmgInAFaAP2BPVfxOzMR+A7wSG+n43X+7n0BTLrEvnzp96TpVdblDcQBrdO3nwU+SC9fgWPEfiDw1lXUVSH9npz/XXBLr7te+vYDQOX0+9ck/dhaF/zsUoD/S//ZeqeX7b+g/odx/OGSB+iCY+S+9AW/K8lA3/R2nwYOACZ9/zxgOlAk/f6f/x2rlf47Vzf9vB44foc9s7i+/MC+9N9H9/RzjwA10/f3Bbam/wx+A0ZecO4SIBbwT69nFpn/Xbhf5X268J7E4Pg3XAbHJy1bgf5XujYgL7An/WfrAXROv3/v3Oz/79SXvnL7l0a8RXKAtfYk0AjHfzAnAIeNMT+cH/lN54EjzBYFHrTWnrmKqpNxBOm7rWMkfW16W5fqxzfW2qPW2hRr7Yc4/qOa5RzQ9L61AV601p621h7CMZL56AVtVwDKWGuTrLVZjspfax+z8M/0+ufjCE9TrbWHrLWxOEZZQy44dre19ktrbSqO4FQOeNs6RpXnA+eAu9PvxRJr7UbrGMmNwnHvm1zU9rD0a08E5gJV0keswTENZLq19txl+n4Ex1SR/wCvWWsXpt+LuMtdsDEmH47g+K21NhmYyTVON7mgns7ApEsc0im9j39cZZXjgQ04giI4/jgoBJwfCd+A476MMcZ8ZoxZai7xAJ61dg+wDmifXtQcOGOt/TN9/zxr7U7r8AcwH8enAOel4Qj4Z9N/PhfXP8NaeyD95zsdiAYunCu/x1o7If13ZTJQGihljCmN4/e+v7X2uLU2Ob19cITlf1tr/5v+uzwZx3SxellcYlsgJv33McVauw5HgO6c3r8J6X36b3rbb150/tfW2k3W8UnEEOARc8Ec+guu80r36WJj0+/LMRx/EAdfxbXVw/H/T2PS78dMYM1l2hCRdAreIjnEWrvVWtvTWuuLYySrDDDmgkPuBh4Chl8hzF3oaxwhaFr6x+L/MsZ4XOpgY8yg9I+l440xJ3CEpuKXOLwCjv/YxqV/9HwCx+h3yfT9r+AYZVttHA/z9c6OPmbh4AXfJ2ax7XOZY7HWZnm8MaauMWaxMeawMSYex0j0xfdi3/lvrGM6xXfA48aYPDjmbX99hb4Xt9YWsdZWt9aOTS87iiNoXU4HHCO6P6dvTwHaGGNKXOG8i3XEEfwvFax7AF9Za+2VKjLGfIDj9/aR88en/0HUz1obaK19DccfZm8A3XCMmjYB6pr/zW2/2Lc47iPAY+nb59trY4z5M31KxgngfjL+fA5ba5Mu09/uF0ybOJHe9wvP//v8Nxf8keuD44+1Y9ba41lUWwEYdL7O9HrL4fi3nNWxdS86thtw1wXHTEjv18fpv18X2nfB93tw/FvM9G/1Ku7Txf6+4Psz/O/fz+WurQwQe9HvyZ7LtCEi6RS8RW4B1tptOEYh/S8o3orjY+lfjDFXtRJB+ujTcGttDaABjlG286tOZAhTxjGf+1UcUyaKWGsLA/E4wnOm43H8h/8sjvBYOP2roLW2Znrbf1tr+1pry+CYTvKpMebua+zjaRwftZ9318Xn30TfAj8A5ay1hXCM5pqLjrn4nkzGEZ5a4BidXXUd7S4EfI0xoZc5pgeOQLQ3fQ7zDBzBq+tlzrlUPVkGa2NMORxTEb66UiXGmOE4RoHDL/VpRXq4NtbaX3FM4YlIbzcCx1SerMwAmhpjfHH8sfFtel2eOEaHRwKl0n9Xfybjz+eSfywYYyrgCLXPAcXSz99E5p9vVvYBRY0xhS+x790L/j0Uttbms9ZOvcSxf1x0rI+19un0Pvrg+MN7IjAsiznc5S74vjyOT46OXHSdV3Ofrtblri0OKGuMubDe8tfRhsgdR8FbJAekP2Q1KD1gnA89XYE/Lzwu/T9ybwALjDGVr6LeZsaYgPSPoE/i+I9zavrug0ClCw4vgGMU9TDgbowZimPuORcc75c+mou1Ng7Hx9YfGmMKGmPypD8U1iS97YfPXw9wHEcQSuUiV+hjJI4HBz3Sg2jnK11zNiqAY2QzyTiW63vsSiekB+004EOuPNp9qTqigU+BqekPv+U1jgdQHzWOBwLL4gj2bXFMAwjGMZ/8/0ifbmL+9/Cn36XaSf/ZNMPxx0JWngBWWmt3Xq6/xpjXcdybltbao5c4xgsYgWMOMMBuHIE6L4757buyOs9aexjHfOYvcUwT2pq+Ky+OaVCHgRTjePDxWpbUzI/j9/Fwev96kfGP3EtK/73/BccfkkXSfzfvTd89Aeif/mmJMcbkN46HdAtkUdVPwD3GmCfS6/AwjgeDq6fv/whYa63tg2NO+fiLzn/cGFMjfbrQ2zgegL3439eN3qcLXe7aVuH4/44XjDHuxpiOZJy2IyKXoOAtkjNO4Xho6b/GmNM4AvcmHA84ZpA+t/JtHCtp+F2h3rtwzP89iWPE/A/g/FrcHwGdjWNVhrE4pnv8AmzH8TFxEhk/zp6R/r9HjTHr0r/vjuM/7ltwhOuZ/G+aRFj69STgGDkeYK3dfY19HILjwbDjOJZX/DaL82+WZ4C3jTGngKE4ppFcja9wjOjeyJrnLwDjcDz4eQLYiWPE90ccgTjSOla9+fv8FzAWCDTG+OMYDd2D4wG8S3kCWHWZYN2dLEK5cbywafMFRe/hGN2MNv9b9/uNi057A5hirT3/+/RvHNMdDgP7gcstK/gtcB8X/Oyttadw3KPvcPxuPIbjd+yqWGu34PjjaBWOPygDcDz8ebWewPEH4jYcDxy+mF5vBI650OPS+7UDx4OaWfXhFI4Q/CiOBzf/Jv1hUGPMQ0BrHNObAF4Cahljul1Qxdc4PhX7G8fDxS9coo3rvk8X1XXJa0uf+tYxffs4jodVZ19POyJ3mvNPbIuIyHUwjhfI9LPWNsrBPvwDxxznf+dUH+TmMcYswbGKyX9yui8icmP0kgERkeuU/rH/MzimiuQYa61e1S0ikgtoqomIyHUwxrTCMXXiIK6dEiMiIrmUppqIiIiIiLiARrxFRERERFwgV83xLl68uPXz88vpboiIiIjIbW7t2rVHrLXX+qKyy8pVwdvPz4+IiIic7oaIiIiI3OaMMdn+RlZNNRERERERcQEFbxERERERF1DwFhERERFxgVw1x1tERETkdpWcnMz+/ftJSkrK6a7cUby8vPD19cXDw+Omt6XgLSIiInIL2L9/PwUKFMDPzw9jTE53545greXo0aPs37+fihUr3vT2NNVERERE5BaQlJREsWLFFLpdyBhDsWLFXPYpg4K3iIiIyC1Codv1XHnPFbxFRERERFxAwVtEREQkl9q/fz8PPfQQVapUoVKlSjz33HOcPXs2W+qeNGkSBw4ccG736dOHLVu2AI6XGh45ciRb2rmTKHiLiIiI5ELWWjp27Ej79u2Jjo4mOjqaxMREXnnllRuuOzU1NVPw/s9//kONGjVuuO47WY4Gb2NMjDFmozEm0hijd8GLiIiIXKVFixbh5eVFr169AHBzc2P06NF89dVXjBs3jueee855bNu2bVmyZAkATz/9NKGhodSsWZO33nrLeYyfnx9vv/02jRo1YurUqURERNCtWzeCg4NJTEykadOmRERkjmvffPMNderUITg4mKeeeorU1NSbe+G52K0w4t3MWhtsrQ3N6Y6IiIiI5BabN2+mdu3aGcoKFiyIn58fKSkplzzv3XffJSIigqioKP744w+ioqKc+7y8vFi+fDmPP/44oaGhTJkyhcjISLy9vbOsa+vWrUyfPp0VK1YQGRmJm5sbU6ZMyZ4LvA1pHW8RERGRXMham+WKHNbay5733Xff8fnnn5OSkkJcXBxbtmwhMDAQgC5dulxTHxYuXMjatWsJCwsDIDExkZIlS15THXeSnA7eFphvjLHAv621n198gDGmH9APoHz58i7unoiIiMitqWbNmsyaNStD2cmTJzl48CDFihVj+/btzvLz61Tv3r2bkSNHsmbNGooUKULPnj0zrGGdP3/+a+qDtZYePXrw/vvv38CV3DlyeqpJQ2ttLaAN8Kwx5t6LD7DWfm6tDbXWhpYoUcL1PRQRERG5BbVo0YIzZ87w1VdfAY4HIgcNGsRzzz1HxYoViYyMJC0tjX379rF69WrAEczz589PoUKFOHjwIL/88ssl6y9QoACnTp26Yh9mzpzJoUOHADh27Bh79uzJpiu8/eRo8LbWHkj/30PAHKBOTvZHREREJLcwxjBnzhxmzpxJlSpVKFasGHny5OHNN9+kYcOGVKxYkYCAAF5++WVq1aoFQFBQECEhIdSsWZPevXvTsGHDS9bfs2dP+vfv73y4Mis1atTgnXfeITw8nMDAQFq2bElcXNxNud7bgbnSPKCb1rAx+YE81tpT6d//Drxtrf31UueEhobarJ6mFREREYemTZvy+uuv06pVK2fZmDFj2L59O59++mmO9WvMmDH069ePfPny5VgfbnVbt26levXq133+ypUr6dq1K7Nnz8700KVcXlb33hizNrsX/8jJEe9SwHJjzAZgNTDvcqFbRERErqxr165MmzYtQ9m0adPo2rXrFc+9mcvAjRkzhjNnzty0+gUaNGjAnj17FLpvYTkWvK21u6y1QelfNa217+ZUX0RERG4HqQkJPNSkCT/99JPz7YUxMTEcOHCAM2fOUL9+fWrVqsXDDz9MQkICkHHt5hkzZuDn58cbb7xB/fr1CQ0NZd26dbRq1YrKlSszfvx4wPFA3eDBg/H39ycgIIDp06cDsGTJEpo2bUrnzp2pVq0a3bp1w1rL2LFjOXDgAM2aNaNZs2Y5c3NEbgE5/XCliIiI3KCU+HhOfP89Md0e58Rj3Qjw9GTOBx+Qdu4c06ZNo0WLFrz77rssWLCAdevWERoayqhRo5znn1+7+dFHHwWgXLlyrFq1isaNG9OzZ09mzpzJn3/+ydChQwGYPXs2kZGRbNiwgQULFjB48GDnvN7169czZswYtmzZwq5du1ixYgUvvPACZcqUYfHixSxevNj1N0jkFpHTywmKiIjIDUg7d46jEyZw7D8TnWWtUtP4+l//onWNGkybNo2OHTvy448/Oh+kO3fuHPXr13cef/Haze3atQMgICCAhIQEChQoQIECBfDy8uLEiRMsX76crl274ubmRqlSpWjSpAlr1qyhYMGC1KlTB19fXwCCg4OJiYmhUaNGN/s2iOQKCt4iIiK5WNK2bRyb+EWGshYFCvCvw4dYNGQoZ5ISCQkJoWXLlkydOjXLOi5eu9nT0xOAPHnyOL8/v52SknLZF7RceLybm9tl36AocqfRVBMREZFc7Gx0NFwUhPPnyUNYvny8sXMHnZs0oV69eqxYsYIdO3YAcObMmQwvV7lW9957L9OnTyc1NZXDhw+zdOlS6tS5/IrAV7MmtMjtTsFbREQkFzPuWX94/UCBgvx19iydw8MpUaIEkyZNomvXrgQGBlKvXj22bdt23W126NCBwMBAgoKCaN68Of/617+46667LntOv379aNOmjR6ulDtajq3jfT20jreIiEhGZ6Oj2dWxEyQnZ9rnXrYsFb+bjnuxYjnQM7lWN7qOd3ZITEykdevWLFq0CDc3N8Dxtsvq1avToUMHxo0bB8C4ceMYM2YMO3fu5PDhwxQvXjzL+vbu3UufPn3Yt28fxhh+/vln/Pz8Ltn+pEmTGDx4MGXLlgXgueeeo0+fPuzZs4eOHTuSmppKcnIyzz//PP379890/tKlS3nxxReJiopi2rRpdO7cGYCdO3fSqVMnduzY4VzR50KuWsdbc7xFRERysbyVK3PXkH/w99C3MpQbDw9KDxum0H0b+359LB/89hcHTiRSprA3g1tVpX1I2Ruq84svvqBjx47O0A0wZMgQmjRpkuG4hg0b0rZtW5o2bXrZ+rp3786bb75Jy5YtSUhIIE+eK0+26NKlizPgn1e6dGlWrlyJp6cnCQkJ+Pv7065dO8qUKZPhuPLlyzNp0iRGjhyZobxy5cpERkbi4+NzxfZvJgVvERGRXMzkyUPh9u3x8C1HwsKFnN2+He+wUAo0aYJ3UFBOd09uku/Xx/L67I0kJjteehR7IpHXZ28EuKHwPWXKFL799lvn9tq1azl48CCtW7fmwlkHISEhV6xry5YtpKSk0LJlS4AbCr158+Z1fn/27FnS0tKyPO78aPrVBPyccGv2SkRERK6ayZsXnwb1uWvIP6jw9VeUfOEFhe7b3Ae//eUM3eclJqfywW9/XXed586dY9euXc7wmpaWxqBBg/jggw+uq77t27dTuHBhOnbsSEhICIMHD76qt6POmjWLwMBAOnfuzL59+5zl+/btIzAwkHLlyvHqq69mGu3ODRS8RURERHKZAycSr6n8ahw5coTChQs7tz/99FPuv/9+ypUrd131paSksGzZMkaOHMmaNWvYtWsXkyZNuuw5Dz74IDExMURFRXHffffRo0cP575y5coRFRXFjh07mDx5MgcPHryufuUkBW8RERGRXKZMYe9rKr8a3t7eJCUlObdXrVrFuHHj8PPz4+WXX+arr77itddeu+r6fH19CQkJoVKlSri7u9O+fXvWrVt32XOKFSvmXAu+b9++rF27NtMxZcqUoWbNmixbtuyq+3KrUPAWERERyWUGt6qKt4dbhjJvDzcGt6p63XUWKVKE1NRUZ/ieMmUKe/fuJSYmhpEjR9K9e3dGjBhx1fWFhYVx/PhxDh8+DMCiRYuoUaMGAK+//jpz5szJdE5cXJzz+x9++MG50sj+/ftJTHSM5h8/fpwVK1ZQter1X2tOUfAWERERyWXah5Tl/Y4BlC3sjQHKFvbm/Y4BN7yqSXh4OMuXL7/icWPHjsXX15f9+/cTGBhInz59AIiIiHB+7+bmxsiRI2nRogUBAQFYa+nbty8AGzduzHLt97Fjx1KzZk2CgoIYO3asc2rK1q1bqVu3LkFBQTRp0oSXX36ZgIAAAIYOHcoPP/wAwJo1a/D19WXGjBk89dRT1KxZ84buR3bTOt4iIiIit4BbYR3v9evXM2rUKL7++uub2k6rVq347bffbmobWfHx8cnRdbw14i0iIiIigGOZwGbNml3V6iM3wtWhe+fOnQQHB1OqVCmXtnsxreMtIiIiIk69e/fO6S5ku/Mv0MlpGvEWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwFhEREREAEhMTadKkiXNVEzc3N4KDgwkODqZdu3bO45588kmCgoIIDAykc+fOWS7RB9C6dWsKFy5M27Ztr7oP3333HTVq1KBmzZo89thjzvLJkydTpUoVqlSpwuTJky9bx8yZMzHGcH4Z6vOrmvj4+Fx1P24GrWoiIiIikhtFfQcL34b4/VDIF1oMhcBHbqjKL774go4dO+Lm5ngrpre3d5argYwePZqCBQsC8NJLLzFu3LgsXyc/ePBgzpw5w7///e+raj86Opr333+fFStWUKRIEQ4dOgTAsWPHGD58OBERERhjqF27Nu3ataNIkSKZ6jh16hRjx46lbt26zrLzq5rkdPDWiLeIiIhIbhP1Hfz4AsTvA6zjf398wVF+A6ZMmcJDDz10xePOh25rLYmJiRhjsjyuRYsWFChQ4KrbnzBhAs8++6wzUJcsWRJwrPvdsmVLihYtSpEiRWjZsiW//vprlnUMGTKEV155BS8vr6tu11UUvEVERERym4VvQ3JixrLkREf5dTp37hy7du3Cz8/PWZaUlERoaCj16tXj+++/z3B8r169uOuuu9i2bRvPP//8dbd7oe3bt7N9+3YaNmxIvXr1nOE6NjaWcuXKOY/z9fUlNjY20/nr169n37591zS1xZU01UREREQkt4nff23lV+HIkSMULlw4Q9nevXspU6YMu3btonnz5gQEBFC5cmUAvvzyS1JTU3n++eeZPn06vXr1uu62z0tJSSE6OpolS5awf/9+GjduzKZNm7DWZjr24lH2tLQ0Bg4cyKRJk264HzeLRrxFREREcptCvtdWfhW8vb1JSkrKUFamTBkAKlWqRNOmTVm/fn2G/W5ubnTp0oVZs2Zdd7sX8vX15aGHHsLDw4OKFStStWpVoqOj8fX1Zd++fc7j9u/f7+zbeadOnWLTpk00bdoUPz8//vzzT9q1a+d8wPJWoOAtIiIiktu0GAoe3hnLPLwd5depSJEipKamOsP38ePHOXv2LOAYDV+xYgU1atTAWsuOHTsAxxzvH3/8kWrVql1TW6+//jpz5szJVN6+fXsWL17sbHP79u1UqlSJVq1aMX/+fI4fP87x48eZP38+rVq1ynBuoUKFOHLkCDExMcTExFCvXj1++OEHQkNDr/le3CwK3iIiIiK5TeAj8OBYKFQOMI7/fXDsDa9qEh4ezvLlywHYunUroaGhBAUF0axZM1577TVn8O7RowcBAQEEBAQQFxfH0KGOwB8REUGfPn2c9TVu3JiHH36YhQsX4uvry2+//QbAxo0bueuuuzK136pVK4oVK0aNGjVo1qwZH3zwAcWKFaNo0aIMGTKEsLAwwsLCGDp0KEWLFgVg6NCh/PDDDzd03a5ispozc6sKDQ21t9LHBSIiIiLZZevWrVSvXj1H+7B+/XpGjRrF119/fVPbadWqlTOEu5KPj0+Wa45nde+NMWuttdk6XK4RbxEREREBICQkhGbNmjlfoHOzuDp0n3+BTqlSpVza7sW0qomIiIiIOPXu3Tunu5Dtzr9AJ6dpxFtERERExAUUvEVEREREXEDBW0RERETEBRS8RURERERcQMFbRERERABITEykSZMmzlVN9u7dS3h4ONWrV6dGjRrExMQAsHv3burWrUuVKlXo0qUL586du2SdJ0+epGzZsjz33HNXbH/gwIEEBwcTHBzMPffck+EV9q+88go1a9akevXqvPDCC1m+Rv68mTNnYoxxvrXy/KomPj4+V3EXbh4FbxEREZFcaN6ueYTPDCdwciDhM8OZt2veDdf5xRdf0LFjR9zc3ADo3r07gwcPZuvWraxevZqSJUsC8OqrrzJw4ECio6MpUqQIEydOvGSdQ4YMoUmTJlfV/ujRo4mMjCQyMpLnn3+ejh07ArBy5UpWrFhBVFQUmzZtYs2aNfzxxx9Z1nHq1CnGjh1L3bp1nWVa1URERERErsu8XfMYtnIYcafjsFjiTscxbOWwGw7fU6ZM4aGHHgJgy5YtpKSk0LJlS8Dx8pl8+fJhrWXRokV07twZgB49evD9999nWd/atWs5ePAg4eHh19yXqVOn0rVrVwCMMSQlJXHu3DnOnj1LcnLyJdfkHjJkCK+88gpeXl7X3ObNpuAtIiIikst8tO4jklKTMpQlpSbx0bqPrrvOc+fOsWvXLvz8/ADYvn07hQsXpmPHjoSEhDB48GBSU1M5evQohQsXxt3d8ToYX19fYmNjM9WXlpbGoEGD+OCDD665L3v27GH37t00b94cgPr169OsWTNKly5N6dKladWqVZZv+Vy/fj379u2jbdu219ymKyh4i4iIiOQyf5/++5rKr8aRI0cyzKlOSUlh2bJljBw5kjVr1rBr1y4mTZqU5dxqY0ymsk8//ZT777+fcuXKXXNfpk2bRufOnZ1TXnbs2MHWrVvZv38/sbGxLFq0iKVLl2Y4Jy0tjYEDB/Lhhx9ec3uuouAtIiIiksvclf+uayq/Gt7e3iQl/W8U3dfXl5CQECpVqoS7uzvt27dn3bp1FC9enBMnTpCSkgLA/v37KVOmTKb6Vq1axbhx4/Dz8+Pll1/mq6++4rXXXruqvkybNs05zQRgzpw51KtXDx8fH3x8fGjTpg1//vlnhnNOnTrFpk2baNq0KX5+fvz555+0a9fO+YDlrUDBW0RERCSXGVBrAF5uGecwe7l5MaDWgOuus0iRIqSmpjrDd1hYGMePH+fw4cMALFq0iBo1amCMoVmzZsycOROAyZMnO+eFX2jKlCns3buXmJgYRo4cSffu3RkxYgQAr7/+OnPmzMmyH3/99RfHjx+nfv36zrLy5cvzxx9/kJKSQnJyMn/88UemqSaFChXiyJEjxMTEEBMTQ7169fjhhx8IDQ297nuS3RS8RURERHKZByo9wLAGwyidvzQGQ+n8pRnWYBgPVHrghuoNDw9n+fLlALi5uTFy5EhatGhBQEAA1lr69u0LwP/93/8xatQo7r77bo4ePcqTTz4JQEREBH369LliOxs3buSuu7IenZ86dSqPPvpohukrnTt3pnLlygQEBBAUFERQUBAPPvggAEOHDuWHH364oet2FXO5NRBvNaGhofZW+rhAREREJLts3bo1ywcGXWn9+vWMGjWKr7/++qa206pVK3777beb2kZWfHx8SEhIyFSe1b03xqy11mbrcLlGvEVEREQEgJCQEJo1a+Z8gc7N4urQff4FOpdagtBV3HO0dRERERG5pfTu3Tunu5Dt9AIdEREREZE7iIK3iIiIiIgLKHiLiIiIiLiAgreIiIiIiAsoeIuIiIgIAImJiTRp0oTU1FQWL15McHCw88vLy4vvv/8egIULF1KrVi2Cg4Np1KgRO3bsuGSdJ0+epGzZsjz33HNXbH/Pnj20aNGCwMBAmjZtyv79+53ltWvXJjg4mJo1azJ+/Pgszz979ixdunTh7rvvpm7dusTExAD/W9XEx8fn2m5INlPwFhEREcmF4n/8kejmLdhavQbRzVsQ/+OPN1znF198QceOHXFzc6NZs2ZERkYSGRnJokWLyJcvH+Hh4QA8/fTTTJkyhcjISB577DHeeeedS9Y5ZMgQmjRpclXtv/zyy3Tv3p2oqCiGDh3K66+/DkDp0qVZuXIlkZGR/Pe//2XEiBEcOHAg0/kTJ06kSJEi7Nixg4EDB/Lqq68CWtVERERERK5T/I8/EjdkKCkHDoC1pBw4QNyQoTccvqdMmZLl699nzpxJmzZtyJcvHwDGGE6ePOnoS3w8ZcqUybK+tWvXcvDgQWdgv5ItW7bQokULAJo1a8bcuXMByJs3L56enoBjVDstLS3L8+fOnUuPHj0Ax9suFy5cyK30skgFbxEREZFc5tDoMdikpAxlNimJQ6PHXHed586dY9euXfj5+WXaN23aNLp27erc/s9//sP999+Pr68vX3/9Na+99lqmc9LS0hg0aBAffPDBVfchKCiIWbNmATBnzhxOnTrF0aNHAdi3bx+BgYGUK1eOV199NcuwHxsbS7ly5QBwd3enUKFCzvNvBQreIiIiIrlMSlzcNZVfjSNHjlC4cOFM5XFxcWzcuJFWrVo5y0aPHs3PP//M/v376dWrFy+99FKm8z799FPuv/9+ZxC+GiNHjuSPP/4gJCSEP/74g7Jly+Lu7njfY7ly5YiKimLHjh1MnjyZgwcPZjo/q9FtY8xVt3+z6c2VIiIiIrmMe+nSjmkmWZRfL29vb5IuGkUH+O677+jQoQMeHh4AHD58mA0bNlC3bl0AunTpQuvWrTOdt2rVKpYtW8ann35KQkIC586dw8fHhxEjRlyyD2XKlGH27NkAJCQkMGvWLAoVKpTpmJo1a7Js2TI6d+6cYZ+vry/79u3D19eXlJQU4uPjKVq06LXdiJtII94iIiIiuUzJgS9ivLwylBkvL0oOfPG66yxSpAipqamZwvfUqVMzTDMpUqQI8fHxbN++HYDff/+d6tWrZ6pvypQp7N27l5iYGEaOHEn37t2dofv1119nzpw5mc45cuSIc/72+++/73x9/f79+0lMTATg+PHjrFixgqpVq2Y6v127dkyePBlwzEtv3rz5LTXireAtIiIikssUevBBSv/zbdzLlAFjcC9ThtL/fJtCDz54Q/WGh4ezfPly53ZMTAz79u3LsCqJu7s7EyZMoFOnTgQFBfH1118753FHRETQp0+fK7azceNG7rrrrkzlS5YsoWrVqtxzzz0cPHiQN998E4CtW7dSt25dgoKCaNKkCS+//DIBAQEADB06lB9++AGAJ598kqNHj3L33XczatSoy46u5wRzKz3peSWhoaE2IiIip7shIiIiku22bt2a5cixK61fv55Ro0bx9ddf39R2WrVqxW+//XZT28iKj48PCQkJmcqzuvfGmLXW2tDsbF8j3iIiIiICQEhICM2aNSM1NfWmtuPq0H3+BTqlSpVyabsX08OVIiIiIuJ0fl717UQv0BERERERuYMoeIuIiIiIuICCt4iIiIiICyh4i4iIiAjgeMvjoEGDnNsjR45k2LBhGY4JCgrKsK63XD0FbxEREREBwNPTk9mzZ3PkyJEs92/dupW0tDSWLl3K6dOnXdy73E/BW0RERCQX2v7fv5n8xgo+6b+IyW+sYPt//77hOt3d3enXrx+jR4/Ocv+3337LE088QXh4uPOlNXL1FLxFREREcpnt//2bxVO2kXDsLAAJx86yeMq2bAnfzz77LFOmTCE+Pj7TvunTp9OlSxe6du3K1KlTb7itO42Ct4iIiEgus2ruTlLOpWUoSzmXxqq5O2+47oIFC9K9e3fGjh2boXzNmjWUKFGCChUq0KJFC9atW8fx48dvuL07SY4Hb2OMmzFmvTHmp5zui4iIiEhucH6k+2rLr9WLL77IxIkTM8zjnjp1Ktu2bcPPz4/KlStz8uRJZs2alS3t3SlyPHgDA4CtOd0JERERkdzCp6jnNZVfq6JFi/LII48wceJEANLS0pgxYwZRUVHExMQQExPD3LlzNd3kGuVo8DbG+AIPAP/JyX6IiIiI5Cb1H6qMe96MMc49bx7qP1Q529oYNGiQc3WTpUuXUrZsWcqWLevcf++997Jlyxbi4uKyrc3bnXsOtz8GeAUocKkDjDH9gH4A5cuXd02vRERERG5h99S9C3DM9U44dhafop7Uf6iys/x6JSQkOL8vVaoUZ86ccW7/+eefGY51c3NT6L5GORa8jTFtgUPW2rXGmKaXOs5a+znwOUBoaKh1Te9EREREbm331L3rhoO2uFZOTjVpCLQzxsQA04DmxphvcrA/IiIiIiI3TY4Fb2vt69ZaX2utH/AosMha+3hO9UdERERE5Ga6FVY1ERERERG57eX0w5UAWGuXAEtyuBsiIiIiIjeNRrxFRERERFxAwVtEREQkF5szZw7GGLZt25bl/qZNmxIREXHZOoYNG8bIkSMBmDRpEgcOHABg7ty5tG/f3nnc+++/z9133+3c/vHHH2nXrt0193nSpEk899xz13zelfj5+TnXHr8VKXiLiIiI5GJTp06lUaNGTJs2LVvquzB4N2jQgFWrVjn3rVq1ioIFC3Lo0CEAVq5cScOGDbOl3TuBgreIiIhILpWQkMCKFSuYOHGiM3gnJiby6KOPEhgYSJcuXUhMTHQe7+Pj4/x+5syZ9OzZM0N9M2fOJCIigm7duhEcHIyPjw+FChVix44dAMTGxtKpUydWrlwJOIJ3gwYNOHz4MJ06dSIsLIywsDBWrFgBwOnTp+nduzdhYWGEhIQwd+7cTNcwb9486tevz5EjR5g/fz7169enVq1aPPzww84X+vj5+fHWW29Rq1YtAgICnKP7R48eJTw8nJCQEJ566imsvbVf+aLgLSIiIpJLff/997Ru3Zp77rmHokWLsm7dOj777DPy5ctHVFQUb775JmvXrr3q+jp37kxoaChTpkwhMjISb29vGjRowMqVK/nrr7+oUqUK9erVY+XKlaSkpBAVFUVYWBgDBgxg4MCBrFmzhlmzZtGnTx8A3n33XZo3b86aNWtYvHgxgwcP5vTp08725syZw4gRI/j5558BeOedd1iwYAHr1q0jNDSUUaNGOY8tXrw469at4+mnn3ZOixk+fDiNGjVi/fr1tGvXjr1792bHbb1pbolVTURERETk2k2dOpUXX3wRgEcffZSpU6cSHR3NCy+8AEBgYCCBgYE31EbDhg1ZuXIlqamp1K9fnzp16vD222+zfv16qlatipeXFwsWLGDLli3Oc06ePMmpU6eYP38+P/zwgzMoJyUlOcPx4sWLiYiIYP78+RQsWJCffvqJLVu2OKeunDt3jvr16zvr7NixIwC1a9dm9uzZACxdutT5/QMPPECRIkVu6FpvNgVvERERkVzo6NGjLFq0iE2bNmGMITU1FWMMISEhGGOyPOfC8qSkpKtqp0GDBnz88cekpqbSt29fChQoQFJSEkuWLHGG5LS0NFatWoW3t3eGc621zJo1i6pVq2Yo/+9//0ulSpXYtWsX27dvJzQ0FGstLVu2ZOrUqVn2w9PTEwA3NzdSUlKyvKZbnaaaiIiIiORCM2fOpHv37uzZs4eYmBj27dtHxYoVqVWrFlOmTAFg06ZNREVFOc8pVaoUW7duJS0tjTlz5mRZb4ECBTh16pRzu0aNGhw4cIBly5YREhICQHBwMOPHj6dBgwYAhIeHM27cOOc5kZGRALRq1YqPP/7YOfd6/fr1zmMqVKjA7Nmz6d69O5s3b6ZevXqsWLHCOZ/8zJkzbN++/bL34N5773Ve6y+//MLx48evfONykIK3iIiISC40depUOnTokKGsU6dOxMTEkJCQQGBgIP/617+oU6eOc/+IESNo27YtzZs3p3Tp0lnW27NnT/r3709wcDCJiYkYY6hbty7FixfHw8MDgPr167Nr1y5n8B47diwREREEBgZSo0YNxo8fD8CQIUNITk4mMDAQf39/hgwZkqGtqlWrMmXKFB5++GFOnjzJpEmT6Nq1K4GBgdSrV++SSySe99Zbb7F06VJq1arF/PnzKV++/LXdRBczt/rTnxcKDQ21V1qHUkRERCQ32rp1K9WrV8/pbtyRsrr3xpi11trQ7GxHI94iIiIiIi6g4C0iIiIi4gIK3iIiIiIiLqDgLSIiIiLiAgreIiIiIiIuoOAtIiIiIuICenOliIiIiDj5+flRoEAB3NzccHd3JyIigmPHjtGlSxdiYmLw8/Pju+++u+Vfz34r0oi3iIiIiGSwePFiIiMjOf/+lBEjRtCiRQuio6Np0aIFI0aMyOEe5k4K3iIiIiK5UFJSEnPmzOGdd95hzpw5JCUl3bS25s6dS48ePQDo0aMH33///U1r63amqSYiIiIiuUxSUhLdu3fnwIEDJCUl8euvvzJ16lS++uorvLy8bqhuYwzh4eEYY3jqqafo168fBw8edL5ivnTp0hw6dCg7LuOOo+AtIiIiksv88ssvztANjiB+4MABfvnlFzp06HBDda9YsYIyZcpw6NAhWrZsSbVq1bKjy4KmmoiIiIjkOps3b840tSQpKYktW7bccN1lypQBoGTJknTo0IHVq1dTqlQp4uLiAIiLi6NkyZI33M6dSMFbREREJJepWbNmpiklXl5e1KhR44bqPX36NKdOnXJ+P3/+fPz9/WnXrh2TJ08GYPLkyTz00EM31M6dSlNNRERERHKZNm3aMHXqVOd0Ey8vL8qUKUObNm1uqN6DBw86p6qkpKTw2GOP0bp1a8LCwnjkkUeYOHEi5cuXZ8aMGdlxGXccBW8RERGRXMbLy4uvvvqKX375hS1btlCjRg3atGlzww9WVqpUiQ0bNmQqL1asGAsXLryhukXBW0RERCRX8vLyokOHDjf8MKW4juZ4i4iIiIi4gIK3iIiIiIgLKHiLiIiIiLiAgreIiIiIiAsoeIuIiIiIuICCt4iIiIg4nThxgs6dO1OtWjWqV6/OqlWrOHbsGC1btqRKlSq0bNmS48eP53Q3cyUFbxEREZFcylpLUlIS1tpsq3PAgAG0bt2abdu2sWHDBqpXr86IESNo0aIF0dHRtGjRghEjRmRbe3cSBW8RERGRXMZay/Tp02nZsiX33nsvLVu2ZPr06TccwE+ePMnSpUt58sknAcibNy+FCxdm7ty59OjRA4AePXrw/fff3+gl3JEUvEVERERyme+++46PP/6YEydOkJaWxokTJ/j444/57rvvbqjeXbt2UaJECXr16kVISAh9+vTh9OnTHDx4kNKlSwNQunRpDh06lB2XccdR8BYRERHJRay1TJgwgaSkpAzlSUlJTJgw4YZGvVNSUli3bh1PP/0069evJ3/+/JpWko0UvEVERERykbNnz3Ly5Mks9508eZKzZ89ed92+vr74+vpSt25dADp37sy6desoVaoUcXFxAMTFxVGyZMnrbuNOpuAtIiIikot4enpSsGDBLPcVLFgQT0/P6677rrvuoly5cvz1118ALFy4kBo1atCuXTsmT54MwOTJk3nooYeuu407mXtOd0BERERErp4xhr59+/Lxxx9nmG7i5eVF3759McbcUP0ff/wx3bp149y5c1SqVIkvv/yStLQ0HnnkESZOnEj58uWZMWPGjV7GHUnBW0RERCSXeeSRRwCYMGECJ0+epGDBgvTt29dZfiOCg4OJiIjIVL5w4cIbrvtOp6kmIiIi2cAYw6BBg5zbI0eOZNiwYdlWf0xMDP7+/hnKhg0bxsiRI7Otjat1uXYbNGjg4t7cmYwxdOnShd9//52lS5fy+++/06VLlxse7ZabS8FbREQkG3h6ejJ79myOHDmS013JUStXrsxUlpqamgM9uTMYY/Dy8lLgziUUvEVERLKBu7s7/fr1Y/To0Zn2HT58mE6dOhEWFkZYWBgrVqwAICAggBMnTmCtpVixYnz11VcAPPHEEyxYsOCa2p8wYQJhYWEEBQXRqVMnzpw5A0DPnj15+umnadasGZUqVeKPP/6gd+/eVK9enZ49ezrP9/HxYdCgQdSqVYsWLVpw+PBhAMaOHUuNGjUIDAzk0UcfdR6/ZcsWmjZtSqVKlRg7dmyGegCWLFlCs2bNeOyxxwgICCA1NZXBgwcTFhZGYGAg//73v6/p+kRuBwreIiIi1yn+bDy743dz5IxjlPvZZ59lypQpxMfHZzhuwIABDBw4kDVr1jBr1iz69OkDQMOGDVmxYgWbN2+mUqVKLFu2DIA///yTevXqZWpv586dBAcHO7/Gjx/v3NexY0fWrFnjfMX3xIkTnfuOHz/OokWLGD16NA8++CADBw5k8+bNbNy4kcjISABOnz5NrVq1WLduHU2aNGH48OEAjBgxgvXr1xMVFZWhvW3btvHbb7+xevVqhg8fTnJycqb+rl69mnfffZctW7YwceJEChUqxJo1a1izZg0TJkxg9+7d13PbRXItPVwpIiJyjVLSUli6fykfrfuIXfG7KOpVlBSbgvE0dO/enbFjx+Lt7e08fsGCBWzZssW5ffLkSU6dOkXjxo1ZunQpFSpU4Omnn+bzzz8nNjaWokWLOkeOL1S5cmVnUAYyzCHftGkT//jHPzhx4gQJCQm0atXKue/BBx/EGENAQAClSpUiICAAgJo1axITE0NwcDB58uShS5cuADz++ON07NgRgMDAQLp160b79u1p3769s84HHngAT09PPD09KVmyJAcPHsTX1zdDf+vUqUPFihUBmD9/PlFRUcycOROA+Ph4oqOjnftF7gQK3iIiItfoz7g/GbB4gHP7WNIxklOT+WX3L7z44ovUqlWLXr16OfenpaWxatWqDGEc4N577+WTTz5h7969vPvuu8yZM4eZM2fSuHHja+5Tz549+f777wkKCmLSpEksWbLEue/8us558uTJsMZznjx5SElJybK+83OG582bx9KlS/nhhx/45z//yebNmzPUCeDm5pZlPfnz53d+b63l448/zvAHgcidRlNNRERErkFyWjLf/fVdlvvGRY4j1SvVud7xeeHh4YwbN865fX7Uuly5chw5coTo6GgqVapEo0aNGDly5HUF71OnTlG6dGmSk5OZMmXKNZ+flpbmHI3+9ttvadSoEWlpaezbt49mzZrxr3/9yzmafj1atWrFZ5995pySsn37dk6fPn1ddcnN89dff2WYzlSwYEHGjBnDsWPHaNmyJVWqVKFly5YcP348p7uaKyl4i4iIXIOklCS2HduW5b7jZ48TfzaeQYMGZVjdZOzYsURERBAYGEiNGjUyzJWuW7cu99xzDwCNGzcmNjaWRo0aXXO//vnPf1K3bl1atmxJtWrVrvn8/Pnzs3nzZmrXrs2iRYsYOnQoqampPP744wQEBBASEsLAgQMpXLjwNdcN0KdPH2rUqEGtWrXw9/fnqaeeuuRou1ydlJQUlixZwjfffMOSJUuy5X5WrVqVyMhIIiMjWbt2Lfny5aNDhw6MGDGCFi1aEB0dTYsWLRgxYkQ2XMGdx1hrc7oPVy00NNRmtaC7iIiIq6TZNN5a8Rbf7/w+075yPuWY8sAUingVcX3HbpCPj891j2ZL9ti6dSvVq1e/qmN37tzJ008/TVJSEufOnSNv3rx4eXnx2WefUbly5Wzpz/z58xk+fDgrVqygatWqLFmyhNKlSxMXF0fTpk2dr5W/HWR1740xa621odnZjka8RURErkEek4cOVTqQN0/eTPteqPVCrgzdkrukpKTw9NNPc+zYMc6cOUNKSgpnzpzh2LFjPP3009n2ScK0adPo2rUrAAcPHqR06dIAlC5dmkOHDmVLG3caBW8REZFrVKtULSaET+ChSg9RwrsEDco0YFzzcTQv3zynu3bdNNqdeyxfvpykpKQs9yUlJbF8+fIbbuPcuXP88MMPPPzwwzdcl/yPVjURERG5DrVK1SKoRBAJyQnkc8+Hh5tHTndJ7hD79+/n3LlzWe5LTk4mNjb2htv45ZdfqFWrFqVKlQKgVKlSxMXFOaealCxZ8obbuBNpxFtEROQ6ueVxo5BnIYVucSlfX1/y5s081QnAw8ODsmXL3nAbU6dOdU4zAWjXrh2TJ08GYPLkyTz00EM33MadSMFbREREJBdp1KgRXl5eWe7z8vK6rlVxLnTmzBl+//1350uUAF577TV+//13qlSpwu+//85rr712Q23cqTTVRERERCQXcXd357PPPnOuapKcnIyHh4dzVRN39xuLd/ny5ePo0aMZyooVK8bChQtvqF5R8BYRERHJdSpXrszPP//M8uXLiY2NpWzZsjRq1OiGQ7fcXPrpiIiIiORC7u7uNG3aNKe7IddAc7xFRERERFxAwVtERERExAUUvEVEREREXEDBW0RERETEBRS8RURERASA0aNHU7NmTfz9/enatStJSUkcO3aMli1bUqVKFVq2bMnx48dzupu5loK3iIiISC5jrWX58uU888wzPPTQQzzzzDMsX74ca+111xkbG8vYsWOJiIhg06ZNpKamMm3aNEaMGEGLFi2Ijo6mRYsWjBgxIhuv5M6i5QRFREREchFrLe+88w7z588nMTERcITmjRs3Eh4ezj/+8Q+MMddVd0pKComJiXh4eHDmzBnKlCnD+++/z5IlSwDo0aMHTZs25f/+7/+y63LuKBrxFhEREclFVqxYkSF0n5eYmMj8+fNZsWLFddVbtmxZXn75ZcqXL0/p0qUpVKgQ4eHhHDx4kNKlSwNQunRpDh06dMPXcKdS8BYRERHJRb799ttMofu8xMREvv322+uq9/jx48ydO5fdu3dz4MABTp8+zTfffHMjXZWLKHiLiIiI5CKxsbGX3X/gwIHrqnfBggVUrFiREiVK4OHhQceOHVm5ciWlSpUiLi4OgLi4OEqWLHld9YuCt4iIiEiuUrZs2cvuL1OmzHXVW758ef7880/OnDmDtZaFCxdSvXp12rVrx+TJkwGYPHkyDz300HXVL3q4UkRERCRXeeyxx9i4cWOW0028vb157LHHrqveunXr0rlzZ2rVqoW7uzshISH069ePhIQEHnnkESZOnEj58uWZMWPGjV7CHSvHgrcxxgtYCnim92OmtfatnOqPiIiISG7QsGFDwsPDMz1g6e3tTXh4OA0bNrzuuocPH87w4cMzlHl6erJw4cLrrlP+JydHvM8Cza21CcYYD2C5MeYXa+2fOdgnERERkVuaMYZ//OMfNGvWjG+//ZYDBw5QpkwZHnvsMRo2bHjdSwnKzZdjwds6VnhPSN/0SP+6/lXfRURERO4QxhgaNWpEo0aNcrorcg1y9OFKY4ybMSYSOAT8bq39bxbH9DPGRBhjIg4fPuzyPoqIiIiIZIccDd7W2lRrbTDgC9Qxxvhncczn1tpQa21oiRIlXN5HEREREZHscEssJ2itPQEsAVrnbE9ERERERG6OHAvexpgSxpjC6d97A/cB23KqPyIiIiIiN1NOjniXBhYbY6KANTjmeP+Ug/0RERERyVUSEhLYv38/CQkJVz74Knz00Uf4+/tTs2ZNxowZA8CxY8do2bIlVapUoWXLlhw/fjxb2roT5VjwttZGWWtDrLWB1lp/a+3bOdUXERERkdwkNjaWQYMG0bJlS7p27UrLli0ZNGjQFV8nfzmbNm1iwoQJrF69mg0bNvDTTz8RHR3NiBEjaNGiBdHR0bRo0YIRI0Zk45XcWW6JOd4iIiIicnViY2N5/PHHWbZsGcnJySQmJpKcnMyyZct4/PHHrzt8b926lXr16pEvXz7c3d1p0qQJc+bMYe7cufTo0QOAHj168P3332fj1dxZFLxFREREcpFRo0Zx+vRp0tLSMpSnpaVx+vRpRo0adV31+vv7s3TpUo4ePcqZM2f4+eef2bdvHwcPHqR06dIAlC5dmkOHDt3wNdypcvLNlSIiIiJyDRISEli5cmWm0H1eWloaK1euJCEhAR8fn2uqu3r16rz66qu0bNkSHx8fgoKCcHdXVMxOGvEWERERySVOnDhxxTDs7u7OiRMnrqv+J598knXr1rF06VKKFi1KlSpVKFWqFHFxcQDExcVRsmTJ66pbFLxFREREco3ChQuTkpJy2WNSUlIoXLjwddV/fhrJ3r17mT17Nl27dqVdu3ZMnjwZgMmTJ/PQQw9dV92iqSYiIiIiuYaPjw8NGjRg2bJlWU43yZMnDw0aNLjmaSbnderUiaNHj+Lh4cEnn3xCkSJFeO2113jkkUeYOHEi5cuXZ8aMGTd6GXcsBW8RERGRXOSll15i3bp1mR6wzJMnD/nz5+ell1667rqXLVuWqaxYsWIsXLjwuuuU/9FUExEREZFcpGzZsnzzzTc0btwYDw8PvL298fDwoHHjxnzzzTeULVs2p7sol6ARbxEREZFcpmzZsnz44YckJCRw4sQJChcufN3TS8R1FLxFREREbhHWWowxV328j4+PAvcNsta6rC1NNRERERG5BXh5eXH06FGXBsE7nbWWo0eP4uXl5ZL2NOItIiIicgvw9fVl//79HD58OKe7ckfx8vLC19fXJW0peIuIiIjcAjw8PKhYsWJOd0NuIk01ERERERFxAQVvEREREREXUPAWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwFhERERFxAQVvEREREREXUPAWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwFhERERFxAQVvEREREREXUPAWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwFhERERFxAQVvEREREREXUPAWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwFhERERFxAQVvEREREREXUPAWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwFhERERFxAQVvEREREREXUPAWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwFhERERFxAQVvEREREREXUPAWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwFhERERFxAQVvEREREREXUPAWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwFhERERFxAQVvEREREREXUPAWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwFhERERFxAQVvEREREREXUPAWEREREXGBHAvexphyxpjFxpitxpjNxpgBOdUXEREREZGbzT0H204BBllr1xljCgBrjTG/W2u35GCfRERERERuihwb8bbWxllr16V/fwrYCpTNqf6IiIiIiNxMt8Qcb2OMHxAC/DeLff2MMRHGmIjDhw+7vG8iIiIiItkhx4O3McYHmAW8aK09efF+a+3n1tpQa21oiRIlXN9BEREREZFskKPB2xjjgSN0T7HWzs7JvoiIiIiI3Ew5uaqJASYCW621o3KqHyIiIiIirpCTI94NgSeA5saYyPSv+3OwPyIiIiIiN02OLSdorV0OmJxqX0RERETElXL84UoRERERkTuBgreIiIiIiAsoeIuIiIiIuICCt4iIiIiICyh4i4iIiIi4gIK3iIiIiIgLKHiLiIiIiLiAgreIiIiIiAsoeIuIiIiIuICCt4iIiIiIC1wxeBtjChpjKmdRHnhzuiQiIiIicvu5bPA2xjwCbANmGWM2G2PCLtg96WZ2TERERETkdnKlEe83gNrW2mCgF/C1MaZj+j5zMzsmIiIiInI7cb/CfjdrbRyAtXa1MaYZ8JMxxhewN713IiIiIiK3iSuNeJ+6cH53eghvCjwE1LyJ/RIRERERua1cacT7aS6aUmKtPWWMaQ08ctN6JSIiIiJym7nSiPdpoFQW5fWAP7O/OyIiIiIit6crBe8xwKksyhPT94mIiIiIyFW4UvD2s9ZGXVxorY0A/G5Kj0REREREbkNXCt5el9nnnZ0dERERERG5nV0peK8xxvS9uNAY8ySw9uZ0SURERETk9nOlVU1eBOYYY7rxv6AdCuQFOtzEfomIiIiI3FYuG7yttQeBBukvzvFPL55nrV1003smIiIiInIbuWzwNsZ4Af2Bu4GNwERrbYorOiYiIiIicju50hzvyTimlmwE2gAjb3qPRERERERuQ1ea413DWhsAYIyZCKy++V0SEREREbn9XGnEO/n8N5piIiIiIiJy/a404h1kjDmZ/r0BvNO3DWCttQVvau9ERERERG4TV1rVxM1VHRERERERuZ1daaqJiIiIiIhkAwVvEREREREXUPAWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwFhERERFxAQVvEREREREXUPAWuU0MHDiQMWPGOLdbtWpFnz59nNuDBg1i1KhRN6XtPn36sGXLlptSt4iIyO1CwVvkNtGgQQNWrlwJQFpaGkeOHGHz5s3O/StXrqRhw4Y3pe3//Oc/1KhR46bULSIicrtQ8Ba5TTRs2NAZvDdv3oy/vz8FChTg+PHjnD17lq1bt/Liiy8SGRmZ4ZyoqCiOHTtG+/btCQwMpF69ekRFRQEwbNgwevToQXh4OH5+fsyePZtXXnmFgIAAWrduTXJyMgBNmzYlIiICAB8fH958802CgoKoV68eBw8eBGDnzp3Uq1ePsLAwhg4dio+PjwvvjoiISM5T8BbJ7ayFU39TpqgP7u7u7N27l5UrV1K/fn3q1q3LqlWriIiIIDAwkP79+zNp0iQAtm/fztmzZwkMDOStt94iJCSEqKgo3nvvPbp37+6sfufOncybN4+5c+fy+OOP06xZMzZu3Ii3tzfz5s3L1J3Tp09Tr149NmzYwL333suECRMAGDBgAAMGDGDNmjWUKVPGJbdGRETkVqLgLZKbndgL8/8BH9eGL1rTMLAyK1escAbv+vXrs3LlSlauXEmDBg14+OGH+emnn0hOTuaLL76gZ8+eACxfvpwnnngCgObNm3P06FHi4+MBaNOmDR4eHgQEBJCamkrr1q0BCAgIICYmJlOX8ubNS9u2bQGoXbu285hVq1bx8MMPA/DYY4/dxJsiIiJya3LP6Q6IyA1Y8wWsGuf4/tBmGqSmsHJBKTZu3Ia/vz/lypXjww8/pGDBgvTu3Zt8+fLRsmVL5s6dy3fffeecHmKtzVS1MQYAT09PAPLkyYOHh4ezPE+ePKSkpGQ678Jj3NzcsjxGRETkTqQRb5Hc6vRR2DAlQ1HDcoaffltI0aJFcXNzo2jRopw4cYJVq1ZRv359wLECyQsvvEBYWBhFixYF4N5772XKFEddS5YsoXjx4hQsWDBbu1uvXj1mzZoFwLRp07K1bhERkdxAwVskt8qbH0pkXEkkoGQejpxIoF69ev8rCwigUKFCFC9eHHBM/yhYsCC9evVyHjNs2DDnPPDXXnuNyZMnZ3t3x4wZw6hRo6hTpw5xcXEUKlQo29sQERG5lZmsPmK+VYWGhtrzH42LCBCzHL59BM6ddmwHPQat3oN8RS55yoEDB2jatCnbtm0jTx7X/e195swZvL29McYwbdo0pk6dyty5c13WvoiIyLUwxqy11oZmZ52a4y2Sm/k1gr5L4NAW8CoMZWuB16WniHz11Ve8+eabjBo1yqWhG2Dt2rU899xzWGspXLgwX3zxhUvbFxERyWka8RYRERERucjNGPHWHG8RERERERdQ8BYRERERcQEFbxERERERF1DwFhERERFxAQVvEREREREXUPAWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwFhERERFxAQVvEREREREXUPAWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwltvS33//zaOPPkrlypWpUaMG999/P9u3b8+x/owZM4YzZ844t++//35OnDhxzfXExMTw7bffZmPPRERExFUUvOW2Y62lQ4cONG3alJ07d7Jlyxbee+89Dh48mGN9ujh4//zzzxQuXPia61HwFhERyb0UvOW2s3jxYjw8POjfv7+zLDg4mEaNGjF48GD8/f0JCAhg+vTpACxZsoSmTZvSuXNnqlWrRrdu3bDWAuDn58dbb71FrVq1CAgIYNu2bQCcPn2a3r17ExYWRkhICHPnzgUgNTWVl19+mYCAAAIDA/n4448ZO3YsBw4coFmzZjRr1sxZ75EjRwD46quvCAwMJCgoiCeeeAKAnj17MnPmTGf/fXx8AHjttddYtmwZwcHBjB49+mbeRhEREclmCt5y29m0aRO1a9fOVD579mwiIyPZsGEDCxYsYPDgwcTFxQGwfv16xowZw5YtW9i1axcrVqxwnle8eHHWrVvH008/zciRIwF49913ad68OWvWrGHx4sUMHjyY06dP8/nnn7N7927Wr19PVFQU3bp144UXXqBMmTIsXryYxYsXZ+jT5s2beffdd1m0aBEbNmzgo48+uuy1jRgxgsaNGxMZGcnAgQNv9FZdN2OM848EgJSUFEqUKEHbtm1zpD9Lliy5qW2fOHGCTz/91LmtTx5EROR6KHjL7SE1BfathnVfwaFtkJyU6ZDly5fTtWtX3NzcKFWqFE2aNGHNmjUA1KlTB19fX/LkyUNwcDAxMTHO8zp27AhA7dq1neXz589nxIgRBAcH07RpU5KSkti7dy8LFiygf//+uLu7A1C0aNHLdnvRokV07tyZ4sWLX9Xxt4r8+fOzadMmEhMTAfj9998pW7ZsDvfq5lHwFhGR7KDgLbeHrT/AF+Hww/PU3DuZtYvnQtLJDIecnz6SFU9PT+f3bm5upKSkZNp3Ybm1llmzZhEZGUlkZCR79+6levXqWGsxxlx1ty91vLu7O2lpac5jzp07d9V1ukqbNm2YN28eAFOnTqVr167OfatXr6ZBgwaEhITQoEED/vrrL8Axwl+nTh2Cg4MJDAwkOjqa06dP88ADDxAUFIS/v79zCtDbb79NWFgY/v7+9OvXz/nz27FjB/fddx9BQUHUqlWLnTt3ApCQkHDJ6ULnp/VERETQtGlTAP744w+Cg4MJDg4mJCSEU6dOAfDBBx8QFhZGYGAgb731FuCY4rNz506Cg4MZPHhwpik/WV2XiIjIxXI0eBtjvjDGHDLGbMrJfkgud+og/PoqpAet5hXdOBt/kAmj33EesmbNGooUKcL06dNJTU3l8OHDLF26lDp16lxXk61ateLjjz92hrv169cDEB4ezvjx450B/dixYwAUKFDAGewu1KJFC7777juOHj2a4Xg/Pz/Wrl0LwNy5c0lOTr5sPTnh0UcfZdq0aSQlJREVFUXdunWd+6pVq8bSpUtZv349b7/9Nm+88QYA48ePZ8CAAURGRhIREYGvry+//vorZcqUYcOGDWzatInWrVsD8Nxzz7FmzRrnyPpPP/0EQLdu3Xj22WfZsGEDK1eupHTp0sDlpwtlZeTIkXzyySdERkaybNkyvL29mT9/PtHR0axevZrIyEjWrl3L0qVLGTFiBJUrVyYyMpIPPvgg05SfrK5LRETkYjk94j0JaJ3DfZDcLvk0nD7s3DTGMKdLPn7/YyWVK1emZs2aDBs2jMcee8z5EGPz5s3517/+xV133XVdTQ4ZMoTk5GQCAwPx9/dnyJAhAPTp04fy5cs72zk/HaFfv360adPG+XDleTVr1uTNN9+kSZMmBAUF8dJLLwHQt29f/vjjD+rUqcN///tf8ufPD0BgYCDu7u4EBQW5/uHKtDT4exNs+wVsGoH+/sTExDB16lTuv//+DIfGx8fz8MMP4+/vz8CBA9m8eTMA9evX57333uP//u//2LNnD97e3gQEBLBgwQJeffVVli1bRqFChQDHQ7J169YlICCARYsWsXnzZk6dOkVsbCwdOnQAwMvLi3z58gGXny6UlYYNG/LSSy8xduxYTpw4gbu7O/Pnz2f+/PmEhIRQq1Yttm3bdlWj11ldl4iISCbW2hz9AvyATVdzbO3ata1IJslnrZ3R29q3Cv7v690y1h6Ozume3V7WfWPt8CLWvlXQ5s+Lteu+scOHD7dFixa1UVFRdvHixfaBBx6w1lrbo0cP+9FHH1lrrd29e7etUKGCs5odO3bYjz76yFasWNEuXLjQWmvt0aNH7ddff20bNmxohw8fbhMTE23JkiXt3r17rbXWvvXWW/att96y8fHxtmzZspm6dmHb1lr77LPP2i+//NJaa23lypXtwYMHrbXWLlu2zDZp0sR5XFRUlB0xYoQtW7as3bp1q33ppZfs+PHjM9W/e/duW7NmzUu2d6nrEhGR3AuIsNmce3N6xPuKjDH9jDERxpiIw4cPX/kEufO454Wmr0NYH/AqDH73wmPfQfG7c7pnt48j22HeS5CW6ti2wM+D6N2+GUOHDiUgICDD4fHx8c6HLSdNmuQs37VrF5UqVeKFF16gXbt2REVFceDAAfLly8fjjz/Oyy+/zLp160hKcjwcW7x4cRISEpxLKxYsWBBfX1++//57AM6ePZthffSsXDhtZ9asWc7ynTt3EhAQwKuvvkpoaCjbtm2jVatWfPHFFyQkJAAQGxvLoUOHMk3xuXg7q+sSERG5mHtOd+BKrLWfA58DhIaGXvrpOLmzFb8b2nwATV4Bz4LgoY/6s9WpQ5By0UoxyYn4FjQMGDAg0+GvvPIKPXr0YNSoUTRv3txZPn36dL755hs8PDy46667GDp0KGvWrGHw4MHkyZMHDw8PPvvsMwoXLkzfvn0JCAjAz8+PsLAwZx1ff/01Tz31FEOHDsXDw4MZM2ZctutvvfUWTz75JO+9916Geehjxoxh8eLFuLm5UaNGDdq0aYOnpydbt26lfv36gGP99G+++YbKlSvTsGFD/P39adOmDe+9955zyk/Pnj1JSkrKdF0iIiIXM/YyKz24pAPG+AE/WWv9r3RsaGiojYiIuPmdEpGMTuyDfzeGxOP/K8tXFJ5aBoX0IKGIiNx+jDFrrbWh2VnnLT/VRERuAYXLQecvoWB6yC7o69hW6BYREblqOTrVxBgzFWgKFDfG7AfestZOzMk+icglVG4GfRdBwt9QoDT4lMzpHomIiOQqORq8rbVdr3yUiNwyCpRyfImIiMg101QTEREREREXUPAWEREREXEBBW8RERERERdQ8BYRERERcQEFbxERERERF1DwziXc3NwIDg7G39+fBx98kBMnTgCwZMkS2rZte931Xuv5MTEx+Ptf/l1HPj4+192fa21LREREJLdQ8M4lvL29iYyMZNOmTRQtWpRPPvkkp7skIiIiItdAwTsXql+/PrGxsc7thIQEOnfuTLVq1ejWrRvWWgAWLlxISEgIAQEB9O7dm7NnzwLw66+/Uq1aNRo1asTs2bOd9Zw+fZrevXsTFhZGSEgIc+fOvWw/Nm/eTJ06dQgODiYwMJDo6OgM+xMSEmjRogW1atUiICDAWV9MTAzVq1enb9++1KxZk/DwcBITEwFYu3YtQUFB1K9fX39ciIiIyG1FwTuXSU1NZeHChbRr185Ztn79esaMGcOWLVvYtWsXK1asICkpiZ49ezJ9+nQ2btxISkoKn332GUlJSfTt25cff/yRZcuW8ffffzvreffdd2nevDlr1qxh8eLFDB48mNOnT1+yL+PHj2fAgAFERkYSERGBr2/G14d7eXkxZ84c1q1bx+LFixk0aJDzj4Lo6GieffZZNm/eTOHChZk1axYAvXr1YuzYsaxatSo7b5uIiIhIjlPwvkUlJpxjd9QRohbtY+f6QyQmJhIcHEyxYsU4duwYLVu2dB5bp04dfH19yZMnD8HBwcTExPDXX39RsWJF7rnnHgB69OjB0qVL2bZtGxUrVqRKlSoYY3j88ced9cyfP58RI0YQHBxM06ZNSUpKYu/evZfsY/369Xnvvff4v//7P/bs2YO3t3eG/dZa3njjDQIDA7nvvvuIjY3l4MGDAFSsWJHg4GAAateuTUxMDPHx8Zw4cYImTZoA8MQTT2TLvRQRERG5FeToK+Mla0mnk1k+I5rt/z3oLMvr7smKpf8lxSbRtm1bPvnkE1544QUAPD09nce5ubmRkpLiHFnOijEmy3JrLbNmzaJq1apX1c/HHnuMunXrMm/ePFq1asV//vMfmjdv7tw/ZcoUDh8+zNq1a/Hw8MDPz4+kpKQs+5yYmIi19pJ9ExEREcntNOJ9Czq4+2SG0A2Qlmb5e2c8hQoVYuzYsYwcOZLk5ORL1lGtWjViYmLYsWMHAF9//TVNmjShWrVq7N69m507dwIwdepU5zmtWrXi448/dob29evXX7afu3btolKlSrzwwgu0a9eOqKioDPvj4+MpWbIkHh4eLF68mD179ly2vsKFC1OoUCGWL18OOIK7iIiIyO1CwfsWdOpY0mXLQ0JCCAoKYtq0aZesw8vLiy+//JKHH36YgIAA8uTJQ//+/fHy8uLzzz/ngQceoFGjRlSoUMF5zpAhQ0hOTiYwMBB/f3+GDBly2X5Onz4df39/goOD2bZtG927d8+wv1u3bkRERBAaGsqUKVOoVq3aFa/9yy+/5Nlnn6V+/fqZpq6IiIiI5GbmclMSbjWhoaE2IiIip7tx0+3ZfJSfPt6Qqbz1U/5UDimZAz0SERERubMYY9Zaa0Ozs06NeN+C7vIrSLX6pTOUVQwuQenKhXOmQyIiIiJyw/Rw5S3IM78HDTvfTeXaJTh1JBGfIl7cVakQ3gXy5nTXREREROQ6KXjforzye+DnXzynuyEiIiIi2URTTUREREREXEDBW0RERETEBRS8RURERERcQMFbRERERMQFFLxFRERERFxAwVtERERExAUUvEVuc8YYnnjiCed2SkoKJUqUoG3btpc9LyIighdeeOFmd09EROSOoXW8RW5z+fPnZ9OmTSQmJuLt7c3vv/9O2bJlr3heaGgooaHZ+qZcERGRO5pGvEXuAG3atGHevHkATJ06la5duzr3rV69mgYNGhASEkKDBg3466+/AFiyZIlzVHzYsGH07t2bpk2bUqlSJcaOHes8/5tvvqFOnToEBwfz1FNPkZqa6sIrExERyT0UvEXuAI8++ijTpk0jKSmJqKgo6tat69xXrVo1li5dyvr163n77bd54403sqxj27Zt/Pbbb6xevZrhw4eTnJzM1q1bmT59OitWrCAyMhI3NzemTJniqssSERHJVTTVROQ2tPPETjYc3sDZ1LOk2TQCAgKIiYlh6tSp3H///RmOjY+Pp0ePHkRHR2OMITk5Ocs6H3jgATw9PfH09KRkyZIcPHiQhQsXsnbtWsLCwgBITEykZMmSN/36REREciMFb5HbzJajW3jq96c4cfYEAGdTz7J0/1LatWvHyy+/zJIlSzh69Kjz+CFDhtCsWTPmzJlDTEwMTZs2zbJeT09P5/dubm6kpKRgraVHjx68//77N/OSREREbguaaiJym/l196/O0H3e6HWjeeTxRxg6dCgBAQEZ9sXHxzsftpw0adI1tdWiRQtmzpzJoUOHADh27Bh79uy57r6LiIjczhS8RW4z245ty1S2O343hUoWYsCAAZn2vfLKK7z++us0bNjwmh+MrFGjBu+88w7h4eEEBgbSsmVL4uLirrvvIiIitzNjrc3pPly10NBQGxERkdPdELmlfbv1W95fnXHqR3iFcN5v/D553fLmUK9ERERyF2PMWmtttq6rqxFvkdtM8/LNaVOxjXP7niL30Dewr0K3iIhIDtOIt8htKCkliZ0ndnI29SyVC1emkGehnO6SiIhIrnIzRry1qonIbcjL3YuaxWvmdDdERETkAppqIiKSSxhjeOKJJ5zbKSkplChRwvmG0Wt14sQJPv300+zqnoiIXIGCt4hILpE/f342bdpEYmIiAL///rtzKcjroeAtIuJaCt4iIrlImzZtmDdvHgBTp06la9euzn3Hjh2jffv2BAYGUq9ePaKiogAYNmwYvXv3pmnTplSqVImxY8cC8Nprr7Fz506Cg4MZPHgwCQkJtGjRglq1ahEQEMDcuXMBiImJoXr16vTt25eaNWsSHh7uDP8TJkwgLCyMoKAgOnXqxJkzZ1x5O0REchUFbxGRW1z8mWROnDkHwKOPPsq0adNISkoiKiqKunXrOo976623CAkJISoqivfee4/u3bs7923bto3ffvuN1atXM3z4cJKTkxkxYgSVK1cmMjKSDz74AC8vL+bMmcO6detYvHgxgwYN4vwD+NHR0Tz77LNs3ryZwoULM2vWLAA6duzImjVr2LBhA9WrV2fixIkuvDMiIrmLHq4UEblFnUtJ49dNf/Ov37ZhrSU1zVK1ek1iYmKYOnUq999/f4bjly9f7gzEzZs35+jRo8THxwPwwAMP4OnpiaenJyVLluTgwYOZ2rPW8sYbb7B06VLy5MlDbGys87iKFSsSHBwMQO3atYmJiQFg06ZN/OMf/+DEiRMkJCTQqlWrm3Q3RERyPwVvEZFbVOS+47wwbb1z+2xKGhF7jtOuXTtefvlllixZwtGjR537s1oe1hgDgKenp7PMzc2NlJSUTMdOmTKFw4cPs3btWjw8PPDz8yMpKSnL889PNenZsyfff/89QUFBTJo0iSVLltzYRYuI3MY01URE5Ba1+8jpzGWHE+jduzdDhw4lICAgw757772XKVOmALBkyRKKFy9OwYIFL1l/gQIFOHXqlHM7Pj6ekiVL4uHhweLFi9mzZ88V+3jq1ClKly5NcnKys20REcmaRrxFRG5R5Yvmy1xWLD++viUYMGBApn3Dhg2jV69eBAYGki9fPiZPnnzZ+osVK0bDhg3x9/enTZs2vPrqqzz44IOEhoYSHBxMtWrVrtjHf/7zn9StW5cKFSoQEBCQIciLiEhGenOliMgt6mxyKnM3HGDEL9tIs5bBrarSsVZZvD00ZiIicrPpzZUiIncQTw83HgktR/NqJcFC8QKeVz5JRERuWQreIiK3uOI+CtwiIrcDPVwpIiIiIuICCt4iIiIiIi6g4C0iIiIi4gIK3iIiIiIiLqDgLSIiIiLiAgreIiIiIiIuoOAtIiIiIuICCt4iIiIiIi6g4C0iIiIi4gIK3iIiIiIiLqDgLSIiIiLiAgreIiIiIiIuoOAtInINfHx8sizv2bMnM2fOvOy5TZs2JSIi4mZ0S0REcgEFb5FblDGGQYMGObdHjhzJsGHDsq3+mJgYjDEMGTLEWXbkyBE8PDx47rnnrqvOoUOHsmDBguzqooiIyG1FwVvkFuXp6cns2bM5cuTITWujUqVK/PTTT87tGTNmULNmzeuu7+233+a+++7Ljq7d8qy1PPfcc9SoUYMHHniAQ4cOOfe9/fbbhIWF4e/vT79+/bDWOvfNmDGDOnXqcM8997Bs2TIAkpKS6NWrFwEBAYSEhLB48WKXX4+IiNx8Ct4ityh3d3f69evH6NGjM+07fPgwnTp1IiwsjLCwMFasWAFAQEAAJ06cwFpLsWLF+OqrrwB44oknshyJ9vb2pnr16s7pD9OnT+eRRx65YjsPPfSQs+5///vfdOvWDcg43WLNmjU0aNCAoKAg6tSpw6lTp3J3wDx5AI7ucm7OmTOHv/76i40bNzJhwgRWrlzp3Pfcc8+xZs0aNm3aRGJiYoY/blJSUli9ejVjxoxh+PDhAHzyyScAbNy4kalTp9KjRw+SkpJcdGEiIuIq7jndARG5tGeffZbAwEBeeeWVDOUDBgxg4MCBNGrUiL1799KqVSu2bt1Kw4YNWbFiBRUqVKBSpUosW7aM7t278+eff/LZZ59l2cajjz7KtGnTuOuuu3Bzc6NMmTIcOHDgsu18/vnnNGzYkIoVK/Lhhx/y559/Zqjz3LlzdOnShenTpxMWFsbJkyfx9vbmo48+AhwBc9u2bYSHh7N9+3a8vLxuwt3LJslnYeMM+P0fkBQPqefg+F6WLl1K165dnfesefPmzlMWL17Mv/71L86cOcOxY8eoWbMmDz74IAAdO3YEoHbt2sTExACwfPlynn/+eQCqVatGhQoV2L59O4GBga69VhERuakUvOW6DBw4kAoVKvDiiy8C0KpVK8qVK8d//vMfAAYNGkTZsmV56aWXrrrOJUuWkDdvXho0aJChPCYmxhn88uT534c0wcHBfP7553z++ee89NJL1KhR46rbGj9+PPny5aN79+6XPCYiIoKvvvqKsWPHXnW9N+J40nFWHljJitgVlMxXkjSbRsGCBenevTtjx47F29vbeeyCBQvYsmWLc/vkyZOcOnWKxo0bs3TpUipUqMDTTz/N559/TmxsLEWLFr3kQ4GtW7dmyJAhlCpVii5dumTYd6l2SpUqxdtvv02zZs2YM2cORYsWzXDeX3/9RenSpQkLCwOgYMGCQC4NmPtXww/P/m87NRmipgOOefgXS0pK4plnniEiIoJy5coxbNiwDKPXnp6eALi5uZGSkgKQYSqKiIjcvjTVRK5LgwYNnB+tp6WlceTIETZv3uzcv3LlSho2bHhNdS5ZsiTDx/Xn+fn5Ua5cOed8WIBt27Zx6tQp6tSpw3/+858sQ3dqauol2+rfv/9lQzdAaGioy0L3udRz/Dvq37y27DV+3PUjEzdN5GzqWVbHrebFF19k4sSJnD592nl8Wloaq1atIjIyksjISGJjYylQoAD33nsvy5YtY9myZTRt2pQSJUowc+ZMGjdufMm28+bNS+3atfnwww/p1KlThn2Xagcco9bFihVzjo5fyFqbZSjNlQHzyPbMZVvmcG/DBkybNo3U1FTi4uKc02bOh+zixYuTkJBwxZVOAO69916mTJkCwPbt29m7dy9Vq1bNvmsQEZFbgoK3XBObmsq5vXsJ8/NzhuTNmzfj7+9PgQIFOH78OGfPnmXr1q2EhISwdu1amjRpQu3atWnVqhVxcXEAjB07lho1ahAYGMijjz5KTEwM48ePZ/To0QQHB2cI2QBdu3Zl2rRpzu1p06bRtWtXIOMSbT4+PgwdOpS6deuyatUqJk6cyD333EPTpk3p27evc7WOYcOGMXLkSOf5r776aqYH3pYsWULbtm0BWL16NQ0aNCAkJIQGDRrw119/Zet9jT4ezbdbv81UPu2vaRQsXJBHHnmEiRMnOsvDw8MZN26cczsyMhKAcuXKceTIEaKjo6lUqRKNGjVi5MiRlw3e4PiE4v/+7/8oVqxYhvJLtbN69Wp++eUX1q9fz8iRI9m9e3eG86pVq8aBAwdYs2YNAKdOnSIlJSV3BsyCZTOXlW9Ih84PU6VKFQICAnj66adp0qQJAIULF6Zv374EBATQvn1756j/5TzzzDOkpqYSEBBAly5dmDRpknNkXEREbh+aaiJXLWn7do59/TXxc76HtDTMqVNsX7CAlTt3Ur9+fWJjY1m1ahWFChUiMDAQYwzPP/88c+fOpUSJEkyfPp0333yTL774ghEjRrB79248PT05ceIEhQsXpn///vj4+PDyyy9navuRRx4hJCSEjz/+GHd3d6ZPn86MGTMyHXf69Gn8/f15++23OXDgAI8//jjr1q2jQIECNG/enKCgoCyv7fwDbz///DPDhw/P9CBitWrVWLp0Ke7u7ixYsIA33niDWbNmZct9BTh+9jiWzKPBW49t5WzKWQYNGpQhAI8dO9Y5//t8oB0/fjwAdevWdY72N27cmNdff51GjRpdtv2aNWtmuZpJVu189NFH9O3bly+//JIyZcrw4Ycf0rt3bxYtWuQ8L2/evEyfPp3nn3+exMREvL29WbBgAc888wz9+/cnICAAd3f33BEwy9WFsD6wxjGNKuHD2lC7B8aYDD+TC73zzju88847mcqXLFni/L548eLOOd5eXl5MmjQpu3suIiK3GAVvuSrnDsQR+8IAzqUHBYAgC/Oee561NWsweOhQYmNjWblyJYUKFXKOCm/atImWLVsCjqkfpUuXBiAwMJBu3brRvn172rdvf8X277rrLmrWrMnChQspVaoUHh4e+Pv7ZzrOzc3NOV1i9erVNGnSxDn/+OGHH2b79iymDZD1A28Xio+Pp0ePHkRHR2OMITk5+Yp9vha+Pr54uXmRlPq/ucA1/l2DluVbkj9vfvKXys+ZM2ec+4oXL8706dOzrOvrr792ft+gQQPS0tKyPM7Pz49NmzZlKu/Zsyc9e/a8bDsbNmxwft+uXTvatWsHkCE8hoWFZXro8uJjcoV8RSD8HQjqCudOQ8nq4FMyp3slIiK5kIK3XJXEyPUZQjdAiLc3aw8eZOO5s/j7+1OuXDk+/PBDChYsSO/evbHWUrNmTVatWpWpvnnz5rF06VJ++OEH/vnPf2aYH34p56eblCpVyjnN5GJeXl64ubkB1zafOKsH3i40ZMgQ54OEMTExNG3a9Krrvhp+hfx4q/5bvLniTdKsIyj7FfTjwcoPZms7cp08vME3NKd7ISIiuVyOzvE2xrQ2xvxljNlhjHktJ/tyK3j33XepWbMmgYGBBAcH89///ve66rn4IcWreZU1OEJncHAwNWvWJCgoiFGjRjlHS1P+/jvT8SHe3sw/dZL9hw7h5uZG0aJFOXHiBKtWraJ+/fpUrVqVw4cPO4N3cnIyr776KgkJCezbt49mzZrxr3/9ixMnTpCQkECBAgU4derUJfvXqVMnfv75Z6ZPn86jjz56xeupU6cOf/zxB8ePHyclJeWGpobEx8dTtqxjru/NGrFtU7EN0x6YxruN3mVM0zH8J/w/VClS5aa0JSIiIq6XYyPexhg34BOgJbAfWGOM+cFau+XyZ96eVq1axU8//cS6devw9PTkyJEjnDt37rrqWrJkCT4+PpmW5bsSb29v58Nzhw4d4rHHHiM+Pp7hw4fjVrx4puPv8fTkVFoapdNXuQDHC1wSEhIonn78zJkzeeGFF4iPjyclJYW///6bF198kccff5z4+HistQwcOJDChQvz4IMP0rlzZ+bOncvHH3+c6YHAwoULU69ePQ4ePEjFihWveD1ly5bljTfeoG7dupQpU4YaNWpQqFCha7on573yyiv06NGDUaNGZVivOTu55XGjerHqVC9W/abULyIiIjnMWpsjX0B94LcLtl8HXr/cObVr17a3q1mzZtm2bdtmuW/BggU2ODjY+vv72169etmkpCRrrbUVKlSwhw8fttZau2bNGtukSRO7e/duW6pUKVumTBkbFBRkly5danv06GGff/55W79+fVuxYkU7Y8aMLNvJnz9/hu2dO3faokWL2rS0NPvXihW2dsGCtrqnp63u6WmnlC9vt1StZiffU9W2adbMWmvt6tWrbXBwsN25c2eWff7oo4+sh4eH9ff3t02bNrXWWtu/f39bu3ZtW6NGDTt06NBsuZcXOnXqlLXW2uTkZNu2bVs7e/bsbG9DREREbj9AhM3m/JuTU03KAvsu2N6fXpaBMaafMSbCGBNx+PBhl3XOleLPJFO3cTP27dvHPffcwzPPPMMff/wBONYE7tmzJ9OnT2fjxo18+eWXtG7d2nnuJ598wrBhw5zbfn5+9O/fn4EDBxIZGekcNY6Li2P58uX89NNPvPbapWf1xMTEOB9arFSpEmlpaRw6dAjf4GB+X7yYX3v04MMyZXnv4CHy1alDyZdfJk++fKxcuZL+/fszd+5cypQpk6HPKSkpfPbZZ7zwwguUKVOGxYsXO9c8fvfdd4mIiCAqKoo//viDqKiobL23w4YNIzg4GH9/fypWrHhVD3KKiIiI3Aw5+XBl5rdrkHk9NWvt58DnAKGhobnw7RuXdjYllV82/s3I+X+Rx8DwL34k//Foli39gy5dujBixAhCQkKoWLEi99xzDwAeHh6sXr2aI0eOXFNb7du3J0+ePNSoUYODBw9e9Xk2/QHF5ORkXhg9msj168njmZddBnzHj2fHqpVs3bqVfv36MX/+fMqUKcOGDRsy9LlHjx588sknzrdcXui7777j888/JyUlhbi4OLZs2ZKtbzE8v1a3iIiISE7LyRHv/UC5C7Z9gcyvwLuNrdtznBenR7L/eCJ7jyUy4LsoClUOZvjw4YwbN45Zs2ZlWpnDzc0NPz8/Ro8ejbu7u3N/UlISycnJdOrUic8//5yPPvqIFStWADB37lxSUlKw1lKsWDHnUnhPPPFEpvWqLxQdHc3Zs2d54IEHuOeee/j777/ZEBXFqHHjSExK4ok+T9K7d29KlSrFvn37aNiwIf7+/vz6668Azpfn9O/fnxUrVhAXF0dKSopzjvTu3bt5//33SU1NJSoqigceeCDDq7VFREREbic5GbzXAFWMMRWNMXmBR4EfcrA/Lhdz5H/rMicf3U/ysVhijjheCx4ZGUmFChWoVq0au3fsYP2XX3JqwQJSkpPp3r07U6ZMwdfXl/379wMwa9YsduzYwcCBAxk0aBCdOnWiT58+AJQsWZJt27axefNmKlWq5Hy5yp9//km9evWy7Nvhw4d56KGHqFevHhEREXTp0oVt27axZ88e5s+fDzimiUyePJmzZ8/Stm1bChYsyLhx4+jZsycxMTH06dOHmTNn0rBhQ1q3bs2bb75JkSJFyJcvH5GRkZw8eZKkpCR69+7NwYMH+eWXX27avRYRERHJaTk21cRam2KMeQ74DXADvrDWXnkx59uIX/F8zu/TkpM4/vt4Xl38If/09uTuu+/m359+StKvv/K2lzePPf00qdbxyvYnQ2pxunt3YmNjmTt3Lvny5ePhhx/m+PHjPPfcc5w9e5aYmBhSUlL47bffKFWqFFu3bmXp0qU8/fTT9O3bl9jYWIoWLYqPj4+zD4mJidx///3s2rWL++67D3d3d/bv309wcDBnz57l4MGD3H///dSqVYs8efJQsWJF9uzZQ8GCBVm5ciWtW7emV69eTJs2jaFDh/LUU09Rvnx5vL29KV26NGXLlqVfv368//77tG3blj179nDmzBk++eQT5s+fT8OGDXPixyAiIiLiEubiqQy3stDQUBsREZHT3cg2Z5NTmbcxjg9+c8zxfrV1dVr730Ved8cHEacjItj7RHe44GdUe/tfrPMPoOCEz2nQpQu9evXCWsuwYcMoXrw4+/btw9vbO0M7+/bto0uXLlSoUIF3332XAQMGcN9997Fv375Mc6BjYmJo27YtmzZtolOnTvTr149WrVplOGbJkiWMHDmSn376yVl27Ngxfv75Z8aPH094eDgdOnSgX79+Wb48JykpicDAQD744AOmTJnCd999d8P3UkRERCQ7GWPWWmuz9e1pOfoCnTudp4cbHWv58suAxsx7oTHtgss4QzfAmTURGUL3efbcObz37uORRx5h4sSJzvLw8HDGjRvn3D6/Jne5cuU4cuQI0dHRVKpUiUaNGjFy5MhM62RfrFWrVnz22WfOOeHbt2/n9OnTmY47cOAA+fLl4/HHH+fll19m3bp1Wb485/zbKb28vGjVqhVPP/00vXr1usq7JSIiIpK7KXjfAgrny0vhfHkzlaceP3bJc9LOnGbQoEEZVjcZO3YsERERBAYGUqNGDcaPH+/cV7duXecqI40bNyY2NpZGjRplqjclJcX5+vQ+ffpQo0YNatWqhb+/P0899VSWr1PfuHEjderUITg4mHfffZd//OMf5M2bl5kzZ9KnTx+MMVSvXp2VK1c6lyvs1q0bxhjCw8Ov+j5dOC1GREREJLfRVJNbWPyPP3Fg8OAs95Wb8Dk+Vxixvh5z587N1ukfjzzyCHFxcbRo0YJhw4Y5p7L07NmT+Ph4/vnPf151XT4+PiQkJGRLv0REREQuR1NN7jD5wkLxDgnJVF6gdSu8snGt6/OGDh3K0KFDef3117OlvoSEBFasWMHEiROZNm2as3zv3r189dVXdOjQgcaNG1OrVi1q1arFypUrAcfLfu69917ni2+WLVuWod4jR45Qv3595s2bR0xMTJZ1iIiIiNxqNOJ9izu3bx8JS5dyYuYsjJcXhTt3xqdxIzxKlryp7RpjeOmll/jwww8Bx4toEhISMrwl80q++eYbFi9ezMSJE2nQoAHjxo2jaNGizoc3z5w5Q548efDy8iI6Ohp/f39iY2OZPHkySUlJvPnmm6SmpnLmzBkKFCiAj48PO3fupF27drzzzju0bNkyUx1du3blTvsdERERkex3M0a8c/LNlXIV8pYrR9Fu3SjSpQsYg3Fzc0m7np6ezJ49m9dff53ixYtf3UmpKRC3Hg7/BT6lmPrNV7w4yDFV5tFHH2Xq1Kk8++yzzsOTk5N57rnniIyMxM3NzfkQZ1hYGL179yY5OZn27dsTHBzsPL5FixZ88sknNGnSJMs6tm/fnn03QURERCQbKXjnEsbdtT8qd3d3+vXrx+jRo3n33Xcz7Dt8+DD9+/dn7969AIwZM4b69etTqXwZIp84S2EvOHomjV9+S2DDxk2cS07hxIkTAKxcudL5gOa7777LsmXLKFKkCKGhoWzYsAGAe++9l7vvvpsvv/ySESNG0LVrV7788kvc3d2pXbs2v/32mzN4jx49mlKlSrFhwwbS0tLw8vJy0R0SERERuTaa450LuGo1j+QjR0lYvpyTCxeCtTz77LNMmTKF+Pj4DMcNGDCAgQMHsmbNGmbNmkWfPn3Ik3CIhyqeZc7WcwB8sOIcZQoY9i+byl9//cXZs2epX78+jRo1cq7E8vvvv1O1alXWr19P/vz5nfXv2bOHr776ij179vD222/z448/cvToUYwxfPHFF2zbto0RI0YAEB8fT+nSpcmTJw9ff/21862cIiIiIrcajXgLAGfWrSN28CukxMYCYJOSSJ03jye6dWPs2LEZXsqzYMECtmzZ4tw+efIkp44eoEvVFN7+I5leIXn5ZmMynWp4QOIx9p/eT5cuXYiOjiYiIoI8eRx/7yUlJbFnzx7q1atHs2bNnPUtWbKEwYMHc+rUKfLkyUOePHmIjo4GwM3NjWnTpvHggw9SsGBBnnnmGTp16sSMGTNo1qxZhgAvIiIicivRiLcLGGN44oknnNspKSmUKFGCtm3bXlM91loGDx6Mv78/AQEBTJ8+HYCHHnqIsLAwADp06EDv3r0BmDhxIv/4xz8AKF68OFWqVKFmzZp8/vnngGOKSKVKlXj3tdfZ/8yzpMTGMif+BO8c/BtrLX8Pf5s+9eszceLEDC/OSUlJoWLFikRGRhIZGUlsbCwFfKtTv1lrdhxL4/DpNDzcYMthy4m8ZXj++ed57rnnOHDgAPPmzaN27dqAYx75L7/8wp9//sn7779PkSJFAKhQoQL33HMPR48e5fTp09SuXZukpCTnUoJ58+blt99+45lnnqFKlSpERUU569BygyIiInKrUvB2gfz587Np0yYSExMBxxSLsmXLXlMdKSkpzJ49m8jISDZs2MCCBQsYPHgwcXFxBAUFceyY42U7sbGxztHo5cuXO99O+cYbb9CoUSMiIiIYO3YsR48eZdq0aUyePJnn721Mavoc7PPOr3bjvnx5pjdktm7dmgYNGji3IyMjwcMbE/4OHRrV4KX5Z6lethC/z/+NwlXqEh8f77zeyZMnO8+79957mTJlCgC//PILx48fBxzTR4oUKUK+fPnYtm0bf/755zXdKxEREZFbkaaaXIWjR4/SokULAP7++2/c3NwoUaIEAKtXryZv3v+9ddIYw+OPP87XX38NOALz6dOnOXXqFPPmzSNv3rwMGzaMrl27OtenXr16NS+++CKJiYl4e3vz5ZdfUvnuKnw8fgJLFswnKSmJ8PBw4uLiuO+++3Bzc6NUqVK4ubkxbtw4goODOXbsGFu2bKFEiRKsWrUKf39/du7cyfPPPw84Rr+3bNnCjBkzSExM5Mknn+TAgQPs2LGDNz/8kL27dpKQlkZRNzfi09JIAfaeO8drEyZgy5UjLi6O9957j2HDhvHyyy/TrFkzvv76a44cOYKnpydVq1Zl586d1K9bl2+iNjPp8/fxa9GLiIgIhg0bxr333osxBi8vL4oWLQrAW2+9RdeuXalVqxZNmjShfPnygCPYjx8/nsDAQKpWrUq9evVc8nMWERERuamstbnmq3bt2janvfXWW/aDDz645P78+fPb4IAAe2jhQnvsu+/szPfes3mMsY0bN7adOnWyiYmJNigoyC5evNg+8MAD1lpr4+PjbXJysrXW2t9//92279DBfrl8ly3xwIs2b6Hi1ss7n7XW2k6dOtng4GBrrbUnTpyw+fPnt7Nnz7aLFy+2+fPntx9++KEdN26cHTFihB0zZoy9u8rd9r4H7rMjvx1pK1SqYL29ve2UKVNs48aNrY+Pj33qqafs6NGjbX5vb7u88t32wYIFbcE8eeyjhQrZLVWr2Sb589vxvXpZa6397LPPbP78+a211u7evdvWrFnTWmvtl19+aStWrGhPnDhhExMTbfny5e3evf/f3p1HVVluDxz/PhxmEBRxFkEMB+QwKAoqKEqpdY0cr1Mqea28aqhp3lv+LLJbWXnV6xRlllmmpOWQVpYJImEpKCqYaSqISgoqkwwyvL8/0JMEmBZyFPdnrdY65x33eWjB9jn73c9pTdM0zdnZWcvIyNA0TdMuXryoaZqm5efnax07dtQyMzNr9OcihBBCCFGTgHithnNZmfH+kxISEnj22WfJy8vD0dGRVatW0axZMwoKClDnz+Pbvz8KaGlmhg7IunCBw4cP88ADD5CZmUlERATp6el4eHiQk5NDeno6pqam6HQ6rhYXs+37REqyfi2/WXEhQUFBnDx5krS0NMNsd0FBAc8//zzLli1DKcWsWbOws7PD0dGR48ePY2phyi8nfiFqVxSl+aVY21iz+qPV7N27F51OR5cuXTh48CAtWrakVb/+6FZ/SKCNDSZKAXCwqIitM2YAMGrUKGbOnFnlWAQHB2Nvbw+Au7s7qampODk5VThm8eLFbNy4EYC0tDSOHz9Ow4YNa/4HI4QQQghxl5Ia75vIKsxi95ndbDq+if3n91NYUgiUf0vwzDPPsGHDBhISEhg/fjyzZ8/m2k6cCgppb2HJjEaNOFBQgNI0SjLKW+hdvnyZkJAQoqOj+fnnn1m7di1FRUXMmTMHnU5Hu3bt0Ol0OI+ZhzK1wLpDT0zNLLhw4QJHjhzB2tqazMxMLl26xODBgzl79ixffvklOp0OU1NTWrZsWV5LrkDnqEOZKdouaIuJtQn5ufl8t+M7OnbsSFlZGW3atAFAmZjQdPYLWOr1WNrYgJk59UeNwsTGBst27f5wnCwsLAyvdTqdoU/3ddHR0ezYsYM9e/Zw8OBBfHx8KCwsrIkfkRBCCCHEPUNmvKtx/sp5XvnhFXad2WXYNslrEiVlJRQVFZGUlMRDDz0EQGlpKfYNG7H/+K+gwd/r1+f1Cxc4V1yMqVKUaBplebn0ffBBdPb2ODg44OzsTEpKCmPGjOHixYu89957FBQUcPz4cYoKC+lddpAzZjqsLh7nb0OH8YCLE7a2tgwdOpQ1a9ZgY2ND3759+frrr4mPj6ekpAQHBweOHTuGvb09jVo3IrswG61I49Qrp6B8UUhatG1Bdna2oaVffn4+p06dIsfMDDNXVw5kZNAnIICmc/4P/x9/4LPPPmP48OGsW7eu0hidO3eOpUuX/mENtjwsKYQQQgghM97V2vvr3gpJN8Dyg8vJyM9A0zQ6duxoaKf3ykdfc6HHcwxemUCZAgJ609vWlmWZmVhcK9sAaFDPjr59+wJgYmKCq6srjz/+OK1atSI9PR1N05g6dSoODg7s3BJJaX4OuRln2fH1NkP3j5EjRwJQUFDAtGnTDDVDjRs3plWrVowePRpTU1MyUzK5eqF8MRuXmS5YtbECE7CpZ8OJEycoKCjgs88+IyAggICAAJydnVm7di1nz53jp5MnUUqxaNEiFixYQNeuXUlPTzeUk1zXvHlzpkyZ8odj2b9/f0pKSvD09GTOnDnysKQQQggh7kuSeFfjyMUjVW7PvpqNhYUFGRkZ7Nmzh/SsAv5vQyJ5v54yHJPSRs9ge3vGN2yImVK86+SEsrBEZ1fPcEzDhg2ZMmUK48aNo6SkBDc3NywsLBgxYgQLFizgwoULDBs2jNdff50mTZqQlpbG6tWrefjhh1FK8fXXX2NmZkZRUREDBw7Ezs6OU6dO8c0337Bp0yb0vnqajWgGwIUtF7BoYVH+/UYRbN++nQcffJBPPvmEkpISOnTowOnTpxk9ejRjxozhxx9/xNnZmb179/LDDz/w448/Eh8fT25uLnq9nh9//JGkpCRSUlKYP38+S5cuJTk5ma5du3LmzBnCwsI4fvw4KSkpODo6Gvp1Hzp0iPXr1xMdHU1QUJBhLJRSzLhWSw4wf/58wsPDb+vnFR0dTVxcnOF9aGgoGzZs+MPzfv31V0aMGEGbNm1wd3fnkUce4dixY7d176qkpKTg4eEBQHx8PGFhYX/5mkIIIYS4t0mpSTWc6jlVud3a1BoTExM2bNhAWFgYmZcuc+J8DradQzBv5AxAqakFTc3M+Lt9fdZnZaHMzDFt0hh1Q9tBgIiICObNm0epBunnMygqKuLBBx+ktLSU0tJStm7dSmJiIufPn6dr1648/fTTQPls+aRJkwgMDOTEiRMsW7aM7Oxs8vLysLOzY/LkyaQeS8XmfPkqjlmxWZiam6JKFP1698Pc3Bxzc3MaN25MTk4OUP7w45YtWygrK8PMzIx58+Yxc+ZM3nzzTbKyssjJyWHfvn3Ur1+fLl260LNnz0qfZerUqYwePZqrV6/e1tLtFhYWfP755zz//PM4Ojre8nnXlZSUEB0dja2tbYX+4n9E0zQGDRrEuHHjDKU018e7bdu2t3S+pmmGsp3q+Pr64uvre8txCSGEEKJukhnvanRr3o1mNs0qbAtyCmLh6wuZOXMm3t7exMTEkHz4EAvXf0c97/4A9HrjO0aNHkTT8JdoPXoUByMiGLZlM4ePH2fp0qWEhoaydOlStm7dyu7du1kY+S2WYyKwf3IVytSCbT8c4dNPP6V3795kZ2eTnJzMyJEjGTduHPXq1aNLly60bt2apKQk/P39OX/+PH5+fpibmzNhwgTy8/OxtramX79+NKrfCKUUOk3Hww89jGPD8m4nTzzxBLt27SIrK4uysjKOHTvGm2++iYODA7a2tuh0OhwcHMjJyWHKlCkUFhZia2vLCy+8QL169ejVqxf79u2rOF7duvHaa6/xxhtvkJqaWmGJ+T9iamrKU089xcKFCyvtS01NJTg4GE9PT4KDgzl9+jRQPqP97LPP0rt3b4YPH05ERAQLFy7E29vb0B89JiaG7t274+rqWuXsd1RUFGZmZkycONGwzdvbm8DAQPLy8ggODqZTp07o9Xo2b94MlM9kd+jQgUmTJtGpUyfS0tKqXE30RtHR0YZVSsPDwxk/fjxBQUG4urqyePFiw3EDBw6kc+fOFVYXFUIIIUTdITPe1Wht35p3HnqHH9J/IC03jQ4OHfBr5oe9RcU6Z6UUod1d6ORUn+zCEjo2t6NlA2t4YMQf3iP/agkLvj1OaVn5KpEa8GVSOgHlE9UUnTpF0S+/cPXMGeIvX+bhhx8mKioKR0dH9u/fz86dO8nKyuLVV19l165dxMfHA3D2wkV6jJ7O0y93o6++BeZm5vwj9B/s2ll+zPvvv8///vc/oqOjOXPmDMXFxRQUFODu7k5wcDDPPvssMTExaJrG4MGDSU5OxtPTk5MnT1ZYwfJGo0aNws/Pj23bttGvXz/ee+89+vTpc9PPf7X0quH15MmT8fT0ZNasWRWOmTJlCmPHjmXcuHG8//77hIWFsWnTJgCOHTvGjh070Ol0hIeHY2tra2h5uHLlStLT04mNjeXo0aOEhIQwdOjQCtdOSkoyLF//e5aWlmzcuBE7OzsyMzPx9/cnJCQEgJ9//pkPPviA5cuX89lnnxlWE83MzKzy24DfO3r0KFFRUeTm5tKuXTv++c9/YmZmxvvvv4+DgwMFBQV06dKFIUOGSMtFIYQQog6RxPsmWtu3prV96z88ztrcFP82t18iYaLA3LTilw5mOoVWXExx+q+cGjwEraCAK+d/JaGoiHkvvcSIESMIDQ0lJCSEnj17Ur9+fVq3bs2uXeUPgpZpGjkdBvLmc0/z33oNKS0ppWWbluj1eoqLi/H19cXKygpTU1NDXXjz5s2xtrYmNjaWjIwMnJ2d+fXX8h7iSUlJbN++nZUrV9KwYUN69epFTEwMb731VoWWgCdPnsTV1ZWwsDBOnjzJoUOHqk28c4py2Jm2k7U/rcXExIRSrRQTSxPGjh3L4sWLK8yW79mzh88//xyAMWPGVEjMhw0bhk6nq3Z8Bw4ciImJCe7u7pw/f/62fjaapvHCCy8QExODiYkJZ8+eNVzD2dnZ8IBobGwsI0eONKwmev3bAE9Pz2qv/be//Q0LCwssLCxo3Lgx58+fp2XLltLrXAghhKjjpNTEiCzNTHn2obZYXEu+O724hUc8mtHF2ppFV66gFRQAMMWxESmFhUyaM4eJEyZgbm6OiYkJTz75JN26dQMwlLCUaWDl5k+LiSuxbOWFTqfj6NGjANSrV89wPMDTTz9tKC1p3bo1ISEhzJgxg0mTJhkWwAkNDWXt2rVMnDiRkpIStmzZwptvvknTpk0rfJbIyEg8PDzw9vbm6NGjjB07ttrPvfnEZuZ8P4cjl46QlJnE1dKrfHnqS6ZNm8bKlSs5d+4c69atw83NjcuXL/Pss89y9epVVq9ezZUrVwzXsbGxMbxes2ZNef/yG9zYX7x8AaqKOnbsSEJCQpUxrlmzhoyMDBISEkhMTKRJkyaGf2jceN+qrvtHqup7Lr3OhRBCiLpPEm8j69m2EVufCWD1+K5smtQDfcv65H7zbYVjtufmEGJnz3eubUh45RXS0tJo3bo1sbGxla5nohQWpibk/7KXotREdiWX10S7uLiwbds2Nm3aRNeuXYmMjGTjxo3MnDmTuXPnArBq1aoK5Rh5eXnk5ubSvHlzXnvtNTp06MBjjz3G8OHDDddMSkoC4Pnnnyc5OZnExES+/vprHBwcqvy8F/IvEHEwotL25YnL0aw0hg0bxrJly2jXrh3Hjx/nkUce4dChQ8yePZs9e/bQrFmzKq6K4R8Gt6NPnz4UFRWxYsUKw7Z9+/axa9cusrOzady4MWZmZkRFRZGamlrlNXr27ElkZCSlpaVkZGQQExND165dbysOkF7nQgghxP1ASk3uAm5N6uHW5LdWg1dPnKiw/8ucHCZcKzkoSS8vARkyZAhvv/22YfXJ60wUrHvKnzGDX8GUPCYPfxiAkJAQ5s6dS2hoqCExnDBhAj4+PqSkpFQb2yuvvIKfnx/Ozs7o9Xpyc3P/0mctLi3mSvGVSttzruZQXFqMn58fJSUl+Pj4ALBkyRLGjh3LwoULadOmDW3btqV///7ExcVx+fJlwz8UFi5ciJ2dHZs3byYgIIDNmzezc+dOzpw5w7Rp06qMRSnFxo0bmTZtGvPmzcPS0hIXFxcWLVpEx44defTRR/H19cXb25v27dtXeY1BgwaxZ88evLy8UEoZvg242ZhWpX///kRERODp6Um7du2k17kQQghRB6k/81W5sfj6+mrXHyCsyzKWLSNzydIq9zV9ZS4Nhg2r5YhqTklZCeFx4Ww+sbnC9hHtRvC83/MsXbKUU6dOVepw4uPjwxNPPMGiRYs4cOAAFhYWtGvXjtjYWJycnHBxcSE+Pp7U1FRCQ0P54Ycf0DQNPz8/Pv74Y0MiL4QQQghxK5RSCZqm1Wg/YCk1uQvVCwrCxMa60nZd48ZYd+lihIhqjqmJKf/Q/4PAFoGGbcPdRtOz0VgST2dTVFyCumG1z+s0TUMpRXBwMPb29lhaWuLu7l6pBCQ2NpZBgwZhY2ODra0tgwcPNrQXFEIIIYQwJik1uQtZduyI04r3yIyI4EpMDChFvUcepuH4f2Dh4mLs8P6y1vatWRC0gJPZJ1GaGdGHYcyKQwD0q9+A5H0bKxyfk5NDWloaOp2uygcTb3QvfYMjhBBCiPuLzHjfpaw7+dBy8f9ovW0rrtu20WLePKw6uhs7rBpjaWqJe0N3zMqa8cb235Zo//pyI7Jy8li9ejUApaWlzJgxg9DQUKytK38L8Hs9e/Zk06ZN5Ofnc+XKFTZu3EhgYOAfnieEEEIIcadJ4n0XM7G0xLJNGyxcW6PMzIwdzh1hplOY637739BUZ8LyDz5h/fr1uLm50bZtWywtLXnttddu6XqdOnUyPEDq5+dneIBUCCGEEMLY5OFKYXRfJaUz49ODlGka84Z48phX8yrrvIUQNzd9+nScnZ0NnXz69euHk5MT7733HgAzZszA3t4ec3Nz/v3vf9d6fOfOnSMsLIwNGzbU+r2FEOJ23YmHK6XGWxjdwx7N8HaqD0Aze6ubHyyEqFb37t1Zv34906ZNo6ysjMzMTHJycgz74+LiWLRoEX5+fkaJr3nz5pJ0CyHua1JqIu4KzeytJOkW4i/q0aMHcXFxACQnJ+Ph4UG9evW4fPkyRUVF/PTTTxw8eJApU6YAsH79ejw8PPDy8qJnz55A+XMVM2fORK/X4+npyZIlSwD47rvv8PHxQa/XM378eIqKioDyhbReeuklOnXqhF6vN6yUu2vXLry9vfH29sbHx4fc3FxSUlLw8PAAyhfsGjx4MP3798fNzY1Zs2bV6lgJIYQxyIy3EELUEc2bN8fU1JTTp08TFxdHt27dOHv2LHv27MHe3h5PT0/Mzc0Nx8+dO5ft27fTokULsrKyAHj33Xc5deoUBw4cwNTUlEuXLlFYWEhoaCjfffcdbdu2ZezYsbz99tuGkhZHR0f279/P8uXLmT9/Pu+99x7z589n2bJl9OjRg7y8PCwtLSvFm5iYWKEv/zPPPIOTk1NtDJUQQhiFzHgLIcS97nIqnNwFGUcNs97XE+9u3boZ3nfv3r3CaT169CA0NJQVK1ZQWloKwI4dO5g4cSKmpuXzMg4ODvz888+0bt2atm3bAjBu3DhiYmJISUnh3LlzDB48GIDOnTuzc+dO5s+fj6WlJc888wyLFy8mKyvLcL0bBQcH89hjj5GUlFRlX34hhKhrJPEWQogaoJRizJgxhvclJSU0atSIAQMGALBlyxbmzZtX8zc+FQPv9ITVIRARSPdWFsTFxXH48GE8PDzw9/dnz549xMXFYWdnx/Hjxw2nRkRE8J///Ie0tDS8vb25ePGiYbGqG/3RQ/jX++vrdDrKysoAyMjIYNasWRQUFODv728oQanqvOvn/r4vvxBC1DVSaiKEEDXAxsaGpKQkCgoKsLKy4ttvv6VFixaG/SEhIYSEhNTsTQuyYNsMKMwqf196lR45m/jvNhtcH2iHTqfDwcGBrKwskpOTcXNzIzU1lUaNGgFw4sQJ/Pz88PPz44svviAtLY2+ffsSERFBUFCQodSkffv2pKSk8Msvv/DAAw/w0Ucf0atXr5uGtnfvXtLT07GyssLHx4eXX36Z5ORkfvnlF5566im6detmOHb9+vXExsaSmJjI2rVrpfe+EKLOkhlvIYSoIQ8//DDbtm0DYO3atYwcOdKwb9WqVYaHGkNDQwkLC6N79+64uroaOn1ER0cTFBTE0KFDad++PaNHjzbMNickJNCrVy86d+5Mv379SE9Ph4JLLN52GPdleXi+nceIDfnoG5aQkXmRtLQ0PD098ff3p2XLllhbW7N69Wq++eYb1q1bx+7du3n88cextrbGysqKzMxMmjZtyoQJE2jVqhWenp54eXnxySefYGlpyQcffMDQwYPp6OrK1eO/MMzGlvzDh6sdiwYNGlBSUoKmadja2rJgwQK2bNnCAw88QEFBAQcPHjQcW1JSQkBAAFOmTOHll1+u8Z+LEELcLSTxFkKIGjJixAjWrVtHYWEhhw4dumnbvvT0dGJjY9m6dWuFntoHDhxg0aJFHDlyhJMnT/L9999TXFzMM888w4YNG0hISGD8+PHMnj0b6jVj3g+KA0/bcOiftkQMsEJXrzGho0YwatQoDh06xGuvvUZqaionT55k4sSJzJ49m8zMTAIDA/nyyy+5cuUKBQUFvPTSS7z11luYmpqyYMECjhw5UqEDSuADD7DJy5sN5hbMuXiR7PnzOTdtOq4NG9Lg2oOTvr6+hIaGopTCzc2NyMhIDh48yNq1a4mLi2P48OEopdi5cydNmzZl6dKlAAwePJitW7fyxBNPkJKScud+QEIIYWRSaiKEEH+Cpmkkn8vmVGY+rRpaA+Dp6UlKSgpr167lkUceuen5AwcOxMTEBHd3d86fP2/Y3rVrV1q2bAmAt7c3KSkp1K9fn6SkJB566CGgvOVfs2bNwMwKT5/OjP4mlYEtMxnYyxcGvkHswMl89u//A6BPnz5cvHiR7OzsSjGcOXOG4cOHk56eztWrV2ndunW1n/XSx2so2Levwvb6Oh2XMzO58v332PXrB8ClS5cqXaewsJBJkyYRHx+Pk5MT4eHhFBYWGvbfWCMudd5CiLpMZryFEOJPiDmeycBlcTyz9gCDln1PaVl5SUhISAgzZ86sUGZSlRsfLLzx4cWqHjjUNI2OHTuSmJhIYmIihw8f5ptvvgFg27e7mPzqeyQ0GUXnZb9S0qJrlQ9DVrUa7DPPPMOUKVM4fPgw77zzToVk+EZXT53i8rp1lbbbmJjQSGfK1kWL0IqLuXTpEl9//TUBAQHUq1eP3NxcAMN1HR0dycvLk0V0hBD3LUm8hRDiNpWWaayIOUnJtWS7TIPiUo2CqyWMHz+eF198Eb1eX2P3a9euHRkZGezZsweA4uJikpOTKSsrIy0tjd4P9ePNxRFkZeeQl5dHz549WbNmDVBeN+7o6IidnV2FZBggOzvb8ADohx9+WO39y3Jzobi4yn2vN2vG4h9+wKdzZ/r06cNLL71EmzZtCA0NZeLEiXh7e2NhYcGTTz6JXq9n4MCBdOnSpaaGRggh7ilSaiKEEH+CroppCxOlaNmyJVOnTq3Re5mbm7NhwwbCwsLIzs6mpKSEadOm0bZtWx5//HGys7PRNI3p06dTv359wsPDeeKJJ/D09MTa2tqQVD/66KMMHTqUzZs3s2TJEsLDwxk2bBgtWrTA39+fU6dOVf1ZGzRAWVmhFRRU2veAhQUbxoyhxYIFqBt6dQ8ZMoQhQ4YY3v/nP//hP//5T6Xzo6OjDa8dHR2lxlsIUaepP+rPejfx9fXV4uPjjR2GEEIQezyD8aviuVpahqmJYsVYX3q3b2zssO6YC0uWcnHZsir3tXwngnp/0F6wJuh0OvR6PSUlJXTo0IEPP/wQa2vrO37fqqxatYr4+HjDA6I14dy5c4SFhUkpjhB3CaVUgqZpvjV5TSk1EUKIPyHArRFfPNODiMc7s3lKD4LaNTJ2SHdUg2HDsPt9H3IzM5r832xsbujJfSdZWVmRmJhIUlIS5ubmRERE1Mp9a0vz5s0l6RaijpPEWwgh/qR2Te3o79GUjs3tq3x4sS4xa9qEpuHhOK/5mKavzKXZ66/TesN6GowahYm5ea3HExgYyC+//MKVK1cYP348Xbp0wcfHh82bNwPlM9KDBw+mf//+uLm5MWvWLMO5tra2zJ49Gy8vL/z9/Q1dZdavX4+HhwdeXl707NnTcJ/ExETDuT169ODQoUOG99nZ2bi4uBhW7MzPz8fJyYni4mJWrFhBly5d8PLyYsiQIeTn5wPV93FPSUnBw8PD8DowMJBOnTrRqVMn4uLi7tBICiFqkyTeQgghbonO2grrzp1pMGwY9QcNxLJdO5RJ7f8ZKSkp4auvvkKv1/Pqq6/Sp08f9u3bR1RUFM899xxXrlwBIDExkcjISA4fPkxkZCRpaWkAXLlyBX9/fw4ePEjPnj1ZsWIFAHPnzmX79u0cPHiQLVu2ADBhwgRWrVoFwLFjxygqKsLT09MQi729PV5eXuzatQuAL774gn79+mFmZsbgwYPZt28fBw8epEOHDqxcudJwXnV93K9r3Lgx3377Lfv37ycyMpKwsLCaH0ghRK2TxFsIIcRd6UzuGT756ROmRU3j3YPvUlBQgLe3N76+vrRq1Yp//OMffPPNN8ybNw9vb2+CgoIoLCzk9OnTAAQHB2Nvb4+lpSXu7u6kpqYC5Q+rDhgwAIDOnTsbHujs0aMHoaGhrFixgtLSUgCGDRvG1q1bKS4u5v333yc0NLRSnMOHDycyMhKAdevWMXz4cACSkpIIDAxEr9ezZs0akpOTDedU18f9uuLiYkMnmGHDhnHkyJGaGVQhhFFJVxMhhBB3nUuFl5gdO5v9F/YD8N3p71Bmio27NtLa/rcFejRN47PPPqNdu3YVzv/xxx+r7IkOYGZmZigNunF7REQEP/74I9u2bcPb25vExEQaNmzIQw89xObNm/n000+p6gH/kJAQnn/+eS5dukRCQgJ9+vQByktKNm3ahJeXF6tWrarQwaW6Pu7XLVy4kCZNmnDw4EHKysqwvLY6qBDi3iYz3kIIIe46SZlJhqT7Og2N/ecrbuvXrx9LliwxJK8HDhz40/c8ceIEfn5+zJ07F0dHR0NpyoQJEwgLC6NLly44ODhUOs/W1pauXbsydepUBgwYgE6nAyA3N5dmzZpRXFxs6Kt+q7Kzs2nWrBkmJiZ89NFHhhl4IcS9TWa8hRBC3HVyruZUuT27KLvC+zlz5jBt2jQ8PT3RNA0XFxe2bt36p+753HPPcfz4cTRNIzg4GC8vL6C8HMXOzo4nnnii2nOHDx/OsGHDKsxqv/LKK/j5+eHs7Ixer6+weNEfmTRpEkOGDGH9+vX07t0bGxubP/WZhBB3F+njLYQQ4q7z08WfGLltJKVaxZnet4PfJqBlQK3Gcu7cOYKCgjh69CgmRniYVAhhHNLHWwghxH2hnUM7Xg14FStTKwBMlSlhPmF0atKpVuNYvXo1fn5+vPrqq5J0CyH+MpnxFkIIcddKzUnlXN45Glo2pE39NuhMdMYOSQhxn5AZbyGEqAFnzpzhsccew83NjTZt2jB16lSuXr1q7LBEFZztnOnWvBttHdpK0i2EuOdJ4i2EuK9omsbgwYMZOHAgx48f59ixY+Tl5TF79uwKx11vMSeEEELUFEm8hRD3lZ07d2JpaWnoUKHT6Vi4cCHvv/8+y5cvZ9iwYTz66KP07du32uXI8/Pz+fvf/46npyfDhw/Hz8/P0N957dq16PV6PDw8+Ne//mW4b3XLlAshhLh/SOIthLg/XMmAlO9JjttOZx/vCrvs7Oxo1aoVJSUl7Nmzhw8//JCdO3dWuxz58uXLadCgAYcOHWLOnDkkJCQA5d0v/vWvf7Fz504SExPZt28fmzZtKr99NcuUCyFEXfLrr78yYsQI2rRpg7u7O4888gjHjh2r8tiUlBQ8PDzuSBzh4eHMnz//jlz7r5DEWwhR9507AO89BKseQft+MSr1e8jLrHCIpmkopXjooYcMi6RUtxx5bGwsI0aMAMDDwwNPT08A9u3bR1BQEI0aNcLU1JTRo0cTExMDVL9MuRBC1BWapjFo0CCCgoI4ceIER44c4bXXXquxb/jqQgmgJN5CiLrtaj7seBkunwKgY2Md8QcOwqlowyE5OTmkpaWh0+kqLFRyfTnyxMREEhMTOX36NB06dKhyie/rx1enumXKhRCiroiKisLMzIyJEycatnl7exMQEMBzzz2Hh4cHer2eyMjISucWFhbyxBNPoNfr8fHxISoqCoBVq1ZVKAHMy8sjODiYTp06odfrDSWAAK+++irt2rXjwQcf5OeffzZsT0xMxN/fH09PTwYNGsTly5fv4CjcnCTeQoi6Le8CnIwyvA1urSO/WGP1Rx8DUFpayowZMwgNDcXa2rrCqdUtRx4QEMCnn34KwJEjRzh8+DAAfn5+7Nq1i8zMTEpLS1m7di29evW64x9RCCGMoayggCt795K5YgUXFi1i36ef4tO+faXjPv/8cxITEzl48CA7duzgueeeIz09vcIxy5YtA+Dw4cOsXbuWcePGUVhYCFChBNDS0pKNGzeyf/9+oqKimDFjBpqmkZCQwLp16zhw4ACff/45+/btM1x77NixvPHGGxw6dAi9Xs/LL798B0fl5iTxFkLUbVb1wfG3PwRKKTYOt2b9Dym4ubnRtm1bLC0tee211yqdOmfOHIqLi/H09MTDw4M5c+YA5ct5Z2Rk4OnpyRtvvIGnpyf29vY0a9aM119/nd69e+Pl5UWnTp147LHHauuTCiFErSnNL+Diyvc5PXYcGf9dwMWId8jeuJHc776j6MSJCsfGxsYycuRIdDodTZo0oVevXhUS4+vHjBkzBoD27dvj7OxsqA2/sQRQ0zReeOEFPD09efDBBzl79iznz59n9+7dDBo0CGtra+zs7AgJCQEgOzubrKwswyTIuHHjDCWAxmBqtDsLIURtsKoP/V+DtSOgtLxXt1MHX7548QNo4FLh0NDQUEJDQ3871cqKd955p9IlLS0t+fjjj7G0tOTEiRMEBwfj7OwMwKhRoxg1alSlc/Ly8gyvhw4dytChQ//6ZxNCCCPJ37eXzKVLK2x7wNyCb9LTufjhhzQLD0ddW+31VhZrvNkxN5YArlmzhoyMDBISEjAzM8PFxcUwM369nO9uJjPeQoi674FgeHInDIyA4R/DiE8qJd23Iz8/n4CAALy8vBg0aBBvv/025ubmNRevEELc5fJ27qy0zd/amquaxnvvreTqqfLnavbt20eDBg2IjIyktLSUjIwMYmJi6Nq1a4Vze/bsyZo1awA4duwYp0+fpl27dpXukZ2dTePGjTEzMyMqKorU1FTD+Rs3bqSgoIDc3Fy++OILAOzt7WnQoAG7d+8G4KOPPjJqCaDMeAsh7g9N9eX/1YB69eoZ+nYLIcT96OrptErblFIsadGC1y9coENQEFZ2dri4uLBo0SLy8vLw8vJCKcWbb75J06ZNK3R3mjRpEhMnTkSv12NqasqqVauwsLCodI/Ro0fz6KOP4uvri7e3N+2v1ZR36tSJ4cOH4+3tjbOzM4GBgYZzPvzwQyZOnEh+fj6urq588MEHNT8gt0jdyvT/3cLX11eTP3ZCCCGEEMaV+c47ZCxcVOU+nYMDrTd+jlmTJrUbVA1TSiVomuZbk9eUUhMhhBBCCHFbbAIDUVZWVe5rFBZ2zyfdd4ok3kIIIYQQ4rZYubvjFPE2Zm3aGLYpKysaPzeTeo88bMTI7m5S4y2EEEIIIW6bjZ8fLms+pujYMbSiIsxatcLiWocnUTWjJN5KqWFAONAB6KppmhRuCyGEEELcY0zr18f0dx1KRPWMVWqSBAwGjNfBXAghhBBCiFpklBlvTdN+gnuj0bkQQgghhBA14a5/uFIp9ZRSKl4pFZ+RkWHscIQQQgghhPhT7tiMt1JqB9C0il2zNU3bfKvX0TTtXeBdKO/jXUPhCSGEEEIIUavuWOKtadqDd+raQgghhBBC3Gvu+lITIYQQQggh6gKjJN5KqUFKqTNAN2CbUmq7MeIQQgghhBCithirq8lGYKMx7i2EEEIIIYQxSKmJEEIIIYQQtUASbyGEEEKIKiilGDNmjOF9SUkJjRo1YsCAAQBs2bKFefPmVXt+SkoKHh4eVe578cUX2bFjR80GLO56Rik1EUIIIYS429nY2JCUlERBQQFWVlZ8++23tGjRwrA/JCSEkJCQP3XtuXPn1lSY4h4iM95CCCGEENV4+OGH2bZtGwBr165l5MiRhn2rVq1iypQpAJw/f55Bgwbh5eWFl5cXcXFxAJSWlvLkk0/SsWNH+vbtS0FBAQChoaFs2LABgC+//JL27dsTEBBAWFiYYUZ97969dO/eHR8fH7p3787PP/9suO/gwYPp378/bm5uzJo1q3YGQ/xlkngLIYQQQlRjxIgRrFu3jsLCQg4dOoSfn1+Vx4WFhdGrVy8OHjzI/v376dixIwDHjx9n8uTJJCcnU79+fT777LMK5xUWFvL000/z1VdfERsby42rdLdv356YmBgOHDjA3LlzeeGFFwz7EhMTiYyM5PDhw0RGRpKWlnYHPr2oaVJqIoQQQghxzS8X8og5doFLV4op0zTcO3qQkpLC2rVreeSRR6o9b+fOnaxevRoAnU6Hvb09ly9fpnXr1nh7ewPQuXNnUlJSKpx39OhRXF1dad26NQAjR47k3XffBSA7O5tx48Zx/PhxlFIUFxcbzgsODsbe3h4Ad3d3UlNTcXJyqqlhEHeIJN5CCCGEEEBGbhGT1iRw7HweAIXFZcSduEhISAgzZ84kOjqaixcv3tY1LSwsDK91Op2h1OQ6TdOqPXfOnDn07t2bjRs3kpKSQlBQULXXLSkpua24hHFIqYkQQgghBHD01xxD0n3dzqMXGD9+PC+++CJ6vb7ac4ODg3n77beB8rrunJycW7pn+/btOXnypGEmPDIy0rAvOzvb8DDnqlWrbuOTiLuVJN5CCCGEEIC1ma7SNgcbc1q2bMnUqVNveu7//vc/oqKi0Ov1dO7cmeTk5Fu6p5WVFcuXL6d///4EBATQpEkTQwnJrFmzeP755+nRowelpaW3/4HEXUfd7CuOu42vr68WHx9v7DCEEEIIUQflXy3hra9/5oO4FAAaqCs0OxLJz0mJWFhY4OLiwqJFi2jbtm2V59va2pKXl8e5c+cICwszdC0ZOXIkycnJPPHEE0yfPr3SeXl5edja2qJpGpMnT8bNza3K4wDi4+NZvXo1ixcvrpkPLaqllErQNM23Rq8pibcQQgghRLm8omKSzmSTU1jC86GP8eQ/nmDixIlAeSeR3NxcAgMDqzz3euJ9o19//RU/Pz9SU1OrvefChQv58MMPuXr1Kj4+Prz99tvY2dnV3IcSf8qdSLyl1EQIIYQQ4hpbCzP82zhiev4INlYWhqQbwNvbGx8fH4KDg+nUqRN6vZ7NmzdXusaNK1b27duXCxcu4O3tze7du0lMTMTf3x9PT08GDRrE5cuXmT59OvXr12fgwIGcOXOGFStWEBQUxL/+9S+6du1K27Zt2b17NwDR0dF/2Odb3L2kq4kQQgghBFCak0PhkSOU5l3hQNROOvn4VDrG0tKSjRs3YmdnR2ZmJv7+/oSEhKCUqvKaW7ZsYcCAASQmJgLg6enJkiVL6NWrFy+++CIvv/wyixYtAiArK4tdu3YB8MUXX1BSUsLevXv58ssvefnllystMX+9z7epqSk7duzghRdeqNQnXNxdJPEWQgghxH2v8KefODf7/yg6cgSAi9nZFLRrS0lODqY3lH1omsYLL7xATEwMJiYmnD17lvPnz9O0adM/vEd2djZZWVn06tULgHHjxjFs2DDD/uHDh1c4fvDgwUDV/b+vX6+6Pt/i7iSlJkIIIYS4r5VkZXHuX/82JN0AD5iakrB3L3nffVfh2DVr1pCRkUFCQgKJiYk0adKEwsLCGonDxsamwvvrvbqr69N9vc93UlISX3zxRY3FIe4cSbyFEEIIcV8rOnKEomPHKmzzt7bmqqaxLDyc0msPTO7bt4/U1FQaN26MmZkZUVFRN31o8vfs7e1p0KCBoV77o48+Msx+/xnS5/veI6UmQgghhLivlVax2I1SiiUtWjAvLY22Hh5Y2tjg4uJCeHg4YWFh+Pr64u3tTfv27W/rXh9++CETJ04kPz8fV1dXPvjggz8d96xZsxg3bhwLFiygT58+f/o6ovZIO0EhhBBC3NcKkpJJGTYMqsiJ6j3cnxZvvIEyNzdCZMKYpJ2gEEIIIUQNs2zrRoPHH6+8w8yMBiNHStItaowk3kIIIYS4rylzcxz/OZEmL72IaYsWKDMzbIODabViBdZduhg7vPueUooZM2YY3s+fP5/w8PAauXZhYSHt27fn8OHDhm1vvvlmhf7tfxBbuFJq5q3eTxJvIYQQQtz3TB0ccBg5EtfPP6PNt9/QYuECbPz9qu3PLWqPhYUFn3/+OZmZmTV+bUtLSxYtWsSkSZPQNI2zZ8/yzjvv8Prrr//huUqp235WUhJvIYQQQohrdPb2mDVtiomUl9w1TE1Neeqpp1i4cGGlfRkZGQwZMoQuXbrQpUsXvv/+ewD0ej1ZWVlomkbDhg1ZvXo1AGPGjKm0EFH//v1p1qwZq1evZvr06YSHh5NT/sBtW6XUIaXUd0qpVgBKqVVKqQVKqSjgjRuvo5R6Uin1lVLKqrrPIom3EELcBaZPn25YvQ6gX79+TJgwwfB+xowZLFiw4JavFx4ezvz586vc17179z8dZ3R0NHFxcX/6fCGEuCVX8+FMPKSUJ9KTJ09mzZo1ZGdnVzhs6tSpTJ8+nX379vHZZ58Zfm/26NGD77//nuTkZFxdXQ0tHH/44Qf8/f0r3W7RokXMnj2bjIwMxowZw5QpUwAuaprmCawBFt9weFvgQU3TDPUvSqkpwKPAQE3TCqr7WNJOUAgh7gLdu3dn/fr1TJs2jbKyMjIzM6/PuAAQFxdXITH/K/5K4hwdHY2tre1fSt6FEOKmctLh2xfh8Kfl70sKsCs4w9ixY1m8eDFWVr9NKO/YsYMjNyx8lJOTQ25uLoGBgcTExODs7Mw///lP3n33Xc6ePYuDgwO2traVbtm8eXP69OnDgAEDANizZw/ApWu7PwLevOHw9Zqmld7wfgxwhvKk+6bLh8qMtxBC3AV69OhhSIiTk5Px8PCgXr16XL58maKiIn766Se2b99Oly5d8PDw4KmnnuJ6O9jFixfj7u6Op6cnI0aMMFzzyJEjBAUF4erqyuLFv03WXP+jEx0dTVBQEEOHDqV9+/aMHj3acM0vv/yS9u3bExAQQFhYGAMGDCAlJYWIiAgWLlyIt7c3u3fvJjU1leDgYDw9PQkODub06dMAhIaGEhYWRvfu3XF1dWXDhg21Mo5CiDrglx2/Jd0AZWXw4ztMCwtj5cqVXLly5YZdZezZs4fExEQSExM5e/Ys9erVo2fPnuzevZvdu3cTFBREo0aN2LBhA4GBgdXe1sTEBBOTalPjG3tNXvndviTABWj5Rx9NEm8hhDCi81fOczjjMGW2ZZiamnL69Gni4uLo1q0bfn5+7Nmzh/j4eDw9PZkyZQr79u0jKSmJgoICtm7dCsC8efM4cOAAhw4dIiIiwnDto0ePsn37dvbu3cvLL79McXHliZgDBw6waNEijhw5wsmTJ/n+++8pLCzk6aef5quvviI2NpaMjAwAXFxcmDhxItOnTycxMZHAwECmTJnC2LFjOXToEKNHjyYsLMxw7fT0dGJjY9m6dSv//ve/7/BICiHqjLP7K2879hUO1ib8/e9/Z+XKlYbNffv2ZenSpYb3iYmJADg5OZGZmcnx48dxdXUlICCA+fPn3zTxvtG1b/UaXHs7Goi9yeEHgKeBLUqp5je7riTeQghhBMVlxWw7uY1hXwxj1JejGPLFEJp7NGdnzE5D4t2tWzfi4uKIi4uje/fuREVF4efnh16vZ+fOnSQnJwPg6enJ6NGj+fjjjzE1/a2C8G9/+xsWFhY4OjrSuHFjzp8/XymOrl270rJlS0xMTPD29iYlJYWjR4/i6upK69atARg5cmS1n2PPnj2MGjUKKH9oKTb2t79NAwcOxMTEBHd39yrvLYQQVWriXnmbcwBY1GPGjBkVupssXrzYMDnh7u5eYfLBz8+Ptm3bAhAYGMjZs2cJCAi4pRCufUvoqJQ6RHkpydSbHa9pWiwwE9imlHKs7jip8RZCCCPYf34//9792yxwfkk+FxtcZOOOjaQdTsPDwwMnJyf++9//Ymdnx/jx45kwYQLx8fE4OTkRHh5OYWEhANu2bSMmJoYtW7bwyiuvGBJyCwsLw/V1Oh0lJSWV4qjqmL+yovGNrdduvPa9tEqyEMLI3B4Cp26QtgeAvFfbQPfJoDOjSZMm5OfnGw51dHQkMjKyyst89NFHhtfdu3enrKzsprddtWqV4bWLiwvAsd+vXKlpWujv3off8Ho7sP1m95AZbyGEMIIf0n+otM3azZqo7VE4ODig0+lwcHAgKyuLPXv20K1bN6D8j0xeXp6hZrqsrIy0tDR69+7Nm2++SVZWFnl5eX8ptvbt23Py5ElSUlIAKvxRq1evHrm5uYb33bt3Z926dQCsWbPmlmeThBCiWg1cYMTHMPozGPEJPLkTWnQ2dlQ1Qma8hRDCCIpKiipts3SypCC7AD8/P8M2vV5PXl4ejo6OPPnkk+j1elxcXOhybTW90tJSHn/8cbKzs9E0jenTp1O/fv2/FJuVlRXLly+nf//+ODo60rVrV8O+Rx99lKFDh7J582aWLFnC4sWLGT9+PG+99RaNGjXigw8++Ev3FkIIAGwcwe1BY0dR49S99PWfr6+vFh8fb+wwhBDiL9t5eidToyqXDL7o/yLD2g0zQkQV5eXlYWtri6ZpTJ48GTc3N6ZPn27ssIQQotYopRJ+X2ryV0mpiRBCGEHXpl15Sv8Uit9qokPahBDkFGS8oG6wYsUKvL296dixI9nZ2Tz99NPGDkkIIe55MuMthBBGUlxazLHLxzh35RyNrBrRrkE7rMyqXWlYCCFELboTM95S4y2EEEZipjOjo2NHOjp2NHYoQgghaoGUmgghhBBCCFELJPEWQgghhBCiFkjiLYQQQgghRC2QxFsIIYQQQohaIIm3EEIIIYQQtUASbyGEEEIIIWqBJN5CCCGEEELUAkm8hRBCCCGEqAWSeAshhBBCCFELJPEWQgghhBCiFkjiLYQQQgghRC2QxFsIIYQQQohaIIm3EEIIIYQQtUASbyGEEEIIIWqBJN5CCCGEEELUAkm8hRBCCCGEqAWSeAshhBBCCFELJPEWQgghhBCiFkjiLYQQQgghRC2QxFsIIYQQQohaoDRNM3YMt0wplQGkGjuOv8ARyDR2EHWcjPGdJ2N858kY31kyvneejPGdJ2N85zlrmtaoJi94TyXe9zqlVLymab7GjqMukzG+82SM7zwZ4ztLxvfOkzG+82SM701SaiKEEEIIIUQtkMRbCCGEEEKIWiCJd+1619gB3AdkjO88GeM7T8b4zpLxvfNkjO88GeN7kNR4CyGEEEIIUQtkxlsIIYQQQohaIIm3EEIIIYQQtUAS71qklHpLKXVUKXVIKbVRKVXf2DHVNUqpYUqpZKVUmVJK2izVIKVUf6XUz0qpX5RS/zZ2PHWNUup9pdQFpVSSsWOpq5RSTkqpKKXUT9d+T0w1dkx1jVLKUim1Vyl18NoYv2zsmOoqpZROKXVAKbXV2LGIWyeJd+36FvDQNM0TOAY8b+R46qIkYDAQY+xA6hKllA5YBjwMuAMjlVLuxo2qzlkF9Dd2EHVcCTBD07QOgD8wWf4/rnFFQB9N07wAb6C/UsrfuCHVWVOBn4wdhLg9knjXIk3TvtE0reTa2x+AlsaMpy7SNO0nTdN+NnYcdVBX4BdN005qmnYVWAc8ZuSY6hRN02KAS8aOoy7TNC1d07T9117nUp60tDBuVHWLVi7v2luza/9JF4cappRqCfwNeM/YsYjbI4m38YwHvjJ2EELcohZA2g3vzyAJi7iHKaVcAB/gRyOHUudcK4FIBC4A32qaJmNc8xYBs4AyI8chbpOpsQOoa5RSO4CmVeyarWna5mvHzKb8K881tRlbXXErYyxqnKpim8xiiXuSUsoW+AyYpmlajrHjqWs0TSsFvK89x7RRKeWhaZo8u1BDlFIDgAuapiUopYKMHI64TZJ41zBN0x682X6l1DhgABCsSRP1P+WPxljcEWcApxvetwTOGSkWIf40pZQZ5Un3Gk3TPjd2PHWZpmlZSqloyp9dkMS75vQAQpRSjwCWgJ1S6mNN0x43clziFkipSS1SSvUH/gWEaJqWb+x4hLgN+wA3pVRrpZQ5MALYYuSYhLgtSikFrAR+0jRtgbHjqYuUUo2ud+xSSlkBDwJHjRpUHaNp2vOaprXUNM2F8t/FOyXpvndI4l27lgL1gG+VUolKqQhjB1TXKKUGKaXOAN2AbUqp7caOqS649lDwFGA75Q+kfappWrJxo6pblFJrgT1AO6XUGaXUP4wdUx3UAxgD9Ln2Ozjx2qyhqDnNgCil1CHK/8H+raZp0u5OiGtkyXghhBBCCCFqgcx4CyGEEEIIUQsk8RZCCCGEEKIWSOIthBBCCCFELZDEWwghhBBCiFogibcQQgghhBC1QBJvIYS4hymlSq+1xUtSSq1XSllf295UKbVOKXVCKXVEKfWlUqrttX1fK6WylFLS5k0IIWqRJN5CCHFvK9A0zVvTNA/gKjDx2kIxG4FoTdPaaJrmDrwANLl2zluU97MWQghRiyTxFkKIumM38ADQGyjWNM2wSJemaYmapu2+9vo7INc4IQohxP1LEm8hhKgDlFKmwMPAYcADSDBuREIIIX5PEm8hhLi3WSmlEoF44DSw0rjhCCGEqI6psQMQQgjxlxRomuZ94walVDIw1DjhCCGEqI7MeAshRN2zE7BQSj15fYNSqotSqpcRYxJCiPueJN5CCFHHaJqmAYOAh661E0wGwoFzAEqp3cB6IFgpdUYp1c9owQohxH1Elf9+FkIIIYQQQtxJMuMthBBCCCFELZDEWwghhBBCiFogibcQQgghhBC1QBJvIYQQQgghaoEk3kIIIYQQQtQCSbyFEEIIIYSoBZJ4CyGEEEIIUQv+H4CizTb+htPNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "#Code task 11#\n", "#Create a seaborn scatterplot by calling `sns.scatterplot`\n", @@ -1966,8 +2423,8 @@ "plt.subplots(figsize=(12, 10))\n", "# Note the argument below to make sure we get the colours in the ascending\n", "# order we intuitively expect!\n", - "sns.___(x=___, y=___, size=___, hue=___, \n", - " hue_order=___, data=pca_df)\n", + "sns.scatterplot(x='PC1', y='PC2', size='AdultWeekend', hue='Quartile', \n", + " hue_order=pca_df.Quartile.cat.categories, data=pca_df)\n", "#and we can still annotate with the state labels\n", "for s, x, y in zip(state, x, y):\n", " plt.annotate(s, (x, y)) \n", @@ -2005,7 +2462,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 79, "metadata": {}, "outputs": [ { @@ -2142,7 +2599,7 @@ "6 -0.007887 -0.005631 " ] }, - "execution_count": 43, + "execution_count": 79, "metadata": {}, "output_type": "execute_result" } @@ -2167,7 +2624,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 80, "metadata": {}, "outputs": [ { @@ -2208,51 +2665,51 @@ " \n", " \n", " state_total_skiable_area_ac\n", - " 3427\n", - " 7239\n", + " 3427.0\n", + " 7239.0\n", " \n", " \n", " state_total_days_open\n", - " 1847\n", - " 1777\n", + " 1847.0\n", + " 1777.0\n", " \n", " \n", " state_total_terrain_parks\n", - " 43\n", - " 50\n", + " 43.0\n", + " 50.0\n", " \n", " \n", " state_total_nightskiing_ac\n", - " 376\n", - " 50\n", + " 376.0\n", + " 50.0\n", " \n", " \n", " resorts_per_100kcapita\n", - " 1.17672\n", - " 2.40389\n", + " 1.176721\n", + " 2.403889\n", " \n", " \n", " resorts_per_100ksq_mile\n", - " 171.141\n", - " 155.99\n", + " 171.141299\n", + " 155.990017\n", " \n", " \n", "\n", "" ], "text/plain": [ - " 17 29\n", - "state New Hampshire Vermont\n", - "resorts_per_state 16 15\n", - "state_total_skiable_area_ac 3427 7239\n", - "state_total_days_open 1847 1777\n", - "state_total_terrain_parks 43 50\n", - "state_total_nightskiing_ac 376 50\n", - "resorts_per_100kcapita 1.17672 2.40389\n", - "resorts_per_100ksq_mile 171.141 155.99" + " 17 29\n", + "state New Hampshire Vermont\n", + "resorts_per_state 16 15\n", + "state_total_skiable_area_ac 3427.0 7239.0\n", + "state_total_days_open 1847.0 1777.0\n", + "state_total_terrain_parks 43.0 50.0\n", + "state_total_nightskiing_ac 376.0 50.0\n", + "resorts_per_100kcapita 1.176721 2.403889\n", + "resorts_per_100ksq_mile 171.141299 155.990017" ] }, - "execution_count": 44, + "execution_count": 80, "metadata": {}, "output_type": "execute_result" } @@ -2263,7 +2720,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 81, "metadata": {}, "outputs": [ { @@ -2342,7 +2799,7 @@ "resorts_per_100ksq_mile 3.483281 3.112841" ] }, - "execution_count": 45, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" } @@ -2395,7 +2852,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -2541,91 +2998,91 @@ " \n", " \n", " Runs\n", - " 76\n", - " 36\n", - " 13\n", - " 55\n", - " 65\n", + " 76.0\n", + " 36.0\n", + " 13.0\n", + " 55.0\n", + " 65.0\n", " \n", " \n", " TerrainParks\n", - " 2\n", - " 1\n", - " 1\n", - " 4\n", - " 2\n", + " 2.0\n", + " 1.0\n", + " 1.0\n", + " 4.0\n", + " 2.0\n", " \n", " \n", " LongestRun_mi\n", - " 1\n", - " 2\n", - " 1\n", - " 2\n", + " 1.0\n", + " 2.0\n", + " 1.0\n", + " 2.0\n", " 1.2\n", " \n", " \n", " SkiableTerrain_ac\n", - " 1610\n", - " 640\n", - " 30\n", - " 777\n", - " 800\n", + " 1610.0\n", + " 640.0\n", + " 30.0\n", + " 777.0\n", + " 800.0\n", " \n", " \n", " Snow Making_ac\n", - " 113\n", - " 60\n", - " 30\n", - " 104\n", - " 80\n", + " 113.0\n", + " 60.0\n", + " 30.0\n", + " 104.0\n", + " 80.0\n", " \n", " \n", " daysOpenLastYear\n", - " 150\n", - " 45\n", - " 150\n", - " 122\n", - " 115\n", + " 150.0\n", + " 45.0\n", + " 150.0\n", + " 122.0\n", + " 115.0\n", " \n", " \n", " yearsOpen\n", - " 60\n", - " 44\n", - " 36\n", - " 81\n", - " 49\n", + " 60.0\n", + " 44.0\n", + " 36.0\n", + " 81.0\n", + " 49.0\n", " \n", " \n", " averageSnowfall\n", - " 669\n", - " 350\n", - " 69\n", - " 260\n", - " 250\n", + " 669.0\n", + " 350.0\n", + " 69.0\n", + " 260.0\n", + " 250.0\n", " \n", " \n", " AdultWeekend\n", - " 85\n", - " 53\n", - " 34\n", - " 89\n", - " 78\n", + " 85.0\n", + " 53.0\n", + " 34.0\n", + " 89.0\n", + " 78.0\n", " \n", " \n", " projectedDaysOpen\n", - " 150\n", - " 90\n", - " 152\n", - " 122\n", - " 104\n", + " 150.0\n", + " 90.0\n", + " 152.0\n", + " 122.0\n", + " 104.0\n", " \n", " \n", " NightSkiing_ac\n", - " 550\n", + " 550.0\n", " NaN\n", - " 30\n", + " 30.0\n", " NaN\n", - " 80\n", + " 80.0\n", " \n", " \n", "\n", @@ -2647,17 +3104,17 @@ "double 0 4 0 \n", "surface 2 0 2 \n", "total_chairs 7 4 3 \n", - "Runs 76 36 13 \n", - "TerrainParks 2 1 1 \n", - "LongestRun_mi 1 2 1 \n", - "SkiableTerrain_ac 1610 640 30 \n", - "Snow Making_ac 113 60 30 \n", - "daysOpenLastYear 150 45 150 \n", - "yearsOpen 60 44 36 \n", - "averageSnowfall 669 350 69 \n", - "AdultWeekend 85 53 34 \n", - "projectedDaysOpen 150 90 152 \n", - "NightSkiing_ac 550 NaN 30 \n", + "Runs 76.0 36.0 13.0 \n", + "TerrainParks 2.0 1.0 1.0 \n", + "LongestRun_mi 1.0 2.0 1.0 \n", + "SkiableTerrain_ac 1610.0 640.0 30.0 \n", + "Snow Making_ac 113.0 60.0 30.0 \n", + "daysOpenLastYear 150.0 45.0 150.0 \n", + "yearsOpen 60.0 44.0 36.0 \n", + "averageSnowfall 669.0 350.0 69.0 \n", + "AdultWeekend 85.0 53.0 34.0 \n", + "projectedDaysOpen 150.0 90.0 152.0 \n", + "NightSkiing_ac 550.0 NaN 30.0 \n", "\n", " 3 4 \n", "Name Arizona Snowbowl Sunrise Park Resort \n", @@ -2674,20 +3131,20 @@ "double 1 1 \n", "surface 2 0 \n", "total_chairs 8 7 \n", - "Runs 55 65 \n", - "TerrainParks 4 2 \n", - "LongestRun_mi 2 1.2 \n", - "SkiableTerrain_ac 777 800 \n", - "Snow Making_ac 104 80 \n", - "daysOpenLastYear 122 115 \n", - "yearsOpen 81 49 \n", - "averageSnowfall 260 250 \n", - "AdultWeekend 89 78 \n", - "projectedDaysOpen 122 104 \n", - "NightSkiing_ac NaN 80 " + "Runs 55.0 65.0 \n", + "TerrainParks 4.0 2.0 \n", + "LongestRun_mi 2.0 1.2 \n", + "SkiableTerrain_ac 777.0 800.0 \n", + "Snow Making_ac 104.0 80.0 \n", + "daysOpenLastYear 122.0 115.0 \n", + "yearsOpen 81.0 49.0 \n", + "averageSnowfall 260.0 250.0 \n", + "AdultWeekend 89.0 78.0 \n", + "projectedDaysOpen 122.0 104.0 \n", + "NightSkiing_ac NaN 80.0 " ] }, - "execution_count": 46, + "execution_count": 82, "metadata": {}, "output_type": "execute_result" } @@ -2712,7 +3169,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 83, "metadata": {}, "outputs": [ { @@ -2829,7 +3286,7 @@ "4 256.0 0.140242 90.203861 " ] }, - "execution_count": 47, + "execution_count": 83, "metadata": {}, "output_type": "execute_result" } @@ -2840,7 +3297,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 84, "metadata": {}, "outputs": [ { @@ -2986,91 +3443,91 @@ " \n", " \n", " Runs\n", - " 76\n", - " 36\n", - " 13\n", - " 55\n", - " 65\n", + " 76.0\n", + " 36.0\n", + " 13.0\n", + " 55.0\n", + " 65.0\n", " \n", " \n", " TerrainParks\n", - " 2\n", - " 1\n", - " 1\n", - " 4\n", - " 2\n", + " 2.0\n", + " 1.0\n", + " 1.0\n", + " 4.0\n", + " 2.0\n", " \n", " \n", " LongestRun_mi\n", - " 1\n", - " 2\n", - " 1\n", - " 2\n", + " 1.0\n", + " 2.0\n", + " 1.0\n", + " 2.0\n", " 1.2\n", " \n", " \n", " SkiableTerrain_ac\n", - " 1610\n", - " 640\n", - " 30\n", - " 777\n", - " 800\n", + " 1610.0\n", + " 640.0\n", + " 30.0\n", + " 777.0\n", + " 800.0\n", " \n", " \n", " Snow Making_ac\n", - " 113\n", - " 60\n", - " 30\n", - " 104\n", - " 80\n", + " 113.0\n", + " 60.0\n", + " 30.0\n", + " 104.0\n", + " 80.0\n", " \n", " \n", " daysOpenLastYear\n", - " 150\n", - " 45\n", - " 150\n", - " 122\n", - " 115\n", + " 150.0\n", + " 45.0\n", + " 150.0\n", + " 122.0\n", + " 115.0\n", " \n", " \n", " yearsOpen\n", - " 60\n", - " 44\n", - " 36\n", - " 81\n", - " 49\n", + " 60.0\n", + " 44.0\n", + " 36.0\n", + " 81.0\n", + " 49.0\n", " \n", " \n", " averageSnowfall\n", - " 669\n", - " 350\n", - " 69\n", - " 260\n", - " 250\n", + " 669.0\n", + " 350.0\n", + " 69.0\n", + " 260.0\n", + " 250.0\n", " \n", " \n", " AdultWeekend\n", - " 85\n", - " 53\n", - " 34\n", - " 89\n", - " 78\n", + " 85.0\n", + " 53.0\n", + " 34.0\n", + " 89.0\n", + " 78.0\n", " \n", " \n", " projectedDaysOpen\n", - " 150\n", - " 90\n", - " 152\n", - " 122\n", - " 104\n", + " 150.0\n", + " 90.0\n", + " 152.0\n", + " 122.0\n", + " 104.0\n", " \n", " \n", " NightSkiing_ac\n", - " 550\n", + " 550.0\n", " NaN\n", - " 30\n", + " 30.0\n", " NaN\n", - " 80\n", + " 80.0\n", " \n", " \n", " resorts_per_state\n", @@ -3082,43 +3539,43 @@ " \n", " \n", " state_total_skiable_area_ac\n", - " 2280\n", - " 2280\n", - " 2280\n", - " 1577\n", - " 1577\n", + " 2280.0\n", + " 2280.0\n", + " 2280.0\n", + " 1577.0\n", + " 1577.0\n", " \n", " \n", " state_total_days_open\n", - " 345\n", - " 345\n", - " 345\n", - " 237\n", - " 237\n", + " 345.0\n", + " 345.0\n", + " 345.0\n", + " 237.0\n", + " 237.0\n", " \n", " \n", " state_total_terrain_parks\n", - " 4\n", - " 4\n", - " 4\n", - " 6\n", - " 6\n", + " 4.0\n", + " 4.0\n", + " 4.0\n", + " 6.0\n", + " 6.0\n", " \n", " \n", " state_total_nightskiing_ac\n", - " 580\n", - " 580\n", - " 580\n", - " 80\n", - " 80\n", + " 580.0\n", + " 580.0\n", + " 580.0\n", + " 80.0\n", + " 80.0\n", " \n", " \n", " resorts_per_100kcapita\n", " 0.410091\n", " 0.410091\n", " 0.410091\n", - " 0.0274774\n", - " 0.0274774\n", + " 0.027477\n", + " 0.027477\n", " \n", " \n", " resorts_per_100ksq_mile\n", @@ -3148,22 +3605,22 @@ "double 0 4 \n", "surface 2 0 \n", "total_chairs 7 4 \n", - "Runs 76 36 \n", - "TerrainParks 2 1 \n", - "LongestRun_mi 1 2 \n", - "SkiableTerrain_ac 1610 640 \n", - "Snow Making_ac 113 60 \n", - "daysOpenLastYear 150 45 \n", - "yearsOpen 60 44 \n", - "averageSnowfall 669 350 \n", - "AdultWeekend 85 53 \n", - "projectedDaysOpen 150 90 \n", - "NightSkiing_ac 550 NaN \n", + "Runs 76.0 36.0 \n", + "TerrainParks 2.0 1.0 \n", + "LongestRun_mi 1.0 2.0 \n", + "SkiableTerrain_ac 1610.0 640.0 \n", + "Snow Making_ac 113.0 60.0 \n", + "daysOpenLastYear 150.0 45.0 \n", + "yearsOpen 60.0 44.0 \n", + "averageSnowfall 669.0 350.0 \n", + "AdultWeekend 85.0 53.0 \n", + "projectedDaysOpen 150.0 90.0 \n", + "NightSkiing_ac 550.0 NaN \n", "resorts_per_state 3 3 \n", - "state_total_skiable_area_ac 2280 2280 \n", - "state_total_days_open 345 345 \n", - "state_total_terrain_parks 4 4 \n", - "state_total_nightskiing_ac 580 580 \n", + "state_total_skiable_area_ac 2280.0 2280.0 \n", + "state_total_days_open 345.0 345.0 \n", + "state_total_terrain_parks 4.0 4.0 \n", + "state_total_nightskiing_ac 580.0 580.0 \n", "resorts_per_100kcapita 0.410091 0.410091 \n", "resorts_per_100ksq_mile 0.450867 0.450867 \n", "\n", @@ -3182,23 +3639,23 @@ "double 0 1 \n", "surface 2 2 \n", "total_chairs 3 8 \n", - "Runs 13 55 \n", - "TerrainParks 1 4 \n", - "LongestRun_mi 1 2 \n", - "SkiableTerrain_ac 30 777 \n", - "Snow Making_ac 30 104 \n", - "daysOpenLastYear 150 122 \n", - "yearsOpen 36 81 \n", - "averageSnowfall 69 260 \n", - "AdultWeekend 34 89 \n", - "projectedDaysOpen 152 122 \n", - "NightSkiing_ac 30 NaN \n", + "Runs 13.0 55.0 \n", + "TerrainParks 1.0 4.0 \n", + "LongestRun_mi 1.0 2.0 \n", + "SkiableTerrain_ac 30.0 777.0 \n", + "Snow Making_ac 30.0 104.0 \n", + "daysOpenLastYear 150.0 122.0 \n", + "yearsOpen 36.0 81.0 \n", + "averageSnowfall 69.0 260.0 \n", + "AdultWeekend 34.0 89.0 \n", + "projectedDaysOpen 152.0 122.0 \n", + "NightSkiing_ac 30.0 NaN \n", "resorts_per_state 3 2 \n", - "state_total_skiable_area_ac 2280 1577 \n", - "state_total_days_open 345 237 \n", - "state_total_terrain_parks 4 6 \n", - "state_total_nightskiing_ac 580 80 \n", - "resorts_per_100kcapita 0.410091 0.0274774 \n", + "state_total_skiable_area_ac 2280.0 1577.0 \n", + "state_total_days_open 345.0 237.0 \n", + "state_total_terrain_parks 4.0 6.0 \n", + "state_total_nightskiing_ac 580.0 80.0 \n", + "resorts_per_100kcapita 0.410091 0.027477 \n", "resorts_per_100ksq_mile 0.450867 1.75454 \n", "\n", " 4 \n", @@ -3216,27 +3673,27 @@ "double 1 \n", "surface 0 \n", "total_chairs 7 \n", - "Runs 65 \n", - "TerrainParks 2 \n", + "Runs 65.0 \n", + "TerrainParks 2.0 \n", "LongestRun_mi 1.2 \n", - "SkiableTerrain_ac 800 \n", - "Snow Making_ac 80 \n", - "daysOpenLastYear 115 \n", - "yearsOpen 49 \n", - "averageSnowfall 250 \n", - "AdultWeekend 78 \n", - "projectedDaysOpen 104 \n", - "NightSkiing_ac 80 \n", + "SkiableTerrain_ac 800.0 \n", + "Snow Making_ac 80.0 \n", + "daysOpenLastYear 115.0 \n", + "yearsOpen 49.0 \n", + "averageSnowfall 250.0 \n", + "AdultWeekend 78.0 \n", + "projectedDaysOpen 104.0 \n", + "NightSkiing_ac 80.0 \n", "resorts_per_state 2 \n", - "state_total_skiable_area_ac 1577 \n", - "state_total_days_open 237 \n", - "state_total_terrain_parks 6 \n", - "state_total_nightskiing_ac 80 \n", - "resorts_per_100kcapita 0.0274774 \n", + "state_total_skiable_area_ac 1577.0 \n", + "state_total_days_open 237.0 \n", + "state_total_terrain_parks 6.0 \n", + "state_total_nightskiing_ac 80.0 \n", + "resorts_per_100kcapita 0.027477 \n", "resorts_per_100ksq_mile 1.75454 " ] }, - "execution_count": 48, + "execution_count": 84, "metadata": {}, "output_type": "execute_result" } @@ -3264,7 +3721,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 85, "metadata": {}, "outputs": [], "source": [ @@ -3293,15 +3750,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 86, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/b1/7lfcv4zd3hq_zvqkd6yfpwxw0000gn/T/ipykernel_68834/570658913.py:5: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.\n", + " sns.heatmap(ski_data.corr());\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzQAAALkCAYAAADZO3DsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADyx0lEQVR4nOzdd5wdVf3/8dc7vZLQpYcSQAghQEC6kSZY6BoQgSAaQZGv/r6gKMWgIij4VRABI0JAqvSoSEAg1AAJSUgB6UECMVQD6cnu5/fHnJWby92S5GR37+77yeM+dubMmc+cubm77Gc/M2cUEZiZmZmZmVWjDi09ADMzMzMzsxXlhMbMzMzMzKqWExozMzMzM6taTmjMzMzMzKxqOaExMzMzM7Oq5YTGzMzMzMyqlhMaMzMzMzNbaZKukvSWpGn1bJekSyS9JGmKpB1zHNcJjZmZmZmZ5TAKOLCB7QcB/dNrOHB5joM6oTEzMzMzs5UWEQ8D7zXQ5RDg2ig8AfSVtN7KHtcJjZmZmZmZNYcNgNdL1memtpXSaWUDmFWDJe+8EjniLL3njznCANBp369mifPinqdliQPwzrweWeJsvum7WeIA3PjG+lniDFi0NEscgFmd8vzovKVjQ3/EWj4nL+6TJc4+J+Z5n+64umuWOABf3H9WljidNlk7SxyAd+9+O0ucHmvm+1y+MGWtLHF2+MWWWeIALLxrXJY4Sz/I8iMcgOemrpMlzh+61mSJA3D0wi5Z4pzX6a0scQCGKc/P3g8y/uk8V6ijNn4jUyRY79EHlS3YCsr1O05TdFl7829SXCpWZ2REjFyOEJXer5UevxMaMzMzMzNrVEpelieBKTcT2KhkfUPgzZUaFE5ozMzMzMyqV22+amEzGA2cIukm4FPAnIhY6TK8ExozMzMzM1tpkm4EhgBrSZoJ/BjoDBARVwB3A58DXgLmAyfkOK4TGjMzMzOzahW1LT2C/4qIoxvZHsC3cx/Xs5xZFpLWl3RrWh4k6XMrGGeIpL/mHZ2ZmZmZtVWu0FgWEfEmcGRaHQQMpigrmpmZmdmqUtt6KjQtxRWaNkZST0l/k/SMpGmShkqaIWmttH2wpLFpeYSkayTdm/ocLumXkqZKukdS59RvhqSfSxonaYKkHSWNkfSypJNSn37peF2AnwBDJU2WNLSBcV4labykSZIOaWofSU9K2rak31hJO2V+K83MzMysCjihaXsOBN6MiO0jYgBwTyP9Nwc+T/Hk1uuAByNiO2BBaq/zekTsBjwCjKKoxuxKkbz8V0QsBs4Bbo6IQRFxcz3HPRN4ICJ2Bj4DXCipZxP73AR8GSA9XXb9iHi6kfM0MzMza3Miapvt1Vo5oWl7pgL7SfqFpL0iYk4j/f8eEUvSfh35KAGaCvQr6Te6pP3JiPgwIt4GFkrquwLjPAA4Q9JkYCzQDdi4iX3+DHwp9fkycEulA0ganipKE6689sYVGKKZmZmZtXa+h6aNiYgX0uVXnwPOl3QvsJSPktduZbssSvvVSlqSZp8AqGXZz8eikvZFJe3l/ZpKwBER8fwyjdK6jfVJ/d6VNBAYCnyz0gFKH/7UnE/RNTMzM2s2vofGFZq2RtL6wPyIuA64CNgRmAHU3WNyRDMM40OgdyN9xgDfkSQASTssZ5+bgO8DfSJi6soP2czMzMyqkROatmc74Kl0mdaZwM+Ac4GLJT0CNMfjZB8EtmloUgDgpxQPWpoiaVpaX54+twJHUVx+ZmZmZtY+RW3zvVopX3LWxkTEGIrKRrktK/QdUbbeq9K2iOhXsjyKYlKA8m3vAANS23vAzo2McwEVLhWLiLEU98vU2ydtm40/v2ZmZmbtnn8hNDMzMzOrVrXNcfFN6+aExlYpSScA/1PW/FhEfLslxmNmZmZmbYsTGlulIuJq4OqWHoeZmZmZtU1OaMzMzMzMqlUrvlm/uTihsXZh6T1/zBKn04EnZokDsPjXP8gSZ+NDOmaJA9Dlng+yxOl78EZZ4gBs85tFjXdqgtU7Ls4SB2BJjbLE2aRzr8Y7NdFu27+ZJU6H/Y7NEmeX22/NEgegy4F75gm0JN9nYI39l2SJEwvyjWne5Dz/S4/587PEAeh2+F5Z4ix9clKWOACfmPlhljgbLlgjSxyAQZvPyhJn2L82yBIHYP0lee7L+He3fBPq9og8P3v9+3/b44TGzMzMzKxa+cGafg6NmZmZmZlVL1dozMzMzMyqVPgaOldozMzMzMyserlCY2ZmZmZWrXwPjSs0VpD0o7L1x1cwzghJpzWxbz9J01bkOGZmZmZm4ISm3VOhA7BMQhMRu7fQkJDkyqGZmZlZU0Rt871aKf/i2EZI+gXwWkRcltZHAB9SJK1fBroCd0TEjyX1A/4OPAjsBkwGukuaDEyPiGMkzY2IXinW94FjgVrg7xFxhqRvAMOBLsBLwLER0ejDCyTtBFwFzAceLWkfBnwe6Ab0lHRk6rdZ6js8Iqak89oc2ADYCPhlRPxhBd4yMzMzM2sDXKFpO24Chpasfxl4G+gP7AIMAnaStHfavhVwbUTsEBEnAAsiYlBEHFMaVNJBwKHApyJie+CXadPtEbFzansOaOoTJ68GTo2I3Sps2w04PiL2Ac4FJkXEQIrq0bUl/QZSJD+7AedIWr+JxzYzMzNrW2prmu/VSjmhaSMiYhKwjqT1JW0PvE/xi/8BwCRgIrA1RYIDRTXniSaE3g+4uq76EhHvpfYBkh6RNBU4Bti2sUCS+gB9I+Kh1PSnsi73lcTfs257RDwArJn2B7grIhZExDsUVaZd6jnecEkTJE344wP5njJtZmZmZq2HLzlrW24FjgQ+QVGx6QecHxG/L+2ULjmb18SYAqJC+yjg0Ih4Jl0uNmQlYtUpHZMqbI+yr+XtyzZGjARGAiy47syGjmtmZmZWnVrxvS3NxRWatuUm4CiKpOZWYAzwNUl198JsIGmdevZdIqlzhfZ7U4weKcYaqb03MCvtc0yF/T4mIv4DzJG0Z2pqaL+H67ZLGgK8ExEfpG2HSOomaU2KRGp8U45vZmZmZm2PKzRtSERMl9QbeCMiZlEkHJ8ExkkCmAt8Fah0EeRIYIqkiaX30UTEPZIGARMkLQbuprin5WzgSeA1YCpFgtMUJwBXSZpPkXDVZwRwtaQpFJMCHF+y7Sngb8DGwE8j4s0mHtvMzMysbfFzaJzQtDURsV3Z+sXAxRW6Dijr9wPgByXrvUqWLwAuKOt/OXB5heOPaGR8TwPblzSNSO2jKC5jq+v3HnBIPWFeiIjhDR3HzMzMzNoHX3JmZmZmZmZVyxUaWyUk/Q7Yo6z54oi4emXiNlYBMjMzM2tXPCmAExpbNSLi2y09BjMzMzNr+5zQmJmZmZlVK08K4ITG2odO+341S5zFv/5B452aqMv3fpElziPbnpElDsBCemSJM//37zXeqYkmdFstS5yBi7pliQMwu1Oe2w9fq52TJQ7AXdM3yhLn8MuuyxLn7/M2zBIH4Mu/ezhLnJ6frDQz/Yp5eUz3LHFWX2NhljgAPdQ1T6BFi/LEAWZf0ZTnNzevZ99fO0uc17ouyBIH4IEZG2SJ85uaF7PEARjetX/jnZqgVyt8Ctzi+f71t63xv6iZmZmZWZWKqPQ0jvbFs5yZmZmZmVnVcoXGzMzMzKxaeZYzV2jMzMzMzKx6uUJjZmZmZlatPMuZKzRWkNRP0jSPw8zMzMyqiSs0ZmZmZmbVyvfQuEJjy+gk6RpJUyTdKqmHpHMkjZc0TdJISQKQdKqkZ1Pfm1JbT0lXpf6TJB1S34EkdZR0Yeo7RdI3m9pH0s2SPlfSb5SkI/K/HWZmZmbW2jmhsVJbASMjYiDwAfAt4NKI2DkiBgDdgS+kvmcAO6S+J6W2M4EHImJn4DPAhZJ61nOsE4E5qe/OwDckbdrEPjcBQwEkdQH2Be4uP4Ck4ZImSJpw5XV/Xu43w8zMzKzVq61pvlcr5UvOrNTrEfFYWr4OOBV4VdL3gR7AGsB04C/AFOB6SXcCd6Z9DgAOlnRaWu8GbAw8V+FYBwADJR2Z1vsA/YEXmtDn78AlkroCBwIPR8THHtkcESOBkQBLZj3XCp9VbGZmZmYrywmNlSr/pT+Ay4DBEfG6pBEUSQrA54G9gYOBsyVtCwg4IiKeb8KxBHwnIsYs0yj1a6xP6jcW+CxFpebGJhzPzMzMrO3xPTS+5MyWsbGk3dLy0cCjafkdSb2AIwEkdQA2iogHge8DfYFewBjgOyX32ezQwLHGACdL6pz6blnh8rSG+twEnADslfqZmZmZWTvkCo2Veg44XtLvgReBy4HVganADGB86tcRuE5SH4oqyq8j4j+Sfgr8BpiSkpoZfHTPTbkrgX7AxNT3beDQ5ehzL3AtMDoiFq/g+ZqZmZlZlXNCYwBExAxgmwqbzkqvcntWiLEA+NhsZfUcrxb4UXqVmgMMaKQPEbEEWLMpxzIzMzNrs/xgTV9yZmZmZmZm1csVGlulJH0W+EVZ86sRcVhLjMfMzMysTfGkAE5obNVKM5T5pn0zMzMzWyWc0JiZmZmZVSvfQ+OExtqHF/c8rfFOTbDxIR2zxAF4ZNszssTZa/oFWeIAzDnmhCxxug/plyUOwGcunpclTu+u+SbD+2DpalniDF/cN0scgP1O+NizZVdIh76bZolz+Ix/ZYkD0GvH8hndV8zSN+ZmiQOw5bA1ssSZ+/CcLHEAZrzVrfFOTdD7129kiQOw+XF55m558Zr5WeJAMTVnDp+uyfO5BOgWeZ79fGrn/lniAKy/OM9T4V/oku//m70y/d7+77d65wlEMRWrtTwnNGZmZmZm1coVGs9yZmZmZmZm1csVGjMzMzOzKhWR5/LAauYKjZmZmZmZVS1XaGyVkNQX+EpEXNbSYzEzMzNrs3wPjSs0tsr0Bb5V3igp33QnZmZmZtbuOaGxVeUCYHNJkyWNl/SgpBuAqQCS7pT0tKTpkobX7SRprqRfpG3/kLSLpLGSXpF0cOqzraSnUuwpkvLNU2lmZmZWTaK2+V6tlC85s1XlDGBARAySNAT4W1p/NW3/WkS8J6k7MF7SbRHxLtATGBsRP5B0B/AzYH9gG+AaYDRwEnBxRFwvqQvgqo+ZmZlZO+UKjTWXp0qSGYBTJT0DPAFsBNRVWRYD96TlqcBDEbEkLfdL7eOAH0n6AbBJRFR8oqCk4ZImSJrw5w/yPeTPzMzMrNWorW2+VxNIOlDS85JekvSxp4hL6iPpL5KeSVfqrPRTvZ3QWHP57+PeU8VmP2C3iNgemATUPeJ6ScR/H5lcCywCiIhaUkUxIm4ADgYWAGMk7VPpgBExMiIGR8TgL6+2cfYTMjMzM7OPpHulfwccRHF1zdGStinr9m3g2fQ74BDgV+mKmxXmhMZWlQ+B3vVs6wO8HxHzJW0N7Lo8gSVtBrwSEZdQXII2cKVGamZmZmY57AK8FBGvRMRi4CbgkLI+AfSWJKAX8B6wdGUO6ntobJWIiHclPSZpGkUlZXbJ5nuAkyRNAZ6nuOxseQwFvippCfBv4Cc5xmxmZmZWdZrxZv00kdPwkqaRETGyZH0D4PWS9ZnAp8rCXErxB+k3Kf74PTRdibPCnNDYKhMRX6mnfRFFKbLStl4lyyMqbYuI84Hzsw3UzMzMzBqVkpeRDXRRpd3K1j8LTAb2ATYH7pP0SER8sKLjckJjZmZmZlatWteDNWdSTPZUZ0OKSkypE4AL0j3TL0l6FdgaeGpFD+p7aMzMzMzMLIfxQH9Jm6Yb/Y+iuLys1L+AfQEkrQtsBbyyMgd1hcbMzMzMrFq1ogdeRsRSSacAYyieE3hVREyXdFLafgXwU2CUpKkUl6j9ICLeWZnjOqExMzMzM7MsIuJu4O6ytitKlt8EDsh5TCc0ZmZmZmbVqnXdQ9MinNBYu/DOvB5Z4nS5Z4Un4PiYheQZ05xjVvoBu//V5/qrs8R5abdTssQBeLXjGlnibBdLssQBWFBpDpcVsE7GywTmjXs3S5wF/8nzGe+17ko9UmAZL93ZMUucHj26Z4kD0O3Vlbo64r/mvFff47qWX9con0hoxfx7Qc8scQA2fnF2452a4O2F62SJA7CkQ55v4JpMPwcAXuySJ1iPPB8BADpn+jx1zTim1WrzBBvfMc//f2E5H6Rnq4wTGjMzMzOzauUKjWc5MzMzMzOz6uUKjZmZmZlZtWpFs5y1FFdozMzMzMysajmhsXpJOlXSc5KuX459+kr6Vsl6B0mXSJomaaqk8ZI2TdvultR3FQzdzMzMrH2orW2+VyvlS86sId8CDoqIV5djn75pv8vS+lBgfWBgRNRK2hCYBxARn8s4VjMzMzNrh1yhsYokXQFsBoyW9ANJj0ualL5ulfpsK+kpSZMlTZHUH7gA2Dy1XQisB8yKKC7wjIiZEfF+2n+GpLUk7Zz27yapp6Tpkgak5atSVWeSpEMaOK6ZmZlZ+xO1zfdqpVyhsYoi4iRJBwKfARYDv4qIpZL2A34OHAGcBFwcEddL6gJ0BM4ABkTEIIBUkXlU0l7A/cB1ETGp7FjjJY0GfgZ0T32mSfo58EBEfC1dmvaUpH/Uc1wzMzMza4ec0FhT9AGuSZWQADqn9nHAmSlpuT0iXpSWfThYRMxMFZ190ut+SV+KiPvLjvETYDywEDg1tR0AHCzptLTeDdi40nErDVrScGA4wP/23pGDe2y2YmdvZmZmZq2WExprip8CD0bEYZL6AWMBIuIGSU8CnwfGSPo68Er5zhGxCPg78HdJs4FDKao1pdYAelEkS90o7rMRcEREPF/W97ny40bEAxWOOxIYCfDwJ76U8VnFZmZmZq1EK75Zv7n4Hhprij7AG2l5WF2jpM2AVyLiEmA0MBD4EOhd0mdHSeun5Q6pz2sVjjESOBu4HvhFahsDfEep7CNphwaOa2ZmZmbtkCs01hS/pLjk7P8BpZWQocBXJS0B/g38JCLek/SYpGkUVZn7gT9I6pr2eQq4tDS4pOOApani0xF4XNI+FJWh3wBTUlIzA/hCpeOuipM2MzMza/Va8c36zcUJjdUrIvqlxXeALUs2nZ22nw+cX2G/r5Q13dNI/GvTi4ioAT5V0u2bFfareFwzMzMza3+c0JiZmZmZVSvfQ+N7aMzMzMzMrHq5QmNmZmZmVq1coXGFxszMzMzMqpcrNNYubL7pu1ni9D14oyxxAOb//r0scboP6ZclDsBLu52SJc4W4y5tvFMTzRl4WuOdmqBr56VZ4gB0XZgnzkLl+5tS76/skCXOan36ZomzaPRDWeIAbHHwkixxOqzeu/FOTdW5c+N9mqDvq7OzxAGYfG+fLHF26/dWljgAXQ/7TJY4A2d97FFjK2zO7G5Z4tw7d60scQAGLqzJEuetTh2zxAFYlOnn00I13qepPuiQJ9ie+jBLnFYj/Kg9V2jMzMzMzKxquUJjZmZmZlatfA+NKzRmZmZmZla9XKExMzMzM6tWrtC4QmMg6VRJz0m6fjn26SvpW2Vt20p6QNILkl6WdK6U565CScMk5bvT3MzMzMzaBCc0BvAt4HMRccxy7NM37QeApO7AaOCCiNgS2A7YBfifjOM0MzMzs1JR23yvVsoJTTsn6QpgM2C0pB9IelzSpPR1q9RnW0lPSZosaYqk/sAFwOap7ULgK8BjEXEvQETMB04BTk8xRkg6reS40yT1S8t3Snpa0nRJw0v6nJCqPQ8Be5S0fynt/4ykh1ftO2RmZmZmrZnvoWnnIuIkSQcCnwEWA7+KiKWS9gN+DhwBnARcHBHXS+oCdATOAAZExCAASf8HPF0W+2VJ3SX1bWQYX4uI91KVZ7yk24AuwLnATsAc4EFgUup/DvDZiHijCbHNzMzMrA1zQmOl+gDXpApMAHVPjhsHnClpQ+D2iHhR+tjDrZT2qdTemFMlHZaWNwL6A58AxkbE2wCSbga2TH0eA0ZJ+jNwe5POzMzMzKwt8qQAvuTMlvFT4MGIGAB8EegGEBE3AAcDC4AxkvapsO90YHBpg6TNgHci4j/AUpb9vHVLfYYA+wG7RcT2FFWYusc4V3z0bUScBJxFkfxMlrRmpX6ShkuaIGnCdbPfbPDEzczMzKw6OaGxUn2AN9LysLrGlJi8EhGXUNz4PxD4EOhdsu/1wJ7pUrW6SQIuAX6cts8AdkzbdgQ2LTnm+xExX9LWwK6p/UlgiKQ1JXUGvlQyns0j4smIOAd4hyKx+ZiIGBkRgyNi8FfXXX953wszMzOz1i+i+V6tlBMaK/VL4HxJj1HcJ1NnKDBN0mRga+DaiHgXeCzdnH9hRCygqOKcKekFikTjsYiomwr6NmCNFONk4IXUfg/QSdIUigrREwARMQsYQXG52z+AiSXjuVDSVEnTgIeBZzK+B2ZmZmZWRXwPjRER/dLiO3x0nwrA2Wn7+cD5Ffb7Stn6NIrJBZB0KPB/km6IiNdSwnNAPUM4qJ5xXQ1cXaH98AZOx8zMzKz98D00rtDYqhERd0bEZhHxWkuPxczMzMzaLldozMzMzMyqlSs0rtCYmZmZmVn1coXGzMzMzKxahSs0rtCYmZmZmVnVcoXG2oUb38jzHJptfrMoSxyACd1WyxLnMxfPyxIH4NWOa2SJM2fgaVniAOw05aIsce7a7uwscQCmda3JEmefpfnm9F/4t4mNd2qCt5/vkSVObU23xjs10cwPejfeqQkCZYkDsO1ms7LEeX92nvcboEOmj9PjM9bLEwjY9cKHssT58L2eWeIAdOm6NEucRfk+Tvyza8fGOzVBzr9SfzIWZokzd2m+z/hqtXl+9n5IlyxxWouobb3Ph2kurtCYmZmZmVnVcoXGzMzMzKxaeZYzV2jMzMzMzKx6uUJjZmZmZlatPMuZKzRW3SSNknRkS4/DzMzMzFqGKzRmZmZmZtXKs5y5QmPNR9KZkp6X9A9JN0o6TdJYSYPT9rUkzUjL/SQ9Imlieu2e2iXpUknPSvobsE7LnZGZmZmZtTRXaKxZSNoJOArYgeJzNxF4uoFd3gL2j4iFkvoDNwKDgcOArYDtgHWBZ4GrVuHQzczMzKwVc0JjzWUv4I6ImA8gaXQj/TsDl0oaBNQAW6b2vYEbI6IGeFPSA/UFkDQcGA5wxOq7sGuv/it3BmZmZmatjadt9iVn1qwqXeS5lI8+h6WPFv8eMBvYnqIyU/pY3yZdLBoRIyNicEQMdjJjZmZm1jY5obHm8jBwmKTuknoDX0ztM4Cd0nLpbGV9gFkRUQscC3QsiXOUpI6S1gM+s8pHbmZmZtZa1dY236uVckJjzSIiJgI3A5OB24BH0qaLgJMlPQ6sVbLLZcDxkp6guNxsXmq/A3gRmApcDjy0ygdvZmZmZq2W76GxZhMR5wHnAUgakdr+CQws6XZWan+xrP2HqT2AU5phuGZmZmatX3jaZldozMzMzMysarlCYy0iIka09BjMzMzMql4rvrelubhCY2ZmZmZmVcsVGjMzMzOzalXre2hcoTEzMzMzs6rlCo21CwMWLc0SZ/WOi7PEARi4qFvjnZqgd9d8Y9oulmSJ07Vznvcb4K7tzs4S55CpP80SB2DS4LOyxMn5N7XOm66WJU7NtDzXYvddd36WOABvf9gzS5yOGd/xyHTJ+pz5eX4OAHRWnvPLeTV+x855or0xt1eWOACrLcjzc+7Dzvk+Tx0b79IkXVGmSNCpQ55/u9WW1mSJA9Az8sTK+f/NViHXD6Qq5gqNmZmZmZlVLVdozMzMzMyqle+hcYXGzMzMzMzykHSgpOclvSTpjHr6DJE0WdJ0SQ+t7DFdoTEzMzMzq1LRip5DI6kj8Dtgf2AmMF7S6Ih4tqRPX+Ay4MCI+JekdVb2uK7Q2Conqa+kbzWw/fEmxJghaa28IzMzMzOzjHYBXoqIVyJiMXATcEhZn68At0fEvwAi4q2VPagTGmsOfYGPJTQpiycidm/uAZmZmZnZ8pE0XNKEktfwsi4bAK+XrM9MbaW2BFaXNFbS05KOW9lx+ZIzaw4XAJtLmgwsAeYCs4BBwDaS5kZEL0lDgJ8A7wJbAQ8D34pYdj5CSV8FTgW6AE+mPvnmhTQzMzOrFs04KUBEjARGNtCl0tzh5QPsBOwE7At0B8ZJeiIiXljRcblCY83hDODliBgEnE5RjjwzIrap0HcX4H+B7YDNgcNLN0r6JDAU2CPFqwGOWWUjNzMzM7OmmglsVLK+IfBmhT73RMS8iHiH4g/Y26/MQZ3QWEt4KiJebWDbK6niciOwZ9n2fSmy+vGp4rMvsFmlQKVl0bsXvJxp6GZmZmatSNQ236tx44H+kjaV1AU4Chhd1ucuYC9JnST1AD4FPLcyb4EvObOWMK+BbeVlyfJ1AddExA8bO0hpWfSedY/yJO1mZmZmq1BELJV0CjAG6AhcFRHTJZ2Utl8REc9JugeYAtQCV0bEtJU5rhMaaw4fAr2b2HcXSZsCr1FcWlZ+neb9wF2Sfh0Rb0laA+gdEa/lG66ZmZlZlWhlD9aMiLuBu8varihbvxC4MNcxndDYKhcR70p6TNI0YAEwu4Hu4ygmEdiO4prKO8piPSvpLOBeSR0oJhn4NkUCZGZmZmbtjBMaaxYR8ZUGtvUqWZ0fEUMr9OlXsnwzcHPWAZqZmZlVo1b0YM2W4kkBzMzMzMysarlCY61GRIwFxrbwMMzMzMyqRyu7h6YluEJjZmZmZmZVyxUaMzMzM7Nq1bTnw7RprtCYmZmZmVnVcoXG2oVZnfJ81JfUKEscgNmd8vw94YOlq2WJA7Ag0+l1XZgnDsC0rjVZ4kwafFaWOAAjJvwsS5xrB52TJQ7AgqkfZIkzf9HqWeK888paWeIAzFaXLHE6R77rzOfNWCdLnHc7dswSB2CtmqVZ4szs1DlLHIBpL6+bJc5c5fv76ye6zs8SZ9f5eT6XAM93zfP/qLnK9xm/s1OPLHHe7LQ4SxyAHuT5ftkwmvpovMbtkC3SSvA9NK7QmJmZmZlZ9XKFxszMzMysSoWfQ+MKjZmZmZmZVS8nNGZmZmZmVrWc0Fh2kkZIOm0F9hsm6dJ6ts1d+ZGZmZmZtTG10XyvVsoJjZmZmZmZVS0nNJaFpDMlPS/pH8BWqW2QpCckTZF0h6TVU/tYSYPT8lqSZpSE2kjSPSnWj+s51umSxqe4567iUzMzMzNrvVyhcUJjK0/STsBRFNOxHw7snDZdC/wgIgYCU4GKCUqZXYBjgEHAl+oSn5JjHQD0T/0GATtJ2nvlz8LMzMzMqpETGsthL+COiJgfER8Ao4GeQN+IeCj1uQZoSuJxX0S8GxELgNuBPcu2H5Bek4CJwNYUCc7HSBouaYKkCWPnvbjcJ2VmZmbW6kVt871aKT+HxnJZnjrkUj5Kprs1Eqd8XcD5EfH7RgcUMRIYCXD1Bl9tvXVSMzMzM1thrtBYDg8Dh0nqLqk38EVgHvC+pL1Sn2OBumrNDGCntHxkWaz9Ja0hqTtwKPBY2fYxwNck9QKQtIGkdXKejJmZmVnV8D00rtDYyouIiZJuBiYDrwGPpE3HA1dI6gG8ApyQ2i8C/izpWOCBsnCPAn8CtgBuiIgJZce6V9IngXGSAOYCXwXeyn1eZmZmZtb6OaGxLCLiPOC8Cpt2rdD3n8DAkqazUvsoYFQ98XuVLF8MXLziozUzMzNrG6IVV06aiy85MzMzMzOzquUKjZmZmZlZtXKFxhUaMzMzMzOrXq7QmJmZmZlVq9rW+3yY5uKExtqFWzq+lyXOJp17Nd6piV6rnZMlzvDFfbPEAVgn00OzFipf8XefpXlK6TkL8tcOOidLnOMm/yRLHIBFv/jfLHGef65nljif3uTNLHEAHvj3elni9Mh4UUKP2jyx+tZkCQPAtK6ds8S5n/ezxAE4TKtni5XLM4v6ZImzLkuyxAF4o0OeD8I+C/L9pHuxS55fEddU+ePmVlyPTL+3v9Ip4zeetQpOaMzMzMzMqpXvofE9NGZmZmZmVr2c0JiZmZmZWdXyJWdmZmZmZtXKl5y5QmMtQ9KNkqZI+l5Lj8XMzMzMqpcrNNasJHUC1gJ2j4hNWno8ZmZmZtUswhUaV2hshUjqKelvkp6RNE3SUEkzJK2Vtg+WNDYtj5A0UtK9wLXAvcA6kiZL2kvSNySNT7Fuk9Qj7beupDtS+zOSdk/tX5X0VNr/95I6tsy7YGZmZmYtzQmNragDgTcjYvuIGADc00j/nYBDIuIrwMHAyxExKCIeAW6PiJ0jYnvgOeDEtM8lwEOpfUdguqRPAkOBPSJiEFADHJP75MzMzMyqQm0036uV8iVntqKmAhdJ+gXw14h4RFJD/UdHxIJ6tg2Q9DOgL9ALGJPa9wGOA4iIGmCOpGMpkqPx6XjdgbdW8lzMzMzMrEo5obEVEhEvSNoJ+BxwfrqcbCkfVf3KHw08r4Fwo4BDI+IZScOAIQ30FXBNRPywsTFKGg4MB9h29W3ZuNfGje1iZmZmVl1aceWkufiSM1shktYH5kfEdcBFFJeEzaCongAcsRzhegOzJHVm2cvH7gdOTsfrKGm11HakpHVS+xqSKk4uEBEjI2JwRAx2MmNmZmbWNrlCYytqO+BCSbXAEorEozvwR0k/Ap5cjlhnp/6vUVzK1ju1/w8wUtKJFPfKnBwR4ySdBdwrqUM69rfTvmZmZmbtSrhC44TGVkxEjOGje11KbVmh74iy9RnAgJL1y4HLK+w3GzikQvvNwM3LO2YzMzMza3uc0JiZmZmZVStXaHwPjZmZmZmZVS9XaMzMzMzMqlVtSw+g5blCY2ZmZmZmVcsVGjMzMzOzKuVZzpzQWDtx8uI+WeLstv2bWeIA3DV9oyxx9jthQZY4APPGvZslTu+v7JAlDsDCv03MEqfzpqtliQOwYOoHWeIs+sX/ZokD0PUHv8oS57CNL8oSh5qeeeIAJ9/5fJY4nXrn+59+t503zBJn4fiZWeIAPPnUelnifPK/M+evvL1HrJ4lzvvXTs8SB6DH+nmuz/nH4xtkiQOwbq2yxHm9c5YwAGy7eHGWOBO6dckSB6B7pm/hzy6oyRPIWg1fcmZmZmZmZlXLFRozMzMzs2rlS85coTEzMzMzs+rlCo2ZmZmZWbXytM2u0LQHkvpK+lYjffpJ+koTYvWTNG0FxjBD0lrL0X+wpEuW9zhmZmZm1r44oWkf+gINJjRAP6DRhKa5RMSEiDi1vF2Sq4pmZmZmSdRGs71aKyc07cMFwOaSJku6ML2mSZoqaWhJn71Sn++lSswjkiam1+5NOZCkjpIuSrGnSPpOyebvpFhTJW2d+u8i6XFJk9LXrVL7EEl/TcsjJI2UdC9wraRtJT2VxjpFUv9s75SZmZmZVRX/tbt9OAMYEBGDJB0BnARsD6wFjJf0cOpzWkR8AUBSD2D/iFiYEoYbgcFNONZwYFNgh4hYKmmNkm3vRMSO6fK304CvA/8E9k599wN+DhxRIe5OwJ4RsUDSb4GLI+J6SV2Ajsv7hpiZmZm1Cb6HxglNO7QncGNE1ACzJT0E7AyUPymwM3CppEFADbBlE+PvB1wREUsBIuK9km23p69PA4en5T7ANSlpinTcSkZHRN0TJMcBZ0raELg9Il6stIOk4RQJFt/qPZgDe2zRxFMwMzMzs2rhS87an6Y+jvh7wGyKSs5goKmP+hVFYlLJovS1ho+S6Z8CD0bEAOCLQLd69p1XtxARNwAHAwuAMZL2qbRDRIyMiMERMdjJjJmZmbVFvofGCU178SHQOy0/DAxN97qsDewNPFXWB4rKyayIqAWOpemXdd0LnFR3837ZJWeV9AHeSMvDmnIASZsBr0TEJcBoYGATx2ZmZmZmbYwTmnYgIt4FHkvTLe8GTAGeAR4Avh8R/05tSyU9I+l7wGXA8ZKeoLjcbF7l6B9zJfAvYIqkZ2h85rRfAudLeoymJ01DgWmSJgNbA9c2cT8zMzOztqW2GV+tlO+haSciojyxOL1s+xJg37I+pZWPH6Z+M4ABDRxnKfD/0qu0vV/J8gRgSFoex7L355yd2scCY9PyiLJY5wPn1zcGMzMzM2s/nNCYmZmZmVWpaMWVk+biS85shUj6bHoOTOnrjpYel5mZmZm1HEkHSnpe0kuSzmig386SaiQdubLHdIXGVkhEjAHGtPQ4zMzMzNq1VlShkdQR+B2wPzCT4nmHoyPi2Qr9fkGm3yVdoTEzMzMzsxx2AV6KiFciYjFwE3BIhX7fAW4D3spxUCc0ZmZmZmaWwwbA6yXrM1Pbf0naADgMuCLXQX3JmbUL+5y4NEucDvsdmyUOwOGXXZclToe+m2aJA7DgPx9kibNan75Z4gC8/XyPLHFqpuWryc9ftHqWOM8/1zNLHIDDNr4oS5zOR5+WJc6875yYJQ7AascOzhNo7U/kiQPE6zOyxOm69fwscQDWeHpxljgDjm/q85cbp/U3yhJntZ1ezhIHYPFrTX0KQcP+3Snf+/S5ru9lifPQwsYe/dZ0SzP9zft95fvZ26FjnjHttdb7WeK0Fs05KYCk4cDwkqaRETGytEuF3cqfyPkb4AcRUSPl+T5yQmNmZmZmZo1KycvIBrrMBEr/krEh8GZZn8HATSmZWQv4nKSlEXHnio7LCY2ZmZmZWbVqRZMCAOOB/pI2Bd4AjqLsIesR8d9LSySNAv66MskMOKExMzMzM7MMImKppFMoZi/rCFwVEdMlnZS2Z7tvppQTGjMzMzOzKtXaHqwZEXcDd5e1VUxkImJYjmM6obFmI6kGmErxuXsVODYi/tOigzIzMzOzquZpm605LYiIQRExAHgP+HZLD8jMzMysmkVt871aKyc01lLGkeYllzRW0uC0vJakGWl5mKTbJd0j6UVJv0ztHSWNkjRN0lRJ32upkzAzMzOzluVLzqzZSeoI7Av8sQndBwE7AIuA5yX9FlgH2CBVepDUd9WM1MzMzKx1a82Vk+biCo01p+6SJgPvAmsA9zVhn/sjYk5ELASeBTYBXgE2k/RbSQcCFZ8GKWm4pAmSJlw16ZU8Z2BmZmZmrYoTGmtOCyJiEEVS0oWP7qFZykefxW5l+ywqWa4BOkXE+8D2wNgU48pKB4uIkRExOCIGf22HzbKcgJmZmVmrEmq+VyvlhMaaXUTMAU4FTpPUGZgB7JQ2H9nY/pLWAjpExG3A2cCOq2ioZmZmZtbK+R4aaxERMUnSMxRPkL0I+LOkY4EHmrD7BsDVkuoS8h+uomGamZmZtWq+h8YJjTWjiOhVtv7FktWBJctnpe2jgFEl/b9Q0sdVGTMzMzNzQmNmZmZmVq2itvXe29JcfA+NmZmZmZlVLSc0ZmZmZmZWtXzJmZmZmZlZlfKkAK7QmJmZmZlZFXOFxtqFO67umiXOLrffmiUOwN/nbZglzuEz/pUlDkCvdZdmibNo9ENZ4gDU1pQ/a3XF9F13fpY4AO+8slaWOJ/e5M0scQCo6ZklzLzvnJglTs/f/jFLHICXdjslS5ylS5/PEgdgo13mZonz1pQ8P5sAltT2arxTE9x6bZ7vOYDD37ovS5wXxuT5fAP06JrnBurtlyxqvFMTPRxrZInTO+Nf6t/umOdXxBpqssQBGLwoz3v+2NvrZokDsGm2SCsuWvEDL5uLKzRmZmZmZla1XKExMzMzM6tSvofGFRozMzMzM6tirtCYmZmZmVUpP1jTFZo2S9Kakian178lvVGy3iXTMQ6WdEYjffpJWpCO+6ykKyQ1+XMnaYSk01Z+tGZmZmbWFrlC00ZFxLvAICiSAmBuRFzU2H6SOkXE0vrWy44xGhjdhOG8HBGDJHUCHgAOBW5vyliaENvMzMys3Ypo6RG0PP/C2I5I2gn4P6AX8A4wLCJmSRoLPA7sAYyW9MWy9ReAs4AuwLvAMRExW9IwYHBEnCJpFPABMBj4BPD9iFhmjuOIWCrpcWALSd8AhqeYLwHHRsT8FOc9YAdgIvBhyfi/ARyeXt8ATgKWAs9GxFE53yszMzMzqw5OaNoPAb8FDomItyUNBc4Dvpa2942ITwOkhKZ0fXVg14gISV8Hvg/8b4VjrAfsCWxNUblZJqGR1APYFzgHeCoi/pDafwacmMYHsCWwX0TUpOoSkk4BDgAOjYhF6VK3TdNy35V7a8zMzMyqk++hcULTnnQFBgD3SQLoCMwq2X5zWf/S9Q2BmyWtR1FRebWeY9wZEbXAs5JKn1q1uaTJQAB3RcTfJX06JTJ9KSpGY0r63xIRpU/iOhaYSZHMLEltU4DrJd0J3FlpMJKGU1SBOKHPLuzTo389wzYzMzOzauWEpv0QMD0idqtn+7wG1n8L/F9EjJY0BBhRT4zSR/iW/rng5YgYVNZ3FEWC8ky6dG1IA2OZRnE/0IZ8lEx9HtgbOBg4W9K25ff6RMRIYCTAdet/1VeYmpmZWZvjCo1nOWtPFgFrS9oNQFJnSds2cd8+wBtp+fhM4+kNzJLUGTimkb6TgG9S3M+zfpolbaOIeJDi8re+FFUeMzMzM2tnXKFpP2qBI4FLJPWh+Lf/DTC9CfuOAG6R9AbwBLBphvGcDTwJvAZMpUhw6hURj6bpm/9GcS/Ndek8BPw6Iv6TYUxmZmZmVcWznDmhaRciYkTJ6t4Vtg9pZP0u4K4K+42iuHSMiBhWtq1X+jqD4t6d8n0vBy6v0F4eZ0TJ8hg+utdmz/J9zczMzKz98SVnZmZmZmZWtVyhMTMzMzOrUp4UwBUaMzMzMzOrYq7QmJmZmZlVqQhXaJzQWLvwxf1nNd6pCbocmG8ugi//7uEscXrt2DNLHICX7uyYJc4WBy9pvFMTzfygwQnwmuztD/O9T7PVJUucB/69XpY4ACff+XyWOKsdOzhLnJd2OyVLHIAtxl2aJc7Cn/1PljgA6r5Glji933gvSxyAN9/L871yyO4zs8QB6LjJBlnibLTFG413aqLpz62TJc6T3fL8HAA4qu/sLHGemb12ljgAnTNNndU78l0MNKFr1yxxBi9a1HgnqypOaMzMzMzMqlTUtvQIWp7voTEzMzMzs6rlCo2ZmZmZWZWq9T00rtCYmZmZmVn1coXGzMzMzKxKeZYzV2haPUlzW3oMdSQdKmmbkvVRkl6VNFnSM5L2baFx3S2pb0sc28zMzMxalis0tjwOBf4KPFvSdnpE3CrpM8BIoH9zDyoiPtfcxzQzMzNrDaLWFRpXaKqQpEGSnpA0RdIdklZP7WMl/ULSU5JekLRXau8h6c+p/82SnpQ0OG07QNI4SRMl3SKpV2q/QNKzaZ+LJO0OHAxcmCoym5cNaxywQdp3mKRLS8b7V0lD0vJcSeelis4TktZt4DxHSbpc0oOSXpH0aUlXSXpO0qiSfjMkrbXSb6yZmZmZVR0nNNXpWuAHETEQmAr8uGRbp4jYBfhuSfu3gPdT/58COwGkJOAsYL+I2BGYAPw/SWsAhwHbpn1+FhGPA6MpKjKDIuLlsjEdCNzZhLH3BJ6IiO2Bh4FvNNJ/dWAf4HvAX4BfA9sC20ka1ITjmZmZmbVZEc33aq2c0FQZSX2AvhHxUGq6Bti7pMvt6evTQL+0vCdwE0BETAOmpPZdgW2AxyRNBo4HNgE+ABYCV0o6HJjfwJAulPQKcB3w8yacwmKKy9bKx1ifv0REUCRusyNiakTUAtMb21fScEkTJE0Y9UK+p0ybmZmZWevhe2jankXpaw0f/fvWd3GlgPsi4uiPbZB2AfYFjgJOoaiSVHI6RRJ1KkVytROwlGWT5W4ly0tSglI+xvrUnU9tyXLdeoP7RsRIivt6mHP8vq347wpmZmZmK8b30LhCU3UiYg7wft39McCxwEMN7ALwKPBlgDRL2Xap/QlgD0lbpG09JG2Z7qPpExF3U1y6Nij1/xDoXWFMtcDFQAdJnwVmAIMkdZC0EbDLCpyqmZmZmVmjXKFp/XpImlmy/n8Ul4ZdIakH8ApwQiMxLgOukTQFmERxydmciHhb0jDgRkldU9+zKBKXuyR1o6jifC9tuwn4g6RTgSNLDxARIelnwPeB/YBXKS4TmwZMXP7TNjMzMzNrnBOaVi4i6qui7Vqh75CS5Xf46B6ThcBXI2Jhmp3sfuC11O8BYOcK8T9WVYmIxyjuuakzrGz7bcBtafWYSoOOiF4ly7cCt1bql7YPK1meAQyoZ1u/+mKYmZmZtWW1frCmE5p2ogfwoKTOFBWXkyNicQuPyczMzMxspTmhaQci4kNgcEuPoz6SzgS+VNZ8S0Sc1xLjMTMzM6sW4QqNExpreSlxcfJiZmZmZsvNCY2ZmZmZWZVqzQ+8bC5OaKxd6LTJ2nkCLcl361HPT3bOEmfpG3OzxAHo0aN7ljgdVv/Y7N4rLOp9jNLy6Ui+n/idM/3fo0fGmfM79c50fmt/IkuYpUufzxIHYOHP/idLnG5nXZwlDsD804dnidO5Z22WOABvd+iSJU7XPbbKEgeg9l+zssRRx3zfv4N2n50lzphJ62eJAzBldp7/R93WdWGWOAAnLMzzK2JnOmaJA9A108dgzR753idrHZzQmJmZmZlVKc9y5gdrmpmZmZlZFXOFxszMzMysSnmWM1dozMzMzMysijmhaSGSzpQ0XdIUSZMlfUrSDElrVej7eCOx+kmaVs+2sZLqfQaNpDvS8V+SNCctT5a0+/KfVb3HWF/SrbnimZmZmVkhovlerZUvOWsBknYDvgDsGBGLUhJT7/Q0EZEtuagQ+7A0piHAaRHxhabsJ6lTRCytb73sGG8CR678aM3MzMzMluWEpmWsB7wTEYsAIuIdAKm4BlJSd+AO4LaI+IOkuRHRS1Iv4C5gdaAzcFZE3JVidpJ0DbAD8AJwXETMLz2opAOAc4GuwMvACRHxsTl/Ja0NXAFsnJq+GxGPSRoBrA/0A96R9ELZ+o+APwE9036nRMTjkvoBf42IAZKGAQcDPYDNgTsi4vv1vVGSLgd2BroDt0bEj1P7zsDF6ViLgH0j4sP64piZmZm1RZ7lzJectZR7gY0kvSDpMkmfLtnWC/gLcENE/KFsv4XAYRGxI/AZ4Feqy4JgK2BkRAwEPgC+VbpjqgKdBeyX9p8A/L96xncx8OuI2Bk4AriyZNtOwCER8ZUK628B+6f4Q4FL6ok/KG3fDhgqaaN6+gGcGRGDgYHApyUNlNQFuBn4n4jYHtgPWNBADDMzMzNro5zQtIBUFdkJGA68DdycKhdQVGCujohrK+wq4OeSpgD/ADYA1k3bXo+Ix9LydcCeZfvuCmwDPCZpMnA8sEk9Q9wPuDT1Gw2sJqnuSYmjI6I0eShd7wz8QdJU4JZ0vEruj4g5EbEQeLaBcQB8WdJEYBKwbYq5FTArIsYDRMQHlS53kzRc0gRJE66a+HIDhzAzMzOrThFqtldTSDpQ0vPp/uwzKmw/Jt1DPkXS45K2X9n3wJectZCIqAHGAmNTAnB82vQYcJCkGyI+dvvVMcDawE4RsUTSDKBbXcjyQ5StC7gvIo5uwvA6ALuVJS51l8TNK+tbuv49YDawfYpR36N4F5Us11DP51DSpsBpwM4R8b6kURTnKz5+fh8TESOBkQDzzjmqFd/KZmZmZlb9JHUEfgfsD8wExksaHRHPlnR7Ffh0+t3uIIrf1T61Msd1haYFSNpKUv+SpkHAa2n5HOBd4LIKu/YB3krJzGdYtrKxcZpsAOBo4NGyfZ8A9pC0RRpDD0lb1jPEe4FTSsY7qNGT+mh8syKiFjgW6NjE/eqzGkXCNEfSusBBqf2fwPrpPhok9Zbk5NzMzMzandpQs72aYBfgpYh4JSIWAzcBh5R2iIjHI+L9tPoEsOHKvgdOaFpGL+AaSc+my8e2AUaUbP8u0E3SL8v2ux4YLGkCRbXmnyXbngOOT/HWAC4v3TEi3gaGATemPk8AW9czvlPTcaZIehY4qYnndVkawxPAlny8mrNcIuIZikvNpgNXUVSvSN8gQ4HfSnoGuI+PKlVmZmZmtgqUXs6fXsPLumwAvF6yPjO11edE4O8rOy7/VbsFRMTTQKWpmPuVLJ9Q0r9X+voOsBuVVbxfJSKGlCw/QDFjWKV+Yykugas7ztAKfUY0sv4ixc37dX6Y2mcAA9LyKGBUyT4NThMdEcPqaR9PcV+QmZmZmTWD0sv561GpjFPxsv90tdGJfPy+7+XmhMbMzMzMrEq1spuEZwKls9duCLxZ3knSQIpZdA+KiHdX9qBOaKxVkPQkxfNxSh0bEVNbYjxmZmZmttzGA/3TxE5vAEcBXyntIGlj4HaK3/NeyHFQJzTWKkTESs1uYWZmZtYetaYHa0bEUkmnAGMoJoe6KiKmSzopbb+CYgKsNYHL0gy6S9MzB1eYExozMzMzM8siIu4G7i5ru6Jk+evA13Me0wmNmZmZmVmVauoDL9syJzTWLrx799tZ4qyx/5IscQBeHtM9S5wth62RJQ5At1ffyROoc+c8cYBtN5uVJU7UZgkDwLwZ62SJ06M238z53XZe6Wn8AYjXZ2SJs9Euc7PEAVD3PJ/x+aeXzy664npc2NAkP0234MyTs8QB6D25JkucWVfOyBIHYP3Td8gSp8P0cVniAHTdbr0scQY9me/7d61lnje94g5c0iNLHIAa8vz/bknGW9ZrlecXd6mV3UZvK80JjZmZmZlZlcr497qq5QdrmpmZmZlZ1XKFxszMzMysSkXFZ1m2L67QmJmZmZlZ1XJC0wpIOlPSdElTJE2WtMqfySKpn6SQ9NOStrUkLZF0aSP7jpB0WoX2n0jab1WM18zMzMw+rjaa79Va+ZKzFiZpN+ALwI4RsUjSWkCXZjr8K+nYZ6f1LwHTVzRYRJyTY1BmZmZmZk3lCk3LWw94JyIWAUTEOxHxJoCkGZLOlTRR0lRJW6f2NSTdmSo6T0gamNqnSuqrwruSjkvtf6qncrIAeE5S3dNZhwJ/rtso6YuSnpQ0SdI/JK1bHkDSNyT9XVJ3SaMkHdnI2NeWdF9q/72k11ISV1E6z6dTBWt4SfuBKcYzku5fjvfbzMzMrM2oRc32aq2c0LS8e4GNJL0g6TJJny7b/k5E7AhcDtRd5nUuMCkiBgI/Aq5N7Y8BewDbUlRf9krtuwJP1HP8m4CjJG0I1ABvlmx7FNg1InZI/b5fuqOkU4AvAodGxIIKsSuN/cfAA6n9DmDjesZV52sRsRMwGDhV0pqS1gb+ABwREdtTVJbMzMzMrB1yQtPCImIusBMwHHgbuFnSsJIut6evTwP90vKewJ/S/g8Aa0rqAzwC7J1elwPbSdoAeC8dp5J7gP2Bo4Gby7ZtCIyRNBU4nSJRqnMscBBFUlHfE8HqG/tNaez3AO/Xs2+dUyU9Q5GQbQT0p0jQHo6IV1Oc9yrtKGm4pAmSJtzw9huNHMbMzMys+gRqtldr5YSmFYiImogYGxE/Bk4BjijZXJcs1PDRPU+VPlEBPExRldkLGEuRIB1JkejUd+zFFAnH/wK3lW3+LXBpRGwHfBPoVrJtGkWS0tDjyZs69ookDQH2A3ZLlZhJaQyCxh89HBEjI2JwRAz+ytobNPWwZmZmZlZFnNC0MElbSepf0jQIeK2R3R4Gjkn7D6G4tOuDiHgdWAvoHxGvUFwydhoNJDTJr4AfRMS7Ze19gLrSxvFl2yZRJDmjJa3fSPxSjwJfTmM/AFi9gb59gPcjYn66B2fX1D4O+LSkTVOcNZbj+GZmZmbWhniWs5bXC/itpL7AUuAlisvPGjICuFrSFGA+yyYbTwId0/IjwPkUSUS9ImI6lWc3GwHcIukNiku+Ni3b79E0ffPfJO3fyJjrnAvcKGko8BAwC/iwnr73ACel83w+jYGIeDtNEHC7pA7AWxSXzZmZmZm1K7UtPYBWwAlNC4uIp4Hd69nWr2R5AjAkLb8HHFLPPseWLD9OPVW4iJgBDKjQPgoYlZbvAu6q0GdEyfIYYExaHdbY2IE5wGcjYmmasvoz9d2Dk9oPqmfb34G/V9pmZmZmZu2HExprbhsDf06VlcXAN1p4PGZmZmZVqzXfrN9cnNBYs4qIF4EdStskrQlUepbMvhXu6zEzMzMz+y8nNNbiUtIyqKXHYWZmZlZtfA+NZzkzMzMzM7Mq5gqNtQs91lyaJU4sWJwlDsDqayzMEmfuw3OyxAGY817vLHH6vjo7SxyA92f3yBJnzvxujXdqonc7dmy8UxP0rckSBoCF42dmidN16/lZ4rw1pWuWOAC936j47Nzl1rlnvr9jLjjz5Cxxup93eZY4AF3uPCNLnDU+Wd+zkpdf7cw3s8Tp9bNTs8QBeGno1VnirFaT5+clwLxMv451r833GZ/dsXOWOH0zlg/e7Jgn2Ox5PbPEgQqzK7UAV2hcoTEzMzMzsyrmCo2ZmZmZWZXyLGeu0JiZmZmZWRVzhcbMzMzMrErVukDjCk1zkjRC0mkZ4x0qaYqkf0qaKunQXLHLjjND0lorsX9fSd9Ky93SeLcr2f59SVfkGKuZmZmZtS+u0FQpSdsDFwH7R8SrkjYF7pP0SkRMaeHhlesLfAu4LCIWSvoucJmkvYH1gW8Cg1c0uKROEZFnGjMzMzOzKlLre2hcoVnVJJ0p6XlJ/wC2Sm3fkDRe0jOSbpPUQ1JvSa9K6pz6rJYqI50lnSrp2VSNuSmFPg34eUS8CpC+ng+cnvYfK+k3kh6XNE3SLqm9p6Sr0vEnSToktQ+TdLukeyS9KOmXjZzXLin2pPS17ty2lfSUpMlpvP2BC4DNU9uFEXEPMAs4Dvg1MALolN6L8em1RyPHGSbpFkl/Ae7N8W9lZmZmZtXHFZpVSNJOwFHADhTv9UTgaeD2iPhD6vMz4MSI+K2kscDngTvTfrdFxBJJZwCbRsQiSX1T+G0pKjSlJgDfLlnvGRG7p0rIVRTTpZ8JPBARX0uxnkrJFsCgNNZFwPOSfhsRr9dzev8E9o6IpZL2A34OHAGcBFwcEddL6gJ0BM4ABkTEoJL9vws8BbwYEX+SdAPw64h4VNLGwBjgkw0cB2A3YGBE5HlIhZmZmVmViZYeQCvghGbV2gu4IyLmA0gandoHpESmL9CL4pd3gCuB71MkNCcA30jtU4DrJd2ZtgGIj3+Gy9tuBIiIh1PFpy9wAHBwyb083YCN0/L9ETEnjfVZYBOgvoSmD3BNqsAEUPcErnHAmZI2pEjcXpQ+XgqNiDclPQD8NTXtB2xT0nc1Sb0bOA7AfU5mzMzMzNo3X3K26lVKnEcBp0TEdsC5FEkFEfEY0E/Sp4GOETEt9f888DtgJ+BpSZ2A6Xz8vpMdgWcbOHZQJD1HRMSg9No4Ip5L20sfD11DwwnvT4EHI2IA8MWSc7gBOBhYAIyRtE8DMWr56AG3HYDdSsa1QUR8WN9xknkNxEbScEkTJE24duashrqamZmZWZVyQrNqPQwcJql7qjZ8MbX3Bmal+2WOKdvnWorKytUAkjoAG0XEgxTVm74UVZ2LgB9K6pf69QN+BPyqJNbQtG1PYE6qvowBvqNUCpG0wwqeWx/gjbQ8rK5R0mbAKxFxCTAaGAh8mM65IfcCp5TEGdTQcZoiIkZGxOCIGHzchustz65mZmZmVaG2GV+tlROaVSgiJgI3A5OB24BH0qazgSeB+yjuESl1PbA66XIxintQrpM0FZhEcZ/JfyJiMvAD4C+S/gn8Bfh+aq/zvqTHgSuAE1PbTyku25oiaVpab4opkmam1/8BvwTOl/RYGmOdocA0SZOBrYFrI+Jd4LE0OcGF9cQ/FRicJhJ4luJeHBo4jpmZmZmZ76FZ1SLiPOC8Cpsur2eXPYFbI+I/af8lqa1S7NuB2xs4/G0R8cOyfRZQTJNcHmsUxaVwdetfKFnuV0/8LUuWz059z6eYba08/lcqtA0rWX6HVFEq6zOunuMsM14zMzOz9qi2wr3K7Y0TmlZE0m+Bg4DPtfRYzMzMzMyqgROaViQivpMx1pBcsczMzMysdfK0zb6HxszMzMzMqpgrNGZmZmZmVao1zz7WXFyhMTMzMzOzqqUIX3lnbd/j6x2R5YM+rzZfUbOHarLEmdGhW+Odmqhrpp8H8zvkm3GlQ6YfUZ0z/qxbo3ZpljjTunbOEgdgq0V5xrRGx8VZ4iypzff3sprI83l6u0OXLHEAetfm+f7tkvFvq3tNvyBLnIkDT8sSB2BuTZ7PeM6/QPfuuCRLnBfUI0scgH41ixrv1ASvd+iaJQ7Ac13yvOtvkudnCsDa5Pk8bVKT7ykQ33r9uhafYuzG9Y9ptl/mj37z+hY/30pcoTEzMzMzs6rle2jMzMzMzKpULa2yaNKsXKExMzMzM7Oq5QqNmZmZmVmV8t3wrtBYM5A0XNI/0+spSXu29JjMzMzMrG1whcaykNQxIj427Y+kLwDfBPaMiHck7QjcKWmXiPh3sw/UzMzMrA2p9S00rtC0R5J+Kul/StbPk3SqpNMljZc0RdK5JdvvlPS0pOmShpe0z5X0E0lPArtJukDSs2n/i1K3HwCnR8Q7ABExEbgG+HaKMUPSL1Ll5ilJW6T2tSXdlsYzXtIeqX2EpKskjZX0iqRTV/HbZWZmZmatmBOa9umPwPEAkjoARwGzgf7ALsAgYCdJe6f+X4uInYDBwKmS1kztPYFpEfEp4FngMGDbiBgI/Cz12RZ4uuz4E1J7nQ8iYhfgUuA3qe1i4NcRsTNwBHBlSf+tgc+msf5YUr6HeZiZmZlZVfElZ+1QRMyQ9K6kHYB1gUnAzsABaRmgF0WC8zBFEnNYat8otb8L1AC3pfYPgIXAlZL+Bvy1gSGIZe9hu7Hk66/T8n7ANtJ/66irSeqdlv8WEYuARZLeSucws4mnb2ZmZtZm5HzwbLVyhab9uhIYBpwAXEWRZJwfEYPSa4uI+KOkIRTJxW4RsT1FwlP3aPqFdffNRMRSiorJbcChwD2pz7PATmXH3jG114kKyx3SMevGs0FEfJi2lT5SuYZ6EvM0GcEESRPumv9qg2+GmZmZmVUnJzTt1x3AgRSVmTHp9TVJvQAkbSBpHaAP8H5EzJe0NbBrpWBpvz4RcTfwXYrL1gB+Cfyi7jI1SYMoEqnLSnYfWvJ1XFq+FzilJP4gllNEjIyIwREx+JAemy7v7mZmZmatXjTjq7XyJWftVEQslvQg8J9UZblX0ieBcekyr7nAVykqLSdJmgI8DzxRT8jewF2SulFUe76XjjNa0gbA45IC+BD4akTMKtm3a5pYoANwdGo7FfhdOm4nikvfTsp0+mZmZmbWRjihaafSZAC7Al+qa4uIiyluxi93UKUYEdGrZHkWxSVnlfpdDlzewHB+FxHnljakWdGGlneMiBFl6wMaiGtmZmbWpnnaZl9y1i5J2gZ4Cbg/Il5s6fGYmZmZma0oV2jaoYh4FtispccBEBH9WnoMZmZmZtXKs5y5QmNmZmZmZlXMFRozMzMzsyrlCo0rNGZmZmZmVsVcobF2YYdfbJklTsyfnyUOAIsWNd6nCXr/+o0scQD+vaBnlji79XsrSxyAx2eslyVOzr9gzezUOUuc+3k/SxyAT9I7S5wBx+eZLufWa7s13qmJDtl9ZpY4XffYKkscgFlXzsgSZ41P5vk5ADBx4GlZ4uw45aIscQDmffvELHE6rJbnew6g5r3FWeI8OKFHljgAWxbPqF5pD3fJ93kavLRrljgLM/28BOhAnp9PB/bN9/+o1iA8y5krNGZmZmZmVr1coTEzMzMzq1K+h8YVGjMzMzMzy0TSgZKel/SSpDMqbJekS9L2KZJ2XNljukJjZmZmZlalWlOFRlJH4HfA/sBMYLyk0ekZiHUOAvqn16eAy9PXFeYKjTVIUoeURU+TNFXSeEmbrqJjdZX0D0mTJQ1toN8oSUem5bGSBq+K8ZiZmZnZctkFeCkiXomIxcBNwCFlfQ4Bro3CE0BfSSs1A5ArNG2QpI4RmaZMgaHA+sDAiKiVtCEwL1PscjsAnSNi0CqKb2ZmZmYrSNJwYHhJ08iIGFmyvgHwesn6TD5efanUZwNg1oqOyxWaVkDSnZKeljRd0nBJJ0v6Zcn2YZJ+m5a/KumpVMX4fSrtIWmupJ9IehLYTdI5qZoyTdJISUr9dk7XK46TdKGkaam9Y1ofn7Z/Mx1+PWBWRNQCRMTMiHi/5JjnSXpG0hOS1k3tm0i6P8W5X9LGKf4r6brJvpJqJe2d+j8iaRfgOmBQOrfN6zsHMzMzMytEc74iRkbE4JJXaTIDVJxbO1agz3JxQtM6fC0idgIGA6cCtwOHl2wfCtws6ZNpeY9UxagBjkl9egLTIuJTEfEocGlE7BwRA4DuwBdSv6uBkyJit7R/nROBORGxM7Az8I10admfgS+mJONXknYo2acn8EREbA88DHwjtV9KUUocCFwPXJIqRi8A2wB7Ak8De0nqCmwYEU8BXwceiYhBEfFyA+dgZmZmZq3PTGCjkvUNgTdXoM9ycULTOpwq6RngCYp/4E2BVyTtKmlNYCvgMWBfYCeKG6wmp/XNUowa4LaSmJ+R9KSkqcA+wLaS+gK9I+Lx1OeGkv4HAMeluE8CawL9I2JmOv4PKe47u1/SvmmfxcBf0/LTQL+0vFtJ7D9RJDAAjwB7p9f5qX1nYHw978vHzqGefhWlatcESRP++ODk5dnVzMzMrCrUqvleTTAe6C9pU0ldgKOA0WV9RlP8zilJu1L8QX2FLzcD30PT4iQNAfYDdouI+ZLGAt2Am4EvA/8E7oiISJdcXRMRP6wQamHdfTOSugGXAYMj4nVJI1LMhj6KAr4TEWPKN0TEIuDvwN8lzQYOBe4HlkREXYmwhvo/T3V9HgFOorgn5xzgdGAIRXVn2cHUfw5NlsqgIwEWXPvDlSplmpmZmVnDImKppFOAMUBH4KqImC7ppLT9CuBu4HPAS8B84ISVPa4rNC2vD/B+Sma2BnZN7bdTJA5HUyQ3UCQRR0paB0DSGpI2qRCz7hf/dyT1Ao4ESPe+fJiyYSiy5jpjgJMldU6xt5TUU9KOktZPbR2AgcBrjZzT4yWxjwEeTctPArsDtRGxEJgMfJMi0WnSOZiZmZnZR2qb8dUUEXF3RGwZEZtHxHmp7YqUzJBmN/t22r5dRExYybfAFZpW4B7gJElTgOcpLjsjIt6X9CywTbq/hIh4VtJZwL0puVgCfJuyBCMi/iPpD8BUYAbLXtJ1IvAHSfOAscCc1H4lxSVjE1Ml6G2KhGqd1L9r6vcUxT0yDTkVuErS6SnOCWlciyS9XneOFInM0Wmcy2jkHMzMzMzMACc0LS5dznVQPds+dhN8RNzMRxWb0vZeZetnAWdVCDs93ayPiqe3Tkj9a4EfpVepe9Kr0vh6lSzfCtyalmdQ3PNSaZ+9SpZvoOQ+nogYS5FkNXgOETGsZHlIpeOYmZmZtQet6cGaLcUJTfvzeUk/pPi3fw0Y1rLDMTMzMzNbcU5o2pn6KjxmZmZmVn0865EnBTAzMzMzsyrmCo2ZmZmZWZVq4vNh2jRXaMzMzMzMrGq5QmPtwsK7xmWJ0+3wvRrv1ESzr3ii8U5NsPlxa2aJA7Dxi7OzxOl62GeyxAHY9cKHssTp2DnfPDDTXl43S5zDtHqWOAB7j8gTS+tvlCXO4W/dlyUOQMdNNsgSp/ZfK/Ug6mWsf/oOWeLUznwzSxyAuQ8vyhJn3rdPzBIHoOfv/pglzqKffzdLHIAFL+V5n3plnFpqYU3HLHGOWJAnDsBqHednibOopkeWOACrZXrPO3WtyROolfAsZ67QmJmZmZlZFXOFxszMzMysSnmWM1dozMzMzMysijmhMTMzMzOzquWEpgpJOkxSSNq6nu1jJQ1uJMYISael5WGS1k/Lh0i6s6TfDyW9VLL+RUmjV2DMwyRdurz7NSHuDElr5Y5rZmZmVg1qiWZ7tVZOaKrT0cCjwFGZ4g0D1k/LjwO7lWzbDfhA0jppfXfgsUzHNTMzMzNbKU5oqoykXsAewImkhEZSd0k3SZoi6Wage0n/uSXLR0oaVRbvSGAwcL2kycBcYI6kLVKXDYDbKBIZ0tfHJa0t6TZJ49NrjxSvp6SrUtskSYdUOIfPSxonaS1JB6TliZJuSedXV3k5N7VPratGSVpT0r0p9u8BP07KzMzM2q3aZny1Vk5oqs+hwD0R8QLwnqQdgZOB+RExEDgP2KmpwSLiVmACcExEDIqIBRRVmt0lbQW8CDyR1jsBA4HxwMXAryNiZ+AI4MoU8kzggdT+GeBCST3rjifpMOAM4HOp6Sxgv4jYMY3j/5UM753UfjlwWmr7MfBoROwAjAY2buq5mpmZmVnb42mbq8/RwG/S8k1pvT9wCUBETJE0ZSWP8RhFJaYjMA54CjgH2AF4PiIWStoP2Eb6b4FkNUm9gQOAg+vuzwG68VHS8RmKatABEfGBpC8A2wCPpThd0vHq3J6+Pg0cnpb3rluOiL9Jer++k5A0HBgO8H879GfYpuvX19XMzMysKrXeO1uajxOaKiJpTWAfYICkoEg4AphE/Z/n0vZuTTzU48B3Uvw/RMSHkroBQ/jo/pkOwG6polM6RgFHRMTzZe2fAl4BNgO2pKjGCLgvIo6uZxx1j3OuYdnPapO+dyNiJDAS4P0jhvj73czMzKwN8iVn1eVI4NqI2CQi+kXERsCrwETgGABJAyguC6szW9InJXUADqsn7odA75L1ZykmCdiLIlkCmAycRJHsANwLnFK3g6RBaXEM8J2U2CBph5K4r1FUV66VtC3FpWx71N2vI6mHpC0beQ8eLjnXg4DVG+lvZmZm1mb5HhonNNXmaOCOsrbbgH5Ar3Sp2fcpLhGrcwbwV+ABYFY9cUcBV0iaLKl7RATwJMU9LEtSn3EU1ZW6hOZUYHCaiOBZimQH4KdAZ2CKpGlp/b9S5eYY4BZgNYoZ1m5MY38CqDgVdYlzgb0lTaS4vO1fjfQ3MzMzszbMl5xVkYgYUqHtkkb2uRW4tUL7iJLl2ygSo9Ltny9bH0WR+NStvwMMrRB3AfDNCu3/3T8iJlHcOwPwMrBzhf79SpYnUFzuRkS8S5HI1Ple+b5mZmZm7UWt53t1hcbMzMzMzKqXKzRmZmZmZlWq1vOcuUJjZmZmZmbVyxUaMzMzM7Mq5fqMExprJ5Z+kOfbfemTkxrv1MxevGZ+tlhvL1wnS5yBsx7IEgfgw/d6ZonzxtxeWeIAzFXrK26/f+30LHFW2+nlLHFeGJPn3w1goy3eyBJHHfP9b7/D9HGNd2qCXj87NUscgNpL/pwlTofVOmeJA7Do59/NEqfrj36TJQ7AizvmmUtmnaX5Pk+L6Zglzvsd8sQBeFM9ssRZlPGG9Rc655k4eK3X184SBz56cri1LCc0ZmZmZmZVqjU/H6a5tL4/M5qZmZmZmTWRExozMzMzM6tavuTMzMzMzKxKedpmV2haBUl3S+q7AvsNkbT7Cuw3Q9JaablG0mRJ0yU9I+n/SXnveJa0oaS7JL0o6WVJF0vqkvMYZmZmZtY+OaFpJpLqnXokIj4XEf9ZgbBDgOVOaMosiIhBEbEtsD/wOeDHKxnzvyQJuB24MyL6A1sCvYDzch3DzMzMrL2KZny1Vk5oMpDUT9I/JV0jaYqkWyX1SJWQcyQ9CnxJ0tGSpkqaJukXJfuXVky+KumpVDX5fV0iJOlASRNTFeV+Sf2Ak4Dvpb57SVpb0m2SxqfXHmnfNSXdK2mSpN8DFSdRjIi3gOHAKSr0k/RIOu7EumqQpD9JOqRk/NdLOljStiVjnyKpP7APsDAirk7HqAG+B3wtvUfDUvXmHknPS/pxSdz63ou5ks5L78UTktbN9E9pZmZmZlXGCU0+WwEjI2Ig8AHwrdS+MCL2BB4GfkHxC/4gYGdJh5YGkPRJYCiwR0QMAmqAYyStDfwBOCIitge+FBEzgCuAX6cKyyPAxWl9Z+AI4MoU+sfAoxGxAzCaBqZNj4hXKD4X6wBvAftHxI5pXJekblcCJ6Qx96GoEt1NkWBdnMY+GJgJbAs8XXaMD4B/AVukpl2AY9L78iVJg+t7L1L/nsAT6b14GPhGfedjZmZm1pbVNuOrtfKkAPm8HhGPpeXrgLqnpd2cvu4MjI2It6GoagB7A3eWxNgX2AkYX1ypRXeKpGJX4OGIeBUgIt6rZwz7AdukfQFWk9Q7HefwtO/fJL3fyLnUBegMXCppEEVCsWWK8ZCk30laJ8W9LSKWShoHnClpQ+D2iHgxXXJWqUpZ2n5fRLyb3pfbgT2BpfW8FwCLgb+m5acpLpUzMzMzs3bICU0+5b+0163PS1+b8qxcAddExA+XaZQOrhC/kg7AbhGxoGz/SuOrPABpM4rk5S2Kys5sYPsUe2FJ1z9RVEyOAr4GEBE3SHoS+DwwRtLXgekU1aLSY6wGbAS8TJG0VHrvKr4XyZKIqNunhno+x5KGU1xCx0Vb9+e4Dddr7PTNzMzMqopnOfMlZzltLGm3tHw08GjZ9ieBT0taK90LcjTwUFmf+4EjU+UDSWtI2gQYl/bdtK499f8Q6F2y/73AKXUrqbICxWVZx6S2g4DVK51AurTtCuDSlDD0AWZFRC1wLFA6scEo4LsAETE97b8Z8EpEXEJxadvAdE49JB2X+nQEfgWMioj5Kdb+6Vy7A4cCjzXwXjRZRIyMiMERMdjJjJmZmVnb5IQmn+eA4yVNAdYALi/dGBGzgB8CDwLPABMj4q5lu8SzwFnAvSnOfcB66TK14cDtkp7ho8vY/gIcVjcpAMVlboPTDfnPUtzTAnAusLekicABFPev1Ome9p8O/IMiKTo3bbssndMTFJeb1VWbiIjZ6ZyvLok1FJgmaTKwNXBtSowOo7g35kXgBYpKz49K9nuUouIzmeLytQn1vRcfe9fNzMzM2jHPcuZLznKqjYiTytr6la5ExA3ADaVtqWLRm2IiASLiZj5KWEr3/Tvw97K2FyiqIKWGVtj3XYpEps73SrY1NJ30i2Xx/3v5l6QeQH/gxpL+5wPnV4jzOvDF+o4DvBURp5Q3NvBe9CpZvhW4tYHYZmZmZtaGuULT8qYDV0bEkpYeSFNJ2g/4J/DbiJjT0uMxMzMza688y5krNFmkKZQHrOC+W+cdzaoXEf+ggamflzPWKIr7cczMzMzMlpsTGjMzMzOzKhWt+u6W5uFLzszMzMzMrGq5QmNmZmZmVqVa870tzcUJjbULz01dJ0ucT8z8MEscgGffXztLnKY8sbWplnTIE23O7G5Z4gB06bo0S5zVFuSbd+MTXec33qkJnlnUJ0scgB7r5/lf2uLX5jXeqQl6dM33yZz+XJ7v30G7z84SB6DrdnlmkX9p6NWNd2qi3h27ZIlT897iLHEAFry0KEucF3f8XuOdmmjAxF9niTNx0DlZ4gDM75Dn17GXOuf71faImrlZ4jwevRvv1ETbLcrzc2XHrf6dJY61Hr7kzMzMzMzMqpYrNGZmZmZmVarWkwK4QmNmZmZmZtXLFRozMzMzsyrl+owrNGZmZmZmVsWc0FQJSSHpVyXrp0kakZZPknRcI/sPk3RpPdt+VLZ+pqTpkqZImizpU6l9hqS1Kuz/ePq6vqRbl/vkzMzMzGyF1BLN9mqtnNBUj0XA4ZUSioi4IiKuXYnY/01oJO0GfAHYMSIGAvsBrze0c0Tsnr6+GRFHrsQ4zMzMzMyWixOa6rEUGAl8bDJ+SSMknZaWd06VlXGSLpQ0raTr+pLukfSipF+m/hcA3VMl5npgPeCdiFgEEBHvRMSbZcfrnuJ8I63PTV/71R0vVYRuLz9e2naipBckjZX0h/oqR6nvFyU9KWmSpH9IWje195J0taSp6XyPWP631MzMzKy61Tbjq7VyQlNdfgccI6mhp/FdDZwUEbsBNWXbBgFDge2AoZI2iogzgAURMSgijgHuBTZKCcdlkj5dFqMX8Bfghoj4QyPj/djxJK0PnA3sCuwPbN1IjEeBXSNiB+Am4Pup/WxgTkRslypJDzQSx8zMzMzaICc0VSQiPgCuBU6ttF1SX6B3RDyemm4o63J/RMyJiIXAs8AmFY4xF9gJGA68DdwsaVhJl7uAq5t4iVul4+0CPBQR70XEEuCWRmJsCIyRNBU4Hdg2te9HkeDVjfv98h0lDZc0QdKE0fNfacJwzczMzKpLNON/rZUTmurzG+BEoGeFbWpk30UlyzXUM213RNRExNiI+DFwClB6OddjwEGSGjtWfcdryn6lfgtcGhHbAd8EuqV20chMhRExMiIGR8Tgg3tstpyHNTMzM7Nq4ISmykTEe8CfKZKa8m3vAx9K2jU1HdXEsEskdQaQtJWk/iXbBgGvlayfA7wLXLacQ6/zFPBpSatL6sSyyVIlfYA30vLxJe33UiRbpHGvvoLjMTMzM6tavofGCU21+hXwsdnOkhOBkZLGUVQx5jQh3khgSpoUoBdwjaRnJU0BtgFGlPX/LtCt9Eb/poqIN4CfA08C/6C4FK2hMY4AbpH0CPBOSfvPgNUlTZP0DPCZ5R2LmZmZmVW/ipccWesTEb1KlmcDPUrWR5R0nZ5ukkfSGcCE1GcUMKpkny+ULP8A+EFJjN3rGUO/ktUTyscWETOAAY0dj2JCgZGpQnMHRbWlooi4i+K+nfL2uSxbsTEzMzNrd1rzvS3NxRWatufzaQrmacBeFJWM1maEpMnANOBV4M4WHY2ZmZmZrVKS1pB0X3qcx32VbhdIM+I+KOm59JD3/2lKbFdo2piIuBm4uaXH0ZCIOK28TdKZwJfKmm+JiPOaZ1RmZmZm1ac139tS5gyKGXAvSFcRncGyVwhB8dzF/42IiZJ6A09Lui8inm0osBMaaxVS4uLkxczMzKxtOgQYkpavAcZSltBExCxgVlr+UNJzwAYU91zXy5ecmZmZmZnZqrZuSljqEpd1GuosqR+wA8VEUg1ShG8ksrbv2E0Oz/JB31DdGu/URK/FgixxPl1T6ZFEK6ZmeZ8SVI+c5e9Fmcb0ofL9rNt1YU2WOB0z3sj5nw55Cu7/7pTnDd9+yaLGOzXRY127ZonzH+X5dwMYtDjP3wNXq8n33fJup45Z4ryR8dqNXplOb52l+b5X5nbM8xk/bvJPssQBOGvwmVniDK2ZnyUOwN7vTskSZ+HSxVniAHRo0iPwGrda1x6Nd2qidz54IdP/pVZcrt9xmuK6f93xTYqHr9cZGREj61Yk/QP4RIVdzwSuiYi+JX3fj4iKj92Q1At4CDgvIm5vbFy+5MzMzMzMzBqVkpeRDWzfr75tkmZLWi8iZklaD3irnn6dgduA65uSzIAvOTMzMzMzq1rRjK+VNJqPHrlxPBUeyyFJwB+B5yLi/5oa2AmNmZmZmZmtahcA+0t6Edg/rSNpfUl3pz57AMcC+6THkEyW9LnGAvuSszZK0jDg3oh4s6XHUh9J36W49rLBi36b2s/MzMysvamtkgdrRsS7wL4V2t8EPpeWHwWW+74kV2hamApZ/x0kdQSGAevnjNvE4y6P7wJNuTOvqf3MzMzMrJ1xQtMCJPVLT0C9DJgInC1pvKQpks5NfXpK+pukZyRNkzQ0te8raZKkqZKuktQ1tc+QdI6kR4GjgcHA9alU113SBZKeTce4qIGxjZJ0haRHJL0g6QupvaOkC0vG+c3UPiQ90fUGYGo9MT92LpJOpUi4HpT0YOp3uaQJ6cmwde9DpX4HSBonaaKkW9JMGGZmZmbtTjTjf62VLzlrOVsBJwB3AkcCu1CU2EZL2htYG3gzIj4PIKmPpG7AKGDfiHhB0rXAycBvUsyFEbFn6v914LSImCBpDeAwYOuICEl9GxlbP+DTwOYUicQWwHHAnIjYOSVRj0m6N/XfBRgQEa/WE+/A8nOJiDmS/h/wmYh4J/U7MyLeS5We+yUNjIhLSvtJWgs4C9gvIuZJ+gHw/4B882eamZmZWdVwhablvBYRTwAHpNckimrN1kB/imrHfpJ+IWmviJhDkQS9GhEvpBjXAHuXxLy5nmN9ACwErpR0ONDYvSh/jojaiHgReCWN6QDgOEmTKR5wtGYaJ8BTDSQz1HMulXxZ0kSK92JbYJsKfXZN7Y+lsRwPbNLI+ZiZmZm1SbXN+GqtXKFpOfPSVwHnR8TvyztI2oniJqnzUzVkdBNjLiMilkraheJGrKOAU4B9GohTXlOMNM7vRMSYsjEOqe+4Jcd/ofxcImKZioqkTYHTgJ0j4n1Jo4BKT7EUcF9EHN3QMVPM4aSHP31qjUH077VpY7uYmZmZWZVxhabljQG+VncfiKQNJK0jaX1gfkRcB1wE7Aj8E+iXLgGDYlq7h+qJ+yHQO8XsBfSJiLspbrAf1MiYviSpg6TNgc2A59M4T04PO0LSlpKa9Ij6es5lmTECq1EkRnMkrQscVOlcgCeAPereA0k9JG1Z6bgRMTIiBkfEYCczZmZm1hbVEs32aq1coWlhEXGvpE8C44pnCTEX+CqwBXChpFpgCXByRCyUdAJwi6ROwHjginpCjwKukLSAIjm4K92DI+B7jQzreYpEaV3gpHTcKynurZmoYqBvA4c28TS3Kz+X1D4S+LukWRHxGUmTgOkUl7k9VrJ/eb9hwI11EyJQ3FPzAmZmZmbW7jihaQERMQMYULJ+MXBxWbeXKaoi5fveD+xQob1f2fptwG0lTbssxxAfi4hlkp6IqAV+lF6lxqZXvdJlapXO5bfAb0vWh9Wzf3m/B4CdGzqmmZmZWXvQmmcfay6+5MzMzMzMzKqWKzTtlKQzgS+VNd9SX5WkiTHXBO6vsGnf9HRYMzMzM8uoNc8+1lyc0LRTEXEecF7mmO/S+IQDZmZmZmbZ+JIzMzMzMzOrWq7QmJmZmZlVqQhPCuAKjZmZmZmZVS1XaKxdOHphlyxxBm0+K0scgAdmbJAlTreMf5l5sYuyxBm4sCZLHIB/du2YJU6eKIXnu+b50flGh3zv07q1ef7tPtf1vSxxHo41ssQBOKrv7CxxpsxeO0scgLVYlCXOvIz/G+5Xk2dMW0a+z+XCmjzfeYszfgfP75DnPT9r8JlZ4gD8bEKeW1oX/er0LHEAht24PE97qN+SjLes12Sanvi7HRZmidNatOYHXjYXV2jMzMzMzKxquUJjZmZmZlalPG2zKzRmZmZmZlbFXKExMzMzM6tS4XtoXKFZ1SQNk7R+S4+jjqSrJL0laVpZ+xqS7pP0Yvq6esm2H0p6SdLzkj5b0j53FY5zsKRL0vIQSbuvqmOZmZmZWfVyQpOokPX9kNQRGAY0a0KTjlufUcCBFdrPAO6PiP7A/WkdSdsARwHbpv0uayR+FhExISJOTatDACc0ZmZmZmVqiWZ7tVbtOqGR1E/Sc5IuAyYCZ0saL2mKpHNTn56S/ibpGUnTJA1N7ftKmiRpaqp6dE3tMySdI+lR4GhgMHC9pMmSuku6QNKz6RgXNTC2UZKukPSIpBckfSG1d5R0Yck4v5nah0h6UNINwNT64kbEw0CleVkPAa5Jy9cAh5a03xQRiyLiVeAlYJm5HCWtJWmcpM+n9e+n9+UZSRektm+kMT8j6TZJPRo5zyGS/iqpH3AS8L30Hu4l6YuSnkzv/z8krVvf+ZqZmZlZ2+Z7aGAr4ATgTuBIil/WBYyWtDewNvBmRNT9st5HUjeKSse+EfGCpGuBk4HfpJgLI2LP1P/rwGkRMUHSGsBhwNYREZL6NjK2fsCngc2BByVtARwHzImInVMS9Zike1P/XYABKfFYXutGxCyAiJglaZ3UvgHwREm/mamNdH7rAqOBsyLiPkkHUSRDn4qI+emcAW6PiD+kfX4GnAj8toHzJI1lhqQrgLkRcVHaf3Vg1/Qefh34PvC/K3DOZmZmZlUtMj6Prlq16wpN8lpEPAEckF6TKKo1WwP9Kaod+0n6haS9ImIORRL0akS8kGJcA+xdEvPmeo71AbAQuFLS4cD8Rsb254iojYgXgVfSmA4AjpM0GXgSWDONE+CpFUxmGlLpaX113zmdKS5P+35E3Jfa9gOujoj5ABFRVw0akKowU4FjKC5hq1PpPBuyITAmxTq9LNZHA5eGS5ogacLfF7zcSEgzMzMzq0ZOaGBe+irg/IgYlF5bRMQfU9KyE0Vic76kc6j8S36lmMuIiKUUVZTbKKoY9zQSpzzljnTs75SMc9OIqKvQVDxuE82WtB5A+vpWap8JbFTSb0PgzbS8FHga+GzJdlUYNxQVrVMiYjvgXKBbybZK59mQ3wKXpljfLIv1UZCIkRExOCIGH9R980ZCmpmZmVWf2mZ8tVZOaD4yBviapF4AkjaQtI6KGcrmR8R1wEXAjsA/gX4ll0YdCzxUT9wPgd4pZi+gT0TcDXwXGNTImL4kqYOkzYHNgOfTOE+W1DnF3FJSzxU54TKjgePT8vHAXSXtR0nqKmlTimrQU2lbAF8DtpZ0Rmq7l+J9rLtHpu6Ss97ArDTuY5pwnqX++x4mfYA3SsZqZmZmZu2U76FJIuJeSZ8ExkkCmAt8FdgCuFBSLbAEODkiFko6AbhFUidgPHBFPaFHAVdIWgAcBNyV7sER8L1GhvU8RaK0LnBSOu6VFPecTFQx0Lf56Ab+Rkm6kWLWsLUkzQR+HBF/BC4A/izpROBfwJfS+zJd0p+BZykqMt+OiJq6eBFRI+ko4C+SPoiIyyQNAiZIWgzcDfwIOJviErnXKKpdpQlKpfMsHfZfgFslHQJ8BxhB8d6/QXF/z6ZNPX8zMzOztsTPoWnnCU1EzAAGlKxfDFxc1u1liqpI+b73AztUaO9Xtn4bxSVmdZaZIawRj0XEMklPRNRSJAg/Kus7Nr0aFBFH19P+LrBvPdvOA86r0N4rfV1MyWVnEXEBRYJU2vdy4PJ6hlXpPMeSzidd9jewbJ+7MDMzM7N2r10nNGZmZmZm1aw1Px+muTihaWGSziRd3lXilogYthIx16SYfazcvqkS02qszHmamZmZmTmhaWH1Xc61kjHfpfEJB8zMzMzMqp4TGjMzMzOzKuUHazqhsXbivE5vNd6pCYb9a4MscQB+U/Niljindu7feKcm6pHpZ+JbnTrmCUS+ueW7Nvr4qKabqzxv1D4L8v1P6PXOeeI8tHCNxjs1Qe+MDyx4ZvbaWeLc1nVhljgABy7pkSVO99p8b9TbHfL8L/3hLouyxAE4YkGenwXvd8j3M+Wlznne86E1jT0bu+kW/er0LHG6/u+FWeIAzLsxz5iWZvxle3GmJ6H8sbZXljgAv84WyVaGExozMzMzsyrlSQH8YE0zMzMzM6tirtCYmZmZmVUpP1jTFRozMzMzM6tirtCYmZmZmVWpWs9y5gpNDpKGSVq/pcdRR9JVkt6SNK2sfQ1J90l6MX1dvWTbDyW9JOl5SZ8taZ/bnGMvJ+luSX1bw1jMzMzMrPVpVwmNClnPWVJHYBjQrAlNOm59RgEHVmg/A7g/IvoD96d1JG0DHAVsm/a7rJH4zSYiPhcR/2npcZiZmZm1RtGMr9aqzSc0kvpJek7SZcBE4GxJ4yVNkXRu6tNT0t8kPSNpmqShqX1fSZMkTU1Vj66pfYakcyQ9ChwNDAaulzRZUndJF0h6Nh3jogbGNkrSFZIekfSCpC+k9o6SLiwZ5zdT+xBJD0q6AZhaX9yIeBh4r8KmQ4Br0vI1wKEl7TdFxKKIeBV4CdilbKxrSRon6fOS1pP0cDrfaZL2Sn1OSOfxkKQ/SLq0kXO/PJ3PK5I+nd7j5ySNKuk3Q9JaFfY/vfzf0czMzMzan/ZyD81WwAnAncCRFL+sCxgtaW9gbeDNiPg8gKQ+krpRVDr2jYgXJF0LnAz8JsVcGBF7pv5fB06LiAmS1gAOA7aOiKi7XKoB/YBPA5sDD0raAjgOmBMRO6ck6jFJ96b+uwADUuKxvNaNiFkAETFL0jqpfQPgiZJ+M1Mb6fzWBUYDZ0XEfZL+FxgTEeelSk4PSesB5wI7AXOAB4FJjYxndWAf4GDgL8AewNeB8ZIGRcTkSjtJOgDoT9m/Y0rkzMzMzNoNP4emHVRoktci4gnggPSaRFGt2ZriF+OpwH6SfiFpr4iYQ5EEvRoRL6QY1wB7l8S8uZ5jfQAsBK6UdDjQ2KOE/xwRtRHxIvBKGtMBwHGSJgNPAmumcQI8tYLJTEMqPUK97rujM8Xlad+PiPtS23jgBEkjgO0i4kPgU8DYiHg7IhZT//tT6i8RERTv/+yImBoRtcB0ikSvPvX9Oy57UtJwSRMkTfj3vDebMBwzMzMzqzbtpUIzL30VcH5E/L68g6SdgM8B56dqyOgmxlxGRCyVtAuwL8V9KadQVCHqU55WRxrndyJiTNkYh9R33CaaLWm9VJ1ZD3grtc8ENirptyFQlwEsBZ4GPgs8BMUlbamy9XngT5IupEjklvdPBIvS19qS5br1hj6b9f47loqIkcBIgD022Md/vjAzM7M2xxWa9lOhqTMG+JqkXgCSNpC0jooZyuZHxHXARcCOwD+BfukSMIBjSb/QV/Ah0DvF7AX0iYi7ge8CgxoZ05ckdZC0ObAZ8Hwa58mSOqeYW0rquSInXGY0cHxaPh64q6T9KEldJW1KUe14Km0L4GvA1pLqJhHYBHgrIv4A/JHi/XoSGCJpzTTuL2UYb30q/juuwuOZmZmZWSvVXio0AETEvZI+CYyTBDAX+CqwBXChpFpgCXByRCyUdAJwi6ROFJdZXVFP6FHAFZIWAAcBd6V7cAR8r5FhPU+RKK0LnJSOeyXFJVcTVQz0bT66gb9Rkm4EhgBrSZoJ/Dgi/ghcAPxZ0onAv0hJR0RMl/Rn4FmKisy3I6KmLl5E1Eg6CviLpA8oqkSnS1pC8R4el6o+I4BxwCyKS8FWyUxpDfw7vtXgjmZmZmZtTPg5NG0/oYmIGcCAkvWLgYvLur1M8Vf/8n3/f3vnHS9HWf3h55sQOgEpKiBNpEjvHaSJSlFQAVGQIqKINAVBBGkqVf0hStfQURGQ3qSD9JBCFaWoFBGkh5bk+/vjfTfZbPbeOzM7tyT3PPezn70zO3PmzOzu7Hve024CVm6zftGW5UuAS5pWTVEhrAfusj2F0ZPzSA7Jj2ZuzY9usb1DF+tfIYXCtXvtp8BP26yfPT+/Two7a3BOm21HACMg9eYhVX/rSsddmv5/hinfo+bXFm3VJf/f7n0MgiAIgiAIBhmDLeQsCIIgCIIgCILpiOneQzMQkPQjps4pubjZE1FB5jyk6mOtbJI9Mf2K7bOBs7s596m8QUEQBEEQBEE5oihAGDR9QlfhXB3KfIWeCw70O71x7kEQBEEQBEHQIAyaIAiCIAiCIJhGcXhowqAJBge7aIFa5CzwwYSeNyrIHjNN1Qu0Egu8X59Ow2qqlPKe6kvP+6TfrUXODEMm1iIH4M8zzFqLnCdnrO8WvOz779ciZ3xNqZX/HVrfudX1udz13fp0msAHtcj5z9BhtcgBeHzGej7jq42fqRY5AMOH9tRbuhjPq57vHMCXJrxVi5wNXhlTixyAXS4qU0uoa96+6MBa5ACc8cAJtcgZf8+fa5EDoHnmr0WO//VkLXKCgUMYNEEQBEEQBEEwjRJlm6PKWRAEQRAEQRAE0zDhoQmCIAiCIAiCaZSochYemiAIgiAIgiAIpmHCQxMEQRAEQRAE0yiRQzNAPDSSdpHKl6GSdLakL7dZf5akZXrY9xlJ87ZZf4SkA8rqMj0gaUNJ69S1XYe6LCrpq03Lq0n6VW8eMwiCIAiCIJj2KOWhkSRAtmurfyppKLAL8DDwfB0ybe9eh5y6kTSD7fH9rUc3bAi8Bfy1pu26pYfrsSjwVeBCANsPAA90crwgCIIgCILpjcihKeChyTPlj0k6BRgJHCbpfkljJB2Zt5lN0tWSRkt6WNL2ef0mkh6SNFbS7yTNlNc/I+nHku4EdgBWAy6QNErSLF3ocaykR/NxT2zz+tHZYzNE0q2SVsvrT5X0gKRHGvo2caCk+/LjE21kLi7pOkkPSrpD0tLdXKetJN2bz/cvkj6S1x8h6QxJNwDnSppP0iX5Gt4vad283RqS/pr3/6ukpXp4T+6QNDI/1ml67Qf5eo+WdGw3MvZpup6/l7Qo8G1g//w+rN/unLrYru05dXHc1uvR1bkcC6yfj7F/9gpdlWXMLenPWfd7JK3Q1fGCIAiCIAiC6ZuiHpqlgF2BPwNfBtYABFwhaQNgPuB521sASJpT0szA2cAmtv8m6VxgT+D/ssx3ba+Xt98dOCDPwk+FpLmBbYClbVvSXC2vHw/MCeyaX29++Ue2/5c9QTdJWsF2oxvWG7bXkPT1rNeWLYc+A/i27SclrQmcAmzcxTW6E1grH3934AfA9/NrqwLr2X5H0oXAL23fKWlh4Hrgk8DjwAa2x0vaFPgZ8KUujvUS8Gnb70paArgIWE3S54CtgTVtj8vXrSsOBhaz/Z6kuWy/Juk04C3bJwJI+lDrOdn+fpvtujqnrmi+HrO2O5es3wG2t8zH2LBp/yOBh2xvLWlj4FxgpW6OFwRBEARBMF3iacRDk8elfyBF4TwDbGf71S62HUqKzHmuMRbsjqIGzbO278mekc2Ah/L62YElgDuAEyUdB1xl+w5JKwJP2/5b3vYcYC8mGzR/KHhsgDeAd4GzJF0NXNX02mHAvbb36GLf7STtQTrX+YFlgIZBc1HT8y+bd5I0O7AOcHGTgdRd++SPAX+QND8wI/B002tX2H4n/78psEyTzOGS5iAZZOfkQb2B7tpHDwN+LWklYAKwZJPsEbbHAdj+XzcyxpC8Yn8mGaplz6mZtudk+80utm++Hl2dS3esRzb2bN8saR5Jc9p+vXmj/L7vAbDjXGuwwWxLFBAdBEEQBEEQ9AIHAzfZPlbSwXn5oC623Rd4DBheRHDRogBv52cBx9heKT8+Yfu32WhZFRgLHCPpx3nbIjJ7JOdZrAFcQvJAXNf08v3Aqu28EZIWAw4geYlWAK4GZm4W3cX/kK7Na03nupLt7rwOJwO/tr088K2W4zSf6xBg7SaZC+aB/9HALbaXA7Zq2b+V/YH/ACuSvBkzNk65zXl0xRbAb0jv24OS2hm33Z1TM12dU1c0X4+uzqU72n22pjpv22fYXs32amHMBEEQBEEwPTLR7rNHh3yB5OAgP2/dbiNJHyONU88qKrhslbPrgd2y9wJJC0r6sFKFsnG2zwdOBFYhhVAtqsm5KTsBt3Uh901gjq4Omo83p+1rgP2YMrzoOlK+xdXZ09HMcNLg+XWlnJbPtby+fdPz3c0v2H4DeFrStlkHZa9TV8wJPJf/37mb7W4Avtt0bo1zad5/l272b2z7Qi7OsBMwtEn2bjmMi3ZGXl4/BFjI9i2k0Li5SN621vehq3Nq3a6rcypCV+fS3WfiduBr+VgbAi/n9ysIgiAIgiDoJSTtoZSb3nh0FSHVjo/YfgEgP3+4i+3+jzQ+LVyErFSVM9s3SPokcHcOL3oL2BH4BHCCpInAB8CeOSdiV1LI1gwkT8ppXYg+GzhN0jukmf53Wl6fA7g85+WINKvfrNfF2Zi5QtLmTetHS3oIeAR4CrirRe5Mku4lGXY7tNHra8Cpkg4lhUb9HhjdxTkckc/1OeAeYLEuttsH+I2kMaTrfzspyf54UsjZ94Cbu9i3wSnAJdnYuoXs8bB9XTYmHpD0PnANcEib/YcC50uak3Q9f5lzaK4E/iTpC8De3ZxT63ZdnVMR2p4LKSRuvKTRpM/HQ037HAGMyMcbR/cGZBAEQRAEQVADts8g5Zi3RdJfgI+2eelHReRL2hJ4yfaDLfnT3e8XzXiCwcCZH9uxlg/6Ah9MqEMMAH+faWjPGxXg4+/Xp9Owmu4H76m+FlcfGfJuLXJmGFJbtXn+PMOstcj5yIT6rtOy779fi5zxNbUn++/Q+vo2zzWhns/4LNT3XZnQY1R1Mf4ztLt0yXI8PmM9n/FFxtf3uVx+4rha5Dyuer5zACsM6S4iujgbvDKm540KssuH16hFztvU1xnijAdOqEXO+Hv+XIscAM0zfy1y/K8na5EDMMt2P67nZtABy35kzT4bzD/yn3srn6+kJ4ANbb+Q87Nvtb1UyzbHkCJ2xpNSHYYDl9resTvZA6KxZhAEQRAEQRAE0zVXMDmqZmfg8tYNbP/Q9sdsLwp8Bbi5J2MGSoac9QWSLmPqcK2DbF/fH/q0IulHwLYtqy+2/dNeONZngONaVj9te5sSMn4DtPaFOcn2iE716+G4u5IqVDRzl+29evO4QRAEQRAEg4kakvX7imOBP0r6BvBP8ng65+KfZXvz7nbujgFn0JQZrPcH2XCp3Xjp4ljXkwoxdCKjXwyIbDD1qtEUBEEQBEEQTBvYfgXYpM3654GpjBnbtwK3FpE94AyaIAiCIAiCIAiKMa001uxNwqAJBgVv1JQt9uLM9aWdzV7T/edvM9ZTXABgppp0erfGFMm3xteTDDx8fH0J4c/PUE8C/jzqrt1UOR6YuUgLp555VfUklk+oMQF/DtfzvRtGfd+VD2oaQMxVX60Knqeez+W7M9RXqOC9CfV8f9+r8Z7yV3fZJaIU746v53oDfFC8Om23jK8x9KiuZP4Z1tq6FjkAE/79aC1yJo59uBY5AGxXn6igOmHQBEEQBEEQBME0yjSUQ9NrRJWzIAiCIAiCIAimWcJDEwRBEARBEATTKJFDEx6aIAiCIAiCIAimYQaVQSNpl1zruuj2G0q6qjd1GkhIWlTSV+vargZ9DmlZ/mtvHzMIgiAIgmBaYqLdZ4+ByoA0aJSoVTdJQ4FdgMIGzSBkUaCIoVJ0u27J70l3TGHQ2F6n02MGQRAEQRAE0xcDxqDJs/6PSToFGAkcJul+SWMkHZm3mU3S1ZJGS3pY0vZ5/SaSHpI0VtLvJM2U1z8j6ceS7gR2AFYDLpA0StIsXejxWUmP532+2LR+DUl/zcf5q6Sl8vo7JK3UtN1dklaQ9Kl8nFF5n7Z1IrPxdkI+n7FN57ShpNslXSbpUUmnNYw8SZtJulvSSEkXS5q96XyPzOvHSlq6m+vdTr9jgfXzuv3ze3JHljdSUsOgaN1uaD6Hxvv1rW6Ou6GkWyRdCIzN6/4s6UFJj0jaI687FpglH+OCvO6t7q5ZEARBEATBYMN9+DdQGWhFAZYCdgX+DHwZWAMQcIWkDYD5gOdtbwEgaU5JMwNnA5vY/pukc4E9gf/LMt+1vV7efnfgANsPtDt4lnUmsDHwd+APTS8/Dmxge7ykTYGfAV8CziJ5fvaTtCQwk+0xkq4E9rJ9VzY43u3inL8IrASsCMwL3C/p9vzaGsAywLPAdcAXJd0KHApsavttSQcB3wOOyvu8bHsVSd8BDgB27+K4B7TR7+B8fbbM12NW4NO235W0BHARyShs3W4P4HXbq2dj8i5JN9h+uotjrwEs1/T6brb/l43M+yVdYvtgSd+1vVLRa2b7hS6OFwRBEARBEEynDBgPTeZZ2/cAm+XHQyRvzdLAEqQZ/U0lHSdpfduvk4ygp23/Lcs4B9igSWazUdITS2dZT9o2cH7Ta3MCF0t6GPglsGxefzGwpaRhwG4k4wrgLuAXkvYB5rI9votjrgdcZHuC7f8AtwGr59fus/2U7QkkY2I9YC2SkXOXpFHAzsAiTfIuzc8PkkLDuqKIfsOAMyWNzee5TBeyNgO+nvW5F5iH9H51xX0txs4+kkYD9wAL9bAvdH/NJiFpD0kPSHrgnree7EFkEARBEATBtIc9sc8eA5WB5qF5Oz8LOMb26a0bSFoV2Bw4RtINwBUFZRalK3/a0cAttreRtChwK4DtcZJuBL5A6he7Wl5/rKSrs673SNrU9uNt5HbX/7hVF+ftb7S9Qxf7vJefJ9DN+9tOvzab7Q/8h+QJGULXXiYBe9u+vqvjtTDpPZG0IbApsHa+lrcCPbVPL9Qz2vYZwBkAP194x4HrJw2CIAiCIAgqM9A8NA2uB3Zryg1ZUNKHlSqUjbN9PnAisAopFGxRSZ/I++5EmrFvx5tA21yWzOPAYpIWz8vNRsOcwHP5/11a9jsL+BVwv+3/ZZ0Xtz3W9nHAAyTvTztuB7bPeSjzkbxL9+XX1pC0WM6d2R64k+TFWLdxvpJmzaFupehCv9brMyfwgpNJvhPQSOJv3e56YM/spULSkpJmK6jKnMCr2ZhZmuSBavBBQ2YL3V2zIAiCIAiCYBAx0Dw0ANi+QdIngbslAbwF7Ah8AjhB0kTgA2DPnN+xKykcbAbgfuC0LkSfDZwm6R2SR+CdluO+m/NBrpb0MsmAWC6/fDxwjqTvATe37PegpDeAEU2r95O0EclT8ihwbRc6XQasDYwmeWB+YPvFPLi/m5SAvzxpEH+Z7YmSdgEuyvkqkHJq/jaV5O5pp99EYHwO/zobOAW4RNK2wC1M9qyMadnuJFJ420ilN+y/wNYF9bgO+LakMcATJIOtwRnAGEkjbX+taX3ba1b4zIMgCIIgCKYTJg7gZP2+Qh7ANaWnFbLn6FZgadcUYJhDsSYl3gedUVfI2TjV932Z3YUi53qkzojWmWo6vXfrOTUA5u8q+6wkwydOqEcQcNnMH9QiZ/mJPUVXFueDmq75q6rnEzWhxh/YOVxPMMGwYtGqhfigpvOba2J9Oj00tKuo4HLMTTvHeDUWndBTdf5ivFfjPaWu+9x+/7mlHkHANxaopyvBONd3nzvjN+vVImeGtbauRQ7AhH8/Wo+cS86tRQ7AbEf/scZPZzUWmWeFPhvMP/vKmH4/33YMSA/NtISkrwM/Bb5XlzETBEEQBEEQBEUI58QgNmgkXQYs1rL6oBKJ7QDYPhfo0dSXtDxwXsvq92yv2YXcW8mFBzohh+Pt27L6Ltt7dSq7h+OWOt8gCIIgCIIgqMKgNWhsb9PHxxtL6p3Sp9gewZS5PX113H453yAIgiAIgsFE5NAM3CpnQRAEQRAEQRAEPTJoPTRBEARBEARBMK0TOTRh0ASDhLpckbPWVJmsTmavsRTF8In13BTfGFLfdaqrOtlsNVb/mZV6KjfNWuN7N0tNv2dDhtbzbVntvfd63qggD8w0U88bFaCu6lYAE1XPZ/z5ofV9COarqTrZkBqrwQ2v6fT+Nqy+67R8TSXThtT0GYD6qgK+X2PdS80zfy1y6qpMBjD0Y8vUImfih+etRU4wcAiDJgiCIAiCIAimUSaGhyZyaIIgCIIgCIIgmHYJD00QBEEQBEEQTKM4qpyFhyYIgiAIgiAIgmmX6cqgkbSLpAV62GY/SbP2og7flvT13pLfw7GfkVQ5063otenta5iPsbWkZZqWj5K0aW8eMwiCIAiCYFrDdp89Bir9YtAoUeuxJQ0FdgG6NWiA/YBSg/Esu8vlZmyfZvvcMvLroDudSrAfxa5N0e26pQedtwYmGTS2f2z7L50eMwiCIAiCIJi+6DODRtKikh6TdAowEjhM0v2Sxkg6Mm8zm6SrJY2W9LCk7fP6TSQ9JGmspN9Jmimvf0bSjyXdCewArAZcIGmUpFna6LAPyeC5RdIted1mku6WNFLSxZJmbyN72zbL38z6j5Z0ScNjIekISQfk/2+VdJyk+yT9TdL63VyfXSRdLuk6SU9IOrzptT9LelDSI5L2aFr/VvZc3Aus3bR+liznm10ca6rr3MW1OVXSA/m4jfeo8DXs4tg9XkdJ6wCfB07I7+Xiks6W9OXuPg9BEARBEASDjYm4zx4Dlb720CwFnAscBCwIrAGsBKwqaQPgs8Dztle0vRxwnaSZgbOB7W0vTypksGeTzHdtr2f7fOAB4Gu2V7L9TuvBbf8KeB7YyPZGOTzrUGBT26vk/b/XRvbv2yxfant12ysCjwHf6OKcZ7C9BsmrcXgX2zRYA/havibbSlotr9/N9qokg20fSfPk9bMBD9te0/aded3swJXAhbbP7OI4U13n1muTt/uR7dWAFYBPSVqhwjVsR7fX0fZfgSuAA/N7+Y/GjgU+D0EQBEEQBMEgoq8Nmmdt3wNslh8Pkbw1SwNLAGOBTbNXY33br5OMoKdt/y3LOAfYoEnmHzrQZy1SWNNdkkYBOwOLdCO7eXk5SXdIGksyQpbt4hiX5ucHgUV70OdG269kY+xSYL28fh9Jo4F7gIVI1wpgAnBJi4zLgRE9hL21u87t2E7SSNL7tCxNIWBN9HQN21HlOjbo6fMwCUl7ZA/TA3e/9WQPYoMgCIIgCIJpkb4u2/x2fhZwjO3TWzeQtCqwOXCMpBtIM/VFZFZBJCNih4Kym5fPBra2PVrSLsCGXchotMueQM/Xu9WXZ0kbApsCa9seJ+lWYOb8+rv2VO3P7wI+J+lCd5G9ZftvrdfZ9lHN20haDDgAWN32q5LObjruFJvS/TVsR5Xr2Hy8Qtg+AzgD4JcL7zhw/aRBEARBEAQVGcjJ+n1Ff1U5ux7YrSlfZUFJH1aqUDYuh4+dCKwCPA4sKukTed+dgNu6kPsmMEcPx27e5h5g3YbsnL+xZMFzmAN4QdIwkmehDj4taW6l/J+tScbJnMCr2ZhZmuQR6Y4fA68Ap3S1QRfXGaa8NsNJhsfrkj4CfK5JRF3XELq+jl29l2U+D0EQBEEQBMF0Tr801rR9g6RPAndLAngL2BH4BCkRfCLwAbCn7Xcl7QpcLGkG4H7gtC5Enw2cJukdkkdjqjwa0oz9tZJeyDkguwAXNSWWHwr8rc1+rRwG3As8Swrh6smQKsKdwHmk63Ch7QdyKNa3JY0BniAZED2xH/A7Scfb/kGb15en5Trn9a3X5iHgEeApknFFF9vtQrVrCF1fx98DZ+YiBF9ubFzy8xAEQRAEQTBdMzE8NCjcVAODbBSsZvu7/a3L9EhdIWcT6xCSqcs9OmuNSg2fWM/94I0hhSMDe2SB8a1RldWYbarozOpcOks957f8+GG1yAGYpaZb+Ut1FIAHVnvvvZ43KsgDM9VTyHCmGn/uJtb0EX9xSH1f4LoqEA0pHtnbI5/8oJ473d+G1Xedln+vnvPb6X/1BQd8ff6egi+K8abH1yIH4Jzfb1+PoFnqmO9NDP1Yu1Te8nxw0Ym1yAGYde9T6vvCVGTuOZbos8H8/958st/Ptx394qEJgiAIgiAIgqBzwjkxHRs0ki4DFmtZfZDt6/tDnwaSPgMc17L6advbkELm6jzWPMBNbV7axPYrdR6rzbEH5PUPgiAIgiAIpi+mW4MmGwgDjjyg75NBfTZaVuqLY7U59oC8/kEQBEEQBNMTA7nhZV/RX1XOgiAIgiAIgiAIOma69dAEQTNfWfi5WuS4xgT898fV8/V78aX6Ei7vHzprLXLW05u1yAF4kxlrkTPHTO/XIgfgY67nmj81Q32FCj7zTj2y1p/31Vrk3PXfj9QiB+orMDDPrO/WIgdAqmdG9D9vz1aLHIAnZqynyMRn53qpFjkAM8xUz+dy3n/NV4scgFWWerEWOcNH1XO/BNhvSD2fzd9OnL0WOQD+Vz0NqSeOfbgWOQATPzxvLXKG7XBALXIGCpFDEx6aIAiCIAiCIAimYcJDEwRBEARBEATTKNGHJjw0QRAEQRAEQRBMw4SHJgiCIAiCIAimURxVzsJDEwRBEARBEATBtMt0Z9BI2kXSAhX3/bykg3vYZkNJV3Xx2n6SSpc9kXSrpNXarL9G0lz5/7+WlVtBj0UlfbWu7WrQ55CW5V6/BkEQBEEQBNMSE+0+ewxU+s2gUaLW40saCuwCVDJobF9h+9gOVNgPqK2Oo+3Nbb+W/1+nLrndsChQxFApul235PerO6YwaProGgRBEARBEATTEH1q0OSZ/ccknQKMBA6TdL+kMZKOzNvMJulqSaMlPSxp+7x+E0kPSRor6XeSZsrrn5H0Y0l3AjsAqwEXSBolaZYu9HhG0pGSRmZ5S+f1u0j6df5/cUn3ZP2OkvRWk4jZJf1J0uOSLsjG2T4kQ+oWSbd0cdyhks7O5zVW0v4trw+RdI6knzTpOW/+/638vGH26Exx/Pza5nndnZJ+1ZUnKW/7qXyNRuXrOgdwLLB+Xrd/fr/uyNdppKSGQdG63VBJJzS9l9/q5rgbSrpF0oXA2Lzuz5IelPSIpD3yumOBWfIxLmi5BsrHa1zH7bs6XhAEQRAEQTB90x9FAZYCdgX+DHwZWAMQcIWkDYD5gOdtbwEgaU5JMwNnA5vY/pukc4E9gf/LMt+1vV7efnfgANsP9KDHy7ZXkfQd4ABg95bXTwJOsn2RpG+3vLYysCzwPHAXsK7tX0n6HrCR7Ze7OOZKwIK2l8u6ztX02gzABcDDtn/ag+5THV/SA8DpwAa2n5Z0UQ8yDgD2sn2XpNmBd4GDSdduy6zfrMCnbb8raQngIpLB2LrdHsDrtlfPhuZdkm6w/XQXx14DWK7p9d1s/y8boPdLusT2wZK+a3ulNvt/kXQtVwTmzfvcbvuFHs45CIIgCIJguiIaa/ZPyNmztu8BNsuPh0jemqWBJUiz9ptKOk7S+rZfJxlBT9v+W5ZxDrBBk8w/VNDj0vz8ICmEqpW1gYvz/xe2vHaf7X/bngiM6mL/djwFfFzSyZI+C7zR9NrpFDNmujr+0sBTTUZCTwbNXcAvsmdpLtvj22wzDDhT0ljStVimC1mbAV+XNAq4F5iH9F52p3+zsbOPpNHAPcBCPewLsB5wke0Jtv8D3Aas3rqRpD0kPSDpgfNffL4HkUEQBEEQBMG0SH94aN7OzwKOsX166waSVgU2B46RdANwRUGZZXgvP0+g/HV4r+n/wvvbflXSisBngL2A7YDd8st/BTaS9HPb71Y4voro0KTLsZKuJl3neyRt2maz/YH/kDwhQ0henHYI2Nv29QUPP+n9krQhsCmwtu1xkm4FZu5h/0LnavsM4AyAF9bbKKYvgiAIgiCY7oiyzf1b5ex6YLcc7oSkBSV9WKlC2Tjb5wMnAqsAjwOLSvpE3ncn0qx8O94E5qhBv3uAL+X/v1Jwn26PnfNhhti+BDiMdG4NfgtcA1wsqYqh+TjJ+7NoXu42r0TS4rbH2j4OeIDk4WnVf07ghewJ2gloJPG3bnc9sKekYVn2kpJmK6j3nMCr2ZhZGlir6bUPGjJbuB3YPufuzEfy1t1X8HhBEARBEATBdES/Nda0fYOkTwJ355z2t4AdgU8AJ0iaCHwA7JlzOHZl8mD/fuC0LkSfDZwm6R3SrP87FVXcDzhf0veBq4HXC+xzBnCtpBdsb9Tm9QWBEZpc3e2HzS/a/oWkOYHzJH2tjLK238n5QNdJepmeB/j7SdqI5OF5FLgWmAiMz+FfZwOnAJdI2ha4hcmelTEt251ECnsbmQsU/BfYuqDq1wHfljQGeIJkSDY4AxgjaaTt5utxGSkkcDRg4Ae2Xyx4vCAIgiAIgumGyKEBxUVoT06If8e2JX0F2MH2F/pbr+6QNLvtt7JR8RvgSdu/7G+9BgJ1hZx5Yh1SEu+Pq2c+4cWX6nBIJu4fWk/V8fX0Zi1yAN58f8Za5Mwx4/u1yAG4XvVc81c1oRY5AJ95px5Zi3301Vrk3PXfj9QiB+BjE97reaMCzDNrT9G8xZHq+e38z9tFndk988SM7Rza5fnsXC/VIgdghpnq+Vw+/K/5apEDsMpS9cx/LTeqvtzMW+ddshY5v504ey1yAH52fFdps+WYOPbhWuQA6MPz1iJn2A4H1CIHYNi8Hy8V8t8bzDjTx/psMP/+e//u9/NtR795aKYBVgV+nY2D15ic6zKQ+aaknYEZScUWpspPCoIgCIIgCKYfwjkxnRs0ki4DFmtZfVCR5HXbd5CS4ase+15gppbVO9keW1VmT2RvzBQemRyqt2/LpnfZ3qu39MjHXR44r2X1e7bX7M3jBkEQBEEQBIOL6dqgsb1NPx57QAzcbY8ARvTDcceSesUEQRAEQRAEvUT4Z/q3ylkQBEEQBEEQBEFn2I5HPOJhA+wx0GQNNDmhU+gUOoVOA1Wn6fncQqdpW6d49P4jPDRBMJk9BqCsgSanTlmhU9/KqVNW6NS3cuqUNT3rND2fW52yQqe+lRP0AWHQBEEQBEEQBEEwzRIGTRAEQRAEQRAE0yxh0ATBZM4YgLIGmpw6ZYVOfSunTlmhU9/KqVPW9KzT9HxudcoKnfpWTtAHKCc+BUEQBEEQBEEQTHOEhyYIgiAIgiAIgmmWMGiCIAiCIAiCIJhmCYMmCIIg6BckDZE0vL/1CIIgCKZtwqAJBjWSVu5vHYJgMCHpQknDJc0GPAo8IenA/tarLiTdKGmupuUPSbq+H1UKgl5B0hySZu9vPYIAYIb+ViAI+plfSJofuBj4ve1HqgqS9FFgDcDA/bZfrChnG+Aa2+9V1SXLWRz4t+33JG0IrACca/u1/pDTRu6HgIVsjymxzxe7e932pRX0EPA14OO2j5K0MPBR2/dVkLUesITtEZLmA2a3/XR/6VTneydpX2AE8CZwFrAycLDtG0qKWsb2G5K+BlwDHAQ8CJxQUp/hWc7c7V63/b+S8mYD3rE9MS8PAWa2Pa6MHGDe5utr+1VJHy6py1Dgetubljx2d/I+QtNvvu1/lth/le5etz2yoJy271WTnFLvWZY5H/BNYFGmPL/dKsjaBrjZ9ut5eS5gQ9t/LilnVuD7wMK2vylpCWAp21dV0Gk+0ndkGWDmxnrbG5eVleV1fI+StDxwLjB3WtR/gZ1tP1xRp48Aq+fF+2y/VEHGMGBPYIO86jbgNNsf9JdOQd8SVc6CQU82RLYDtgeGA3+w/ZOSMnYHfgzcDAj4FHCU7d9V0GcEsDFwO/B70sBmfAU5o4DVSD/01wNXkH5UN+8POVnWrcDnSQOPUcB/gdtsf6/g/iPyvx8G1iFdb4CNgFttd2vwdCHzVGAisLHtT2ZD6wbbq/ewa6ucw0nXaSnbS0paALjY9rr9qNMo6nvvRtteUdJngL2Aw4ARtrsd7LaR8wiwEnAh8Gvbt0kaY3uFknKusr2lpKdJkwhqetm2P15S3j3Aprbfysuzk675OiXlPAhs0zAYJC0CXFbhOl0B7NQYXFdF0t7A4cB/SJ8pSNen8PWWdEs3L7vo4LrlvVoYeDX/PxfwT9uLFdWpSeZfgTtIRvGEJqUuqSBrlO2VWtY9ZLuUJ1/SH7I+X7e9nKRZgLtbZReUdQPwB+AA4NvAzsB/bR9UQVYt96h8zX9k+5a8vCHws7LflbzvdqTJjFtJn4X1gQNt/6mknLOAYcA5edVOwATbu/eXTkEfYzse8YiHDbA8cB7wfoV9nwDmaVqeB3iiA12GkQb+FwDPAmdVkDEyPx8I7J3/f6i/5DTvB+wOHJn/H1NBzlXA/E3L8wOXVtRpZLNu+f/RFeSMIv34NcspfW4161TnezcmP59EGrBX/TztAzxH8s4IWAS4o4pOdT6AUUXWFZDzWeCf+V5yXv7+fqaCnD9mOb8FftV4VJDz9+Z700B4AKcBmzctfw74eV3vWwd6TfV9BcZWkPNAfn6oaV3p72/e78FW3UiTQJWuVR33qHbn0sH5jQY+3LQ8X8V73YDTKR59+4iQs2BQI+mTJM/MtsDLJI/I9yuI+jcpFKfBm8C/qupl+wNJ15JmM2cBvkAyAsrwgaQdSDN6W+V1wyqoU5ccgBlyiN92wI8qygBY1PYLTcv/AZasKOuDHJJjmBTiMbH7Xdryvm1LasiZraI+depU53v3YJ4tXgz4oaQ5Kup0uu1fNRYk/RPYuqJODRkrMHXIUdnww7clreIcPiVpVeCdsrrYvi6HaK1FGjzub/vlsnKAq/OjU/4FdOrlqTvUc3Xb327a/1pJR1dSDq6StLntayru38wDkn4B/Ib03dub5Gkpy/vZK9P4/i4OVA0hboRMvSBpC+B54GMVZdV1j3pK0mEkgx1gR6B0aG1miKcM53qFavndEyQtbvsfAJI+TpPHrp90CvqQMGiCwc4I4CLg07af70DOc8C9ki4n/Yh9AbhP0vcAbP+iqCBJnwW+Qg6jIuUrbFdBp11JIQo/tf20pMWA8/tRDsBRpNCnO23fn390nqwg59acaH0R6Xp/BeguLKY7fgVcBnxY0k+BLwOHVpDzR0mnA3NJ+iawG3BmP+tU53v3DVKo2FO2x0maJ8svy6WSvuDJYZQfJXncVq2ilKTfkXKDHqEppAooO8jeD7hYUuM+MD9psqMKE4CXSDkPy0jC9u1lBNg+p+etCvEU6ftyNU2D6jL3JCYbw+2ocq1flnQo6bNo0oD4lZIyGuwLHCLpfeB9khFp21Wq5+1NCqX8Q5ZzAym8sixHANcBC0m6AFiXat8VgJ9ImpM00XYyKSx6v4qy6rpH7QYcSXrfRQqPrnp+1zXdyyF956oYpwcCt0h6isme3/7WKehDIocmGPTkmbSFbT/RgYzDu3vd9pElZP2e5Cm61h0WBqiLOq5R3eRZ4/Xz4u22L+tA1tLAJqQfwptsP1ZRzqeBzbKc623f2F86ZQ/PObZ3rKpDG5kLkgYKzZ6QUgP1PJDaAvgSsBApr+cAly8u0JD3qO1lquzbRtYwYCnSNX/cFRKKcz7dvqRZ9FEkT83dLpnEnRPJj2HqZPCyuUFt701l7kl1o1Qc4HAmJ3DfTgpBLV0UYKCSDf6Gl+6eil46JK1r+66e1pWQV9s9qi4kfYlk9IkO7uWSZmLK72/l38+6dAr6jjBogkGNpK2AE4EZbS8maSVSMv/nK8qbgzQ7+FaHei1CqkTzl2xMzGD7zZ72a5GxJXA0kweglWYu67hGkk4mh1+0w/Y+ZXSqA/VCxaW6kLQW8EjjPc+fq2Vs31tSzvXAVrbfr0Gn40gzlY8yOZTDVb4rkvYi5ZosCnzL9l870Ou3pPyLR6vKaJK1HFMbEOeWlDGWVB3pHtsrZcP0SNulvD2S7iQN+n9J8pDsSvrN7nbypBt5s9l+u8q+LXK2AJZlymt0VKdyO9CnURFwMdtHS1qIlF9XpUrhfMAPmPr8yhqjN9nepKd1BWWNdEtBiXbr+gJJ/2d7P0lX0uZ+XvV3s0OdNrZ9c1dhkRXCIYNplAg5CwY7R5BKLd8KYHuUpEXLCskDofNIZSyR9DKpwk3pMtB5BnuPLGtx0kzvaaTZ+jL8H/BFUlJrJzMXRzD1NSpbjeiB/LwuacD4h7y8LRVi1POA/2Tgk8CMwFDg7ZLG2oNMXR2rgYFCM+GS3qS9sdZJ6MupQPOA5e0264rwDHCXUsWsSYPZkuFGDbYmVUeqNOvZCL9sLJK8M6OAtSStVVEnSFWN7pb0IimkqnHdy1ZNOxzYkPT5vIaUqH4nqTxtGd61/a4kJM1k+3FJS5WUATCL7ZskyfazwBGS7iAZOYWRtDapsMDswMKSViQZkd8pq5Ck04BZSeGwZ5FCIasYDkuSqnYtypTeviqliE8hVwQkTeC8RcqBKVURMHMB6d60JU0VxYruLGlm0vWZV6kyYePeMhxYoIwi+X1bB5iv5bsznHS/KyOrrntUI2fmxDLH70KnO22v10a3sjp9ilTtsl1YZKlwyBp1CvqBMGiCwc5426+nSb6OOAP4nqcsY3km6QepLHuRDIh7AWw/qZJ9LDL/Ah7u0JiB9teolMxGPoCkXYCNGqE8eYBUJdTo16S8mYtJZUi/DnyipE6lS8R2IWeOOuS0oOb3zfZESVXu18/nxxCgUz2fIhUUqBrG0Xr8y7pYX5bfkUq0jqVakYIGXwZWJFWA2lWpD8VZFeT8W6l/yZ+BGyW9SnoPyvKuUi+cJyV9l5SnV+U+8H/AZ0ihfdgeLWmDbvfomnVsr6BUZvtIST+nfP4MpO/taaTrWzVxu8GatleR9BBM6vszY0VZ89j+raR9bd8G3CbpthL7f4uU37IAacKkcdN8g2RklWFGkhE6A1N+R94gfVYLU9c9ynZj8mkl2yc1v6bUp6rwtbK9Xh26NXksj3JLP52yE2916RT0D2HQBIOdhyV9FRiaY9b3AaqEv8zWMGYAbN+q6hVk3rP9fsOAyAPZKkbJD4Br8g9y1WRgqO8aQfqhnwNohHPNTsmZywa2/y5pqO0JwAil3giVyOEK65Gu8x0u2UivSc4qTXLutP1QRZWekrQPySsD8B2SQVGKmvMkxgGjJN3ElJ+nQuGCeQA8FDjW9oE16vVP21fUIOedbDiOlzSclNRfKl8FwPY2+d8jlPq3zElKEAdA0odsv1pA1H6k2f59SJ6HjUgeg9LY/lfLhERVI+Ld/DxOqYfJK6Sqd2UZb/vUnjcrRF0VAaHDimJ5kH+SpL1tn1xRh4ashkF1dvbQVUY1N6ElfQ5Palm3S5t1RXQ7z/ZOPa0rwCVM7cH+ExWKjdSoU9CHhEETDHb2JpUPfo9U0eR60uChLHWWsbxN0iHALEoJnN8Brqwg56ek8IuZSbN9VWm+RheSPCpVY+aPBR7S5EZ9nyKFtJVlXJ6FHSXpeOAFoJIBKekUknenUdHm25I+bbtUdSNJPyaF0DVmrM+WdLFLNmlt6ECqdHYoaaB2EykMsaguvRHrfkV+VMb2BPXQdb4Cj0u6kPQdaTa0ynoOHsielTNJs+tvUSGcqpk8KG3lJgqEDtq+HyBFnLlqtSaAf0laB3D+zuwDVCp6AVyZr9EJwEjSZ6tKlawrJX2H5KVrfs+q5K01KgJ+RJ1VBIT2FcX2LyvE9snqMB+r8R0Gfq1cZrnlGGW+wxeSwujahdmWCa/dAfgqsFgOY20wB9Wr1C3bcowZKGGEKOWoLQvM2ZJHM5yma9+XOgX9QxQFCIIayPHSR5Jm52Fy1Z4iM7GtsoaQSuROqkRDaqxZ6ssq6QHbq5U9fhs5y7QmXEva0PatFeV9FFgzL95r+8UKMhYhzaAPIw045gROsf33CrIeAZZrXN98/cfaXrb7PaeS8xiwsu138/IspMaWnyyrU6dIWtX2g5I+1e71LgbafUIOU1qCFHbUnNdTKXlX0og2q217t2oaglIe3XDbY5rWLVslJ66N7IdcoPN8c+6L7cq5L5LmJc2cb0oKPbwe2Nd24QGopG1tXyxpsUZYj1JFqZltl+5xI6ndZI9dsoJbk7xGRUCAm12xSmGB4/zQ9jEFtmubj2W7cKjYQPwO5/vuYqTqewc3vfQmqUHn+LY7tpf1Q+AQUp+1cY3VpNLbZ9j+YUE5XyDl932eKSdc3gR+7xIFR+rSKegfwqAJBiVdzVw3KDP7lcMdrre9aR261YWkY0k/7pXK4TbJeZiUGH0CacbreGA122tXlPch0oC2eeayVOnfOpF0Kan54bN5eRFSWNQOJeVcC+xg+7W8PBdwvu0tK+g0M8moba22VHmQ3il5ENpuprhsGeHaDZAejldoEFpATi2VpYrKkXQvydtwRcMAkvSw7eU61aEsDZ3rugZ10xLqeZdzc9ReOE7R924sk/OxVlTOx7LdXT+f7uTNCCxNOr8n3EHVQtXThLY2JB1Th6EgaW3bdw8knYK+JULOgsFKx1VaGuQwmnGS5qwyW9kg/wh2Z2SVqtpEKi7wA0nvkWLDq1ZqWRM4jpQ3MwepEtC6JWUAoC56dJAqFJWRU8vgOjMP8JikRnjR6qSqWY0k6m6NW00uSf0e8IikG/Pyp0lVsqpwHvA4KZn7KFJZ2tKzzqqpl0mm2ds3Mym8rtvS1+3oMHyqCtuSrkGndFw5pCx15L4oNa89ifRdM+n7tr/tMjlZr+Qw0dZQo4aepUIYJc0KfI/U22qP/DldyvZVZeRkWY1Qz0tI79GIDkI9ezxcwe1qyccCGmWyTwP+kY+/mKRv2b62gqxamtCqniqT6eD2D2ua5HpIqRx8x5NANeoU9CFh0ASDkmZ3veppGvkuMDYPZpvDaMr0Vyk9k98drq9SywfAOyQ3/MzA07arJt3uy+QeHRvlUJEqieu1DK4zP664X4NGSeoHmVy5C3KZ64p8wva2kr5g+5ycI3J9BTkjmNzLZCNyL5MqCrUJUfo/pV4ppa5fP3if6jJE6gpnKKpPXbkvF5IqbDWKFXyFlC+2Zpd7TM0WpLyf84CfV9ChlRGk70ujCuS/SSGIpQ0aYAemDPU8lpTf0xsGTdHPQJ35WD8nVYb8O4CkxYGrgdIGDbCW62lC23GVyQZ1TXJR0yRQzToFfUgYNMGgRk1NI0kzXytRrbHm1flRGTdVslGbxppVZNY0y3Q/cDnJEJkHOF3Sl8vEgzdRS4+OugbXWVZHsejOJalrplFt6TWl5OIXSWEiZamllwlMCutpMIQ0kKliNNc28ChIn8ZVq30lqTedS5XTQz8ppSIVB5MKQ5wELEga8N9A8rqWVsn2eU3L5yuVgS5MDnG6R9IOth/ocYeeWdz29kpJ5th+R6pcO/8Z0v2tUYFtJpI3ozcopGNTntNpkq6jJR+rJC+15AY+RfL4VOFutcmJrILrqzJZ1yRXXZNAdeoU9CFh0ASDnSOoobFmnYNa1dRYs8ZZpm80DWJeBL4gqWr5ylp6dNQxuFbNTdRqDoM7Ixujh5ISXWcHDqsgp65eJjDlzPx40kBy2wpy6hx4FKEuD03RvIWRpKahr+Zjz0UqA/wS8E1P7uXRFc+QZvUPt/21aqpOwS2SDgZ+T/p8bg9c3TC8XK6y2C8kLUia5LidVOJ8bAWd3s8TNY1CHItTvb9R21BPSb+C0l7ynri4yEaSbrK9ST7+M63rSvKIpGuAP5LOb1vgfuWKXiXzX2ppQkuNVSaprxFtXZNAdeoU9CFh0ASDnY4aa/ZC3gvU11izo1km5d4FpJLUrbPOlbxR7qFHRwl+zuTrXmlw7fqbqHUcBqfU0O8k4DGnCnm3UzH2PrMfU/Yy2ZjqvUw2atF1BtLg+G8lRdU58ChCoUEoQB6sL8KUCdO35+e1Coq5DrjM9vVZ5mbAZ0kD0lPoIdTL9vGSLiAZD7uRJjMmNr1eNoF7+/z8rZb1u1GiZG8+9gZ5ILs6qYrX1ZJmt1023PNw0nVaKJ/ruqQ+JlW4jJpCPRtGUAuvAw/Yvtz2z3rYf2bS923ePCHR+GEZTsV+W6R7yX9IJe4B/ku6r2xF+fyXuprQ7kSaSPouqcrkQsCXKsqqqxFtXZNAdeoU9CFR5SwY1Ej6LakvxMGkG/I+wDDb3y64/yL530YoSCO042vAONul+7VIutf2msrlXfPAcWRZ40jS/bZXlzSK1E37PUmjbK9UcP+rbG/Z5HmYondBFc+DpIXbrbf9z5Jyvt+i0xQ3MhdsHpq9F2PcS5WjGl6gEtuPsr2SBlA1KaWk5r1IoU+XA3/JywcAo21/oaS83UkJ3CuQcilmBw6zfXpF/eYDvsnUlZtK5eRIOo40+H+Uycn3rpDwPlW59Ma6kt+/r5N6Sd1MUwJ3L+YaFdFpPWD9/JiL5Pm9w/ZF3ezWTs7cpO/uWvn5HmAOt3R6LyhrZlL+hoF/NHJpqiDpDFI1sYYR/CVSAv1CwFNOfWG6239f0iTCAiRvaOP+9AZwpu1fV9WtDiTdbLujPBClqp7n2N6xJrWaZX+KPMnlEpXc8n38y7b/OFB0Cvqe8NAEg53WppHXUyKZ1JNL/a5ru7ny18GS7qJaA8rbVE9jzY5mmZzLDduu0gm8K65msiEyM6mnwRO0NDIrwKqkWeLLs6ytSN6Mf5UR4lSJaLSkhcsaVa3UEQZHqrb2DPBhSc0x95VCQyQtCRzI1F6HMoOa80jhU3eTDIcfkHLOtrY9qqQ+W5MGwmtkD0Yn3qcGlwN3kAyt0lXAmtiaVGmrauhTg/9JOogU4gXJSHo1DwR7nBWXtCxwKum7uobtF6oqkj27jcpPJhlrv7FdNQfjNlIRjGOAazoY4F0JfM721VnPT5KMiMITC3mi52ckT9OzpO/cx5TKgv+oKWepDJ8ANnbupyLpVFLu0qdJXo1uyd7VkyTtbfvkCsefCtVbRKPjJrROVT3nkzRjpwP81gklV8xnzPfx75K8oB1Rl05B3xMGTTCosT2OZND8qN3rkk62vXcBUbNJWs/2nXm/dageU3ww6QdsLClM5BrgrLJCOg3vyt6n15xLUUvaiDToe4Y0KCr9Y2Z7+ZZjrMLUoTBFmBdYxfabWc4RwMW2d68ga35SnPp9TFmhrmxhiHY5JtuVEWB7B6XGo9eTGsV1ysWkkKUzqT7Y/3jjfZN0FvAyqSrgm2WEKCW7L0sq/320pDVsH11Rp2ZmtX1QDXKeIjVq7dSg+SoppOrPJEP0zrxuKMU+D38iNb7stH/UuqRJmrNJfaREqlR2n6Sv2b6rgth5SOFhGwD7SJoI3G27bGjPz4ArJW1O8oicS/Jql+EE0oTBYk33geGkIi8nkkJuy7Ig6b7dKL8/G7BAHsSX+Vy8KGkO229KOpR03X/iav1x6iyiMQvp871Z07rSZZtJ97a7lEp4N98zC3nGm7avbUKJNGl3APCHFp3K5IjVrVPQh0TIWRB0Q9HQH0mrkuKT5yT9QLwO7FbxB6ynY11iu9t45TpCqZQa+21j+3ml6m9/Ic3MrgB8UNF4aHec0uFVkh4HVmzMpit1LR9te+kKx7+P5MWYtAo4znaZsra1UWdIh6QHba/aoYwp3p+q4XBKDVpXzIPDWUmhSh3pluX+BPir7Ws6lHMJqRniTUw5e11nUnkRPWbK4aHHtRpq7dZ1I+ceYE/bD7WsXwk4vernO3tTPkUKO1sH+Kfttt3se5CzNcnbNwfwRdtPltz/SWBJtwxi8vfncdtLVNDpG6QcjFtJ94ENSMbXRcARtg/seu8p5IyxvUIO0TuGZGAdUuWaN4UeN2QOIzVyrr2EsAo2oZXUtkqi7dKVwCTdTPK2dzShlEOj26hUKTS6Fp2CviU8NEFQA06Vi1bMM4RyS4NNSTu7vkpoPd6ga5plmsV2I0RtR+B3tn+ejaVRVQRK+l7T4hDSzOV/K4g6jzTTfBnJgNyGVMGnCjO0hhUoVWAqhaQ5STPzG+RVt5FKgJdqtpoH/PN2EtKhyUUcrpT0HVLSdPMgvcys5YqS3miIJoVCvkH5anDvO5V4xfY4qXKZ3lb2BQ5R5w1kr8iPjshhfgcwdU5PoQFoU8jbp4FW4+VzbdZ1xfBWYybLHyWpUiEMSf8ghYjeSfL87Voy16HRhHaSjiTP2N6SyhqPbjVm8soJkirN1Nr+rVJFsTVIn6NDmu6BhYyZTMMbugVwqu3Lsxe5Cn1ZRKNQE9qeDJcSkQ1QUzlk9xAaLenTtm8sKC5KNE+DhEETBDXiVBWsHftSfcA91WEKbtdpKFXzgHNj4Id5/4kdjEWbB1LjSTk1l5QVYvunkq4lzRJDGlhNNXjrDkl7kvKTPt6SrzIHUCUc53fAw0wOK9qJlPT+xQqynqWzkI4HmbJoQvNgrGxlq6FFt+2BpZuus4DF83LV0rEN/WqpUlfjhEMjzO8sKoT51fi5lKQPOVXLa145N2kyoQpLuHpTXZjchLZBTyWsu+NRSV+3fW7zSkk7kkK0qjKENMkyA/AJSZ9w+d5dz0k6HdgUOC57kKte83bVuzptBtwVdU0yrNvzJomeclQk3W177c5V4jigkEHThzoFNRIGTRB0T103+LrklGF2YMsWHY4rsf/Nkv5I6jHwIVK1JSTNT/GeHFNg+8jsxerO+CsqaySp50dVLiR12z6GlLfU4M2ycdeZxVtCAY9UqjBXhefzYwgVmlf2NFvZT3yyN4RK2qDd+qKDUEl/tL2duijBXsHQGm/71JL7NFPX5/KXwA05r6DxPVmVdA/4ZUXdFshelnVJ1+pOUr7Pv4vs3Gw0Zi/owrafqKjLXsClSqWtGwb86qQ8kW2627ErNLnS3SM0VZYjFRwpw3akUt0n2n4t3zMnTSq0MzS7wnYjf7LTEu6FDtfL8qswc8+bFKLO3+C6dApqJAyaYFAjaVvbF3ez7qSaDlXnD0XRG3OnoVT7kX7cPwqs58lVgz5KF0UUukPSfqQf9ZnTol4Gfmz795IWsl2qQlmn5FCw14EdahL5jqYsDLEu8E5F3WoJeZC0F3CB7dfy8oeAHWyfUof8MjhXBOwFmr1PM5PChR6keAPZRvL4lt1uVZyOwvwan0ulZPIXcz7NhsAKks5tvJcF5Jwh6XlS/6HmKmc/sV2laiIkj+OFTO75tGNe9+kyQiRtRcormRFYLOf1HFUmR8H2c8CakjYmnZ+Aa23fVEaXFramhkp3TsVmLm1afoE0MdTgJlK4bY9I+hlwfMt3+Pu2D+1Ex64O1wsyO6Wu3846f4MHouE36ImiAMGgpl2Cc9Wk5x6O85DtlUts3+XspaTN3E0FpOaQFeAfTS/NAdzlksnmnSYn5+2PIA00v2v7qbzu4ySD8U5SB/VPlNFroCFpRVK1pjnzqleBnW2P6XqvLmXdQntvQalEYLXpe1L2s1g3Sh3OjwM+TBpAVc156Ur+QqQBYF2Gatnj15KcnL17q5HyJa4nhRstZXvzTnWsShefp8K9dZr2aRictzY+i5LGuqUKYkFZiwPPOXV235BUtKSw4dci61pgW9tvld235HEKfwfbbdsbv1FZ7iHuoXloQTm13WPqOtc6r1lvXf+gM8JDEwxKJH0O2BxYUFN2hx5Oyu2om8Kx7z3NXnZnzGTqDqXqNDkZUqnR5d3U9M72U5K2I8Wrf7WCXgOClkIH5zK5XPfbpBj60gYNKam8wcykBn9VPpdDJKmRPK1UAWrGCnLq5HhgK9tVS8/2xL8p0c+kgaS1gJNJoXEzksosv13W0Kox3G+i7fHZAPw/2ydLKpUnBiDpeFJvrXdIZdtXBPazfX4FnV7OOSqNRpo7AK9UkDPe9ustuXhVZ1cvAVaT9AngtyTD70LS/b0s44BRknq70l2Zcx2qXPkOJk12zVTloC2/dVMrVfI8Jc1m++02L9UV2QD1eY2eqUkODExP1qAnDJpgsPI8KUH180yZmPomsH9RIS2D2aloJHHb/m4J3Y4geTNuzfuOkrRo0Z3rCqVq8vQ0krcbVEman+g2HbxtvyPpOdsdV5fqRxo5LksxZbPPHSkfew9MqprXzF2SqjR4ux74o6TTSIOob1OiF1Ev8Z86jRlNWTlrCLASMLqCqF8DXyEl9a8GfJ3UaLGoHhvbvjkbIFPhEs0LMx9I2iHrsVVeN6ykDIDNbP9A0jYkY29b4BagikGzG+k6/ZJ0zf+a15XlYUlfJQ3WlwD2ybKqUIvhl6ml0l3NnA/cpNQw1KTrfW73u3TJzMAypF4tkD4LD1KyaqVSn7WzSHmaC2fv9LdsfwfA9tkl5S1CKjjxl2ywzeDJfa52KihjVuD7pMiGb+bP1VK2r8o6lSrOUodOQd8SBk0wKLE9Ghgt6QLnrtAVqaXCUgvtZi/7gzo9Pf+WtElrfHuOf3+uMzX7l0a+i6QbaNPss4pMTS67DGmQvhopd6ksBwF7AHuSjKwbqNCktWYekPQHUuPJSt3KW+U1/T8euMjVmkZi+++ShjqVlx4hqcwg+1OkwhlbtXmtSvPCXUkG6E9tPy1pMaoZIQ0jaHPStflf1XuLUwn4Onpx7E3Kw3uPdJ+5nuRFqkJdhl+dle56ovAbYPv4PKG0ad7vaNvXVzzuEsBGjXzIPNFxg+3Ck3iZX5IafV6RdRytLopz9ISkb5LuUXMDiwMfI1UJ3CTLfrigqBEk46xRfezfpPvvVf2oU9CHhEETDEqUKxsBD6lNzwIXrGxUV/J2C3XOXlamruTkzD7A5ZLuZMqKROtSzwBpILAwU1Z/e5/q/SKayy5/QAqX+EZZIU4ldk/Lj6lQgSatvcBwUmhPp93K044tg1BJm0m60XapRHVgnKQZSSFHx5OSuGfrYZ9mPRrNBr/dmlTeYqAWlfco6XvTWH4aOLasHOAKpUa07wDfkTQfMJW3tAh5328ydY+dUl6anDT/I0k/6yJkqQwdG36qsdKdijU13qSEvM/ZvpYmz6qkb9tu+53ugQVIk3CNCanZ87rS2P5Xi2FcukR5Zi9SRMK9We6Tkj5cQc7itrfPxm3D+191VrAunYI+JAyaYLBSa2UjSTOTBpzL0lTSsewPfaZ59vIi0uzl0TWoWZWOY9RtP6LUFO6rTK5IdDspTKHS4GoAUmezz4OA62y/IekwUkWkcfWoOQW9XQZ2KmzvWoec7N07jTQg+zOpo/u5pM/WTyuI3InkDfsuKex0IVLuUlkulfSFhudX0kdJ/ZZWLSMkT2YcQwoRar6nFH7P8uD6SlLe0htOTSfHAV8oo0sTlwN3AH+h+gC2x5ClknyclBM0ESobfrX9HrhAU+OSHu7DJL1nu1E2/yBgQ7qYpOiBY0mTeLfk5U+RQpzL8q/8HjpPAuwDVA0jfc/2+w3bQ9IMVMunej+HhjXyBRenyQPcTzoFfUhUOQsCQKk3SvOMY6mQKkkXk5q5fRU4ipQE/5jtfbvdsWe5Q4HZ3GHPlg51GGl7FUk/AN5pxKhXqWKjGiqmDWQkrcLkZp+3u2SzzyY5Y2yvIGk90kD956Su5WvWpGrjOH1WrUfSD3L4TGu3eKBSQvJDJMPjblKRinOBw2yXTkjO37NzXLICYBeyvknqEP8lklF0BXBAgWIerXLuBA4nhfdsRfJEqMkTVFRObU0AVaGiWRdy7gW+DFzhyVXOHu7Bq9GVrPNJYUaXACN6sdhEYSTdTPJAV21q3CxrXlLY1IGk3jZLA1/x5DL6ZeV9FGjcR+61/WJFnU5ichjcDcA+FUKRG0UrXiOFDO5Nytt81Hap1gCSNiNNBC6T9VmX1HD5lm537EWdgr4lDJpgUCPpWyQD5B0mD7JcZhY0y3nI9spNA9FhwPUuWWY3y7qQFEIxgRR6NCfwC9snlJVVB3nw8X+kH4utclhH1cFHuzLZY8qEdAwGmj5PxwBjbV9Y1Yjs4Th9adBsZftKSTu3e71s/kKr7pL+YXvxDvS7nvT5rtQ0tkXWXqTB56Ikz0PpkFFJD9peVU3ljCXdYXv9nvZtkXMkqdLepe7wB1/ST4C/2r6mQzn32l6z+TMtabTtFSvKG04qgrIr6T4+gpQv9Ga3O07e/07b60l6kymN7UolxSV9qt1699CBvht5HyZ5xR4Edqv6Pir1xhpl+22lanWrACe5ZI8oSeu6JU+t3bqCsoaQohs2I13v622fWVZOljUPsFaWc4/tlyvKqU2noO8IgyYY1Eh6Eli76o2vSc59tteQdDtpNudF4L6yhlGWNcr2SpK+RgpTOQh4sL8G/ZKWIRlYd9u+KMeob2+7cFiHmiqmAX9veqlSb5zpHUlXkYolbEr6DLxD+jxVGvB1c5zajaS+QtJTTFne+sTmZZcsMiDpdNIA7wqmnFX/RcH9myseihTCNhZ4qIycJnl3kbx9fyIVG3gOONb2UiXlvEnKBRpPyp2p3PenSdZ7TC4jXmXA/yfgF6SKaWuRQpZWs/2Vsjo1yZyXVFlwP1L40yeAX9k+uarMTtCUVbJmBYYWNbDy/g3jSvl5RtI1N9XfvzGkst0rkDyavwO+aLutAdaNnNr6t0nat9Wr2m5dATk32d6kp3V9qVPQt0QOTTDY+Qf15CacodTB+VDSgGh24McVZQ3LHp6tgV/b/kBtChf0Fa4nObnu3jjTO9uRZvhPtP2apPlJISd10+ehfkqJ5QcxdW5IWW/mbUxZUax5uUqRgefzYwjVqhe27nNZF+uLsh8wK+m7dzSwESkEphS2a6vEWKOsb5NClhYkVaO6gZSIXRqlvl27kSZLzgPWsP1SNiIeI/UWKirrG7Z/27LuWNsHd7VPF3Jaq2QtSFOVrCLU+b41Md62JX2BZOz9tiuPaTskrQ2sA8zXYsAPJ/VtqsLOTN23Zpc267rSaWbS92Te/BvcKAQwnIoFDzrVKegfwqAJBjs/BP6aw6oqN1Kz3SiFezudJ1qfTqpqNRq4Pc/09WcOTcfJya63Ytp0j1MVqEubll8gVd0qhLqo1sTk2fkVstxSeR01cQGpD8YWpIHtzqTmqqVwLi4gabFsZE8iexELk3NolujEU+iaKx7avj//+xYplApJJ5IrL5UhD/SWYMrvb+EeSfke9Fr+HiNpI9KEyzPAb4qG6Um6HLiTVLVx1zrC+0i9VH7Zej62x0kqW5Tly5LetX1B1vcUmq5ZCWqpkiVJWc6CpO/z8yRPbdUJrjcl/ZDkydogf+7LlLiekTRZNwNTGupvkHKiCqNUjeyrpObRzb1/5qBcs9ZvkYz/BUgheQ2D5g3gN/2kU9APRMhZMKiRdB/pB3YsMLGxvkI8/8+A4xsD8zyA+L7tQ2vScwZ31i+nk2PXkpycZY0i9VRZlFS97QpS87MqXb2DLsgD0C4pGzNfJ025IZNypyTdVjbspUleu/CXB22XrSpWSw5N9kD9gKkrHpbOp2sj+5+2Fy65z+6kKl4fIzVQXIsUPlpYnzzhs43t5yWtRMrnOIYUuvSB7d0LytmSNMO/DrA88ASpSe9fSbk5/ymqU2+gVCXrClIo1ueA/9ner4KcKXKElKpkjSwTNqyU5H4K8CSTe3V9jBRK950qkxFKBQG+Ctxv+w5JCwMb2i7VqFPSIp3eQ/I9ajHaeO1JZa9L/d5J2rvT8MK6dQr6lvDQBIOd8ba/1/NmPfI524c0Fmy/KmlzUghaaSRtQcuAiFS8oD+YxfZNkpR/xI6QdAfJyClLnV29gy7oT4OlAI3qTC/kz/nzpIFaKSQtTfqOzJk/Tw2GU21W/RngrjwzWzqHpomGB2pLOvBAdUGVvhr7kipu3WN7o3zdynqTZrH9fP5/R+B3tn+ek6dHFRXi1LX9KpjkFVuZVIL4BNJAsnTYkqS1SGFlnyR5EIYCb5fJMdGUfYJ2J5UBvws4StLcFcJib5N0CDCLpE+T8gevLCnjJGBT28+06LoYcA3pfMuycvPn2fY/c2heWcZJOoEOjPZ8j3qWyY0wOyL/lizH1JEEhY21unUK+pYwaILBzi2S9iD92DSHnJX9ARsqaSbnhnp5pm+mKgopdW+elRQzfxbJlX9fFVk18W4euDwp6buk2cKqTcZq6+od9Ewdg71e4CeS5gS+n3UbTiq/XJalSEbDXEyZS/MmqfljWTrNoWkwT85N2NepqtVtkgpXt1LXTThFNYPmXdvvSiLfox6XVKqwQMtxNyaF6jZ6rpQTlJL3G16atUiDz7+Qym9X4dfAV0hd4Vcj3Vs+UVJGcyPbxvMW+WHKhxEfTKqSNZYUEnUN6V5ehhlI+UWtPEf1e2ZdPW1qM9rrukdJOpx0LsuQrvfnSNEXpbxPdeoU9C1h0ASDna/m5x82ravyA3Y+cJOkEXn/3ajeVHEdp9LPY2wfKennVOyi3gmSzrO9E6mZXnNy8sakH7AqdNzVOyhFHYO92mjKVbkKeJ1ktFfC9uXA5ZLWtl11MNws78is42zurHt9px6o5sF1V7LL8G9Jc5G8DjdKejXrVIabJf2RlMf1IVLVNZSKVRQO0VOqKvk6qWfM9cBPbL9VUpepsP13SUNtTwBGSCpVJtt2qZyrAvImSjqHlENj4IkKeS+/A+6X9HvgX3ndQqTv82+73Kt7Pg9cJam5p03p3jh0aLS3UNc96sukCm4P2d5V0kcob0TWrVPQh4RBEwxq6vohc2oYOJZUxUbA0bavryjunfw8TtICpGTEWn9wC7Jqjin+GnAmqRrc9zsR6HoqpgUl6HSwV7MuEyR9npSPVRfbSHqE9L25jjSo2c92KUNZqYLTb+m8e31HHqheGFxvk/89QqlD/Jyk61SG/YDtgfmB9Ty5qeNHSf2pivI7klfmS6QcmuUk3U0ahE4oqVODcUrd6kcpNUR8gVRaujCSVgf+5dxkUtLXs47PAkeU9dhnQ/Y0UhVNkZLMv2X72qIybB+jVETh86QQKJE8Nl/L99HS2H45f/8aPW2+XLHAQC1ho0161XGPeicbkuOV+hK9RAcFegbSfTMoRhQFCAY1ecZ4C1KS+iQDv0LcfJ06HUYaCG3M5CotZ9k+rI/12AfYk/Sj8BxThmPY1XrsdFwxLSiOUl+kTUkzlS+SBnu7uOZ+NiV1+ilpUP0HpsxVGVlRXqNv0zakylv7A7eUPUfV2L2+LiQtCCzClPemwtXJmuSsR/KMjVAqWjC7WyrDlZDVUX+VJjlLksLO1ib12/lvlcIQWZ//kEKD9id9tk6x/fdud5xSxkhSvsr/JG0A/J7UIX4l4JO2y1bwehzYsqGDpMWBq20vXUZOXajmnjZKxR3uIHmMGkb7EbbL5gnVdo9Sqkh3CMmz8n1SdcBRztUQ+0OnoG8JgyYY1Ei6htRsrrXKWaGkWdXcYTrLnIVkSKyfZd4BnGr73bKy6kDSqbb3rElWbRXTgp7pYrD3G9v/6Eedbmmz2mUSilvkPWJ7WUlnApfYvk4Vus6rw+71kn7V3esuWQpe0nEkr8ijQMN7YdulQoRybsFqpGqCS2av78W21y0jJ8ua1F/F9uJ5guI0l2xeKOnjJGNm3fy8AHCv7S3L6pTlzQdgu2oex6T3WdJvSMbVEXl5lO2VSsq73fYGTcsCbmteV0DGnKRQ6K2B+fLql0ghwMe6H0vdS1rX9l09rSsoq/Z7lKRFgeG2x1Tcf8DdN4OeCYMmGNSoqXTsQCHHqr/J5NySHYC5bG/Xf1rVgyaX7B1re/m87g7b6/e3btMjGmAdr7NHdB/btYWcSTqWNOh7h9SzYy7gKttrFtx/Ldv3qMPu9ZLeBx4G/kgKwZkiB8blS8E/AazgXGikKkql0lcmlQ1uGGqV7ntZ1hok46Mha9J3ucD+l5Gu7RukUs13kco1lw6hykbC4cB3Sdd6CMnrcLLtUhUhJT0MrORUgfFxYI+GJ6yKl07SqSTP2h9Jk1LbMrlENbZ7zIlUKiN+M3BOUyjcR0kNHjex/emSOtXW00btS6VPta6grFruUZJuajWs263rS52CviVyaILBzrWSNnOHDQY1OYG+23UFWaplVvgWSaM70W8AUWfFtKBnBlTHa/dCDo3tg7M3440sfxzwhRIiTgFWofPu9fOTBq7bkwbWfyB5jF4tIaOZp0jVrDoyaID3bVuSIRU96EDWe7bfV65sptRfpcyAeASpAt1brR5nNVWJLMh+JA/P6o3wuez5OVXS/iWN5otIie0vkwzjO7K8T5CKGJRlZtIMfyOE7r/A3CSvtClW5GVR28c1r8iGzbGSSoVRqZueNpIK97RRyjNbB5hPUnO7g+FUKLmd6egeJWlmUtGaeZX6vzUmEoaTPH99rlPQP4RBEwx27gEuy4PsD6geKrZs80L+oS/V2K+JhxqzxlnWmuSZvWkV9U7FtKAL1HXH6+H0f8frv0r6NfXl0MxKMjwWJoVDLUAq6XxVGTm2XyYVwKiE7VdIieCn5dyXHYBHJB1k+7wKIseREt1vYsqS8qVC14A/SjodmCuHjO1GKvJRhdvUQX8V21fApJyV1tn8u9us646vA5/O71tD/lOSdiQZo4UNGts/zdd5fuCGJq/FEJIHqBQ95W1I+qHtY3oQ86ykH5A8NP/J+32ENLD+V3c7tqGunjYzkopmzMCUpc3fIOWfFabGe9S3SMbtAqRCBw2D5g0m56D2tU5BPxAhZ8GgRtJTpHCVsRVd7z8kJSLOQhqAQLqhvg+cYfuHXe3bRtZY0uzdMNKA7J95eRHg0bJhDwMJSY+S+gJcQeoV0BqOU7bvT9ANGsAdr3shh+YPpIHM120vp5SDdnfRvAdJrwFdJtpXyFlZhWTMfDrr9fOKIVVtDf0KoWt7kxKb1yB97663fWNZfbKsIaT+Kps1ZJEKlhS6d+aQqQVJ4bRfZcrZ9NNcImm+u1CwKmFieb86Pe3dHafH8KzsbTiY5G1seLH/Q7qHHlfmnqlULvuTrd97pepwj9ouVZJY0iLOzXvzZ2J222+UlUGN9yhJe9s+ucw+va1T0LeEQRMManKc8udsT+xx465lDCH9qO/WoS6LdPe6B3b3925RL1RMC4qRZ3VXz4v32X6pP/WpG0kP2F5N1ZP5nyR1h2+LU5+NInKOJDUafIxUJeu6TgdA2Thb2PYTHcj4Cany00hS2eTrq0ze1EE20nYhFSl4oOmlN4Gzi+SWNMnq0ijoIJ9jiv2Ucr7G2l6mrKwejjPps9oX5Im37Uify9aeNn8s4C1qlXchKURzAslonxP4he0TKug2G5NLLi9J6o1zrSeXBi8qZ1vSd+5NSYeSvH0/qeL5rUunoG8JgyYY1Eg6mzTIvpYpwzpKlW1WTnavV7vpD9VYMS3omfwjfyJwK8l4XB840Paf+lGnjwA/Axaw/TlJywBr267ULFCpP8QmwF22V1EqkXuR7TUK7l9p8NtGzkRS3kujj1Tjx7VhtJdKwpe0Fem9m9H2YpJWAo4q6zHKskTyquxKMib+CPzWJas2NXmRm3mdZJz8JIfdFZHzJduXlDl2GxkTaApZbH4JmNn2sBKyavO0FzxeR585SbvaHlFyn2VIPW0WhEk9ba6o6D1slEr/Gim0+iDgwbKf8SzrQdJ96UOkEPAHgHG2S4V/Khe6UCpRfgzpu3OICxYH6Q2dgr4lcmiCwc7T+TFjflTlHkmr276/HrWmT8KY6XMOJSVNvwSgVN72L0C/GTTA2aTk8EZDxr+R8mmqdj8/nNQociFJF5ASxXcpsf8zFY/bSt3Nb48ghYndCmB7VM55KE0uCvAiKfRsPGmg9idJN9r+QQlR15Jm5S/My40KcG+Q3tetutu5OZG8Jam8oWfhiSTbVZPQ28k6BjhG0jF1Gy9doJ436ZYjSd+hwmTDpVJDzjYMkzSMFK79a9sfKBedqIBsj5P0DVKFuuMlPVRBTqO0+RakNgeXSzqin3UK+pAwaIJBjQv2mynARsC3JT1DmjWsNCsbBDUzpCXE7BVSonOfI2mGHII1r+0/5llxnErlVu0Sj+0bc5L5WqTv3b7NieIF9v9i1m9WUkO+hW1/U6nHylK2CxUX6IWQ0PG2X5emTDcrKySHe+4MvExqFHhgHoAOIVW9KmPQrOsp+9eMlXSX7XVzMn5PzNHzJsWQNHd3r1fJy7P9Q9XUzLQHLu5pA0ld9VAR8JEyB1P9PW1OJ00EjAZuz+HSpXJoplRPa5MKcnwjr6syNn1OqfjFpsBxkmai+r2uLp2CPiTeoGBQkxOUpxokVEhQ/lw9GgVBrVyb88Quysvbk6oa9Qf3keLa35Y0D/l7J2ktqpXGJe/fCN15IT8vnAdwz5bMYRlBygdYOy//mzTwLFUtrUYelvRVYGg2rvYh9W4py7zAF1sNrpwfULaR5eyS1rR9L4CkNUhVryB5frqlxgkkSO9VIw9vYeDV/P9cpIIqpb1ZSj2NvkJLM1O6KRrRhZzjgZ+Qwg+vA1YE9rN9PoDtnxUQ8xHgM6TzmkI85T8HfyT1tNnQU/e0uZhUwKIwtn8FTGokK+mfpEm9xvLOLl68Yl+SsXWZ7UeUSm+3KxzSE9sBnwVOtP2apPmBA5t0+pCLl1CvS6egD4kcmmBQI6k572Vm4EukmdEys5YNWesBS9gekUN7ZnfujxAE/YFSf5Z7gfVIA6HbgbVsH9QPujxke+VsgJwMLEdqRDkf8GVX7+p9D8lQGkM6x+Xy//MA33bxHhsdFReom+wx+hFTVhQ72i39W/pYp9VJhQVmzzq9QSqo8Aiwhe0/FpQzgvYTSaULq0g6jZQLck1e/hypRPH3K8iqrZlpzjHZhuQV2R+4pcxnSdJvgRG272zz2oW2v1pC1hO2lyr7WlXqykvLsk62vff0qFNQL+GhCQY1th9sWXWXpEJVjZqRdDgp2XYp0kzvMFJp0nW72y8IeplPZ+NlUvUopWpcfW7QMGUzvstIniKRinFsSjJCqvAM8A3bj8Ck5OcDSX2OLiX1JCnC+0pVxRqeo8Wp0NRS0sbAPbbH9bhxN+T9f5SNUtt+sxN5dZBzBJfPHjC1hCoVMmYyzV6vmYFtSJ3rq7C67W836XitpKMryqqrmWmjIMHmpAIV/2sJHewR29/o5rVJxkxBz8Ozqq+nTRE6zRFqpq7f0IGoU1AjYdAEg5qWOOwhJKPkoxVEbQOsTCqNiu3nJdUWLx4EZZC0J6np4cdbYvHnoP+atA5l8sx+M7N2KHfphjEDKflZ0spOTRbLyOm0uECDXUjNNV8hdZy/A7izRLgLMIU3ZI68/DqwW5tJmD5F0hakRsIzN66v7aPKyGitcCbpIlKxiiq8rFSm93ySMbojJZsgSjo571tXM9MrJT1OCjn7TvbY95Zn7SZ6bki6Pamvym2SWnvabNcLOg3E0J+BqFNQI2HQBIOd5jjsD8izvRXkvJ8rCTVmd2erTcMgKM+FpIpUUzWIq5IsXRMvlB34FuQJSaeSemxAGrz9LScFF+4b0WlxgSY5XweQtACpe/pvSF3My/7e/hb4ju07srz1SN7ffis0ksO7ZiXlS5xFOr/7ahC9BCkPpgo7kIzRy5ic77JDSRmNnjgPkgb5nXI4cBzwhu0JksaRSib3Bj1a7dmYPoi+88zW6Q0JgkKEQRMMdg4iNeN6Q9JhpJmuKqEif8wVVuaS9E1gN+DMGvUMgsLYfp2UaF92YNeb9NYgZxeSN2q/fIw7gQNIxsxGXe7VUGpyUYEGzcUFFnbJxny52tf6wPKkymK/JnlpyvJmw5gBsH2npP4OO1vHqdfHGNtHSvo5TeGMRcnnMamxLqmcdKXBdjbQ95U0u+23KsoomsBelLub8zVsvy3pDnr2pFShI8+DKvS0KUCdXuC67ht13n/CYBuAhEETDHYOzSVk1yNVevk5cCpQthnXRNKg5Q1gSeDHtm+sVdMgmLbZpDeE2n6H9L39eZuXiwxw2+03STxQtuLh/wH/AE4jJYI/U3L/BvflSZKLsh7bA7c2DLCyhlZNNMKmxmUP1CtUqCZmu87yzeuQvEWzk4zQFYFv2f5OBVkdNQ7NlcMWBGaRtDKTB77D6Ty0srco3dNG0s+A4xs5VJI+BHzf9qEAtr9bo34nFdTpG25pzivpWNsND3Wd959COgV9Sxg0wWCnuRnXaa7ejGsOUqja/0ihL1UTnINguqS3Qt0krUtqQtnaO+TjBfXq0YtTBtvzSloW2AD4aS65/ITtnUqKWik/H96yfh2qGVp1cKWkuYATSPmCpoQnuo03bAoqGmm/JJU3viLLGC1pgwpyoH3jUJGMmrPpoXFo1mMX4GMkQ7lh0LwBHFJRp57o0VugGnvaZD5ne9L52H5V0uakRr6lkLQkqYhH6/d34/x8dkFRX5b0ru0LstxTgJma5BW+/0i6kq4N29NL6BT0IVG2ORjUSLoKeI5UZWlVUhLnfVVLtUpagTST+iXg37Y3rUvXIAimJidf70/Kf5jUoLOn2fQ2cmYmha6tRxrM3EGa5CiVzC1pOKmgwKdIoWfzkqqe7VxGzkBDqRHnWrb/mpdnAmbO4Y1FZTR6ecxMKsAymjSoXgG41/Z6FfS61/aadZTbVm4S2m6dpLG2ly8gYwiwQ2Ng3QlZ1hjby3Wzzdw9DdYl/YduetrYXqCkXmNI1eXey8uzAA/YXraMnLzvaJI3s/X7W6r4RdbhClIhjc8B/7O9X1l9sqyTSOXkm/t3vQjMAgyvMDkR9AHhoQkGO90246rAS6Qb3yvAh3vYNgiCznnd9rU1yDkXeJPUIwdS/tF5wLYl5dzZ9Pi17X+XVUTScqT70LIk4+pR0j1qbFlZdeHUiPPn5MajeTBbqrxxwxsm6ffAHo3zyed7QEXV/pXDzixpRlID0scqyuqocShMuk7fAjo2aLKs0TmX659dbFPE83AVqS/aqNYXJN1aQbXzgZs0uZ/QbkDVPKTxtk+tuG9rpdLdgT+TcniOKmLsdcHKtpu9fFdKut32BpIe6XKvoF8JD00Q1EAuk7s9aVbnT8AfbD/av1oFwfSPUnf3oaTk9OZSu2WT+aea1a8605/3nSOpUS5RXdIXgBNJFeoeIM2ir0rqXH6A7cur6FMHSj2MxgCXuoPBg3LjyZ7WFZQ1LymnYVPStboB2KfKQFb1NQ49jOTt/wPwdmN9RZ1uBlYnVZNrllV71TQV62nT2PZzpLwUATfYvr7iMY8gTQRexpTf30LXStLTTBke1hyC56Khpy0yHwM+0zAiJS1MKh60TLMnMBhYhEETBDWQB1W/bzcDFgRB79EUxtSMGzH4JeScTQoxuycvrwnsXDa5PHsbzgPmJg2u/pvlPFxw/9HAF1qLCUhaFLi8qoFVB7k62Wyk0KB3yFXKbA8vKeci0uC8uXfMbG5qGFlC1rq27+ppXUmZ7RqHltn/6Tarqw6uP9Vuve3SDaALHGtkc3W2vqCOa5VD89bu5D1vkbc5KQzuH6TP+GKkcNRbgW/a/r86jhPUSxg0QRAEwaClqbLVMGAp4J95eRHg0e7yF7qQ91fgR7ZvycsbAj+zvU7B/R+1vUzZ16Ylcr7SnqQcI5EKDCxqu3QPsHaD8LIDc0k72j5f0vfavW77F2X1qhNJiwBL2P6LpFmBobZrL+Fd1PsgaS1SaOYngRlJHtK3yxq2dSLpbttr1yhvJmBp0ufz8bK5dEHfEzk0QRAEwTRLnk0/nFRVDOA24KgSyepb1qzSbA1jBsD2rSrXaPeDdjkTeVBbKI+jt5Ak4GvAYraPlrQQML/tUs01bb+bPWvzk0J1P0QK1S2jy9qkim/ztRgiw0kD7DI03p9ayklLGkYy2BqfyVtJ1bEKN3ptkvVNYA+Sx29xUlno0+idMuhFZ7h/TaoAdzGpuMPXgU9UOWA20L4HLGx7j1wVcCnbV5UUdYOkL9FhOGQTqwKLksbJK0jC9rk1yA16iTBogiAIgmmZ3wEPkwp8AOxE6qvxxSI72362eVnSh0lVuKryVM6hOC8v7wi0C6vpisOBvyj1+niQNMhcHTiYvuv03hWnkHpubQwcTerz8xuSfj2SS/R+hVRw4RVSjgm2N6ygy4ykXJcZmNIQeQP4chlBtk/Pz0dW0KMdp5I8fqfk5Z3yut0ryNoLWAO4F8D2k/kz2q/Y/rukobYnACOyZ7IKI0if84YH898kQ6msQfM9kmE6XtK7VAyHBJB0Hsl4HMXkymsmFQ4JBihh0ARBEATTMovb/lLT8pGSRpUVIunzpN4hC5CSlBchVcsqW4p2N1KzwktJg6rbgV2L7mz7zzmv4PvA3lnGI8B2tkeX1KVu1rS9iqSHYFL/kRlL7P84qRz2Vrb/DiBp/yqK5ByS2ySd3WqUlkXSj7s/lI8uKXL1llynm3NuVBXes/1+co6BpBko7kkpS489bTLj8vs+StLxwAtM9nKVZXHb20vaAVKjXDVOtgSusVkryeu0TE2enqCPCIMmCIIgmJZ5R9J6tu+ESY0236kg52hgLeAvtleWtBHJk1CKXCVqnwrHb5YxmhTGA0xKep696z36jA8kDSUPqCXNR/LYFOVLJA/NLZKuIzUhLj14beEsSdt6yq71v7f9mRIy3m6zbjZSs+R5SJ+NMkyQtLjtf2SdPk5Tj5WS3CbpEGAWSZ8mJadfWVaICvS0oXgY207AEOC7pB5QC5He2yq8r9RDpvGZWpyS5cAb5Pd+CZo8rLZvryDqYeCjJEMtmEaIogBBEATBNIukFUmhIHPmVa+Sqop11R29KzkP2F4tz6Sv7NQD5D7ba5SUsySpp8qitOl8XkLOhcC3SQPhB0nn9wvbJ5SRUyeSvkbKeVmF1Hfky8Chti8uKWc2YGuSwbhxlnWZ7Rsq6DRVInsnpXVzue19ScbMH4Gf236ppIxNSKFUT5EMtkWAXZtzq0rIGpJ12SzLuh44q4r3QNIFwA9b87PqRtIlLV7T7rb9NHAosAyp5Pa6wC62by15zN1J79vHSKFiawF3l/3eZVm3ACuRSmU3l5KuvVR2UB9h0ARBEATTPJKGA9h+Q9J+ZUurSvoLaZB9DDAvKexs9aLVyZrk1NX5fJTtlbIRsSopf+ZB2yuUkVM3kpZmcv+Rm2xXbWLZkDc3qXnp9hUHnw8C23hyz5BFSMZRqfLDWY/vkYoenAOc5II9WbqQNxOpal6jSlYlr0OWNSOp4paBJ2y/X1FOn/S0KWtQSpqHZIAIuMf2yxWOOZZ0bvfk783SwJG2t68gq89KZQf1EQZNEARBMF0h6Z+2Fy65z2xAI5n4aySPyAW2Xykp50Hbq5bZpws5j5BmiS8Efm37NnXQ6LMOJJ1EahpcNQG8diR9FjiDVN0OUmWxPVyi0aOkE0hFJM4AfuOSzVDbyNuW1IjxTUmHkjxaP3HJZq9Z1hZM3RPlW7avrSCrTwbqFcpmfxFYj2Sw3Wn7sgrHvN/26jl/bk3b76lis9Zg2iQMmiAIgmC6QtK/bC/UT8c+gg46nzfJ2YfklRkNbAEsDJxve/3alC2JpJ1JIWdLks7vD7Yf6C99Gkial8kz/HeXneGXNJH0Xo1n6q7zpStlSRpjewVJ65E8ficCh9hes4ycLOtxYMumIgqLA1fbXrqsrLx/r/e0KWPQSDqFVPL5orxqe+AftvcqeczLSMU39iOFMb4KDLO9eQkZd9peT6mBbMefg6BvCYMmCIIgmK4o46GpexCjmrrEN5XEbSyLNPjs1140WZe5mZzgv7DtJfpRl4ZH7eO2j5K0MPBRl+yNU7NOD+XCEscAY21fWDWvR9LttjdoWhZwW/O6ErIm9bSxvbhSz5fTbNfa06bMuWZP5HKNnKCcMzTWdtnqgs0yP0XysF5XNTwvmPaIKmdBEATBNEcbA2TSS8AsReXYXi8/11L21fZidcgB/i7pYmCE7cfygK/fjZnMJ0g5HYsCj/avKlP0xjkKeBO4hIK9cXqJ5ySdDmwKHJfzaYZUlPWIpGtIBQpMyje6P4dpYfvSErL6qqdNmX5JT5C8j43S2wsBpQp6NJC0CpND1+4qa8xIGp5z8OZu93pZL2vQt1T9ggVBEARBv2F7DtvD2zzmsF16sk7SN9qsO7bE/qtL+mjT8tclXS7pV10NkHpgBeBJ4LeS7pG0R6PwQX8h6ThJT5IMh4eBVW1v1Z86kfIl9iLlPzXKZpfpjdMbbEeqRvZZp3LScwMHVpQ1M/Af4FPAhsB/s7ytgC1LynqveZCvij1tJC0h6U+SHpX0VOPReL1ktbp5gMck3SrpVpKBPJ+kKyRdUUKnH5OKOcxDKuoxIucvleHC/Pwg8EB+frBpORjAhIcmCIIgCODLkt61fQFMiu2fuYd9mmnMyCNpA+BYUmPMlUjJ5mW7178JnAmcmeVdBPxS0p+Aoxs5FX3M06SO7h8HZgJWkFS110dddNobp3Zsj5P0Eslb8CTJs/ZkRVndNmWV9EPbxxQUd5tq6GlDKkl9OPBLYCNS7krVfkLdNTUtww6kcuvvwqTJiJHAT4oKsL1lfp7Ky5pD/YIBTHhogiAIgiBVudpF0g6SzgXet71bif2HNoWkbA+cYfsS24eRQrRKIWmopM/nZOeTgJ+TDIkrgWvKyquJCcDNwHXAkSQvxBH9pEuDX5EKFHxY0k+BO4Gf9adCkg4nhV39MK8aBpzfS4fbtsS2B5M8PGOBb5E+R2W9GACz2L6JlIf9rO0jSCF/pckV1h4H5siPx2zf1niUEPUMU05AzESqDFcaSUe1LA+h996/oCbCQxMEQRAMWlrCwXYHLicNio+SNHeJuPmhkmbISfubkJKvG1T5rX0SuAU4oaVM8p+yx6Y/2IfJvT42avT66CddALB9gVIvmkZvnK3dYW+cGtgGWJnkIcD280oNO3uDwp4Dp2ax55ByaBo9bapUhno3D/KflPRd4DmgUi6OpO2AE4BbSedysqQDbf+ppKj3SPlGN5LO7dPAnZJ+BWB7nxKyFm54vnL+08Xk9zIYuIRBEwRBEAxmHiQNgNT0vHl+QPKKFOEiUkjPy8A7wB0Akj4BvF5BrxW66odScnBWJ+/aflcSkmay/bikpfpDkZYE7peYXPYXSR8C3miuEtfHvG/bkhphcLP14rEKGyRq09NGUpWeNvsBs5IM3KNJYWc7l5TR4EekBrYvZR3nA/4ClDVoLsuPBrdW1AdSCN0Fkn5IOrdrbf+yA3lBHxBlm4MgCIJBi6Q1gH/ZfiEv70wqSfwMcESZykaS1gLmB26w/XZetyQwu0s2VZQ0M/ANYFmaQmlKhsHVSh29PmrU5SrbW+Yy2Q1DtJnZgTNtH9LHegk4DFiQ5CU4BtgNuND2yb1wvDIlkuvuaTNb43NeFUljbS/ftDwEGN28rg4kXWL7Sz1s09w7ZxgpL+4u4LcAZb/DQd8SBk0QBEEwaJE0EtjU9v9yKNfvmZzM/0nbpZL5a9TrYlJuwVdJVcW+Rsov2Lc/9GlloPf6yIUCHrb9yX449khSDs1mJEPrets39tKxDrFdKGdINfW0kbQ2aZA/u+2FJa0IfMv2d8rIybJOIFX0a26sOcZ2mdLPRY7To+En6ZZuXrbtSnlCQd8QBk0QBEEwaJE02vaK+f/fAP/NSc5IGmV7pX7Sq9GcsdF1fhhpYByDqhYkfR5oDMpvtX1VP+vzG+Bs2/fXIOt4UqWud0jFGFYE9rNdOkld0qnAIkzZ0+YJkheicE8bSfeSqvZd0TASJD1se7myOuV9v0iqCCfgdtuX9bBLlWOMtL1Kz1sG0ypR5SwIgiAYzAzN/TggJZbf3PRaf+aZfpCfX5O0HMkbsmj/qTMwyeV59yX1L3kU2FdS0TLGvcVGwN2S/iFpTONRUdZmtt8g9Zz5N7AkA6Cnje1/tayqnK9k+1Lb37O9f6sxI+nuqnKrImlfScOVOEvSSEmb9bUeQTmiKEAQBEEwmKk7mb8uzsjJ7YcCV5ByQg7rR30GKpsDK9meCJCreD3E5JLJ/cHnapQ1LD9vDlyUQyMrCaqxp82/JK0DWNKMpOIAvVVZrkwvqO4oc9F2s32SpM+QqrftSuq9U6ZhaNDHhEETBEEQDFps/1TSTUxO5m/EYQ8h5dL0KZK+17TYGID+Jj/3ZrWsaZm5gEbxhjn7UQ8AbD9bo7grczL/O8B3chWwd2uU38y2pCIGPfFtUm+kBUleoxuAvXpJp7ryIsrk5DSMn82BEbZHR2PNgU8YNEEQBMGgxvY9bdb9rT90ITUXBFiK1PPliry8FXB7v2g0sPkZ8FBO6BYpl6Y/vTN1czhwHLkMtaRxwOd76Vg9DtpzsYX/s/21XtKhEpLWJTV5XYQ0thUpkf/jpH/KeFcelHQDsBjww9xDaGK9Ggd1EwZNEARBEAwQbB8JkAdUq9h+My8fQWrwF2Ryid+JwFok40/AQbZf7FfF6uXu5mR2229LugPojQT3Hr0h2aiaT9KMfVTdrqhn5LfA/qS+Up32H/oGqcrhU7bHSZqHyd5SJC1r+5EOjxHUTBg0QRAEQTDwWBhoHjC+TxQFmALbEyV91/YfmezJmi6Q9FFSSNcsklZm8sB+OKmpZa8ctuB2zwB3SboCmNSHxvYvSh8wNR19J7+XSwJLkxpZNopi7FRQ1OsVGoS2JedjjWxafgV4pWmT8+gdgzLogDBogiAIgmDgcR5wX25maWAb4Jz+VWlAcqOkA4A/MOXgunBD1AHKZ4BdgI8BP2eysfEG0FvNQot6AJ/PjyFMDpGsyu3A+rkAxk3AA6ReNF8DsP1wQTm35J42lwLvNVb2UjPMyKcZgEQfmiAIgiAYgOTO5evnxdttP9Sf+gxEJD1Nm1CpRu7EtEwOqdvB9gU1yautp01dNPrDSNobmMX28UWaYLaR064pZq80w4yeNgOT8NAEQRAEwQAkzy73xgzz9MQywHdIjRlNKrt9Wr9qVBM5DOtbQC0GDamnzQ8kbUOqTrYtcAtQyqDJldZ+ACxLU1nlisaDJK1N8sh8I68rPTa1vVGFYwfTEWHQBEEQBEEwrXIOKQzrV3l5h7xuu37TqF7qDKmrq6fNBVmfLUklnHcmNemswr6kqnSX2X5E0sdJRlYhJO1o+/yWcueTqJLXU4C+KIYQlCQMmiAIgiAIplWWsr1i0/Itkkb3mzb1s1t+bu7zYqBKSF1dPW3msf1bSfvavo3UmPa2CnIA/md7Uhlq20+RGnUWpdGbqdNcnklIusn2Jl2ts71WXccK6iMMmiAIgiAIplUekrRWo5eQpDWBu/pZp9qwvViN4urqadOoQPaCpC1IBQI+VlGn0yTNCJwNXGj7tTI72z49Px9Z8fiTkDQzqYLcvLlIQXNluQU6lR/0LlEUIAiCIAiCaRJJj5GakP4zr1oYeIzUn8a2V+gv3epA0jBgT1LDUIBbgdObyhqXkTVVMnuVBHdJW5JylRYCTiYN+I+0Xal0di7XvCspp+c+4OySjTAbxsg3mDqvZ7cud5paxr7AfiTj5TmmrCx3pu1fl9Ep6FvCoAmCIAiCYJpE0iLdvW772b7SpTeQdBYp96VRsnsnYILt3UvIaPS0OR/4KlN6Hk6zvXR9GoOkH9o+puQ+Q4GtSblQb2QdD7F9acH9LwYeJ53fUaQiA4/Z3reMHlnW3rZPLrtf0L+EQRMEQRAEQTAAkTS6JUeo7boeZOxM6mmzGnA/U3oezilqNJQ4XmGvj6QVSN6ZLYAbgd/aHilpAeBu290arE1yHrK9sqQxtlfInq3rq5ZtlrQOqZHtpNQM2+dWkRX0DZFDEwRBEARBMDCZIGlx2/8AyFXAJpQRYPscSedRY0+bHihTOu3XwJkkb8w7jZW2n5d0aAk5jRC81yQtB7xIMkhKk6/V4sAoJl9rA2HQDGDCoAmCIAiCIBiYHEiq3PYUyVBYhOTRKEUv9LTp9nCFN7Q36Oa180oc84ycyH8ocAUwO3BYif2bWQ1YxhHCNE0RBk0QBEEQBMEAxPZNkpYgFT4Q8Ljt9yqKq7OnTXcU9tDkczuG1CC1OZm/cFlqSUNIldteBW6nWknrZh4GPgq80KGcoA+JHJogCIIgCIIBiKRtgetsv5lDsFYBfmJ7ZAVZT7dZ7TLGQ8HjHGL7ZwW3vZNUTvqXwFYk75NsH17ymLd35+0pKONKkndpDmAlUsW1ScZjc7+cYOARBk0QBEEQBMEApCnJfT2SJ+NEUr7Jmv2o05LAqcBHbC+XE/s/b/snFWQ9aHtVSWNtL5/X3WF7/ZJyDiM1DK3sfZL0qe5ez01EgwFKGDRBEARBEAQDkKbqXccAY21f2FhXQVYtPW0k3UbK7Tm9oYekh20vV0Gnu4D1gT8BN5P6vxxre6mScvrE+xQMXCKHJgiCIAiCYGDynKTTgU2B4yTNBAypKOtUUk+bU/LyTnld4Z42mVlt3ydNkSozvqJO+wGzAvsARwMbAzuXEZBzaA62/YeKOrTKe5OpCxu8DjwAfN/2U3UcJ6iXMGiCIAiCIAgGJtsBnwVOtP2apPlJ3pEqrN7Sv+ZmSaMryHlZ0uLkQb+kL1Mxgd72/fnft6hQvS3LmChpL1K4WR38AngeuJBU4OArpCIBTwC/Azas6ThBjYRBEwRBEARBMACxPU7SS8B6wJMkT8iTFcV13NMmsxdwBrC0pOeAp4EdywhoSsBvS4UE/DoruH22JUfpDEn32D5K0iEV5AV9QBg0QRAEQRAEAxBJh5P6oiwFjCCFjJ0PrFtBXF09bZ4CNpU0GzDE9psVdDkxP3+R5P04Py/vADxTQd5u+XmvZlWpVsJ5oqTtSHk9AF9ukRkMQKIoQBAEQRAEwQBE0ihgZWBkUwL+GNsrVJQ3ExV72kj6Xnev2/5FBX2mKrdcRwnmTsieq5OAtUkGzD3A/qSCBavavrO/dAu6pmpiWRAEQRAEQdC7vJ871jfyVWarKij3tJnR9hhSz5eLJK1SQsQcPTyqMF82IBo6LgbMV1aIpFklHSrpjLy8hKQtqyhk+ynbW9me1/Z8+f+/234njJmBS4ScBUEQBEEQDDCUyohdlauczSXpm6TQqjMrijzM9sW5p81nSGFfpwKFetrYPrLicbtjf+DWHAYHsCiwRwU5I4AHgXXy8r+Bi4GrigqQ9APbx0s6mTahZbb3qaBX0EeEQRMEQRAEQTDAsG1JWwMHAW+QQsV+bPvGiiIbBQC2AE61fbmkI8oKaQrJWos08L8b2L9KOWPb10laAlg6r5oiDE7Spwue7+K2t5e0Q5b7jlrqShfgsfz8QMn9ggFAGDRBEARBEAQDk7uB12xXLdXcTF09bS4EfgNsk5e/AlxEQU9PK9mA6ap89HFAEYPmfUmzMDk0b3GgcH5Q1uPK/HxOmf2CgUEUBQiCIAiCIBiASHoUWBJ4linLEZcuCiBpVlJPm7G2n8w9bZa3fUNJOfe2lDUmlzVeq6xOBY71UKMYQg/bbQb8CFgGuIFUBW5X27dUOOaSwAGk8LdJE/+2Ny4rK+g7wkMTBEEQBEEwMPlcXYI67Wkjae787y2SDgZ+T/KIbA9cXZeeLRSadbd9g6QHSWFwAva1/XLFY14MnAacRbU+PUE/EB6aIAiCIAiC6Zzmnja2l5S0AHCx7UI9bSQ9TTIw2uWm2HaVni89HXOk7R4rsUm6yfYmPa0reMwHba9adr+gfwkPTRAEQRAEwfTPNuSeNgC2n5dUuNyy7cXqVkjSTK29cFrWPdPD/jMDswLzSvoQk42t4cACFdW6UtJ3gMtoysOx/b+K8oI+IAyaIAiCIAiC6Z/3c+W0OnraLEfKV5m5sc72uRVE3Q20emAmrbP9xR72/xawH8l4eZDJBs0bpMIFVdg5PzcXYjBQuwcqqI8waIIgCIIgCKZj6uxpk0PXNiQZNNeQ8nzuBAobNJI+CiwIzCJpZab0rMxaVI7tk4CTJO1t++Rujle0/HOPnqgysoK+I3JogiAIgiAIpnMkjST1tNmMZEBcX2VgLmkssCLwkO0VJX0EOMv2ViVk7AzsQsrpuZ8pPSvn2L60rF49HK9QLk5fywrqIzw0QRAEQRAE0z919bR5x/ZESeMlDQdeomQ4lu1zJJ0H7GD7gg71KULZJpt9JSuoiSoNlYIgCIIgCIJpi42AuyX9Q9KYxqOCnAckzUUKV3uQVGTgvrJCbE8k5cD0BXWGI0Vo0wAkQs6CIAiCIAimcyQt0m697Wc7kLkoMNx2FcMISYcB7wB/YMrGobVWFIuQs+mfCDkLgiAIgiCYzunEcAGQtLTtxyVNNZiXtIrtkRXE7paf92paV7qiWKfln3tLVtB3hIcmCIIgCIIg6BZJZ9jeQ9ItbV627Y37XKlMO69JVU9KnbKCviM8NEEQBEEQBEG32N4j/7uxW2bDc4PL0kgaBuwJbJBX3QqcbvuDgvvXUv65bllB3xMemiAIgiAIgqAQkn5ne7em5dmAK2xvUkHWWcAw4Jy8aidggu3dC+5fW/nnvi4lHdRLGDRBEARBEARBISQdDcxre09JHwKuBs60PaKCrNG2V+xpXQ8yhlBT+ec6ZQV9S5RtDoIgCIIgCAph+zDgDUmnATcAP69izGQmSFq8sSDp48CEkvrUVv65j0tJBzUSHpogCIIgCIKgWyR9sXkROIzUf+Y6gCohWZI2AUYAT2WZiwC72m5XeKA7ObWVf+6rUtJBvYRBEwRBEARBEHSLpO68MG7OqykpdyZgKZJB83hryeSCMp7uQqdS5Z/rlhX0HWHQBEEQBEEQBH2OpG2B62y/KelQYBXgJxV72gSDmMihCYIgCIIgCAoh6XhJwyUNk3STpJcl7VhR3GHZmFkP+Ayp2tmpFXQaJmkfSX/Kj+/mktClqVNW0HeEQRMEQRAEQRAUZTPbbwBbAv8GlgQOrCirUQBgC+BU25cDM1aQcyqwKnBKfqxKBcOoF2QFfUQ01gyCIAiCIAiK0vBWbA5cZPt/krrbvjuek3Q6sClwXM6nqTLZvnpLqeebJY2uqFOdsoI+Ijw0QRAEQRAEQVGulPQ4qQHlTZLmA96tKGs74Hrgs7ZfA+ammren4/LPvSQr6COiKEAQBEEQBEFQmNxQ8w3bEyTNBsxh+8X82qdt31hC1nrAErZHZONodtvtKo11J6OW8s91ywr6jjBogiAIgiAIglqQNNL2KgW3PZzk6VnK9pKSFgAutr1uheN2XP65N2QFfUOEnAVBEARBEAR1USahZhvg8+QGlrafB+YofcBU/nlG22OArYCLJBUyqnpTVtB3hEETBEEQBEEQ1EWZ0J/3nUKFDJDD16pQS/nnXpAV9BFh0ARBEARBEAR9ilJptKtylbO5JH0T+AtwZgVxdZV/rltW0EeEQRMEQRAEQRAUIueXdLfumSJysmdma+BPwCWknJUf2z65glqN8s/bAdd0UP65bllBHxFFAYIgCIIgCIJCtEv6L1MIoGW/3wBn276/Q51mBT4LjLX9pKT5geVt39CfsoK+IxprBkEQBEEQBN0i6aPAgsAsklZmcvL/cGDWimI3Ar4l6VlyYQAA2yuUEWJ7nKSXgPWAJ4Hx+bk0dcoK+o7w0ARBEARBEATdImlnYBdSmeX7mWzQvAGcY/vSCjIXabfe9rMl5dRZ/rk2WUHfEQZNEARBEARB0COShgA72L6gv3VpRtIoYGVgpO2V87oxZT09dcsK+o5IcgqCIAiCIAh6xPZE4Fv9rUcb6ir/XLesoI8IgyYIgiAIgiAoyo2SDpC0kKS5G4/+UqbO8s81l5IO+pAIOQuCIAiCIAgKIenpNqtt++N9rkxG0kjgIGAzUm7P9bZv7G9ZQd8RVc6CIAiCIAiCQtherL91aMPdwGu2DxxgsoI+Ijw0QRAEQRAEQSEkDQP2BDbIq24FTrf9QT/q9CiwJNBR+ee6ZQV9Rxg0QRAEQRAEQSEknQUMA87Jq3YCJtjevR91qqX8c92ygr4jDJogCIIgCIKgEJJG216xp3VB0JdElbMgCIIgCIKgKBMkLd5YkPRxYEI/6hMEURQgCIIgCIIgKMyBwC2SniJVAVsE2LV/VQoGOxFyFgRBEARBEBRG0kzAUiSD5nHb7/WzSsEgJ0LOgiAIgiAIgkJI2haY0fYYYCvgIkmr9LNawSAnDJogCIIgCIKgKIfZflPSesBnSNXOTu1nnYJBThg0QRAEQRAEQVEaBQC2AE61fTkwYz/qEwRh0ARBEARBEASFeU7S6cB2wDU5nybGk0G/EkUBgiAIgiAIgkJImhX4LDDW9pOS5geWt31DP6sWDGLCog6CIAiCIAgKYXsc8BKwXl41Hniy/zQKgvDQBEEQBEEQBAWRdDiwGrCU7SUlLQBcbHvdflYtGMSEhyYIgiAIgiAoyjbA54G3AWw/D8zRrxoFg54waIIgCIIgCIKivO8U3mMASbP1sz5BEAZNEARBEARB0DOSBFyVq5zNJembwF+AM/tXs2CwEzk0QRAEQRAEQSEkjQQOAjYDBFxv+8b+1SoY7MzQ3woEQRAEQRAE0wx3A6/ZPrC/FQmCBuGhCYIgCIIgCAoh6VFgSeBZcmEAANsr9JtSwaAnDJogCIIgCIKgEJIWabfe9rN9rUsQNAiDJgiCIAiCIAiCaZaochYEQRAEQRAEwTRLGDRBEARBEARBEEyzhEETBEEQBEEQBME0Sxg0QRAEQRAEQRBMs4RBEwRBEARBEATBNMv/A/WKjG4PXQNtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "#Code task 12#\n", "#Show a seaborn heatmap of correlations in ski_data\n", "#Hint: call pandas' `corr()` method on `ski_data` and pass that into `sns.heatmap`\n", "plt.subplots(figsize=(12,10))\n", - "sns.___(ski_data.___);" + "sns.heatmap(ski_data.corr());" ] }, { @@ -3333,7 +3811,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 87, "metadata": {}, "outputs": [], "source": [ @@ -3355,24 +3833,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 94, "metadata": {}, "outputs": [], "source": [ "#Code task 13#\n", "#Use a list comprehension to build a list of features from the columns of `ski_data` that\n", "#are _not_ any of 'Name', 'Region', 'state', or 'AdultWeekend'\n", - "features = [___ for ___ in ski_data.columns if ___ not in [___, ___, ___, ___]]" + "features = [i for i in ski_data.columns if i not in ['Name', 'Region', 'state', 'AdultWeekend']]" ] }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 95, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA38AAANdCAYAAAAk08WyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eZRc133n97lvqVd79YpGYyMAgiABwpRok6YpazSyREm0PceOfRzLPrGPcsY58jiOPJEdb0kcecaRo+MoZhzFEw/n2LEizbFl+3jRSCNSpGSZWiBSXEQQQBMg1gZ632qv9+otN3/cqkJVd3V39Ybu6n6fc0B2V9dbuvp+7+/d3/0tQkpJSEhISEhISEhISEhIyO5G2+4bCAkJCQkJCQkJCQkJCdl6wsVfSEhISEhISEhISEjIHiBc/IWEhISEhISEhISEhOwBwsVfSEhISEhISEhISEjIHiBc/IWEhISEhISEhISEhOwBjO2+gY0wMDAgjx49ut23EbKLeeWVV2allIPbfR/dQqjJkK0k1OPaCPUYspWEelwboR5DtpK16LGrF39Hjx7l5Zdf3u7bCNlBjEzkeOb8FGPZCgd7Yjx5ZohTw5l1n08IcXMTb2/XE2oyZD10qttQj2sj1GN3sdn2a6sJ9bg2Qj2GrJdO5oa16DEM+wzZNYxM5Hj6hevkKi7DmSi5isvTL1xnZCK33bcWEhKyDKFuQ0JCHYSEhLRnK+aGcPEXsmt45vwUmZhJJmaiCdH4+pnzU9t9ayEhIcsQ6jYkJNRBSEhIe7ZibggXfyG7hrFshVS0NZI5FTUYy1a26Y5CQkJWI9RtSEiog5CQkPZsxdzQ1Tl/ITuT7cpbONgTI1dxycTMxmsF2+NgT2zLrx0SspPoptyhULch3cpm6izUQUg30U02ptvZirkh3PkL2VS2M2/hyTND5CouuYpLIGXj6yfPDG35tUNCdgrdljsU6jakG9lsnYU6COkWus3GdDtbMTeEi7+QTWU78xZODWf48LuOkYmZTORsMjGTD7/rWOiNCtlTdFvuUKjbkG5ks3UW6iCkW+g2G9PtbMXcEIZ9hmwqY9kKw5loy2t3M2/h1HAmNJYhe5rt1uB6CHUb0m1shc5CHYR0A91oY7qdzZ4bwp2/kE3lYE+Mgu21vBbmLYSE3D1CDYaEbD2hzkL2KuHY737Cnb+QTeXJM0M8/cJ1QHmCCrZHruLywUcPdXyO9SQSh8nHIXuF1cb6Yg2OzpW4NFXkUG+Mp567HGojJGQT2AxbV2cr7VdoG0M2myfPDPHJZy/zWtHB8XwsQ2cgafHBD5zc7lvbtWy2jsOdv5BNZaOxyetJJA6Tj0P2Cp2M9WYNvjmZ59JkkZP7kpwaTofaCAnZJDYrD2cr7VdoG0O2ikBKAASi5fuQzWcrdLzqzp8Q4iTw/wBDUsozQoiHgB+TUv6v675qyK5mI7HJzYnEQOP/z5yfWvac6zmmWwn1uLfpdKzXNfjUc5c52BPfE9rYLkJN7l02Iw9nK+3XXrKNdUI9bj3PnJ/inv4EDx3qabyWq7i7elxtJ1uh4052/v4D8NuACyClPAf8zGoHCSH+TAgxLYQ43/Ta7wohxoQQ3639+5Gmn/22EOKKEOKSEOIDa/9VQnYD62lmucea465LjxBqcjew1rG+x7SxXYQ2MmTdbKVG96j+Qz1uMXt0XG0bW/F5d7L4i0spX1r0mtf2na38OfBkm9efklK+vfbvPwMIIU6jxPlg7Zh/J4TQO7hGyC5jPYnEeyz5eL16hFCTXc9ax/oe08Z2EdrIkHWzlRrdo/oP9bjF7NFxtW1sxefdyeJvVghxLyABhBA/BUysdpCU8gVgvsP7+HHgL6WUjpTyOnAF+P4Ojw3ZRaynmeUea467Lj1CqMndwFrH+h7TxnYR2siQdbOVGt2j+g/1uMXs0XG1bWxXk/dfBv498IAQYgz474FfWvcV4b8TQpyrbbH31l47CNxqes/t2mshe4z1JNHvsea4m61HCDXZNax1rO8xbWwXoY0MWTdbqdE9qv9Qj1vMHh1X28a2NHmXUl4DnhBCJABNSllY99VUEu7voTwyvwf8H8C/hFq5oEWXbncCIcSHgQ8DHDlyZAO3ErJTWU8S/V5pjrvJeoRQk13HWsf6XtHGdhHayJCNspUa3Wv6D/V4d9hr42q72ezPu5Nqn78P/IGUMlv7vhf4NSnl/7zWi0kpp5rO+x+AL9S+vQ0cbnrrIWB8mXM8DTwN8Mgjj4S1ZUM6Zjf0O9pMPUKoyZCdQ7fqM7SRIXeLbtXI3STUY8hKhBpSdBL2+cN1EQFIKReAH1nh/csihBhu+vYngHpVpc8DPyOEsIQQx4D7gMUJuyEh62YX9TvaND1CqMmQnUGX6zO0kSFbTpdr5G4S6jGkLaGG7rDqzh+gCyEsKaUDIISIAdZqBwkh/gJ4NzAghLgNfAx4txDi7ajt8RvALwJIKS8IIf4KuIiqyvTLUkp/7b9OyE5hp3lXdlG/o3XpsfbeUJObzE4b591Kl+sztJEhm0q7eaXLNXI36So9hjbk7hFq6A6dLP4+C3xFCPH/ogTwL4FPr3aQlPJn27z8pyu8/+PAxzu4n5AdTt27komZLd6V7UwIHstWGM5EW17r0r4069IjhJrcbHbiOO9WulyfoY0M2TSWm1cKtsup4XTLe7tII3eTrtFjaEPuLl1uZzaVTgq+/IEQ4g3gvagk19+TUj675XcW0rXsRO/KwZ4YuYrbuBfozr40oR53DjtxnHcr3azPUJMhm8ly88pYtkLB9rpSI3eTbtJjaEPuLt1sZzabTnb+kFJ+CfjSFt9LyC5hJ3pXnjwzxNMvXG/cS8H2yFVcPvjooW27p/US6nFnsBPHebfS7foMNRmyWSw3r2RiBrmK2/i+2zRyN+kWPYY25O7S7XZmM1l28SeE+IaU8p1CiAKtJWwFIKWU6WUODdlFrCcefSPela2Kf6/3SWk+9wcfPdQ13rVQj3eXTsZht3oRd2KOSTfqM9RkyGLWqq12719uXjk9nGnk/nWLRu4m3ajHbrUhAF88N8anz44ylbcZSkf50ONH+NGHdnarw260M1uFkLJ7K88+8sgj8uWXX97u29i1NMejN3tJVotHv9vHbSVCiFeklI9sy8W7kN2gyU7H4U4cr6vRjffcTKjHtbEb9NgtrFVby73/iVODPD8y0xUaDfW4NhbrsVvn4y+eG+MTX7pEwjJIWToFx6fkePzWD9+/4xeAu5m16HHFVg9CCE0IcX6l94TsXprj0TUhGl8/c35qxePq3pVMzGQiZ5OJmR1NZuu93l4h1OPdodNxuN5xvp2EGttcQk2G1FmrtpZ7/+WpUtfNKzuFbtNjN9oQgE+fHSVhGWrsahqZmEnCMvj02dHtvrWQDlkx509KGQghXhdCHJFShn/VDVIP8bg4kSNX8UhHDR48kNkRYVft2Eg8+qnhzKq/0+KQlwvjubCa2QqEerw7rGXcdzLO10OzNiK6QACOL9cUptkupCzMMdlc9pImF4+nk0MJLk+VdlT48HayVm0tfv9MwebKdJGpggOw5z/P9dCNerw2U+TstTmm8jaj6SgnhxI7/u8+lbfZl4y0vJaydKby9jbd0e5ns9M1Oin4MgxcEEK8BJTqL0opf2zdV92D1Lf3gyBgdK6MEIJ82SVu6jz9QnlHenu2Mh69XYnj2wsV4qZOKmZwZbpE3naJ6BpnDuy4UP3tJNTjFrPdeRjNc8WV6SI358sYmsbjx3vJVYyOSoEvV0I8ZmphxcDNZ9drcvF4uj5T5G9fvc33HunhSH8iLFHP2ueN5vfPFGxeHVV9yYdS1pLPcyfm6e5gukaPXzw3xu99YQTPlwQyoGR7/N4XRgB2dPjkUDpKvuKSid0JHiw4PkPp6ApHhayXrWgJ0sni79+s68whLdRDPEYm8kRNnaipY7s+kwWH08PpHVnad62VkdZioNqVOL5/KMm52zmEECQtnYgmKNoe4zmbkYncjvt8tolQj1vMdlcEe+b8FEEQcGmqyEKpSjyi4wfw0o0sT56xGqFki/XQrL/R+TLDaWtJCXHX88OKgZvPrtfk4vl6suCQsAwm8w5HB5J7skR9u53Q50dmgM601TzPXJkuNl6/b6j18wTCXnBro2v0+Cdfu0bJ8YlHdCKagR9ISo7Pn3zt2o5e/H3o8SN84kuXAFpy/j7ynnu3+c52J/VngpGJPHnbJR012Z+2NjTfrpjzByCl/CfgEpAB0sCl2msha2AsWyEVNcjbLpahPnbL0Cja3o4Nu1pLPHrdM5GruC0GamQi1/bc9c+jmSP9CYRQhtMLwIoYPHa8j3v6E2FOUo1Qj1vPdudhjGUrTORsLEPDlxJDE1iGRiAlV6ZLbeeLxfqbL1Z5c7LAbPFOGE4qauD4sitzTHYye0GTi+frou2RsnTyttt4bafasa2gnb17fmSGJ04Ndqyt5nlmquCQjhp83z09DCTV7kn98wzzdNdGN+lxdKFC1BQYukAIMHRB1BSMLuxsHf3oQwf5rR++n3TMZLpYJR0zw2IvW8jFiRxvThawXZ+UZWC7Pm9OFri4zPN1J6y68yeE+G+A/wX4Kqpk7qeEEP9WSvln677qHqQe4pGOmtiuT9TUcbyAZM1DuFPDrjrNaVprs9LlQmQsU+ddJwfRhGi8HkjZ8UPFbg+PCfV4d9iqXL5OONgT47XRBfoTESxDw/MDAGKmethuN18s1l9fMkK+4nJlutR4mKwfV//d6lr502/c2JVauVvsBU0unq+TUaMW9rU3w4eXs3eXp0p89H0nOz5P8zyzXMhoJ7mEu93urYVu0qOpCxZX3JdSvb7TOT6Y5PHj/Y0xd3wwud23tGvJVTyEEERNHaCxfshVvHWfc9WdP+DXgYellP+1lPJDwPcBv7nuK+5RnjwzRK7isj9tYbsq9MpxA/bX4vufPDO03be4Idrt5K3kCa5/HrmKSyBl4+uHD/dQsFsH9Fp6BK5l97FLCfW4y3nyzBCmrpG3PXpiJo4vcbyAREQnomtt54vF+jsxmAAJs0WnRV/14/aIVu4Wu16Ti+fr/SmLkuOxP221HV+7nbXau9VYzh7W+/6tZBNDLS+ha/T46D292F6A4wYEgcRxA2wv4NF7erf71lYkHHN3l3TUAAm26yOlxHZ9kLXX10knR94GCk3fF4Bb677iLqQTr1tzc8my6zeqfR4bTO4KL91ak92Xa7YJrDvfaq27j11KqMddRrv54yPvuZdPfeWqqvCZieL6EtsL+P4DaX7u8XtWbTg/mIpycijJZMFhImcvaWa7R7Ryt9h1mmw3Jpvn62ODST5wZqil2udeapa82UWhVms+vZJNDLW8hK7R4688cR8zRYdb8xXKrk/U0Hlgf4pfeeK+7b61FdmKHLSQ5XnwQIa4qTNZcCjaHsmowT19cY5tYLe1k8XfGPCiEOIfAAn8OPCSEOJXAaSUf7juq+8C1lKFZztDybaa9RTJWO7zWMkIrsQeKWMf6nEXsdL88dTPvK3jUK52+tN1jX/zY6fbHrNHtHK32FWaXGlMLg5p/NFtusftZiuKQi1nD1dbGIZaXkLX6PHUcIbf+y/OdF3I7sWJHKNzZaKm3pKDVnb97b61XYmab8qcHk63zDcbibToZPF3tfavzj/U/p9a6SAhxJ8B/wKYllKeqb3WB3wOOArcAH5aSrlQ+9lvA78A+MCvSCmf7fi32EZCr5tiNQO11nOt57jtLtF/l1iXHmHvaLKbWGn++Oj7Tnasg7Xqb49o5W6xq2xkaNNWZzPtXafXC7XcMV2lx27cFNiKHLSQ5dmK+WbVxZ+Ucr1lc/8c+L+B/6/ptd8CviKl/IQQ4rdq3/+mEOI08DPAg8AB4HkhxEkp5Za4ETYzOfrCeI58xaXo+CSjBicGE/QnrRW9btuRnL3Ray53/E5KNN/uEv13gw3oEXawJpdju8bXWq67kXvcqNe+k2u3e0+zVmzXY2SiwELZ5Z+d6A/bqqyR3WYjO7Fp9TF1YTxH3vbIxAxOD2e2fddiM+aLTs/R/NC+ncWT9oLdWwvdpsd//Rcv85/fmMYLVGXnH/meffzRzz6yzl/h7pCOGkznKiyUqvhSogtBzNQ41LtnHQ5bzmY7CcTiSkObiRDiKPCFJi/KJeDdUsoJIcQw8DUp5f01DwpSyv+t9r5ngd+VUp5d6fyPPPKIfPnll9d0T80hLc0T5XrKnY9M5Pilz7xCwfERgoYAHjrUw7HBZCNEptmYWLpgPGdzT3+icf2bcyUOZKIqv2cLDMdGf+fljn/i1CDPj8xsyme5WWz2YkEI8YqUcmfPxGtgJ2pyOTZj3K5nLCy+7s3ZEpenihzujy15wN3oPT713OUlXvv696tVDezk2iu9B+AzZ2/yjStz9MZNDmQsxnMOC2WXd57o5+fb5BZuN6Eet1aPIxM5Pvq51wH1gOd4AY4XcHJfkmTUYDAV5eJEjltzFRIRwY15Gy8IMDTB9xxI05uMrmn+38z5ejNs+3rOsZnPFOtlu5xkoR43psd//Rcv8w+vL23Z8eNvG9rRC8D/8W/P8ZWRKQqOh+dLDF2Qsgzee2qI3//Jh7b79vYsa9Hj+kvFrI8hKeUEQE1M+2qvHwS+3fS+27XXliCE+DDwYYAjR46s+QY2I6SlPtF+/rtjzJeqSAmxiI5EMl92OXc7yy/90L2N9z79wnWCIGAiZ/PWdBEJRA2NTCxN1fMZnSszX6ryrpODW9LAdaO/83LHf/rsKKeH0zsqPKgbQyi2mW3X5HJsZNyuJRe33XV9P+DiRJ6ZvE3eVsWZcmV3yXlWusf6/1d6INuI176Tz2e1sNLBVJT3PLAP1/d55WYWy9DojRlcGM+HjaS3h23V4zPnp7h/KMmlqSKOF2AZGo4XcO52ln3pKBfG89xeKOP5knJVNadOWDpVT/LGeIEfvDfCZ87eZDAVXXUhshGNLnfvG7Xt6znHTgiTDe3elrGlevxPbRZ+9df/6Gc3dN9bSrZcpeT4xEwDKyZwPNWcPluubvethXRIJ33+flBK+c3VXtsg7ZqatN2SlFI+DTwNyouy1gutFma12IN2cijRUtHs5FCisduVt10ihoYXSKq+8pBKCdnKnca39apIl6aKWIaGJsDzA752eYZLUwVsLyBhalT9oNHAtX7cZk3mGw0tW+74qbzNY8f6Vj3vTgoN7Xbukh7hLmpyOZYbdxfGczz13OUVx9Nnzt7k2kwR15eN0LV6Y+TlwiIvTuTIVTyuTOURQqM/EcHxAgSQtz0QSx/sVrrH0fnyig+29esWHZexbIV01ODBA5lNLXC02nvqP3/peh7L0IiaOlJKio6/7OcV0spuspFj2QpH+hMkowav38pxbbYEqNBgL5DEIjrlqo/rB3iBej0ZNYgYgorrc3W2yGyxyv50lKoX8NZUgXO3s/zGk/cvGUcbdZy0u/eNFj5ZzznuRuh2SOd0kx6DZU6+3Os7hRtzFQ70RClVfRwvIGpq9CdMbszt2SJDXUcnO3+fAr63g9c6YUoIMdy0hT5de/02cLjpfYeA8XWcf1VWSo5e7Im8MVvkc98ZJRU10DXBW1MFPv9dl4cOZcjETIQQaICGpFT10XWBHwRUXMnH/uECJ/Yl+ebVOaqeT0TXmCv6LJRcAtTMka+4+BLKjs+h3jt/is2u1LXRhPDljh9KRynYXuP1mYLNhfE8ri956rnLjUpEnXh3VzOAqy3K95DB3Ew9wg7Q5HK0G3c3Z0vcXqhwqDe+4qLqG1fm6I0ZJC0dx/V5dTTL0f4YL123W8YM0NiZH50rI4Sg4gboQjJXquIHEkODctWnXPX49rU5jg/GuThR5qnnLnNxPM9bUwUePJBmMHWnmXre9khE9EYpbF0ICrbLz//pDPtSUY72xXB8SdLSyZVd5kpV8hWXn3j4QOP3+OK5MT59dpSpvM1QOsqHHj/Cjz50cMXPZ7GuV3tP/ed52yVlqTnI8QKSUWOvVwxcC7vCRo5MKIfFd0ezWKZGyfHojZvkKi6VaoBdtYlFdDQBQe3p1PFhvuggEQgCLk26gBrrhqYKQswVq3zm7M0l4WAbcZy0YzMKn6znHIuPaWcHOwkZ7fR3bWcrYe2L5dXo4kXprtDjTkYisT2ffMVVGx+6hq5BQu+kdXjITmDZv5QQ4nEhxK8Bg0KIX23697uAvs7rfR74UO3rD3GnCtPngZ8RQlhCiGPAfcBL67zGiqzUTLXZE6kJwbWZEiXHJ1/xSEdrE3uxytXpIgA9MYOc7ZG1PRxf4vlSVUAydC6O53n5xgJDKYt8xWU8a5Mru4iav0iidggF4AcSIZTROHttji+9McnofHnTGmau9Dtv5PgPPX6k8fVUvsKL1+Yp2B5vO5xuGLHPnr3Z8pnWv657d2H1hqGLf359psgnvnSJG7PFPdNgdIv0CDtAk8vRbtxdnipy/1AS1/d56fo8L16f49pMkc+evdk47pnzU/TGTRCiUZFMSsm3ry1g6qJlzNTH52TeIWrqZGImhiZwPLXYK9gu82UX11chcLbr8/XLs7w1VSBXcXnb4TQF2+PFa/NM5SuN+9UEvDlZwHZ9NODGXInxrI3j+hgafOvaPG+MZXn9dg7HC+hPRAD41FeuMjKR44vnxvjEly6Rr7jsS0bIV1w+8aVLfPHc2Iqfz2Jdr/ae+s8juvrdbFd5ck8MJvZ6xcBV2U02sj7HDqctdA0mczazBYfJnE3VU4UoApQTJGLoaNqdrQ/Hl/hBgBuAF4CUEilRvSmrPjNFm8+/Ps5Tz11umaOXa16erzkUV9J4OzZq59Z7juZjlrODy9mmxc8c7exjM+1s5SefvcwfPHNpUxtud2MT792kx51Of8xkLGtT9QMMIaj6AWNZm/4mp0nIzmalnb8IkKy9p7lEbh74qdVOLIT4C+DdwIAQ4jbwMeATwF8JIX4BGAX+SwAp5QUhxF8BFwEP+OWtqipYL5n6mbM3eX5kDoHgaF+Mz569yTeuzjGUsrhvKMlAMsqthTJe4JOtBBjZCr3xCPGIxljOZqZg4wUQ0QXVmv3yA0nM1IkYGn4gmS9XeeRoL6/fyuIGardf1P8JkBJ0TZCOGmTLLq/ezIIAXYPhtLVpOTfrLRPb7PmLmRqu5/PmZLnRoP7yVIknTg3yrStzPD8yjR+ogjXN4asvXZ/nvaf2tZy3vqNQP/9zF6cwdcGDB9JowmwJ/2mXVzVZcEhYBpN5h6MDyY5CZbvYi1lnQ3qEnavJZhb/nZ44Ndiyw3u4P0bc0hv5aSnLIFuu8oU3JpgqODx4IMPFiRwHMhYv3cgSSKXJStXDD6iNMUHV87k2U+TGXJn7h5LMFB0GkxYAEUNguwIhwJdKr76EkuNxa75M0fHQBTx3cRLL0EjU+hy9fjvH+0/v54OPHuJjn7/YWHjeLjpIKdE05fSJRQyEgILtIhAMpdXuRzpqMF9yeeb8FF8dmSJfcZktOgCkLINE1ODTZ0cbu3+d6Hq199R//tmzN/l6rfDL2w9niBj6nq4Y2CFdbSObtTY6X2Y4bXF0QBV2+eK5ScpVnwDQhU8g1dgVgOsHJCLK8QmgCRAINA2Cmp0zNIHrB5Rdlc7gB3LJrtZy+a6ZmIHjebw2mmto3HZ9vn5lbsVKtJtRDn2954iZGi9en2Om4NAfj3DvvgTXZsoqNUTX+OzZm3y8TSGM5XY/L060D21vzkeuN3teKDnEIwYPHeoBNifnsEubeHe1HruJrK1sYNWTqH1/MHX1ekh3sOziT0r5T8A/CSH+XEp5UwiRkFKWOj2xlHK5dNX3LvP+jwMf7/T8G6XiBjx2rB/b9fjO9QUkkLJ08rbHKzezHB+IU3Z9BMq4ZctVZgsOEV0QCMGF8TyZqEFE17gyU8TUwNC1WuEXMHRBINUiT2uKDq8HfBsCEpbBQMri5L4k37m5gBsEDCQtTuxLMJBU3rb1FKJZKRzkF955dM0VD4cz0UZVUk2IRqPJXMXlb14ZQxOCnliE3rhB1Ze8cjPL993TQ1/CQiJbQkNBeXctXTTOH8gApMaro1m+90gPg6lo27ykOkXbq/2t7uRWrhSittmFBbaDjeqxdo4drcl2f6fnR2Za/k5PPXeZr12abuSnlase04UqhqaRr3nfr0wVqfpqN63oeFRcn6KjwpSvzJQ4e3WOvO3RlzAxNJXPl694mJpGbyKClOpBNmYa+IFLEEj8QD3glqs+VV9iagLHDahUfUxdQxcaB3tifPR9JxmZyDFTsJkvVlkoVbE9v3a8eigGiJk6RdvFDyQlx2O+XKVQcZHAf/z2DbIVD6TEMjUkkLM9tSvntmaDdFLoYbX3nBrO8PGffKhl/sjEzC3tW7Yb6GYbuVhr3x3NkitXSUbrjwSyYauEAFFb/Emg5KhCLxFdkLQMtNqYHkpZXJkp4ngS2w3wagtBNEnc0JcsSpZbaD1zfqpF4+oeBL3x1hzUlRx69dfrO2hrXQCupzroE6eG+NIbk9iez8hEgXTMXHXh2i7MdHSuxK25Cgd7loa2XxjPcXu+gmVqjZD2qbxNXzzSct6Nhmx3YxPvbtZjtzGVt/F9tVFRx/fV6yHdQSc5fweEEF9CeVSOCCHeBvyilPK/3dpb2zrqO0lVz+eFt2apVFVOnkDHNJSxee1WlpihU6r6+ATq55oKcelPGBRqxV56ExEGyiZzJRfPD3DcKomIjhdIEpbBsxem2mYBu4HykkZ0DU3TOD2c5tSw2pWos9ak8cUPzn/wzCU0ITjct3x+1OJzNHuCY4ZgLFtZ4mE8c1Adm4mZzJdUdae+ZATH9RvG+sp0iVPDOg8f7iFXK4BT9+7emi8zmbexXZ+BpIWhaSAEliG4MlNiMBVtm5dUN5DJqEG+9v1MwebKTIn5YpW+ZKStgW3nLd2fsjquSrfD2HV6rNNJ1bwnzwzxuZdHawsyScX1MYTgYE+8UaTE0AULFTW2/CAgV6niBXA7a6NrAtdXnsrZQpW+hLpGOmYwW3TQNLVLMZSyKFXVQksTAsOgtuhT1s4NJAvlKpoQBFKyPxMjb3sNHaajJoYQ5GwXu+qDkJiaTtULeP1WVhWHAnKVKlXfRyBwPDXPlKo+QS10Tpe5cPoAACAASURBVP2TBAEU/YAA1tSHby073mHFwHXTdZps1tpMwabsepQcj69dmqE3HkHjjqNSyqWVLCK60pHt+RwbSCJQUSyGEDjIRqQLKKdHfyLCbNHmrakiUwW1m10fi+3G3N+9NkZvzEBK2Wg38fbDmZbCbO0ces3thzbT0becjtp9jrMFB1NXEQGiFnq+eOFap93u56WpIieHkm3nwbzt4Xg+ecel6gVEDA2BylNuZi0h2yMTOT579iav3cohkTx8uIfxrE3VCyg4XuM6lq51SxPvrtNjt1FxfRCoiIDaJocQtddDuoJOsjP/T+ADwByAlPJ14F1beVNbyRfPjfEfX7zJ37x8i797bYyFokPU0JBIZkpVjvXHSUcN8rZHKmrg1bz+FTfA89Ri7dGj/QykovzA8QH6EyalatAI5QQoOqoaWtIyCIKAoKmXoi7ufOhl1+dgj+qL9OCBTNv8h04n8Ha5A/OlKrNFp6N8gsUx/uMLZV6+meXKVIGpfIWbs0XGcza5RaV8q16A4/mcGEzgeAG26xPRBbNFh1zF5ecfv4cPv+sYmZjJRM7G9dSDreMG9MVNbNdnvlTlxmyJm3Mlrs0UeX10nm9fm2tUdTw5lGjJw9ifsig5HjFD8OrNLPmK2xIquzgv4cJ4jstTRRzXb3hLz93O8tU3p7sqp6HGrtJjM2PZCqmo0ch9fe7iFBfHc1wYzzFSC4P6w+cuU3ZUPl65GmC7Abandvbquxa6JuiJGpQcj9GFCoEEo5ajNJ61WSjZlKsepapHwfY41h9nMGkRNXXSMZO+ZITehMWTZ4YYSFgEUi38fAmlaqtx8wNJtuJxfabAbMFu5BCeOZhG1zV6YhESloHrqWNtVz3IQi2ELlA7KVU/IGrqWKaOoalCUkKA7Qa1a6vFYCKidzxOuzFvp0vpOk02a+3V0SzJiIEMJNN5m4sTeRaaHvL9RYs/XVP5fBFDw/UCbs2XGZ0vc2u+jOMH6Ci9AbVwMA0hBK/czJK3PYZS1opj8dRwhnee6AchKDo+lqnzvUd6iJpGwx4ulyv36bOja8qh64SVdDSWreB4Hl8ZmeILb0xgOx5SSlzfZzyrmmA7XsCp4VRbR25997NuHzMxk0O9Me4ZSLS8r14IZ3xBfdYLpSqg7Kjrqznwa5em+fKFSb52aZqbc6WOch1HJnJ88tnLnL02j6FBRBO8eG2eW/NlpnI2VTfA1ARVN2CuWEVsYV/oTaTr9NhtBL6PL2mEgwdSzROBHy7+uoWO+vxJKW+Jph0poCv/wl88N8a//U8XKdW8WfVBazoesYhBzNC4na2o3TcpmSo4DQ+oBDwJcVNwz0CCqbzNt6/OcWOuhBAQj+i4gWz0RTJ1jX3pKAXHQxMaES1Q+UNCAJKYLhhIRblvKN3wBrbLf3j0aM+qZe2hfe6A+h1bJ+vldhObjels0Wa+VKXsBlQ9n554BBC4XrBkgRqpWfnBVJTvPdLT2IXrT1ot3tbmsD2ztqPquGohWK76GLpA1wS26/PqaI6Hj2Q4NZxuhP49sD/BV96cbVQ+/LkfOMxX3pztKFS2Xqa/visZNXVuOz66xoq7TDuV3aLHxRzsiXF9psjladUWJVkLw57O23zy2cskIjoXxvI4no/j3RnXVV8t6k4PpwGwDB3L0JXjI2pimRpzxSqGjqrG64GhBeiaIG97vH4rSyJqkImbPH68n5NDCf721XHOj+WZLTq4gUSrOW2a/ev1nED1tYahaXzh3AR9CZN96RgDSZORiSKBlJiGhu8HeFI5gCKGRszQKDpq7PtSkrQM+pMR5ooOri8xNShWA5DqgTtm6Y0c107G6U7oP7ZX6DZN1qMprsyUsGo56rbn465SY76eBuEFsmEXXc9vOEktUyMSEUoXkoZNzFZcBmo5tSf2rZ6n/fOP39O2cXo9B7XZ3tWjPwoVl/FcheMD8ZYwyo2GQK6kI0sXnL02T8nxiNZ24aTjodVCxG8tlLl3MEml6nN0INn2/It3P5967vKyVY5dX80TXiDJV1Q6RU/cpFxzStXtfT2CaLWd/2fOTzFbdEhFjYZ9RAgm8hVMQ8My1fNMPcxUto7xHUu36bHb0HQdvKUfqaZvpPZcyN2kk8XfLSHEOwAphIgAvwKMbO1tbQ3/7mvXqLgB8YjeEiaRd3zKrs/+lMX12TJDKQtT17CrHgHqoU+vPejlbJ9ztxbI2R73709ybbaAkAKn1gMJVKJ7xQ24vVAmamiUBPgBREyNdNTECyQDyQiZmNkwSu3yHx492tNxCEu73IH6wqyZ5XYT68Z0tmjzys0sXqBC4wKpjqnneDh+QK7iNgxyXyKCJgS5ikt/0moUilguzKZ+nRODCV4dzbJQcjB1VSVuMGFhaAIvkFQ8eWcHs+jwd69N8APH+3nsWB8F2+Ol61lmC/aS37Gdoc/EDHLlKrbrNxbnrh80KriudOwOZNfocTFPnhnio385CYLG3wnAMnXOjy2Qt9XOWfswasnl6QJDmRgDSYtASq7NlEhaWq0KL7XCL0EjRE09Gkimi1WitscPnujna5em+cvv2OhAKmY22rLI2gIsWPRwrAsaY7bq+Ri1sM2FUpVbC2VMXSNqqjGqWzpFx8PUNTIxEyklFS/AMnV0TTCYUruP1WhAqeojA7AMSEV1XB964yYn9iU6Hqeb0fcspCO6TpP1cMP5YpXeuMGlmSJVvzbWlzmm/iit3hegi5rXH0E6qpN31MPgUDpGxNCYL1cp2R5l18cMJOmowYl9yUZLlJX66z55ZmjFwit1e1f1VBsXy9AwdYFlaHzn+gKPHRctrVc2UrV2JR1FdDWPVP2AqKERSIjoGq4fkLIMNKHmhldHs7z/wc6ray92BF+eKnL//iTnbufwAknUBCl1hADHkyQtk3fff6ewWq7i8pmzN6m4wYrPD2PZigo991Sv4oih0VvbNZXAQNJqzMW265OJdbRfsN10nR67jXruevPyWja9HrLz6UTJ/wr4I+AgqrfJl4GujJ2+vVAmampIqbyXTWkJaEJwO+egC7i14NEc3RWgEt6jpqDqSl66scBAMsJk3iETi1D1VNiF7QaApPbMStH2VAhazGDKq+J6AboGPfEIQgj2p6MtRqnZAzgykeNjn7/IfLFKLKLu2Zdy2cphzQbDdj1GJgpM5W1ips71mSL3DCRavKfNxrZku7x8c6Fx/z1xE32RiKt+QF8iQs72ePG6qpL68OEMv/Hk/QDLGunFRt3SBQXba+wUfvniFH4AsYgK7XntVpaUpVO0vYZH99p0Eb8WSqMJVQL8+qxqw1FPRq8XmTF1fYmhPz2cIW7qTOadRuWy4Uz0jqezRpeUtt81elzMqeEMh/tj5MouBUe1VzlzMM1XR6aYLrjLPpTWuTpTJle6zXBPnGylSsHxqKUXYWng6xqOrxZsiYhBpbbzbKiUU27OV7AMDSklJTfA8SVSyoaBCxbdQL1ab30XpOz6ZGI6U3mHqifx/IAgCLCrAq8WtqkWkmqCqFcHDiT0xSONNgsCwcOHMtyYr7BQVvmKh3tjPHQ409jdrvclXcmrvxl9z0I6ous0WXc2fuzzF5krOpRX2/KjdVFYj4QxNRBI8raHrEWHjOcqGJpGRBcYuiCmGfREDfano40FGSzfX7d5kfLR950E7tiRP/3GjUaf1+dHZrg2U8TSlUKrvuSRe3p5c7LId27M0xuPMJGzKVd97tuX4H/6WxtZe18nOd71a14Yz/HWVIEzB9MMJFsXlBfGc0QjGnbOp2C7mLpaAAoEsvagkY6ZnNyX5PJUiR/t8G/zxKnBlh6fpiGYyNkUHA8ZBEhNU1EIUlUaPdCzdHH6/Mgcjx3rX3Hn39IF2bJ6TrEMDd+XjGVtIrrWcEbVbebR/viyu5c7jK7TY7dh6AJd0FIFWBfq9ZDuoJPF36NSyv+q+QUhxL8C/mRrbmnrMHW1C+D6AYuHqFuL3/Klqlq0mABwXFlLbFULN9tVlf7my1VkoEIu6msmARQdD8vQAJ2BZATHDYhHzFoZbMl3b+dIRY0lBRzqxnCu6BA1BLfmK/iB6jPmBZIbsyXecaK/peFzcwuLb12dpzdu8kMPDFJ2fC5NFSm7Pg8eyDTCZurGtlCp8s2rc0gp0YWg4vpM5QMMIZEIUpaBZWgUHY/5ssp5eOLUUGMhWb/2qeHMsga62aiP52wVktIXpz9pcbAnRtH2eOx4H4OpKOmoaipsaKLh0fWlqq5YX+BdmS6pEBQpcXyJZQgiuuD8WJ7jg8kl5enVwrjMqVqV0ubKpc27mF1S2n7X6LEdp4czDY/+lZkSr43mmCpUGwZmtQXgbNljrpxf8j4nAKcWshygEtOTloHrB0R0QaEaNKoLVr2AsuuR1iONC8rafwyhHnrr4W9BINE0Nf6QsFBSO3uWoVGuCqq+xNBk47j6w2fR9hBCkIzo7O+Jcv9QiquzJUbnywSBJB03+fUPnOT4YLIl/K2e+/ro0Z5VK9guV0q/C8Z4t9GVmjw1nOHf/Nhpnn7hOjfny8Dq+lqM6u2n7GIyIrA9sKs+8Ygk7yqbeLg3xqGeGOduZ7k5X24UEOlLRPiNJ+9fMawSaGlDcmo41UgFeOLUIH88WSCQAZlYpLE4C6Tk7LUFKq5PvuyiaYI3xvOcH8vTEzN558mBjoqf1fX1tkMZvnN9gbNX53nseC+WYTQ0+OyFSUDlm9/K2viBJAgkQlM5voMp9YgVt/Q1FW97fmSG08NpHjvWx83ZEl+7nKc/GWEoZTFW6724LxUhFjFwvID96dbFX8H2EAhS0dZHvMU7/xJIWgZFx8OrlSQOpCRu6hzoiXFPf6Jl7lhLz8RtpCv12E1Yho4mVNFDvVYkzfMDLCMM++wWOln8/Y4QwpFSfhVACPEbwA/RRUIamcjxfz3/FtmaF70dqxm9+s/3py2EUA91UVMnFTWYLtCofBTI1vcHUi0C3/vAIJ6EwaTFN2qG7PuO9mAaOp989jJDaavhkZwtqMTvgaTFjdkSmoCKrwrHJCwDP4BPffUqxweTS3p6DaaivOeBfXe8/SnoTVhkYmbDi/rUc5cbxvbLF/NEDRV2JqWsLXJVDd+BqEEgBbanrt0Ti/D9x/pa+vjVvYjtvLef+upVTu5LUvV8XryuKm2auuBAJtoIeT1zIM14ziZi6KqYS9piPFshamrEaztzmhD0JiJYhsaV6ZLqnaQJBtMqfLSe74GQbY15u5Da1XYsdzBdr0dYvi3JbMHm2YtTZMvVWnimtkRTq9HJ+0ytXp0swPUFVi1kDFQfM6PmCReawERV+RWonCbdC0ATNb1LDqYt/IBGHrFAMJiKkKu4yFoWjqFrKnwAiZSqKe5Q2uId9w7w84/fAyiHzAP77zgonh+Z4cODyWXL4a+Wz7cZfc9COqKrNTmTq+D5a1323UGihrbjq53skuNhe5LeuMlgykLXNG7MV8g7Lpl4BImkXPXIV1z+8LnLjC3YvO1wGmjN07s4kWN0vsy1mSI9tXDD797K8b1HesjETL51ZY5k1GC+qJxD9VokEzmHo/1x1UbF9okYGlXHVbbY9XljLM8Tp+60QWqnh2Z9ZWImjx1X7Z1ev5XnfaeHGhq8fyjJpakipaoK86y4vsrXRdR29SWO69dCUfvafn6L58KZmv1v7mvbFzfJV1Q0xMFMlMm8w1TB4V98Tx/vONHP8yMzSxyZDx/OtG2z1LzzX/Ul77yvnwvjeSZyNkgVZXCgN8avvu9kt84dXa3HbiATi6ALmC+7uL6qcTGYjJKMRlY/OGRH0Mni78eALwghfh14Enig9lpXMDKR43f+/jwXx/NstFCVJtTu4YMH0lybVZ7SfMVFE6KWGK2a4fpBzSDWCsGYusbVmTI9iQi3Fyr0xs2Gl3K2aHN9tsRs0eFdJwfJVVy+fmWOHzzRx4l9CUYm8nhBgIY6rx9AJqozmbP5tb86x/tOD7X08/v77461NKqHpd6+5hyGfMVVi77aZ3OwJ8Z8ycH14d0P7OPieIGFsouhmTx2vA8p4ey1OdUywVLVEevXXvww6voBV2eLqhCAcacv0YWJAr/yxH1tQ0OPDiR5/4ND/PE/XsPxlUf3sWO96vOWklylimWosNAHD6rF7mAq2ghvW2sZ+y4xZs10tR6hfZn2X//r17k+W8bx/BYHjb84yW6D1Hf8i06AaUhipsrPGUxFldOjViQgYqgdwIguMHUN1/bQhArZTloGmXiEQsUlV6lScX1yZfVwmbRUm5ebcxUVUirUNR1P5QQNZ2LkbI+EZfDjbz/YCD1rdshA62Kunbe903y+sH3DXaErNTkykeMPnrnEq6MLGz5XAFi1qp6apvLNm0MExxYqmJrOu+/f16gwqmuQK7uYuuDFaws8fq9oCavMVTwO9sSp+iq/cKFUpVz1+afLMxzti/HGeIFMzCRfcZkp2Lw5kWMoHaXo+Lz7/gGeuzhNxFChp0EgEUKFotZ7ka2U/3pxItcSft6fMGuFa5w7v1O2wpH+BMmoaukkBPTGIxRsF13TiBgCt1aYqh650O5vsHgu/MaVOd5xb19jDijaHoMpC4SDZeq4vuTewQTpmNlI/zg+mFyyUIP2ReSad/7roeHveeDOHNNsS7t07uhKPXYTDx/O8E+XZ0hEDLwgwKg5aR8+3JXjZU+y6uJPSjkrhPgx4HngFeCnpNzZ9X4X96u7PlvCb1rgrJeIrhE1dO4bStMTj3BlptToLeZ4AfGI0dIHRwPKVY99aYvb2QoP7E+pRs5SLglhdP07BU4sQ/DVkRn6a8nWlbLXCC3riRnMlV0ihiCQqvjKJ5+9TCAl9/QnGEpZ5G2Pb16ZI2UZeLU8wTMH0o37ak6W9wNJIGWtAIZgoewSNXWiEaEWgPfv48kzQzxzfqptJcZ6b7N2D6P9iQhvTRc50hdvqSTW3PNoubyly1OllnylnniEC+N5NKEt2S3cS+Fs3ajHxSx2FEznK1wcL9Bumbe5Sz+Vk6AJFeY9lI6RtHQ0oR6e6jvyxwYSTGQrZCtVpIRyVe3oRU2NeERHCMGJwQQv31ggX/Ewav0+XU8VavEDSSyiGmDbnq9yjKV6IJ4rueiaaCl3/+F3HVt2MVff/Vgc3hkztVW9+iF3h27TZH3O/fLFSaZyNhVv47eq2pZITgzEuD4T4PmypcCW4/kMpFS1z3qFUcvQKDgeDx/u4cVr85wfy/Ouk1ZjPk9HDVJRA9cLuLZQqUUCKEfKdN4hYelkYgbZcpWqL4lognzFIxbRKDv16pcKlcN+p2fFTMHmwnge15c89dzllvy/kYkct+YqICAdNZgvOYxM3Am7XKzBgWSU44NJ5TxC5cfvT1vMFKogVITQ6QMpnDa7q+2cpr1xk5GJAkNppeV6X9uhdIwfON4P0GIbV8r9XW3nfzeGhnebHruRd5zo5/k3p/FrSX++SnTlHSf6t/vWQjpk2cWfEKLAHYeVBCLAceCnhBBSSple7tjt5IvnxvjUV67iBZK+hOqdk6t4eBtd+QGmATnHbalsma+4nNyX5I2xXK0iVoAXqK2/iKkBAseVHOyJcmwwyWTBwXF91dC8KYSx3qNspmDj+pKS4zGUtuiNm2TLLroQHOmLM5GzqVQ9qkKVkn7h8jQlxycdM3joUA8n9iX51tU55otVyo7HcCbKXLHKN6/M8sE/+RZSqIffbMnFlwEDCZPJQhXfDTANjYLtUgB+7f338Yv//L6W379dJcb7h5THsV1xieFMlDcnC0gpW5r1PnxENett5/Wsh8DOFB1uzVU4OZTknoEEEUPneC0Ert2isYtCUtZFt+qxHarIUJUvX8xTcjyKtrfpi7zl8HyJDlgRnfedHmqM2Y++72Sj2fGz5yeYL3uqmmFTj7NyNeD2fJl3nRys7Qz6CKEaWxuahjAEIPCCgMFUpNaQWc0FcVOj4vpYhk6PZXDfUGu5++WKs9R3PxbvCLqe38i53S0Pbd1GN2qyPuf6fsBMwSFbWb2QUidotVwxFQWjk9BkS7GQA5kY0YhyANajRhxPVVweTEV59Fgvr9/OMZGzW0Kbb8wWmSk6KiddUy1Rql6AkCoKZ6HsEo8YmJ5PNZDYXkA6ZvD67Rz98Qhj2TK+VLqXSGTgsb/H4sVr80jgseO9LQ3iL0+V+PLFSXyp+vouBAETOdXwfDJnczAT5eJEXhViMzUGUhb39Cc4PhDnO9cXkKjUEC+A3kSE77unp1GkaV/KXPK5tXP6nD6Q4ptX5hthnPtTFhPZCvcPJZc4O1cqltOJPdxNoeHdqMdu5fJUiceO9jFZcJSea+O006JGIdvPsos/KWXqbt7IZjAykeNTX70KAvoSajcuV3EJNmHhpyqKaUR1DdfzmcgpL/tH3nMvz4/MqPBHKUlFDSZyNvvTUWK1xKKFsssjR3sBGi0OLF0sCWEE5RWNmjpHBxLEIgZuIDnQEyVbVovOUtXHEMrLGjc0srWY64rrM1OwGUxFSVgGlaqncvW403D3ykyJwZSFlJLhTJTXbuXojRkMJSPMlKr4gcTU1Y7Fm5OllkI0y1Vi7EtYjGUr/MI7jy7xIGqaxjvv7WesVqWsfoyp6+xLmUu8nvUqnvUQ2Lipty1W09z38BfeebQrDdVa6UY9LkfZcfn6W3PqITGit+yWbzUS8AAz8PnCuXFMXeMj77n3zr25Abquk45Sq2CoaPQ3k3DudpYHhjPctz+FmC5iu36jTPqBVJRb82VmClWODyYZSgVM5m0Ktmr+fLg3xtuP9CwJyW6nn+bdj2bUHOPtmoe2bqUbNfnM+Sl8P+DydBFdiA2nQtSRUu2mB1Jy5kCKqUK1pcDWrfkygZTkKm4jagTgzEH1PB41Dd5/en8jL73ORz83iZRqB67s+ki/ln5RK34mvQBqLVP8QNKfNFRlZ9vhUG+U0QWVnhEzBZpQvXgdVzKQMlqqdy6UHD71lav8wL39tQqaOjO2TaWsFpumJgik5NxYnv3pKL1xg/mySvmo1kLVHzvehwCmCg63F9RirS9hNYo0tXPMtHP6WIbBPzvR38iLPzaY5ANnhrg8VVqi9ZXCxYGOFobLFWxbrRrqTqMb9ditjGUr3DOQ4NjgndDuQMqwjVAXsWrYpxDiJ4CvSilzte97gHdLKf9+q29urTxzfgrXD4iaqll72fEoOpuzq6AqeQpMQ+PVW1nef3p/Y3I8PpjkM2dvNsLGfvDePsZzDgtll3ee6EcAZq0KUr3FwXIhjPPFKroGbzt85wExkJI3J/PkKh5Fx8f1fVJRnaipq/Aazydu6LXFXRQpYSgdJRZRf15NCGYKDoGUZGImtutTcQOO9scB1UetP6VaH9iuT9TU2zaSrldibDZU9bLzy3kQgZZqhc3N6//4H681KrWd2JdYEgJ7dCDZUqxmo17O3UA36XE5bs5X8KUkW6puaufdnphB0VFhlxKI6KqqbrvnWz8Q9Cci7E9HeX5kppEzk4mZ2J7qBVp/QK0jgbipk614tf5YHqamkU6ZjbBm2/UxNa3R/D1hGRzqjVOwPRIRne872tc2VHM5/TxzfmrZdg1dnJOzq+gmTY5lK0zmbYJA4nj+puz6ASAgE1V97fqSUX760cOti5UPqEXdM+enSMdM8ra36uLo1HCGQ70x8hWXiuvTG4/QG48wV3KUc1EIdCEoVL1G6kJ/woJaNe6qD+8/PdTS4md/2uKt6RLvOjnYaIQOMJGz8QJlH1MxE8f1CaTAMiBuWThuQNXziegaxapHLKIzkLQ43BdvKaZWp9PIlOXCLtvZtB9lacuLixM5HtjfuqFVdyh1UhSq+X53i23tJj12K2Eboe6nk4IvH5NS/l39GyllVgjxMWDdQhJC3AAKgA94UspHhBB9wOeAo8AN4KellGvKRB/LVogaGuMLNkKg+tZtknULAuU9jNUSrhdPjr//kw+1TPjv3p9pLA7rEyuoiXmlEMa+ZIThtNVY+IES1elhFSp5fCDOl85PNnltJUIIEpbOfLFKINXuXcH2+J5DGV4dzTaqkNWbTVuGRt52OdoX41tX5xuFKlJRE00TnDmYbpsMv1p+wHIPo8s1rzd1AVJr9OmreqpvX7Jpp6P5PtZizHYxm65H2DpNtmM6by/brH296AI+9I5jzBZtvvTGJAsVF7PWUgXuFFuQ1Cp9aqLRcDpXcRvjczgTJWHplB1vyf0FEkqOyr8dzkRxPZ+bs0XKVZ3+hIkEio5PxNR5+6E082Wv8dB5+kCK2WJ1xVDN5fSz23JydiFdYyMP9sR48docuXK1UcF2s8I+exIRqn7QsGvtwr+W6/+63OLowQMZEhEVAVLPEyw5OiXh8z0H08wWHOZKVTQBB3qi6JpopBZ86+o8jx3rayk8E0jJ5eniknzZuVKV/oSqVFiPzqn6AQJJJhahaNsIITB1qFT9RkTRt6/NogltyS5Zp46ZtYRdtlug3ZqrEDf1lt+x/hDeaVEo2HW2tWv02K3sxlzRvUYniz9tncetxg9JKWebvv8t4CtSyk8IIX6r9v1vruWEB3tivHErq3ppeaph+ablEglVAXAybxNIuDiRZ3/KWlJaHe60D6iHXqw2wS9u7v70C9fb9p+r7wIc7o0zXbBrVdAEx/oT3DuY4OpMiedHpnBcVWSiUPFIWQb5mpc0ZakJ3fECXC/g7LUFvCBQfc2qHtmK28hRuDFbZCLv8D/89estpfjjpsZL1+eRSB4+3LPEM1g36hcncuQqHumowYMHMi3G8annLhMEKkxndKFMzNDIxEyKjupNVA+BhVZv0lqM2S5mq/QIW6DJdhTtzckzaqbuxB9IRtmfjjBfdik1Na5uvp4bgAgCPv/6OPf0J/ieg2mKjkdEF7xweQYC2XbXD1TYZ2/EaOxMgwqnrgYSgeDxWjl309A5ub91h/z0cKxRPGnxPLBc0YZ2DZ8/9PiRbnwg2810jY188swQn/32TRw/QNdU/vcGujw0vOGtyAAAIABJREFUeGB/mkdqu9qLx7Oli7bN1TsZw/UerfcPJZnI2cyVqlimzi//0HHKVRVmJoRa8Om6IGrqjdSCoXR0ySJvtNbf9atvTtMbV04ZyzDw/YBs2eW5i1Mkowb9cZNb8yVcXxKNeDx0KM312TIFW/XuFYCmCSyhUjsWt2taXEBmuYIssPJCcXHxuv0pq6V1UsX1+MdLMwyO5+lPRBjORNE0bdWogcXsMtvaNXrsVnZTruhepRNBvCyE+EPgj1HPQB9BVVDabH4ceHft608DX2Mdhu3vXhvDMiBX2cSQFtTOn+o/p3OkL47j+lyu5aPVWS10YqOewGszRf73Zy4xW6zi+gGxiE4iZnLvYIKi4zNYSz5PRQ1G50pcmqr1R5KoPIy82nnIlh3mS1X8QFVPUwVcJL4fcPbqPOdu53H9gEzM4Np0AceT/OnXrxKLGKRjZsPIVJoerkcmco3Q16ihUfV8ohGDfNklbuo8/UK58TlcnMgxOlcmauoc7okxW6wymXdIRQ2O9MeXreIZhhoAd0+PsAmaXMzIRG5THjYXownBdKHCxEKFq7MlIhpUV/D8SFQ/y4lsBbvqc3IoyWipys25Ms1VAduhC9nIr41bOlKqHYpmJ8lavKIrzRtAS8Pnev+/xT0+Q7aVrrGRp4YzHMhYXJio4mxClc86AwmzbRESU4ez1+YRwKPHetccTthsD01D5/F7B5YsnpqvV9fbxfEcc0WHvx7LkbQMHj6SwTJ0Xh3N8vDhHuKWzshEgW9emefMcIp96SizxSpRU+X/jS1UkFJiGhpVN+DWfIX7BhNcnS0TM3Vs1+Ot6QKuJ0laOuO5Cr3zEXriJt8dzfLs+Uk+8t57OT6Y5JPPXma26JArV/m6G/BXL9/iPfcP8nOP37Pioq85leT0gRRzRYfpvA1SkolH0ISKQPJ81UZmvuSSr3h85L33Ns7b6Ty0y2xr1+ixmwnTDrqbThZ/HwF+B7W9LYAvA7+8wetK4MtCCAn8eynl08CQlHICQEo5IYTYt9aTnhrOcLgnyks3N99bFaDcSZapkYze2UFr3iHYrNCJdqIamcjxN6+M4QUQt3TKjqTiBhi6T9IySFgqnLR+zXq+nOupxelrt3LYnoehaRQdvxbConofuYGqxllfxparHhowW6iia4KoqVFwAkrVKumogeMFXJoqNip9gjIy12aK9MYMJvMOjhdwOGaiCcFkweH0cLrxOeQqHkIoLy2mTjKqHhzSMZPfePL+Zb1JYagBsDV6hC3S5GKeOT+F3q7h1QbIRHWipsHrt/LMFGyQAqFBRKjdhuVwAyg6Hj1x1ZIkkDCUVqXmbTcgkBIhJa6qYk0gVXipJwVvjOV46BC8eG2BVNRYsmhbLf+1+f1xU1uxaMMuCsfarXSNjRyZyOEGEDM0bC/YNEfMhYnC/8/em8fJcV33vd9T1essPQPMAIPBRgCkQBKAKFIiRcKSZUUbQTGR7BdZlJ+pMLZeFC+xE+fZCh2/2JIdx4otW3HkZz0zsS3aii1ZjhMpYgRqpShTkChRJEEQIBaC2AeDwQDTPT3Ta9V9f1R1T8/SM90z3dNdPef7+fSnu2/Xcqv6/u6tu5xzuH27zcEjo7OClH/ndKrssOj01Wn2+6EK6im/Sz1kzh0wnc4VODs+xbruKDcMxLmSyvPkyXE2J6Lcsa2/7KRiKOF1eI6OpNizuY+C43DqyhRnr01TdD3nbZv8TuHYpBdjcNdgN0dHUkznveDxfXGbqbxLPuN5LY5Helnf7dk0fuLrL7NrsItXrk5hWzCZcxA8u+Dvn7nOdMFdsBNc6syW2lOAZ88liYe9+L62JQyFbS5cz2FbFj0xi+5YmLftGiCZKZQ9LtYzO9NhbWtg9KgoraKWOH9TeNPZjeQNxphLvli+IiIv1bqjiHwQ+CDA9u3b5/2eynrLt4TFH/yWgyVCruCWwxYYY+iLz9zCixMZQpa3JLTk/nbXYBfp3Mq9GR48Msq1qTwDPZFZziUABntjXJzIMNAzk5eToymefuUaE5ki67vDvG57P0N96/nm8SuenYcx5B2wxJ3x+CZeLDMvmLwL4sVFy+RdxALjep7MBnu95SEjySzhkF3u9BYcbxTUMYZISLg2lWdLf5x0tjhrCUki5s0IVsaBwvfotlhDr0sNmqZHaKImK3nxUrKhMw4AmYJLJGS4NDFNKlNExPNwW6zBm4xrDHfvWsf/fmGUod4I16bypHNFzy28MRSNN6sh4tmminj2TSPJLJZ49czezYlyjE7wtPpLb989r1xW88z39CvXeOuts58bKvXSQcuxOpIgtZEHj4yyKRHllbF0Q2fgswWHWzYl5gUpT2UL9Ea9dintD5QuVX6XWia5EJXtxnv/5FDZUZh3vgjJTIGr6Rw3DHaX97maznJyNM2LIykwhlcN9XDTxm4OX5jAGEMyU8RxM4Rtwbag6Bpev2uAFy4lsUToidpeuKdsFhfPx8DVdI51XRESsRDjU3mePnOdzX0xxqfyhCwI2RaWBePT+QWdqgHz2lPx17SXnPSEbAtjDNN5B0uEDT3Rqve2GbaH7U6Q9KgorWKxOH9/ZIz5FyLyv1hgEZQx5l3LPakx5pL/fkVE/gfwemBURIb9EZRh4EqVfR8BHgG488475+UrlSsStrxOWiPxRv4N2YLLlcksQ4k4Owa6ZhlaR2zhu6ev0RMLeXGMCg7fe+U6d+9av6wGrZKLExnyRXeW2/eS45bSMUvLNk6Opvj7U+Pkig6RkOC48NTL17hta5HLqazXgcX7UysfAMSf2SgYQ9H1r9k1OH7v0ADTeYfz16dZ1xUmPVVk/42DZXuBnliIXMEbEXUctxzXr8cfSSwtIdm7uc9zx10RI+aG9V2z3AZXY60uNWimHv39m6bJSs5cnWp4TL+obZUdqRi8GTpniY6f4NkJdkdDREMhBMPIRJaCa7AtEBEcx+Aar3OZiNtsT3RhDFyZzJIruuQdl7t2rmND70znrPLha67mX7yU5Nbh+Z75DGbRgO0dtByrowhiG3l0xIulFw3bFN1iwzqAecfw9CvXSGULZAtFfnB2gvteHScRC5cHKUuOvBYrvwstgf7dg8fZ3Bcjt4A93UKMprJs7InMSuuN2owk3bLOrqazPHN2AoC+mDdT9+1T416b6Hrtn22VYtOC49tIXpvKUSi6OC5MTBeI2kUKzsyfn8k7ZAtZ1neHiYUsLmQLnHcMWcelO2wRsmecT1XrBM9tT2Nhm2jIYjJXZHNfnImMF24pHrHpiYQI2RZRf0B4JXVD0NvWIOpRUVrFQoaxJf6J//4x4PcXeC0LEekWkd7SZ+AdwBHgC8BD/mYPAZ9fzvETUc/dOzJTya4UwZtJELxln7FQiKHeKJZllW18StvNVbYBJqbyZSculcu9jo0ka87Dlv44kYrg6uAtO42G7HKDWHKZ/ez5Cc+NtR9cOha2CNsWz5ydwHFN+d7MvT8hyxu97PIbkpKRvjFeJ7Ec66zocn48g+MaDuwbYkt/nMlskZs2dHudvUjI63wbyBVcNvV67rxL9+rAviFs22LPcIK33rqRPcMJbHv2vVTm0RQ9QvM1WeLYSJLLyexKDjEPARxjcP3wDqE6RG8LDPnePtf7ngqlQhu2JYQtsG2LwZ4o8bCNbXmOk+5/9TDv2LOJWHj2+Fnp4avScVNJ8xeuZzh7dWre9nds6y9rtxQLraSXSl3P/U1pOYFrI0tL7ntjIezFWv86cY1LtuB5a+6Ph7kwkeGVsTS7NnhhTtLZIrsGu5Ysv5WmE6UYeufGpzlyKVVz2zmUiDGZmz36M5lz2LZu5vwnR9Pl316z1evwTGaLTOeKWH4dUmrzC45bjhz+zNkJwiEL2/IGmdKFmRZfgEzBoei4XEnlSGaKdIVt75nAeE6kMnmHfNGwyXdGs1BHbW57mi04ZAtemImt67vYsznB3TsH+JHdgxRdU/O9XQMETo+K0ioWW/b5MoAx5psNPucQ8D/8pQwh4K+MMQdF5HvA34jIB4BzwI8v5+Bb18V5aXSSYgPdWNsC/V0RuiI2RddQcF0uT+b4yLv2zBopyzneErLTY9OzXLw/dz7J3TsHVmS3c2DfEIcvTHBufBqMKbuV3znYXR4JLS3bSGWL9MVChO1QOZZRNCRcn/JmDtO5IuGQ4Bgo+nHQYiHBNd5sYti2iIWEXNGb+RD8h2oDPVEv8LxlCXs29c4yLO+Lh7l9Wx/HRiaJRWw29EQZ6ouxc0PPrNHaTlpisoo0S4/QZE2WOHhkFMtq1JCMhy3eQ1gkZCEiGMulWJgf26+yLojagFh0Ryzu2rGOB/ffwO9/ueB1TH3vh5bgB6G3cP1hkslskUjIYvtAF+/ffwNQ3aHCQva/Nw/1cPxymvU90XkxvUr3ZyE9qFbalsC1kaUl910RG6eBU/C90ZlYl/FIiG3r4lyezLE93MX+XevLA4l98fCi5Xeu18lTY17s17zjzltaXe0YD+3fzke/dNzPl81kzmEqV+Th+24ux/Mcncwx1Bsth3tZ1x3h8Rcvk3MMsbCNbXk3x3G9NrA74nXioiGLzX1xzo5PIQJ2xXltS7xZQ3GxLYtIyOK2rQMcvZQilTGk8w6ZgsPG3ig3buiualNXsr+rbE8nMkV++KYBHvTrHa8+KNZ1b9cAgdOjorSKxTp/G0TkX1f70RjzB8s5oTHmNPCaBdLHgbcu55iVXJvKE10kuHO9eB2/MOu7I4gIr93ez0BPlJFkdl4lW1p6eY9v1A7eki1BZi3XhPrtdm4d7uNDB27mLw+d5dnzE2W38pUew0rLNg6dHieVKRCyhJFkFnApOAYRb+lqyL8/Il6nMBa2+ZHdG3jq5XF6IjYF15CIx7FEuD6dI5lxWNcVJhELEQnbJGJhdm3oouTotLIzl84VefPNG5dcmhP0JSYtoCl69PdtqiZLvHgp6dmSrhCBstMYy3dIVBq4SGVdQhY4rteBExH6u0JkCy5F1wsEvW19F3ds6+f9FdrZu7mPs+NTpDJFHGOIhiy6IjZdkRB7NyfY4NvVzl12Vq1j9qd/f2aerd72gW6mCw598XDVkC8LoVppWwLXRu7d3Eeh6HBybKqhNn+DPRGmcgXGJnNkii7b+uP0xUN87MfnXcaizPU6mc4WCVmQiM0se16q7bz/ti0As8Kj/MJbbiynl7RUeZ4NvTG2rusCvEGf61M5pvMO03mHXguioRBTec+fANEQG3ujjKVzlEIJ90btWbb4kZDF3bvWsbE3zrruCKeuTDGazJDOO+ze1MuOwZ6qbWQt7anWBwsSOD0qSqtYrPNnAz00bvVk03ns8EWOXZ4kZNv0x4SJbA0eH6ogwLq4Td6FZLbIVN7hddv7y0Gh5y7XODaSZGwyO8s1czQUIpkpcMe2vkVtemqlFEx+KUojn93REEO9EUYn82SLLoO9EVLTBaIhG0s8b4ZFx9CXCGNZFu/YMzTLYygw4w1tODEvfWPvzHd9QG06gdPjXFLZ4oqm4rvCwvruKKOpnOeJ00/33LE7XkyusI0xhnTOc4aQiIfY3N9Fruhy81APOwZ7+KW375537PLMujtNT9Quz6wP9kRndRLnUq3cV3Odvme4b8HzK4EkcJrcPdTN3/3gAhFLiIe9MAbLbyU9QpY3Y5cteHFnE/GQZxs+nuHYSLKudmGu18mwLUxmi7x668KxX6tx/21byp29Ws4zmS0y2BPFNcaLjTtdoDdm0RMNccumXlLZIlcnc1yfLrK+J8KP3LyRFy4kOXUljQvEIzb49sGDPVH23zhAJOR1Bgd7Ygz2xMr1QS361/Z0WQROj4rSKhbr/I0YY35z1XLSAB49dI6BngipTJGQFcLKObh1PGwK0BuzKTiGkCUkuqKEbeHaVAHHNRwdmWSgJ1oOolqi0kj9h25cX44f9MM3DZSXdK2mG+W5I583buzhof3beerUOE+euErecYCSUbtFbyy8aD4f2r+drx4bW7X8KwsSOD3OpS8eolDnWrP1XSEssYiEhGzB4cpkDkvAtj1HRr1Rm3XxCFO2F54hHrbZ3B/HNS4nRqfKzhJ2DHTNs9GtpJaZ9XroMNfpysIETpMnRqd47fZ+vn/2OiFLIGxRcFyKy5iQL5kMbuiJMj6VLweNLziG8ak8d2zrW1aYo8rZ9L2bE4ymcoTthWO/LpcFTQ/u9TplB4+MMl1wPPOJeKg8SwfMiidYCiw/2BXGcT17P9sSbtnUy/v336D6X30Cp0dFaRWLdf4CN3pS8vLVEw1xbSqP5dsDgddQLda+hf3lnQXXUHRchvui9MbC/sOjzbWpPJPZIiOp+bZ+lfY9ffFwOX5QXzzcMrudhUY+/+dzl+iLhxiddIiEbG7oi7F3c4Kiy5L5LNlKqN1RywicHueyZ7iP77w8jltwan7Y9GbfQty+tY+TY2mm8xlEhJAFXSHxZvm7wty2rZ8PvHHHrDL6U2/o5sToVM0edmudWa8FtWtdEwROkxcnMmwf6ObklSm29MfJFBxeuTrlxX5l8Yn5Sv8wIhC2BcsSBnqifngUz4bcNYZNfTEyBXdZIUnmznrN9ZrbKB1Vm11b7NiVmrZt4Q03DnA9U+TqZNa7J5Zw9lpm3raq/1UhcHpUlFaxWOcvcGuZhxIxUn6nqysSIh62eXnM864XtsXzXDlnn3hIsC2LkC30xsP0xsIUXUOu4BINec1ddzSEbQlb18XZvr5rXgU+10gdlh9vp1kcG0lyfjwDArsGu8thGDJ5Z1a4isUaRG24Wkrg9DiXA/uG+PxzFxmbzOHmnSVDPkRsYcdAN1vWxSkYz15vfXcEx/XsVr1YlYZrUwX23xhfsIze37zLWRLVTMcTOE2WliOXwgh0RUJs6Y9z5uoURWfGE3RlKE4L8FYwCrZAJGQz0BPh2lSBLf0xHGPojYVx/DApecewritS1uVKaScdVebl4185QTJTYLDXIZUp0BsLgzEgwiNPvsIH37RTl3ivLoHTo6K0iqrOno0x11YzI43gof3bmcp5yytc1yVkW/TGQnRHbSw/gHl3xCZsecvFtvTF6IqG2bIuzg3ru+iNhdm1oYefe/MuQpaQyhYxxpAtOOSKLsN9sUVdM1fSbrG4Dh4ZZfeQ18nzQkR4f/3x0fRadg0dGIKox7ncOtzHr9y7mw29EWJha8FhWsEbqOmN2Owe6uW+Vw9zw0A3yUyRaMimNxai6Hq2qkXXC0MSskTLsLLqBFGTpdAhm3qj5ApuOT7mvi0JYhGbiC2EQxYJP1btDevj7Bjsoi8eIWxbdEfDbFsf5027N7KpL8aNG3pIxMJlXeaLhohtkcoWO16XpXt55GLKcwSD5/F77+ZEOYC7snoEUY/VHsAbGIVFURZksZm/wDHX1q0nGuKNNw2Qd0x5/f6e4T6OjiS5ZVMCS4Sr6SynrkyRzOSxxOKDb9pZHtn7xNdfZnwqz0B3ZFGboSDY97x4KUkqUyBfdEhlC0Rtiw29URIVS1ObyUqD3CvB59hIkhOjU7xqqJeNiThiDNN5h5fH0hRdF4MXWN0Ls2AxnfcGVHpjIRKxECYa4pWrU3RHLK5O5ckXDV0Rmx977bCWJUWpgcrlyJV2bXuG+3jH3iG+9tLVsodMS+CuHevL4YKuprOcHE0zOpmjLx7mF95yI189NsamRJSJ6TyJeIhUZiZO3i+89caO1GVlW9YVtkhm8sTDIXrjM56BXWOWteS1WWj7256s74lwNZ1fMF1RmklHdf5gxtat0glLtlBkbDLH8WSWjT1RNvZEy94353riKlWI99+2ZZ6dWy2umdtxff+xkSQXrnsN0WBPtLzkc1PCi8G3Gucv/ReVgXorO9pK53JsJMmnD53lW74n3FuHe9nS31WOcXfwyChnrqY5Pprm+lQeg8F1vYDUY5NZIiGbvZv7OLBviE987SRPvTxOxLbZORDjpo09vHR5qm6vgoqyVlloGWWpjt4znODuneuZzBZ54vgoXz5yGcsWErEwN23sZs/mPvZXeKwstZHTBYdkpsiNG0JlrXaiHue2ZZPZIrFwiFdt7JnVlrbTyh9tf9uXeGjhOb5q6YrSKDqu81ei5IQlX3R47nySaMiiPx7iyKUU67sj3mjm+q5FZ+rqsTVoJ7uEuRw8MuoFmB5Nl5d85oouJ0bT/Ow/uHFVzj834HUpvV3vmdIYSg8ep8fS9Me96ua580leu72/vDTqwL4hfumzlwHY0BvhwnUv2PqG7jAvXkqxa0NPeTDlVUMJNibi88KOaFlSlOUzt47OFx2KRcNEJscN6+Jk8kUOvXyNnYPdZa+Y0N7tXjNYqC27eaiH45fTrO+JtuXKH21/25eJ6UL5c6XDpcp0RWkGHTu8cHEiQ28sxKmxKaIhi1jYC8Kad1xuGOhmKBGlLx5mJJmlLx7u6FGwkoe3193QTyxsM5krkoiF2DYQX5VrLv0XldQb5F4JJuVBGMctazAasjg1NlUuA7cO97F1XZxELIRrhG3r42ztj2PbFgXHzNKmliVFaTxzdXVqbIqBngj98RDRSIii6+lsKBHt2HayFhaqf7YPdLNtIN62zxNaZ7YvWcclJJSXSlsCIfHSFaWZdOzMX8mrWTpbpCfqBVvNFd2ycfpIsrhmPHGV7kVpiSswLwD1apx/pUHuleBR8oSbiIXJFpxy5y+dLc4qA3s3980rI3OXYoOWJUVpBnN1lc4WCVkwlIhzz64BAFxjGElmW5nNllOt/tkz3Ne2zxNaZ7YvIUtwBeL2zDxM3nHLdraK0iw6duav5IkrbAu5glP22HnTxu41V/GV7kUyU8A1pvx5tTyxtfr8SusoecK9aaMXXiRbcMgVHMK2zCoDtZYRLUuK0njm6ipsC+mcw00bu8vbrLV2cyGCWP8EMc9rhddt6/e85Dourv9edA2v29bf6qwpHU7Hdv5KTlj2bk5wPeN5Dbxjex9h215zFV/pXrRqWUqrz6+0jplBGJs7tnv/9/VMkb2bE7PKQK1lRMuSojSeubrauznBzsFuwratHYYKglj/BDHPa4Vf+0d7uGWol5Al5F1DyBJuGerl1/7RnlZnTelwxJi5Yc+Dg4iMAWf9r4PA1QW3C0fjVqy3X+xQ1DjFnJudnDCFXBAWvFe9pgATtGu6wRizodWZCApzNOlhhTbb3f2mRfprdXlby+dvxrlVj3WwoB5r/F+a3G6uZV20w/kblQfVYx0spMeSzkwx3yehSDJAz6cl2qEsL4dOzHfNegx0568SEfm+MebOVuejkeg1KZ1AK//zVpe3tXz+Vl+7sjDt8L+0Og9r/fztkgdlhqD+H5rv1aVR+e7YZZ+KoiiKoiiKoijKDNr5UxRFURRFURRFWQN0UufvkVZnoAnoNSmdQCv/81aXt7V8/lZfu7Iw7fC/tDoPa/380B55UGYI6v+h+V5dGpLvjrH5UxRFURRFURRFUarTSTN/iqIoiqIoiqIoShW086coiqIoiqIoirIGCHznT0QOiMhxETklIg+3Oj9LISJnROQFEXlORL7vp60Xka+IyEn/fV3F9r/qX9txEbm3Iv11/nFOich/FhFZxWv4MxG5IiJHKtIadg0iEhWRz/rp3xWRHat1bUrjaJY2m13+ljj3NhH5hogcE5EXReRfrvL5YyLytIg875//I6t5fn8/W0SeFZEvrva5lZXRRE1W08WHReSieO3dcyLyzop9Gl0uW9q2isjNFdf5nIikRORfNfMeiLbFgadZmmw2C5W9IFCtrmp3pErbv2yMMYF9ATbwMrALiADPA3tana8l8nwGGJyT9rvAw/7nh4H/6H/e419TFNjpX6vt//Y0sB8Q4EvAfat4DW8CXgscacY1AD8H/H/+5/cBn231/6avustI07TZ7PK3xLmHgdf6n3uBE/45Vuv8AvT4n8PAd4F7VrMOAf418FfAF1fz3uurrTVZTRcfBn55ge2bUS7P0CZtq3+vLwM3NPMeoG1xoF/N1OQq5H1e2QvCq1pd1ep81ZDvBdv+5R4v6DN/rwdOGWNOG2PywGeAd7c4T8vh3cCj/udHgR+tSP+MMSZnjHkFOAW8XkSGgYQx5pDxSsJfVOzTdIwxTwLX5iQ38hoqj/W3wFt1ZiBwNE2bq1D+Fjv3iDHmB/7nSeAYsGUVz2+MMWn/a9h/mdU6v4hsBe4H/mtFcqDqrzVMMzVZTRfVWK2y0aqy+VbgZWPM2SXytqI8aFsceAL7DFul7LU9y6ir2oJF2v5lEfTO3xbgfMX3C7T/n2iAL4vIMyLyQT9tyBgzAl7BBDb66dWub4v/eW56K2nkNZT3McYUgSQw0LScK81gtbW56hryl0DdgTcCt2rnF2/Z5XPAFeArxpjVPP9/Aj4EuBVpnVB/rQVWRZNzdAHwL0TksL9MrLQEsRllo53a1vcBf13xfbXuAWhbHCSC+AzbMSxQV7U1Vdr+ZRH0zt9CI1DtHrviDcaY1wL3AT8vIm9aZNtq1xek617ONQTp+pSFaZf/sCkaEpEe4L8D/8oYk1rN8xtjHGPM7cBWvJH7fatxfhH5h8AVY8wzteSzkedWGkLT7/sCuvgkcCNwOzAC/P4SeVlJHtuibRWRCPAu4HN+0mreg0WztozzqVabi97fFlFHG9421Nn2L0rQO38XgG0V37cCl1qUl5owxlzy368A/wNv2n/UX3qB/37F37za9V3wP89NbyWNvIbyPiISAvoI4PKCNc5qa3PVNCQiYbxG478ZY/5utc9fwhgzATwBHFil878BeJeInMFbnvQWEfn0Kp1bWTlN1eRCujDGjPoPLC7wX/Dau8Xysuyy0UZt633AD4wxo35+Vu0e+GhbHBwC9wzbCVRpwwPDnLZ/WQS98/c94FUistMfbXsf8IUW56kqItItIr2lz8A7gCN4eX7I3+wh4PP+5y8A7/M9bu0EXgU87S/lmBSRe/z19/+kYp9W0chrqDzWe4Cv+7YISnDpYCZ6AAAgAElEQVRYbW2uiob8bf8UOGaM+YMWnH+DiPT7n+PA24CXVuP8xphfNcZsNcbswPs/v26MeXC1rl1ZMU3TZDVdlDohPj+G195B43XRTm3rT1Cx5HO17kEF2hYHh0A9w3YCi7Thbc0ibf/yMG3gxWYlL+CdeN56XgZ+rdX5WSKvu/C8OT0PvFjKL94a+q8BJ/339RX7/Jp/bcep8PgF3InXiLwM/BEgq3gdf423fKWAN3L1gUZeAxDDWzJzCs8L2a5W/3f6WlY5aYo2m13+ljj3G/GW5RwGnvNf71zF898GPOuf/wjw6376qtYhwJuZ8fYZqPprLb+aqMlquvhL4AU//QvAcDPKBm3StgJdwDjQV5HWtHuAtsWBfzVLk6uQ73llr9V5qjHfC9ZVrc5XDflesO1f7qskcEVRFEVRFEVRFKWDCfqyT0VRFEVRFEVRFKUGtPOnKIqiKIqiKIqyBtDOn6IoiqIoiqIoyhpAO3+KoiiKoiiKoihrAO38KYqiKIqiKIqirAG086coiqIoiqIoSsMRkX4R+blW50OZQTt/awQR2Swif+t/vl1E3rnM47xZRL7Y2NwpSjARkX875/u3l3mcD4vIL9e47Q4RObL0lorSWbRL2W+XfChKQOgH5nX+RMRuQV4UtPO3ZjDGXDLGvMf/ejteYFFFUZaBeFjArM6fMeaHWpQlRCTUqnMriqIoShU+CtwoIs+JyPdE5Bsi8lfACwAi8j9F5BkReVFEPljaSUTSIvIf/d++KiKvF5EnROS0iLzL32aviDztH/uwiLyqNZcYLLTzt8qISLeIPCYiz4vIERF5QETOiMig//udIvKE//nDIvKoiHzZ3+b/EJHfFZEXROSgiIT97c6IyH8QkUMi8n0Rea2IPC4iL4vIz/jb7PDPFwF+E3jAF8sDi+Tzz3yhPisi7651GxH5rojsrdjuCRF5XYNvpaKsGL9h+bmK7x8Wkf9bRH7FL9eHReQj/m87ROSYiPwx8APgT4G4r6P/5m+TrjjWh3ytPi8iH/XT/pl/3OdF5L+LSFeN+Xydv88h4Ocr0v+piHxORP4X8GURWe83pIdF5DsiclvFdf2liHxdRE6KyD9b8c1TlNYQ8tvFwyLytyLSJSK/7uvqiIg8IiICICK/KCJH/W0/46ct2baVEBFbRH6voi7457VuIyKflYoVNiLyKRH5x42/HYrS9jwMvGyMuR34FeD1wK8ZY/b4v/+0MeZ1wJ3AL4rIgJ/eDTzh/zYJ/Hvg7cCP4T3HAvwM8If+se8ELqzGBQUd7fytPgeAS8aY1xhj9gEHl9j+RuB+4N3Ap4FvGGNeDWT89BLnjTH7gW8BnwLeA9zDjEAAMMbkgV8HPmuMud0Y89kq5/014OvGmLuAfwD8noh017jNZ4D3AojIMLDZGPPMEtepKK3gM0DlAMh7gTHgVXgN1O3A60TkTf7vNwN/YYy5wxjzU0DG19FPVh5URO4DfhS42xjzGuB3/Z/+zhhzl592DPhAjfn8c+AXfY3PZT/wkDHmLcBHgGeNMbfhzUr+RcV2t+HVGfuBXxeRzTWeW1HaiZuBR/wynsJbTvZHvq72AXHgH/rbPgzc4W/7M35aLW1biQ8ASX/bu4B/JiI7a9ymXLf4g65vBf73Cq9dUTqBp40xr1R8/0UReR74DrANr/0FyDPzjPwC8E1jTMH/vMNPPwT8WxH5N8ANxphMszPfCWjnb/V5AXibP+Pww8aY5BLbf6misNvMFsKOiu2+UJH+XWPMpDFmDMiKSP8y8vkO4GEReQ54AogB22vc5m+AH/e3eS/wuWWcX1GajjHmWWCjeDaxrwGu43WS3gE8izfDdwszjdFZY8x3ajj024A/N8ZM++e55qfvE5FvicgLwE8Ce6sdoISI9AH9xphv+kl/OWeTr1Qc/42l340xXwcG/P0BPm+MyRhjrgLfwOvcKkrQOG+Mecr//Gm8Mv8P/BUnLwBvYUZXh4H/JiIPAkU/rZa2jYpt/4m/7XeBAWbqgqW2+RLwFhGJAvcBT+qDqaIAMFX6ICJvxmsv9/uDos/iaRKgYIwx/mcXyAEYY1wg5H/+K+BdeBMij4vIW1bjAoKO2oisMsaYE/4SyHcCvyMiX8ZrlEod8dicXcqFXUTmCiE0dzsqBFJlu1oR4B8bY47PShQZWmobf7txf8nZA8C8pTKK0kb8Ld5M+Sa80fodwO8YY/6kciMR2UFFo7UEApgF0j8F/Kgx5nkR+afAm1dwrBKVeZIFfjdz3uemK0qQWKgc/zFwpzHmvIh8mJl29H7gTXgPh//ON0eo2m4tgAC/YIx5fFaiVxcsuo2/3RPAvXjt4F/XcD5F6UQmgd4qv/UB140x0yJyC96KtZoRkV3AaWPMf/Y/3wZ8fUW5XQPozN8q4y+1mjbGfBr4GPBa4AxQsolbDZuAxYRY4nHgFypsJ+6oc5vPAB8C+owxL6w8y4rSND4DvA+vA/i3eOX6p0WkB0BEtojIxir7FsS3vZ3Dl/1jdPnHWO+n9wIj/j4/ucB+8zDGTABJEXmjn7TYfk+WfvdHVK8aY1L+b+8WkZhvT/Fm4Hu1nF9R2oztIlJa/vwTwN/7n6/6mn0PgHgOmbYZY76B1xb1Az3U1raVeBz4WZmxr9+9wBLRxbb5DPBTwA/72ynKmsMYMw48JZ6H3N+b8/NBPDvew8Bv4S39rIcHgCP+zPstzDZ1UKqgM3+rz6vxbAxcoAD8LJ6Nwp+K5zb+u6uQh28ws+zld6rY/f0W8J+Aw34jeYYZO4patvlb4A/9bRSlbTHGvCgivcBFY8wIXufsVuCQ/3yYBh4EnAV2fwSv/P+g0u7PGHNQRG4Hvi8ieTxbn38L/Ds8jZ/FW6K91CBMiZ8C/kxEpln8IfLDwJ/7Dek08FDFb08Dj+EtcfstY8ylGs+tKO3EMeAhEfkT4CTwSWAdnp7OMDOoYQOf9pc9C/BxY8yEiNTStpX4r3grAX7gbzuGZ8tb6zZfxnsY/YJvb68oaxJjzP9ZJT2Htyx6od96Kj5/eKHfjDG/A/xOwzK6RpCZVYSKoihKJ+IvhUsbYz7W6rwoiqIoitI6dNmnoiiKoiiKoijKGkBn/tY4IvJTwL+ck/yUMebnF9peUZTmISL/L/CGOcl/aIz581bkR1HWAiJyL/Af5yS/Yoz5sVbkR1EUpZlo509RFEVRFEVRFGUNoMs+FUVRFEVRFEVR1gDa+VMURVEURVEURVkDaOdPURRFURRFURRlDaCdP0VRFEVRFEVRlDWAdv4URVEURVEURVHWANr5UxRFURRFURRFWQNo509RFEVRFEVRFGUNoJ0/RVEURVEURVGUNYB2/hRFURRFURRFUdYA2vlTFEVRFEVRFEVZA2jnT1EURVEURVEUZQ2gnT9FURRFURRFUZQ1QKjVGVgJg4ODZseOHa3ORtuTLTgkMwUKjiFsC33xMLGw3epsBYJnnnnmqjFmQ6vzERRUk8pyqaWeUj3Wh+qxNrSNXB6qx/pYC3pULbWOevQY6M7fjh07+P73v9/qbLQ1x0aSPPLkK/TFw/TGQkxmiyQzBT74pp3cOtzX6uy1PSJyttV5CBKqSWU51FpPqR7rQ/W4NNpGLh/VY310uh5VS62lHj3qss8O5+CRUfriYfriYSyR8ueDR0ZbnTVFURRA6ymldWjZU5TGoFoKDtr563AuTmTojc2e4O2Nhbg4kWlRjhRFUWaj9ZTSKrTsKUpjUC0Fh0Av+1yIYyNJDh4Z5eJEhi39cQ7sG1rT081b+uMkMwX64uFy2mS2yJb+eAtzpShKJ9Co+lbrqdVD28jZaNlTlMbQblrSuq46HTXzV1pvnMwUGO6LkcwUeOTJVzg2kmx11lrGgX1DJDMFkpkCrjHlzwf2DbU6a4qiBJhG1rdaT60O2kbOR8ueojSGdtKS1nWL01GdP11vPJ9bh/v44Jt20hcPM5LM0hcPq/GtoigrppH1rdZTq4O2kfPRsqcojaGdtKR13eJ01LLPixMZhvtis9J0vbEnSG3IFEVpJI2ub7Weaj7aRi6Mlj1FaQztoiWt6xano2b+tvTHmcwWZ6Xp2n1FUZTGo/Vt8ND/TFGUtYDWdYvTUTN/B/YN8ciTrwDMijHywF1bW5wzpR157PBFHj10jtFUlqFEjIf2b+f+27a0OltKkwmyEXg75V3r2+BxYN8QH3v8BM+mc+SKDtGQzWBPlAfu3V3XcdqpHCqK0lk0on5pVPvUqXVdR838tdN6Y6W9eezwRT76peOkMgU29kRIZQp89EvHeezwxVZnTWkiQTYCb7e8a30bTFxjABBk1vdaabdyqChK59Co+qUR7VMn13VLzvyJyG7gk8CQMWafiNwGvMsY8++bnrtl0C7rjZX25tFD5+iOhsouifviVjm9nWf/gqbHdqPSCBwovx88Mtr29UY75l3r22Bp8uCRUW4Y6Oa2rf3ltGSmUFcZasdyqCglgqRHZT6NrF9W2j51cl1Xy8zffwF+FSgAGGMOA+9baicR+TMRuSIiRyrSPiwiF0XkOf/1zorfflVETonIcRG5t/5LUZTaGU1l6Y3as9J6ozajqWyLclQzy9IjqCYh2EFog5z3DicwbWQjypCWQ6XNCYwelfm0U/3STnlpNLV0/rqMMU/PSSsuuOVsPgUcWCD948aY2/3X/wYQkT144tzr7/PHImIvsK+iNIShRIzJnDMrbTLnMJSIVdmjbViuHkE1GWgj8CDnvcMJTBvZiDKk5VBpcwKjR2U+7VS/tFNeGk0tnb+rInIjYABE5D3AyFI7GWOeBK7VmI93A58xxuSMMa8Ap4DX17ivotTNQ/u3M5XzDIBd1yWZKTCVK/LQ/u2tztpSLEuPoJqE9gpCWy9BznuHE5g2shFlSMuh0uYERo/KfNqpfmmnvDSaWjp/Pw/8CXCLiFwE/hXwsys4578QkcP+FPs6P20LcL5imwt+mqI0hftv28LD991MIh7mSjpPIh7m4ftubmt7P59G6xHWkCaD7KQkyHnvcALTRjaiDGk5VNqcwOhRmU871S/tlJdGs6TDF2PMaeBtItINWMaYyRWc75PAb+GNyPwW8PvAT4PvdmzOqRc6gIh8EPggwPbtbT9Lo7Qx99+2JQidvVk0WI+wBjUZZCclQc57pxK0NrIRZUjLodKuBE2PynzaqX5pp7w0klq8ff4H4HeNMRP+93XA/22M+X/qPZkxZrTiuP8F+KL/9QKwrWLTrcClKsd4BHgE4M4775wntk6NyaEo0Fg9wupospPR+kYJWhvZCLTcK+3KWtRjo1Bdrx1qWfZ5X0lEAMaY68A7F9m+KiIyXPH1x4CSV6UvAO8TkaiI7AReBcw12F2STo7JoSg+DdMjNF+TnYzWN4pPYNrIRqDlXmlz1pQeG4Xqem2x5MwfYItI1BiTAxCROBBdaicR+WvgzcCgiFwAfgN4s4jcjjc9fgb45wDGmBdF5G+Ao3hemX7eGOMsdNzF6OSYHErjCego17L06G+76pqEwN7nJdH6RvEJTBvZCBpV7ju1XlBazprSY6M4eGQUx3E5OpIinS3SEwuxqTeq7VmHUkvn79PA10Tkz/EE8NPAo0vtZIz5iQWS/3SR7X8b+O0a8lOVixMZhvtmu+rvlJgcSmMpjXL1xcOzRrkCYMy7LD1CazQZ4Pu8JFrfKD6BaSMbQSPKfSfXC0rLWVN6bBQvXkpy4VqGaNiiJ2qTKzicGE0zXQh0n1apQi0OX35XRF4A3opn5PpbxpjHm56zZbClP04yUyiPRELnxORQGktQZ22CpEcI7n2uBa1vFAieJldKI8p9J9cLSmtZa3psFKlsEQRiYS9cYSxskyu6XrrScdQy84cx5kvAl5qclxVzYN8Qjzz5CuCNRE5mvThuD9y1tcU5U9qNIM/aBEWPEOz7vBRa3yglgqTJldKIct/J9YLSetaSHhtFXzxEcjpPtuAQDVnkii7GGPriNXUTlIBR9V8Vkb83xrxRRCaZ7cJWAGOMSTQ9d3Vy63Aft2zq5tFD58ojkw/t364jico8gjZrE0Q9QvDucyVL2STdOtzH227dwKOHzjGayjKUiGl9s4YIqiZXamtXin1VeYwH7tpa1zEaWS+o7aACa1ePjTrGnuE+usI2l1M5UtkCiViYHQNd7Bjsqes4SjCo6u3TGPNG/73XGJOoePW2q4geO3yRT3/nPIlYmD2beknEwnz6O+d57PDFVmdNaTMO7BsimSmQzBRwjSl/PrBvqNVZW5Ag6hGCd59L1OL57NhIkq8eG2PPcIJ3vWYze4YTfPXYmHpHWyMEUZON8uh363Afv/T23Xzsx1/DL719d90Pmo2qF9RDoVJireqxURo4sG8Iy7K4dTjB224d4tbhBJZltX1brSyPRUM9iIglIkcW26adePTQObqjIfriYSzLoi8epjsa4tFD51qdNaXNKI1e98XDjCSz9MXDbe9sIGh6hGDeZ5htk2SJlD8fPDJa1zZKZxM0TbZLmW1UvdAu16O0B2tRj43SQFDbamV5LLqY1xjjisjzIrLdGNP2PajRVBbLGI5enybvGCK2MNgdYXSNeyvSZTELc+twX6DuQ9D0WKLd7nMterg4kWEyk+fLR1NM5Ry6ozav3pwgnYvM2kbtltY2QdNkp5XZRl1Puyy9U1bGWtTjxYkMIYtZIRp2DXaRzrXGUYvqIBjUEuR9GHhRRL4mIl8ovZqdseVgC5y7nmE671AoukznHc5dz2BLq3PWOnRZTMcRGD22gmMjST7+lRP88uee5+NfOTGvnNeqh6lsgadeHidfcOkKW+QLLk+9PM5UtlDeZkt/nMk5ntCCYs+oNJTAaHJLf5xz41N85/Q4Xz56me+cHufc+NSql9lGtUuN0GA7Lb1TGkKg9LjS8huxhb8/Oc6Zq2lGUxnOXE3z9yfHidT54Ks6WFvU4sbnI03PRYMoOC6O8TqBtgWuAcd46WuVg0dGcV2XYyOpshHvpoQG7gwwgdFjo1lqRLGW2GG1upi/cD2DINiWICLYFgjCheszI7Lq7VPxCYwmdw9185nvncNxDMYYxlI5zoxP8Y69q2vX06hQD43QYCPyoqEr2orA6LER5XdiOs/EdJ5o2Pa9dBomcl5aPTRKB/q8GQyWnPkzxnwTOA70AQnguJ/WdqSyDr1RC9sSXAO2JfRGLVLZtbvs8+hIkpcuT5ItOPRGQ2QLDi9dnuSojsQEkiDpsZHUMqJYi+3DxYkMvbHZY14LLbNJ5YpsXx8jZAt5xyVkC9vXx0hVLKVRGwkFgqXJp06NExZ/UMPy3sMiPHVqfFXzUasOl6IRGmxEXhp1PcrKCZIeG1F+z4xn2NwfIxa2yDuGWNhic3+MM+P1lb1GlGF93gwOS878icj/Bfw68HU8l7mfEJHfNMb8WbMzVy9hWygYi2jIUHQNIUuwRAiv4XWfyUwREZkXuDOZ0cCdQSRIeqyHpWb1ahmVrMV+olYX80OJGKlMga3rusppyUyBocTs47ebPaOy+gRJk8+en2CgJ0IsMtP0Z/NFnj0/sar5aKcQMI3ISztdz1onSHqElbchBkM8bLOuO1pOy+aL5F2zyF7zaUQZbtTzptoNNp9abP5+BbjDGPNPjTEPAa8D/k1zs7U8btnYQzpfJO+4WEDecUnni9yyce3GKUnEQmAgW3AwxpAtOGD8dCWIBEaPtVLLrF4to5K12E/U6mL+of3bmcp5S3Bc1yWZKTCVK/LQ/u2NvHSlMwiMJgVh7iOh8dNXk3YK9dCIvAQ1pE2HEhg9NoI7tvWTzjmznvHSOYc7tvXXdZxGlOFGPG+q3eDqUEvn7wIwWfF9EjjfnOysjO2D3SSiIVzXkCm6uK4hEQ2xfbC71VlrGXs397F7qIdo2Cadc4iGbXYP9bB3s46iBJTA6LFWalmu2aiOXSkw+9GRFF94/hJHR1K87dYN80YV779tCw/fdzOJeJgr6TyJeJiH77uZ+2/b0qS7oASYwGjyjm19VR4UV7c9aKdQD43IS631irIqBEaPjeD9+29g+4C3QqXURm4f6OL9+2+o6ziN0MHezX1sSkS4ms5xfHSSq+kcmxKRup43NXzL6lBLd/wi8F0R+TzeIOG7gadF5F8DGGP+oIn5q4uxdI5EPEwkZOMYgy1CLGwxls61OmstwzMonmbPcGKWQbGOSAaWwOixVmpZrlmLYXyp8apcLvLAXVvnOYUpBWa/e+d6JrNFvnpsjF0behbsAGpnT6mBwGjywf03cDmV42o6RypbIBqy2TnYzYN1Pig2gkYsmW5UqIeV5qWeekVpOoHRYyO4dbiPDx24uSHLJFeqg91D3fzdDy7QGwuzuS/GZM7h5avT/Phd22o+RqeFo2lXaun8vey/Snzef+9dbCcR+TPgHwJXjDH7/LT1wGeBHcAZ4L3GmOv+b78KfABwgF80xjxe81X4JDNF4pEQm/rCFWmFNW3fVssDsRIolqVHaI0ma6EWW4Nay/FSjZd65VOaQGDayFuH+/jle3d3jD1Nu9jaab3SVgRGj42iXWzPT4xOcce2fi5P5khniyTiYXZv7OHE6BT313iMdtF0p7Nk588Ys1y3uZ8C/gj4i4q0h4GvGWM+KiIP+9//jYjsAd4H7AU2A18Vkd3GmLrcdCZiIY5enOCl/Exoh56IxT03Di7zEjqDdqkY2o0gGhWvQI/QAk3WwoF9Q/zG51/kzPgU2YJDLGyzY6Cbj7x776ztTo+lOXR6nNFUlnOJGLuHuuv+v9otIG6JIJZFxSNIbWSjeOzwRR49dI7RVJahRIyH9m+ve5a8EWW+1rqj2ehsRfsQND02QgeN0GMj8nJxIkNX1J616LYratelgwP7hvjY4yd4Np0jV3SIhmwGe6I8cO/uei5FWYJabP6WhTHmSeDanOR3A4/6nx8FfrQi/TPGmJwx5hXgFPD6es957mqadH52TL903uXc1XS9h+oolgp8vRZZi0bFrdBkLZweS3NqdJLJbJFc0TCZLXJqdJLTYzO6fezwRX7zi8c4fSVNOlPg9JU0v/nFYzx2+OKsYy1V1iO28L1XrpMrOPREbXIFh++9cr3ugLiNZC2WRaU1ejw2kuRjj5/gieNXOHJxgieOX+Fjj9fXJtSqxaXy0YgyX0vdsRo0Ili30lpapceV6uCxwxf56JeOk8oU2NgTIZUp8NEvHa9Lj6W8rLRuaFTA+WQmz+VklpFklsvJLMlMfTELlaVpWuevCkPGmBEA/32jn76F2Qa5F/y0eYjIB0Xk+yLy/bGxsVm/nRibXvCk1dLXAvpguTBqVFymqZqshT9+4jRF3yPYQHeYRCxE0XjpJT75xGlSmTwTmTzXMwUmMnlSmTyfrNimlrIuUMXbYevQsqhU0FQ9fvrQWY5fTnE5mWVsMsflZJbjl1N8+tDZmjP4ySdOk84WmS4UmS44TBeKpLPFWVpcikaV+VrqjtVAvX12LE3VYyN08Oihc3RHQ94xLIu+eJjuaIhHD52r4zK9uuGFixOcvDLJ6bEpTl6Z5IWLE3XVDaWA844L0ZCF486k1cpfHjrL9akCm/pi3DzUy6a+GNenCvxlHflQlqaWOH9vMMY8tVTaClno2WvBICXGmEeARwDuvPPO+gKZrEEOHhnFcdxZy9w29UbXvC1CUJfprJIeoYGaXGopyYXr0xjX5fqUU3bUFA0JF67PDNqcHpsiU5g5tGug6BpOj02V02qxu8k5hrt3reP02DSpbIFELMyezb3knNZVJUEti4pHkNrIQ6fHuTqZxTHgGsESgy1eeq2cGZ8iV3AQAeMHjzDGS6+VixMZJjN5vnw0xVTOoTtq8+rNCdK5SM3HAK/uiIUtQrY3jh2yhZifvpqobX37ECQ9NkIHo6ksG3tmb98btRlNZWs+BsA3T4xxZXKmk5Z3DNP5PN88UfuAbing/FTeIVd0iYUtBrrDdQWcf/b8BD1Re1asQIxZ9ViknU4tDl8+Aby2hrRaGBWRYWPMiIgMA1f89AtApTugrcClZRxfmcOLl5IcvZRkIlOg6LiEbIsL8TDThZaYirQNW/rjnLma5nIqV+4EbEpE2THY9jEhG6lHaLImj40k59nkHHr5Kh95997yg5HjmFnLtR1jyOcNPZGZ9rVaea1MryfI+z27BsppyUyBjb1hWoUauAeewLSRo6ks2bJkDI6Bgp9eKwXHpWjwH3XNrPRamcoW+MZLYxRcgwFSmQJXUzneeuvGJfetJGxbZPMOGRyKriFkeRELI/6DY600wu5KbevbhsDocSpb4Fsnr2L8AZR8sci3Tl7lR3ZvqPkYQ4kY58fTpHMOeccQsYWeqM22gfqeZUYmFq4DqqUvhMFwbSrPtekCrgFLYH1XmA2J2NI7+7RLLNJOp2rnT0T2Az8EbCi5yPVJAPXVrDN8AXgI+Kj//vmK9L8SkT/AM559FfD0Ms+hVHDm6hRXUjnCIcsLgeEarqRydEVqH6XtRHYPdfOZ753DcQzGGMZSOc6MT/GOve25TKdJeoQma/ITXzvJCxcnKA2UFpwiL1yc4BNfO8kfP3gnALniwh27aunV2NIf55WxdNnTWGmWe+eGmUawlpARq0075klZmiC2kbniwh20aukLU22WvPbZ8x+cu07endneAHnX8INz1+vIB9yyqYdvn7qG+M+FecAY+KE64haWlov3xcOzlosvJ+6g0jqCqMeTV9Lkiy7hkEXIFhzXkC+6nLxSu83qvs09PHPmGrYlhC3IFQ3TeYf7Xl1f569aa1tPK+y4DlenCoDX4rsGrk4VWN9T++DqHdv6OHT6GiJCNGSRK7qkcw77d62vIycejRjU6VRnbIvZ/EWAHrwOYm/FKwW8Z6kDi8hfA4eAm0Xkgoh8AE9AbxeRk8Db/e8YY14E/gY4ChwEfr5VXsw6javpPAbIFTwB5Qouxk9fyzx1apywCLYliOW9h0V46lTty59WmRXpEVqjyV0wX2UAACAASURBVG+/fI180ZAruGQKLrmCS75o+PbLM3b1hSrPndXSq7F7qJunz1zj9JU0l5PTnL6S5ukz19g91F3eplHBpRtJO+ZJqYnAtZFulf5ZtfQqOa8zfT5jVdqfaunVSETD3kOzofwK2UIiWvvDptrcdgyB0+NYOk88YuG4hkzewXEN8YhVlw6OXEoTtoW8Y5gqGPKOIWwLRy6tvqPD8/7yzlLHwpqTXgsP7r+BwZ4II8kML11OMZLMMNgTqTsWaSP8XXSyz4yqM3/GmG8C3xSRTxljzopItzGm5ukiY8xPVPnprVW2/23gt2s9vlIb2UKRSnMmF8B46WuZZ89PMNATIRaZkUA2X2zbdeUr1aN/jFXX5GS2sGD5m8wWVnLYBfn2qXFcY8gUHIquS8gydFs23z41PsvtdTsuz2rHPCmLE8g2cuWTdg3o+jWqEwovjU4StoSwLWUbRoyXXitqc9sZBFGPgiFXdAnbNpGQN2udKzp0RWr3xXjkYpJscbZwskXDkYur30EpuBC2vEGYkie1sNQ/kAveMk8RWfZyz0bE3jx4ZBTXdTk2kpplHtQJPjNqKWGbReQocAxARF4jIn/c3GwpjaJYpTWtlr5WCPC68kDpsZoflWb4Vzl0epxcwaUnGmKgO0pPNESu4NblzEJRlkFgNFntGayeZ7N4FXu6aunNJJUtErItLPH8+FoihGyLVLb2wU0N09BxBEaP67sjFByYyjukcw5TeYeC46XXynS+ij18lfRqxKtMBVVLX4iwLRRcbxDH4L0XXC+9Vj596CxX0/lZ3j6vpvN1eR0Fb1BnNDnN5545z6e+/Qqfe+Y8o8npugZ1jo4keenyJNmCQ280RLbg8NLlSY52wMxfLZ2//wTcC4wDGGOeB97UzEwpjaQR47Sdxx3b+kjnHLIFB2MM2YJX+d5Rh61Ii+g4PYar1ELV0qtReuCbyhe5Pp1nKl+cla4oTaLjNLkoUqXtqJbeRCK2MJ33nL1Y4g1qTueduuKKNSpMw2OHL/LePznEj/zeN3jvnxyqO85auxHg+MCB0aMYs/AgtFn9wflYeOFeXrX0hUjEFm60q6UvxLPnk2VvnyJCLGzTE7V59nx95W86V+BbJ70B4e6ITa7g8q2T40znal91lMwUy3mofE9mgv9MUdM/Yow5PydJ7fECgm3Nt3S2/fS1zIP7b2DnoGcLlvKXIO4c7K57XXkr6DQ9hqsUxmrp1Sg9CDr+g6CzjAdBRVkOnabJxZjOL/zgUy29mazrjhK2BUsoexcM28K67mjNx2iEzW2jAm23C0G3dQqKHs9eX3gWqlp6M8lUWZtZLX0hJjIL3+Zq6QthMPOmJsRPr4ez1zJYlhDyHyNCFliWcPZa7fc2EfNm+165mubUlUleuZomW3BIxOqYDm1TarmC8yLyQ4ARkQjwi/jT6Ur7M9gd4VIyhy0zAa5d46WvZW4d7uOX790dRC9OHafHYhUX8ZXppYe7uVgVrcS67ijXpvIUHbf8IGhb9T0IKsoy6DhNLkauuPBDWLX0ZjLcF+NaOksqWyxrvi8emmfDtxQrtbmtDLQN0Be3yumV9sZBoRH2Ui0kMHqs5mS3Hue7IYGFpBeqc8wzX6Udrpa+EAXfnqOyXXbNTHot3LGtnyePj1Fwc+W4v2FLeNPNtYe/AEjnimztj5HMFskVXaIhi63dEdK52gepNvZGeelSyrc/9MyCikWXjb3Bf6aopfP3M8AfAlvwYpt8Gfi5ZmZKaRyv2dbPWHrUW4NtvJU5YctLX+sE1MlGx+lRqvTspKIFidqw0EqLaMW0dm8shKlYRmMAYwy9HTBKp7Q1HafJoLCxN8pht+SvxpszcFxW/eGsUYG224WAO8FZU3q0baG4QO/PrnPFSyOcMJWa8rn7WHVk5Q03DXDwxcu+91MX27KIR2zecNPA0jtXMJSIkcoU2Lquq5yWzBQYqivmoBczdCAWKoedmMwWO8JoqpZ1VXcZY37SGDNkjNlojHkQeG+zM6Y0hq5omLfespGNiRg9sRAbEzHeestGuupwha20FR2nR7dK61KZLrJwVVWZnvadP0RDNpGQ9x6yLdJq86c0l47TZLOp9uBRrzXCxFSeyVzRG9jEG+CczBWZmFrdUEZDiRiTudlL2yZzTl0Pmu1EwJ3grCk95qvMuFdLbyYDVVaUVUtfiG+fGqcrbJOIhemNhUnEwnSFPa/d9fDQ/u1M5byYua7rkswUmMoVeWj/9pqPkXMMd+9aRyxsM5krEgvb3L1rHblmeKxbZWqpa/+diLyl9EVEPgS8u3lZUhrJlv44Ydtm67outvR3sXVdF2HbDkolrsyn4/RYbVVJZXq+yjqYyvR0ruB7a52Z+xOEdB0G3oqyDDpOk80mVGVWolp6NY6NTuI4XvzQnB9P1HFcjtUR6qERNOJBs51olBOcFrGm9NiA6C1AYwZkuqOhectNQ+Kl18qz55Os746wY7Cbmzb2smOwm/Xdkbodvtx/2xYevGcbqWyBo5cnSWULPHjPtrqWYW/pjxMNhbhn1wDv2LOJe3YNEA2FOuL5uZZ/5F3AF0XkV4ADwC1+mhIAdg9183c/uEB3NERv1CaVKTAykeHeYFTiynw6To+1uJ+vZUmKILjGkHdcXBcsCyK2FYTwHUqw6ThNNhuniqCrpVfjSipbjiFW2rPgeumrSemB8tFD5xhNZRlKxPiFt9wYSHs/mHGCU2kT/8BdW4NiJqF6XAaNid/pBZgX15RtcEOW1y7XivEHbefmoV6HL8dGkrx0eYp37NlEbyzEZLbIS5enODaSrLkcH9g3xMceP8Gz6Ry5okM0ZDPYE+WBe3fXlZdGcGwk2VAfFUt2/owxV0XkXcBXgWeA9xjTAj+0yrI4MTrFjRu6OXElzUgyQ3c0xO6NPZwYneL+VmdOqZu1qkepnNCbm+5jW0K+6BIOWdhhwXEN+aKLXY/BgaLUyVrV5EqodnfqvWuF4uxHQlORvtrcf9uWwHb2OgnV4/JoRAxQW4SsY8o6dgwUfacttXLHtn6+e/oaiJTt7NI5h7t3ra8jJ41zWlTquJY6pPV0ZBtFyftuXzw8y/tuvV6JK6k6oysikyKSEpFJ4BSwG/hxICUiqWWdTVl1jo4kGUlm2dAT5eahXjb0RBlJZjsiSOVaopP1WMtyk0TMq7il4lWZDjOjjkXHJZN3KDouYbu+UUdFqZVO1mSzsaoMyFRLr4ZTRdvV0pXaCGKoB9XjymjE8tHr04V5AzjGeOm18v79N7B9wHPSUrI73T7QxfvrDMN1cSIzz9lbvU6LDh4ZpTcaIurH94uGbXqjIQ4eGa0rLyulsiNriZQ/ryQfVWf+jDG9yz6q0jZUBqkEiIVtckW3I4JUriU6WY8hG/ILhAEKVXjyvHm4l+fOXac4ZznJzcMzt8UAIdtCLFP2bGuL1G37oCi10MmaDArV/C50gD+GlhLEUA+qx9ZTrZNXT+fv1uE+PnTg5hUvcdzSHyeZKZTLLtTvtOjFS0kuXMsQDVv0RG1yBYcTo2mmC6sbNrIZ3neXtOUUkR8Tkb6K7/0i8qPLPqOyqiRiITCQLTgYY8gWHDB0RJDKtUgn6lGqLAmpTL975wD37BpgYyJGr++19p5dA9y9c8b9c1ckhIjQGw2xritMb9T73hXRsq40j07UZLOxqzx5VEtvNsdGknz8Kyf45c89z8e/cqKtZ7hWg0bMmrQK1WPraJTzmUbQCKdFqWwRxJs0KU+iiJ++ijTD+24tVe1vGGPKNaExZgL4jWWfERCRMyLy/7P35mFy3dWd9+fUreqq3ltra7FlWcayJStmiVkEDDG7AhOYzMDAvEPiTDIPZCZx5mUeksBkEkgyyXgIgUkmQ4JnwhsHEhKSAeJAEDYmxgMIsPGGLFmyrL3VarXU6uqt1nvP+8e91apeqvt2V1VX3arzeZ56qupXdzl9+37vbzu/c34oIk+KyGNB2XoReVBEngve11VzDsPntm397B7sIZlwmMq5JBMOuwd7uG1bc47eGctScz1CYzUZkxgO/sNIgncnKC9xYN8g67qTvGnvFn56/07etHcL67qTcx7k2wZSrOtKAELeVUBY15Vg20A0w60bkcHqyBWSqpCBulJ5JSp5ia7EezSKLo71JuKpHkyPq6CnPGluiPJ6cXQ4zUcPHuPhY5d4ZijNw8cu8dGDx1asx1LQov7OBMPpLP2diRWvkevvjM9OmpS/93eu7YByPaLvhun8LbZNLf7y16rqi1T1juD7B4GHVPVm4KHgu1ElB/YN4jgx9m7t4/V7NrN3ax+OE4tKyGZjIfXSIzRIk+u6E3QlHbqTDqlEjO6kQ1fSYV33NXeNMA/yvVv7edH1A+zc2M2m3iQ7N3bzousH2NukbkpGy9BWdWQtQsKHydsZhm39iw/sVCpfjHqsp4k6EU/10FZ6rBUDnYvnfq5UvhiVLvJKLv5nDp3h7JUZgNnZ57NXZvjMoTMrOEpt2Lu1n1u39M7J83frlt41b1PUoiM7nzD/k8dE5OPA/8Sfvb0bP4JSrXk7cGfw+T7gYeBX63CetiLiIZuNhayVHmGNNHnX/h38wUMn6HAcepJCpqDkXXdBjqw9W/uXvG8P7Bvk3kdm2LO1bza0c4QaLEZ0aas6cqArztjMQrenga7wTbxchbydlcor8aG33MqHvnCY6XxxNr1Ld0ecD73l1tDHqNV6mlqHYm8kEW83tJUea8WVqcXTo1QqX4x92/t4cmhhbJ192/tCH+OJc+P0JJ05cSpQ5Ylz46GPAbWJkFmrNkUtng3LtX9WSpin9d3ArwN/je+V9QDwC1WeV4EHRESBT6nqvcCgqg4DqOqwiGyu8hxGQK1vGqOh1EOP0EBNvu/HbubIhTT/8MNLpDNKPCa85Uc2874fu3lFx4l4g8WILm1VR15dpOO3VPliVIrAu9LIvIvl17tr/44VJ3KuNjBEPUKxN5oItxvaSo+1olIMwJXEBkx1OMSYmx4iFpSHRRBm8i6j03nyRY+OeIzuhEMivjL301oELapFm6LkxjoW/D3PjUzy9PlxfuXALQ3VV5g8f9PUfjr7Vap6IRDLgyLybNgdReS9wHsBduzYsczWhtFa1EmP0EBNfuXpIR4/O8FNm3voTTpM5lwePzvBV54eWnHerAg3WIyI0m51ZC2COmiFZO6Vypei2vx6/uj+KYA5o/vveul1oY8RxeiYrUq76bGZePbipB91O1ZKzA6u55eHZeeGTh45fplkwiEZF3IFj4mZAq/ZvXFFttRqRr/aNkXJjbUnFac3FSdX9GbdWH/3n9++6uNWS8XOn4j8kar+ooj8PYs811X1bas9qapeCN4vicgXgZcBIyKyNRhB2QpcqrDvvcC9AHfccYcFdDbagnrqMdi/YZq879BZupPxsoZTbLbckiYbzYrVkdVQahouVr621GJ0vx6h2I2VYXpsPNNBziYBEEGCmfzpxXI5VWCgq4OBrg4Krkuu6BGPCZ1B2UqoxYx+LaiVG2utWWrm76eBXwQ+VssTikg3EFPVyeDzm4DfAu4H7gLuCd7/rpbnNYyIUxc9QuM1OTKRZXPP3Ad7b9JhZCL8WgPDaABWR64SFb+BWOoClt517ft+QPWj+83S0GxzTI8NJiZCwvEV7anOfq+Uzmkx8q7y6ps3cPLyDFPZIj2pOLs2dgURvMNTixn9WiAszDWsQXkjWarz9zyAqn6zxuccBL4Y3Axx4C9V9aCIPAp8XkR+DjgLvLPG5zWMKFMvPUKDNTnYl2IiU5id8QOYzLkM9lmKBqOpsTpylXR3OKQzxdm1QaUOYPcK1gY1E83S0GxzTI8N5vqBFKfHMiQcISGCp1BwYee68HV5aSBl/65rOXznD6yEoVliALz4+n4OnRxDREjGY+SKHlM5l/271q+pHfNZqvO3SUT+Y6UfVfXjqzmhqp4EXrhI+RXg9as5pmG0AXXRY7BvQzV51/4d3PPVYwCza/6mc0Xuft1N9T61YVSD1ZGrZOeGLp48PzcqoAblUaRZGpptjumxCjZ1JxidLixaHpb3v2k3v/6lw2QKHgVXcWJCX8rh/W/aHfoYtRxIaYYYAO/ZfwMXJ3JcnsoxkS2QjDvcuLGb9+y/oaF2LdX5c4AeGuGEbxjGfFpWj4tF7Lv7dTfZej+j2WlZTdaboucndC96iiqIQDwmrDDTQ1PRDA3NNsf0WAVvvG0LB384zESuiKcQE+hLxnnjbVtCH6MW0XdbbSBlz9Z+PvDm3U2XBmapzt+wqv7WmlliGMZStLQeq43YZxgNoKU1WYmejhhT+YW9tJ6O8AnaJ3NFdm3qZjxTnA3nPtAZZzK3grjyhjGXttRjrfip/TcwnM7OpiToiMdY393BT61whqoWdXmrDaQ049+zVOfPRk8Mo3kwPRpGc9GWmnzNzZt46NkRXGV21s4RvzwspXW+16+75uaZzhRsna9RDW2px1rFzd2ztZ9fOXBL081QGfVhqc5fy/gyG0YLYHo0jOaiLTV59xtu5vJ0njNXZsgWXVJxhxs2dHH3G24OfQxb52vUgbbUY3eFmfjuFczEl2jGGSqjPlTs/Knq2FoaYhhGZUyPhtFctKsm92zt5zfffltVMwS2zteoNVHUYyouZIsL5+1S8fDzdi+6boDvnByjvPsXC8oNoxJLzfxFjvWdccYyC9cMrO9sqT/TMCKDadIwmoda6bEWMwS2ztdod24Z7OWpoYlFy8Nyw8Zujo9OMZ1zKXoe8ViM7qTDDRu7a2mq0WK0VAusUqCwCAcQM4xIY5o0jObB9GgYzYPrLZ64vFL5YuRc5fV7NnNydIaJbIG+VIJdm7rIrTAputFetFTnbyqIFBaD2VWwXlm5YRhri2nSMJoH06NhNA/PX55GgHgMP3KSKkXPLw9LKSn6K+YlRd/cu7Kk6EZ7sfIVoU2MFwxfKn4UMp1XbhjG2mKaNIzmwfRoGM1DYXZ2Tua8F1Ywa3dg3yDpTIF0poCnOvv5wL7B2hprtBQt1flLJmLE8QdQCN7jQblhGGuPadIwmgfTo2E0DwlHSMRKk36KCCRifnlYSknR+zsTDKez9HcmeO9rbrSoncaStJTb549eP8Ch02MkYkJchKIqRU/50est6pFhNALTpGE0D6ZHw2geSnqMCyRjMV+PCi9boR4tRYOxUlpquO/XfmIvtw72Eo8JeU+Jx4RbB3v5tZ/Y22jTDKMtMU0aRvNgejSM5sH0aDQKUY1uRCARGQXOzClLJDtjqd4BLeb7Jd6R9rKT41rIZRpkYomNwOUG2wDNYwdEx5YbVHXTWhoTZSKkyZXQTPfqSmhFu02PKyAiemym+9RsWYjpsUZERI8QjXtvrWkWW2qix0h3/pZCRB5T1TsabQc0jy3NYgeYLe1IVK+z2b22RNXuqNEs17lZ7ACzpZntaHWa6To3iy3NYgc0jy21sqOl3D4NwzAMwzAMwzCMxbHOn2EYhmEYhmEYRhvQyp2/exttQBnNYkuz2AFmSzsS1etsdq8tUbU7ajTLdW4WO8BsWYxmsaPVaabr3Cy2NIsd0Dy21MSOll3zZxiGYRiGYRiGYVyjlWf+DMMwDMMwDMMwjADr/BmGYRiGYRiGYbQBke/8icgBETkmIidE5IOL/C4i8ofB70+LyEsaZMedIpIWkSeD12/Uw47gXJ8WkUsicrjC72t1TZazY02uiYhcLyL/KCJHReQZEfkPi2yzJtekHVlOG82KiJwWkR8G9+ZjjbanEovpTETWi8iDIvJc8L6ukTZWooLtHxGRobLnwlsaaWOr0Sx6DPNcXmN7HBF5QkS+3GA7BkTkb0Xk2eDa7G+gLe8P/jeHReRzIpJqlC2tiumxoj2mx4W21E6PqhrZF+AAzwO7gA7gKWDvvG3eAnwVEOAVwPcaZMedwJfX6Lq8BngJcLjC73W/JiHtWJNrAmwFXhJ87gWON+I+acdXGG006ws4DWxstB0h7FygM+CjwAeDzx8E/luj7VyB7R8BPtBo21rx1Ux6DPNcXmN7/iPwl2tVTy9hx33Avw0+dwADDbJjO3AK6Ay+fx74mUZem1Z7mR6XtMf0ONeOmuox6jN/LwNOqOpJVc0DfwW8fd42bwf+XH2+CwyIyNYG2LFmqOojwNgSm6zFNQljx5qgqsOq+njweRI4ii+kctbkmrQhTaWNVqSCzt6OX2kRvP+zNTUqJM3yjGgjmkaPIZ/La4KIXAe8FfjfjTh/mR19+AMifwqgqnlVHW+gSXGgU0TiQBdwoYG2tCKmx0UwPVakZnqMeudvO3Cu7Pt5Ft6sYbZZCzsA9ovIUyLyVRG5rcY2rIS1uCZhWdNrIiI7gRcD35v3UzNdk1YiytdVgQdE5Aci8t5GG7NCBlV1GPxKHdjcYHtWyi8G7tefblaX1YjSlHpc4rm8Vvx34FcAr0HnL7ELGAX+v8Dl7X+LSHcjDFHVIeBjwFlgGEir6gONsKWFMT0ujulxHrXWY9Q7f7JI2fzcFWG2WQs7HgduUNUXAv8D+FKNbVgJa3FNwrCm10REeoD/A/y/qjox/+dFdrE8KNUT5ev6KlV9CfDjwC+IyGsabVCb8MfATcCL8Cu532+sOS1F0+lxmefyWpz/nwKXVPUHa33uRYjju0H/saq+GJjGd9tec4JBl7cDNwLbgG4ReU8jbGlhTI8Lz296XIRa6zHqnb/zwPVl369j4TRomG3qboeqTqjqVPD5H4CEiGyssR1hWYtrsixreU1EJIH/QPsLVf3CIps0xTVpQSJ7XVX1QvB+CfgivotOVBgpuS0H75cabE9oVHVEVV1V9YD/RbSue7PTVHoM8VxeC14FvE1ETuO73b1ORD7bIFvOA+dVtTTj8rf4jc9G8AbglKqOqmoB+ALwygbZ0qqYHhdielycmuox6p2/R4GbReRGEekA3g3cP2+b+4Gf9oM5yivwp0qH19oOEdkiIhJ8fhn+tb9SYzvCshbXZFnW6poE5/hT4KiqfrzCZk1xTVqQMBptOkSkW0R6S5+BNwGLRq1tUu4H7go+3wX8XQNtWRHz1tr+JNG67s1O0+gx5HO57qjqh1T1OlXdiX89vqGqDZnhUtWLwDkRuSUoej1wpBG24LuXvUJEuoL/1evx14EZtcP0OA/TY0Vqqsd4zcxqAKpaFJFfBL6GHzXp06r6jIj8fPD7nwD/gB/J8QQwA/ybBtnxDuDfiUgRyADv1iBkT60Rkc/hR9LcKCLngQ8DiTJb6n5NQtqxVtfkVcBPAT8UkSeDsv8E7CizZU2uSbtRSRsNNisMg8AXg7GJOPCXqnqwsSYtTgWd3QN8XkR+Dr/SeGfjLKxMBdvvFJEX4bs/nQbe1zADW4wm0+Oiz+XAC6SduRv4i6AzcJIG1UWq+j0R+Vv85RlF4Ang3kbY0qqYHiNBS+pR6tT/MAzDMAzDMAzDMJqIqLt9GoZhGIZhGIZhGCGwzp9hGIZhGIZhGEYbYJ0/wzAMwzAMwzCMNsA6f4ZhGIZhGIZhGG2Adf4MwzAMwzAMwzDaAOv8NSki8ksiclRE/mIF+wyIyL8v+x4TkT8UkcMi8kMReVREbgx++wcRGaiH7YbRKtRCh0HZbSLyDRE5LiLPi8hvikhNnr8i8jMi8ke1OJZhGMsjIn8mIu9otB2GERUWqxfn/f6dEMc4LSIba2tZe2Kdv+bl3wNvUdV/vYJ9BoL9SrwL2Abcrqo/gp8weRxAVd+iquO1MtYwWpSqdSginfiJe+9R1d3AjwAvA/5DLQ01DMMwjCZlfvsUABFxAFT1lWtuURtjnb8mRET+BNgF3C8ivyoi3xGRJ4L3W4JtbhOR74vIkyLytIjcjJ/Y+aag7PeArcCwqnoAqnpeVa8G+58WkY0i8tJg/5SIdIvIMyKyL/j86WC28AkRefsS5zWMlqOGOvx/gG+r6gMAqjoD/CLwy8ExPiIiHyg772ER2Rl8/pKI/CDQ5XvLtvk3wSziN/GT85bK3xns/5SIPFLXC2QYEUBEfk1EjonI10XkcyLyARF5WETuCH7fKCKng887ReT/isjjweuVQbmIyB+JyBER+QqwuXF/kWFEkvJ68VER+UcR+UvghwAiMhW83ykij4jIFwO9/cliXjIi8p6yuvdTpU6kEY54ow0wFqKqPy8iB4DXAnng91W1KCJvAH4X+BfAzwN/oKp/ISIdgAN8ENinqi8CEJHrgG+JyD8BHgI+q6pPzDvXoyJyP/BfgM5gm8Mi8rvAN1T1ZwP30O+LyNcrnNcwWo4a6vDjwA/mHft5EemU5V2vf1ZVx4LZw0dF5P8AHcBvAj8KpIF/BEq6/g3gzao6FOLYhtHSiMiPAu8GXozf3nmceVqcxyXgjaqaDQZyPgfcge81cwv+rP0gcAT4dB1NN4xWY7ZeFJE7ga8E308tsu3LgL3AGeAg8M+Bvy39KCJ78D3bXqWqBRH5JPCvgT+v75/QOljnr/npB+4LKiIFEkH5IeDXgg7eF1T1ORGZs6Oqng9mKF4XvB4SkXeq6kPzzvFbwKNAFviloOxNwNvKZiRSwI7FzlvDv9UwmpVV6xCQYJ/Fypfjl0TkJ4PP1wM3A1uAh1V1FEBE/hrYHWzzbeDPROTzwBdC/WWG0br8E+CLwWw7wUDnUiSAPxKRFwEu13T1GuBzquoCF0TkG/Uy2DDahO9X6PiVfjsJICKfA15NWecPeD3+4OejQX3biT9wY4TE3D6bn98G/lFV9wE/gd8JQ1X/EngbkAG+JiKvW2xnVc2p6ldV9ZfxZyv+2SKbrQd6gN7S8fEbpv9CVV8UvHao6tGw5zWMFqMaHT6DP3swi4jsAi4H626LzH0Wp4Jt7gTeAOxX1Rfiz+6V9LlYZxJV/XngP+N3FJ8UkQ0r/ksNo7VYTCvlmkuVlb8fGAFeiK/ZjmWOYxjG6phe4rf5Wpv/XYD7ytqnt6jqR2pqXYtjnb/mpx8YCj7/TKkwZjRSNQAAIABJREFUaDyeVNU/xA8mcTswid+BK23zEhHZFnyOBducWeQc9wK/DvwF8N+Csq8Bd0swrCIiL17ivIbR6qxah/i6enXgLloKAPOHwIeD308DLwl+ewlwY9k5r6rqjIjcCrwiKP8ecKeIbBCRBPDOMntuUtXvqepvAJfxO4GG0a48Avxk4GLdiz9wA77mfjT4XB61s59r6+R/imvLGh4B3i0ijohsxXcFNwwjPPPrxaV4mYjcGLRb3wV8a97vDwHvEJHNACKyXkRuqJ2prY91/pqfjwL/VUS+zdz1de8CDovIk8CtwJ+r6hXg20HAh9/DX5T+9yJyGHgaf7RzTkh4EflpoBjMYNwDvDSYvfhtfBeYp4P9f7vSeevyVxtGc7FqHapqBn928NdE5Dh+p+zbqlpKH/F/gPXBMf4dcDwoPwjEReRpfP19F0BVh4GP4Lucfh1/HVOJ3xM/rcth/AbrUzW9CoYRIVT1ceCvgSfxdfZ/g58+Bvw78cPLl4eO/yRwl4h8F9/lszQ78UXgOfzgFH8MfLP+1htG61BeLwK/t8zmh/Dbo4eBU/j6Kz/WEXwPlweC+vFB/ACHRkhE1TwZDMMw1goR+WfAx4HXqupiM/GGYdQBEfkIMKWqH2u0LYZhLCRY7vABVf2njballbGZP8MwjDVEVb+kqrus42cYhmEYxlpjM3+GYRiGYRiGYRhtgM38GYZhGIZhGIZhtAHW+TMMwzAMwzAMw2gDrPNnGIZhGIZhGIbRBljnzzAMwzAMwzAMow2wzp9hGIZhGIZhGEYbYJ0/wzAMwzAMwzCMNsA6f4ZhGIZhGIZhGG2Adf4MwzAMwzAMwzDaAOv8GYZhGIZhGIZhtAHW+TMMwzAMwzAMw2gDrPNnGIZhGIZhGIbRBljnzzAMwzAMwzAMow2wzp9hGIZhGIZhGEYbYJ0/wzAMwzAMwzCMNiDeaAOqYePGjbpz585Gm1EXsgWXdKZAwVUSjtDfmSCVcBptVtvxgx/84LKqbmq0HVGhlTVp1JcwzzzT48owPRqrxfRYe0yPxmqptR4j3fnbuXMnjz32WKPNqDlHh9Pc+8gp+jsT9KbiTGaLpDMF3vuaG9mztb/R5rUVInKm0TZEiVbVpFFfwj7zTI8rw/RorAbTY30wPRqroR56NLfPJuTg4RH6OxP0dyaIicx+Pnh4pNGmGYZh1Bx75hlG82B6NIzmoR56tM5fEzI0nqE3NXdStjcVZ2g80yCLDMMw6oc98wyjeTA9GkbzUA89Rtrtcy04Opzm4OERhsYzbB/o5MC+wbq7Xm4f6CSdKdDfmZgtm8wW2T7QWdfzGkY9aISGjGhhzzyjWbDnlenRWIjponHUQ48287cEJT/bdKbA1v4U6UyBex85xdHhdF3Pe2DfIOlMgXSmgKc6+/nAvsG6ntcwak2jNGREC3vmGc2APa98TI9GOaaLxlIPPVrnbwka5fe+Z2s/733NjfR3JhhOZ+nvTFiwFyOS2NoRIwz2zDOaAXte+ZgejXJMF42lHno0t88lGBrPsLU/Nadsrfze92zttwetEXkaqSEjWtgzz2g09ry6hunRKGG6aDy11qPN/C3B9oFOJrPFOWXm924Y4TENGYYRFex5ZRgLMV20HjbztwQH9g1y7yOnAObk1njXS69b9TG/8vQQ9x06y8hElsG+FHft38Fbb99eK5MNo6k4sG+Qj33tOE9M5cgVXZJxh409Sd715t2NNs1oMiyggNFoVlrnl9+zSUdQIO+q3b9GS1HrtnBJN0eG06QzRfpScW7b1m+aWUNs5m8Jau1n+5Wnh7jnq8eYyBTY3NPBRKbAPV89xleeHqqx5YbRPHiqAAgy57thlLCAAkYzsJI6v/yeTThw6OQY3zs5RjyG3b9GS1HLtnBJN6cvT3H2ygwTmQLnxzKcGp0yzawhNvO3DLX0s73v0Fm6k/HZcK39nbHZcpv9M1qRg4dHuGFDN7dfNzBbls4UOHh4xEb4jFnKAwoAs+92nxhrTdg6v/ye/e7Jidk8XCcvz7B/14bZbez+NVqBWrWFS7o5OjxBKuGQSjhkCy4XJ3Ps3dpnmlkjlp35E5HdIvKQiBwOvt8uIv85xH6fFpFLpf2Cso+IyJCIPBm83lL224dE5ISIHBORN6/2D2pmRiay9CadOWW9SYeRiWyDLDKixmr1GGy75pq0ZMFGGKJ8n1gd2Z6U37MT2QLJeIxkPMZUsDYqKvdvq2F6bG5KuilpBpjVjWlm7Qjj9vm/gA8BBQBVfRp4d4j9/gw4sEj5J1T1RcHrHwBEZG9wzNuCfT4pIs4i+0aawb4Ukzl3TtlkzmWwL1VhD8NYwGr1CA3QpC0UN8IQ8fvE6sg2pPye7UslyBU9ckWPnqBDGKH7t9UwPTYxJd2UNAPM6sY0s3aE6fx1qer355UVF92yDFV9BBgLacfbgb9S1ZyqngJOAC8LuW9kuGv/DqZz/kJZz/NIZwpM54rctX9Ho00zosOq9AiN0aQlCzbCEPH7xOrINqT8nt21qYvJbJGpbJFdG7uidv+2GqbHJqakmy19SbIFl3SmQK7gsaU3aZpZQ8J0/i6LyE2AAojIO4DhKs75iyLydDDFvi4o2w6cK9vmfFDWUrz19u188Mdvoa8zwaWpPH2dCT7447fYej9jJdRaj1BHTVqyYCMMEb9PrI5sQ8rv2YIL+3et5+W71lP0iNr922qYHpuYkm52buxhx4Yu+joTXLe+kxs39Zhm1pAwAV9+AbgXuFVEhoBTwHtWeb4/Bn4bX5S/Dfw+8LMQhAGcy6IhAUXkvcB7AXbsiN6M2Vtv326dPaMaaqlHWANNWrJgIwwRvk+sjmxTInzPtjKmxybHdNN4lu38qepJ4A0i0g3EVHVytSdT1ZHSZxH5X8CXg6/ngevLNr0OuFDhGPfiC5s77rij7jHjLfeU0UzUUo/B8SKnyShgz432od3ryGbGdNh+mB6bG9NkcxAm2ufvisiAqk6r6qSIrBOR/7Kak4nI1rKvPwmUoirdD7xbRJIiciNwMzDfZ3vNsdxTRrNRSz0Gx4uUJqOAPTfai3auI5sZ02F7YnpsXkyTzUMYt88fV9X/VPqiqleDcLdLhs4Vkc8BdwIbReQ88GHgThF5Ef70+GngfcExnxGRzwNH8Bfm/oKquosddzlqOapguaeMJmRVeoTGabJRNGqE0Z4bbUek6si1pJGj/KbDtsX0uAjNMONmmmwewnT+HBFJqmoOQEQ6geRyO6nqv1qk+E+X2P53gN8JYU9FSqMK/Z2JOaMKq11EOjSeYWv/3DQMlofEaDCr0iM0RpONotbPgpVgz422IzJ15FrSSA2C6bCNMT3Oo9FaLGGabB7CRPv8LPCQiPyciPws8CBwX33NWh3lowoxkdnPBw+PLL/zIkQ895TRmkRGj42k1s+ClWDPjbbDNLkIjdQgmA7bGNPjPBqtxRKmyeZh2c6fqn4Uf3RjD35Cy98OypqOofEMvam5k5nVjCpEPPeU0YJESY+NpNbPgpVgz432wjS5OI3UIJgO2xXT40IarcUSpsnmIYzbJ6r6VeCrdbalarYPdHL68hQXJ3JMZAv0pRJs6Uuyc2PPqo5XykdS7if9rpdeV9U0eTP4XRvRJip6bCS1eBasVqv1eG4YzY1pciHbBzpJZwqz63og/Cj/UtoLq0vTYftiepxLNVosUYu2a1hNWju5/lTs/InIt1T11SIyydz8JQKoqvbV3boVsnuwmy88fp7uZJzepEM6U+DCeIY33bb6UYVa5iNpFr9rI3pEUY+NpNpnQbVatTxGrY9pcmkO7Bvk3kdOAf4sw2S2SDpT4F0vvW7J/ZbSHrAiXZoO2wfTY2VWq8UStWy7LqdJayevDRXdPlX11cF7r6r2lb16m1VEx0emefH1A/R1JpjOe/R1Jnjx9QMcH5lutGlA8/hdG9EjinpsJNU+C0yrxnKYJpemNMrf35lgOJ2lvzMRqgG3lPZMl0YlTI+VWa0WS6yl7kzja8OSbp8iEgOeVtV9a2RPVQyNZ7hhYzc3brrm2uWpLurX/KlvPsd9h87OToXftX8H7/uxm+tun0U6MlZL1PRYC1br/rGSZ0Gl/eMxODI8wVS2SE8qzq6NXUzlisvvXCXm8hId2lGTK2H+KP/R4TSfePD4kvf2cvXkUr/VQzumx+hgeqxMpRm3MPf3fE2OTmY5cWmKkckcwKo1sdi5rZ28NiwZ8EVVPeApEdmxRvZURdhIQp/65nP8wUMnmMm59CUdZnIuf/DQCT71zecWHLNUWX3gb57iEw8eryoZpUU6MqohanossVoNVZMQtlqtdTjCo6eukiu49CQdcgWXR09dpcORUPuvFkuCGy2iqslaE0bjYe/tpbS71G/10I7pMVqYHlfGajQ5Opnl8bPjTGSL9HQ4PHzsEu/7zOP8py88vSJdVDp3hyPWTl4DwqR62Ao8IyIPicj9pVe9DVsNB/YNcubKNA8fu8QDz1zk4WOXOHNlekEkofsOnaXDcehOOsRiMbqTDh2Ow32Hzs7ZrtYPfot0ZNSAyOgRqtNQNe4fYZ8FlRDmLhoh+F7frp+5vESUSGmy1oTV+HL3dqkDeWQ4zXefv8Kp0akF9eRSdWg9tGN6jCRtrceVEPb+Lunu1OgUDx8b5cJ4huF0hqszBQDWdcZ55sLEitrHlc4tYO3kNSBMtM/frLsVNSQmfvNMg6Zb6Xs56UyBvqQzp6wzIaQzhTll5TcnMPt+8PDIqqa4LfqYUQMipcdqNFSt+0eYZ0Elcq7y8l3rODk6MxstdO+2XnLu/C5hbTGXl0gSKU3WmrAaX+reLg/ycOuWProSDsdGppgpuNy2rX9OPVmpDv3Tb52uuXZMj5GkrfW4EsLe33u29vOGPZv4H994nslskZ6kQ77okcm7uJ7S1eEwlXNnO45hl2Ysdu7hdNHayWvAsp0/Vf2miGwBXoY/+P2oql6su2Wr4ODhEa5f38W+7dduknSmsOBm7O9MMJkpAC5FT4nHZLa8nHo8+C36mFENUdIjVKehasJTh30WLHfuV+zaMGf/zb2JJfa6xmrXCdUiJLextkRNk7UmrMaXurfndyB3buxhXXeS/s4E73/j7lB21EM7psfo0e56XAkrub+Pj0zzil0bODI8QXomz9mxGTxVzlyZZttAJ/1dHStqHy91bmsn159l3T5F5N8C3wf+OfAO4Lsi8rP1Nmw1hE1keeC2zczkXXJFjxhKrugxk3c5cNvmOdvZGj2j2YiSHqE6DVXjJl1tUttqzl2Nq6u5hkePqGmy1oTV+FL3dli9LqWtemjH9Bg92l2PK2El93dJoxu7/Yih4HcgckWP4XSWjd2JFbWPTVuNJcyav18GXqyqP6OqdwE/Cvxqfc1aHWErod5Ukt2bu0BhpqigsHtzF72p5Jzt7OY0mpDI6BGq01DJ1eTI8AT3P3WBI8MTvGHPptAzaNUM3FQTGruadULVhuQ2GkKkNFlrwmp8qXs7rF4X05bneXz4/iP86bdO05mIUSi6NdOO6TGStLUeV8JK7u+SRq9MFxjsS9KTjOMqJBxhsLeDofHsAt0vFQjKtNVYwqz5Ow9Mln2fBM7Vx5zqCJvI8shwGo8Ye7b1kYzHyBU9sgWXI/NG5m2NntGEREaPUJ2Gjg6n+frRUfZu7ePlN65nMlvk60dH2bWpZ9n9q01qW7J9NVqv1l3cXF4iR6Q0WWtWovFK93ZYvc7X1uWpLM9enMT1mH1GpDOFmjYiTY+Ro631uFLC3t8ljV6eyrG+K0FXR5zupP/yPCXvenN0FyZZu2mrcYTp/A0B3xORv8P3n3478H0R+Y8AqvrxxXYSkU8D/xS4VMq5IiLrgb8GdgKngX+pqleD3z4E/BzgAr+kql9b6R8TthJKZ4qICKmEH/QllXDIFT3SmYU5vOzmNJqMVekRGqNJWL2GqgkW08iBG1sn1HZEpo6sF9XWk2H1Ol9bJy5NIyKs77k2EwirD8pmtARtr8d6UNLoh+8/wthUnvU9HbxyWx+belOzmizXXK0DJhq1JUzn7/ngVeLvgvfeZfb7M+CPgD8vK/sg8JCq3iMiHwy+/6qI7AXeDdwGbAO+LiK7VdUNYd8cHjl+ib/5wbnZm7GrQxbcaH2pOBMzBbIFd3bmD/XL5xM2cEOtE8FaYlmjAqvVIzRIk195eoj7Dp1lZCLLYF+Ku/bv4K23b192v2oTrZ8cneLQySuMTGQ525di92D3ijS0Wg3WYtbRiBSRqiPrzVK6Kf9tJlvg7NUMk7kig30pXn/rxmWP+cyFNOevZrhlsIcdG7q5PJUjEYvxgk3ds9taNM62p2X1uJI6qbze7U3G2bGuk65UYlXtyfLz3rypmwsdDjds6KY3FZ91815ulh6W1qa1edeWMNE+VxU2V1UfEZGd84rfDtwZfL4PeBjfF/vtwF+pag44JSIn8CM1HVrJOUvJ2zscZ07ydoD3/djNs9vdtq2fQtHludFppnMu3UmHmzd1c9u2uTdamGnrlWwXlqPDaT568Bhj03nyRY/nRiZ5+vw4v3LglkiJwcRce1arx2DfNdfkV54e4p6vHqM7GWdzTwcTmQL3fPUYwLIdwA5H+N7JMXpS8TmJ1l++a32o8/7W3x+h6Pm5+Z7PTvFbf38k1HmhOk1XO+vYSN2YZldOlOrIerOUboDZ36ayeb514goxhOvWpxidyPIHD53gZTes40euX8dT567y2e+eIeEIm3qSJBMx9m0fYM/WIA3ERT8NxIaeJFt6k2zqvdbIbMZZdtPV2tGqelxJnfSpbz7H//zGSRC/Hr08meX0lWle/YINpDPxivstdp8Cc847mS0ynSvy2Omx2YGbu/bvWHaWHiprs9ZtaGN5wgR8qSWDqjoMELyXwmtuZ65P9vmgbAEi8l4ReUxEHhsdHZ3zW9jk7bsHu3l2ZIp8wSMukC94PDsyxe7B7jnbhQ3ccPDwCK7rcWR4goeOXuLI8ASu6606EexnDp3h7JUZgNkIaGevzPCZQ2dWdbxGUE3EQ2NNqbsmu5NxX0OxGP2dCbqT8QWaXPS4rD7R+icfPkmm4BGPQUdciMcgU/D45MMnQ+xdfXLn0qzjo6fHOHTyCidHp0Lt10jdmGabgrrqsd4spZvy3344NIEjgqvKqcszjE7lAHjs7Dhf+MF5vvP8FfJFl5jAcNpf1zeSzhAT4cZNPbzipg3s3drPb75tL44Ta+qgbKarSNM0egxbJ/n322liMaEnGWem4FJwlVzB5etHR/ny0xc4PDS+oD1Z6T797KEzc86bL7pcmcrjxIS3vXAbe7f28fWjowvu55UEe6u2vjVWThi3z7VgsfbcotmUVfVe4F6AO+64Y8426UwBB2V0ooiriiNCKiGkM96cY3znxBXU88gUruX56xaH75y4MmdWIOy09TMX0pwfy5BMxGZnKI4HCWrnE2YE8Ilz4/QknTlrElHliXPji12SpsT8vSNPTTQ5MpFlc0/HnO17kw4jE9llDci5ypa+Dn44NEG26JGKx/iR7X2hEq2fvzqDIzCTd3EVHIF4TDh/dWbZfaE6l9NqZjsbqRvTbFNTEz1WQxh3zi89OURPh4OI4CkLdFPS1MhEDlUl4QgiQr7oUXAVxxHIFhARCq5HpuDhxIRUPMZTQ2l2b+kDrtXDUQjKZrpqSdZcj4u1R7OFIt87dYWh8QxJR1DgyXNpJrMFOhMxJrIe2bxHqQUcEyUmMDqZ5+DhYQS/nt0+0MnoZHbR+/T7p8Z4/Z5radBOjE77Sd5db8l1tivRZj1yahtLs2znT0ReparfXq4sJCMislVVh0VkK3ApKD8PXF+23XXAhZUePBETxjPXOlyuKvmcMtA598/8zvNXmMq7FIoergdeTNGgvJztA518+8Qlnr04Ra7okYzHuHVLD696wdx8gBPZIjnXZTJXmN2uIx5jYl7o6qPDaT72teNcnsqRK7o8NzLJ4aE0H3jz7jmCEKTCjEeYOY/mwMRcH2qsR6izJgf7UkxkCvR3XnMymMy5DPalltjLZzpb4PunruL62Vgoui7fP3WVN3Z2LLsvQDpbxCsTUkxYkEusEh2O8NDREaZyRQquR8KJcebyFK/fs/yMwn2HzlJ0XYau5sm7Socj9CR9D4TlOn+N1I1pdnVEqY5cLfPdsp46O8Znv3uGjniMjd0ds26ZPR0Op8dmKLp+PZiIxTh6Ic2Gng66kwnOXZkOBl3943pFJZW4Vq+JQsH1G6iFojKZLZBKOAjKZM7lwSMjxARyRZeE4/CJB49zYN9g6ETwjcB0tba0qh7nu1GOTmZ59NRVelJxEg4cOjlGvugxkc1TdJW06xIDyqc+PIXLU3k89Xuv3zpxmVe+YAMPH7vEiUtT7NzQxQuvH2BTb4rRySwnLk0xND7DA89cJOHEcFUZnczRlYhRVHjgyEX6Ugl2bepiaHz1ARPL/7bRySwnRqdng8ocHU7bIEkdCOP2+T9CloXhfuCu4PNdXFuIez/wbhFJisiNwM34STpXhOd5ocpHp7Jk8h4KODG/YZnJe4xOzZ2NmMzmeOJsmnzRoyMG+aLHE2fTTGZzc7aLCVyezJEteHQ4QrbgcXkyR2xeX+2zh85w6vI0AH0pX8CnLk/z2XnT7y++vp+pnEu24KKqZAsuUzmXF18fHQFUm2fNqEgt9Qh11uRd+3cwnfMDnnieRzpTYDpX5K79O5bd9/EzYwRpOGddQIvqly+HE2NOxw/8705IR/ezY9NcmsyTKXh46ruMXprMc3Zsetl9T4xMMDqZJ1NwcQMPg9HJPCdGJpbdt5G6Mc2umsjUkaulfPbq+UuTPH4ujespqM5xy8wVPfIFFxCKrjKZK5IpuDgiXByfYSJ3reMHvqbzBQ9VX6zxmD87kS349XNMwBFhMucFW3s8d3GC5y9Nc/rKNH/1/bP8+pcON7ULpelqzWlJPZa7UY5MZHjo6CVGJrJ4nnL4/AQJR5jKFXE9nW17LtYiLtWLCpy/muGbxy4D0J10uDiR4/Gz4xy/OMHjZ8eZyBbZ2N3B0NUMZ8dmEFWKrsfQeJZETOhNxskWXL538ipJZ/WTE6W/7dToFI+fGWciU8CJwda+pLlI14mKw+Aish94JbCpFCI3oA9wljuwiHwOf6HsRhE5D3wYuAf4vIj8HHAWeCeAqj4jIp8HjgBF4BdWEzXJryCWLy+4/o3vzquE5ntpHnzmEnHHH4ksuCACCccv/42fuLadp7CxJ0nO9cgXPZKJGH2p+ILG5xPn0jgCo1M5v0MZj9GdcHji3Nwb+z37b+C5S1OcvjJNtuCSSjjs3NDNe/bfsMIr0jgs4mFtqVaPwTHWXJOlma7yaJ93v+6mUEFXRqcLs5+1Qnklpis8CyqVz+eHQxMIvrZLOo4F5cuRCVxN42V1YVH98uVopG5MsysjinXkaimfvXrqfJqYQNHzGJspEhPBEfi/Jy5TcBVVf6C0NGgTEzg/niUf9Prme7W4QAyhLyX0pHw3aRE3qG9j5FwXRyCViHHmygz5QMLZvIuqx5ELBf7w68/xxz91x1pdjhVhulobWl2PJTfKzxw6w3eeHyPvegz2dXBpMsfYdJ64I3QmYiQch0w+XD3nqb80QwR6k3EuT+cBX+N9wQxjZ0ecbQMxxjN5Lk3550klYmTLGsyLrc9fjEqu4+VpJAqex8aeJC/Y3M3GHn/toblI156lfKA6gJ5gm/IQuRPAO5Y7sKr+qwo/vb7C9r8D/M5yx13ynCHLS6MilcpLXJnKU77ERxVyRb+8nL5UnEsTUHT9Ecyi69HhxBakjsgUilydLvhuoU4M11VGc3nWdSeYT3cyztb+zmudxGSzLM8MRxTWYkSMqvQIjdEk+B3AMJ29hedfWXk5BXfxyq9S+XymssUFo6ZeUL4sIii6YIYDWX5ktJG6Mc2umMjVkaul3C0rnSlQdD1EhIQTo+gqUwWPhCOgSrFMnwq4CjHPW7JxuH0gxcXJHAMxQQS6EzHyniIiiMKOdSlSyficwEm+KzigHodOXql47EZjulozWl6Pe7b2s6k3xetu3cwPzoxxbiwTLDMSZvL+GtmwHbESvo6UK7kCm3qS9KXinLkyg6KkEg6Xs0UG+5Js6kkyMpmj4EIqSJE2lXPpScXZs7WX/DJr8ZeL6Llnaz871nfx8hvXEyurK81Fuj5U7FGo6jeBb4rIn6nqGRHpVtXlfZ4iQDIeI1NY2AhMxuf6hBWKFRqQ88o39yZ5+uxVpoO1DPEY4Cmbe5NztuvqiAcdx5JIFE+Vro65/4aDh0e4YUM3t183MFtWafRjtTnU1oJqE/8a14iyHlcb5jzsYM5izJ91X658PpXqsRCxZkjFndncoaXZDxG/vNkxzYYnyposEVab5bNXoLiuoqJ4Kr77J+C6uqibGcAi1e0cLk3mEPW4PJWj6PlLNVR9T5t4TMi5HptTCX9mkWuaAn9WfSbErHojMV3Vn1bQ41LMD6p0YTzDTN4l7wpaNriy0o6fKlydyeN6SsH1XbQ74kIq4TCVLXJ1Oh9E9/SXK3V3OMzkXZyY8OId/bOzc+UpHRYjTOCjlaSHMKojzAqYbSJyBDgKICIvFJFP1tes+pIrLD56P7+8Un01v3x8Os9k3g0W0SqewmTeZXx67gzhtoEU67oSgASjJMK6rgTbBuYuBh8az5ArFvnuySs8cOQi3z15hVyxuGD0oxRVcCJTmBNV8CtPDy1zBYwIEyk9loIcPXzsEoeHxnn42CU+9rXjLe3Dv6Gnw3d3i/neBLGY31jd0LN8oBoLCx9JIqXJEiu510qzV/2dCZyYH+whBsRFqDBGuiKKnke2CJ6nbOpOUPD8Tt1UziVTcBlO5zh7ZWrOeiXfU8cvCDGpbrQPkdRjOUeH03ziweN84G+e4hMPHucrTw/NarUn6XBuLMNUzqWrI4bnQSaEQ8pS5F3FDda2nx2bJgY/29WRAAAgAElEQVRcTGdIZwrEY34AwqLnB1ry19MrfZ1xnhuZCp1eZWg8syDg2vxZvZWkhzCqI0zn778DbwauAKjqU8Br6mlUvankuTW/vFJ9Mr/86MgknueRK3jkikqu4OF5HkdHJudst3drPzdu6CLu+GGs445w44Yu9s4bEUw6wiPHL3P68jSjEzlOX57mkeOXFyyorSaHmhFZIqXHsEGOWomNPR0k4uLP/CmgkIgLG0N0/izfUSSJlCZLLHevzW+AArz/jbu5ZUsfW/uSdCSc2U4gVB4sXY7S2loFckVleDI357d4sB5jfKY4p8Hier6+nBhs6AoXAdhoCyKpxxLzB2VOX57iQ184zNePjPDlpy8wdDVDwfWDAaYzbuilDJWQ4OWIr+VC4G5dSsXiODFi4m9T9PzJjVe/YMOsG2h/ZyJUMvYwgY/KB5mG09nQxzZWTqiFZKp6TuYOrTW3j8UyhHUnq+Q7Pb/zNzqRI+/64intlHf98nJ2D3bzhcfP05tKsK0/xWTO5fnLM7zzpdfP2W5sOk86UyAVd0g4QsFVpvNFxubNJFaTQ82ILlHS4xPn0gtyVqrqgiBHrYSHsKU3RcHT2dQviZjghUjVUk1+QaNxREmTJZZKQbDU+pz+zjjpzgSb+lIk4zGePHeVarwuS7MKEHQgy9qygh/0BfxcZbdt6+PEpUkKnqIqJBNCV8Lhtbdunn9Yo42Joh5LlA/KPDcywbdOXJntNE3n5wYgK7ltVoPit1074n6e6smsy1SuiIg/oSAijM+AonQmHPo7O7h5sI/NfQX2dyZ4/xt3zw4ULeU+HjbwkblIrw1hOn/nROSVgIpIB/BLBNPprU7Cgdwij4zEvKU7hSCVhIhc6xmqzpaXOD4yzU0bu3hudJrhdIaeZJybN3VzfGSat5Ztd3pshnWdccYzRSZzfp6wdZ1xTo/NTVBdTQ41I7JESo+Kksm7XJnOz3aEuhIx4hFY/7Za+lJxLqX9RfTgvydisiAA1GJ0OMIjx0YpeIqrypUp4cLYDK+5ZVPo8692jaWxaiKlyRJLra85eHjE914ZnmAiW6AvlWBLX5KDh0fYu7Wfq9O52fy386NkrxRHllhLW/ZbTOD26/uZyhWZzhXJuR47N3SzsSc5Gwnb7n2DiOqxRGlQ5rmRCf7x2Ohs2hOY29ErtS5X2/crzwFYyoEr+O/pTJ6YCEVPZ2ffPRUEP2dtyR3zXS+9btlALiUs8FFzEabz9/PAHwDb8RNbPgD8+3oa1SxUWsswvzzhxCgUXQpl0SRilEYsr/HMhTSnxzIUXY94TCi6HqfHMsTjc2dBsnmXqzNFFD9fi6fK1ZkicWdug/mu/Tu456vHAH/GbzLnMp0rcvfrblrdHxwSq2AbSqT0uHN9F9949hJFzw8BL+JXJK8LMVJfqVFYRTqhNWFzb5JnhydRFFVFxX9mzA8AtRjj03muTOfmLmJSXbB+uBJhK2KjpkRKkyUWG4k/c2Wabf0pvnFslFzBZVNvkv7OBNmCy7eeG+XgMyN4qhQCYa5WiuVeNeUN2vkupAJ+BG1P2bmhi409KV75gg0cHpog73rcecvm2frH7n0jIJJ6LLWrjlyY4NFTVxi6mpkTObcSq+38lTTmCHQmHDw/Rhm9SYcOJ4mnylTOpbPDYXNvkpmC60exD2YlSx23Tzx4fNlALiVsVq95CNP5e6mq/uvyAhH5eeBP6mNS8xA24t+6zgRT86YIvaC8nJF0lovpGVxP8FT9/EiZPL3z0jg4AtOL+NFsmVfTvvX27Zy/OsN9h85y7uoM/Z2Jukf7tAq24URKj5O5wmwIaAVE/cXlk7nlc/VVk+qhWsK6fFfcVxXBD1svSPB9eY5c9PMIFl0/uXws6CyXypcjTES1ZiXCg0qR0mSJ+SPxHY4QEyERdxD8tChnx2ZIxmO4rsfkIrnDVivFeLCcAeauFUzEhc6EQzpTnE0TkS96JOPCbdv68FRJOA67NvUsqHOWmq2MyH1k1IbI6bHUrvJjRxQ5M7Y2qQ18t2qhKxknJr7+U4k4v3zgJnZt6uEzh87wxLlxBOHOG9fznv03LNDSUu7jRvMSpvP36yKSU9VvAIjIrwCvpYmFtNZohdbo/PKLE5kgqEwQGluVgueXl5POFhatVNPZuQ3mo8Npnr04zZv2bpkduX324jRHh9N1q+yi3LhsESKlx8NDkzjiT2SVQrSr+uXLETbabj2oJs3EyGQOxe/gFl2PuBNjoDPByGRu2X2vzhRw1V9/UeqAFlzl6szynWWIbkUc8UGlSGmynPKR+E88eJyOuOOv88FfryridwKnQyaNDkuxwshqrqgUisVZnQm+FhLxGPmix3A6W9Fd7MhwmrNXZkglHHqTcbIFl2cvTjJTrV+qETUip8fSwMWxkam6xmwoDUA6MT9Sbzwe444dA8wUlR3ru2YH3Uo25V3lTXu3zCn702+dnjM4Z+kZokmYzt/bgC+LyC8DB4BbgzIjYDxbxCFYfMu16Enj8yIbTVQIMzq/fCrnEgc8P2cuIhALwl6X04iOWFQbly1EpPSYKRSJOzLHBbrgemQqpFtpBUbSWSazLr3JBE7Mz4M2mXUZSS9fqfvR6xWIXZt+1DChYnyiWhFHfFApUpqsxJxnu/gzcG6Zi2ctWSq4Wnk3syfp0NURJ5N3OXc1w5d/6Y6Kx0xniojInOBSuaJHuto4+EbUiJweh8YzDKezqCpTNR5oKZGI+VXLuu4OOuIxiq4HCKNTecr9Uh45fokvPj5M0VPWdyfIF1w+enCcmAjXr+9aMDgXNpCL0Vws2/lT1csi8jbg68APgHdopamuNsVVcByZkyQ+V/QWuIe6FTJMLyhXpYjvIhd8pQgk5l32RnTEotq4XIwouplFTY+pwIUrW5w7cNHfGSrQcMOoxu1zOl9E1WMqp7Pu3YIfsXc51nd3UHT9Bf6u5+/bEY+xvjtcKPsD+wb52NeO88RUjlzRJRl32NiT5F1v3h1q/2o0Uc2+UR5UipomK1H+bE8E6YjyrrcmbtaVtJYtevR1Ck4Mnrs0xQf+5qmK91ZfKs7ETIFswSUZj5Er+ouYwgRaWooo1hPtTBT1uH2gkyfOXiVTTdjcCsSBnZu6ODuWCdJD5Ek4MYoedCZinBydYveWPrb2pzg1OsXDx0fZ0N3Bpt4kuaLH8UtTuJ5HV0ecfdv9+758cO79b9xtgVwiSMU8fyIyKSITIjIJnAB2A+8EJkQk3AKUNmF9ZwLXVTIFl0zBI1NwcV1l/bw1f16FAZ355cmEc23Qn2uzicl5YUbD5E2pNa2ShDNqybSjqsf+5OJRPSuVNwvVuH0qfuRfpbTWMcibFGLf/bs2MNDVQU8yTleHQ08yzkBXB/t3bQhpuR8gCvy1huXfl6MaTVSrp0Y8y6olqpqsRPmzPYY/gOl5jQuwpPjuoQXXYzpXRGDJe+u2bf3sHuwhmXCYyrkkEw67B3u4bdvqG6FRqyfamSjr8cC+QRJOrD4pfYIZv76UAwoF108X0Zt0yBRcigrb+lPERLgYLE3wXb79WfRkPMbV6QK5eQO45YNze7b28/437uZj73wh73/jbuv4RYCKnT9V7VXVvrL3lKr2lL6vpZHNzu3X9ROPC6r+aL0qxOPC7detTgDdyXgQ6AHiwXtM/PJyGtERa5UknFFLph1VPV6eXnytWqXyVqCrI44XBHgpBXrxVOnqWH4G4j37b2Bb0OEpBh4B2wY6Z0PZL8fBwyPcsKGbO2/ZzJtu28Kdt2zmhg3doe7rajRRHmzj60dHODo8ged5ofUUxUGlqGqyEuXP9rGZAk5MGOhKsLG3tqmDYst0JssbJYo/CKAI2wdSS96XB/YN4jgx9m7t4/V7NrN3ax+OE6vqHopaPdHORFmPe7b2c/frbiLhxFYdQbcSqv469A09KZx4jL5UnHVdHbjq/7a1P8mVYE35VLZId4ffKSyRjMdwVUnOS8/U7INzxtIs2xoRkZ8EvqGq6eD7AHCnqn6p3sZFhfXdHWzsSVJ0FddTnJgQd2SBq5ZU8CWTeWrv7+zAERibKVBwPRJOjPVdCXpSc4/XqLwprRCuN6puZlHTY95VOmJQ1GvrV+PCbATQVqQ36aCeoiKICJ6CqNIbcrazN5VgS39q1m2zN5VYfqeAofEMCQe+e/JaxMNdm7oYGl9+RLkaTVQbbCPKOaCipsmlKD3bv/TkENsHYoxnir77ZC1ZRvrzf1aFjT0dvLxs9nux+7Ie91BU64l2Jqp6LEVp/w9/9WTFNGOrwQsi5hZdpTcVZ7A3iQdcn+piJldExO/0AfSk4mQKRfKuzrpPT2SL9HfG2diTJJ0p2Lq+FiGMM/yHVfWLpS+qOi4iHwZWLSQROQ1MAi5QVNU7RGQ98NfATuA08C9V9epqz7GW5FzFEWWoLJrfjnVJcvMauAlHcBdJ3JKY51fz4uv7efCon09J1Z81yBY9/sn1zd8QigoRXrtYcz1C/TTZ4QgzBfVH84PBj7xCV6LJk/VVgYcw0N3BZNavRDscoTeVIEzYloOHR7h+fdfs2gqAdKYQOvBJ0hEOnRyjNxWf7YR97+RV9u9av+y+2wc6OTU6xcXJHFPZIj2pOFt6k9y4qWfZfWsRbCPCg0otU0eW1rdN54pMZX03y+5knMtTYzU7x3LDPn5uW/9zwhHW93Rw86ZuNpXNQFZ6Vtf6HopwPdHORFaPb719O7/2xcOM1zBIkb8MAV6+a72f2iGI6Ht5KsvT59KcHJ2mOxlnZCLDlt4kw+MZfmR7HzN5lyvT/vrAX37zLeza1BPJwTljccJ0/hZzDa1FtIbXqurlsu8fBB5S1XtE5IPB91+twXnqztPnxzh7dW4Y97NXc6TOz60we5MO2eJCUc+fEdixoZOr03kKwehP3lUKxTw7NsytcCIeHr2hRDhCVb30CHXQ5PaBFM+NzvgR/PRaw2/7QG1dyZqJGBq4L4KgFD2/A7cjxKq/ofEM09k8DxyZYDpXpDsZ54Xb+5jKhQv4okC+4HIxV8RVxREhEQu33nD3YDdfePw83ck4vUmHiUyB4fEMbw7hNlevYBsRoSXqyKPDaT72teNcnsrR4QgjEznGpvN1WfNXKaASwEBnnImsS9HzB056OuIcG5miv7ODGzZ2c/bKNMdGprhuXSefePB4XQOwRLieaGciq8ejw2nytZ5pB7b3p/ipYOnAvY+c4up0jmcvTiIibOxNknCE7zw/xqtfsIEP/vgtHB+ZZmg8w/6bNs7RV+m9NEg0P+2DER3CCOIxEfk48D/xn9d340dQqjVvB+4MPt8HPExEOn8nRmZClXenEkzkiuSL14K4dMT98nL+5tHzFLy5kQULnl/+vh+7ebYs4uHRG0qE3czWSo9QA03OVAhbXam8FZjOubiquC5BtE9wHL98OWZyBR4+HrQvFPLFPA8fv8xrb9kU6tyXJnNMZPNM5rzZZ0xvMsalEDkGj49M85IdA1ycyDGR9Wc7bhns4fjING9dZt/btvXTlXDmzBresL4r1KxhC9ASdeRnD53h1OVpelN+sCEvGKxZxFmlKkozEfN7fw4Qi8lsxy/hCAXPH0jJFV2+e/IKj525Sq7osW9bL3u29i0Y8Kx1ZM4I1xPtTCT1+KlvPscn//EkM4Xa1o1xgUuTeX7lb55my0CKC+NZhq7OICJsH+jklTdtYFNvanaG+623b1/yeW+TDq1BmM7f3cCv409vC/AA8AtVnleBB0REgU+p6r3AoKoOA6jqsIhsXmxHEXkv8F6AHTt2VGlGbQibjLonmSAey+N06Oz6J0HoSc7t/J0em/EbjGW9P1f98nJsPUJ1RNTNrB56hDpp8vJ0DsEPWlSi6PnlrcrYTJ58QWcj9XqquJ5fvhzHLk5SdJW4I8Rivvtb0VWOXZwMde6jF9JM5jxicm12ZTLncfTC8tEJh8Yz7NjQzc6N1zpsnmqo54k/QzLD3q19c2ZImjlgSw1piTryiXNpepIOqYTDcyOT/z97bx4f13Xed3+fe+9swGAhQBLcRVISJUrUYlu2Qm91bMuW7STu4tR261T9xK2b1nX6qnVTu2lfJ03Spo5eu7Hzpq3bpFKS2lkap1asmrIsx1YW2bJkWTJFihJFUhRBEFxADDCDWe7y9I97ZwiAWGYwmP18Px98gDlz75xzB+d31ud5TlW7xWtm0YenYhauH7B5MEG26FEo+ViWYJcPmS/6+DFl/8Z+Zgoek7MlLmWLFVPQcgCWRgxKO7Sf6GU6To8PPTvO5x49Tq4Bi6KWJZT8gFOXcpT8IPJDV8bS8UpQMah+7Gg2HbqDas75yxFuZ68nb1DVs5FYHhGR56u9MRLdFwDuuOOOjooakU46qAaVAzXDCOwB6UWmUUE0apT5YdECvWoyafwReo8G6REapMkrx5jMm42gyx570g3M5F3C43Ov7N4HUfpqXMyVSCfCM5h8DSfNSUe4mFt94li+H8K2pVyG+ekrUU970ss7JN3SRypaOR5kvXcfVsISGEg45Eoenq+h2VtUcfsSDnMlH8sKo9/OFj0Gkw5FL+D4hRybBpKVQasZlBqgM/X4wOOnG2YNU/Y79wIlGQsXdy7nbGYKPluGYhUdVdvWm02H7mDZyZ+I/Iaq/lMR+VOWMM9X1Z9Ya6aqejb6fV5E/gR4HTApIlujFZStwPm1fn67EiiMDaUoeQFFLyDhWMQdi8VnvPfHHWaLXhQuPjwvLAAG4lcf9WD8EXqDRuoxur8hmuxL2GQLHl6gFTNES8L0bqXoh514ea5b/l1OX4mYbeFG5ylpZB4QKMScZU/lWYAfXMmzjEbpq1HvAfG9tkPSbX3kq3YOc+i5c1UtUtSLYwl+tKBpW4JIOFlLODa5kofvKX0JG8ey8HwP1fCc28FkrOJXWo5QWB60mkFpb9PJejwzNdfQnfZAlT4nPLMPYNNAglcuh4e+z0bH6lQ7djSbDt3BSjt/fw/4p8B965mhiPQDlqrORn+/A/h3wIPAPcCvRr+/sp75NhJbwlX6pdLnEwZFCDuwclCEohtcFRThTdeP8o3nzxMEih/5DMUd4U3XLzzouZdX23uQhugRGqvJW7YP8pfHp5DIjDnQ8OeW7W197FJd2FyZ8JWbBYnSV+PGzWn+8sTUgoGAAG/YW52mY7ZUjpspF0Ij/6lqWOsB8T1KV/WRyZhwOededfTQeiNAf8ImV/RxJJz8hTVOeP21YR/3rRcuVHYBbUuwgZ0jKa7b3M9TL09T9MJ+c/6g9dDhSTMo7W06V48N0lx5sTVmW+zc0EfRC0jGbGzLYtdIHyICogylYlWPHc2mQ3ew0uTvJQBV/fY65zkG/ImEPYwDfFFVD4nI94A/FJEPA6eBn1znfBvGj906xleeufrQ1x+7daG/S7VBET72tuu5mC1x6lKOguuTjNnsHu3nY2+7nsX02mp7D9MoPUIDNblrpJ8XB3LMFl08PyDuWAwkYuwa6V/XB1hvLJb25a1m/y2djOHmSiBXzjZEw/TVyLre1eecRenVcO3Gfo6em8WfZ/dpSZi+GuUD4m/dMVxJq+WYiR6kq/rIQ8+dJ+kIfgClBk76d29M0RdzeGUqj2UL24eSOHa4k6fATx28hnMzRS5GO9BBADMFlz2j/Yz0J7hhLM2xySyDkYnn/EGrGZT2NB2rx5FUjLPThTUXMBWzwp10VQajfqYUnREtwGAqxt5N/Tx/brYSiXnfWBrbtmr2iTWbDt3BSpO/TSLyz5d7U1U/s5YMVfUEcNsS6ZeAt63lMxtF0hEKS4Q6SzoLl2l+/YN3AE/yf354Hi9QHEt49y2bo/QrVBsUYf/WIX7xvTeva9QyQ8fTED1G9zZMkyVfuX3nED88O0Ou6NOfsLll22DbH/J+x54Rvn9yivlTLgd49Z7Vz8u7dnOap1+eWmANYFth+mocm8xhc2XXsOw3eGwyV1W533bTFhKOcOx8rmJafsPmft64b/XAK8ZsrmY6vo+cHx1zMlPAtoSYI5RK66PPuAVlV6aYJWwfTrBpIMXkTIGdoylAKiad+7cOUPKV/VuH+Pg79y3o//aN9VfCz+/emOZn3nLtVf2hGZT2PB2rx74qFgaXYjBhIZbFNSN9zOTdMDhSKSBmQ0wtRvri7Brt432v2c4LkznmXJ9MPvSb3bMpveZxpdl06HxWmvzZQJqGbUi3PyKCI1oJeV3eQpcl7GJ+/YN38OsfXPnzaumcjLgMi+hIPcZt4fj5HJvSCXYMh6bOx8/nuHNvYtV7Y1YY6n2p9EZzz8FdTEznK2fezRZ9ckWPew6uHj3x2o39nLiQJVv0KpE70wmnqt23kuvDoki/gUbpVXD3gTFOT81xy86RmqNuGl+OmulITZZZHLLdEnD9cPFyrSw+wWG4L05fwuEN142yMZ0kUGUiU+Dg3tGr6tr810v1f6sdN7LcfYaeoWP1OJSq/RjCrYNx8m64TCgivOH6jajCD8cznLmcx7aFO/eO8FMHr2H/1qGq9GPoHVaqcROq+u+aVpI2ZEMqxoVsiYQDVhQe1/PD9LViOifDGulIPS51mPPigCTLsXtjHy+ez1WOPfEjf8HdG/vWv6CLeM+t24EwCtvkTIGxwSQfe+u1lfSVUGAgEWPrUKri21s2aVuNuB1aGywK9HuVtcFy1LP7YXw5aqYjNVlmcXTMDf1xzs+WQrOwVRAgnbBIxBwuZUuVul3x641ebx1OcWD7IBvT4Y5yeTHB1DVDA+hYPd60dYhHj56/KvjfcqTjFpsHU2QLHvvG0iTjDjHbZiDp8JprRrhus2vO3TOsyEouLB23erLcguXi9FRs6cdenP6jN25mOOVgieAF4QRwOOXwozcueZyLwdBIOk6PAEVfuXPvBpIxm9miRzJmc+feDRSrMPt89y3b2L81jW2F+rMtYf/WNO++Zduq9y4XXKWWGKN7N6U5uHeU1+4e4eDeUfZWeWB5yVeu29zPhWyRY5NZLmSLXLe5vypT1+vGBoBwoqtcCSRVTq+G/VuHuPeufdz3k7dx7137qh4AlCeOQ6kYE5kCQ6mYGUCsTEdqssz4dJ6BecHGdm9Ms2UgvmLAFyEMKpRwwvM650o+A8krqtLoIseCn37DLvZuShOzbQLVSnCWsqmZqWuGdaZj9Xj3gTHsKiMt2QK2bZOI2bx2zwb6kzGjJUPNrLTz11b+d9WwbTDBmczVh0dvG1xoYjaQcCi5JSwLyocpBEGYPp8PLXI8L4c+/9DBaxr6HAbDEnScHuGKKeGP7L0SqTaTd9k8sPruedmE8c49G2s2YdyzsY+XLs4tmV4Ni03iajkwuh5T17feOEbCEZ4/l6XoBfTFLG7ckuYN1zVnwclYJtRER2qyzGIz3+s29XNptsjYUIqzl+eYyrmhCbIloFAKlLgjWCjhKQsBQymnsrvteUoybjOUinHPwV38o792/QKfwsW70KauGdaZjtXj/q1D7BxJcfLi0kc+xCxwbKtyPNjujekFptNGS4ZaWXbyp6pTzSzIenDrzmHOzUwyP0aLI2H6fK7fnOZibiraYg/PH1MJ0+ezlOO5CbxiaAWdqEcIJ3CfPnSMqVyJkhdG+xzpj/Nzd9+w6r37tw7x9v2bFphe3nNwV1X6u/cd+/i3//sweTeoHH2Qilnc+47qzqyr58Doekxd7z4wxuHxDNduorLgNJRKVDXhNTSXTtVkeUJ2ZCLDK5fy7BtLc83GfuKOzYb+GEU3ABEsC+K2RSJmMef6JAR2bujjXCYPBAihGWfRsbBEeOeBzfzmhxYGOTODUkOz6FQ9QqjJG8cGOHlp7qrOQwjPeY1ZQq7okU6k2JBy+Nax81yec3nTdaMcncgYnRlqonYv0zZmai48o0jmBWgRCdPnk0o4jPQ5TOc9Ag3NQjekHFKJq78O03kZDPVhReYsGvVqVpXmLUcnMnzj6AVu2jrInXtGmC14fOPoBfZuSq+qyaV89u45uKsqnz0ITeIcC45MzFSOZdm7sY9scfUjF8qmricuzDFTcBlMxrhp20BVpq5gztozNI75O9o3bhmkL2ZzbDLLnOuzeSDBUCrOzu19DCQdHn/pAs+dnWWu5CMivGrXMK/bu5E/fWacyUyekq/4Gup5IGkvGZzJYDCszEPPjvP5R18iW/QW+Mza0fnOcdui4Cl9cZvNiRi3bB/kuYlZNvTFeMN1I8Qcu2qrFIOhTFdN/l46nwWgL24j0RlbJc+vpJeZKXhsHEhx7eaFkcZmCtWdpWUwGKrj0OFJdo70cWD7lU6p2rPj6tl9g3ACWO1kbzFxW/juiSnSSYd0wqbo+nzv5GXu3Lv6UQ/1mLqas/YMjWSxpnZvTLOhP1F5HXdCs82L2QLZYsA1o/0MJh2KXsD52RIXZgsUvIBUPEbaEhxb2LGhL/LnM/2nwVALRycyfP6bL4GEi3wx2yKwQmck2wqjRCvKDVvT3LR1sKLTsaHUgki5UH2/aDBAdWcWdwxzJS/aVdBw5odiiTBXWtgpDaUcVJWC6y/4vZZwuwaDYXkWB5WA6s+Oq+feeqnXdLMc3GJxoIvVaOUzG7qflerX/PeOn8+RcCwGkw7Zos+B7YMo8NzZGeKW4AVK0QvY0Bej4PqgMJg0/afBUAuHDk/i+gGDSYeSH9Aftyj3PiXPxwsCCm7AloFEpQ8xfYRhPeiqyV8q7pCIhf4HAYIlQiJmkYovFMpNW4e4ccvAggiEN24Z4CazamIwrCvbh1PMLtpRr/bsuHrurZd6opTWE8mwlc9s6H5Wql/z35spuJVALumkw8Z0kjv3bsD1lVTCYdNAnJ0jKQIVEjGbfWNpbt5m+k+DoRbGp/OM9scpegEJx8K2LAYSNiCkEzEcy2KkP8aeTelKH2L6CMN60FVLda+7ZgOPHb9I0rGJ2YLrKwXP53XXbFhwXXjG0Bz7tw7WHEXQYDBUTz3nebXyLLB6TDdh7b7C5vwzQyNZrX5V3kbBGbUAACAASURBVEs4FTeIm7cNApBwHO66aazyGUOpmOk/DYY62D6cwvV8jk1m6YvbTOUC/CB0XXrT9RuxLOuqhUPTRxjWg67a+fvY26/npq2D2JYw5/rYlnDT1kE+9vbrF1xnzhgyGJpDPVprpU7rMd2sB9M2GRrJSvVr/ntDfTFQ2Lc5zWg6Yc7oMxgawN0HxrAsixvG0mzoi5OKWdiWsG/LALs3ppfUldGfYT0Q7eBIcnfccYc++eSTC9IWnytkjmYw1IOIPKWqd6x+pQGW1mSnYtqS9sPosTbq0aOp/4bVMHqsDTNmNTSSWvTY0ZM/EbkAvLzM2xuBi00sTqPohufo5Ge4RlU3tboQnUKbarKV9a8X825kvkaPNdCmelxMu5QDTFmWYqVyGD3WwAp6bJf/9Up0QhmhM8rZqDJWrceOnvythIg82Q0rUt3wHN3wDIb6aVU9aGX968W8jd47g3b5P7VLOcCUpZ3L0c10wnfcCWWEzihnO5Sxq3z+DAaDwWAwGAwGg8GwNGbyZzAYDAaDwWAwGAw9QDdP/r7Q6gKsE93wHN3wDIb6aVU9aGX968W8jd47g3b5P7VLOcCUZSnapRzdTCd8x51QRuiMcra8jF3r82cwGAwGg8FgMBgMhit0886fwWAwGAwGg8FgMBgiunLyJyJ3i8gxETkuIp9odXnWgoicEpEfisgPRKRjDk4Tkd8WkfMicnhe2oiIPCIiL0a/N7SyjIbm0io9ishOEfkzETkqIs+JyD9rVt5R/raIPC0iX21yvsMi8r9E5Pno2Q82Me97o+/6sIh8SUSSzcrbUB2t7B/bpX9Yrm1oUVmSIvKEiDwTleUXW1WWKN8F7ZbpvxtHO41Va9WmiHwyKvcxEXlnk8pYs25bVM6aNd3scnbd5E9EbOD/B94F3AR8UERuam2p1syPqurtrQ4JWyP3A3cvSvsE8KiqXg88Gr029AAt1qMH/AtV3Q/8CPDRJrcF/ww42sT8yvw6cEhVbwRua1YZRGQ78LPAHap6ALCBDzQjb0N1tEH/eD/t0T8s1za0oixF4K2qehtwO3C3iPxIi8oCV7dbpv9uAG2gxcXcT5XajMr5AeDm6J7fjJ6n0dSk2xaWsyZNt6KcXTf5A14HHFfVE6paAn4feG+Ly9QzqOpjwNSi5PcCD0R/PwD89aYWytBKWqZHVZ1Q1e9Hf88SDmi2NyNvEdkBvAf4783Ib16+g8Cbgd8CUNWSqk43sQgOkBIRB+gDzjYxb8PqtLR/bJf+YYW2oRVlUVXNRi9j0Y+2oizLtFum/24MbTVWrVGb7wV+X1WLqnoSOE74PI0uY626bVU5a9V008vZjZO/7cAr816foUkDvnVGga+LyFMi8pFWF6ZOxlR1AkLxAptbXB5D82gLPYrIbuBVwHeblOV/An4OCJqUX5m9wAXgf0SmW/9dRPqbkbGqjgP3AaeBCSCjql9vRt6GqmkLPS6ipf3DorahJWWJTC1/AJwHHlHVVpVlqXbL9N+NoR21uJjl/vctL3uVum1ZOWvUdNPL2Y2TP1kirRNDmr5BVV9NaBLwURF5c6sLZDCsgZbrUUTSwB8D/4+qzjQhvx8DzqvqU43Oawkc4NXAf1bVVwE5mmSmFfkvvBfYA2wD+kXkQ83I21A1LddjO9HstmE5VNVX1duBHcDrRORAs8vQ4narF+lkLba07DXotmXlrFHTTS9nN07+zgA7573eQQeaHqnq2ej3eeBPaMJWdQOZFJGtANHv8y0uj6F5tFSPIhIj7CT+p6p+uUnZvgH4CRE5RWjK81YR+b0m5X0GOBOtMgL8L8LJYDN4O3BSVS+oqgt8GXh9k/I2VEc79o8t6R+WaRta2ldFJtrfIvT7aXZZlmu3TP/dGNpRi4tZ7n/fsrLXqNuWf8dVarrp5ezGyd/3gOtFZI+IxAmdKB9scZlqQkT6RWSg/DfwDuDwyne1NQ8C90R/3wN8pYVlMTSXlulRRITQ9+2oqn6mGXkCqOonVXWHqu4mfN5vqmpTdsBU9RzwiojcECW9DTjSjLwJzT1/RET6ou/+bbQm4I1hedqxf2x6/7BC29CKsmwSkeHo7xThIsrzzS7LCu2W6b8bQztqcTHL/e8fBD4gIgkR2QNcDzzR6MKsQbetKmetmm5+OVW1636AdwMvAC8BP9/q8qyh/HuBZ6Kf5zrpGYAvEfr7uISrGR8GRgkjG70Y/R5pdTnNT1PrREv0CLyR0HTiWeAH0c+7m/zsbwG+2uQ8bweejJ77fwMbmpj3LxJ2coeB3wUSzXx281PV/6hl/WO79A/LtQ0tKsutwNNRWQ4D/2+U3rJ+c367Zfrvhn7PbTNWrVWbwM9H5T4GvKtJZaxZty0qZ82abnY5JcrUYDAYDAaDwWAwGAxdTDeafRoMBoPBYDAYDAaDYRFm8mcwGAwGg8FgMBgMPYCZ/BkMBoPBYDAYDAZDD2AmfwaDwWAwGAwGg8HQA5jJn8FgMBgMBoPBYDD0AGby18GIyC+IyMfXcN/fF5HfWOa9bP0lMxgMKyEiXxKRZ0Xk3laXxWAwGAyGZiAivoj8QEQOi8ifls/DMzQXM/kzGAyGJiEijohsAV6vqreq6mdbXSaDoR0RkWER+SerXLNbRP5OFZ+1W0QOr6EMp0RkYw3X3yEin6s1H4Ohh8ir6u2qegCYAj7a6gL1Imby12GIyM+LyDER+QZwQ5R2u4h8J9pJ+BMR2RClf0tE7oj+3igip+Z91E4RORR91qeWyetfisj3os/9xQY/msHQMYhIv4g8JCLPRCuY758/UIwGgd+K/v4FEfmCiHwd+B3g68DmaPXzTSLyDyOdPSMifywifdF9Y5Gen4l+Xh+lf0hEnoju/68iYrfmWzAYGsowsOLkD9gNrDr5axaq+qSq/uzidBFxWlEeg6HNeRzYDsuPVyNLtS9H49UXReTTUbotIvdH/e8PjRVNbZjJXwchIq8BPgC8CvibwGujt34H+FeqeivwQ2DJydwiXgf8XeB24CfLopuX1zuA66PrbgdeIyJvXo/nMBi6gLuBs6p6W7SCeWiV618DvFdV/w7wE8BL0ernnwNfVtXXquptwFHgw9E9nwO+HaW/GnhORPYD7wfeoKq3Az6hjg2GbuNXgWujRY5fi37KA733z7vmTdE190Y7fH8uIt+Pfl5fTUbRQPK+6LOfFZGPzXv7Y9Fn/VBEboyuf52I/JWIPB39Li/EvkVEvhr9vWDRR0Runrdo86yIXL9u35TB0GFEi5ZvAx6s4vLbCfu9W4D3i8jOKG27qh5Q1VuA/9GwwnYhZjWqs3gT8CeqOgcgIg8C/cCwqn47uuYB4I+q+KxHVPVS9DlfBt4IPDnv/XdEP09Hr9OEk8HH6n0Ig6EL+CFwn4j8R+CrqvrnIrLS9Q+qan6Z9w6IyC8T7nSkgYej9LcCfw9AVX0gIyI/RTiR/F6UXwo4X+/DGAxtyCeAA6p6u4j8LeBngNuAjYT1/7Homo+r6o8BRLvmd6lqIZpcfQm4Y+mPX8BHgD3Aq1TVE5GRee9dVNVXRyaoHwf+AfA88Obo2rcD/x74W0t87muAN6pqXkQ+D/y6qv5PEYkDZsfe0IukROQHhLv2TwGPVHHPo6qaARCRI8A1wHPA3khXDxFa1BiqxEz+Og+t4VqPK7u7yVU+Z/FrAf6Dqv7XGvIzGHoCVX0h2ol/N/AfotX9lfSWW+Hj7gf+uqo+IyJ/H3jLCtcK8ICqfnIt5TYYOpQ3Al+KFkEmReTbhJYvM4uuiwG/ISLlXfF9VX7+24H/oqoegKpOzXvvy9HvpwgtbgCGgAeiCaZG+S7F/EWfx4GfF5EdhLv9L1ZZNoOhm8hHCzpDwFcJff4+x8r9Z3He3z7gqOplEbkNeGf0GX8b+OmGlryLMGafncVjwN8QkZSIDAA/TjiovCwib4qu+SmgvAt4inDlEeB9iz7rLhEZEZEU8NeBv1z0/sPAT4tIGkBEtovI5nV9GoOhQxGRbcCcqv4ecB+hWeYpruhtqV2A5RgAJkQkxkITzkeBfxzlZ4vIYJT2vrIWIw1fU8+zGAwdwIrb6vO4F5gk3CG8A4jX8PnLLayWB54+VxbMfwn4s8jk+8e5erBaprLoo6pfJDT5zgMPi8hbqyybwdB1RDt5Pwt8POr7TrH8ePUqIv96S1X/GPi3hH2woUrM5K+DUNXvA38A/AD4Y+DPo7fuAX5NRJ4ltIP+d1H6fcA/FpG/IjSVmc9fAL9b/ixVnW/yiap+Hfgi8LiI/BD4X4SDVIPBEPoePBGZr/w88MvALwK/LiJ/TjhQrJZ/C3yX0Pzl+Xnp/wz40Uh/TwE3q+oR4N8AX4/0/giwtd6HMRjakFmu9DmPEfr62CKyCXgz8MSiayDckZtQ1YBwIbRa08qvAz9TDsyyyOxzKYaA8ejvv19NBiKyFzihqp8j9HO6tcqyGQxdiao+DTxDGMtipfHqUmwHvhX1wfcDxhqmBkS1FitCg8FgMBgMhsYjIl8knCR9LUp6F+EO3S+r6h9EOwaHCAeL9xOakf0xMAf8GfAxVU2LyG5C39wDy+TjAJ8mDOTkAv9NVX8jijh4h6pejIKi3aeqbxGRg4T+9ReAbwI/paq7ReQtRD6IIvILQFZV74vy+CTwoejzzwF/Z5F5qcFgMDQFM/kzGAwGg8FgMBgMhh7AmH0aDAaDwWAwGAwGQw9gon0aDAaDwWDoekTkncB/XJR8UlX/RivKYzAYDK3AmH0aDAaDwWAwGAwGQw9gzD4NBoPBYDAYDAaDoQcwkz+DwWAwGAwGg8Fg6AHM5M9gMBgMBoPBYDAYegAz+TMYDAaDwWAwGAyGHsBM/gwGg8FgMBgMBoOhBzCTP4PBYDAYDAaDwWDoAczkz2AwGAwGg8FgMBh6ADP5MxgMBoPBYDAYDIYewEz+DAaDwWAwGAwGg6EHMJM/g8FgMBgMBoPBYOgBzOTPYDAYDAaDwWAwGHoAM/kzGAwGg8FgMBgMhh7AaXUB6mHjxo26e/fuVhfD0KEUXJ9M3sX1lZgtDKViJGP2gmueeuqpi6q6qUVF7DiMJnuXavRUL0aPtWH02DqaoYdWY/RYG0aPhuVYj/aiFj129ORv9+7dPPnkk60uhqEDOTqR4QuPnWQoFWMg6TBb8MjkXT7y5j3s3zpUuU5EXm5hMTsOo8nepFo91YvRY20YPbaGZumh1Rg91obRo2Ep1qu9qEWPxuzT0JMcOjzJUCrGUCqGJVL5+9DhyVYXzWDoOIyeDIYrGD0YDIZqaUV7YSZ/hp5kfDrPQHLhxvdA0mF8Ot+iEhkMnYvRk8FwBaMHg8FQLa1oL8zkz9CTbB9OMVvwFqTNFjy2D6daVCKDoXMxejIYrmD0YDAYqqUV7UVH+/wZDGvl7gNjfOGxkwALbKzf/9odLS6Zods4OpHh0OFJxqfzbB9OcfeBsa7y+wGjJ0NtdLsmjB4MBkO13H1gjE8fOsZUrkTJC4g7FiP9cX7u7hsalqfZ+TP0JPu3DvGRN+9hKBVjIlNgKBXrOmd8Q+spO3Jn8i5bh5Jk8i5feOwkRycyrS7aumL0ZKiWXtCE0YPBYKgFSwQARRe8bhRm58/Qs+zfOmQ6Y0NDme/IDVR+Hzo82XV1z+jJUA29ogmjB4PBUA2HDk+yc6SPA9uvtBeZvNvQNtHs/BkMBkODMIEfDIaFGE0YDAbDFVrRJpqdP0NddLvvhqG7aXT93T6cIpN3K7sbEDpyJ2zhs4+8YHRj6DmW08T84Ab16tL0SwZDd9ALWm5Gm7gYs/Nn4OhEhs8+8gIf/6Nn+OwjL1Tte9ELvhuG7qUZ9ffuA2Nk8i6ZvEugSibv8srUHGczBaMbQ0+ylCYyeZe7D4wB9evS9EsGQ3fQK1pudJu4FGby1+PUU6nMQbaGTqYZ9XepwA9jgwmuGe03ujH0JKsFQ6lXl6ZfMhi6g17RcqPbxKVY1exTRPYB/xkYU9UDInIr8BOq+strztXQNtTjfD8+nWfrUHJBmvHdaCz16FFEfhv4MeC8qh6I0n4B+IfAheiyf62q/yd675PAhwEf+FlVfXi9n6eVNKv+Lg788PE/eobRtPF56hbWqsle1uNKwVDq1aXpl3obo8fuoZe03Mg2cSmq2fn7b8AnARdAVZ8FPrDaTSLy2yJyXkQOz0v7BREZF5EfRD/vnvfeJ0XkuIgcE5F31v4ohrVQj6OpOci2JaxJjxH3A3cvkf5ZVb09+il3bDdFn3tzdM9viohdZ9nbilbVX6ObrmOtmrwfo8erqFcfRl89j9Fjl2C0HNKI76GayV+fqj6xKM1b8sqF3I8RUttTT6VazU7Z0BDWqkdU9TFgqsp83gv8vqoWVfUkcBx4XfXFbH9aVX+NbrqONWnS6HFp6tWH0VfPY/TYJRgthzTie6hm8ndRRK6F8ORBEXkfMLHaTUZInUE9lcocZNsS1qTHVfinIvJstFu/IUrbDrwy75ozUVrX0Kr6a3TTday3JntSj2Xq1YfRV89j9NglGC2HNOJ7qOaoh48CXwBuFJFx4CTwoTXnGArp7wFPAv9CVS8TiuY7865ZVkgi8hHgIwC7du2qoxgGuFKp5oeQff9rd9TU0faaEFvMeuvxPwO/RNhR/hLw/wE/DcgS1+pSH9DJmmxV/TW66SrWU5M9rccy9erD6KunMXrsIoyWQ9b7e1h18qeqJ4C3i0g/YKnqbB351S0kVf0CobC54447lrzGUBtGXJ3DOusRVa2EixKR/wZ8NXp5Btg579IdwNllPsNosgvohfOUGsF6arIX9GjqmaGRGD02DqPd7mFVs08R+fciMqyqOVWdFZENIrKmSJ+qOqmqvqoGhE65ZdPOqoXUzqz1vDyDoVrWU4/R522d9/JvAOUATQ8CHxCRhIjsAa4HFvtRGLqEXjlPqRGspya7XY+mnhkajdFjYzDa7S6qMft8l6r+6/ILVb0cRen8N7VmJiJbVbVse71YSF8Ukc8A2+hAIZWFMZSKLRBGL9onGxrKmvUoIl8C3gJsFJEzwKeAt4jI7YQ77aeAfxR97nMi8ofAEUJn+Y+qqr/Oz9I1dPqKaD1HvhjWpslu0GOt9d7UM0MT6Fk9NpJGarfT+89OpJrJny0iCVUtAohICkisdlOvCanVnZoRT8+wJj0CqOoHl0j+rRWu/xXgV9ZUyh6iGxZ+euk8pQawJk12uh7XUu9NPTM0gZ7UY6NplHa7of/sRKqZ/P0e8KiI/A/CSdtPAw+sdlOvCamVnZoRT0+xJj0aGkerF37Wg+3DKTJ5t1J26M3zlNZIT2pyLfXe1DNDE+hJPTaaRmm3G/rPTmRVnz9V/TThpGw/4Tl8vxSlGebRysMo54vHEqn8fejw5Oo3GzoKo8f2Y3w6z0By4Tpap+1mmPOU1k6vanIt9d7UM0Oj6VU9NppGabcb+s9OpJqdP1T1a8DXGlyWjubuA2N84bGTQFhxZwsembzL+1+7o+F5G1Oa3sLosb3oht2Meo986XV6UZNrqfemnhmaQS/qsdE0Srvd0H92IstO/kTkL1T1jSIyy8JjFwRQVR1seOk6iFZ2akY83Y/RY/ty94ExPn3oGFO5EiUvIO5YjPTH+bm7b1j2nnb00TVHvtRGr2uymgXP5er5avWsHfVhaG96XY/NoBF9RLUbJ6ZNWF+WNftU1TdGvwdUdXDez0A7i6gXj1swpjTdT6fqsVewJDyqVKMxR/n1UpiQ2d1Br2uyvOA5lIoxkSkwlIot8DNfaz03+jCshV7XY6eyWjsCpk1oBCuafYqIBTyrqgeaVJ66aGXgk1bmbUxpeoNO02OvcOjwJDtH+jiw/YreMnl3WYf1Q4cnmcoW+O7JS+SKPv0Jm+s39fe8g3snrux2qybr+V+U733kyCQxW7h52yCWxKoO5GACQBjWSrfqcb1pt7Z2tR3FldqE8u92eZb5tNv3PJ8VJ3+qGojIMyKyS1VPN6tQa6WVnUa9eddbSerZjm/nCmq4QqfpsZU0s07X6nP7nZcucnRilrhj0RezKLkBT5/OUHADuGtfQ8rY7nRqxOJu1GS1/4ulrvv0oWNYIuwc6SPQANTi+6enefWuYTYNJKvyRS/r6WK2wPHzOWYKLgMJh6G+2Ir3GQzdqMf15OhEht99/GX+4vglNvTFuGnbQEe0tcv1sc+dzXB6aq4t+41279OqCfiyFXhORJ4AcuVEVf2JhpVqjbQy8Ek9effqjqVhTXSMHltFs+t0rT63r0znsSwhEQut7hOW4AXKK8u0Fb2wONPhuz1dpclq/xdLXTeVKwFwYPsQQ6k4Bdcn4QjHL+TYNJCsyhd9+3CKUxezHJvMknAsBhIOMwWPmbzH0YkM+7cO9YQmDGumq/S4XpT7xRMXsmxIhUP/p09neM01w5Xo8O2qoeX62JmCx44NfW3ZbyzXjv7e4y+zcSDZ8rarmsnfLza8FOtEKwOf1JP3ocOTBEHA0YkZZgoug8kYWwYTHbFjaWg6HaPHVtHsOl1zpF8FSxTPV2xL8APFEl0YoiCiVxZnOjxicVdpstr/xVLXlbyg4vd63eZ+nnp5mrgtzEZ+6NVEwL77wBj3/sE5ABKORdELANg3lq6YefWCJgxrpqv0uF6U+0XXV9IJG4n80o+fz/G6PSNt3dYu18cOpZy2PSZiqfax6Hn85fEp3nrj5pa3XdWc8/dt4BgwBAwCx6K0tqOVgU/qyfvIRIbnz81ScH0GEg4F1+f5c7McaYIzqzljpbPoJD22imbX6Woc1uezY6SPob44ji2U/ADHFob64uwY6bvq2nY7w7NRAbVaeU5qvXSbJqv9X8y/7mK2wHdOXGIiU2AqV+JitsDGdJLXXDMcDjKFVXVRZv/WIXZsSDGYdMgWfRIxm1fvGuaajf2MT+fbThOG9qLb9LhelPvFdNKpLKgkHIuZgtv2be1yfexNW4fatt9Yqh09cnaWDX0L264gCPjUg0eaHqRy1cmfiPwD4AngbwLvA74jIj/d6IKthVoHYe2SdybvISIkY/aC35m8t+q99dLJg65epJP02CpaUaf3bx3i3rv2cd9P3sa9d+1bUff3HNyF5ysDyRh7RvsYSMbwfOWeg7uuuradFmcaGXGtkyMWd5smq/1flK87dTHLk6cuk8m7DKcc4rbN4y9NcX42T8y22bspzWf+9uq6mM/N24a4adsQd900xsG9owtMRttJE4b2o9v0uF6U+8XrNvVT9AIKrk/B9YnbVke0tUv1se3cbyxVtstzLvu3DlSuuZgt8Py5WaaypaZHMa3G7PNfAq9S1UsAIjIK/BXw240sWCey1qArg0mHmTk38o+IzFw0TG80rTyc3rAmjB5Xod3r9Htu3c6Zy3M88PhpXrkcOqvfc3AX77l1+1XXttMZno00p+3wiMVdpcnl/hcAn33khQW+Kh958x4+9eAR/ABG0jFevWsYgOfOzvDMKzPcddPYmv6PK2n40OHJttGEoS3pKj2uF2VNDaVi3L5ziKMTs0znPd503SgfOnhNp7S1C2hVv1GNz/FSZXvjdaPEHbtyzfHzOUSEkfSVnUBojttVNbOLM8DsvNezwCuNKU59dKp/zM3bhuiL2ZybLZIteKSTDteM9LFnU7rheXf4oKsX6Rg9top2r9NHJzI8fy7HO27aUhnYPn8uVwlmMZ92msg22i+vgw+Z7zpNLv5frNS37hrp4849IwvOtnzzvgQTmQL3rjF67WoabhdNGNqSrtPjejBfU9mix1tu2NwVgZKa3W/UMs9Yrh2FsO26mC0Ssyyu29RfuaZZVgzVTP7Gge+KyFcIQxK8F3hCRP45gKp+poHlq4lODV4SDvDmuGnr4ILOrJat63qin3XwoKsXWbMeReS3gR8DzpfPQRKREeAPgN3AKeBvq+rl6L1PAh8GfOBnVfXhBj3TutPOdbqWdqqdJrLttAvZZqxJk52kx5XqbKPqxXIabidNGNqSrtfjWmnnfrFTqGeesbjtGk0n2DKQYNPAlUXVZvWp1Uz+Xop+ynwl+j2wxLUtpVMjxtXbmXXqjqdhTdSjx/uB3wB+Z17aJ4BHVfVXReQT0et/JSI3AR8Abga2Ad8QkX2q6tdZ/oayniHga/msh54d54HHTzM5U2BsMLmsGSc0vp1qVBj8dtqFbDPWqsn7aTM9zq/HAwmHXRtS9CVjPHc2w207hhZM8Mp19kdv2Mjnv/kSrh8w2h9n61ASy7Lqrhcr1eNGDGLN8RFdQ0fqsVz/jkxkyOQ9BpMON28bMvVwBZbSLNR+6Hst2l9r/704jw+/cTdAxY++2X2qqC4RX3w9PrgJqyh33HGHPvnkk5XXn33khatWIMuv12p+0gn06nM3AxF5SlXvaHU51gsR2Q18dZ4mjwFvUdUJEdkKfEtVb4j0iKr+h+i6h4FfUNXHV/r8xZpcT1ZroOcvgsxvSNeyCHJ0IsOnDx1jKldipuAyV/RB4O03br7KP+KhZ8f51a8doz/hMJCwmS365Ioen3jXDUtOAGvRa63PtJ7fwXLfSysHyEaP66/H8oTv5IUsmbzLaH+MDf1xzkwVCFDeeN0oE5nQJeHOvSOVVepM3sX1fObcAN8PODdTYCrn4ljCx9527bKLH9XUoUbX46XK1Mz8ugWjx/XR40PPjvP5R18iV/KYK3kMJBySMYd9Y2ls22qbelhr+9/I/mIpzb58KYclws6Rvqp1XKv21zLeXikPqH2yuhy16LGREUXup8mrKHcfGKsM2EpeQNyxGOmP83N331D1Z9RTWeu5t5adg8WMT+dxLDgyMVPxGdy7sY9ssfHRQg0dz5iqTgBEHdzmKH078J15152J0q5CRD4CfARg166rI1auB0cnMtz38AtczBYpej4vTs5yeDzDx995JYLgeph9lzX84A/GuZx3GYoaakvCg9ifODXFnBss6BgeePw0/QlnXr5WJX0pDdeyg1brMzXa9N2YDTWcpurxNgyqrAAAIABJREFUv377RT73aLhrV/IVAS5mXeZcn1TcwQ+UH47P8JYbNvH4S1M8d3aGN+9LVOpsKmZV6lvZRz2Td3lhMsd7lsivWiuVZrtwdKrLiKHhNFyPRycyfP6bL4GAHwQIwmzRJ+ZYnJstctPWwbaohw89O86vPRxOfCyBjf2Jq/rg+TTaIm0pzU7lSgAc2D5USStfu1yetWp/LRYwK+VRSxTk9aRhkz9VfSxaRZnPe4G3RH8/AHwL+FdR+u+rahE4KSLHgdcBK66iLEXZ6bx80Ox8J/TVqKey1nPv/J2Dzek4M3mXX/3aMYCqJoBxW/jGkUmyJQ8/CA+OPnUhy9tvqs5nsNWr+Ya2ZCnhLGkmoKpfAL4A4crmemS+uE6+eG6GkxdzDCQdBpMxil7AyYs5fu/xl/mVv3krsLo5Ri07hzMFFw0CxqfzWCIkHAvHEi7PuZUzxcr3Ts4U6I9bvHJ5rrLoNJxymJwpLPlstZh512pi0qmm74ZVWVc9Hp3I8HuPv8wXn3hlwYco4AXKbMGnfzCGJZAtemxMJ7lz7waeeWWGiUyhUmd/6y9OMZqu/tiFagdaza7HRjeGGlk3PR46PFkxmb6YLRJ3LPwgIFf0idleTfWwlrHc0YkMv/v4yzz9yjSC8KqdQ7z+ulFemMxddf/RiQy/9vAxprIuqbiFApOzRXIlb0EfvPi5GrmgspRmS15QGfuXWe37q1X7a3HTasf2ZdXJn4i8QVX/crW0KmnoKsqhw5PsHOmrzPohXIWstrLVU1nrufeBx0/j+T7jl0uUfCVuC+mEvezOwWJOX8pxKVfCsQXHCncoLuVKnL6UW/Ve4y/YWayzHgEmRWTrPLOW81H6GWDnvOt2AGfXmEdNLFUn//LEFJvTMZKxMExyMmajqjx+4lIl/PzpqTlcz2f3xjQXswWOn89xMVtkNJ3goWfH+cbRCyvW8/ka9gJlruQTnoWruL6PY0Ffwrmq0R5IOJy+NEcqbhO3LXxfOTNVYNNAnM8+8sKSPhwnLmR5/MQlJmcKnB5Msm+sf0m91RpMwwRlaT7rrMmG67Gsr8dfurDkaFUBVSiUPCzLImFbPHo0HOjYlvAq+4of0kr1bamBaLWDoO3DKU5eyC6IgL1lINGwCNhGN91Dp+lxfDrPaH+coheQcCw8P1zAz7s+O6KdpWrqYVnXQRAwkSnw9OnLPPzcOT721qtNsMtuDacvzZFO2Cjw7Rcu8I3nz3Pn7hGu2dhPJu/y6UPH2DaU5OlXMpzLFEnFLBw7tGwRlLmix8NHJjmf/d5VfdxSWi+4Ht89eanSJuwb619yslkNS2k27lx9dPlq399atF+rBUw7ti/V7Px9Hnh1FWn1sC6rKOPTebKFEo8cmSFb9EgnHG7ZPki2GK+qEPXMzuu59/jkDJk5j4DwoUsezBV9it5MVeV+fjJLOuEQqOIFSty2SDrC85PZVe815i4dx3rr8UHgHuBXo99fmZf+RRH5DKEp9vWEB+c2nKXqpCUwU/AYmTf2K7g+F7OlyqHjJdfnOycu8YNXprk85xKzLQYSNlsGEnz+0ZfYMhiP2ogrg8n59Xy+hjVQ3GBhudwAVPWqRnvXhhSnLuXwA8US8INwslhwfU5dzHL60hwiwsycS1/M5lNfucjLU3Ns6IuvutNfqyl7rSYpZtd/XVhPTTZcj2V9nZ8trXjdVN7DERhMhYsbliVsSDk8fmKKczNFPv7OfcvWt9fuHl5yUbEvZjFb8FYdBO0b6+fL3z9T8aOdybtMTOd5Z4MObzbBjK6mg9uGjtLj9uEUrudzLBrHha4NYFvCloFE1fXw0OFJgiDg2GSWhGMx2h9npuDx+UdfYu+m9FVm1VO5EumkU1lQdWeK+IFybrbInk1pSp7P6UtzTOVKBBp2hnOuj2NbxB2LQJXZokcq7lT6uPOZPKcvzfEnT48zlHQouT7ppMPxCzkuzBS4nHfZnE6wdSjJqYtZvvz9M7xq53Blsnnfwy8wNpig5OuqdW4pzY70x7FEagqg0gztt2P7suzkT0QOAq8HNpVD5EYMAvbSd61KQ1dR5gou3z52ASJTzymvxLePXeBHb9i8yp0h24dTPHN6ihcv5CqTx+s39XPbrpGq7l3rSmW26DHfuVEJo95U67Pn+gEJR4g5V/6drudT9IMV7gppx+3oaungzqlm1kOPIvIlQrPrjSJyBvgUYaf2hyLyYeA08JMAqvqciPwhcATwgI82K9Ln+HSemA3fOTHDTMHFFkGDgEuFACXLQMIhW/S4POeSjFk8eWoKXxVbBNcLuJQrRT56QbiLngyvf/pMnqRjUXB93EB5Dtg8nllyF2OxdsqrTAU3uKrR7kvGeON1o/xw/Mqi01BfChDOzRRJxmySMZuC63NutsjLl+bwA63aR7AWU/ZaTFLMrn991KvJVumx3OZXE+tNRHB9pS/usGkgQX/CoeD6nJ7K8akHj7BrpI++mEXJ85nIeCRsIRWz+I0/e4nAV2KOha/KYDLGlsEEikUm7wIrD4JemMzx6l3DnJspMlMINXnDWHpZX8J6McdHLKQT24ZO1WP5qK8bxtJMZArMlTzmSgHXbepnz6Z01eOa8ek8E5kCCcciGbOZK3nM5EtM5z0+/MCT3LxtkJu2XtmVK3kBA8lwzDhX8pgpuPhBwIkLWa7f3M/xCzlKvs8Lk3kCBc8PQMNrwWYq5xJoONYsuD65ksdM3sOxhe1DKWYKLo8+P0kQKAOpGJ6v+L7i+gFTuSLnZor0J5zKZNP1fU5eDK113rxv06p1binNlhdFa9FxM7Tfju3LSjt/cSAdXTM/RO4M8L415tfQVZRjk7N4ATg2WEJYYYMwvRr64sLjJ6eAcCsy3FkocvC60VXvrWel0lumyVgufTE7N/Rx4nwWsXwCFSxRNIC9m1efeNa7HV1PoJp66MTOqU7q1qOqfnCZt962zPW/AvxKDWVcFxK28PiJKQaSDpbA+OU8bqAkHaHkBZzO5emL21iiBIFyZjrP9qEkZy/PMVsMRTPaHydQJe8FPHMmQ9HzyRU8nL4YJT8c9XqBLqg381fngnlzP0sAhQDwfGW2EJqSA/MmjQ43bJkfAXSCkf7Qd3AgETazCcciW/AoeD7OogncQMJe0kdwLabs1ZqkmF3/uqlLk63SY7nNF2HVCaBtCQnH5prRPiSqs54fMDlTIFC4c89IZQL39v2b+PL3z3IxW+SVqdD/NeHY7BpNUXB9nj83y67RPv75XftWHQSNT+fZNdrP7o1X+rBAtaGLkiaY0RU6tG3oSD3OnxjEHJuD125c00L29uEUT5++zGh/nLmSx9npAp4foKpkCx6nL83RF7P5wmNzFF2PqVyJczMFHEtwo8VO2xJsEZ56eZqpbIHLc+FkbiBhk8kHuAqFUhgcShX6YkIATGQKWBK6HQUBnM8W8XzFsSxcAlw/dKPYMZwknYxx/Hwu6httsoVwk+P4+RzphI3rK5ZIVXVupbNAa6EZ2m+39mXZyZ+qfhv4tojcr6ovi0i/qq7uRBbRilWUi7kScUfIuwGBhoO2VMziYm5l85Yyf/rMOVTDAV4AWIBjC3/6zDn+0V+7fsV7X5jMMZCwePF8Fk8VR4TrN/dVtVK5XP9bbeSMH79tC5/5xnEIFFHFE0CEH79ty6r31rMdXW+gmnro0M5pzdSrx05CgVzR5dxMnkIpwBKIxyy2DCbJe6G2+5MOMU9QFRwLpvMueS9AUHwlMvsUYrbF5EwhcgSHyzm3om2JFojKAVzuvWtfpRMWuaK+YJ4QBdiYjnPyQpZ7f/8cO0dTbEonOH4+S9ELKHo+CcfGDwK2DiWRmSIF1ycZsyl6QWhm49hkCy7Pnc3g+krMFgYTDjtG+4GFO9pHzs5w285B4Orz1Zaj2h3xTt71bwc6VZPlNj/lCDl35V6m4AUE6vLypbnKzt/EdB7XDxdOvntyius29TOUivFfvnWCXMmv7CaIQMkPOD9TZDDpcDZT4NSlOTJ5j3sO7lrxGKLlFiUTtvDZR17gubMZZgoeQymnspvRje1+q+jEtqFT9QirTwyqadP3jfUzPedyYbZIEJTNNANUwfWVCzMFYrbFtZv6OXJ2hpglzJUCMnM+8+1cYpZHwhHOZ8Mdei8Id+tSMRtxfdwABhMOjiX0xW3OZgr4vqKixC0h7lhhf6tKtFlIKm4jhNZso+kEMwWXwWSMTN5lMNL4TMElboWWOmXavc6tRjtbp13tHXk120TkCHAUQERuE5HfXO0mVf2gqm5V1Ziq7lDV31LVS6r6NlW9Pvo9Ne/6X1HVa1X1BlX92loeJgggVworuxCuauZKwYJV/JU4cTEXrjpYELMEywpFc+Li6u3HN5+f5IXzOSwL+mIWlgUvnM/xzecnV713OSuuagOVzpWUg3tGGE0nSMRtRtMJDu4ZYa60+vSxvOo0lIoxkSkwlIpVvXs2P8S9ZYUhv/sTDg88frq6gtfB+HS+Msgo0+kNRZWsSY+dxEvns8zmvVDHAipQcgPmSl7F/Gs4FWcgGSNbKHF+tsT4dIG8G1AKQt2X/IC86zObdyl5ASXPR6Pdu2gjD1/B8/0F9Wb/1iHuvWsfmwcSS5ZNBL7z0iWeHc+AQGbOJRudL1RwfSRyXx5Nx8kWfbYMJii4Ppm8S9EN2DKQoD9uMecGzBV9XC/8fW62yIFt6cqOdtmPMWYL3z1xmYvZK7uCK+3ML76/vLN5dCJz1bXbh1PMFhaalrfaCb1D6ShN7t86xOVsftWJX5kgUDL5Ei9MzvK9k1NM5T1cL2Ao6VB0fb5/epqC63H6cp50IjRxti3BEkFQprIlTl/O4wdKwpHKIuFDz44vm+fdB8bI5F0yeZdAw4nmK1NznM0UOHkhy5mpPDN5l9OX5jh1MbtsHTesjQ5vGzpKj6uxXJv+0LPjfPaRF/iHv/M93vO5P+eXvnqUmE1kghmQLQWVhUvbgpzrc+JiluPnszi2zS07hgiiPrGMA8yVfE5fvtLfhBGAIVv0cWwhGbN4581jDKVilYlfQLnfVQJVCm5A0VM8XxEE3w/jUWRLPjOF8BzDLYMJckWPLQMJAg1jVWSLPtdt6q/k3UF17ipq6YtbQTUBX/4T8E5C00xU9RkReXNDS7Vmwmp8dZdW3eyvFIb2q/jUCIKPVtJX4uTFHH4QrpIUoxJIlL4ag0mH6fzV/n2DyepO4hifznPLjmFu27mhklaLicxat6MnZwpsTi8MprOc+dp6047Rk5pEB+mxeuavkD03MYNlCUN94cqgKnhBwHTeQyyL8cvhxN91PUr+0jvkCcfC9UMzlbQQ7byFGpt/vR9cHcAFYCrnLllOXyHvhuGkNw8kmC16MFtkQ3+CoVSMH9kbmohn8i4lz2fTQJI5169EQtuzKc2RiRkSjuAHWrFQsC3heyenGUgmFuxo37xtkO+emOLw+MLz1Zbbma9lR7wdndA7lI7S5EPPjvOtF6dWvzAi5oR+f14Q9mnlXfNLuRJ9CYeEY3F0YpaYLZXIbemEQx6Pgh/go8Qs6Is5pOJ2pU6uFM16KR+Z0mCCuGOH+olZV/xoZ4rsb5Oz0LqFDm8bOkqPq1Fu00uez3dPznBxtsD0nMvDz02wc7iPgueTLfqUXB+iY4kCLUeqBjsy73Z9RVCOnZtlQ3+cJ18u4QUBkaEYloT9ZskLEA37SSsSdNk83A/CAFDfO3mZy3MlLJT5PaVI6BcPUVshgucHuH6AYwm2AgpDfTF2b0zzjpvHKtE+D2wb5GymQNyxw2AynVXnrqLdrdOqml2o6iuycBuqKYEfamWuuPQkbbn0xcSssHKXfYIgrMCxKvZH8yX/qkGoRumrsXOkj+nxmQUhTzVKr4btwymeeeUyL5zPkit69Ccc9m1OL5gMrsRa/fbGBpPM5N1KwAqA2aLP2GByhbvWhw7vnOqiU/RYLYsPcA930CBfFFIxm9mCh+8rvkDCtshquDM/MeehhJ1bwgl306AcMTc0F005wnBfnAuzhSUniQVPeflS7qromYXFoT4jFLiQLVY6ym3DfcwWvNDPt3ClGxxIOkxkvCVN2+7/q1MMJB3izpUYBCXP5/Tl/FXmVpsGkrx2zwaeOZNZcL7acp1HLeZa7eiE3ql0kiZ/81snqr7WESh6emXSZwkDcYu8pxS9gEvZEhvTcabzHq+9ZgMvTGZBhA19MTJzLp4fRsAVwiOIRvrDxcJqFgkXL0p+/I+eYTTthAHVEqF2Eo4V+g71htVH0+j0tqGT9AgrmweOT+dxLPjBKxlUlek5lznXI/CJ+jUJx5quj69X3BnKeGUzF8L+K1CYLYTBWlS1cr1q2O+Vh782VyaAIuHun6dww1iaU5fmmC14xGyLpEDRCyd3fQmLfCmAIAxPpii2He4mxh2L0XScz37gtgX1aL5b1OLvoZPq3GLa3XS6msnfKyLyekBFJA78LNF2eruxnLqrVf224RQvXZxbkKZR+qp5L2NBs1z6fFJxh21D4ap+yQ+I2xYDSYdUvLqdv7648MSpKeK2TV/MYq7o88SpKQ5eu3qU0nr89u45uKty7UDCZrbokyt6fOyt11ZV7nro9M6pDjpGj6tRbugffGacyzmXscFw1yvh2BRdn7wX0B9pYSbvIiJsGkxy45YBLs25vDwVNqK+Upn4lYnZUjE9U5TCMrv3Yed2tX31SrIVQhPzc5ki14z0kY7KV+0udMwWSp5PwQ3wAsWxJPSPUHjubIYXJ2c5sH2Qjemw40jGHN5x05YVfaTK1Loj3m5O6B1KR2nyxcnqjhCyJPR5L3hRlFkAVWYKfjSwAy9bZCDh8KbrRvnQwWsqx5JkC14YnVbDwBClaHA4VwwDTWSjRcqjE5maz/VKR+amZT/awWSsV6w+mkoHtw0dpceHnh3n84++FC2OxCi5Pp8+NM22oSRFXzk2McP4dJ6C61FwQ58mVXAsyHsBg0mHy7kSkUxXDeIkhBZqMdvCnTdAnTdHBMC2IeHY5IpXfAK3DSbYMtzH5TmXy3MufhD6rCcdm4Kn5EthebzgSlA11wtQgVfvCq3TVou82aF17ira3TqtGp+/nwE+Snjo+hngduCfNLJQa2U5F7kqXefYOm/HSpZJbwSDSYfBZJy9m9LctmOYvZvSDCbjVZt9Pvr8RTanE/QnbNwA+hM2m9MJHn3+4qr31uO3955bt/OJd93AYCrG+WyJwVSMT7zrhqZE+4Qr/ln3/eRt3HvXvq5pNFahY/S4EvPt4WcLHkEQcHpqjhfPZ4nbVuiLoLBnNJxcBQob+kI9bOiPc3DvKPYKwnb90Fzb9QPSiRgrnXqyc6SvEr2zjL1Cy2iJYNuhP9NTp6e5nCtydjrPi5Oz3P9XJ/n9J05z5Gx4hMRS3LA5TbbkU/IDLKDo+WRLAYNJm9t2DJEteDz+0hTnZ/MVv6flPmsxS/lK1XK/YU10jCaPTmSowhgFCPVXnvhBtCAS+Qgp0U4gMF1wef11o+zfOsT7XrOdRMzmYq6EF8DW4RR7N/VhWcJc0efM5Xw4mAyUfZvTNfnAlOv2loEExejIlYIb+tWaOm6YR0fp8fPffAkERvpjFL2AZ89M89x4hq/9cIJvHDnH0XOzTM25zLmhb10QmWS6AbhewOVciVKVcS3gio7RAD9YuEsIV8a+nh/u6MVsIW6HsSzGhpIkbCFTcOmL2yiR64JlMZgKzwwc7U+weSCJbVn0xx2G+mKkEw7nZoo9pdF274urmV28VlX/7vwEEfkZ4L80pkit40wmXwkGUdaDROmN5OZtQ/TF7AVnBF4z0lfVGYEQ+d4NJLCsKyPWIAiq8r2r12/vPbdub9pkzwB0gR6PTmT41INHmMqWGEnHyZc8vCAM71wouViWhUSmJM+cyWBbwkh/jE0DyUqAiVfvGl5xV93X8lEvoVnLSouhRc9jfHqRz+0KN1wz2seFbJGS6/9f9t48PpKzvPf9PlW9Si211tFo9s1jz3jwgm1sg0MAGzxAYiAHArmBkBtOfHNvgHNICCGXJMZJOJcQgu85cCFxAsGBJAQTFgfCGGNizDIYvHs8g8fj2Wc0Go00am2913v/qOqelqZbakm96/l+Pv1RV3VVvU+36lfv8rzP85Jx3E7mdNJNUGOAacmQSGc4PDJVdEBiU187B89OMpNy4zKMEUI+Q39HmIHOMNdvEZ49PcFTJyZ49c6BRXm0V7BHvJ40jSa/sPdY2cfm6sIcuXoxt99nCx0hH50hHweHp9kyFOO7B0bYOdjJC2cnscXh7GSSgM8iEvC5cbBZQ2/Q5qp1PVwy0LngsiWFFN7bM+lsPtvnpr7y10JTVgRNo8c9+4ZJZx162wOICCG/zYl4moncGs9m/tljmcLG6iLIGAiKRTQsjMdnjwb5LDej9chUKr+8S1fYzzUbuhmIhhmOxZmIZ7BE6Aj6mE5lmEw4rI4G2d4f4enTE9iWu+xDKpPFQVjXFWKwK9zQGq10Zs5Gr4vL6fz9iYgkjTHfAxCRDwCvpAGFFPJBkbwplOlA4+RovGjc3snR6nb+cot87hzsnBW/Vu4IwUBniJOj00wkM0VTxy90br3i9pQl0TR6LEbO4zc6lSTkE46dm8ovzeK3jOehc/LLMYQDNt1hPyLiNfb8BG23czRfnWfheu+MgTOx+QcyHjl8nhu3zJ4iPd9AajydJeSz8Xud1DMTCTfWAgj53ACJ6VSWux54vujASDJruGXnAIdHZphIuKm5V3UE8iOw/R0hXr49yFAsUdZUz7m00tSZJqFpNPnEifGyjrOAgM+d8unq0MrHA1m4SyhtXRXJx+SeGo/PSnCQcYx7rhiyjkMo4MtnCnzF9n4OjUxzdP8wkaCdT/U+l1KNMb23lQVoGj2eGo/T2x4gmXEI+d041njGyS+RAO7064Wmci6FeMZB5EK7L1dnZg0MT6YQ4Mp1UbatitDf4bYHHWN45MgML14f5ZnTk2SNobstSMCbhhMM+FjdGWJ8JkXaMViWxQ2b3E5jtITOG4FqrRvdyM+rcrpFtwHfFJE/AHYDl3n7Go7eSIiT4xc39Hoj5XVkivQb591fKZY7QrBrTYTHjo5hW4LfglTGMJxKsvtFC3ce6xm3pyyJptFjMXINxDa/zYnzcYI+C58F6aw7jQXcTpTgehbiqQwB22JNVxjHMYT8NrF4Ckvmn7Eukuv8CTOpDBalO3RzPRy5faWIp9xRz3g6S2fITypzIZg+njH4xE1yceJ88UGjXCxALjPoTw6PeusdXXgcN1JsgLIgTaPJZLq8OZ8iICL4LUN70E/AJzgmg2Nc39+W/ghtAR+JtJvIYW1XeFaCg4BtMZPMkDWQwmCMO9UThMePjxP0WUSCNhOJDBOJTH7qZ64ODNrC6ViCjb3tFW2MKSuCptHj2q4w6UyW54anADeBUcZLlpKj2LTM5fYFLXE9fDNpB1vcDl8uGUyuvKAtnJ1IMJHI8OINXfR3hJhMZEims8ykHTrDPrfT6rPoiwQZmUqyvqeN1dEgjx1zNY4xnI4lCAV8DZ2Mr9Ezc1aDBTt/xphzInIb8F3gMeDNxlRjHGL5zCSLd9NK7W8V9p2eoqfdTyyecRuf3jS5faenFjw355kozPb5nldtrdlUzkZeBLMRaSY9zuXAUIwH9g/jGDdLYCKdYTppmJtYM/dlcll3R6ZSxFMZHARLIJXOEvDbzEfWgMlA2O8mVIqnUiWPvWSgfVaGX3A7jk6JZSRSWUN7wGZ1p59IyM/QRDL/meBWnlkDvhJV9NxMtas7g5wej7N9VaQlUlyvNJpJk8WSGxUjt6QJuMuW5L6MbYFxDKfPxzGeR2LbqnZ27xpgz77hfIKDgM/KTxM1xo1rdXCz/iVSGTpDIZJeEqZLByJ8Ye8x4mknP/L+8MERphIZBqMhLPGviMaYUhmaSY+5WV+XDkQYiiUYnU5RaGqxjt5yv4jgLi3UFwkwOp2mPWAxHs/k660cPe1+JpNZRISHnhvBEmEqmWY6leX4mJsY0edN7xyfSTGRyPKVx04QDfvZ3NtG2iE/UJsbtKl0e69S11tsZs5WaLeW7PyJyCSzp/gHgC3Am0XEGGM6a2Ni+YwVm/M5z/5KUsqzUE5GnQNDMe74xrMc9RaKDvlt9r5wjjvfcHlZN9SJsRmyDnS3BbAtd/2wdNbhxNjMgudC/eL2quVqb0WaUY+F5P7XflvAWMykMm4K+TKzMU15Ee0+b5TSni+DSw6BRNZw9aoIP5oqva7ZweFpbtwye1H3gY4QJ8YTWMyOAW4PWFy/uRfHGE6MxQnYMkv7hXFRuXT0c5nr6Z+73lGjxQYoxWlGTcbipQdBSlHY2BQHLEuYSqUJ+20GOsNEw27MeOGghmMMYb9NKuN4i7tb+CzXWz6ZzMJkgoHOMLvWdtLTHuS7B4a5fnNvvpOXyjpEgjaHRqbzU84aKU260ng0ox4L6wK/z+bGrX3c++hxzk4k8964SmMgn+WzM+QjkXZcT39BeQFbSGYMPluIxdPEU1nagj6SmWz+XAtIOF6Nl3II2G5W36lEhqdPTXDTtl52DHYSDfvzHb9Ktvcqeb3FZOZslXZryc6fMaajloY0PaV88WU0bj/54PPsPz1B0G8TCfpIZgz7T0/wyQef59Nvv3bhogVvoc8MWce4wba2EArM7x2pNyvR1b5Uml2Puf/15Ws62fvCKDMpJ+8VWAyWJYgx82bvzGEM9LX72djXzt4jYyUD54tJ97I1nUwm0ownLkyTC9hujOz6njbSmSzTqSyjU0nagjYzyeysjl/QB5euLv0vKxYL8PoSxyqNSTNqcmoxaQGLkAF6Qz7W9bQR8tvcsKU3n7Tlfa/enm/IghDw2fgtweez8uv8hUXo7wjSGfbnpz3H4mkEN3lMjs6Qn3gqw1TiwsCtToVW5qMZ9QgX1wUP7B/GZ7nTngtj/yqJAOdn0mxbFWEqkWEolsURd1kWESEa9mOKOk2sAAAgAElEQVSM66lf193GRCJNfyTIs6dT2N66f1lndt0ZDQeYSGRIOw5hv81jx8Z56bYL0z0r3d6r5PUWs250q7RbF3RMicibRCRasN0lIm+srlkri58ePU/AZxHyW17GJ4uAz+KnR8+XdX6b32Im5ZDKumuFpbKGmZRDWzmr09eRU+PxWRU+6OjuQjSrHnP/axFIpDNLqtAEt2LKOuAscIWgLXSGfdy8c4Bk1tDbHih6nM+C6zZ3XzTtc1UkSMBvY4sbH+G3BJ9t0R700RHykcwa7rxtJ1es62Jrf4R13SHaAhZ+S+iL+Llhcy/Xb+lbwrdUmo1m0qTjLK/zZ3kBubnF1WH2Mzu3/M6vXruel23txbItd0DSFnrbA6zvbsMYw9hUalb686vXR5ks6OhtW9XOVDKL35aGTJOuNC7NpMdiXL0+imMg7LcJV7gNl4unD/ktetuDbFvVwftv3c7qaIiQ30dHyE/IZ3mZqw1Zr/cZ8lkEvf05f4Yl7vTRHAGfRWfI5w7oGtchUegNq3R7r5LXy3lgo2E/Q7EE0bC/pCevVdqt5SR8ucMY87XchjFmXETuAL5ePbOaj1IejHI8G+ms4wbHFuCzJR8TsRAT8Uy+F5/zPOT2NzKNvghmg1IVPYrIUWASyAIZY8y1ItID/CuwCTgK/KoxprwRiTms7QpzZGSKvYfPMTaVXpKNBvKaWKgNm84a/I5haDzBleu7uWXnAN986jQTyUJPnrB9oIOQ33dRJrLz0ykmExl3ZNOrCFMZQzyZyd+juQrji3uP8YNDo2xb1cGOQfd62lBdUVRck9XS43Kbko6B6WSG589OEQ7YnJtK4Lfti57ZuVimtV1hPHcCyYzDlevddSyHJpIMxRL5Kc4Adz98hPPTyVmxT2uioVnHNdPIulI3mkaPczkwFOPYuWlOjScq7vHzWeC3LSyBTNbh9Hicrz9xim8+dZrL13SwqaeN50emicUdkpksbQGbjpCfrHGYSGSYTmbw2xapjIOdmyfKhSmg4MYUd7cH6Az56fSme+aodHuv0tcrNzNnq7Rby+n8Fasvylw8YeWwjFmfrOtu4/nhCdLZC503vw2XDJQ3RX065Y6Q+mzJ25HJGqbLXc23TizG1a7kqaYeX2mMOVew/UHgQWPMR0Xkg972Hy7lwtsH2vnq4ycZm0pTi7vSAIlUlh88f450xuHll/bhs4WgLaS9dGaCoS8SIBZPc92mLu564GA+5u6pk+NgTH4qZ9a4dd3wZHLWPbpjMMpHfuWKWQHg0bB/wYZqKwSMK3mqpcmK67ESeS/SWYM/6+ATm289fYaQ3+JVl63iwFAsfw/vGIxyy45+Pj08ydFz07QHba7Z0IXftrEshztv23nR/X7Ljn4++eALZBzXU7+6M4RtW7zrpk2qDWUxNI0eC8nlfnjmVKwqUz0zDmAcMnMunnYMT52cIOwXNvRGWBMNMZnMcn4mRX8kQCLt0B32MTKVxh0GdetOcMd13E6lMJ3MYgm0BfxFM8ZXur1Xr/Zjq7RbyxkIfFREPiEiW0Vki4jchZtBSSnAsop380rtL2Rbf5hUQWZBA6Sy7v5yCAdsQn4LS8TLiOhOHQ03eMzfYlztSp5a6vENwD3e+3uAJU+dOTg8zdb+9pp0/CCXqt5NunLgzCSfeegw06ksPtsiYIEtkDHC/tMTXLa6ne8eGCEWT+cDuIcnkmQcd3pMyCf4LEDcrIXLvUdzAeOF5d398JF8unul6aiVJpetx8QyBShANOTDZwmxRAbbcqdzBnz2rHv4gLfg+3WbevjlKwfpCgf48QtjfP/g2ZJT2Q4OT3PD1l5ef8UgN27tY3N/hGjY78UQKkrZNI0eC9mzb5hjo+Ul6VssHUEfQukF4w0wk3YzxU+nHHyWkE5nvWUabIJ+H91tfqLhAP2RAH2dIXojQS4b7OQ1Owa4cl0XbUGboN+mvzPEB1976UVJBCvd3qtX+7FV2q3ljIa8B/gTXPe2AN8Bfnc5hdbKhV5LbMsbWSmyfyF+dixGm1/IOFxI2GK5+8vhuo3d/ODQOXfhaVtIZw2JTJaXbuxe5LeoPY28CGaDUnE9ehjgOyJigL81xtwNDBhjhgCMMUMisqrYiSJyO3A7wIYNG4pefP9QjJ+fmVi2kT7LnfJpWW4CiVIEbFdPM6ksWZPFZwm2uLGAU1k3uYRtuaOeX3tiiO2rIrMCuC3L1VEAC9sWLAvSmSxtAd9F9+tis3+1SsC4kqcamqyqHpdDd3uA0xNJ/JaQSGc4NpalPeRndUcwfw8X3uOpTBbLEga7wnSGfPmO4lx9LDbduqKUoOn0eGAoxjeePMnwZLLo58vlt27azIMHznD03AxT88wIyziGzb1tHBmdwSAIbocwmXG4cWsvvZEgQ7EEH3/LlUuyo9LtvXq1H1uh3VrOOn/TuO7sSlNVF3qt8VtCsoiz3l+G58/NduZO1XQAkzX4LTfFbjm895ZLODY6zbGxGWIJQ8AWNva08d5bLinrfJ2C1jxUUY8vM8ac9iqwB0Tk54uw6W7gboBrr722aI/s8NkpRiYXn2Z+LhcmNs8/MSaZMfkj3YEZV1tZJ0vGMUwmM3QEbWzLIp11ODORYHN/JH9+W8DOJ6DIOgZLhIDPoqdI4pjFdua0kdtaVEmTVdXjcsit8ZXBmw4NHBqe5Gwszoy3iHzhPX5oZJqglzBiMpkpqY9WiaVR6kuz6fHAUIyP7XmOc1PLrx+LkWuCJtKGgY4AU6Ol65mgz+KpUzH6I0ECXh6KkLem7qGRaQK+i+N7leZkvnX+PmWMebeI/DtFWlrGmNsqbMsbgFd47+8BHqKJOn9zF6peaH8hFobJ9IWf2AGm04aOYPn19mBXG36fTTKTJeiz6YsEFz6J1lmzpNWpth6NMae9v2dF5GvAS4BhERn0RjUHgbNLvf7wZKLklJPFkIvXK7qoZgGzuofeRgawMVjidugmk1k29gTpaQ8wNj17oGVVR4isE6ct4CPjOPgsC78t3Oilpy9ksZ25XPKbM5NJphIZIiEfqzuCszqfSuNTTU1WW49LwZZcAjM3btYSt+Pns9zp0GMzhqFYApjdkZtKZIgEbZIZh86Q27Erpo9WiaVR6kOz6nHPvmHGplOLX/eoTPzeWn0+SzCWTcgnJOYG/gEBy40Jnk5m6GsPEA7YCJBIZwnYwthUSvXYQszn+fsN4N3Ax6tQbsNOaVkqjmO8ilDy2V8yjsGZZ2pajmyJVnGp/XPZs2+Y9T1t7Fp7obOWW3tpoQ6cTkFrGqqmRxFpByxjzKT3/jXAnwH3Ae8EPur9/cZSrn9gKMbMMtcXs8TNNJijnKvlfO5OwbYlkp9aHfJZhP02g9EQE3G3oZlrdK7tDtPV5ieZcWYNqLz9xo0XlbNYj0Uu+U170EdH0GYinmZoPM6tmh202aiKJqutx7Lt4EIL2hY3thxjCPktRqczXmIywWdZZByD34aZlOstL+zIRYI2E54XfddaN4lZMX0ULnidm4WiGT6VRdCUejw1HieVcYiX4ykog3ykkbjv+yJBomE/77l5K3+55yAbeto4OjpN4ezPgA237Bjg1HgCv+0uOfaybe5A56Gz05ybStIbCapToIWYr/P3AoAx5vtVKLdhp7QsldxCz2DcmCRxO4JtwYWTrhQbhZlv/1yWM41Mp6A1DdXU4wDwNREB95nwz8aYPSLyM+DLIvIu4DjwlsVeOOdZXk76Mgt3LUvH5Nb5cztv82Wz7Qr7yDiGVCbrLkZrCX7LXTtpMpmlI+RjMBpkJp3Fsizec/NWDg5P5xudH9h9KUBZ06EX67E4ODzNizd0cWYiyUTC7TReOhDh4PC0LvTeXFRLk1XTYzlYgG1Dm9/Oe9o390W4cl2UQyPTTMTTTKdnCPvcuNh01uC3hVUdQXy2W98VduQ6w34mEhkuHYjQ0x7Mr9lXTB+tEEuj1I2m1OParjDPD08ue2ZMW8DKp4tPZxz8Potda6Lc+YbL85r68aFR9p2eYF13G1OJDNOpLGG/zUA0yKrOMEG/j9tfvpnvHhjBb9t0hHzsGLSJxdPa8Wsx5uv89YvI75X60BjziaUW2ohTWpbLS7f08tBzZ0EKMrwYw0uLTBObSynNl/ssWE6shMZZNA3V1ONh4KIIbmPMKHDzUq8LFzzLcz135SJAd5uPtANhn2CJ62UYjIbYd7p0AhnbEoI+m7aATSZrmEllMRhCQR+hgI2IMJHIMtgVzldqr+dC/Otnf3i07PjXxXosTo3H2dDbzqa+C9M8HWN0wKX5qIomq6nHhfBbwkCHn3jGEAn5uWlrL6djCTb2ttMR8rlr9I3HWeUtkRLw2QR80NseIOMYrtt04Z4v7MjNjStXj55SBZpSj7t3DfD0yfFlXcNvQSTo45oNXZyOJTk/k+ambb2848aNs3T29hs35sN8OkI+jo9O89zwFIPR8Kwlirb0R1SvLc58nT8biFDeUnVl0yhTWirNe2+5hJGpJCfG4iQyWUI+m/U94bKSrvhtIVVk2Mdvl/fT7941wMfvP8gTU8lZU9Teeuv2ss7VOIumoCp6rDY5z7KUWgizCH5L8Pssutv8XNLfztruNu7fP0wincXgpqEem5k/OL633W2cJjIOG7rbCPqE54en6Qz56Qi63r/pZIZ33rhhVgN1qfGvi/FY6IBLy9CUmpyPjqDNVMow0BFk94sGed+rt8/quG3uj3DrrgF+dGiU7z13FscxtAVswoHS06JBPXpKTWhKPe4YjPKB3Zey//Q4w5PlJfnLIcBgNER70Cadddfwe8Wlq0oOWs4dqNzUF+F3XrH1omNVr63PfJ2/IWPMn1WhzLpOaakWOwaj/Pkbdy0pa2ZX2M/IVGpW21i8/eXimNzC1TJruxy7Nc6iKaiWHqtKrqMjMjuGqBDBHbnMAjds7ubaTX35zxzjJpGYu5xJyouPcKeoCY5jsCzBJwYHN6B9dTTMjsEOQn4fPzk8ytUbosQzhqlEhs6wn+2rZk+1rFX8qw64tAxNqcn58NkWibRDMuuw24tBLdYQfP0VazVLtNJoNK0edwxGuXnHah48MMxwmVmxBVgTDfKLl/bT3xHKDyi+79XzD/prx06B+Tt/VRk9qeeUloXoDFpMJC8Ouu0MlrFYH0sX1Zb+dqZTGRzjZlsSESxx95fDnn3DbOxt54p1Xfl95SZ8WY7dSk1pqtHMHLmOTsjvw8lmcIpM/7QtoavNTzhgc3Yyxd7DoxdlwTw3KURDfjKOIe3F/AUsN5lLNOSftb7lK7b18d5bLsk3TKNhP+u6w+wY7MSSCz/j3KmWtYp/1QGX4jRhZ6LpNGlROlmSeJ+t7w0zGA1X1NutKDWg6fRYSCpreOVlq3j06HleGJmed6KMT9z1Nvs6Qhwamaa/I6S5GpRFMV/nr64dsXpw07Z+9uwfntU4tcTdX02u39JHyGfx/Mg0U8kMkaCPS/rbuXJDT1nna9KWFUFT6jHX0Tk0PMkL56Zcz7QxJLMOxrjTM199+QB9kRA/H4rxg0Oj2JZ1URbMU+NxXn5pH4dHZphIpOkM+XnxhiiPHBnDtoSZtDvV+rLVHbz3lksuapje9cDBBada1nI6pjacZ9OkS840nSa3rWrj4NmZop/1RgL8+vUbL9KAojQJTafHQnL1z/VbehiZTBBLFE9otrozQDoL3W0Bgj6LKS+TroYOKIuhZOfPGDNWS0MagbaQn9fsXMUzpybynbAXre2kLVTdinD3rgGOj83w6v6OWdPAdpeZ+l1jiFqfZtbjjsEoH3vLFXz8/oOcm0oSi6c4O5nEAKs6LwxanJlIsq7LDTyfmwUzd4/fUJBAKRZPc8Nm4dxMmuGJBAOdoVkxfIWUM9VyOdMxm9Br1VA045IzzajJgK94lS/AQOeFTJzXberirgcO6v2sNA3NqEe4UHc8cvgcz5+d9jJUGzoCNsmsg3jra2a9+NqNvRF62/0cPjfDRCJDZ8g3bwZdRSlGefMZm4Sgr7jXv9T+uaztChOwbdZ2t7G2q4213W3udpU7UTnvSDTsZyiWIBr2L2rEe/eugbz4HWPy78vtPCpKtdkxGOX9t25n15pOHCOs7Qoz0BEi4xgePXqeo+emOD+T5ppNXdywpZfX7FzNDVt62dDbzqnxeNF7/NjoNOemUyTTWcJ+i2Q6y1cfP82BoVjR8hfS2FJ1mPNaxeLpWV6rYnYoxTk1HqcjNLtjorMXKs/odAp/kVrfAJGAj2jYzy07+vnugRG9nxWlyuTqjlz91xG0SaSzJDIO06ks7QGbS1Z1cNX6Ltb3hOluD7JjsJOtqzq4dMDNFt3pDZo1+CwJpcGYb9pn07Ghp43nz04X3V8O9Vx8eTnTwDSGSGkGdgxG6esI8arLVhEN+xmZTHBoZJqxqRRDE0l+YVsvft/sdTFzHuxi93jYb3FsNEVHyEdnyF2Q/ci5ab649xgf+ZUripZfjTimZvRaNRo6e6E2ZLIOGW8dWozb6TNAwBJu2NrH+169nbseOKj3s6LUgFzdcWBogpDfxm9bWFYC4xh8tpDMOgzFEvS2B4iGA+xa00k07J83U6eilENLdf6624P0R1LE4hkyjsFnCdGwj+72YFnnN/PiyxpDpDQDhfGp/R0h+jtC+YyeuTWIoPi0y7n3+Ov+5w+IBG1CfrfDGPLbGGN44kRtPRQac7t8NANqbcgtHyR4S9IaN8mL3yZ/v+r9rCi1Iae1iUSajqCPk+Nx2gM2E4kMBneqpzGGs5NJrtnYzdvnrNunKEulpTp/nSEfve0h1nRZBH0WyYxDMu3QGSrva+riy4pSXebz8CzWg20w+aVNcoi3v5ao12r56OyF2tDVFmQqkSGezuIYsEVo81vYtpW/X/V+VpTakNNaZ8hPIp0llXHw2RY97QEyGYd4xsGyhGjIx/tv3a7PQ6VitFTn7/I1Udr8Nmcmk/lU8Rt72tjcH1n4ZLTSU5Rqs5CHZzEe7KvXd/HI4TEQyQ/2TCWzXL+lvCy5lUK9VpVBZy9Un6vXR4nNpLBsi4AtYCCedugK+/Mx4no/K0ptyGltdWeQn5+ZBOMu+dDfEcC2LK7Z2IXftomG/fpsVCpKSyV82b1rANu22DnYyc07VrFzsBPbtspOfKKJUxSluiw3uVEh77hxIxt63XjeSS/d9YbeNt5x48aK2rwQlfxOilJN3n7jRi4b7KQ/EiDrrZnZFwnM8iro/awotSGntU19ETb0trE6GiLot2gL+Lh6QxS/bWsbVKkKLeX5W+7UIZ16pCjVp1Ienh2DUT6w+9KGWGJBvVZKM5DLuruQZvR+VpTaMFdrhcsGrerwaxtUqQpiTG3jYyqJiIwAx6p0+T7gXJWu3YjlatnF2WiM6a+lMc3MApqs5/94OajdtUX1WCEaXI/1Ll9tWL4NqsdF0OB6nI9Gtg3Uvhxl67GpO3/VREQeNcZcu1LK1bLrU/ZKoll/Z7W7tjSr3c1GvX/nepevNjSWDSudRv4fNLJtoPYthZaK+VMURVEURVEURVGKo50/RVEURVEURVGUFYB2/kpz9worV8tWqk2z/s5qd21pVrubjXr/zvUuH9SGHI1gw0qnkf8HjWwbqH2LRmP+FEVRFEVRFEVRVgDq+VMURVEURVEURVkBaOevABFZLyL/KSIHRORZEflvdbDBFpEnROSbNS63S0S+IiI/977/jTUq933eb71PRP5FREJVLOtzInJWRPYV7OsRkQdE5Hnvb3e1yl+piMhuEXlORA6JyAfrbU85NMKzYDnU6zmyHOr1DFppVEuPpTQz3zNWRP7Is+M5Ebm1YP81IvKM99n/EhFZpC2z7v9a21DsXq6lDcXq1Xr8H5SFqXf9WEndVtnOZWu6irZVRO81xRijL+8FDAIv9t53AAeBnTW24feAfwa+WeNy7wH+q/c+AHTVoMy1wBEg7G1/GfjNKpb3cuDFwL6CfR8DPui9/yDwl7X83Vv9BdjAC8AW7756qtaaWqLddX8WLNP+ujxHlmlzzZ9BK+1VTT2W0kypZ6z32VNAENjs2WV7n/0UuBEQ4NvAaxdpy6z7v9Y2FLuXa2VDqXq1Hv8HfdVPj4uwoWK6rbKdy9Z0FW2riN5r+VLPXwHGmCFjzOPe+0ngAO6DtCaIyDrg9cDf16pMr9xO3I7RZwGMMSljzHiNivcBYRHxAW3A6WoVZIx5GBibs/sNuMLF+/vGapW/QnkJcMgYc9gYkwK+hPubNzT1fhYsh3o9R5ZDnZ9BK4mq6XEezZR6xr4B+JIxJmmMOQIcAl4iIoNApzFmr3FbS//IIp7LJe7/mtkwz71cy9+hWL1a0/+DUhZ1rx8rpdtq2lgJTVfRtorovVr2lUI7fyUQkU3A1cAjNSz2/wU+ADg1LBPcUacR4B88t/rfi0h7tQs1xpwCPg4cB4aAmDHmO9Uudw4Dxpghz54hYFWNy2911gInCrZP0iSdqBx1ehYsh3o9R5ZDXZ5BK5Ca6HGOZko9Y0vZstZ7v1Qbi93/tbSh1L1cExvmqVdr/X9QFqah6sdl6raaVELT1aJSeq8p2vkrgohEgH8D/rsxZqJGZf4ScNYY81gtypuDD3c65GeMMVcD07hu6qrizYF+A67rew3QLiJvr3a5Sk0pFiPSNCmG6/EsWA51fo4sh7o8g1YgVdfjIjRTypYl27iE+7/iNrD4e7miNiyhXq3Gb6CUR8P8xhXQbVWooKarRaX0XlO08zcHEfHjCuCfjDFfrWHRLwNuE5GjuK7/V4nIF2tU9kngpDEm59n4Cu7NXG1uAY4YY0aMMWngq8BLa1BuIcPe9Ba8v2drXH6rcxJYX7C9jipO7a0kdXwWLId6PkeWQ72eQSuNquqxhGZKPWNL2XLSe78UG0vd/7W0odS9XCsbStWrtfwNlPJoiPqxQrqtFpXSdLWolN5rinb+CvAyWX0WOGCM+UQtyzbG/JExZp0xZhPwNuB7xpiaeMGMMWeAEyJyqbfrZmB/DYo+DtwgIm3eb38z7nzzWnIf8E7v/TuBb9S4/FbnZ8AlIrJZRAK49/Z9dbZpQer5LFgO9XyOLIc6PoNWGlXT4zyaKfWMvQ94m4gERWQzcAnwU2+K1KSI3OBd8zco87k8z/1fSxtK3cu1sqFUvVqz30Apm7rXj5XSbbXsq5Smq2hfRfReLftKYmqcYaaRX8BNuO7Xp4Envdfr6mDHK6h9ts+rgEe97/51oLtG5d4J/BzYB3wBCFaxrH/BjYFI446+vAvoBR4Envf+9tT6/93qL+B1uBnEXgA+VG97yrS5IZ4Fy/wONX+OLNPeujyDVtqrWnospZn5nrHAhzw7nqMgkyRwrVcnvAB8CpAl2JO//2ttQ7F7uZY2FKtX6/V/0NeC/6u61o+V1G0NbF2WpqtoV0X0XsuXeIYoiqIoiqIoiqIoLYxO+1QURVEURVEURVkBaOdPURRFURRFURRlBaCdP0VRFEVRFEVRlBWAdv4URVEURVEURVFWANr5UxRFURRFURRFWQFo568OiEiviDzpvc6IyKmC7UCFyrhNRD64wDGbRCTulbtfRP5GRMq+J0TkwyLy/uVbqyiKoiiKoihKtdHOXx0wxowaY64yxlwF/A1wV27bGJMqdZ6I+ObbnlPGfcaYj5ZhzgueHVcAO4E3lvMd5itbURoREZmqtw05ROSNIrKzYPvzInLEG4h5SkRurpNd/yEiXfUoW2ldRORDIvKsiDzt3ePXi8hREekrcuyPF7jWJhHZV+Kzh0Tk2nnO/ZpX/iERiRUMur508d+qZBlrROQrlbqeolSLYrqsQZmbRMSIyJ8X7OsTkbSIfGqBc4s6HETkz0TklmrY26poA75BEJFrgE8AEeAc8JvGmCEReQj4MfAy4D4R+eU52weBPwYCwCjw68aYYRH5TeBaY8y7ReTzwATugq2rgQ8YY2ZVTsaYjFfpbhOR3wZu9655CHiHMWbGu84YcDXwODBZYP9vA7/ivX4b+B0gA+w3xrytkr+VorQAbwS+Cewv2PcHxpiviMgrgbuBS2ptlDHmdbUuU2ltRORG4JeAFxtjkl6Hr+QMF2NMxTpiRa79Js+mVwDvN8b8UjnniYjPGJMptT2njNPAmytgrqJUjcXqssIc9sr+E2/7LcCzS72YMeZPK2HUSkI9f42BAJ8E3myMuQb4HPCRgs+7jDG/aIz56yLbPwRuMMZcDXwJ+ECJMgaBm3AFd5FHUETagJuBZ4CvGmOuM8ZcCRwA3lVw6HbgFmPM7xec+27gl4E3GmPiwAeBq40xV+B2AhWlIRGRq0TkJ97I59dEpNvb/5CI/KWI/FREDorIL3j720Tky97x/yoij+Q8DSLyGhHZKyKPi8i9IhLx9n/Um1b9tIh83PMy3Ab8lTfaunWOWXuBtd65v1k4Gioi3/QarojIlIh8xPMU/kREBub5np8Xkc+IyH+KyGER+UUR+ZyIHPAGdXLHFfXGKMoyGATOGWOSAMaYc14HCQARCYvIHm8AMe+hF5GIiDzo6ekZEXlDwTV9InKPp6mvePXXLErpschx/SLybyLyM+/1Mm//h0XkbhH5DvCPRbY3icgPvOs/nvMeSoFn0tPvV73v97yIfGy+H8rT6KOeN+bOgv3XiciPPa3/VEQ6yvnhFWUeSurSqwfuLNDeZd7+HhH5uqe7n4jIFd7+Z0SkS1xGReQ3vP1fkOIeuThwQC546d8KfDn3oYj8sle3PiEi3y1Wt4nIb4vIt73nx+dF5M0L2N4vIg94+/9WRI7NV9d53/MxT4u3F+zf7V3jKRF5cBG/d0Ohnb/GIAjsAh4QkSdxPXnrCj7/1znHF26vA+4XkWeAPwAuL1HG140xjjFmP1AopK1emT8CvmWM+Tawy6vUngF+fc417zXGZAu23wG8FvgvuYcI8DTwTyLydlzvn6I0Kv8I/KE3UPEMcEfBZz5jzEuA/16w//8CznvH/zlwDbjTVnWQnVAAACAASURBVHB1e4sx5sXAo8DviUgP8Cbgcu+cvzDG/Bi4D9fTd5Ux5oU5Nu0Gvl6G7e3AT7xBmodxPe7z0Q28Cngf8O/AXbjafpGIXFVGeYqyFL4DrBd3EOXTIvKLBZ9FcO/FfzbG/N2c8xLAmzw9vRL4axER77NLgbs9TU3g6jJPKT2WsO9/4oZeXAf8F+DvCz67BniDMeZ/K7J9Fni1d/23Av+rxPWv8j5/EfBWEVlf4jiADxljrsUNw/hFEblC3DwA/wr8N0/rt+A2nhVlOcynS3A7hi8GPgPkplreCTzh6e7/xq0/wW0/vgy3PjkM/IK3/wbgJyXK/xLwNhFZB2SB0wWfzevUkIsdDnMpZvsdwPe8/V8DNpSwK8dvec6Ya4H3ipurox/4O9z27pW4HsumRKd9NgYCPGuMubHE59PzbH8S+IQx5j5xPQIfLnGNZMF7KXifi/kr5PO4onpK3Omjr5jHln24lds64Ii37/XAy3G9G38iIpeXmiKjKPVCRKK4XvTve7vuAe4tOOSr3t/HgE3e+5twG4sYY/aJyNPe/htwY2Z/5LVPA7gevAncRuzfi8i3cKd6luKvPM/AKu96C5EquN5jwKsXOP7fjTHGG9QZNsY8AyAiz3rf78kyylSURWGMmRI3rOEXcDtx/yoXkpF9A/iYMeafipwqwP8QkZcDDq43PDdwecIY8yPv/ReB9wIfLzi3lB6LcQuw80K/ks4Cz9p9cxqXhdt+4FPewEkWd1ZMMR40xsQARGQ/sBE4UeLYX/W8DD5cz8xOwABDxpifARhjJkqcqyhlU0qXxpjPe4cU1n+/4r2/CXeABGPM97wOURT4AW6b7xhuh+t2EVkLjBljSsXa78EdQB3mYgfHOs+eQVztHin47B3ASdw2arrEtUvZ/ibP9j0icr7EuTneKyJv8t6vxw3D6AceNsYc8a4ztsA1Ghb1/DUGSaBf3DnYiIhfREp58OYSBU55799ZIXs6gCER8eN6/ubjCeD/wI0/XCNuttD1xpj/xB2t6cId3VWUZiM3YJLlwkCZlDhWgAcKEjftNMa8yxv0eAnwb7hxfnvmKe8PgG24Hot7vH0ZZj+nQwXv08YYU8TGhb6Pw+zBIKeMcxVlyRhjssaYh4wxdwDvxmtA4noMXlvg0Svk13EbW9d4A5TDXLj/zZxj524X1WMJ8yzgxoJj1xpjcvHs8w28vs+z6Upc70CpeKlCrZXUqYhsxvVS3Ox5Vr6F+32lyPdTlGUzjy6h/PrP4M48+QXv9RAwghv3+oN5yk7hds5+H7d+LOSTwKeMMS/CbV8W1nv7cAcr11GaxdTdF+E5Um7BfS5cidvObSktauevMXBwhfKXIvIU7gh8uUHvHwbuFZEf4CaKqQR/AjwCPAD8fKGDjTE/xK20vgX0Al/0vAtP4E6nGa+QXYpSMbzR+PPixfPhjih+f55TwJ2O8qsA4mbrfJG3/yfAy0Rkm/dZm4hsFzfOKGqM+Q/c6aM5L/sk7iDLXJscXM+iJSK3AkeBq0TE8qaLvWRJX1ZR6oSIXCoihcmLrsL1EAD8KW6isk8XOTUKnDXGpMVNgrSx4LMNucFS4NdwdVlIUT2WMPE7uA3fnL3lToGO4nrkHNxnh13meaXoxO1cxrwYp9d6+38OrBGR6zz7OkSzbSvLZAFdluJhPIeA10E6Z4yZMMacAPqAS4wxh3H1+H7m6fx5/DVu2MXonP3zOTVmORwWuH4hhXX3a3DDIEoRxQ3vmPFiBnMzcfbiTsfe7F2nZxHlNxT6AKkzxpgPF2y+vMjnr1hg+xu4U2fmnvd53OmbGGN+c85nEe/vUdxYw7nnfgbXdT93/9zrfLjg/f3A/d7mTXPPVZQGoE1EThZsfwK3YvkbcRNGHAb+9wWu8WngHm+65xO48a0xY8yIN0X6X0Qk6B37x7idvG+ISG7U8H3eZ18C/k5E3suczIDe1My/wPWc34I75eUZ3BHPxxf/tRWlrkSAT4q7hEgGN4P07bjJx8AdFPmciHzMGFMY2/NPwL+LyKO4A6KFA5EHgHeKyN8CzzOnvppHjweL2Pde4P/zNO3DbeCWk6js08C/ichbgP/kYi/hovDCLJ7AzXp4GNcrijEmJSJvxf0Nw7jxfrcADbN0jdKUlNLlfHwY+AdPKzPM7pg9woUBkB8A/w8XD8rMwhjzLMWzfH4Y16lxCncgZ/Oc834o7pIP3xKRhcIdctyJ+zx4K+4g7xAFGevnsAf4He97PufZkHuu3A581ZvldpaFwy0aErkwa0hRFEWZDxGxAb8xJiFuls4Hge1mnvU5FUVRFEWpH94gUNa4y5rdCHymSL6LFYN6/hRFUcqnDfhPLx5WgP9TO36KoiiK0tBsAL7seexSLJwdu6VRz5+iKEqLICIf4uL00/caYz5S7HhFUWqPiDyCu8RTIe/IZeBVFKX6iEgv7uydudxcJA6xpdDOn6IoiqIoiqIoygpAs30qiqIoiqIoiqKsALTzpyiKoiiKoiiKsgLQzp+iKIqiKIqiKMoKQDt/iqIoiqIoiqIoKwDt/CmKoiiKoiiKoqwAtPOnKIqiKIqiKIqyAtDOn6IoiqIoiqIoygpAO3+KoiiKoiiKoigrAO38KYqiKIqiKIqirAC086coiqIoiqIoirIC0M6foiiKoiiKoijKCkA7f4qiKIqiKIqiKCsAX70NWA59fX1m06ZN9TajJUiks8TiadJZg98WomE/Ib9db7PqzmOPPXbOGNNfbzuaBdVkY9CqelY9Lg7VY+tqoRFQPS4O1ePSUR0vzGL02NSdv02bNvHoo4/W24ym58BQjLsfPkI07Kcj5GMykSEWT3P7yzezYzBab/Pqiogcq7cNzYRqsv60sp5Vj4tjpeuxlbXQCKgeF8dK1+NSUR2Xx2L0qNM+FfbsGyYa9hMN+7FE8u/37Buut2mKoiwS1bOiuKgWFKX5UR1XHu38KZwaj9MRmu0E7gj5ODUer5NFiqIsFdWzorioFhSl+VEdVx7t/Cms7QozmcjM2jeZyLC2K1wnixRFWSqqZ0VxUS0oSvOjOq482vlT2L1rgFg8TSyexjEm/373roF6m6YodePAUIy7HjjI++99irseOMiBoVi9TSoL1bOiuOzeNcCx0Wkeeu4s33n2DA89d5Zjo9OqBUVpIrROqzza+VPYMRjl9pdvJhr2MxRLEA37NZBWWdHkAsxj8TSD0RCxeJq7Hz7SFB1A1bOiXMASAcBgZm0ritIcaJ1WeZo626dSOXYMRlVIiuJRGGAO5P/u2TfcFDpRPSuKq9f1PW3sWntBC7F4uml0rCiKi9ZplUU9f4qiKHPQAHNFaX5Ux4qiKBejnj9l2RwYirFn3zCnxuOs7Qqze9dAU4zQNKvdSvVZ2xUmFk/nPX4wf4B5Le8lvW8VpTzWdoU5em6KMxNJJhJpOkN+VncG2dQXWdZ1VYOK0nyobi+gnj9lWTRrbFSz2q3UhsUEmNfyXtL7VlHKZ/tAO48fHycWTxMJ2MTiaR4/Ps72gfYlX1M1qCjNh+p2Ntr5U5ZFsy6+2ax2K7VhMQHmtbyX9L5VlPI5ODzN1eu76Az7mU45dIb9XL2+i4PD00u+pmpQUZoP1e1sFpz2KSLbgc8AA8aYXSJyBXCbMeYvqm6d0vCcGo8zGA3N2tcMMRXNarfqsXaUG2Bey3upWe/bVkY12bicGo+zsa+dzf0Xpnk6xixLL6rBxkb1qBRDdTubcjx/fwf8EZAGMMY8DbxtoZNE5HMiclZE9hXs+7CInBKRJ73X6wo++yMROSQiz4nIrYv/Kko9aNbFN5vVbpaoR1BNVota3ktNfN+2MlpHNijV0ItqsOFRPSoXobqdTTmdvzZjzE/n7MsUPXI2nwd2F9l/lzHmKu/1HwAishNXnJd753xaROwyylDqTLMuvtmsdrN0PYJqsirU8l5q4vu2ldE6skGphl5Ugw2P6lG5CNXtbMrp/J0Tka3grpAqIm8GhhY6yRjzMDBWph1vAL5kjEkaY44Ah4CXlHmuUkeadfHNZrWbJeoRVJPVopb3UhPft62M1pENSjX0ohpseFSPykWobmdTzlIPvwvcDVwmIqeAI8Dbl1Hmu0XkN4BHgd83xpwH1gI/KTjmpLfvIkTkduB2gA0bNizDDKVSNOvim01qd6X1CKrJZVPLe6lJ79tWRuvIBqYaelENNjSqR6UoqtsLLOj5M8YcNsbcAvQDlxljbjLGHF1ieZ8BtgJX4Y7E/LW3X4oVXcKeu40x1xpjru3v71+iGYrSnFRYj6CaVJRloXWkojQOqkdFWZhysn3+D+Bjxphxb7sbd/TjjxdbmDEmn1NVRP4O+Ka3eRJYX3DoOuD0Yq+vlI8udtmcVFKPoJqsFKqnlYvWkY2D6lBRPbYequvKU07M32tzIgLwXN6vm+f4kojIYMHmm4BcVqX7gLeJSFBENgOXAHMDdpUKsZTFLg8MxbjrgYO8/96nuOuBgyt2YcwGoGJ6BNVkJVA9rXi0jmwAlruIs2qyZVA9thDl6lr1uzjK6fzZIhLMbYhIGAjOc3zuuH8B9gKXishJEXkX8DEReUZEngZeCbwPwBjzLPBlYD+wB/hdY0x20d9GKYvFLna53EpVqShL0qN3rGqyCqieVjxaRzYAy1nEWTXZUqgeW4hydK36XTzlJHz5IvCgiPwD7pzm3wLuWegkY8yvFdn92XmO/wjwkTLsUZbJYhe7LBQfkP+7Z9+wut5rz5L0CKrJaqF6WvFoHdkALGcRZ9VkS6F6bCHK0bXqd/Es2PkzxnxMRJ4BbsYNcv1zY8z9VbdMqRpru8LE4um8QGD+xS6XU6kqlUX12HionlY2qsnGYLE6LEQ12TqoHluLcnSt+l085Xj+MMZ8G/h2lW1RasTuXQPc/fARwBXIZCJDLJ7mrdetK3r8cipVpfKoHhsL1ZOimqw/i9VhIarJ1kL12DqUo2vV7+Ip2fkTkR8aY24SkUlmp7AVwBhjOqtunVIVcotdFmZPeut160q6x3fvGuDj9x/kiakkyUyWoM+mLxLkrbduX5YdmsGpfFSPjUuhnp49HWMikSEa9uVjEube08tppFYD1eHSUE02Fout1wppBE1+6+lT3LP3OMMTCQY6Q7zzxg28/oqiS8cpRVA9tibl6LoabdRWrxdLdv6MMTd5fztqZ45SKxa72KVj3GepeMvb5LaXSi5ANxr2zwrQvf3lm1tKYJVC9djY5O7Z42MzrOtuoyPkK3lPL6eRWmlUh0tHNdl4LHUR53pr8ltPn+Kj336O9qCPVZEAE/E0H/32cwDaASwT1WPrUo6uK9lGXQn14rzTPkXEAp42xuyqkT1KA/KFvccYm06Rzho6wn629bcT8Nl8Ye8x+jtCSxoZKQzQHZlMcGhkmrGpFHfct587b9vZMgKrJKrHxmYxQecLVWY5L8DJsRkQWN8V5oatfRUffdRA+eWhmqwP1fCSLbXjWAnu2XscW2AykebcVJKgz8JvCffsPa6dv0Wgelx5HBiKccd9+xmbStETCXD5mk76O0IcGZnijvv2s6GnbVntU2jNenHepR6MMQ7wlIhsqJE9SoNxYCjGDw+NgjFEgjbJdJbHj48zND7DDw+NLjm17qnxOB0hHyOTCR4/Pk4ynaW7zcfoVFJT9JZA9djY5O7pQpYSdJ7zAoxMJkikM8wksxwYmuTJ42MV10albF6pqCZrT04fE/H0LC/Zt54+VW/Tlszx0WkmkxkyWYeALWSyDpPJDMdHp+ttWlOhelxZ5Dx0o1NJutt8+fbpwTMTHByeYnQquaz2aSGtVi+Wk/BlEHhWRH4K5J9ExpjbqmaVUlcK5zofH5tBMJyZSJI1hoDPIhLw8eSJGKujoSWPjOQCdA+NTBP0WYT8Nol0lr5IML+GS6uMsFQY1WODUqmg83v2Hqc96GMykcZv2/hsIZl2eH5kmtf0d1RUGwFbePjgCJOJNImMQ9C26Az7uXyNhscsAtVkDcnp40LdY+X3F/OSNUPsjmUJ2TSE/O538dnixi755aJjm+H71BnVYwtyYCjGF/ce44kTMQyGq9d3Ibhtz75IkEQ6S8hvA/DUqRidIXd/bm1AWHz7tJUTyJTT+buz6lYoDcPcuc6PHB5ldCqJbQnhgE0263B2IkEy6/CqHf2zzl3MyEguwH5sKkV3m49EOksy47BrbWfLjbBUGNVjg1KppBHDEwlWRQKcm0oSsN3GoN8WppPZimrjwFCM4Ykk56aSTCcy+GxhJpkllXEYnkhyYCimjcryUE3WkJw+CukI2gxPJC46tllidzb0tPHsqRiJtBD0CcmMIes4bOiZHb7WLN+nzqgeW4wDQzE+fv9BjpybJhK0EYRHDo8xncrwysv62baqnceOjQPugOZkPENH0Me2Ve35ayylfZo7r95J2arBvNM+AYwx3weeA6JAJ/Cct09pEQ4MxbjrgYO8/96nuOO+/TiOQzTsxxLBMYaAzyYcsPHbFlkDPtuiI+gj6Js9drCYkZFcgH1PJMDYTJqQ3+aajV30RUItN8JSSVSPjUvuno6G/QzFEkTD/iU1ygY6Q0wmswR9FlnHDVqPp7M4jsN/PDPE8bGZikz93LNvmPU9bfS0BQj6bRC34dkTCbC+py2frVSZH9Vkbcnpo5DJZJaBztBFx+7ZN4zjOBwYmuC7B4Y5MDSB4zgNd29fv7mXazZ2E/RbTKeyBP0W12zs5vrNvbOOK4xFynk0cjNlFBfVY2uRi+l7/Ph5ppMZDBAK+IiEfBgD+09P0hcJcc3GLkJ+m7GZNB1hH5et7qAvcuGZsJT26XLr8kZmQc+fiPxX4E+B7+GmzP2kiPyZMeZz1TZOqT5zRxKfPD5ObCZFJOSjLxLCbwu2BemsYVNvmGTGIZl2iIbdbIaw9JGRHYNR7rxtZ778XIbEVhthqSSqx8amEkkj3nnjBj767ecI+CziqRQzKeNNiQ7gtyxWdwQrMtqfWxg3Ywwbe9sQEYwxTFXYw9jqqCZrS04f4Hr8JpNZppMZ3vOqrRcdu38oxvHRGUJ+m46gO8Pk52cmmUlnLzq2nuzeNcDxsRleszMyqz7dvWtg1nG6mPXCqB5bh1z7dGwqhQUYDKfHE6zpChH224T9Fudn3DZjT3uQHYM2sXiaW3b0890DI8Ti6WW1T1upszeXcqZ9/gFwtTFmFEBEeoEfAyqkFmBuVqMeL4D+0Nlp+iIhBjrDYOKkHLdRGAn52NjTxub+CLt3DeRjD4K2EPZbfPaHRxcVh1DvFNtNiOqxxdnSH2HXmk5+duw8qazBcQzdbQHW90bY1t9Of4c73Wu5sX+5uIbOkD8fL5HMOES8ylK972WjmiyTSsSr5eL6CrN9vudVW4vG+8XiGUQkHwuUu8dj8czyv0wFKbceXAmxSBVA9dgi5NqnPZEAE4kUguCzYGw65eaHaHOze0bD/ot0s6U/sqCeVnL8bDmdv5PAZMH2JHCiOuYotWbuSOK2/nYePzbOuakkjjGs7gxyejzOtRu62djXPmtEMjcyUug97I2UXt+sFK0+wlJhVI8tTE5LA9Ewv/aSDiYTGb7387O8bFsPqzouNPAqMdqfi2tY3Rnk52cmSWYcMLCxp02974tDNVkGlYxXe/0Va8taAqEz5GNiJk0i7U6jzt3jnaFymj61pZx6cCXEIlUA1WOLkGufbutv5+xEgvGZNAEbppOGkM9mQ28b77hxY1HdLKSnlR4/u2DMH3AKeEREPiwidwA/AQ6JyO+JyO+VOklEPiciZ0VkX8G+HhF5QESe9/52F3z2RyJySESeE5Fbl/OllPJZ2xVmMnFhFLS/I8T2gQi9kSBDsQSb+iJ88LWXsrk/UnLus8Yh1JQl6RFUk81AMS11t/nZf3py1nGVGO3PeRs29UXY0NtGZ9jPup4wm/sjK6YCrBBaR5ZBPeqJy9dE2T4QIei3mUpmCfpttg9EuHxNc97bKyEWqQKoHluEXPu0vyPES7f2sq47TNpx805cv6WHD+y+dMn3/kpvt5Yz/PWC98rxDe9vR5FjC/k88CngHwv2fRB40BjzURH5oLf9hyKyE3gbcDmwBviuiGw3xjTWxPw6knNPP3s6xkQiQzTsY+dgdNlu6mIjibZtXbTQ+utL2HNqPM7+0xNcub4TuDAVZa5novD4gC0IkMyaFedqrwBL1SOoJqtCuVNH5h63faCdg8PTszR98nycK9dFSWWyHBqZZiqRQcRwbipVNH5hudNW1OteEbSOLMLce/PZ0zF2DM5eQqSwnqjGwu27dw3w8ftjJNNZHOOQTGeZTmUviqWrBcW0Cixav6rZBVE9NjjltmcL26e9kSDXburhknh6wQGPcurFheJnS9XXrTJFdMHOnzFmSWlzjTEPi8imObvfALzCe38P8BDwh97+LxljksARETkEvATYu5SyW42cezqbdTg5FgeB2EyKNr/N3Q/PLEsIS4m5m+suf354kkcOn+fGrZLPrlTomSg83mfBI4fHMMD1W7pXnKt9uSxVj965qskKU+7UkbnHHT03xVcfP8mWvjaGJ1J5TRsDP3x+lKzjkDWGrGMQhIBPSGWyDMUyeY0CK3raSqOgdeTFFNPFyfNx2vw2kZAvP7Dht4XL13TmF25vD/pmLdwOLLsD6Bg3Y6475Hhhu5YU+z0+tuc5LBHW97SpfiuI6rGxWUx7tlj79LpNXezZN1wyv0S5dfJ88bNzr3FkxK2vX7yhiw297S2h1VpPfB8wxgwBGGOGRGSVt38trms+x0lv30WIyO3A7QAbNmyooqmNQ849vX9ogqD/woLoZyaS7BjsnDfxw7eePsVf3f8csXgGW4Tudj97XzjHtlURUgWet/e9ejtwoaM4X+KWuUliLl/TySOHx9h3aoKXbw9eFIdQePz+oQkiXrzF4ZEZbtjSmz+mWUXU5Kgml8FcLZRaTDZ3XCqT5ZEjExwemXLTVA9NsqYrTMhvc346xfhMirHpFA7QFfbhsy1SGUNILAT4+FuuzF/zrgcOXlT22FSSO+7bz4aetiWNTq7kAPgGoSn0eGAoxhf2HuOJE+MIwtXro7y9IPZm7v0+lchgjOFnR0dpC/iJBG18ltvYGp5I8umHDi9q4fZy2bNvmI297Vyxriu/rxLJkkpRSj/FnhNj0ykAdq2N5vflbFbNNQxNocdmYqH27Bf2HqO/IzTL45bj4JkJ7n30BPF0Fkugpz3AvlMx3n/r9ouePQvVyfPFz869xpnJJO1BH2cmkmzqi7SEVhsl6lmK7Cs6PGeMuRu4G+Daa6+t/RBeHTg1HsdnweGRKQCCPouusJ+JrEMineGRI6NFG2sHhmL81f0HGZtKE/JbIDAcS3BybIbzMyl27xrMj0CuiYY4O5XkxGic7QMRNvaVHt2Y6y7v7whx3eZunjoZYyiWuMh7WHj8VCJDJOhmXptIXFgqQlNVNxwrUpOL7fyUm3o9p+EnT8QI+iyMMdiWcH4mzaqOINOOYXQ6hWMMlgXGgalUlmjIYn1PGAGeOBG76JqFZY9MJjg4PEXacbh+c8+iRycPDMW44xvPcujsFNOpDIJw78+O86Ff2rFs74uybOqmx2LTn77y2CmOj84QCdoY4PsHR/jRC6NsW+XG0z17OkZfJMCTJ2JkHYfpZJZ4OstUIk1PO8S8Z/9gNER7wObk+Rm2r4rMKrfUwu2LoZZLI8zncShmRyrjYOb8C7UubBpWZP24HHLPka8/eYqBjiAjk0n6O4KA26adSKRJpDP8+IUxXnXZqvwMmS/99BjRcIC043BqLE7GMXS1+bAti5GpFDPJLF/ce4yP/MoVHBiK8Z39Z8BAR9ifz45dTFfzzXr77A+PztLrVCJDR9DOt1mh+bVazjp/LzPG/GihfWUyLCKD3gjKIHDW238SWF9w3Drg9BKu35IEbOGRw2NYAhjIZB1OxRL0tvn52ZHzREK+WZXNLTv6OTg8zXf2n2EoFifks4ins2QcQzrrIMDJ83G+e2AYW4TxmTRj0ymCPreD+MypGIfPTZM1hkzW4QP3Ps1ANMREIkM8lfn/2XvzGDnP+87z87xn3dV3s3mKFEWalCz5kh3JTsaOfGg3O04miJMNNl4Da2w2OzMewAtvNgvMwEgGDowZI55ZzwKZAJ5ZT7w7Ezsbb5wIli3ZsR3Z9ClZMkWKLYpHk81m33XXez7P/vG89Xb1fbBJsUh+DYvso6reKj6/93d+vz8uzjWJY0V/weGRfWWO7SmRsS3ef3JP2kHsRnd7vZCx8JMdS6WMrp7ck6reOnbZHuGeTabYifrXZqMjHccysdBisekTRJLJxYBWECMEGEIw2/CxTINYSiKpiGL0zxA0/IiFZoApoBVKPvHlF9OkdOVrn59tgoChgpsS2GHz6uTZqSpfPHWZv/7ZJI1A3x8cU4ChmGkEfOpvz3JkuNCzFc6bjTvZR65lE5/71mvEUq8EydgmrUCf0SCSTFXb/PxqFUNAMWOjUCw0QywDbEPHy4utkEODOfpzDn4kGZ/WRc3Zuk8oFX4kcS0D2xCMljf2C5vxBLezGuFGOYcbdRzWug7HWq63N1v3ePlajTBWfPaZ8Xtd9x3iTrbHXkX3fWS06FLzImpehFSKSCpaQUzWMXlhooJA8Y0z12n6EUEYI4GGHxFLRSAVBtAOYgYKFgJJKCUvXKnqKbenz3G9ppXqDSF4ebLKfUN5hvI27Ugt858d7uxaNrbSXgsZi9odtmJlK2qfn9vi97aCrwIfSf7+EZaIuF8F/lshhCuEOAw8APxoh69xxyHJ+ejLamdZ8yKaXsi1qocXxjy0r5QGe1JKPvfN1/QCdgVRrKh6muQeRJJIQijBjyQG2uE2/JC6F1L3I8I45lq1zfmZBrM1j+tVj/Mzdc7PNLi60OTMtRpSKWKlqLVCvnd+np9NLKy5kLaDJx8aTZe3HxnK0fAi6l7EkeFc+v3Xg4Dfo9hNC99urwAAIABJREFUe4R7NpliJ+pfTz40yuX5Jl/7+RT/9w8v85++f4lvvzJNzhH82XcvUm2HjJUzjJVcJuZbXEkql4aASEIQKxaaAYvNgKYfYRkC0xDESncGYilpeBGTVY+8Yy5LSo+N5lP7kUqx0AhQSnF0ZGlMZrPq5NmpKp/5+jinLizQDiWg7zX6GpOdSi09Jnd2qspnnxnnE19+kc8+M87Zqeq6z3uX4Y71kWvZRBhLFpuhLhYCVxdaeKEkVrqYEUvFQtPnwmyDKwttmr4+o1UvRAEyCfZaQcxcw2eq1kYpxVStTdOPsQ1o+jEzDZ8n3jC07rV1eIK1driMJ/jUS5Pp73T7HqnUuv5mK8+1GSYrbYorVkh07G+t6xjIOwwVXKrtkOlam++Oz3F5vkUrCPn2uRk+8/V7NrZD3LH22Kt4+vQ0UkrOTtWYa/jM1n0MoZiqeDT9GAG4psHFuSbTNQ8/lOQdEz9W+JEiiJZ65BJoR4ogiomlotaOmFho8r//1WlmGwGOJQhjXUQKY8nF2QY/vrxIzjaW+c+NbGulve4pujT9iD0ld8P7SC9h3c6fEOIx4HFgeIU8bgkwN3tiIcR/RhNlh4QQV4FPAp8GviSE+CgwAXwIQCn1shDiS8AZIAL+yT3VpCX4seIdR/r5+dUakVQIATnHpB1KbMugm78+VfVoBhFnp2pcXWwSJz+TK4YNBHC14tEOIsJYUfMiHFPgRzowtUxohzFhrBDATN0jiGT6+GLG0l8LeHW2yef/6xPrVim72+sNP+IdRwZStc+Ron3TlrrfSfylG7XH5Dnu2eQGODNVpdrSRZBSxuboSJ6BvLvpaEfTj5ip+4DCsQwiCf/5R1d4ZH9fWim8b6iASAaF/FCi0JU3BcQSQGKbBnnXIo4lYaCQQBCDlFoYo5ixl3X0xqeby8ZWBgoOOdvg/EyT5ycqWELgRxLTFOt2Ep4+Pc1cw18WtAogVtAOJIYAw9CfzcRCa8td0TvJ9tbD3eAj1xpXHMw7zNZ9Ls03CSJJpWthut6jFxJJfYbiKDnrAsoZi4YfEylFpRXihbrLbApdkOzLusRK0goledfiTSNlJubbfPaZ8TXP0RdOTWzKE9yqoNkXTk1gmYK6FzLX8HEtA8cytsU53KjLuNZ1/P6TxwFtg98Zn6HaDrBNg7oX0Q4k8w0/HWd7PdBrNnw32OPriRs5D2emqkzMt8jYJkMFF9s0uDzfxDAEOdckYxnkHItYKkIFsQoxxFLcGkmFsSKGnW+E+v5hCDKuSaWt7zugfZghdPNDKsWBgRztUG55ImalvR4eLvCBh0aXqX3erLh1Pey2PW409ukAheR3uiVya8BvbPbESqnfXudHT6zz+58CPrXZ896N6DiVvGtxdKSQEmTnGj4Z2+T8bJPhonbQU9U2rSCm0gq0I14HAmj5IWHnVxT4SXUlViAjRWzoxC9KjE4p/bhOVca1TQ4P5phpBLedPPUduMDzhuwR7tnkRjg7VeXKvFYeK2UsvDDmp5crHB8tcN9QYd3HPX16Gj+SHBrMkbF1fOGFMRMLrXRPZgcqMaDO+DaJc3NMrZLbDmMKrsV0VfOcOr8WJfZ4dbHFXMNjqLDEYei2q27FRFMoLs23USjeef/ghvxdP4opZWwcy6CdJKYdSAWGgqmKx9vuy21Kou98lneY7a2HO95HrpXQ5BxT8/gCRRitiHeVLurJxFeYBkhdI8SLJJYpsC1BEEkcyyDnmBRch/lmwJ6Si+tYPJaIgM3U2/z9+fmU/7PyHE3XPEYKzrKX3ylPUHcvI2zTxDENoljRDgL8cH0fuhKbLWBfzweeGCvzNy9OYgiBbRq68y8VdS/i1IX5bb+X3UCP2vAdb4+vF270PFTbEUKI1Ef25Rymqh4F1+JDbz3AbN3j+YkKSpFOB3RbnmJ1A6PzcwNFK4xZGe7GCiwBpmEwlHe2zddby15Xrjy7VbgZ9rhu8qeU+g7wHSHE/6WUuiyEyCulmju9+HvYHlbuxZuu+cw1fAZyNl4Y40eSR/aXeflajemax+Rii0oroBlIXFM7D0MYwNrOK1Ys6xiuZCF3OhJ2MhhsmgKJNkpDCFpBTF/Ooe7HjJYyrIXdqlTs5Hm2qvjUK7hb7fFWVZ+fPj3NsdEC4zONlHPkR5Jz0w1+7933r/u47uSpA9cyMIXgWrXNDy7MU/NCShkbhba5TjGFrqqmVArLUDT8qJMXLvtToh3ol39ylYP9WR7cV16VlI5PN7l/KMers01m6j4yVggDvnt+nvuHPI4M5Ved/319WV6drrPYCnAtQXvJP6av35+zafjhuiNta32Wd5LtrYc73SbPTlWZrXs8d36e/pzNyb1FWn7MzydruKZB1YtWBWSGQRqEmQaabx5JlAQvlNgmhLE+WwM5i0JGUxn2lDIotLACaP7bt87OEsSSH19aQKCDP9sU/Pmpy3z4sUOEsWR8pkHBtejPOeRdK+UNdrg9x0bz/MfvXeLKQhsvislYJs+8PMWbD/bjxwrXFChgsaXFlkoZA0sILFPgR2JtWQ/W39mXtQ1+eHE+VUDdanBW8yIsU78uoP8uBTUv2uSRNwe9aMN3uj2+ntjoPHT+3MhHlzIWtVaIF8a4lsF0zaPpa/rP55+7gECQc0w9HaNIJ9a6sZ5SjlLgBWvHuZGC/oxF3Y93xNfr2PmZqSrVdkQpY/Hg3hvfr71d3Ax73Ira514hxNfQFZWDQohHgP9JKfWPd/SK97ApVmb5E/NNXpupU2lrYZbBvEPGNjl7va6dXSyptEJE4quCWOG3N3Yam0lOWQIMQ89OmwbYpoGBohnHmEIRxprA3/QjPvbLq4Pj3apU7PR5bqXK2y3GXWOPt7L6PFlpc2gov2wHWSljUcraG75WJ3nyI5lWNavtkCCKqbZDvEAyWnKYqXlp0LsSZmJHrSDGtnQnpZP0df++Sv57ZbFN3Y94/4M64Ow4qC/95Ap+GFPMWCipUEKrhkZRzNXFNg0/ohUu79Q8+dAop16b47VZjzhePbWkgLGySygFdS/akgO9g21vPfSsTa5XXOm2vcfvH+DsVJ1vn5vDtTQPNFT63DqGwA9lWmLsFBQFkLFMSjkbx49oBDFBV0cQ4MJcm75cRF/OxnYs5psBQwWX6Vqb516dZ6Hp45iC8zN1HNPg4EAOFHzzlRnOzzSwDUHDi/DCmIYfkrNNql7E2+8bSO8Xn3rqLIvNgLxrk7NNWkHMuRmfhh/zzgcGOXVBJ5Y5Wyez840A09DJlyEMDvSt7vqvdV/6zNfHkUpxaDDPe0+Mpl2/raLgmlRaEVEs085fLKEvt6WJ/l1Hj9twz9rj7Yq1zoMXRnxnfIa/+PEESuliTyzhv/x4gifeMMKHHzsELCWGsZJIJbhWaTNT97GSQlAQScJYoZRcM+nbDJ3i6MrvgaZWnBwrcmGuxfHRAlKpVR359dCxcyklE/MthBDUWuGW92vvJm6GPW4l+fs3wAfQBFeUUi8KIX5px694D5uiO8ufa3icm24gDIFlaE5CtRWSdUw9Hx1px2sKrRAY7pKQsG6ZC0yhdwEaQuDHkpxj0gwiQDBSzvLEG4YYn27ydytUlHarUrHT59mOyluP4a6xx1tZfe6cl+FiJh2hXnl+1sKTD41yerLKxbkmSim8MOZa1QMFA3mLhh8xPhNiCrFuwcWPFEpqoYt2UsG0TUGwwhMaaOdqGopy1mF8usmRrkC00x2ZqfsppxADEALXMmgkCmvdODFW5oGRAtM1j8sLyx2JIfTDX56qc3Agxw9em0/XwGzkQO9g21sPPWmTGxVX/vzUZS7MNjTnOykqemGMHyjakdQdPwXhilkrwxAQKxxbc3n6szaTvuaOgy4iYoJQklYE1VaIAdTbuuO9t5zhhxcXaPgRxYyNF8UY6ILmTN1nb1+WKFEIPTSYwzIF16s+TS8miBTvODzAIwf6AX2/mG8GGELgJiMsusOuFXYvzLbSbnbdC7ENQYhOUA0hyNkGR0dWJ3/d4hWdrn6lGZBxzHSf4HbvVY/fP8R3z80SSkUQK0whKDgGj9+/vuDNzUSP23BP2uPtjJXnYbbu8eOLi1RbITKp6DT9CCFAxvBXz1/l6y9PU8pYvHFfmUf2l/nxxUWafowXxlgGJJqERLGmG3mJCOHWB63Xhmsl5SUFGcfkTQcH+M1HD6zJ19tosqgTf5ydqpGxzaV9hHWfk5vs195t3Ax73NKeP6XUFSGWzT/c0cTWW4GNDl13ln9+RgeV1VZIGEs6PYF2oP8JrKRKGK1sE9wAOkIUBwayPDBcwHU0qd4LI85O1Vlshfzi0UEePzrIs2dnt7zXaCeVip0+z2b8i17G3WKPt7L6/ORDo/yrp8+lkvWOZTCQd1JRhvVwYqzMJz5wjC+euswLV6ostLS6ZyuIaQcxBVfL3c8nC51BF2pWVjgDqYPOzreDWK1yhIYBphDYplYEnay0lyfISuFHeiS8w50wk9dT6J+Vs6tv+a/NNamvMV4mVfL6Ct5xZICWH3NuukErjHlwb3ldwvudbHvroRdtsjvBK2Qsjg7nKWdtvnjqsh71zFoIFJMVXcwIwohI6gQqPRtdsIQe8zwwnOHSfBsvlEzXfTK2oNLWxYQ4VuRcAz/UfkwCrTBGKd1tE0DWtigOWLSCiAtzWtRBCKi0AgYLLnHSXuwEZEOFDO0g4vJCmzd2LXMH3YnsZrFGiVS8VHrPbNHV9hDEioxtUUzoDfv6snox/RqfW7d4RdG1koJPm6Giy2zdSycHCq5JaZPiUQcffuwQU1Vv1f2n0z251eh1G+5Fe3y9sVFMuvI8vHytlvDwFK6tRYrihNuLgCBSSBUSxZKXJqvkXQuptMrvfDNM7UqwdB/ZQKIiFYaK1jDIzmqijs8EgSH0CPa//EcPpYJNK/l6m00WdeKP7vtEp4h6q7vgN8Met5L8XRFCPA4oIYQD/DPg7I5f8R42PXTdWX7NC6l7EUZyI1PoMcwOZ2/lktgbRUclCQELzZCFfMD9eYfpapuXp+r052zeeXQA2zL53Lde49hIYct7jXZSqdjp82xV5a0HccfbYzpnf63Gq9N1HtxbSrtx2z1D2+EMdttY99eb4cRYOVXk+8SXX2SsnOH/ff6qXpVgCpQSy/i16422rHRsa/nCUCosU+BYBvv6sqmDmq17+LHCMQ3CWBKppHOXjG8LBHvLWU6uIc7y6nRjFXerG5YBI8UsFKE/71LO2mvu8+z+PO5Q21sPPWeTZ6eqyxK8y3NNzl2vUXItphs+KJhvaAESvdJB0PR1gqaS8c2VMBIV6ul6yNsPD9AKYq5V2prPlpxFhaLmxenjBXrfq2kI/CjmudfmGcjb2IZgsRXhWIIoUsik7nlkKMf1qoch4MpiK02U8o6Jba4eTS66FpV2yEzN08WVpCiStQWzdZ+FRkBfzsYyBaMlvXgaBa5tcmKsuKr7DqvFKzK2iWuZVJsBz09UcC2Dgmumu8zOTlW3JIj2+08ev23UNXvchnvOHl9vbBaTrjwPYaJA/8yZGdpBRKtbGEklBU6pVeQbfoQpBENFh3LWYrrud//qlpF1TeJYLXstXdjUWhSgfWZH6NDcxH1vNlnUiT1LGa2zkbFN/EjvN73VXfCbYY9bSf5+D/i3wD70YstvAPdmp28Aax26xabPJ796hoMDOZpeyCvX65iGQSuIqLQCsokMbrCifrUNMbJN0elISCBjCkpZi+tVj6mqx/Waj2MJShlr2b6n6zWPw8NLozGdishH33Ufn/n6OC80fPwoxrW0xO9vfWD9oHEt3EjF41YrjN4i3NH22O2EDg5k+MGFRS7MNjk4mGUo7zBdCzgwmN3SEuTtcAafPj3NgYEcD+1b+n61HW57tKPphXxpfDbp9ClykYlpLE/+tovUhyXqZZGEgbxDzhF859xMuovIMQS2bZJ3LNphjFIKwxAc6M8SSdg/kFu1l+jp09N6gfxK1cYudKqesPXO6x1qe+uh52zy6dPTuJbg0nxrSWRIJYkNkLOhHapUQCznmCj0OLK/Dp08kHonpCn07z9yoJ9TF+YptEOuLbaoJfu8uiHQHTjLWOpoF1yby/MtIhkjZdLBNkRy9jyytkG1HSbqmIIglNTaIfcP5fnBhXnCWDKYdxgrZ+jL28y3wtT+Ou7SsQQjRYerC3o10kjBIZYwkHd5y8E+houZdce+SxmLK/NNJhaaxFJhGnpE1Nc7W1KxKIDjo4Ut30NuN5u53a5nG+g5e3y9sVki1CmivnytqmPCSpupShsvjGiv0Y6LVxQ7FQoviGmtI8zSQYfr3vk7ydeGANswGMrb+FHMfMMniFcXUh0THNMkVgovknz2mVfXXdWy2WRRJ/bcU3J55Xo9WWMDhwZyG8agN0ukbrftcSvJ36NKqf+u+xtCiN8D/nTXruIOxloHYeWhm2t4vHK9Tix1ZXN8ukEQS/odEz/Soyok+492G512eqx0h8BUkHdNEIKGF9IKYiKpUEoRxwZXK20aXsg7HxhiMO+w0FxOau+uiMjE44rEjOUOIuAer0DeDNzR9thxQkEUc2m+zWjJZbEZpAvS33KgzBv2lDZM5Do2940z13FMg4f2lTCEvcqhdWM3RkyfemmSF65UtHCLCXEM9STgdUyBvwM2uyH08lvXNvBCiZSKobzNLxzp5z987zKtIAa0OERbKmIVkXEshosufhgn8vomj95X5nceO7Tqfb98raptf53Xdy3IdiV/PcT7uZXoOZt8+VqVpq87U4JEpTM5nqaAdqQTJC9U+LEiTPbA9ucc6t76NhHFCmEqnjuvVxQ0vIiiayKVwkxWm3RbgUweE0uJF8LBwRyFjJVQHHTSB3pNSsY2CGPFmw/08eNLC7TCiLqvO9O2oZUx37ivzPWax0IzpNaOQMHeskvdi7TgjFQIVDJiZnBwMIefLItGwbHRAoPJ4vX1AjzbEFTb4ZIar4JWIMm7JqWMle4JfWhfaUt7Qu9h19Fz9ngzsZVkZCP/1ymixrHk/EyDhUaAVBKBWDPxWwtSQSuUZO2NBYz6chb1dpTeiyxD25dtGUiluF7zKGVtTMNAxUsdvo5rjWLtsyyhJ26uLK5ve5tNlXXHnq0wTtU+Dw8X1k3oemlFylaSv38hhPCVUt8CEEL8PvAe7lJD2g7WOwg522Bivsn1mk/N005GL9ETPHt2BlPorls+Y/PEyT187/wMz1+u7vg6uqspK7+nANM0yNtGssdPX0enutoOZDJmZhIl0tjtUHJ+pqnnodu6E7eyK/f06WkODeZTAjzsrJMCPV2BvBm4o+2x44R+eLGGaxlkbJNy1ubCXJOhgksrUhsuau22OZQOGn96ucJbD/Ut24+3ElsZL37qpUm+cGqC6ZqHKfRYaCgVo6UMT7xhiC+cmqDWDpGKVNkQ9LqUnGshvUgXUrbxeeRsg1hCrR1hGOCYBgN5l7958TpxrCi4FgqTSiskjBWxgoP9OQ4MZPnp5Qqmoflcjx8dTD+n7mDgzFQNgSSUyzmGAhgpOrSDOAnat66Sdhei52yy5kUEkcLoTHt01RU7gZfXpR4mlR7jmqx4G55fhe5Mt/yIb74yw1DBpR0axIp0WsSP5LJxylhqURnHFBhCIBV6BLPhJwJHAsc0aYeS/RmtCqqE3hUYSZAGqGTc+fBwIZ1EqbZDvvLCVY6NFDAMXd54bbaBbUArVLzv5Gjy3hRTVY/3HNc2/OJkldFSho88dnBNv3N1sY1p6B2FHWXOVhAjEJzcW152D6m2w3vFkluPnrPHm4WtJiMb+b9OQfbMVI1WoEVd/FARq+01I7xIEsQbP2Yw7+KHEhXphex6HFwShZJ2KDGBqvLxI10YLWcscq6eCIDticVsZapsu7FnL61I2Ury90Hgb4UQ/yvwJPCG5Hv3sAnWOwjT1TYvXKkQxQqpJPVkX9Jw0aHh6YpizQtp+RFzI3lm60G6/2QnWOth3d8zkIwWs1xeaGMZkLcFsQRdI9W/65gGsdTEfKkUcw2tvPaxJ+5fU0Xp889d6mWp6NsZd7Q9dpxQRzABlmb4i66Z7gGDtc9Tt80VszZ+GKOU5O/OaWEixzR4aG9p1etu5gi6F6iHYcSVWoAE+jImYRTzb79ZSZUPOw36jskGEvB1Upi1jS138AVa/VOIpdG3MFZcr7ZpBDG2IShkbESSDNc9/RrzDY+L800MBPsHMtTaIZ/+2jkAjgwXlgUDphDU2nr3kkJCorxmCLBMg7ccLNKKdHB8r+u+LnrOJstZi7oXbEtaPZSQsUh8w9roKM4CyFghpWS6FiSBHNimRSRDHHRhJpLgWAaGARnTwI8UQindLbdMDKDhR7RljG0K9hRd/u7cDE0/xrUNXEsQK80DclbMoxYzFrZpMFlpL+v8WQb0F9z09+pJV/PZs7OcHCvxjsMD1L2IZ8/OcmS4sOq81/yIgwMZKu0o3Ql6cCDDQmtpvUMviqTcQeg5e7xZ2M4459XFNsdHCxwcXK7m3InlGl5Ey49oJqObOwlHN+KWA1yvekRSkrENUHo3aPdDYiBOzNw1hZ6KY3n3ryNIFUm4b2DtHdSwO1NlK7uqL1+rcmJseXxxu8a9myZ/Sqk5IcQHgWeBnwK/odSNMFhuLm7VUuit4MxUlWorTMdAjo7kGci7fGe8rqXfDUAZuqqqYKamdwyZhkEcS6ZqPn/506tabvsmXaMAYiWYqfsYKMIIFsIgTfoUEMaKZhCRc6xkBBQGC25aPVqpogQ9LxV926LX7HEtbEVVzDYFfhiD0JW/sVKGuh8vU89b6zx1j68cHc5z6rV5FltaaXM479DwIq5VvVSEoftasrZBGMVMVaNVjuALpybIuxaWIZhp6GKMJfRYZyPQC/w6HZNurkIHUudV2xrddkwdaHecmpKQtXSnIYwlfqh/lnNMHMvAtUwiKVlsRzimgWMZzNQD/TPT4AunJnjsyGA6VvvDizXaYYxUSr8Hlha7F1wTQwiu1wP292df93vp7YxetMmTY2W+c25m24/zkm7heu+u8+2OSmzdi3j0UD9npuq0g5i8a2hRInTXri9rkXVN/DAmiCSljMVrc03tY3K29ktCIARkHZPDwwWefvk6kAgyCTASYkF7BSG+7kXs78vws6u1Zd8PJdznGsu62Tlb+9wzUzVmax5+LDGFVtT9ww+eXHbuR0sZZmtLHVCFHvs8MJDjvSeG0+mAjbqHtztupzhqu+hFe7xZ2Mo4Zzlrc2KsRM42OXddqzmfHFtSc97Xl+XibINKO6CxCWfvRtEIYlxTC00JIWhu4C/jZN9MEEmtep84Sj+U2JZBKWPy8fev1pjYrbO9Vlf16mKbnG0u08G4XePe9ageCCHqQoiaEKIOnAeOAR8CakKI2nqPez3R+ceotsNlLe6zUzsfmbyRa7kyr5XOOnLQP71cYWJey6oPFhzuG8rr6nuH1wBpmzuQ2sGGnYjyJty6BHoxZy5RSpPoSopMlAK7qzSOITAFBLHk/pH8Koe4Ek8+NJryJqRS6d9XCk7cw9bQi/a4Fjaz0U417sG9JRbbusT35oNljgznafoRe4ruhudpX182XVswXMyQdy1Mw8AyDVzH4h1HBjg0mOfp09PptVycbTAx3+RHFxf56eUK7zk+xMffd2zZ+Z6ueRRdk4VWkIxHa3RUd7vRKZp0Y4vUiGXwY/04heYx2JagFUoqXpQKYfhhnHRKQ2KleHBvOXnPeoTOMQ38MGaq2ubnVys8c2aa69UWz09U8MOYkmsmhPxE6Te59qoXs9j0OTZS4MRY6XW9l96u6GWbPDaaJ5LsqKjY7Rc2e3wjkFxbbJF3TQpZC5X8zzENbNNgqOiwvy9L0bUQCO4fzlN0TWIpmW+FGIYWGcs5JqVMp/CjkiXsEMZ6lMwUukh5aa6x7P5wbZ2K+9VFLWRWztr87i8dZrruMz7dYLHp65HYUNL0I65VWqvO/RNvGGK67tHy9W7Olh8zXfd4aG8h7R5+8JG9nBwr8ezZ2Z6zmdspjtoOetkebxa6/WEH3eOcnX2Vz56dZrruc3xPgZNj5WX+79honheuVHCMm9WCWA4/VlTbEU0v3PD3LNNAKUWlFUAyNl5yTVzb5MhwgX/5aw+tEnvZzbPd3VXtUFGOjxYYn270RNy7budPKVW8lReyG9itedvdqAw8fXqaY6MFxmca6WiIH0nOTTcoZqzUaS40A538JeNWUZdn7QSRtgDLMmjvsuBLh59Rb0dYlub9VWKJQAfOi62AMJbkHYtQai7gWDnD8dHilqSr7wm17B560R7XwlZs9MRYmT/+9YeX2eF9QwXe/+DomiPG3Vg5vtkOY4YLLm851Jeui5BKpTvy4lgyPtPAtQwG8jY1L+Jz33pt1bjXaEmPTwYJF0EpLbJioIWSok3m5250ea3eoaSWEeFR+jnjWCFVzJ5ShqGCw8+vVoikwrVNbNPAC7W0vmNqdcQfXFhktOSSsU3mGsvvN6ZYksNvBpILc00KGSv97G5H7sLrhV62yfHpJn0Zi5ofbTjGuRt4da7NsZECv3BkkLNTdWbqPq4luG8gRyuUzDcD6n7MWw71cd9QIVGWNqm0AmpeTMYyGMq79OUcAAquTcOPcCzN87MMvZsvZ4pVnYu//tkkBnpFRQdRrGiGks986JH0ezUvAqETOcvQgaUX6mX25ay97Ny3AsXbD/Xz6myThh9RcC3eNFzi9LUGJ8dKPcH32Qi9xFvqRi/b41rYjTh0IzrDnzwzvmpf5SvX67TC5R308ekmbznYx/Waz6WFWzO+2IlNN8JAzqYZxMQSSlmLR/aXeWC0lE6craXyuZtne62u6sHBPK0wppy1b/u4d9OxTyHEPwK+pZSqJl/3Ae9WSv1/N/vitovdUOzbjCC7VYOcrLQ5NJSnkLHSpa+ljEUpazNSdPnhhYVUUTPsIsF2H/jOzr1QQiR3N/HrDkb1HLWkL2vEDPtoAAAgAElEQVRhCoEQKiXm5l2L46NFGn7M+06OpuT4reCeUMvuo5fscS1sx0bXOj9rjRivfEx30WGw4LKn6KbJCyxVPicrba7XvFRYBrSM+3wz4OnT0wBLz5OzmZhvgtK8p0awVJxRSeHGTL7u2JVtLPH/yjmLxdY6GvlbQCiX7/Q0hKCcs/EjiRfGjJZc3vXAED+8sIgkmRqIZSrYghCUMxYP7i1xYbbJYjOgnLUTtVBwTX3vkSwlAobQ4hYNP+Lx+wcZLNxTLlwLvWiTZ6aq9OVsKu0oFX3ZCbZKRZdKMVrKMlrSdIAwihkqZpistHns/iHOTFV5wx7NlTk6kuenl0NGSxlyboSB5roeGdYS60dHCpyfrtMK4rRjbRqCdz4wzGg5u2oPZaeommiqpY/pRjlrMVNtM9/QK1pMw8AyBOWster+NFlp88YD/TxycGDZ+/vqi9d4x+GBZc97u/J9NsJuxFGvJ3rRHldit1QjV/pDx9RrST7/3CVevlbDNY20qNLZY1dtL/dTk5U2QRRzYbax7Ps3IEOxJWwU8VoC3npogJ9drfLOowN6D22Cjc7qbp7t9ahNnc7p7Y6tCL58Uin1lc4XSqmKEOKTwI4NSQhxCaij845IKfU2IcQA8BfAfcAl4DeVUovbed7d4JltVBkAUoO0DPj2uRm+8sIkv3h0cJWMeudahouZNPDsXNuTD40yVfVYaAYEsUo4C9qMuo1J0cX32c4HsQU4liCIVVrl19C7lCxTcHiowKW5ZnrdDT9aks5fIZjRy/yAHsSu2yPcPJtcibVsdGK+yVTN5xNffnHD87PZOVv584++6z6AdMxjLUXaH16YJ5KSMFY4loEl9Ojzl39yha+fvs6x0QKHhvLUXYv9DZ9KK2SyEiFIeLhd49FGkuwZAkwhEk6CTgLbu8CV6BSGBNCXs7FNI93nFyu4MNuimLEoZ238UCKVIoxjFIKxUoY9fVmGixkODma5VvGo+xE5x6QdRESRYuWmv1iRiMgozs82cSzztuQu3AboGR8J2k5OX61Qaev9fpuJMGyErT70/GyT/+Obr2IaMJCzyLoOv/amfXz0XfdxYqzMZ58Z10lhHHN+pkkQxSw0I/KuxbHRAlcX23z/tQXNo3v8EFcXW/ybZ88jld49+Mi+Mv15hzPXqukS6ScfGqXgmNT8OB3N7vxZdJZLzo8UXM7IGqaxZGdSKfLO6oXO+/qyvHhlkfGZBk0/ucaRAqOlzKol87cr32cj3AF8/Z6yx7XQHYfONTzOzzSZa+hd0JtRblaiU0TtTigHChYGMN8IsE2DvqSQiNIF0G60/JBvj88m0ydLNv96kCgFmgJxdKREMWvhh3EyZVfk6EieoUJmw7O6ry/LpblGqrRfytjsKbncN1RY8/c3wo3soL4dsC7nb5Pf2UrSuBneo5R6k1LqbcnXfwB8Uyn1APDN5OttYTd4ZpOVNsUVh79TGejeQfazK3pGuC9rcfpabdXc8Mpr+dnEAl95/iqff+4Cv/1nP+DV6TrVth75VChsUzuxWwU/UunOJZH83zIEOdsk51hU2yEZ20ChR+RytoFjiGWCGdC7/IAexs2yR7gJNrkSK+3i0lyD5ycq7Cm6G56fzc7Zej8H+N1fOkw5ay/j+JwYK5NzBNM1j/lGgBdGLDY8riy2WWz5VNsBfhQzPtPg/HSdM1M1Kq2IgYLLWw70MVx0ybkmtiEwgIylSeoFR+/62j+QZawvQz5Zjm0IRd4xbki4qUO5UEClFbDQ8JM9nFpa/+pii9m6j5fs99vbl2W06OJYBs0gZrbmcerCPEN5J1U+tQ2d7K7Xk4yVHol74fIiZ65Vb0vuwm2AnvGRAH/wly9xvRbQTpT0buRMWluJIBJ0RrlmGhGeH3JprsHH/+JFfutPv8+zZ6f525eu8dRL11lo+BRdi6JrM5h3CGLF4aE8o0WXhUbAv376HF/6ydVEAVshlWJ8psH3z89R8yJGi25q/325tf8Z9pTdVdeWsUz29mUpuDZZ28RMxKZWxhA5R3Dq4gLzDR8/0AunT11c4KG9hTuC534H8PV7yh7XQicOnWt4/PRyBS+MGcjZLDSCXeOo7evPMZC3aQQRDT/GtU2OjRZ4cK9OLJ96aZLf/Pen+MaZadqh0s2C3XqDW4CJXuUgkj/LWYv+nI1jWUzX2vzV85PU21oVf6bm8ZNLi1yaa2x4Vo+N5nl+okK1HVJwTKrtkOcnKhwbzW/7+jpd1bVii17AVgziJ0KIPwH+T/Q98mNoBaXdxq8C707+/gXg28D/tp0n2A2e2UZVr7V2kCmlqPvRKl5A97X84LU5XpqspLygptQBVdY2kFLpbgEgb6FpGUKPwMhEsMI2YSDv8Mb9ZWbqmvR+YCDLVMXDj2Js08R1LB7cV8axzPS99io/oIdxq+wRdsEmV2KljU7VfN58oC9Vx1rv/Dx9eprFhsePLs6nPJsHhvNbOocrxVtAJ4tfeWGKoYLDQjPADyWh1A4HBErBZKWFjGF8uk7BtXBMweRikyBW5BwT1zIIohiJVkEUKPpyeqw7Y2vi+QMjBi9cqeCHmkubsUW6P2271t7doYkkRKhkfYTehzRb98naJhnbxDIUc8kIWxhJhgsOQwWHWjvkcitgKK9HfbKOpVUTN7maUCouzze5MNu4Z9er0TM+8qmXJnlpsrZqwmSnWPJd28NsM+TcdAMviJit+wwXXVpeSAxcWojoy9q87VA/16oeEwtNTMNIeblnplo0fb1UXe/Zg7lGQNsx2D9g8cBoIbX/qaq/5utfWWjz2WfG0zhhpu7z6OF+Lsy1iGKFH0uKWQvTFKsCur958TqmAmEIpBKYQqEk/OhihX/9oYd7nud+B/D1e8Ye10MnDj0/00xjTS+MGSg4q2LNrWLlyOPRkTyVVoAl4YkTI/z8aoVvj8/yzVem+Q/PXSCSitGiyzbX+e0aMrZ+364lGC1laQQRi82QvqzNbMNHKj25lrEMap6eYpmq+Rt2Rsenm7z5QB/X676mYmVtjo0UGJ9ubkopWQu9TG3aSvL3MeBfoNvbAvgG8E9u8HUV8A0hhAL+vVLqz4BRpdQUgFJqSggxstYDhRC/C/wuwMGDB1f9/Eb/MTZq5T59enrNHWSmEJy5VuXKYptTF+YxUNT9mFYQkbUtpiptglAhDC3cADqQawYyrebfavuKlXbaHb7EE28YJp9x+ONff3jZ733iyy8yVs4kAaJGRzADep8f0IO4GfYIN9EmV6LbRjvnqxtrnZ8fXpjjzLUajmWSs/W+v+9fWOD0NS3i1s0Z2uh5Onj69DRhLNnfn2Mg73J5vknkxxiGHtkMYt1RU8kn0/AiTEOLu0gFTT/GMgTd3HjD0B24ySimmNXJ1rmpJu1QpousDSHI2AYjRZeFROhiJ5BKdxvNZNG8Ssbf6l5E3dcdmaxtgYDHjw7SDiU1Txe1lFRYpsG7j48w1/B4daax+QsC/XmXL5yaWJNIf5ejZ3zkn377wq6XGDt81xgtGNQRRLJMgZcoFHWXFwz0+XUtg1pbd+4sIznHaPtrBRGvXK+nxdX9/bmUl+uF+vf8SCZrJ/TXXiR566E+hgr6flLMWGlyapkCKRUyee12pLg42+DQUH6ZRPtjRwbT99UpAq+MJ64stihkTGxraXQ0jGKuLLZ6OhjsRo+/j56xx/XQiUPnGj4DORsvjPEjyYN7S1uKr556aXLVypG1Rh7HyhlmGwF/9fxVrlc9VKL03hEWu1bxVtEBbib0BJre8TlcdBgtZTkynCOMtWDZDy8s0PAjpFJp4ce1dcde79vMbXhuO1oc3asYuuPZbtzpdKat7Plrsovt7ATvVEpdS4zlGSHEK1t9YGJ0fwbwtre9bddbZZtVvVbuIKu2Ar2PxI/ww5jZusd0pY0wBLZpYhUEi8niVyPJ8Lov+kb4FjcCS+iE07UM+vMOo+Xcsm5nB5vN/98B/ICewk2yR3idbHKr52disY1hGLi2QRBpeXeVjCT97UvXqLRCwkjyyIH+DZ+ng8lKm8G8gx9J8q6Fa5vIZOk0Itm1KSXJl2mXXMYKx9Qdj8aKxM21jHSfX842uLLQohXE2JaBkYyQRSgsqbiy2L5h2xdCUM45KCVph1IvsQYMlaj4eprTdXm+yUgpy1sO6sD46y9PESTEpvMzTbayAksARddkurY1sae7Cb3kIycWd78opwAECKVXB+lGsh6D9iJtI7a5XBFXc3c0ZzVjG8zUPc0pEmBbBpFULLZCTGMpUeygw6WVUuE6JkpBFMeASBM/0Oe/s5MwWEPRZnymkSrZHh8tcO56g4GCuyl/xzYNYqXo9pax0t+/h9cfvWSP66ETh37yq2dYaAQMFBwe3FtiuKgpDRvFV0+9NMmnv3aOvGsxkkx7fPpr53jfyWF+eHGBKFZIJZmt+UglOTpSZKoSL+lLdF1hINVNF3bpxoN7S+nqM9c2+YUjg1TbISNFrZ756OF+nj07k1CVBKWMmaxCMlhohjx2/8Zx51bjjd0S3LmdsW7yJ4T4d0qpfyqE+BvW+LdXSn1wpy+qlLqW/DkjhPgK8HZgWggxllRQxoDtb6DdJaxV9epUARp+SCwVsw2fPaUMhYxFJElHVxp+hBIidW7NMF5mPGKDBbm3CllLkHPtVE10qOCu6+g2I7X2Oum1V3Az7TF5/Otik1s9P2lFMlbpYvJI6q71YN4hjiXPX65QztocHMxveg739WUJo5hz07rr5ZgGPgKlZLIyWgeyMsnvDJHsFUu6E52/d2AI6MvaRFJpiXh0kGok94IwXhrq3snOv7UQS0UsFcPFDAutgIYfYQo9LiOlwov0tVbbEaWs3jP61kN9uF0di5oXsoWpT0AvtB8tZTb/xbsEvegjbxavPFZa2MgQYlmyVrAFjVARruALZS24utDCC2NiqWgFsZ6CERCrpT1+figZLrrUErVsP5KpP5VKL3bvPM4QapWw03DBYboerLpex9DXeH62mYggbV2i/e2H+vnu+TkEenVKGCv8SPJLR4duxkd7D1tEL9rjRjgxVuYPP3gyTUKKGSvlX24UX33h1AR51+qiQGhb/NsXr2ObBsoAlKE5rYGi2gqpJzv11ro73Kpw1bUEjxwo89PLFRxTUE/e68rJuyPDBaqtgLlGsDRB4EVEMmau7m0oHLfVeONuoDNt1Pn774F/CnxmN19QCJEHDKVUPfn7+4E/Ar4KfAT4dPLnX+/m694IuqsAb9hTYl9fjisLLUZLLt97bZ7RoksQxURSMl3zUrUw24yxlIGVqAB2qvKvFwy0898/kMMxDeYaPg0/5qG9pVVqpR1s1gm9A/gBvYKbYo/w+trkVs/PgYEcszUPP9bKnFIqbAMc20AIwUgpQyRhquZjJ6qUG51D7QRaHB8tMFX1ko6F4I17i0zVAmbrPlEXnymWCiNdLK0DXUssBaGW0N0FUwhGSy62aeJYIVYiqCLV7kpjd3oMrSCm4UfEsd53ZJv6fQRdyWalHTIU6A7L6ckaQwU3FXIouhamYSClxDDW360kgKYf8bFfvn+X3sEdgZ7zkY8e6udrL0/v5uUCS4JhjmXSCmO8MMYwDJ44PsK56zUuL7b1XkwBg3kLIQxmGwF9OYtY6i6eQnfMpdLPZZmCcs7lE+8/xue+9RrzzYDBvEPB1QqendeNle46HhzIrUre/CDim6/MpGIVHRvMOhauZdBIFmBvR6L9Y+99gLlmwOX5Fq0wJmOZnBwr8bH3PrDrn+s9bAs9Z4+bYTvxVadB8fK1KiXXwjIEeVeH+EXX5LXZkBN7imSdpbB/fLrOXNNfak6wPR+VtQTtXahmGkInY0OFDG891MfpyRoIRTlrr5q821N0qbVCSlmLaivEMMALY0aKGWzLZKBgrdup2+rneTfQmTZK/l4DUEp9Z5dfcxT4itAcMgv4f5RSTwshfgx8SQjxUWAC+NAuv+6OsWYVIHE0v/amfVTbIc+9OsvlhRawZEC1dpTsCbKptsKlskqXraw0trWML5Mss93uLibHgLFyFsMQCAHFjM3ecob5luYt7ilneXBviU+t4PltFz3OD+gV3Cx7hNfZJrdyfj7y2EE+/bVzlDKaszbX8EEIRotatc+PJHv7MhwcyC1b3rzRa3acgG2ZPHb/EDlH8M1X5vCjdsrRsy1BFGo1zFAq8o6ZrE8wyJoCP9TjpwXXYl85w3wjIIylTvikIpJaHKYVxDvepdaBm3QZJODYgv19ObK2DrZN0yRjx4SRpOVrERoDEp4hzDcDSlmLjG3yiQ/oAPfp09OUczYZS+80K7gmc40gvc7u25VrG/zBf3X8Ht9vOXrOR/6z9z7AN85M3/BZXAnNwVN4UYRrGeRcE6UErmPx737nrWnVvuNDT12YJ+d6+JGkYBm0gyhN0I4M5bFMnZi948gAv/LwPo4MF9KA7WqljWMJ/Ejvo82aBsWMxUAhsyp5y2Vs3vOGYb53fh4/inEtk76sTdWL0m7iVrop3TgxVuYPf/XBO5oP1KPoOXvcCrbiH7sbFOWM3t86VfUYK2fIuxb1hKO+srPnmHrlV9Y2qSd+Y6vIWAYDeUc3PLZ5P+lcR8bWQk51LyLvWEilsE2TI8OFDRO3VhhT8yKOjhQ4OVZmtu7hWNo3/+hijZoX4pgGXzx1eVV8u5XP826gM22U/A0LIf6X9X6olPqTnbygUuoCsCo6U0rNA0/s5DlvNjaqAnz0XffxZ9+9yEIzgISEGnXNSTf9CNcyMU1BwTEp5x3mGwE1L0qDs86uvYwFrm2Td7WghR9JoqSCb5uCeAMLcww9Ttbp7o2UMuRdm/edHE1lbzs3h6OjxbTd/eHHDm343u+G2ecewU2xx+Sxt71N/srD+7i62OILpybS/WRl12Sw4KZk+EMDuW3dnLudQOecnxwrgVKci+s0g0gLqTgmeUN3/SRw/0ARQwgipbAScYq5ZkjVC7Esg0f2l8k6Js+9Os98wyOMDE1O32bELYC8YxJLLRgTJe3D/WWXf3B8JOU3SaX48aWFhH+skz2ZTBpYQH/eYaysP5d3Hx9Z1rUHzRH546fOMtdcSvxsQ5BztHJoxjY4tqd4L/FbjZ7zkSfGyvzC4QG+f2EBwY0LjXUrfUp0R1wIqHsxhwazqTLhSh/a8CJytpHuxTs6UmS24eGHKuXCHhzMpf6p21b/x//0YybmW4kSoIEfSbwwppxdHc7oIM7iHz7i8vxEBdcyUEqRS7ofpaSou91plXsFz9sSPWePu4XuBsWbDpR57vw8SJhv+ERS0fQj3nKgj8sLbcKaRyS1yJJSupnhmgYTi01tf13PW3K1ymj3mloDHa/u788wUMhgm4JmENMMdMdfj2IKrZC/2CaSKvUrBppOoZTu2AeRpD/v8ODeIostnbBu1N1cz+4+8eUXUUS8MFHFtQyKroUXxvz9+XnOTlW3bat3A51po+TPBArc2BqgOwIbVQE61YhvvTJNzrWIpcI2VBqshQrGCg6mgMVWxEIjoJyxiKRMuX8dPtHevixPPjTGx993jLNTVT751TNcnmvQDDSZ3YzjZVX57lDSNA1GCw551+ath/oYyLtMVb1lldCdjGfeDbPPPYKetcfdUM06O1XlletN3n9yD8WMxc+vVnj+coVrFY+9fRkODeQwTWPHu6i6z3nD1yItA5aDbRns78+hlEr4cYJHDw8uuxd03xu6//5Lx4b46eVF5psB+/qzXJ5rabGoDZLA7m6bQotfZA2TvGOSc23efKCMbZmr7kVSwdsO9fPi1Rq1dpgG5YYhGC64KKWotKM1P58jwwWO7Skx1AyYrLSJYolUMFhwGC5mdrwE9y5AT9rkP/+HJ/kf/uOPqLQjvGjJD22GVJlagWOCIQyCWKbqnaADOlPpTnHGttIi6Uofahpwac4j55gUXc3lk0qrcrbCmGLW5jfeum/N+8TJsTI521ymWnjfYG7NM9oJ4jpB8dmpOpV2xC8eHVyX6nAPPYuetMfdQKe4MtfwmG+GejTaC6m0JQcG8+m4/h/9zRkiqcVSIqmVNX/77fuZmG9T8yOkVGRtg2qyiqw/73LuulbU7nyopiGwDGiFksNZi2rLpJxzcC2D61WP61UP0zAYKrj0Zy0uLXi0ghjXEkSx1HQKA1zTIFbwnuPD2Kb2aVsZu14L+/qyfPvcTLoWAzT9oT+3s7UYdwOdaaPkb0op9Ue37EpuY2xWBTgxVub4nhK1FQniazMNpFIpv2ComKHmRUxV27z5QJlXrjf1z22TgmvSDmUanK1F9v3iDy7T9CIMQ1f7OzyiUJKQ5iVv3JdjqLC2ItROqpV3w+xzj6An7XG3OscrixCPHOjXy1VrPgeTjt+NjF51n/NCxmK+IVBoIQfQY6WuZfLg3hLVRL135b3g889dWmYrw8UM739wD1NVj8986BH+8Z//hO9fXMBvLZHrV8bdw0W9d1Aq6M/a3D9SwI8kDS/iTQfK/M5jh9a8F5UyFifGSuzrz/Ht8VnagR7zCWItPmMJwS8eHVzz83n69DSHBvM8vL+P2brH8xMVgPQ5e2zB861ET9rkibEy//y/OcnnvvWaVm9VioYfESbV/Y7ceqz06gbbMsg5Fo5lkLcNLi3oe38stfhKxw+BVry0TMGhgRyxUmmRdKUP9cIYhUrtuR3EtIKYsXKGJx8ao+5FPHt2liPDhXVEG1qcGCsts4G1zmh3ENfwI959fOTeiOadi560x91AZ43DuekGblKwrHkRKNK9d599Zpx3HB5Md9wVMhZ7ii6tQPGpX394WZF2YqHFnqLL4eGCXoMUS4TQ+2TzjqUFzNTyQsx0rU0ziBkqOig01cA2Df7oV08yPt3k2+e0Hk4sFVNVDwHYAk5P1jgyXLihrtqTD43ylRcm6c9aKKX9th9J3nSgvONY9U7v7m+U/N111ZP10HEgf37qMs+enUcgePOB5Yeiw0kCTa6t+zGtMGZPyVlWjShlLK5XBQ1fJ3rnZ5rpfPKj95U2JKfu78tybqaGYRhEkZ4VFYagL2siFQwXXeYaASOl7XEYNsLdMPvcI+hJe9ytzvFaRYiDg3lsy9wSx28zdJ/zo8N5ZqptFlohGVvzkRp+zOGhfDqGtlZFcDNb+dh7H6D99Dl+fHEBL4y1PD4CxxJ4gUQYgjjhCIaxYijhMwKpWMV6FckOpwpgIOdwxW8hlWB/X5ZHD2u57N9ZZ8S7+7MdLmZ4y8E+zs80mK77PLaDkbidogf3KvWkTQIpj+6Lpy7z9+fnKWQs5uoeSbwI6BEtxzIYLmZ4/P5BfnalimVoVVsv0P6tQ1uwEsEGwzDSHVyWEFTbIY/e18fTp6epeyGTlTblrIVlGrzz/kEW2xENL6IRRIyVXCxTr0XZ6D6x3ar8nR7E3UOKnrXHjbCV++KTD43y8b+4DpCOQgMcGy2kNrTZjru1aBC6sGhTb4ea5mAITFOQc2yGSxmefGiUz3y9ihfG1L0IgcC1TB4/Opg2Icanm8uSs5xjMpC3WWiG5DMWQSxvmEZ0YqzMu44O8vK1Gg0/ppCxeHBvCWfFlMw9LGGj5O+2mGW+ndAOJe84PJhWG7s7GB0+TPdizX/wwBCvzjSX7SjyI8m+vgyLrRDbNHn74YG0crlWcNZtkE+9NMnv/+VLRMlSZ9ALbnVn0CbnmLsesN0Ns889gp60x93qHN/sIkT3OR8suDy8v4+XrlYQhh6PeezIwLIxsbVsaysTAr//5HE++dUzXFtsI1FkkomAjmrawYEcZ67VODSQYaEVpWNtJ/cW03HR9YLZf/X0OSbmWxRck5GCy2wjYL4VEETxhs515Wc7XMzgWCaP3cAYznbRo9zinrTJDk6MlfnUrz/MUy9N8rlvvaYXpQcx7TAmihXlnEXOtXh4X5nBgottCupexKP39XNmqk5c9wgjScYSesyr6IJS1Lw4Ha18/Oggz56dTZall1KbeMsBF9syecOYPnPPnJnGMlimRLjRfeJeQncPa6Cn7XEtbPW+eGKszP7+LLV2uCz5GSy4qQ1tx4d2F1gO9Gc560fsKbgM5R3qfkzTj/jIY3phvUyC0UgqXFMsm2bp2PDK5Kw/7/LofQNpcrYbtvzhZCqmMyl3L1bdGOsmf0qphVt5IbcSO6kwb6WD8SsP71sminB2qsrH/8uLy3YU+ZHk+Ggh3cOynXni8ekmbzvUz+lrdZq+Hv+0DYOGH/OuB4awza0FbNt5/3fD7HMvoFftcbeSNl1hHOeFhp+q9g0VXH7rA8duqGPU/dicbRBEMVPViMPDBf7n99y/bRGIzWxlrXHujpPqOPTPPjNOtR1ybM9yXuFIcf0K5omxMnvLGRaaAUEsGSi4vP3IQMql2Oh93A4Fnl7kFveqTQKrRryOjxaWceYuzTWYqvmUsxbX6z6tMObBvSWmaz4jpSylrM3zlytcrbQ50J/l8FCOqarPYivkiRMjfDgplHz2mfE1/12DKF42Pt1JLN+4f+nfer3lyz3WHb6HW4RetceNzvR27osP7i2v8rXd9J/t3ufTAsv7jvHUS5PLGhsf++X7+ZWH9/HZZ8ZTysCpC/P4oV7Bcn6myVAhs8yGdyM52+izuherbg8bdf7uSOy0wryTDsaJsTIfe+L+ZTuK7hvMYRhG6hy3g8lKm4cP9LOvP8eLV6tcmmsSSkkkZbq/67c+sHnit933f6/Keg87xVYdzlaCuk6FsSNYLZXiwmwj7Sxst2O00hZWJmE7wVZsZTMntdNkzI8Vv3RsGEMsTT91j/Xs9HpuBe5xi28dVp77n01UqLb0ipL5Zshs3aPSCsm71v/P3pnHOXKWd/77VOnse46envZ4TttjxjYGg4EMEMfhCAYnQLIQ4BOIWZI42RBIYIGYZQnkgHUIibMhC4nDEntxOAMBg2Mbe8AY8NjG53gOz+G5Z3r6bqnVOqvq3T+qpFZrJLVaLbVU3e/389FM6VWp6i31+7ICSpkAACAASURBVHuv53nel5dt3XDeytD5+LnXP3+Q7QOdHBqe4cxUimvX956n20p/16GYNafM5QeWQdPE8WIFS8u8T63DGk1F5ivTC6kXa/E8qbeeLzVs5Mnnb3Q6zUzG4vRkinDAXSm6dAuVxbYztehf91VrZ8UN/uqdYa7XglG6R9FiZivzeejvjvCCC2EmnWM648ZdwGznuBp+nGHX+JdaKvxaKvXiRUnyxFI5bt99kssGe+oqz63UQrVGqt5GcjFW1lY3mjq2eOkoLferu0KMTqd55NgkF66Kks65K28mszbjiQz93ZHC9z7w2u3nlZPrq9xrvpWyS+uBamVet12a5cZ8ZbpeV81qnieN1MqGvijHRhMcGvEWmumLcC7uegDkyoQbLOb+Wv+NZcUN/uqdYV6Ma1SjBFechyMjCSKhAJFQgBdv7isE184nBD3Drllq5iv/tVTqlcrtcDzNy7auPi+9lvLczlqop85oB/fNevFz3v1Gabm/uL+T50YS5GyHcMAglbMxDWF1Z5AjozP0d0fq1sVC/q7zlfl21qtGUw/zlem6XTWXiOuuGOADXzsHQmFti/7uMJcOdLG2O9LQvGj9NxZj/lOWFxv6okynrTlptcww52dVeqNBhmJpeqPBJXc3Kc7D8HSGnsjswA9qE0K9z6/RNIszUym6I3PnoUrLcqVyO9ATqbs8LzcttEMdVS9+zrvfKC33/d0RokGDrnCARMYurMa3qiNEwjuvXl008u+63PSq0cxXptu9Xtwx2MvGNVF6IgGmMxaRoMmLN/exaU1nwwdlWv+NZcVZ/trBgrcYivNQj5uUnmHXtBu1uLZUKrc37NzE/QdGz0uvpTwvRy20Qx1VL37Ou58oV+67IkG2r+tia38XY4k0j5+YKixUVhq7s1Ca4fmyXPSqWdnUUqbbvV68bLD6QjONQuu/saw4y1+7z6TUynVXDBQaZUepwvF8mzEvl+fXLB9qKcuVyu31V26ouzxrLWhWIuXK/ftedRGmaRBL5Vjd6bptAfR47tjtoAutV81yYzmU6Xr7ogtlOfxW7YSoGhYJaVeuvvpq9dhjj7U6Gy1DL3vdfETkcaXU1a3Oh1+oV5O6LGtqQetxYSxEj1qDmoWi9bgwlmufVdcd7cFC9OjrwZ+IjAInyny0Fhhb4uwsNSvhGaH1z7lZKdXfwvv7iiqaXEpaXWZKaaf8+D0vWo8LoESP7fS3r4Zf8gn+yWuz8qn1uACa1D62SxnU+ZhLK/JRsx59PfirhIg8ttxno1bCM8LKeU5N42i3MtNO+dF5Wbn45ff2Sz7BP3n1Sz41C6dd/rY6H+2Zj0qsuJg/jUaj0Wg0Go1Go1mJ6MGfRqPRaDQajUaj0awAluvg79ZWZ2AJWAnPCCvnOTWNo93KTDvlR+dl5eKX39sv+QT/5NUv+dQsnHb52+p8zKVd8lGWZRnzp9FoNBqNRqPRaDSauSxXy59Go9FoNBqNRqPRaIpYVoM/EblORA6KyBERuanV+VkMIvIlERkRkb1FaatF5D4ROez9v6ros496z31QRF7XmlwvDBHZKCI/EpEDIrJPRP7YS19Wz6lpHlXK0CdF5IyIPOW93rBE+TkuIs9493zMS6tYnpuYj0uLnv0pEYmLyJ8s5e+yEuowP9Bu7aLf6n0RMUXkSRH5fpvns09E/l1EnvV+253tmldNfbSqfWmXurxCPiq2aU3Mh6/qsLIopZbFCzCB54BtQAh4Gris1flaxPNcA7wI2FuU9hngJu/4JuCvvePLvOcNA1u938Fs9TPU8IyDwIu8427gkPcsy+o59aslZeiTwIdakJ/jwNqStLLleQnzZALngM1L+bushDqs3V/t2C76rd4HPgh8Bfi+975d83k78LvecQjoa9e86lfdf+OWtC/tUpdXyEfZNq3J+fBVHVbutZwsfy8FjiiljiqlssDXgDe1OE91o5R6EJgoSX4TbgWP9/+bi9K/ppTKKKWOAUdwf4+2Rik1pJR6wjueBg4AG1hmz6lpHlXKUDtRqTwvFa8GnlNKNXpz4aqshDrMB7Rdu+inel9ELgSuB75YlNyO+ezB7Rj/XwClVFYpNdWOedU0nKa3L+1Sl1fIRyWamQ/f1GGVWE6Dvw3AqaL3p2m/TuBiGVBKDYFb+IB1Xrrvn11EtgBXAY+wjJ9T0zxKyhDAH4nIHs9VpOmulh4K+IGIPC4iN3pplcrzUvF24KtF71vxu+TR2l5a2vp39UG9//fARwCnKK0d87kNGAX+1XNR/aKIdLZpXjX1007tSzuVrXJt2pLkwwd1WFmW0+BPyqStlKVMff3sItIFfAv4E6VUvNqpZdJ885ya5lGmDH0BuAh4ITAE/O0SZeUVSqkXAa8H3isi1yzRfcsiIiHgjcA3vaRW/S7zobXdHNr2d233el9EfhUYUUo9XutXyqQt1W8dwHWH+4JS6ipgBtftrBJtWy40VWmr9qUCS122KrVpTc9Hu9dh1VhOg7/TwMai9xcCZ1uUl2YxLCKDAN7/I166b59dRIK44vk3pdS3veRl95ya5lGuDCmlhpVStlLKAf6FJXKxUEqd9f4fAf7Du2+l8rwUvB54Qik17OWrJb9LEVrbS0tb/q4+qfdfAbxRRI7jusu+SkTuaMN85u99WimV93r4d9zBYDvmVVMnbda+tEXZqtKmNTUfPqnDKrKcBn8/By4Rka3ebPfbgTtbnKdGcydwg3d8A/DdovS3i0hYRLYClwCPtiB/C0JEBDdG4YBS6u+KPlpWz6lpHpXKUL4C9vh1YG/pd5uQl04R6c4fA7/i3bdSeV4K3kGRy2crfpcStLaXlrZrF/1S7yulPqqUulAptQX3d/uhUuqd7ZZPL6/ngFMicqmX9GpgfzvmVVMfbdi+tEXZqtKmNS0ffqnDqtLK1WYa/QLegLvqznPAx1qdn0U+y1dxTdg53FmD3wHWALuAw97/q4vO/5j33AeB17c6/zU+4ytxTd97gKe81xuW23PqV0vK0JeBZ7z0O4HBJcjLNtwVvZ4G9uXroGrlucn56QDGgd6itCX7XVZCHeaHV7u1i36s94FrmV3tsy3ziev29pj3u34HWNWuedWvuv6+LWtf2qUur5CPim1aE/Phuzqs9CVepjQajUaj0Wg0Go1Gs4xZTm6fGo1Go9FoNBqNRqOpgB78aTQajUaj0Wg0Gs0KQA/+NBqNRqPRaDQajWYFoAd/Go1Go9FoNBqNRrMC0IM/jUaj0Wg0Go1Go1kB6MFfgxCRT4rIhxp4vTeLyB4ReVZEnhGRNzfq2iX3OS4iaxfx/T4R+UPvOOLl9/lFn39ERP6pEXnVaJYjInKjp5tnReRREXllq/Ok0aw0RMQQkX8Qkb1em/tzb0+uZtwrLCL3i8hTIvK2KufdJiJv8Y4fEJGrm5EfjaYcIvKfItJXx/euFZGX1/G9Qn9URGxPH/tE5GkR+aCINHTMIiIXish3ReSwiDwnIv/b2w912aMHf22IiLwA+CzwJqXU84A3Ap8VkStbm7Oy9AF/CKCUSgN/AnxeXDYAvw98tN6Li0igIbnUaFqIiJgV0n8VVyOv9LT+B8BXRGT9UuZPo/EjlXRVJ28DLgCuVEo9H3fD6KkGXr+Yq4CgUuqFSqmvN+keGs28VNOQUuoNSql6NHAtsODBXwkpTx+XA6/F3UfvE4u8ZgFvo/ZvA99RSl0CbAe6gE816h7tjB78LQIR+ZiIHBSR+4FLvbTf82YMnxaRb4lIh4h0i8gxEQl65/R4MxxBEXm/iOz3rHxf8y79IeDTSqljAN7//wv4sPf9B0Tk70XkIW+W8qVeeqeIfMm7/5Mi8iYv/d0i8m0Ruceb4fjMPM/1Uu/aT3r/55/tcs8y8ZSX30uAm4GLvLS/UUrdg7sJ528DtwCfBALeb/Fz7/WKee7zbhH5poh8D/hBI/5WGk2tiMhfisgfF73/lKfTD3vld4+I/HnR598Rkce9Gcobi9ITIvIXIvIIsFNEbi7S+me90/4U+LBSagxAKfUEcDvwXu8ax0Xkrz3dPSoiF3vp/RU09UmvDnhARI6KyPub/HNpNDVTqhUR+W/F7ZFX93/OO35nUXvzz/lOahld/Zmngb0icqvXqUNEXuJpbbeI/I2I7PXSTe99Xsu/791+EBhSSjkASqnTSqnJont+ymvXHxaRAS99s4js8q6zS0Q2edc/Ki59IuKIyDXe+T/x2us7gBd6z3ZRpWfQaBaDiGwR16Pkdq+M/ru4fdLjXpn7KfBWEXmHuNbuvSLy10XfL7bEVdLjdSLyhKeNXSKyBXcS8wPeub9Ypb1aIyI/ELcP+M9A2XKvlBoBbgT+yNPVFk9LT3ivl3vX+7J4/V7v/b+JyBulfN/1VUBaKfWv3j1s4APAe7zf6N3iWgXvEbef/4mi61arm86rJ9qSVu8y79cX8GLgGaAD6AGO4A7a1hSd81fA+7zjfwXe7B3fCPytd3wWCHvHfd7/TwAvKLnfC4AnvOMHgH/xjq8B9nrHnwbemb8WcAjoBN4NHAV6gQhwAtjonXccWFtyrx4g4B2/BviWd/w54Le84xAQBbbk71/0/QuA08CPvPdfwbVsAGwCDsxzn3d731/d6r+zfq28l1em81ozgOdwrQK34jZOBvB94BrvnNXe/1Fgb74OABTwm/lzgIOAeO/zWp8Aekvu/ybg297xceBj3vFvA9/3jitp6pPAQ0AYWAuM41oYWv676pd+ldHKAHCk6PO7gVcCO4Dv5csu8Hngt73jgq6Kr+kdfxn4Ne94L/By7/hmZtvJG4H/6R2HgceArcCFnt6eAv4WuKrouqroup8p+v73gBu84/fgWhEA7gEuB34V+DnwMe9ex7zPr81reZ5nuA14i3f8AHB1q/+G+uWfF25bpoBXeO+/hNtPPQ58xEu7ADgJ9AMB4IfM9lWPe+1IWT163zkFbPXS8/r+JPChonxUaq/+Afgz7/h6L69rvfeJMs8ziVtndAARL+0S4DHv+JeKNNgLHPOeqVzf9f3ALWXu8SRwJW4/dAhYw2x9dXWl38I7LltPtONLu9TVzy8C/6GUSgKIyJ1e+hUi8le4g68u4F4v/YvAR4DvAP8V+D0vfQ/wbyLyHe8zcDuYquR+pWlfBVBKPSiuJbEP+BXgjTIbexjBFRrALqVUzMvrfmAzrmjL0Qvc7s2OKCDope8GPiYiF+J2Tg+Xm6BUSp0VkR/idpDBHdhdVnRuj4h0V7kPwH1KqYkK+dNomoZS6riIjIvIVbgNzZPAS3D19aR3Whduo/Mg8H4R+XUvfaOXPg7YwLe89DiQBr4oIncxq41ylNW69/8t3nElTQHcpZTKABkRGfGe4XSNj6/RNJNSrWwFjorILwCHcT1ofoZr+X4x8HOvjEeBEe97xboC+GUR+Qhuh3A1sE9EfgJ0K6Ue8s75Cu5ADFwdXyleLB1uO3SJUuoH4nqfvMp77RKRtyqldgFZZjX7OK4bGsBO4De84y/jdvgAfoI7MbsV12vn94Af4w4Ey3HeM+B2MDWaxXJKKfUz7/gO3EEPQN7d+CXAA0qpUXCtZbhl9ztF13g15fX4C8CDatZLrVKfrVJ7dQ2efpRSd4nI5DzPkr9AEPhHEXkhbn2w3bvGj0Xk/4jIOu+631JKWSJSru9arp+dv0c+/T6l1Lj3u3wbd2LKqvBbQOV6ou3Qg7/FUa7g3IY7a/K0iLwbd4YPpdTPPFP1LwGmUmqvd/71uAJ4I/BxEbkct+K/GndgmOdFwP4q91a4hfa/KKUOFn8gIi8DMkVJNtX/9n+Ja7X7dc+E/4D3DF8R19XmeuBeEfldXItiORzvBa6lZKdSKlWSr8+Vu4/HTJX8aTTN5ou4M3/rcWdLXw38L6XUPxefJCLX4jZsO5VSSRF5AHfSBVyXEhvAa4Be6l3n7cAf4XYw9+M2JD8sumw1reePK2kKFqZ1jWZJqKKVrwO/CTyLO6GqvI7Z7UqpcvHiBV2JSAR35v1qpdQpEfmkd81qbpOC65Fzb+kH3qTJ3cDdIjIMvBnYBeSUN51PdU3lz/kJruvbBcCf4YZsXIs7WTQ3M5WfQaNpBOX6ijDbx6rFxbisHkXkjWWuX45q7VUt30dEtuFqbwQ39m8Y1yPOwJ1YzfNl4Ldw29n3QMW+6z7gv5Tcowd3Uuo53Ha5Uj+7Ut1Uaz3RcnTMX/08CPy6iES9GYxf89K7gSFx4/t+q+Q7/w939v5fwV1dDNf98ke4VsG8tfCzwEe9ARHe//8D1xUlz9u8z14JxDyr3r3A+7yGE89yUQ+9wBnv+N35RE98R5VS/wDciWsan/aeuRo/wO3s5q/zwmr30WjagP8ArsOdFb3Xe71HRLoARGSDN7vYC0x6ndnn4c6Enof3vV6l1H/iLoqU18BngL8WkTXeeS/E1cLni77+tqL/d3vHlTSl0bQrlbTybdxB1juYtUbsAt7iaQwRWS0im8tcMz9IGvM09hYA5cbqTXsWRXA7gnnuBf6bzMbgbxc3Xv5FInKBl2bgtm8n5nmmh4qu/VvAT73jR3AXvHCUuxDaU7gLO/2k1mfQaBrEJhHZ6R2/g9kymucR4JdEZK0Xu/YOXCt1MZX0uNv77tZ8und+ab+wUnv1IF4/WUReD6wq9wAi0g/8E/CP3uCql9n43HcBxYvW3IbbxqKU2ud9v1zfdRfQISK/7Z1j4vaxb8t79AGv9Z41iltH/azKb+Er2nZU2u4opZ4Qka/jVuonmK3UP44rphO4MYHFAvg33DjAvBuXCdwhIr24swm3KHdlpadE5E+B73kNVA7XP/upomtNishDuHFz7/HS/hL4e2CPNwA8zqyrSzX2iEjeSvcN3A7p7SLyQeZaJN4GvFNEcsA54C+UUhMi8jNxg+nvVkp9uMz13w/8HxHZg1vmHsSdFa10H42mpSilsiLyI2DKszL8QER2ALu9uZUE8E7c2J4/8Mr2QeDhCpfsBr7rzfILbmA5Sqk7xV0V9yERUbiN5juVUkNF3w17s5YGbsMMlTWl0bQrZbWilJoUNxThMqXUo17afhH5n7i6M3DbwPdSMhhTSk2JyL/gtrXHmetW+TvAv4jIDK5XScxL/yJeXK/XTo7iduzWeeeHvfMeBf5xnmd6P/AlEfmwd53/6uUrIyKnmK0PfoKr3WdKLzDPM2g0i+UAcIO4C6ocBr4AvC//oVJqSEQ+CvwIt236T6XUd4u+ryrpUSn1sLiLnH3bSx/BdXX8HvDv4i6+8j4qt1d/DnxVRJ7AHXCeLLpvVESewnXxtHAten/nffZ54Fsi8lYv3wVPMaXUsIgcYK7barm+qxLXBf3zIvJx3Pb1P3ENLXl+6t33YuArSqnHAGqpm9qd/OIDmiVA3BiDNyml3rXI6zyAG0z7WEMyptFo5uBV6k8Ab1VKHW5hPo7juoONtSoPGo0fEZEupVTCO74JGFRK/fE8X9Nolg2e19j3lVJX1PFdE3cwt14plWtw1pqGiHTgTqS8KL/ORZ3XeTdu2/tH853rR7Tlb4kQN77t9bh7lWg0mjZFRC7DDdr+j1YO/DQazaK43rNoBHBn5d/d2uxoNL5iH/BFnw38XoMbo/93ixn4rQS05U+j0Wg0Go1Go9FoVgB6wReNRqPRaDQajUajWQHowZ9Go9FoNBqNRqPRrAD04E+j0Wg0Go1Go9FoVgB68KfRaDQajUaj0Wg0KwA9+NNoNBqNRqPRaDSaFYAe/Gk0Go1Go9FoNBrNCkAP/jQajUaj0Wg0Go1mBaAHfxqNRqPRaDQajUazAtCDP41Go9FoNBqNRqNZAejBn0aj0Wg0Go1Go9GsAPTgT6PRaDQajUaj0WhWAHrwp9FoNBqNRqPRaDQrAD3402g0Go1Go9FoNJoVgB78aTQajUaj0Wg0Gs0KINDqDCyGtWvXqi1btsxJS+dsYqkcOVsRNIXeaJBI0GxNBjW+5/HHHx9TSvW3Oh9+oZwmNUvDSqj7tB4XxlLpcSWUPc35aD0ujGbpUetPAwvTo68Hf1u2bOGxxx4rvD8wFOPWB4/RGw3SHQkwnbaIpXLceM1Wdgz2tjCnGr8iIidanQc/UapJzdKwUuo+rceFsRR6XCllT3M+Wo8Loxl61PrT5FmIHpeV2+c9e4fpjQbpjQYxRArH9+wdbnXWNBqNpmnouk/TKnTZ02hah9afph6W1eDvzFSK7shcY2Z3JMCZqVSLcqTRaDTNR9d9mlahy55G0zq0/jT1sKwGfxv6okynrTlp02mLDX3RFuVIo9Fomo+u+zStQpc9jaZ1aP1p6sHXMX+lXHfFALc+eAxgju/z215yYYtzptFolgMHhmLcs3eYM1MpNvRFue6KgbaIq9B1n6ZV5MveRCLDuXiaiZkcAUN436svanXWNJplR2kbtH2gk/sPjAK67tfUzrKy/O0Y7OXGa7bSGw0yFEvTGw3qoFeNRtMQ8oH1sVSOwd4IsVSOWx88xoGhWKuzpus+TcvYMdjLa3b0c2gkwfhMltWdQS5d38X9B0bbQhsazXKhXBt0/4FRXrOjX9f9mgWxrCx/4DZEutBrNJpGUxxYDxT+v2fvcFvUObru07SKQ8Mz/MK2NQVNAMRSubbRhkazHKjUBh0anuEDr93eyqxpfMaysvxpNBpNs9CB9RpNebQ2NJrmo3WmaRTLzvKn0Wg0zWBDX5RYKjfHutHKwPpysR+HhmfaLh5R0540Mn41bAoPHholazv0RIJcvK6ToGnqRSc0mgZxYCjGyYkkT56cZG1XmIvXdbK2K8J02iJsCrfcd0jX/Zqa0ZY/jUajqYHrrhgglsoRS+VwlCocX3fFwJLnpTT249hogpvvPsjxsUTbxSNq2o9Gxq8eGIpxNpYmkbYIGUIqa7H7uQlOTSRbog2NZrmR1+v67jBBwyCWyvHY8UmOjyU4NZHkbCzdlrHomvZFD/40Go2mBtppUZXSjX3PTWfoDAc4F8/ojX4189LIjaHv2TvM5jWdvGzbasKhAJbjuqIN9IS19UGjaQB5vW7t7+JFm/voiQaxHRiKZxjoCbN5Tafe5F2zIOZ1+xSR7cAXgAGl1BUiciXwRqXUXzU9dxqNZg5aj62lXRZVOTOVYrA3UnifSFt0h03i6VwhTceCLA1+1GRp+YH6y0v+WoYE6e92r+koxVAs3ZC8ajQLwY96nI9ivfZ3R+jvjhQ0lrUVa7p0HKBmYdRi+fsX4KNADkAptQd4ezMz5UcODMW45b5DfOibT3PLfYe0yV3TLOrWo4h8SURGRGRvUdonReSMiDzlvd5Q9NlHReSIiBwUkdc1+Dk0i6B0Y9+uSIDpjE1PpD3iEVcYdWmylXps5MbQepNpTZvhOz3ORzWNaf1p6qGWwV+HUurRkjSr7JkrlHbe/0uz7FiMHm8DriuTfotS6oXe6z8BROQy3Abzcu87nxcRs848axpMafzh+u4wMxmL9T3hlscjrkDq1eRttEiPjYxfbadYWI0GH+pxPqppTOtPUw+1DP7GROQiQAGIyFuAoabmymc0Mn5Co5mHuvWolHoQmKjxPm8CvqaUyiiljgFHgJfWkV9NEyiNP9za38VNr7+ULWu7Wh6PuAKpS5Ot1GMj41fbKRZWo8GHepyPahrT+tPUQy1bPbwXuBV4noicAY4B75zvSyLyJeBXgRGl1BVe2mrg68AW4Djwm0qpSe+zjwK/A9jA+5VS9y70YVpFI+MnNJp5qEuP8/BHIvLbwGPAf/c0uQF4uOic017aeYjIjcCNAJs2bVpkVjS1Ui7+8PoW5WWF02hNLokeGxm/2i6xsBoNPtXjfFTTmNafZqHMa/lTSh1VSr0G6Aeep5R6pVLqeA3Xvo3zTeg3AbuUUpcAu7z3S25Cb3R8nva51iwVi9BjJb4AXAS8EHd29G+9dCl3+wp5ulUpdbVS6ur+/v5FZEWj8R8N1qTWo0azCLQeNZr5mXfwJyKfFpE+pdSMUmpaRFaJyLyrJlUwob8JuN07vh14c1H6kpjQmxGfV+xzPRxP8cDBEX747Ahj02kd96dpKPXqsRJKqWGllK2UcnAD5fO6Ow1sLDr1QuBs/TnXNBu96FRraKQm/apHXfY07cJK1KPWn2ah1BLz93ql1FT+jWfyfkOV86sxoJQa8q4zBKzz0jcAp4rOq2hCXyzNiM/L+1xnLZuHnnPHu6+4eDXBgKkXftE0mkbqEREZLHr760B+pbM7gbeLSFhEtgKXAKVB9E1BN2QLRy861VIapslW6rFe3emyp2kzfKvHejSo9aeph1pi/kwRCSulMgAiEgXCDc5HzSb0xfpPl8bnjU6nOTKSYHg6A7hWvHqD3vu7I7zqeevojQbnfHbP3mHtj10HB4Zi3LN3mDNTKTb0Rev+2ywz6tajiHwVuBZYKyKngU8A14rIC3H1dhz4fQCl1D4R+QawH3eltPcqpewGP8t55Buy3mhwTkOmA9irUzypBRT+13XPklCXJttJj4vRnS57mjbDl3qsV4Naf5p6qGXwdwewS0T+FVcA72HWdXOhDIvIoFJqyJtRGfHSazahK6VuxQ3m5eqrry47QKzGhr4osVSO3miQ0ek0T5x0J4gGusOL7mjqhV8ahx4EVKRuPSql3lEm+f9WOf9TwKfqyWS96IasPnTd01Lq0mQ76XExutNlT9Nm+FKP9WpQ609TD/MO/pRSnxGRZ4BX41ro/nIRK3HeCdwA3Oz9/92i9K+IyN8BF9Akl5Z79g6zfyjGqfEU2we6OBdPA5DO2QQN4ZFj44RMgzt2n+BTv3Hlgu9RPLDMU23hF23ZqoweBJSnwXpsO3RDVh8LrXs0jWM5aHIxutNlT9NO+FWP9WpQ609TD7XE/KGUulsp9SGl1H+vVUSeCX03cKmInBaR38Ed9L1WRA4Dr/Xeo5TaB+RN6PfQJJeWWCrH89b3cOn6Lg6NJDg5kcQUt3YwDKE7HEApxU+OjNflL72QzTa1n3Z1g0nCQgAAIABJREFUzkyl6I7MnZvQgwCXevToF/TKufWhN/ptLX7X5GJ0p8uept3wox7r1aDWn6YeKlr+ROSnSqlXisg0c+PvBFBKqZ5qF65gQgd3Nqbc+Q13aclb1n6w/xwh0+CKDT0YEmTL2i5WdYbZPxQnk7PpiRpEgu7OEiLCqo5gXRam/MIvxda8t73kwrLXaZZla7lYE/Vs1lwWq0e/cN0VA9z64DHAHexPpy1iqRxve8mFLc6ZSzvpqzQvr9nRz6HhmXnrHk1j8Lsmi8tPyBSG4xlY3bFg3eXbvS/vPsH9B8YRhKs26nKnWVr8rsf52r68XvedjRFPW/RGA1w22Mt1VwzU3O/UaPJUHPwppV7p/d+9dNlpHMUxYyhQSvH4iSlevLmPtV0RuiMBeqMBDsbSrIq6Fr+M5ZCxHF64sZd9Z91Vlxbayat1s80zUymCJjx8NE48naMnEmRbfwdnpqx5v1vLM/s9Tq7dBwFLjd/1WCsLmUBZatpJX+Xycv+BUV9q3a/4WZOl5Wc6beEoRc6yGYpZdekulXN42dY1hfrar22Pxp/4WY9Qve3L69W2HU5PpEAglszSETS59cEkN16zlQ+8dnurH0HjI6rG/ImIAexRSl2xRPlpGMWWte5okEzOJhwQjozMsLbLbewuG+ylvyvMvrNxEhmbrkiAyy/oIZG2OD2Z4sJVHXV38uazEIRN4YFDo1i2wnYUE4kspyeTXLu9/k1Al1OcXHFFuH8oRixl0RMJFLbk8NvzNAI/63Eh1DqBstTcs3cY23bYPxQnkbboigRY3x0+T1937TnD7btPMhxPM9AT4Yadm7j+ysbuXLOctO5n/KrJcuVn85pOeqPBujqRtWpD4x+Woh5rNH7VY55KbV9er/uH4tjKIZmxSWZtEhmLF29apXXmQ1qtr6oxf97Glk+LyML3VGgxxTFjF/d3krEcUIpYKjvHJ/pdOzezrb+Ll25dzUX9Hew7G+eBQ6M4jiJn2xgi5Gybo6MJPviN2vZeqSWeb2LGzYftKIKmYDuur/bETLYhz5zHz3FyOzyXhq5wkMsGe9gx2LOiYyP9rMflwL6zMQ4NJ8jkbLrCJpmczaHhBPvOzpbFu/ac4ea7DxJP5VjXFSKeynHz3Qe5a8+ZhuZluWndr/hVk40uP7VoQ+MflqoeazR+1eN85PU6Gk8zMZPDsh0iAYNkVuvMj7SDvmrZ6mEQ2CcijwIz+USl1BublqsGUBwz1t8d4UWb+th3No4hBr3R4ByXlhuv2codu0/wsyMTrOoIsqYrRCRo8PiJKbat7eDoWJKQKaCoyQpYy6z88Ykkgz1hkjnX1TQcNFjVEeD4RLIhz5zH73Fy2sJxHr7U43IgnraIp7PEpyxytkPQNOiJBIinZ/V2++6TdIYDReXVKKQ3clZvOWrdx/hOk40uP7VoQ+MflqoeaxK+0+N85PWasR2yOZu47WA7CtMQosGs1pnPaAd91TL4+/Om56IJlMaMhQIm2/q7yg7adgz2srZog/bdR8cLbqJPnY7RFQpwOp4mlbMZTWRY3RHiy7tP8OkK20HUsmSvIERDAVZ3zf4JUlkLy2ncMy+HOLmFLn/cTgtyNAlf6nE5kMpaDMczBEyDoCHkbMVwPMOartn9g4fjadZ1heZ8rztsMuxtK9MolqPWfYzvNNno8lOLNjT+YanqsSbhOz3OR16vmaxNImsj3ir1AlpnPqQd9FXLPn8/FpH1wEtxV1D6uVLqXNNztkjmWziidJCw72yMHYPuYlAX93fyxMkpwqYwNZNlOpkjbTt0hUwMYGgqxXefTjEyneHyC3rPG2DkZ2lG4imePh0jkbGIBExevKmvcM5VG3vZfXQCESEcMMhYDomMzc5tq5v2zH5kITPU7bQgR7Pwqx7bgcVODIzPuAH2CFiOImQKIcNkvMhVe6AnQjyVK8zkAUxnbAZ6IuUuWTfLUet+xY+abHT5KdZGzlYo5S62eGxshgNDMV0ufcZS1WPNwI96LEe51Zzv238OQ8A0BEOEoOeRNr6IcCHN0tMO+pp38Ccivwv8GfBD3ImGz4nIXyilvtTszC2WSsGzB4ZifPbeQ4wlMmQsm8PD08RSOXKWTcpSjE2nmU7nSOccsrZCcDANyNiKtGWRsxwCASHuxQ6WDjCuu2KAT3x3H/uH4oQDBmFTSGVtHj81xT//+DDJrGJ4OoOjFOmsTcayCQdMtq7t5J07Nzflmf3KQmaoV4KLqJ/12EoaMTHgOIpQ0CBgCKbhxulajsJxZlcVv2HnJm6++yDgzuRNZ2xmMhbve9VFDX+m5aZ1v+JXTTay/OS1AZCzLUxDMA2wbbXsJuBWAktZjzUav+qxmEqrOUcCBuFA9TZI0/60g75qcfv8MHCVUmocQETWAA8BvhFSKXfsPsGxsRm6IwF6IkEylkMya/HYiUnW9USIJbM4ShCEjqAwnVGIgIkiazk4gAkkMnbFAcaxsRlytsJ2bDrDJpvWdJBI57j1weP82gsuYMdgDx1Bk0PDCTaujhb2a9EN5FwWMkO9UBdRn7Ls9LgU3LN3GMdxODA0u7XK+p6FrUa4aU0nI7EUOcfdFiYcMIgGhXW9s1bovL9+8Spe73vVRX6Ik9HUz4rXZF4brgVCCBiCIQadETeupRadrQCXfd/g83rM93qsNJEdCpqEDKnaBmkdtT/toK9aBn+ngemi99PAqeZkZ2l48lSMrrBZ2Ng9EjRBgWm47pcKoSNs0hUKcGoyiQA5G2zHwVbuVFLGVpiexbZ4gJGfsUnnbFZ3BHAUhTi+rO2QtWYHjFv7u1jdFa57ee2VQq0z1CtkEYxlp8elYP9QjJPjSSJBk+5wgHTO5tlz0yRzds3XyM/WdUeCXFA0W3fDzrkLy11/5Qa/dJI0jWHFazKvDRFhVYdJznbbuxds6K1pAm4luOz7DR/XY77XY6WJ7I19Uc7G0hXbIK0j/9BqfVXd6sHjDPCIiHxSRD4BPAwcEZEPisgHm5u95qBQSEla1nYIme5KoJes62Ljqg6Cphu4LriO47bKf99dsGU6lWMskZ4zwMjP2HRHg2RtCJgGAQMmk1lmsu5egsUsQ8tUy7juioHCNh6OUnO29FhG1K1HEfmSiIyIyN6itNUicp+IHPb+X1X02UdF5IiIHBSR1zXtiZaAWMpCRIgEzTn/x1JWzde4/soN3PT6S+mJBhlJZOmJBrnp9Zf6tYOkaRx1aXI56TGvja5IgETGIRQ0eMVFa9i+vqemCbhiS4chUjjO7+uq0SwA3+txQ1+U6fTctmk6bfELF62t2gZpHWlqpRbL33PeK893vf+7G5+dpeGqjX08cnQCihZbQYRVnUFMEU6MJ7GVIpW1UI6i3AKcCkUsbXH//hEuu6CHj1x3KTA7Y/PCC3v56ZFxAEImJDIWSsGlA3N/tmVomWoZK2QRjMXo8TbgH4H/V5R2E7BLKXWziNzkvf9TEbkMeDtwOXABcL+IbFdK1W4qq5NmuK30RAKMxNNMzmSwHEXAECzb4VwsxS/9zY9q3mS1ntm65eaGs9yepwHUq8nbaCM9HhiK8eXdJ3jy1BSCcNXGXt65czM7BnsLf/P9QzFiKYueSOC8xc6uv3ID2/q7CpaH7kigMAE33yqiZ6ZSBE14+OisW/a2/g7OTNU+OVPvM+uyvOzwrR7z5XHf2RinJ1NcOtBFNGRyYGiayWSOKwa7GZtOs2l1Bzu3rTmvvJbqyBTXdDGdcbOly7d/aXRdVctqn8tu2dx37dzMoeFpTk2kSFs2kYDJht4I0ZDJuZi7CIwhQibnxvflQ2ml6Nh2wLYdsoAhs3bEvOthX0eIdd1hzsTSTKccejoC/N4vbuXZczPEUrklWZ59JTZsy30RjMXoUSn1oIhsKUl+E3Ctd3w78ADwp17615RSGeCYiBzBXT1td733r4Vmua0MdIc5cDYOCCKQylgkcg494cCcTVaBhlrylpsbTjOfx6/1Vb2abCc9HhiK8Zl7DnJyPElX2CSZtbnrmXPsOjjCVRf2kbUVXWGTk+NJRIR4MkdH0OTWB5Nz/vb1TsCFTWH30Qm6I4GCW/YjRycXtfp1Lc+8nLSpcfGrHovLY35NiKdPTZG2HQa6I1w22MXB4QQKeNm2VWXLa7GODOD0VArbVmxeHW1q+fZr3e0XmlFX1WL58zXlCuXR0QTjiSxZ27XpZS2b8WSWLitAR8h0rXqpHFbJAkrFb8MBg2gowJa1nWxc3VEIaL/uioE5jegl/Z0kMjZb13ZyzfZ1XLOdJbFM6YZNUyMDSqkhAKXUkIis89I34LrL5DntpZ2HiNwI3AiwadOmcqfUTLNWbFW4sb1dkQDhgMG+szFEQcZ2ODaeJBxw9ydr9Cary20F2mY9T37wMTGTJWs5HB6eZs/pKT5y3aW+/J0WQUv0eM/eYSZmshgGnI2lmUrlUEqRyMCDh0fp6wixqiNEJOjGyqdzNuemM1w22HPe376eCTg3lKLkOZjb5jaa5aZNTVNYMj2Wlset/V2cmEjSC1x76Tp2Hx3HMCCesrhv/wjb+rtY3z130bJiHU0mcwREEAPwXEDz92lk+dZ1d/NpRl21rAd/5QZAn733EM+NTBMJBdgQNjk9mUYJdIdMxmay9EYCBE2DNZ0hEplqsXiKVM7m4nWdc+L2dgz2ckFvxBWC7dATCfL8C3sJmib37B3mA6/dviSC0A2bZpGU9sWgQl9MKXUrcCvA1Vdfvaj+2pmpFAED9g/FSaQtuiIBtq3tIJFZnPtX1la8ZOsqjo4lSaQtMpaDaQqOcvfrs2yHdE6RHp9Z1H0A7tpzprCK10zGYlXEZGg6W1id7fkX9LBhdeei79MKmrWi7pd3n3AnzCIBuiMBMpbDyfEkX959gk//xpWLuvYyoal6PDOVIpbMegtI5LBtd4VrBaSyDpad4VwsTTRkEjAMOkIm4YBB99bVDYlZL9VnVyTAjsFusnbzhn9nplKcmZjhmbPxZaHNRqOtOVVpuB7L1a1Zy0F5lx2Np4mnLUzDNVicGJvh4FCcZ87GCusaPHlqCgfFaCJDLJWjJxpgoDOM7e272Yw1JnTdXR8L0Vcz6qpa9vl7hVLqZ/OltSPlBkBPJjJMpSy290Q4M5XCEEhkchxJ5lBALOm6ZObFUomcrYgE4cjIDNFAkqSl+NA3n2ZDX5Th6QzXbO9nYibDkZEZnjg5RXc4QG9HcM41mlm5rpBtD1YcTdDjsIgMerOag8CIl34a2Fh03oXA2TrvMYdq5T5kCo8cnaArEqArbJLJ2fz82CQvq8P9q/g+JyeSrO8Os3PbGgBOTsyQtdxFnkSEgCnufpvBcm167dy15wx/8f0D2N5G17FUjrHE7OeWbfPwsUleLou7T6V7Fy8dXUsM40Jp1oq6T56awjTw9l51G7fOkMmTp6YWm+Wm02BNLokeSzUYNoVUzkEAy/EGfopCvLttK2wgZztYtoNSioxlcGJshq39XYsue/lyldcncF45azRDk0kePjYJuL32WrS5UgZEfrbm+FWPJyeSPHlykrVdYS5e14lSFIwIu4+OM53JIQiW5ZCzFdGgwjSEmYzFh77xNKen0qSyOUxDWNcdcT1dwgEChlFY2b4Za0z4ue5uFQvVVz111XzUstrn52pMazvOTKXo9lbXHEukefjoOMfGEmQsm1gqRyJjEU/nyNqzUzYOEEtbzGSqx+0KsKEvwnAsxaMnJukIGgXr4unJFM+cmuShI+McH5vh7FSKPWemeOi5Mf7Ht/dwYChWsErGUrk5bpkHhmINefZKq0XpxWV8T6P1eCdwg3d8A7PB8XcCbxeRsIhsBS4BHl3EfQDmLfcCpC2bc7E0R0dnOBdLk7bsstOsC7nPYE+YJ09NcWw0gaMUneEAtuM2nkop0jkH23HYtLpj3uvect8hPvTNp7nlvkPn6fULDxwllbExDSEcNOe4jufd2BSw53R1nc93n1Lu2nOGm+8+SDyVmxPDeNeeM1W/t1CataJuJmdzdirFVDLHTMZiKpnj7FSKzAK24mghjdRk0/VYToNnY2lspbBsx41nLxr4AeRbEttROA6eV0uAQ8MJOkLCzXcfdPfAtGwOnovz0W/v5Z9/fLjmPLVipeY9p2MFPdaizWa32e1E3poDFPpQeWuOD/ClHtd3hwkaBrFUjp8eHuPBQ2METKE3EiCeypHKOaSzFomMje04jCWyTKVyxFMWB4enSecseiJBbAfOTqUJGTA6nWU6bbGtv6Oqphba3hTj87q7JSxUXwutq2qhouVPRHYCLwf6S5bH7cHd47zt2dAX5fhYgn1n45ycSHoLsygCpjAUS5PJ2YU9+GBujMF8ziahgEEq55B1FAPdEVI5p7C07qUDXfz40Ci2AwED0jkbpSAg8PiJSVI5h46gUbNbZj2zjdddMcCtDx4DWJLFZTTNpRF6FJGv4gavrxWR08AngJuBb4jI7wAngbcCKKX2icg3gP24fb/3NmJlwXLW+MmZDJ+4cz+bVnfwxIkJHMdVn/KquqAhjCQyi7rPlrVdAAzFM4SCJpvXdLJxVYSzsQwzGYvOcIDnb+jhBRtXVbzmgaEYn733kDfDaXN4eJq9Z2L8xosu4NDwDGemUhweSdARNAiY5w9XixeOmqnSMNYar1tcLzz03BjZnMVUMkvWdl1ZuyOBhscw7hjs5TU7+s+z8izWGmCIkLYcgqaBKYKtFDnbmbOYVruxWE22So95bWQtm0eOue7VQVPoiwbJ2Q5T6cou1rYDFgrDUaQtm4HeCLueHSOVzTGRtHCKGs6/+8FhLlzVUVP5a8VKzTM5e05HCqprcyWFUjx5aqrMXsiqra05ftXjHbtPcHQ0QdZ2CJjugmTDKYtgQHjtZe5A7cjIDGcm3f2ls87c3mna68RajsKycwggBkymcqzpCtMZMnnouYmKdfVi14fwY93dahaqr4XWVbVQze0zBHR55xQvkRsH3lL3HZeQ7QOdfO3nJ5mcyWIIgCLnxRCs7jTPs4zVGl3QGRQuXN2BeIV7TWeIeDpX+HzTmk4sZ4SOkLsJZ8AQOkImgjA+k6U3GuTRYxO8ese6Odct55ZZqcP5oddVjx1cIdseLAqfufAsWo9KqXdU+OjVFc7/FPCpBeRxXkrdkccSaZ49N43twMu2rmYmY5PM2mxZ20FHyK2e3BnLhcX8lXN73rSmk2DA5LNvfUGhwbtiw6o5kyPVLA137D7BsbEZuiMBeiJBMpbDwXNx/ubeaa69dIDB3ohbIWcsggGDoDnXsSL/zqF8wEieWjqZpW4jw7E0toJwQNxtLBzFWML9rJEcGIpx/4FRLhvs4WVbVzOdtrj/wCjb+rsWpR3bUUSDJo5SWI6DaQjRoInt1Fort4RFabJVeszH1T783DipnIOtFKa4Lp290RBBg8KkaOmvbxrgKDAEIgGTqZkcQ7Ek8bR93rkZW/E39x6suWy0YqVmxVz3p2raXEmhFIKc9/fM72/cxvhOjweGYvzkyDh9UXeV24zlkLEc+jqDhAMGa7tmy9uJ8QQz2eqdfcOL07UdEFF0h4O8eMvqQhtXrq5e7KSGT+vullKPvhZSV9VCxcGfUurHwI9F5Dal1AkR6VRKLX41hCXk0PAMPZEAsWTOjesxoCPoLu4w6cX41UPKUozEM6ztDpFIW8RTFgjsOjCMAMmcje0oeqNBHAUh0yBnOySyFraj2H82RipncXJ8hnPxTGFfo/U94YKFIk+5DuexsRnu2H2CT80TTLvctz1YDH5bDXU56BFca/yx0QTnpjMk0haxVJagIazrjWKIO0mSsRxG4mk2r+l09+BU7j59C71PaczQyfEZhuKZQmzua3b0Fyx2+ckRgFvuO1RI6wgJu54dYzieZmQ6Q0/YIGPZhdiGZMaas5Lahr4Ix8eTTCSy51n/iuubzlDliehaOpmlQfb5EGXbUYRMA0Pc43SDB3/Nsn5EQibre8Ikc07ht+0IGgQC7etk4ldNhkzhnr3nSGRci180aGArAwch621zZIiiXN9NKbfDIUA8bfGKi3p5bjRRsS09F8vUvPDDUk3G5e9j4HagSjtRlbTZrHjXduSqjb08cHAUy8l4kwPupNK1l/a3OmsV8aMe79k7zCpvLQgRKViCJmeyOI7im4+fYiZjkbMcHKWYZykKvOYSgKyC7QNd89bVi53UaLe62w+T+gvVV6dnSCr981frR8xHLT2qC0TkbtwZlU0i8gLg95VSf1j3XZcId4bTcPct8lw8LdvxAtqlMMNZTk8GbnrQFGxHkV90THAbwKlUjkQmR85xz1nTEeT0RBJbwZquEGu7QgzF0oRMg5Rtkcy5gYXdEZN42iKdtXjk2AR9HSG6w6YbdzGV4lcun2t5ePJU7DzzsFKKJ08tXZyBH8S0UHzswuM7PRaXn2Q6x8PHJzBwY+2mvQ7ojsEeAPp7IgQMmEy5sQ1dkQCbV3ewtb9rnrvMpdTt+eT4DD89Mo7jODw7FCMSNNmyppM/f9Plc6xpxRMCT5+c4NETkwx0R1jXFeLMZJKRrE13xN3zzLIdEhmbjqIKePtANyfGk1gKrJK9YvLvggZcfkFPxbzn3dWrTQw9eWqKnG1zdDRN1laF+CzLgYQXryxAT7SxDXCzVmO9amMfDx4aI+ctJpKzHVII12zta1DOm4pvNHlgKMaRkURh8jNrK2aybulZ3xMkkbUxDajkTSTiWv4UYDkOHWETw/ASy5C2HO7dN8y7dsaq1qtLNRlXfJ91PWGGYpk5rlTVtLmSQilefvEavrdniJmsheOAYUBnKMDLL14z/5dbj2/0eGYqxY7Bbh5+bpxzRVb46VSWsQQsdLHb86zvls3uo+NV6+pa2ptqtFPd7ZdJ/YXq6/ILenj8xCS5ornc+foR81HLgi9/D7wOGAdQSj0NXFP3HZeQDX1RbEeRyTmeGdxt7CwHHKUIB8rH5pgCkaBBwHDPLxZgwPvFFJDzYvrW94SJpS0coCPkrrB0zfZ+eiPugCKZc+cWw0GDNZ4Zvycacq150SAzWYeeaJCrNvZxaHjuRJVCVdj/aGlM6ss1yL14MaA8PnHh8ZUeS8vPc2MzpLI2jmdCcPUnnJp0f/eL+ztxlLChL8qrd6zjssEeTNM4zx1zvgD1vNtzbzTIUCzNvrNxptNZ0pZD1nKYTls8cybG53bNLkpRPCFgiHB4dIaQaZKxHQxj1o0zmbXI2z9EwDRmFXpoeBrbs46YMmtREFyXzM6QwaqOIBdVGcxuH+jkiZNTxFI5ukLuxNATJ6fYPjC7rHM8meXMVJpU1say51r3imuGvgavlhgyhZ8fmySTs+esxhoqU48uhFdcvIZ4KsPETJbJZI6JmSzxVIZX+KOz6RtN3rH7BGenUmVbj3PxHKmMVVjspfScrpCBIULQNOgOB4gETPdvb1T/28dT2Tk6K8c9e4exbYf9Q3F2HRhh/1Ac23a4Z+/wgp5vPoo1vrozTCTgegSZwrzaLK1TeqPBtutUNoq7nh4inbMQXFdCAdI5i7ueHmp11mrBN3rc0BclmbFBBIW7QrTtQNqi0I4spmZ94NAYsWS2al1dS3tTjXaqu0vb8Pxxo+uRxbJQfV3U38WqjiCdIaPmfsR81ORLpZQ6JXODN32xjM91Vwzw3SdPI4bQGTBI5+zCBKXluIOyoCmETSFTNMKzlftZOdHlR975z7rCAfo6QoxOZ8laNl3hAMmsxdquCNdcupanT8WZTGYB1y+6ryPExes6eeLEFCLMWdraUeq8wcdVG/t45OgEiBAOGGQs19pQz9L39eBjC1lV/OzC4yc9lpaf8Zks0aBJJGSycVUHyazFyfEkZ6ZS7p57AZNNazq4oDfCUCxdNla11tm9Yrfnq/78B9g2KOWgEAQHx4Hdz00Uzi91f0lkLDqCRiFuLhwwC6shZi03tmFNZ8jdIiblbhFzciJZ6DSXztq+4MI+V79pq+rUzaHhGbat7eDw6AxDsTSdYZNL+js5NDzD9d45yayDrdzJJwOZszVNZ8jAUe52NPP6CS2Qchtvl9uge6Hc9fSQ50VhoJTrmZFz3PRGb1fRDPyiySdPxarGgeYcCFYonemcW+YjAQPDMOiJBrAdQKqXsVDA4NHjk1XP2Xc2xumJFOGgUeioHhpOuB4zDaRY4woIhwJ0e949F67qmFebKyWU4mdHx7GdWSuvKFDipvsBv+jxuisG+MDXzhEJmqzrDhdi/sZmsoBbr9bquJ8fSBR7qTmOYjieIWgKpmGUratraW+q0U51t1/icheqLwV0R0IM9gVmxwHz1FXzUcvg75SIvBxQIhIC3g8cWMQ9l4wdg71csr6bs5MphqczhAOmZ5r2BOV1kPIzf6WdtWo/rAChgGAawtmpdEF0BfEm0oQDgcJqTaUDjVDgfKNrucHHu3ZuZiiWZmLGXbI3FDDYtKaDd+3cXN+PskD8IqaF4mMXHl/psVz5CZhS6IB2hAIM9ISZSOYKg71f2LaqEGd3sifC9oHO8wLUHcfhwFB8jptKtQmJRGa2osyHWtu4uszHAIZM4cTYTCEe0XEUE8ksSglPnZpEee4Z4aBJf0+4cN+ucIDeaJAzU6nCQhn5Gdt8w62Ag8MJOsMmz7+gp+rm1fvOxjg0nCCeznkruNkcGlYEi2Ioco5D0KtCnJIB3kzWwQDWdAbINdhBIGMrXrZtFUdHk4Xf/rILuudMntXDoycmCZmGt2gABAzBEOHRE9UHDW2CbzSpUGTtyt1JBWQrfGwpt5OStWw6QgarO8Ns6+/gzqfTRINCqkxhCxjuKoSpbHW34HjaIp7OMj1lkbXd/Te7IwHi6cZarosn/ZSC1dEAw9MZLAdGE5l5tblSmMnYBctTPgTGVsy7BVab4Bs97hjsZeOaKLFkjumMhSlCsMgyt5CSmP8bgas724G+DtcCdi6e4aL+rrJ1dS3tTTXaqe4uXVOgKxJgfXd4wWEjzWagsDxWAAAgAElEQVSh+sraiovXdfLM2TgzGbumfsR81DL4+wPgfwMbcDe2/AHQdr7TlbhssJcNfR30RoM8fHScA2emSOQcHOUO+JTyVjbzZtEDhrgxNFV+07w013SGmM7YrvUwYJDMOdiOor8rxN4zcbb1dxUGE6UDjdWdIQyRgsWg0uBjx2AvH7nu0pbF3PnZQlYNH6+G6is9lpaf9T0RTk4kiQQNb6No15L2K5cN8OnfuJK79pzh49/dRyrr7mU0Ek/z8e9OAxRmEfcPxTh0btrbm08xkchyLpaqaiUQUXOmPB2vg+sA+87EODw8jWU7DMVSGGLgKIesZZOxwUQRCQoZpbAs2NYf5TU7BgqafefOzYVy8x9PnC5U6qUEDDfmeN/Zaa7ZvrZiXo+PJhiezqC8WcEsilQuQ+fo7G7xkaCJbbv5KzXu5S1/UymbngbLdENflKdPTXJqMslMxiIWzhENGlW3yKiFdM4mk511f7Jst3IOq/Zd8KUI32jyqo19DMXSi7iCImPDSDxLzpkmGjQIGsJ0RlEu9C/fCY1Gqv8dU1mL4XiGgOleL2u7Fos1XeFF5PV8iif9BOUN/BSRgFGTNlcKyqtUit3WVVF6m+MbPYLbR42lcmQtmydOThEuMgzU+2tbjmsFNA134jNjOZyaTJatq2tpb6rRTnX39oFOvv7zk1i2wlEORtzg5PgMr2vifqH1sFB9hUxh31m3j1JrP2I+ahn8vUQp9VvFCSLyB8A/1XtTETkOTONOvltKqatFZDXwdWALcBz4TaVU3VMHB4Zi3LH7BA89N854Msv67ogX8+M2UkFDyDluLy1iQtYROoIGpiFkrPkXLwiYwos3r2bPmSmSWZt0ThH1puInkzlyjjPHDa10oPGR6y4FqGnw0UpXEx9byObFpy48DddjMyktPxf1dzI6naY3Gipryb7lvsPEUzmCpkHINLGVIp7Kcct9hwuDv6GpNJMzOaIhk1DAwHYUkzM5hqYqd2r7uyMMTaVRAiDk180KGm6+MpbDqYkkOdtxF0lxjMIsqoO7wq8pQm9IiKWsii6p+f0/yxlPXHcNxVQmy1QyWzGvZ2NpnJJZQUe56Xku7I3wVCKLgTuJlV9bxotExLXxKEpcnxZNR0h49PgEIdOkI2iQzNg8enyCnRctzg09YAgJBVJo/Nyo5s554snaBN9o8l07N3NkJDGvG2YlihccmErmePT4BGFTEM97pnQlehGDgKG4eF031RifydIRMr1l6hVBUwiZJuMzlXVSD8X7VD43miBjKTrDJp3hQE3aXCmEAgbpnDNn8CGU91hqQ3yjR5htI4+OJgh7Vr/SUKS6UDCeyCECIUMq1tW1tDfVaKe6+6Ej45iGuBOijtufNw3hoSPjbRU+sFB9TSXdeikcNGvuR8xHLYO/j4tIRin1QwAR+QjwyyxeSL+slBoren8TsEspdbOI3OS9/9N6LpzfG+/Zc3FyloOyFUfHEnM2dLdQsx0nx+0u5RyHdM5dGMbwZkHKdeIMYOOqKFv7uzgyOkPQNOgIua5flu0wHM8wmbT48u4TvMuzClQaaLT74MPHFrLlSrP02BTKbQr+nlduIZlVZS3ZpyZTBAx32WOAgAhKCScnkoUtGE5NJsnaFqkZq7DnWMAQEplcxXxcu72fHxwYJpmxsRzX2mgIrOoIFZbYztgOgrBlrRvo/viJicKMnHj/2EpwHMVn3/qCsvcZ7I1wdCx5XrqB67oRCRqs6QxyfLyy23TGq6iKVyEsTgfXRSQScGOViq0tCnermYAhDHSH3QmuBrLr2TE6ggaxlEU87Q2Ioya7nh3j93/pkrqvW7yQVrn0Nsc3mtwx2MsNL99c9+CvGMuBTsONjx/oDjOacGPbYbYTuaozxPZ1XfNahh1H/X/23jw+rrO+939/z5lVGu2yZVleszjYMVkgCy40pE0IhnCh5UKhr0JDoYXe29KW30250N4WaEtvLgXSlpbStNCkpRu00IYtkISEsLiQhGyOHTuOlzi2LC+yRtus5zy/P86Z0Wg0MxpJM5oZ6ft+vealmUdn5jxn5nye9btgWZB1vKAXxoBte1qrJfuH43zpxydJZbzln6Dl5TecTju0hwPzanO1cMGaGIfPTOZ9nG0LArbFBU1mPleGltEjzIyx/ufnf8x40ktL1hYKkE5Un44sl7akEBewfFPMjGsIOKZkW11Nf1OJ5Wi7q404/9jxOH3tIaKhmalNIp1d1uj41bBQfR09l2B9d4SptJdmqppxxHxUM/l7PfBVEfltYDfwIr+s1rwBuN5/fhfwIIuc/N2zd4Tjo9NMpxxCAYtw0CqZHNPFT1hrDL3tAc5NFfoFld9yd4DT40ne96ptvsPuE9hBL/T1ybEkBhjoCPH0yfGmDDO7UFp0h2ylslx6rAmlkoI/c2pqQZpwjSHjwIMHTpPOukwls2R9s23wzB7TjiFTobN6267NnBpPcXYyRSrrcPTstOf7J/DcmUlCAQvXNbMid+acsSEX2h4yaZegXd68NFgm6mXIJh+ZK5nOkq4wqC234FtYPp7KcuGadsYSnknP2FTaMzcVz7TWcQ0TSYdNfbU1mzt8ZpJ4IkvAtgiLhWMM8USWw1WaCJUjmSn925UrbzJaRpM5PdaKeNL1QtMnHXraQjiuy0TKwXVduqJBbtqxjngiMydabzFrYmGePZ3CcQXXj3jouC6beqqLOFgthXlzLRGMBQYhZFts6GmbV5urhf95/QX8wVf2kXVnxkIByytvAVpGj4WEgzZrgjadkQDPDI8vyOSzXCuZNV6U6aBVvq2upr+pRL3b7v3DcT52zwFGp9Kksy7Pjkzw5AtjvH/3JXPGEMYP51bIckbHr5aF6sv4ASN72mf686W2VfNO/owxZ0Xk9cB9wKPAm8zSDb8N8C0RMcBfG2PuAAaMMcP+OYdFZG2pN4rIu4F3A2zatKnkh58YS3BuKkUoIARsz0yr0m3oAmenZpt6GkoHgckx6XvFFzrsHj47RShgsbYzTDRoM5ly8mFmdfKk1II66bFuLDRa7MbuCEdHE4jM+BBlHK+BHI4ncFxDYfq8aMj2Jn9ZZ47zc/Fq4Rtfsj6f1D3rGA6fmSIxMdtswrYMR85OztlRK1wMGktkeeWfPMBAZ4Rbdm3ihfPT3LXneeKJTFmH7aQDh05PELCEoG0v2a9ooDPCmYkZsxzLAsfJ5SE1Xv0xbOqprdNfMuNgDDiOIeNbTxjjlS+FcvP2GueorwutpMmcHmuNi2EymSHtuGSNd084/gSwGkuRzkggnzopJBZZY8i4XnktKcybGwvbxBNZHNfl7GQakcl5tbkSc96WImciV2ixccuuTU1lOleOVtJjjnv2jnDJQIwDI5Oksm5NLTaMC0nXrVlbXUy92+5/2HOMZ0cmSTsOjr9Ae24yzT/sOcYfv/GyWcfmcg6mx5P5Y0M16G9rzUL1lc+lOJ4k65qajCPKtqwiMsFMFG8DhIALgDeJiDHGLD67ILzcGHPSn+DdKyLPVPtGf6J4B8BVV11VUiFD3VHSWZdJx8FxhewihVRp5aPwXzmH3TOTKVIZl+G4F/1zbUdkRUTGVBpPnfVYN0pF+0xls9y7b7TkAOp9N23j9/5jL4mMS8bxGm+DZ+IoeIGVhEw+OpbjGkS8SWDAnrEzKZUO4r79Z/I7jjd98oGSC0LJrEH8SJ+FFJrEGGBtLMR4IsPvfHkvE0kvUX1xxPti64HJlIMlEA24S86BdMOL+vmz+w8Rsm2iQc/Tz+B9X2en0oQDFpcPddIWqe1AP7cglss/6kA+eNZSKGdiVK3pUSNoRU3m9Bgo8BNdKgIMdoZ49sxMP9cWFFIOcyL1lmM0kWF9V8Tzl3cMQdtibUeQ0UR5U+7FULgz0BkJcm4yg+tfw3gyW1GbrZJAulbcfNlQS0z2crSiHnOcGEvQFrYJWsKJsQRJP9VYLSTqmNq21cXUu+3ec/gck6ks4YBF2Pfxn0xl2VMiLcLLL+rjnr3Dnt+9a7AsIRpcen9bDxair5df1Mc9Tw2TyLp5V5eljiPKWuUaYzqMMZ0FfyPGmFju9aLP6H32Sf/vaeDLwDXAiIgMAvh/Ty/287cNtJNxXNJZMMtgwrF75wDHR6c5P5UhmfEGeGnHWwk9dnaq5SNjKo2nnnqsJ0PdUSaSM7vqZyeT/PDweYK2zBpA5ZK033zZEO955QX0tIcIBix62kNEAl4Ooel0lvPT6VkRstr9PJt97WE29rblz1Mq2ev5qRTvuusRXvknD3DwtOeXZ8nMI4fI7E43lwDaKnhtWRZd0SATCc/v0HXnDqaLW55Y2KYjEqAtHOT7h8rnyyrXNxeWT6cNV2/uoS1sM53xJn3RoNDTFuLKjd1cuCbG8Hg6H0CgVrRHgkRDVn5SbltCNGTRvsRJZrlWupmX61tRkzk91jJwRyhg8fz5FOGAeLtqfkCCTNbho19/Jq/tSghe/sCuaJCOiOc/HwlYc0y4lsqVG7uZTDkkMw7xRAbbEiw8c+35tNkqCaRXK62oxxxhW/jh4fNYlnBBfzshW2rW9uX6s3JtdTX9TSXq3XZPJLO4rpvv/6fT3uvCcUWOHxw6R8C28tcs4vnS/aBCf9sKfP/QOdrCXttY7ThiPubtAUTkZ0Wkq+B1t4j8zGJPKCLtItKRew7cBOwF7gZu8Q+7BfjPxZ7j4MgUPe0hoH6ZPXuiM5um2we7GOgMM9AZ9ldZhKGuCJFQgIMjk/P6OyhKtdRaj/Vm984B4okM8UQG1xj2nhgnnfVSNNy3f4T9w+Ocn0rxobv3cesXn+B3vvQkPzoyxk071vHOl2/lph3rELGYSDkkMg4ZZ8Z63xbY2tdGZyRI1jXcsmvGDPzEWIKOApOxZ0fGefTYeaZSWdbGQvlyY+amSugIB+mPhQn5raNjcrtdHp0FZnMza5uGSt21LXDR2g629sfoaw/y2PGxssd2hEs3y4XlJ8YSXLaxhze/dCPv+IktXLAmRjgQmJXDrVYrx4Vs6m3DFqEjEmSgM0xHJIgtwqaCifdqo5U0mVuoTBX54yxlihULB3BczwQ463h5br1deS8iaOHiTjm29EYZHvcsZ4KWeBY04ym29NZ24fTtuzazqc+7VydSWWwLOqIBLlk3vzaL2xRYGTlvVxqtpEfwdpQffyHO6Ykkp+IJTo5N1zTXpCVCb3uwbFtdTX/TSMIBi0TGIet6AcayriGRcWalxMix5/A5Uhk334d3hIOkMm7JXcJW4rHjY/S1B9naH6t6HDEf1fy6HzLG5FtuY8wY8KFFnxEGgO+JyBPAj4CvGWPuAW4DXiUizwKv8l8vin3DcSYSWSxZWqdmi/co/AwL6AzbvPbFg7OOTTuGmy5dx+suG2RLfzsunr/Cxr7oijQJURpGrfUIeOlXROQpEXlcRB7xy3pF5F4Redb/u+BkbrlIZl3RIMPxJOPJDLblrUJ2hAOMTad59Nh5hn1ztKdPjnPk7BQZx8mvrgdz23LGiwqY06RlwenJNJ3RIB94zSWzTCiKdxwffyGObVnEwgEsa3YeJc9PbqbOAVsQge72mUli1vVMZ2wglXF4/PgY+07ODGhFpGJaBdd4gWWOn59mOu1U3NF43eVDdAQl3zhbQEdQeN3ls6/v2Nkp9hw+x737RhgZT9IRtmkLeb7G4aDN1Vt7ap6w+tqtfWwbiJHKOpyZTJPKOmwbiHHt1uYzq1lGaq7Jeuoxmc76KU9mWOxdErCgryNMT1uQdNaQzM4szrh4/qeu6867O9bTHqI7GsS2hLTjYltCdzSYX8StFdsHu3jTS4cIB20voJMxWCIMx5PzarO4TYGVkfN2BdIyesyZEqcyLpt6omQcw8l4qna7fnh927mpTNm2upr+ppF0t4UIBW0s8YIqWgKhoE1329y2YTyZJWBLvg/PPR8vsUvYSgjCdNrh+PnpqscR81GNN3WpCeKivbCNMYeBOXHSjTHngBsW+7mFxBNZMo6L8W1jFzv+sUWIhuy8g2XAFjb0tNEfC/M2Py9Zjlwy6/5YhP5YxK9Hpi7O9cqqpqZ6LKIu6VcKo8X+3F/v4YXRKZ47M+nt4hnjJYL2B2EZxxAL2xw6PZXXkWUJtuAP2LzjLKC/M8wDt/5UyXPu3jnArV94gqPnprxIoI63MzGRyMxJcl3smTA2ncZxZwe+zjiFz11CtpAqsPOsZpIVsr0djfHpTEVH7bfv2sxwPJmPbhYKWPS2h/K5EGFuMttExmUqBT91yRouHvAsnOrR/mwbaOczD47nc1BlHIe9J8Z55yu21vQ8LUa9NFkXPR44PUnAmpuTbzFkXdjS2wau46d6mE0y4/LUC2MEA5UTPqccQ18syL6Tk2SNISDCjvWxpec6K2L/cJxPP/AcR85N5TWdSWToaw/Oq83iNiVkC1v62vn4z5VO+6I0jJbRY86UuDcWYiSeYCKVpZaeSgbywWMmU6Xb6mr6m0ayvjvCZDJDMuPiGG/3LxK0WN8dmXNsLGxzbjJNMjMTHMYSoS9W20Wk5WZLX5SHDp718/xVN46Yj2p2/h4RkU+KyIUicoGI3I4XQalp6Yx4Zii5oBALISDe6r4lYAeEDT1Rrt7Sw2B3lCs39XD9JWu59dXb5uzmFZu35Z6ryadSY5ZTj2/AS7uC/3fJpjPTyQynxlNMprx8NWnHMJ0xjE4muXffCGOJNIl0lvHkTKAHEaEzGqC7Lej7+AUZ7I4QDZbvzx86eJpDZ6c8UxG/zMUzAy/V6FkF5dNpl2TWUG6xMOtC1gihgEWwQgtauCZn8BJZJzNZ2kKlVy1zFO5OTGe8Xbw3vXRoVpuTS2brdW4WUd8E5rnTU3Vtfz52zzNzBuQpx/Cxe6qO2VWStmDpFcxy5U3GcmmyJnqcSmVrMvHL8fjx85yezJYdTBwbTTCdrBy45dTYNHtPTGBZ0Ba0sCzYe2KCU2Nzc2YuhY9+dR/7T03MMnt1DZydzMyrzeI2JesaDp2d4qGDiw5PoNSHltFjzpQ4KPDC+cSsRcZ6UKqtrqa/qUS92+4dg11csbGbLf3trOkIs6W/nSs2drOjRP12rOskkXHyffh02iWRcdixrqldPueluy1EW8gmmclWPY6Yj2omf+8F0sC/Al8EksCvLfqMy8Cl67uIhmy8GHjzm362h2wuXtvOlt4olw51sbYrwta+NtZ1RjAIQ91Rbn/L5fztLVfzvlfNnfjBXPO2rmhwxUYBUxpKvfSYS7/yqJ9OBYrSrwBl06+IyCMi8siZM5VziJ0YS+CaubpMZb1Vu1gowPB4iqzj5icx3dEgyYzD8FiSs5NphseSvHB+Glvg1i8+we33HpzjU3TXnueJBmz6Y2H6OsKzzlXYv9oC127t5eqtvUT8zkqkcoJaA1yxsZtL13fN8RcsPq6QWDhAezhAWzjA6YlU2fcVJqKOBi1SGYcv/fjkrGvMJbPd0t/OhWtjXLyukw3dEc5Np+va/hwbTS6ovFqyZQY95cqbjHposm56rHXQ++FxL7psNDQjmkK92Zbw/PnKfnEHRrzcY5msYSrtkvF31XPlteLhY2N5i6BCDMyrzeI2pT8WJhqwuWvP8zWto7JkWkaPOVPiA6cnahzaqDzFbXU1/U0l6t127945gGVZbB/s5MbtA2wf7MSyrJILm+PJDI4704eLeL7H4/MsPjU7pydStPnjh2rHEfNRTZ6/Kbzt7JZh984B7n78BIn0NIEi86xSdEZsBKEtHGTn+k5OxpNs7munIxJgIpklXmW4aU2GrtSbOuqxrulXckymHAQI+A65WT+AiwEOn5nCtoSgJcSnM9z9xEkGOiP0tgU4cm7mY11gOmOYSKbKhlyPJzJEAkI8kclbAZTCMbn8exaJjGcaGhDxA0XN33nlmhYLMFLkO2jN5DoSvIAvubpV8kEoTETdGQmSyrocOTvF5/cc46N+XqNSyWzbQgECAZuPv7n1zNDKNdG1SkdQT+qkybrpMVmH9BkbetsIT1gcOzudj7SX08KGnggTqco+N/FEZtaijAtgqLrvrZaMHxCp1Lh0a3+sojaL2xTbEsL+a6V5aCU97t45wB0PHWF8OksoIDiZ5U9HXk1/U4l6t93bB7u4cfuaOTnxSo21nxmZJBoQsq5n5RMQCNheeSsznswSCdoMdM6Yus43jpiPsuvbIvIX/t+viMjdxY9Fn3EZ2D7Yxa2v3kYs4jmhz3cPJjIulgif+LnL6O+IsLmvXcM5K01FvfVY7/QrOSxLPFNJ8YItFDKe9EwVE77pyesvX8+OwU4ee2Hcey/eSl6OF8ZSZTXaFrQZT2Qxxtt5KCQWtgkUFE2mskymsvlJaDAgRAOV12Fd15016AvYMhOYpoDCtBTGGD9JuqErWn7drTARtYjkE1I/dnxmJbYwZH3ucydTDldu7K5Y72alXKycCjF0Gk49NblceqwVt+zaRNYxBG3xJn3+7tpQd5hQIDBr0FIK128LLPzUK0XltSIgXkzeUn5V82mzuE0xBsYTWdqClf0ZleWhFfWYsxizA9asSNbLSTX9TSXq3XbvH45z3/4z7BjszI8J7tt/puTOZCKdxWGmDw8GvIXcRLq1A750RQOzxg/VjCPmo9I7fxH4deDji/70BpKL/PfBL3lJmCuJajrt0N0eZPtgF5/93tE5Sak1nLPSBNRNj37KFcsYM1GQfuUPmEm/chtLTL+SY2NPlKPnpghagi0Wk77zkQX0x8LEExnSWdfPl+lN7HIDtYCfsy7XSRZuYBRr9JK1MfYcHSXrugSKeiHXNbN27HrbQmQcw1TamWkn5um5Tk+mGeiMELIg7ZYJ+FKQHiJoe6HlOyNBtvS1saU/VvazS+3qiV+eo9BJP5e3bVNfW9M46S+YcptRzZvjHeqkyeXUY63I9be33/ssR85NE7KFdR1hwqEAU6ks7/3pCyu+37a8EO4uIAW6KV64WSrtYYt0Yq7DoyUQCdoVtVncpmSNV99L1pbXsrKstKQetw928VPb+nno4FkytXTGrZJq+puK1LntLsyvCeT/3rN3ZM7uX1vIiyDuhfr3THFc19C2xDy0jWbHYBdtQZtT4ynGk5mqxhHzUWny9xyAMeY7i/70BnPzZUN8/9A5/uPxEyQybklfh5Dt5azKDTBzUTsLo+RpOGelCainHgeAL/upCgLAPxlj7hGRh4EviMi7gOeBNy/1RO971cX83n8+TSLtkHZmOjrbgtGplBeVU7xdwG/tO0VniUbbb9NndVfFGl3X08a1GJ46MU4y6+UOC1qGtCuk/bQNQRvCAZuMawgHLcIBSGf9XYEKOw4W8J3f9qKM/synvsvjJ8ZLHufi+x0A3W1hbtw+kDcjrxSI5cqN3d5AYDyZjzQctO1Zkb22D3bx/t2XcM/eEU6MJRjqjrJ750Ddzc439kQ4fn6uf9/Gnso7O/NSLilhE+/8UT9N1lWPlpTe+Vosud/+5suGuGBNjD+/71kePnae0USWTZG5aVhK0REJYiXTpBzyPnlhmzkJqZeKwYsUXDwuDViwfbCzojaL25RIwOKlmzpZ17N6c1w2GS2px/3DcbrbQoSDdn4xdDFYAFVou7itrqa/qUid2+4TfhqoQsptyFy4NsaTx8/P6sODtnBhiy/QeObB02wf7JzljraUgG6VJn9rROT/K/dPY8wnF33WZeTtuzZz6PQkjz0/hsHMskO28SIJdoRtOv3krTkbbGDWl/yWqzc0oPaKkqduelyO9Cs5coPAnP3+qXgC4xqCAQvXCOCQcSEk0BEOkMw4BIAsnn+gVeBX1xP1Uj+U0uhQd5RYOMDVW70O7OxkkgcPnCHrGHrbQxw5O0XAgi397bSFPO1nsi5TaYeutiBTqSyJTOmly9wOJHi+Q5EAOK7gGpP3JYoEhMs2dJPKeuahAgzHkwx1R3nL1RsqTtJeflEf9+8fIet6+X28HU6Hl180Oz9TQ3yMyw0sljiZsC3BKbF7WuudnxpTF03WW48X9bdx8EwNo2j6P1suZ9lAV5Sfv6Yjr8sL1sw/8Lp6cw/ffmYEyeXV9QexV29ecOq0eaoqdEUDZFzjpXMxM1HBu6LBitosblNA0zk1GS2nx5xmuqJBXrVjLf/x2MkF++TmWsigLWzpb2c47kUNLdd/FbfV1fY35ah3272QDZlrt/YRCVgcPD3JVCpLezjAtrUxLt9Y23ZkucmZBxcu9s43jpiPSpM/G4jR7GuvZdg/HM9/URetjTE2neJQQYdn4w3ihroj7FzfxVa/g6rHl6woNaCl9VjIzZcN5SeBN//5dzk+Ok00aGFbwuiUi5s1WDLTmazrjjI6mSDjek7kAQvWxEL81IsGyk6oihdxJpNZkhkX13U5MTYNGDIupLMu0aAh5ec3agvbXH/JAB2RAH/3vcNMpr0ONPelG2CgM5w/z3gqy4VrYowlsqSyLqmMg2BIOYbJlEMsEuCy3ja2ronxvldtq+r7OTgyxbVb+zg1kWIymSUWCbCuI8zBkSluXvzXXhNGJpJeGpyCu9AxXvlSCAesWTvBheVNTEtq8qqtfQyPJZgsCi4RC1mksiafF6xacr/9QsyzirliUxf37RuZCcTi7/5dsam2/e6mnihHz03THgp4g1bXMJ12uLivbV596sJw09NyeizUTFc0yIVrYxw8NVGVBnMX2d0WJGDBpG/+n3FmAhvlsGUm53VxW73U/qbebfdCdLd75wDPj05z045YzXbImoVaL/ZWmvwNG2P+oGZnWkYKV1MGuyIcOztFImO47uJ+zk6kOHpumkDA4totPQx2t825OTRqp9KEtKweKzHYFWEqmSGRcX2/OaEtCIGAnZ88veLiPs5Npdkx2FW1iWPxIs7hM1NEAhb9HVHCAYvz02leOJ/g7EQKEc/885J1nbzxJes5ODLFibEEazsjpM8ncF1vR88WsG1h5/qZ8w50RhhPZNjgm35NpbI8PzpNV9Tihu1rF8Tp67UAACAASURBVNX5nBhLsLm/Pb8gBV7gi2bwOzYIAfF+Jxf86Kie18hSCNvCRJnyJqYlNZl2DDdfMcThs9OcGU9ybipNwBIcY4hakFlABLkA5H/7hZhnFfOVJ04RCtqEMLj5VAzCV544xXteefECrq4yv3r9BfzhV/eTdQwZx8ESi/awza9ef8G879WF4aan5fRYrJnLN3Rx5Mwkju//WkxbUEhmvajU0ZBNKGARCdoELcE1QjrjErKF9lCIs1Pp/PtcA7ZIybZ6qf1NvdvuhehONVo9lSZ/Td3rVqJ4BfLURIr2cIBExuWGHes4O5lk74lxnj+f4EWDXXpzKK1Ay+qxEpeu9x2Z/VXHUCBNyBIGuqK87ALP7CSeyLBjMFr1zlmOwkWc1/7Zd+mLhYj4kfl628NgDOcTWXYOdc+aUOZWO2/94hNcvDbNUyfHmUo5tIdtXry+c5Yf0i27NnHbNw4A0BG2PZ8Jgc5IMJ+qolxY6nIs1u+40NqhXj6A3dEgY9NpQgEr73uZzjp0L9X0zbJoDwoZBxxjsEUI2l55E9OSmszdX7t8fZ2ZSPL0yXEyjiEWCfD486MY4+XHykXALYUAYnn3xP7hOM+PTvP482P0xkJctKadNR2Rqv3lj5+fpj1kEQzMRM7MZB2On69tkvdis/OcPufzScyhC8NNTcvpsbitX9MRYagnyngiiy2eZYnjuFiW4BrYOdRF0BKeOjlOyLa8QGJJL+H3hu4IT50cR4BwcG7OzWDAKtlWLznOxTK03QvRnWq0OipN/mrq67OcnBhLELBg3/A4k8kspyeSrO0I5RM99sciXLctzHA8ueABpaI0iJbVYyVyjsw7fEfmY2eneOz4GOs6w2X9+RbDYvLiDXVHiYcDvKigIynuJIsHk7FwgIsGOtixvitvdnLf/jNcsCZWdYe0GPOyYmuHUrkPa8Ev/+QWPnnfIbKu60VlFLBsi1/+yS1L+tzOSIBs1iUWsfPmeKmMk/fFblJaUpPF91coYHPBmhjvvm4rAG/+zB7SGYdI0ItW5LjgOO6cvF0i3u//3y5fxx0PHWGwM0x8Os14IsOPj42xbSCGbVtVaTdoWzjGUDgsdYxXXmsKzc6VFUXL6bFUW7+hpw2rV9jY2zar/Y8GLUIBm65okM5okCdOxJlIZIkGLXrbgkymHIK218s5riFsC6mC9BFZ1y3ZVi/VnLlF2+5VT9mW1RgzupwVqSUhW3j4yHlSGYdY2MYW4YXRJHZB+HaN4Km0Eq2sx0rkzDS6okGG40m2ronxtpdtZHg8xd1PnGTf8Dg3bl+z5AnMlRu7OTeZ5ujZKZ47M8nRs1Ocm0xXzIu3e+cA8YSXe9A1Jv+82ITz5suG+MJ7dvGd3/4pbtw+wI71XUvKE1r8nXRFg/NO4gqtHeqZn/Q9r7yYX7hmA0HbIusPzn/hmg1LNs3bdUEf7f5gIe0HPGiPBPK7U81Iq2qy3P0F3n3kDdo8M1BjoD1oEQ3ZXLI2xhUbO/MDTEtg5/pOOiJhuqJBtvTHuGpLDwFLODWe5AeHz9EWrG7yds3mHt9n1sV1DamMSyrrck2NA74oK5dW1GOxFtNZh/VdESwLHj46ylefPMmPjozSFrR4+UV9+T7oooEObtqxjht3DHDjjgGCAZuYn6TdIFgi2LYQ8fPVetGtS7fVi+lvCmnFtlupvPPXsuQiz06ns5yZcJhOe8EeJpKZmu4mKIqydArNNHI7WDsGO7l2a++ids5K8fKL+rj/mdM4rsEYgyOAUDGiWbX+A4XmlvtOjnP5xk4o2MNYTJ7QhZquLMXfaiHsH45zftrhTS/dmF8lPj+dYf9wfEm/z9t2bebUeIqzkylSWYdwwKY/FuZtrZq3sMkpvr8Kd46v27aG7z17jslUlp62AJ3RECfGEmRdl8NnkvS2hejvCGGLMDqV5emTcbYPdgKeGXDWNWzujZJyXIIBu6od6PfeeDFnp9IcOzfNdMYhErDZMdjJe2+snb+fojQjOS0WarCvPcTh01MIwuUbOwkGbO7bf4Ybt6/h4MgUT5+MM57M0hUN8MypBMmMw5pYmIHOCOnsNFnXW0ixLC+o4XXb+gkHAmXb6qWYSmrb3ZqsyMlfyjFsG2jn4aNjuMbQEQnQ0yacn87wzKlxdqifn6I0JUuJGFiJgyNTvGxr76wkqes6549oNl+nWGxu+ezIBD88fJ5dFwr9MW8ythxWBsuVn7Rev8/2wS5uffW2Zc9bqHgURx28blt/3g9w5/pO4ok08UTWMwUFTsVT9LWH6GkLMp7MMpHM0hUNcujMVD7KX1c0VPX9sX2wi4+84VL9/ZVVS6EG9w2PE/N30w6fmc77vx8cmcpHtNzQ45mFnh5PMTyWJGhZ9LSH2NjbxpmJFFk3TXc0xPWXrMn3Rbnz1FJX2na3Jity8jfUHeXBAxNs6InmAzwkMw497WF2DHapn5+iNCn12sE6MZZgU187W/prG0GzeDJ06fpOfnh4lL0nxrluW3jZrAyWKwx9PXcY1VG/cRT/rms6Zvzi+zsiXDbUzYPPniFiWdiW5wd4birNqzav5dxUmnjC86efSGQI2kLaMewc8nYDq70/9PdXVjOFGpxMZomFvbFrLlZFTkfFfc7OoU7OTqQ4PZkiGrSwBNrDAcSC67fNnvjVwxoEVLutSFOHUlssu3cOcH46gzGeiVcy45DKuuxY39EU4dIVRSnNUHeUiaJQ87XYwarX554YS9BR4Ni+piPC1Vt7SDvuovwnFstS/TaqpV7fo9JYKv2uuVDwm3raELyJXShg0RkJEAkG2FFw7yEgIrx0c/ey7nwrSqtTqMFYJOD5wGZdOv3o0oV6LOxz+mMRrrukn55okLRryLqw64JefvqStUSCs/d3VItKjhW587d9sIufvKiPvSfHmUhl6YwE2TnUSdC2WduxxJDkiqLUjXrtYNXrc0uZW0aCAW7asW7ZLQyWY/VVE12vTCr9rvfsHSGeyHD5xi4ePTbmmXUaAyL5Y3L3Xu5zgrat/vWKsgAKNXhBfxsPHzmPAXas78gHeinUY2GfEw4EeP0VQ7P6nJxLAmhbrcxlRe78geeEesGaGNdu7eOarb0EbXvByZYVRVle6rWDVa/PrTYi6EphuXYYleWl0u+au8eDts2Vm7zf+Xwiy6XrO+f89np/KMriKNRO1oVrL+hl1wW9ZBxK6nG+Pke1qFRCjCmXwrX5ueqqq8wjjzxS9v/LkfRYWdmIyKPGmKsaXY9WYT5NrkS0nVk+VI8Lo1Z61HtcKYXqcWGoHpV6shA9tvTkT0TOAMfK/LsfOLuM1VkKrVLXVqkn1K6um40xa2rwOauCAk2uxntluWil+ta6rqrHBVChj2yle2gp6HXWF9XjAmjxMWuz1w+av471rl/VemzpyV8lROSRVlmRapW6tko9obXquhJppe+/leoKrVXfVqrramK1/C56nUqr0Oy/YbPXD5q/js1UvxXr86coiqIoiqIoiqLMoJM/RVEURVEURVGUVcBKnvzd0egKLIBWqWur1BNaq64rkVb6/luprtBa9W2luq4mVsvvoteptArN/hs2e/2g+evYNPVbsT5/iqIoiqIoiqIoygwreedPURRFURRFURRF8dHJn6IoiqIoiqIoyipgxU3+RGS3iBwQkUMi8oEmqM9GEXlARPaLyNMi8pt+ea+I3Csiz/p/ewre80G//gdE5NXLXF9bRB4Tka82eT27ReTfROQZ/7vd1ax1XW00mwYLEZHPichpEdlbUFb2vmkki2k7GljXiIj8SESe8Ov6kWat62qmmbVZS0rpfKVRrn1QWotm1aSIHBWRp0TkcRF5xC9rWHu+0L67EWO+MnX8sIic8L/Hx0XktY2sY44VNfkTERv4S+A1wA7g50VkR2NrRRb4X8aY7cDLgF/z6/QB4H5jzMXA/f5r/P+9FbgU2A182r+u5eI3gf0Fr5u1nn8G3GOMeRFwuV/nZq3rqqFJNVjInXj3QCEl75smYEFtR4NJAT9tjLkcuALYLSIvoznruippAW3WkjuZq/OVRrn2QWkRWkCTP2WMuaIgN10j2/M7qbLvbuCYr1QdAW73v8crjDFfb3AdgRU2+QOuAQ4ZYw4bY9LAvwBvaGSFjDHDxpgf+88n8CYpQ3697vIPuwv4Gf/5G4B/McakjDFHgEN411V3RGQDcDPwtwXFzVjPTuA64LMAxpi0MWasGeu6Cmk6DRZijHkIGC0qLnffNJRFtB0Nw3hM+i+D/sPQhHVdxTS1NmtJGZ2vKCq0D0rr0GqabFh7vsC+uyFjvgW2Ow0dl660yd8QcLzg9Qs0UWMoIluAK4EfAgPGmGHwGnFgrX9YI6/hT4H3A25BWTPW8wLgDPB34pmo/q2ItDdpXVcbrfhdl7tvmoYq246GIp7J+OPAaeBeY0zT1nWV0oraVKqgqH1QWodm1qQBviUij4rIu/2yZmvPW2XM9+si8qRvFpozTW1oHVfa5E9KlDVFLgsRiQH/DvyWMWa80qElyup+DSLyOuC0MebRat9Somy5vusA8BLgr4wxVwJTVDY/aNr7YgWi33WNWUDb0VCMMY4x5gpgA3CNiOxsdJ2UWag2VyCt0j4oJWlmTb7cGPMSPJPUXxOR6xpdoQXQTN/rXwEX4rlDDAOf8MsbWseVNvl7AdhY8HoDcLJBdckjIkG8xvkfjTFf8otHRGTQ//8g3mo5NO4aXg68XkSO4pke/LSIfL4J65k79wv+zgLAv+FNBpuxrquNVvyuy903DWeBbUdT4JtgP4jnx9DUdV1ltKI2lQqUaR+U1qFpNWmMOen/PQ18Gc8ksdna86Yf8xljRvyFURf4G2ZMOxtax5U2+XsYuFhEtopICM+Z8u5GVkhEBM83bb8x5pMF/7obuMV/fgvwnwXlbxWRsIhsBS4GflTvehpjPmiM2WCM2YL3vX3bGPO2ZqunX9dTwHERucQvugHY14x1XYU0nQaroNx901AW0XY0DBFZIyLd/vMocCPwDE1Y11VMK2pTKUOF9kFpHZpSkyLSLiIduefATcBemq89b/oxX25y6vOzeN8jNLqOxpgV9QBeCxwEngN+twnq8wq8rdwngcf9x2uBPrzoRM/6f3sL3vO7fv0PAK9pQJ2vB77qP2/KeuJtoT/if6//AfQ0a11X26PZNFhUt3/GM73I4K28vavSfdPgui647WhgXS8DHvPruhf4fb+86eq6mh/NrM0aX+ccnTe6TnW4xpLtQ6PrpY8F/45Np0m8uApP+I+nc/VqZHu+0L67EWO+MnX8B+ApX6d3A4ONrGPuIX4FFEVRFEVRFEVRlBXMSjP7VBRFURRFURRFUUqgkz9FURRFURRFUZRVgE7+FEVRFEVRFEVRVgE6+VMURVEURVEURVkF6ORPURRlgYjIO0RkfaPrUQkR+S0RaavVcYqiKIqitD46+asjImJE5BMFr28VkQ/7z39VRH5xnve/Q0T+osz/fqfo9e+KyNMi8qSIPC4i1/rlR0Wkv8T7f+D/XS8i/7bgi1OUFkA8atrOiYgNvANY1smff96F8FtANZO6ao9TlLrSbIsqIvI5ETktInuLyntF5F4Redb/21Pwvw+KyCEROSAiry4on6xjPa8SkT/3n18vIj9Rr3MpKxfVX/0Qka8X5MJtaF1AJ3/1JgW8sdTkyxjzGWPM3y/hs/OTPxHZBbwOeIkx5jK8BMvHK73ZGPMT/t+Txpg3LaEeitJUiMgWEdkvIp8Gfgz8nog87C+MfMQ/pl1EviYiT4jIXhF5i19+g4g8JiJP+R1P2C8/KiK/LyLfA34euAr4R3+hJSoit4nIPv8cH69QtztF5DMi8l0ROSgir/PLbRH5k4J6vscvv15EHhCRf8LLFVTqM+dci4j8Bt7k9AERecA/7q9E5BF/kSj3PZQ67iYR2SMiPxaRL4pIbKm/ibKyWEWLKncCu0uUfwC43xhzMV5+sQ/4n7UDL1H3pf77Pr2IRZsFY4x5xBjzG/7L6wGd/K1gVH/Npb9qMMa81hgz1uh65Gl0MsmV/AAmgQ8CH/Vf3wp82H/+YeBW//nVeAkg9wB/Auz1y98BfAm4By+J5cf88tsABy+p6z8CbwS+UqYOR4F+IOp/zq/k6ub/3TLf+fz/vQsvEemDwN8Af1Hhuv8b8EO8pM/3AQN+eQz4O2YSXv73Rv9G+lh5D/+edoGXATcBdwCCt9j1VeA64L8Df1Pwni4ggrdoss0v+3vgt/znR4H3Fxz/IHCV/7wXL0lrLm9qd4W63enrywIuxksEGwHeDfwf/5gw8AiwFW8gNwVsrfCZc66loM79BeW9/l/br/9lxcf5bcVDQLv/+n/jJ2zXx+p++LraD3zab9s/BDzst+Uf8Y9pB76Glxx6L/AWv/wG/z1PAZ8Dwn75UeD3ge8Bb8PrMw/g9W1RvL5un3+Oj1eo253AZ4Dv4vVTr/PLbbw+NVfP9/jl1wMPAP8E7KviuvcWlR3AT9YMDAIH/OcfBD5YcNw3gV3+81yf24/X19/sv36//708Adzml/2KX+cngH8H2ua5zuvx2rYtwCnghP8d/iRl+mN9tNZD9Vd7/fnvfci/3r3AT/rH/JJ/Hd9h/vHuncBf+ddzGHil/x3vB+4sOO4oM/3sZEH5bxf/jstyPzX6hl7JD19Inf6P3kX5yd9e4Cf857cxezJ2mJmB6TFgY4mbJ+bfvAfxGoZXFt1wW/Aa/V8srJv/d8t858NbCTqKN8gN4gm8khh6mBkI/zLwCf/5/wP+tPC4Rv9G+lh5D/+ePuI//7h/7z7uPw7hLWRsA47492Suwb8ceKjgc24AvuQ/PwpsLvjfg8xM/gJ4ne1n8RZiQhXqdifwzoLXDwFXAP/m6zdXzyN4E9frgQfmud4511JQ58LJ36/i7YQ+CZwB3lp8HJ4FwdmCeuwDPtvo31QfjX+wyhZViq67ePA5VvT6vP/3L4C3FZR/FniT/3wSGMCbiL3KL3sN8ANmJne5BZq+gs/4I+C981zn9cBX/WM+jD+28F+X7I/10VoP1d+sslrp738Bv+s/t4EOvAnh88AaIAR8n/knf//i/xZvAMaBF/vfxaPAFQXf9azJX7nfcTnuJzX7rDPGmHE8sf1Gqf/7NsAdxpgf+EX/VHTI/caYuDEmiTcQ21ziHJPAS/GEdgb4VxF5R8Eh/wn8nanOzLTU+a4BvmOMGTXGZIAvzvMZG4BvishTeKsal/rlNwJ/WVDv81XUR1EWw5T/V4D/a4y5wn9cZIz5rDHmIJ5mngL+r4j8vn9sNZ85C2NMFk8j/w78DF4nWAlT4rXgDfBy9dxqjPlWpfMWnL/UtcxCRLbiLT7dYDzT8K/hdc5zDgXuLajHDmPMu+a5HmX1cMwY8194g5ab8HYTfgy8CG/Q9xRwo4j8PxH5SWNMHLgEbzHmoP8Zd+ENVHP8a5lzjQNJ4G9F5I3A9Dx1+4IxxjXGPIu3iPkiv46/KCKP4w36+vx6AvzIGHOk2guvklJtSE7vQTwTtfcbY+71y27E65unAYwxo375Tt80/CngF5jpQ6H0dVaiXH+stB6qv8osVH8PA78kXiyOFxtjJoBrgQeNMWeMMWnKfz+FfMV4s7mngBFjzFPGGBd4Gm/yWo5yv2Pd0cnf8vCneLsN7SX+N9+AM1Xw3MHbZZiDMcYxxjxojPkQ8Ot4K0A5vg+8RkTmO1e581XzvkI+hbdS8mLgPcwMMoW5A19FqSffBN6Z81sTkSERWes7tU8bYz6Ptzv4EuAZYIuIXOS/9+14Zh+lmMBbJcT/7C5jzNfxgqdcMU+d3iwilohcCFyAt7r6TeB/iEjQ/8xtIlKqvZhDmWuZVUc8C4QpIC4iA3g7DnOuBfgv4OW570BE2kRkWzX1UFYFq2ZRZR5GRGQQwP972i9/Ac9aJscG4KT/PIu3E/Dqgv+X6xPvBH7d70M/wuyFmlLXWYly/bHSeqj+PGqiP2PMQ3gT4RPAP8hMEMaFjlNz42aX2WNolzJjdp+Sv+MCz70odPK3DPireV/AmwAW/+88MCEiL/OL3lrlx2YKBoqXiEjhasEVeCabOX4fOIdnEroYfgS8UkR6RCTA7IllKbrwxARwS0H5t/Ampvj17kFR6ojf0fwTsMdf+f43vInOi4Ef+SuSvwv8kb/b/UvAF/1jXTw/hlLcCXzGf38H8FUReRJvsvi+eap1wD/uG8Cv+uf9W7yd9h+LF9nsr6ncaRQy51r88juAb4jIA8aYJ/BWF5/G80f4fsH7C487g2f+/c/+9fwX8+8sKKuPFb+oMg93M9O33YJnXZMrf6uIhP3d9ovx+k/wBpTvBF4kIh/wy76F9z22+fXr9cs7gGG/3r9QxXUWUriYA+X7Y6V1Uf3VQH8ishk4bYz5GzwT0Zfg7VBeLyJ9fr3fXIP6lqPk71jH8+WpdnChLJ1PUDDxKeJdwN+IyBSezXW8is+7A3hSRH4MfBL4lG9CmsXza3p30fG/BXxORD5mjHn/QipujDkhIn+MJ4qTeIPUSnX8MN4A+gTe4HGrX/5HwF/6g1sHb0XzSwupi6LMhzHmKLCz4PWfAX9WdNhzeA1v8XvvB64sUb6l6PW/462I5rhmAVX8vjFm1gTRNxH5HQqi+Po86D/KYoz5JqWv5VN4q/651+8o8/7i476NF4RKUUpijPmWiGzHW1QBz5/mbcBFwJ+IiAtkgP9hjEmKSG5RJYBnajXfokoCb3f6P0UkgrdCXu2iygD+ooqI/C2e2dWPfcuXM3i7GFUhIv+M55/ULyIvAB/yV+ZvA74gIu/C8w96s/+9PC0iX8DrI7PArxljnNznGWMcEXkr8BURGTfGfFpErgAeEZE08HW8NuD38PrbY3i7OIWTuVLXWVjtrwD/JiJvAN5L+f5YaVFUf7XRH97u42+LSAbvO/xFY8ywbwa6BxjGM8esS8TQCr/j6YpvrAE5R06lgYhIzHh+e/grEoPGmN9scLVmkauj33h8GficMebLja6XorQSInInXmAGza2pKDVitehqtVyn0lqs5PtSvPgZVxljym3etCS689cc3CwiH8T7PY7hmV01Gx8WkRvx/AW+BfxHg+ujKE2LiPwuc81Fvlhu963Kz+zDc1gv5gZjzLnFfq6iKIqiKKsH3flTFk2FAe5HG1EfRVEUZeVSjz5HF1UUpTpWs/5W2nhXJ3+KoiiKoiiKoiirAI32qSiKoiiKoiiKsgrQyZ+iKIqiKIqiKMoqQCd/iqIoiqIoiqIoqwCd/CmKoiiKoiiKoqwCdPKnKIqiKIqiKIqyCtDJn6IoiqIoiqIoyipAJ3+KoiiKoiiKoiirAJ38KYqiKIqiKIqirAJ08qcoiqIoiqIoirIK0MmfoiiKoiiKoijKKkAnf4qiKIqiKIqiKKsAnfwpiqIoiqIoiqKsAgKNrsBS6O/vN1u2bKnLZyczDvFEhoxjCNpCVzRIJGjX5VxK8/Loo4+eNcasaXQ9WoVqNan6UhaD6nFh1KuPVP0qoHpcKKX0qFpSasVC9NjSk78tW7bwyCOP1Pxz9w/HueOhI3RFg3REAkwks8QTGd593Va2D3bV/HxK8yIixxpdh1aiGk2qvpTFonpcGPXoI1W/Sg7V48Io1qNqSaklC9Gjmn2W4J69I3RFg3RFg1gi+ef37B1pdNUUpeVRfSlK66L6VZTaoFpSGoVO/kpwYixBR2T2pmhHJMCJsUSDaqQoKwfVl6K0LqpfRakNqiWlUejkrwRD3VEmktlZZRPJLEPd0QbVSFFWDqovRWldVL+KUhtUS0qjWJWTv/3DcW6/9yC3fvEJbr/3IPuH47P+v3vnAPFEhngig2tM/vnunQMNqrGirBxUX4rSuqh+FaU2qJaURrHqJn85B9t4IsNgV4R4IsMdDx2ZNQHcPtjFu6/bSlc0yHA8SVc0qA64ilIjVF+K0rqofhWlNqiWlEbR0tE+F0Ohgy2Q/3vP3pFZgts+2KUCVJQ6ofpSlNZF9asotUG1pDSCVbfzpw62iqIoiqIoiqKsRlbdzt9Qd5R4IpPf8YPyDrb7h+Pcs3eEE2MJhrqj7N45oCs0ilJHVHOKoiiKoij1Y9VN/rYNtPOpbz9HxnHpaw8x2BXBsizecvWGWccVJt8s9A1Ue2xFqQ3FE71tA+3ct/+Mak5RGsz+4Tif33OMx47HMRiu3NjN23dtVh0qiqKsAFaV2ef+4Tj37T/DtrUx+tpDjE5lOHBqkhu3r5nTqWnyTUWpH6UCL33q28/hOK5qTlEayP7hOB//5kH2HB4lYEHIEn54eJSP3XNgTmRsRVEUpfWYd/InIttE5H4R2eu/vkxE/k/9q1Z7chO6rWti7Lqwn5svG+RlF/ZxcGRqzrHqG6g0IytFj6UWVzKOy6nx5KzjVHNKs7NSNJnjnr0jnJ1M0REJEA0FiIQCxCIBRqfSuhCjND0rTY+KUg+q2fn7G+CDQAbAGPMk8Nb53iQinxOR0zkB+mUfFpETIvK4/3htwf8+KCKHROSAiLx64ZcyPwuZ0GnyTaVJWZQeobk0WUqLud34QlRzSguwYvpI8LSZyjqEAzPDg3DAIp11dSFGaQUW3Ucqi2e+/NlKc1HN5K/NGPOjorJsySNncyewu0T57caYK/zH1wFEZAeeOC/13/NpEbGrOMeCWMiETpNvKk3KYvUITaTJUloc7IoQsEQ1p7QaK6aPBE+b4YBNKuvmy1JZl1DA0oUYpRVYSh+pLIJq8mcrzUU1k7+zInIhYABE5E3A8HxvMsY8BIxWWY83AP9ijEkZY44Ah4Brqnxv1SxkQqfJN5UmZVF6hObSZCktWpbFe2+4UDWntBorpo8ET5v9sTATySyJdJZkOstkMktve0gXYpRWYNF9pLI4NEZG61FNtM9fA+4AXiQiJ4AjwNuWcM5fF5FfBB4B/pcx5jwwBPxXwTEv+GVzEJF3A+8G2LRp04JOnJvQFUYYARxQjQAAIABJREFUfMvVG8oOLjX5ptKE1FqP0ABNVtLizUu5EkVZfpqqj1wq2we7uPXV22ZF+7z2gl6N9qm0CovSo4h8DngdcNoYs9Mv6wX+FdgCHAV+ztcjIvJB4F2AA/yGMeabNb+SFuHEWILBrsisMvXXb27mnfwZYw4DN4pIO2AZYyaWcL6/Av4Qb0XmD4FPAO8EpNSpy9TnDjxhc9VVV5U8phI6oVNamRrrERqoSdWishJotj5yKQukObYPdvHRN162qPcqSiNZgh7vBP4C+PuCsg8A9xtjbhORD/iv/3eRGfZ64D4R2WaMcWp1HdXSDLlxF5I/W2kOqon2+cci0m2MmTLGTIhIj4j80WJOZowZMcY4xhgXzyk3Z7byArCx4NANwMnFnKMc6oyqrARqqUdonCZVj8pKodn6SGPMHcaYq4wxV61Zs2Yx1VCUlmWxeixjhv0G4C7/+V3AzxSUL4sZdo5SfWaz+NppjIzWoxqfv9cYY8ZyL/wt79dWOL4sIjJY8PJngVyUs7uBt4pIWES2AhcDxQ67i6ZZBNLs6IC8JaiZHqExmmxVPao+lDK0dB+p97WywqhlHzlgjBn2P2cYWOuXDwHHC46rmxk2lO8zP7/nWFP42mmMjNajGp8/W0TCxpgUgIhEgfB8bxKRfwauB/pF5AXgQ8D1InIFnrnKUeA9AMaYp0XkC8A+vKhMv1bL7fNCZ1Qg//eevSN6c/rkGpeuaHBW46ICbjoWpUf/2KbQZCvqUfWhVKBl+0i9r+enGczqlAWx6D5yAdTcDLvSfVauz/zRkVFu2L521ufUwtduMfe8unG0FtVM/j4P3C8if4d3c7+TmW3wshhjfr5E8WcrHP9R4KNV1GfBqDPq/LTigHyVsig9QvNoshX1qPpQKtCyfaTe15XRyXFLsug+sgQjIjJojBn2d+VP++ULMsNmHp/4+e6zcn2mwTCRzNbU107v+dVBNQFfPiYiTwE34K12/GGrRTVSZ9T5acUB+WpE9dgYVB9KOVpZk3pfV0Ynx61HjfV4N3ALcJv/9z8Lyv9JRD6JF/BlSWbY891n5frMKzd2E09kAE+3E8ksx85Nsb4rwq/8/cPEE1k6IwEuXd/FtoF2Do5Mzbubp/f86qCanT+MMd8AvlHnutSN3TsHuOOhI8CMQOKJDG+5ekODa9Y8tOKAfLWielx+VB9KJVpVk3pfV0Ynx63JYvRYxgz7NuALIvIu4Hngzf7n19QMe777rFyf+e7rtgLkTTRDtmCJMJnK8vy5aUSE8ekMmazDl378Ai/Z1M2mvvaKu3l6z68Oyk7+ROR7xphXiMgEs22ZBTDGmM66165GFOcUC9tCNGjxiW8dZDyZpSsaYMdg16q25W/FAflqYqXqcd9wPL86mXNSL9ZgM/jcqD6UYlaCJvW+roxOjluHpeqxjBk2eDuIpY6viRn2/uE4z49O89jz5+mPhblobTv9scis+2y+HNW5v7ffe5BQwGb/8DiRoE0kaJPMODx7ZorOSJBT4ym29Mcq7uYt9z3fDP37aqTs5M8Y8wr/b8fyVad+5JxRc/bMjuPywmgCBOLTadqCNnc8NL1q7Zrna1yUxrIS9Qjw/Og0Q91tdEQCJVcjm8X/QPWhFLMSNHn4zCTPjkxw/Pw0Qdvims09vPfGi/W+9tHJcevQinrM9W/rOsKMT3vpER45ep4XrevAsqxZ99l8AVX2D8e5d98IrnE5O5lmoDMM2IQDFlMph6GuCOPJTP74crt5y3nPf+3JE3zq/ufIuobe9iDpjLOqx+HLSUWzTxGxgCeNMTuXqT51I7e6cO++EYK2kHUNjnGZTjlMpx0mU1leuqlnUXbNK2XlQqM1NTcrSY9Q2rdgdDLFh+7ex6beNqZTGX50dJRUxtARDXD5UBfb1nXm37vc96rqQymmlTX5tSdPcNs3DtAeDrBtbYyJlMNTJ8c5fGZS73MfXfRpLVpNj4V9YCwS4NCZKUYn0wyPp/jI63dUbQWTm0QGbQFjYYtw8nySoR7BtoT2sM1EyqlqN6/SPV/Lse7+4Tif+vZzINDbHiSVdTl4epJta2Or1r9wOecSFSd/xhhXRJ4QkU3GmOfrUoNloHD3wDUuGIujZ6cI2EIkYBEJWEynHQ6OTDKdWZjZdrPsTCgrn5WixxzFvgVnJpIcHJkk47r0tQX47rPnSGVdOiM26YzL9587B8BFAx3qf6A0Ba2sybv2PE97OFCw+GLly2++rG4py1oOXfRpHVpNj4V94JqOCGs6IrjGMBxPlpz4lRtrfn7PMQ6fmSSeSDORdIiFPXPPU/Ek/bEwF69p5/DZaS4ZiOEaM2s3r9yEYyHnX4w+7tk7QsZx6WsPISJEgjYAp8aThPznq4nlnktUE/BlEHhaRH4ETOUKjTGvr3lt6kTh6kpXNEQy42AwpLOGkG0xmcqSdV2Ojk5yajzB7fcerHrGrZGRlGWm5fWYo9i34NCZKRCIBm2+c/AsyayLa2AskaUvFiKExRMn4gx0RdXnRmkmWlKTI+NJ1sZCs8o6wjYj48mKOwwrwcpFWdG0jB4X4l9Xbqz5+T3H+O6hc3RHA6ztiBC004xOZYhFAqSyLht6o1y6voufu3rjrGifOTPOaicctR7rnhhL0NceIpV18xO/cMBidCrDrgtXX/++3HOJaiZ/H6n5WZeZwtWVi9a28+ixMQJiMZ31Vj+MMYgIrmvIiOHo2cmq7Y41MpKyzLS8HnMU+xaMTqbJOA4Zx5DIuNh+Gl3HwNh0hs6IzUTCVZ8bpdloSU0OdEYYT2TyO34AEymHWDhQckB44/Y13Lf/jFq5KM1Oy+hxIf515caa9+8fpafNmyiICL3tYdpC3tD++kvWsnvnAPfsHeGBA2cZ6o7yrldsmRUgpisaJJ11+OGRcSaTWYK28A97jvHHb7ysqvMvdqw71B0lk3U4MDIJeBO/8WSWgCXs3jmwqM9sFhazSLbcc4lq8vx9R0TWAdfgRVB62Bhzqi61qROFqyv9sQgv3dzN+ak0yWyWoG3huAbbEsIBi6BtcWo8xfbBzqpm3OVWbsK2cPu9B3WFVKkpK0GPOYp9C3pjIeJTaZKZDAHLuzhbQAwYA+NJh+5okGjQ4rPfO6q6UpqCVtXkLbs2cds3DgDejt9EymEqleXFQ50lV6Dv2vM8OwY7S+489HdEtK9TmoJW0uNCfErLjTUNhu2DnTx+PA54kyiM4Xwiy7aB9nmTxwcsePx4nHDAIha2SWUcvnfoHF978sSsncKwLTVNKO9NfD1T1OF4knNTaYK2xXtvuLCl24+Fmm/mJor7To7z7MgEl67vZE2HNwks/H6/9uQJ7trzPCPjSQY6I9yya9OSzPOt+Q4QkV/GS175RuBNwH+JyDsXfcYGsHvnAPGEF0nJNYagbbNjfSe97WEuWtNOe9imPWwjIvTHQownM1XPuIs/O57IcHx0mpPxJPFEZtaPv384vgxXq6xkVoIeC9k+2MX7XrWNj7/5cj7y+h0ksi6prENbyMZxvV2/oAUiYFnCpr42QgFbdaU0Da2qyZsvG+IDr7mEzmiQ05NpOqNBPvCaS2gLB+mIzF4X7ogEGBlPzilPZbN899A57euUpqHV9FjYB77vVdvy5tW333uQW7/4BLffe5CvPXmCsxNJvv3MaR48cJqR8UR+3Hnlxm4iwQAv2dRNOGgzmXJAhFdc1MfBkan8Qo4lkn+eS6s01B1l//AE4YBFJOiNgREhGrD41P3PzdL1yXiS46PTs8a68URm0bt0uYnvlv4Ym/raed1l67n9LZe3vL9xoflmqe+8kNxEMZ7IcPnGTiaSWX54eHTW77t75wBfe/IEf/jV/Rw+PclEIs3h05P84Vf387UnTyy6ntWYff42cKUx5hyAiPQBPwA+t+izLjOlVlfev/sS/mHPMZ4+OY6IIAiDXWFsy3M8rXZFo9RnpzvDhAL2rBXS81MzUQx1dVRZAi2vx3JsH+ziFRf1cf/+06Qdl66okMo43gTQFgY6I+wc6i5rE6/+SEqDaFlN3nzZUH6wldPP0yfjPDsywc6hTvpjMyvQA52ROSv/+05O0NOmPu9KU9GyeoTZO0cBC77+1Ek+851pYqEAkZDNqXiSU+NJbnjR2nyS99zx127tzZuOvn3XZj77vaPzJo//8mMn6I4GMMaQyrqksi4BW0hlzSxdb+5rJ531IobWKvLtSgymtBDzzdl+fkF2XSjsPTHOEy/EuWnHuvz3+/4vPslEMgMIrjFYYiBj+MyDhxc9Wa5m8vcCMFHwegI4vqizNZBSN9nbd23mjoeOsLm3jYMjk2RdQ8Zx2dLXtiC/ouLPvvWLT9AXm/lqz04meebUBI4L127tVV8JZSmsCD2W4+27NjMynuL/Z+/dw+Q66zvPz3vOqXtVV6svarVkta6WLdmxg2MwAsMYbMDBCWQSYJMdE/IsGeCZxNkwSwg72QkhM9l1EjbMhmSSeEgWByfcNglxIMjYGGPAsvFdli3rrpasbrX6WtV1O3Uu7/5xTpWqu6urq6qrWlWt9/M89XT1qXN569T7Pe/l93t/v9NTWeIhHQFkTIeR/ii6JqpaJM7P5VXUXcXlpOs1WamfG69K8vTpWQ6enOGWnRsIGV4Ozg/tH+GRI5PApfVJszmLN+3qW3AuteZdcZnpaj2WBgRF2+GFcymm502khJzlIIHBRAjb8XLYl9q25VxHVwoos3c4yVt293N4LM28adMTDnD9lh6ePDVDfyzIsQtpXjyfIms6xII6WzdElqwFVCykkSA+iweKA/Ewb90TYjxV4OPv2FPefno6i+VIAjromkBKieVITk9nl5yzXuoZ/J0HnhJC/DOe//R7gR8LIf4jgJTyT6odJIT4G+BngIulnCtCiD7gq8B24AzwASnlrP/Z/w58GHCA35BSPtT0t6qTSqtdznJIF2ySEYPtA/FVWQ2WRDG8mPUW4sYvmYFBzY4qmqIpPUL3aPIT79rDAwdHef5cConklp19fHD/Ng4cnlj2oaqi7iouI01rslNYGBE7wC07BS+PpXnxXJp37BsqdyZ3DsYXdDJv3d1P0FgYln0164CU9V7RArpaj6UBwVOn04QMjbztIvA6+1LC2FyeTT0hnj83Vz5mOQtaPQFl7vaNIMlIoLxPQNdwHIcfnZwmqGtEA146tCMX5vnWofNd75rZThoJ4lPvQNFxpbf0RXhR8IQQCCFxXNl0OesZ/J30XyX+2f+bWOG4LwJ/BvxtxbZPAd+VUt4rhPiU//9vCyH2Ab8IXAdsBh4RQuyRUjaWdK8JSqKpbHRKVGuIgBUbp8U//lTGJKBp7B6MlfdJhA1eHkvVDApTXgg6niKVt+kJG1y3OakaxCubZvUIHaTJWp28vcNJ7t6/jYGE93lp8XOlrgqWzZHxeWZzFm/Z3c/JyQyupDx7uXtjjL5YqKxn1alUtJHVaLIjWDwDPZioPgO9uJNZshjCyh2dlVDWe0WL6Go9lgYEmYJNPKTjSonl4ke/dskWYXQmTzSoc2Q8VVMbe4eT3LF3cEmgkMpjSkaQLx0c5ZEj0wgEOwei/OjENJoQBI1LQRE3RAIN5QG9EtvdRoL41DtQ7IsGuDhfxBYSTYArwXVhIBFYcs56EVI2P3Jc8eRCbAe+WWFlOArcJqUcF0IMA49JKa/xLQxIKf8vf7+HgN+TUh6sdf6bb75ZPvPMM3WXp1buosUzH6PTWTQh2NoXrbktlbeqNk6V1zo7k2NTIsSOwXj589OTGY5dzPDGnf1Vz1Uqk+u6vHph3luIK2HPUBxd11SDuEYIIZ6VUt58ucvRKjpBk6W67TguF9IFZrIWhia45/Zd3HXDlqp6LGkD4EsHR/nhiWk2RAPs25wgZzp879VJ+mIBNvaEy+sWrhmKl634y51Paai7WE96XAtLfL1t5OcePrZkBrr0f+Xgrxqt6uCtpgyKy8N60uNa0Ej7eGoyA1JydCKDabsEdHBcEHgB0CJBg829Ea7aEFlgFKjUY0gXjKUKbOuP1Wz7qrW5X336LEFdUHS8VGjxkM5ALEjWcvn+b71txe9aqx1X7e4l6nl+/s4/HuI7r1wgV3SwXTA0iAZ13rlvE39Q4YbbiB7rsfy1kiEp5TiA39nc6G/fAjxZsd9r/raWcWQ8xR8dOMpMtkjRdjk+Mc+h1+b45J3XVHUZe202RzpvM54qEA8b7B6MMZMtAnD9lmR5P6juWlY5Q1oZ0ackgmMTGa7ZFF/WTa1UpiPjacIBnXBAp2A5XJg32VdnGgqFog7WXJMHDk/gOC6HXpsjb7k40nNn+eMDR8tuZSU9Ts4XODGZZSZT5NMPvsJn3rOPwUSYt1+7sayZJyen6Y8HPbdt2yVkaJi2y9GJDB+7bZdyCVV0Kl+kQyzx0aDggSfHyFsOmpBEgzp9sTD3vH3XisfWG7ThyHhqgTv367b28sH928rH1gqUcCVaEBRXFkfGU3zp4CjPn5vDtByKtstsrojlu/YVfaWHdFFOUQaQ9qNC3vf4aa7dFOPLT51jLm9j6ALpSiIBLzq2JgLLtn2L20jLcXClS7oAugaagIwpyZoO2wdi1INqd+ujnufn3fu3cSFtMpUxMW2HkKEzEA9x9/5tTV93rQd/yyGqbKtqkhRCfAT4CMDIyEjNk1Y2GK+Op5nLFulPhCjaDqMzWQqWy5Mnp4iFA+wciLF7Y5zBRJhjF9KMTucAb3Gl5Tg8l7coFG3CQW99Q6lTOp+3QFCzMapmBt7aH2Gkf6GIKhfKlxrCdMEiEfJ+ppChkSnYakG9Yi1oiybBq9snJzPMFWw0wLQdLNtlJgvv/4snkEA0aBA0NAqWS18swIZogOmMyX2Pn2a+YLF3uKd8vnTBYiAeRAi8UNcFz0W6JxJg73CyZsQz1alUXC6klI/7lvhK3gvc5r+/H3gM+G1/+1eklCZwWghxAi+PWU1LfD1869B5HnjyHCFDkDVdio4kV3SxHcnnv+t5z612jc+R8RSffehYRSAnwVOnZhhPFfjkndfUDE4R1IVyB1Wsa0rGibPTOeIhHVvAXN4iZOhYjoUQXtojDS/lUSkqfU/YIGM65Yjyf/69UwCEA16i3NmCRdFxefG1FHfs9drAav3HyomXqUyBZ0fnMDQNExfXz7MLEsd12RCtb9iw1knL1zOlWAit7Kus+CsKId4spfzRStvqZEIIMVzhYnbR3/4asLViv6uAsWonkFLeB9wHngl9uQuVGpupjEk6X+TsTB4p4UK6gF1xVN6WmJkihaLN0YkM/bEA01lPbLoQOK7LTNbrgOYtl2Q0yOR8gefOzvlJ4QVCiBUbo8Wj+2ouLpULPUsNYU84QMFyCAd0ZnNFskWHb790gb54cEV/79J9UJ3b9UOL9QhrqMkSW3ojfPulMfJFF3fRZ5mityVb9Kzs0YBgxv9sIB4qh5muDDnfEw6QylsMJMLs39kPeG7VF+ZNPvH1Fzk7k6NoOQvcrjulU6n02f20WJOrtsQ3Ohlz/8GzxEIG8wWLaNAgbzm4UpK3HCYzJv/pnw7zxIlp7q6w0jXKgcMTTGVMdA2ms0VM20UXgtdmc2VLwHLrX6IBTVkQFHXThjay7Rw4PMFMtkg8bBAO6IylCjiuJFW0COiCaFjHtF1sx8VyXPKWS9FxOTuTRdc0/vmF15jKmGRNl0hQQ0pB0NAJGjqm7XBqMsODpo3peLob7o0s6D9u6Y1wZirDhbTJyckMuhDYrvRz7HrvJbClN8xM1q7rOzUS9VKxMq1Oi7Fiknfg83Vuq4cHgQ/57z/EpYW4DwK/KIQICSF2AFfjJelsmgcOjnJ6KkvBj+LpSnBhwcCvhIvX6ZTSZSJdIGd6a5CChgZ4YVXPz+ZJFSzSeYtnR2cJeatvKTqS67f0LJvEsZLKxJ1T8wVGp7PLJswsJY/f1BOiYDlMpPJMpExCuoauwXBPqGYy3SPjKX7nHw/x0S89x2NHL2JoqAS864NW6hHWUJMlokFBrsrArxo5S1K0HGayFrs3eusWkhGjrBdXSjb1hMiaNpsSIVwpOT2Z4flzcwz3hBhOhhn2I6Odnsws0JqAupOxwkL9fu7hY6vWUaU7uEqQ3dW0WpPVqNsSL6W8T0p5s5Ty5sHBwaonq6zLRy+k0YSX46vouGjCu5hpSwqWTSpv83c/Psddf/pDbvk/H+ZX73+64fp/fi5PKldkJmthOy5BXSCRTKRNXh7zzlPykElGAoynCiQjAT7y1h2Yjlw2xYtCUYW10GNLOT+Xp+gvWZjOmMxki5iWZ3WzXUmu6FCwXCwXbL/hLFguF9JF8qbFfMHBtFwkYDsuGdOhaDsEdEHRActxSRcscqbDXK5INKAtaGv2DMV47uwcqbyFdCW262I5nsvoYCLEpp4wyUiADdEgsvpjZwl3Xj/EuZkcjx29yEMvj/PY0Yucm8k1nRRe0VqWtfwJIfYDbwIGSyFyfXoAvfpRC47/Mp77yoAQ4jXg08C9wNeEEB8GzgLvB5BSviyE+BrwCmADv7aatQxHxlP860sXyBVtHClBLtNKLsJyvDx/QV0jbOhs3hDhQqrAfMFC0zSu3hhj50Cc7x8rBZeIlBPhulIuaYwqZ/WDumAibbK1L8pw0kuWqwlB0XYYT9lLIgItTkPx8lianqjBxp4wuzfGGIh7ncVqs5+VC4Z7I95P/MK5FDeN9JY7t+2eMVUWjdayWj3657hsmqzkwRcvoIvqEzHVyBYdBntC5Tq/z7cSlOrX9oE477xuiGMTWc7P5bkwb3LTSC/bBzxLX+nveNokGNDLWvvrH56hL15fp7LeSISN1Hu1JqK7aYUmq7BqS/xKVAYTG08VyJsOr45n0DQvoESlLLPFS1M0roSJdJH5/BSvjqd56OUL3PP2XXW5hG7pjfADy0UAhu7NOQsgqGukC5csCdVmt7vZgqDawbWjTXpcE7b0Rjh0bs5bDpGzcCpEaLugLRpylSI+AqRNh1hQIPE0VXQgiEveEji+9c7QNVwJsZBOPBQib7lsr+gLHpvI8rqtvZyaypKzXaQr0QUUbJeI4yKlF200YzrcsnNhXs9auH5ASeHPXbltDDCpaIxabp9BIO7vUxkiNw28b6UTSyl/aZmPbl9m/z8A/mCl865Eyd0zY9roGjhOfQM/8BoiXRMMJ8NMpE004S2sjYUC6Jrghqt6GUyEGZ3x1gO+0Xcxg6WN0eLO4uPHJpkv2GxKhi4tvO2L1oxkVtkQfuLrL/qLdi9NAC/XUS0nCXVcEiHDixQKnJjMcsuOvrbPmKqQ3W1hVXqEy6fJSo6Mp7woZg3g4jV2JYtdaZJkcV26y/9b0kolI/0xAobOZ99/Y3lbI53KegZqjdZ7tSai61m1JqtQssTfy1JL/N8LIf4EL+BL05b4A4cncF0vIJLjugQMgVWUZYvCSuQsl16/Uf3jh47yxIlpTEfWHNzcef0QX3vmHAXLQdP8Tqot6Yl4lvxaNJI3qx00O4BT7eCa0w49rgl7hmJ85cdFMr6X2mIqpakLL/6DIyW24+nWtB1ivsu25UhsB1zpoOElhQ8HvAAhQniebOmCtSTGRDSkY7uSq3rDvoXe8SyKtmeBHE6G2dwb4YN1Bhk5cHiCbf0xbriqt7xtOYOFYu1Z9qkrpfw+8H0hxBellKNCiJiUsvl08mtEaW1BxBBkfTN4PZQCT/THgrgubIgGGJvNMZm1AAgbcOi1FDduheFkiIOnZvnmoTH6Y0FvUKZpCxqjpdGTJPGQzomLWQbiyy+8XY5GOqqlTmXlesFSsJi1mDFdC4vGlTaj2q16XMyBwxNeslLNX8FeJycmc5yfO8uGSIBoQFuw/mhxXQjpYsGaQKiulUY6lfUM1Bqt95WaroxqWu96XsXlZbWavFyW+PNzecZTBUKGxlTGIhzQF1j46iFXdPwgTBY/PjPDhmiQF87O8dDhC+WULZXsHU7y9msGeebMLNM5bz3vlg0Rdg3Gypb55Wgkb1Yz1GpLVjOAU5b9taWb28hjE1neuLOfh14er6vPavsjxNJAMRzQifmBAV1p4/hyHumPsaU3zPHJLMcvZgjoAtuRaJrg8WOTbOkN87mHj/HKWJoLqTxIiaZraEKiaxqxEERDBtdt7il73NRbd9XkZmtpdZ+3nrA9m4UQ38abURkRQtwIfFRK+R+avmobOT+X52I6T96WjfQtfV9pSd5yyVsmluNiVvilFR04eXGemWwRIWBjIsiGaJCZrEU6b3PP7bsW/BCLK348bGAWbdIFq7ytkYFYIx3VUqdy98YYz47OAZAr2qTzNo++epG37O5va+ey3aJv1Yxqlw4gu0qPizk/l6c3HGAsbTZ8rOO6zJs2jx2d5ELa5BPv8izmi+vCWKrgWcgX5eNcrJVGOpX1TL6sVO8X17c9QzEeOTLJTMbk2EQGBAvW815pFoIu1SM0qcnLZYm/kMrx7OgsEi+KX8mXRFC/l4ztukxmTAIaTMybRIMGfbEA6YLN5x89yc7B+JLf7u7928hZ7pK8X/WsAWp1sIMSK7UlqxnAqc7vZaPr2sjzc3lM28FxV1ahI8FZ1LlN520yBRtHQkADTReEDI2gLjg6kSFsaGSly2zWQQKbk2GmM0UupPIEdI1tfWGOXkija4JECBAatuvy5t39xMPBBR4z9dLN7tqdRju8COoJ+PLfgHcB0wBSyheBtzZ1tTUgpAumMlY5N0q9GJonqqLt0hcLogmtHO1IFyVfaslUpkC26PD67X3s3zXAXTcM88Zd/RybWDjBtKU3wnzFWobdgzEypkNQ16oGeIHaASWWWwy/nItNKm8R0HVeN5IkX3Q4P1egJ2Lw5t19BAy9rYElFn93aK3oKxvkegJ1VKOLg210lR4Xs6U3Ul7z0yiWA3nLIW85TGVMDhyeqFoXtvXHGOoJYdkO3z1ykadOTxMJVL/m3uEkH3/HHj77/hv5+Dv2LPsgLWlquQBNpe+uSHpQAAAgAElEQVS2XL2vVt8eOTLJHXsHuTBvYrlep/jm7RvYPhBvuD53O12sR+giTf7V94/z9JkZHD98u+SSS1kjLWbBcryEw47EdlxGp7O8Mp5mPJVnIl3ggYOjS45ppA1bK1ZqS87P5ZsONtNMO9jqoFJXKF2jxxJbeiM8fzaF1mDT6IUk9CiNB20JYUMjGjQYS5mEDI2hZATwghhGgwa2hGQ0wIZYiAtpk5mcTW/EW96Us1xCAY3hZJjxlNl0v62eNlNRH63o8y6mroQdUspzQiwINtaSwA/tQEI5+WW9lDzQhnqCDPVEvMhL/sp36Q/8HL+hlA70hg0GE5dm9Ko1BostdUFDZ6Q/yuZkmPFUYYmVoZ6Rfb2znwstGja9sSDXbkosCHUP7XM/afcajVbMqHazS0436XExd14/xP1PnG7qWIm3+H0ubyFmc7w8lqI3GqxaF46M50iEA7xhR1+5Dq5mpqweK2Gter9cfTs2kWWkL8otO/rqWs+7XulmPUL3aPL+g2fREGjIuqLtVkPgDRwLpoMDJEI6+aKDIyWuCwFd8N1XL3J3Fe+SZi147bIKr9SWrMZ60Wg72GlrBLvYEt81eixx5/VDfOEHp7AbcVfDXw8PICgHZTF0gWm7hAIuuaJNwbK59eqBBTmjM6aDlJ52S95ow71hxuYKfkqHCAXLYTbX/GCt3e7a7aTT6n47vAjqmWc4J4R4EyCFEEEhxCeAI01fsc0UHUnAqBYVe3kCGhiaYC5nMTlvYvvRjcDrbArfHUvgiW0mZ3Hw1DST8wWgemNQbZbzk3dewx/8/A1VrQytHtlXWjRG+qJsG1g+oXyrafcMbyssi6uZ0b3MdJUeF7N3ONmQhaFEpaJd6UUPe23Wi6JbrS6k/TV/rdBTaTb+r394BoAP37q9qpWwVr2vVd/abSnvBrpYj9BFmpzNFik6spzOoRG29oboCekEDUEspKP58RNzRS/IhON67aPlSLKmw5eqWP+aoZ1W4ZW0txrrRaPtYDtm95ulyy3xXaPHEnuHk/RFAw0tVSrhUmoTPbyALxJNaBiawJXw7OgcuvAGhabtEg8bxMMG86ZDTzhATziArmkMJkJEgzrzpo0Qgrfs7l9Vv61ez5pOohPrfjv6CPVY/j4G/D94CWVfA74DdKzv9JbeCIamYTYw0WM6UHJ6GUt5AzpNXHKHsRZNkeaKNq+Opzl5McP1mxP0xcNVZ/NKFb00g1B6iK915L/L4XvdrjUa0BrLYhf7o3eVHhdzZDxFzqwvSWwli9vEgu0gpWQuW8R0JM9nTFK5InnLRdMEkYCGORgFLv2+i9ffPXBwlOfPpZBIXre1lw9WSWL9rUPn+fyjJ7Ecl/5YEMt2uO/x3LKduOXqfa36drmjGXYCXaxH6CJN6poXEr7e9EeVpAsOtvRyf0VDBgKBoTnkrIVncoGMafOvL41X1VSjtNMqvJL2Vmu9aKQd7KQ1gl1uie8aPVYSNDT0BuKgVe5bsviBF7tC+GYdTQgiQW+WJl+0mc5aOK7LSF+UgXiQcdPmmqE40ZDOU6dmEcBbrh4gHPBy6d5dZ2TPTmK1VrtOrPvt6CPUY/l7vZTy30kph6SUG6WUdwMfaPqKbWbPUAzHbdah5RLLeY76+iJkaFiOy+Gxee7YO1i1UjQyg9DO2f/15nvdCstiF9+TrtLjYv70keNLJlMaxRDemoaJdIHHT0wxPpcjV7SZyVk4riSoeylanjo1y1SmUD6ucv3dZx86xsFTMxgaBDXBU6dm+KMDRxdo88h4is9/9yQA/bEgpu2Fx3ddt+HZ+Fr1rRPXQq01XaxH6CJN7hiI4crGfeAEXpsYDxpEgwaOIynYLiFDXxAwpry/gKxpl9u71axla6dVuB7trZX1opM8ALrcEt9yPQohzgghXhJCvCCEeMbf1ieEeFgIcdz/u6HZ8x8ZTzExb9Y9IxPQ/IjZPtGgTjig+zEl8Cd3JAOJEG/a2YeuwYW0yVBPiJG+KAXbZXQ6x7b+CMcvZnnhXIprh+LcsrMP26Vr26BWWO06se63o49Qj+XvPwshTCnlowBCiE8CbwP+sumrtpFjE1k2JsKcnV39DxXQPLfPSj06vrDSBYv+WBBd0zg2kS3nGKtkuRmEBw6OMpAIL5iZaOfsfzf7Xi/Hai2LXXxPukqPlRwZT/H4ialVn0fTBLqmoWsSs2AzljK5akOEHQMxHFcyOW966wKF4JnTs7zz+k1L1t9NZUwSYYNwwPddE4KZbHHB7N6BwxPYrqQvFkAIUd53PFUgYDSWM3il+tZOS3k3sHc4yR17B7n/4Fkm0gWGesJ8aP9It9yTrtHk268dYmw2x3SuMeu7BOZNm3k/SK8AAprAdiWiIkCh4FICak33XBe/dHCUibTJVMbEtB2OT8xz+HyKT7yrvoFUu63CnaK9TvIA6HJLfLv0+DYpZWUD9ingu1LKe4UQn/L//+1GT3pkPMUfHThKoeisOClT0pfEs9zoAsIBjUhQx5XQEzOwnAKulBi6xpZkmOmcxdhsgVhI5+btGxiIh5mcL/DUqRnmCw63791YrmursdR3wjq5VljtOrXut/o5Vc/g7z3AN4UQvwXcCVzrb+tIzs/l0RpdzLAM0aBOulBdjqYtmc/bWK7ka8+cA1hS2au5cZi2zY9OzPD2azcuWdTdzsFIpzRwnUSX3pOu0mMlDxwcxbJXv+6+6EgKloOhawR0gRBwIV1gKOFFLjP8Nbx90QDj6QJPn5nxGsawwYHDE7wynsK0vbUOJUKGxnzBXjC7d34uT18sgGm75YFfyNCYzhbZv2ug4XJ3aX1bE46Mp3jkyCT7hnu4ZUcf8wWbR45MVk0Z0IF0jSbvvH6Irz59Fi9VYPNIoOhKQkA0oJO3nPK6IyE863wkYJAIG3zz0EUEgkTYoCfs6en0VJYHDo7yBz9/Q11l7pRBUTvppAnJLr/na6XH9+Ll6QS4H3iMJgZ/Bw5PcGoyg12H1U9yyQAR0CR9sSBBXSMc0Nm9MebnkQ6iawJNCF46n6YvFsCRksFIkGdH5/ipbb2cmMwSD+kUHbe8vrRUlmYDMnVCsKJqfe6CZfPU6em6B6VdXvfrZsXBn5RySgjxHuAR4FngfVLKOo3Ta8+W3giP5q2Vd6yD1DIDvxJZyyEa8NxeSpX9jr2DHJvIcn4uz9mZHEXLWRBl85WxeTZEq89MdMuCWMXlo9v0CJdmBL/50gU/ouXqi5sq2IQMgeNIJF7uoplskaAOsVCAcEAnGgowrGnMZS3euKufRNhbx3BuOo+ULBjUmbZL0NAWzO5t6Y1QtByOXcwA3sAvXbAJ6Fq3uCN2DZ24zqJeuk2TjUbDrkXWdPilN2zlsWOTTGdMLEfihWOC/liA+YLNfMFmczJc1lo4oCOl5Plz9bliddKgqN10ygRRN1vi26RHCXxHCCGBv5JS3gcMSSnH/WuOCyE2VjtQCPER4CMAIyMjSz4/P5dnPNWYp1pQFwghCOqCG7cmGZ3J8+TpGUKGxp6NcVIFmxOTWRzHJVsUbOuPlqNJn7iYJVOwMTQWTICuxrWx2vP7zFSGD9//DAFdK9efu27Y0tT562Wx1W5yvsDTp2eJh426B6VXyvNm2cGfEGIer8KXemtBYCfwPiGElFL2rE0RG+PO64f4y++fWJNrCQmhgE7I0EhGAsxkTD7/6EneuLOf4WQYy3Z47qyXZH3bQIz5gs1szuJNu/oWnKcd/sSdYIJXtI5u1WPljKChgaO1ZvAHnvV96TawbIur+gxM28XQBKYtFzRKe4biHDqfwipIpJQIvNDXI/3RBYM6bwYwx56NcS6kC8xkLQxNcM/tuzpCS+tJ450U7KJeulGTDxwcJVNozeQoeMFd7t6/jeMXM8znLRzXQdcgoGuYtmR0OksibCyJLOrdsI4dH1/xdKMlvs16fLOUcswf4D0shHi13gP9geJ9ADfffPOSSh/UBcUGHWIiQa/fmSrYnJrMsWcojutKbMfh0Pk0w8kw0YCGHtIxbclVvRFOT+cI6YKJdJ580SVr2mwfiDGVKTAQDzfl2lhqg77xwnmGEiF2b4wzmAhzfCLNs6OzaJpgz8Y46bzFvd8+CtDWAeBiq93LY2kkcP2WnoYsnJ0yCdNOlh38SSkTa1mQVrF3OImz+ngvdaFpgr6YlygT4NRUhol0gadOT9MTDrB7Y4ybRnoZT5sEAzpbeiPcuruf4KL1Qq32J+4UE3xledZLJ/Vy0a16rJwRHE5GOO5b0ZrFEFR1jymtMxKArntrkW4a6eUHxydxXPjOKxfKmtw2ECNnOQwlQuVon7fs7Fuy3qFyBjAY0Nm/a2HdvZz1utM0vlo6dZ1FLbpRk159b90EDHg6uXpjHNN2mS9YfiAYjaCmMTlvIqVkdDbPUCJEMuK5fWZMh1t29q18ctZfXe8GutES3049SinH/L8XhRD/BLwBmBBCDPtWv2HgYjPnnssWGz6maLvemlvHBQEvnU+RMS1SORtHSs5MZwnoGkgvn+fTo7MM9YSZy1vM5S02JkJEgjq2K3nmzCzXbkqgaVpDro2VuhxKhEgXbJ47O8dNI7288FoKXdO8lDCaRjLixZa8/+DZtg7+FlvtLEdyy05vnWOJTp9UXCtWdPsUQvxb4FEpZcr/vxe4TUr5jXYXrhmOjKewW+jWshIX501Chs7xiTRnpvNEAxqJkEHBcnh2dI7XjSQZ6Yvy2fffyJHxFF86OMqjr15kQzTAvs0JQobRcn/iVj64V9vBVQ13a+k2PVZadG7cmuTk5OoGf6XQ1hpe91XiLXqPBHWKtosmIKhrFCyHHxyfYiJl0h8PLNDkNUNxrtvsRfBbieVmAFtZr5vRWDd2zmrRzessukmTEonV4tnRf/PH3yNr2uzZGCMcCJMuWBhCMJUxKdguybCB7biMzeUpOi494QAj/VE+WGcY+QOHJ3Acl1fG02QKNvGwwaZEqGvrejfQjZb4Eq3WoxAiBmhSynn//TuB3wceBD4E3Ov//edmzn9kYr7hY4K6huN6LtSGBhdyFlJKbCmREixbouFSsCWxoIZ0JY4rmc1Z3DTSy41bNzA5X+DEZJaZTJHxtMln3rOv6ZQIVw/FeXbU83I74XsBBA2NDdFgef9ESGciXVjudC2jss3+3MPHSC1aBtbpk4prRT2pHj5dEhGAlHIO+PRqLtrOsLmtTIiqC5YEjyndsIAOmgYb4yF0AU+cmkEg6Y0Gy5EBQ4bGK2Pz5fDy9z1+mqChl90+f3RiBst2Wj4QalWo2laEze2kxLXrhJbrEdqnycXhy1cbi0ngpWaQQMgQGL5GpZQEDQ1NCExH4kqwXZeBRJBs0WU2VyRkeOo9OpFZ9Zq9VtXrZjXWieGoV0OXp7toiybbQVATTSWSrsXGeBDbdnnqzCxjczkSIYOxuTyTGRMBbOwJM5wMo2saArjtmo188s5r6v5tXx5LcWwig2k5xEM6puVwbCLDy2NdkXC8K+mktBNN0Go9DgE/FEK8CPwY+JaU8gDeoO8dQojjwDv8/xtmqhRCtwEKloMrJQPxEJPzRYK6wPLTHOnCC7pkuxAP6riA0C61UTnfx3QwEWb/zn5++ic2MdIXBWgoHcviNsjQBJPzBY5OZAgHdBIhg1jo0ufzpsNQT7jaqdpGl6cQaiv1RPusNkCs57iVaEvY3EePXGhB0TwkniuZjpcXSRMQCWjoQuBK2JQMI4HzqQI50yIaNCg6LgXL8TqaUjKbt7nz+qEFncVkJMBQzyU3p1Z3cBa7UB2fSPPM6Cym7fKBv8rVvfC2FdaFbp5B7FDapUdogyZLFp3ZrMmrF+ZxV7nu3gUs11stZNsSKcBxwSp6Vj8kxEI6+3f2cXra64jO5SwyRZuA7tATNuhpgeZaVa+b1Vg3ukmuY9qpyZZydqb1z92xVAGhCTS8oEvDyQiZoo0mBLoGQgj6YiEiAR3bpS6LeyXpgg2CBQFjTNv1tlfQrJeKWpawlG62xNNiPUopTwE3Vtk+Ddze7HkBvnXoPFmrsQV/hoBYyGAwEfJcqIs2EUNDSkkkoJOVDvGQQbZoEwlqFGzJu64bYiAe5uDJKaYXuZnOF2xCumjYk6XUBlmO51ETMjSu6o2AEIQMjdGZHKm8RSKkM286ZE2be96+q+l71QxXSvCWZqhHEM8IIf4E+HO88dA9eBGUWk1LwuaenMw2XYB4UMOREtsFy7ceaMKb0TCQhAwdy5XommCkL4zjejm/NvWECWiCnOWA9MzrGdMhoAtu3d3P3uEkf/3DM6vqLB4ZT/HAwdHyGqXXbe1dNidL5YN7IpXjB8en0TTBVb1h0nmL3/+XV/jWoXGioUDNxq4VHVzVSW05a6VHaIEmSw/fTz/4Crmis+r1RgHNc/0UeGv/DD+svO2ClF6rvyEW4NRUzg/24tIbDWDoGu/YN7SkLjZKqaP4ylia4xPzXLe5h8GEp5Fa9Xq5DmazGuvyztkSutw9fC01uSrmzdWleKhGwfI6dtGgTsH22j5NCMIB4evdozLIy7cOnV8SSXK5CclkxCCVK5YnVU3bRUpJMnKp+9Js/SnlWJvJFinaLscn5jn02lxDlsn1SJd3mrtGj/cfPEtE18i57oqt4mA8QK/vRjmTtcreZem8hS0haGgEDZ2+WLCsQVcKRvoi5TVvm3rCpP22orLdiAS0hichS23QqckMQd3TuelIbhpJEjR0BmJBpnJWWeP3vH1X26N9VuNKCN7SDPW4fd4DFIGvAl8HCsCvrfK6pbC5z/phcGFR2Fxg2bC5QohnhBDPTE5OLvm8YDW3nsEQ3oDPdmBTT4jrNieIBTU0PCG87+at7N2cZCgRwpWS8ZTJ2Fwe13UZS+XJmDZF27t2NKjzhh197ByMl9c11ONGcWQ8VdXsfmQ8xWcfOsbBUzMYmue689SpGf7owNGqpvlKF6qnR+cIBXRG+qIkIkEMTZC3XJ4ZnV3RzawVrh/K7N5y2qFHaKMm9w57616Hk2H0VQaaCAd0IgGNkKERNjT6YkGS0SCJsEEkoOEC52YKnJnOcGoyw4mLGU5NZhFi9XWv0kXzxq09zBdsnjo1w0Q6X/PctVw7m9VYl7tJLqHL3cNbrsn2LY1o/Xr4VN5GSsgWHfrjQd6xb4hdg3EcV6ALgZReXs6M6fC6rb1869B57v32UdJ5i43xYDkS4LcOna96/n3DSa7dlCAc0Jk3bcIBnWs3JdhXUdebrT9fOjjK2ekcQNmF7ex0ji8dHG3R3ele9g5766I/+/4buy0NVbvayJYzkS4QCeroK6yHCGgg8SxqG6JBesIGoYCO5UiS0QCv29rLbXsG6Y0G/CUPkkTIoGi7DMSD5b6Xrmvc8/ZdS9qNoiMbXkZQaoOKjovlSEIBnZtGehlMhEmEDaLhAF/76H6+/1tv42sf3X9ZBn6K5aknz18Wz92rlbQtbG6zS9ltCbYj0YQnyGQkSNDQcV1JqmBx4mKW12ayFGwXAWhCULAcbBcvX0okSJ9v3i7M5Ni/a4DXb+/lwOEJ/vqHZwjpgrFUgW39saoz9bVmLg8cnmAqY5IIG2XXF4RgJltcdmamNNvxjRfOszEeRNO8cf5srkg44M2erhT6thXWhS6fQew42qRHaKMmwZtIeOHsHIVVLjiyHRchBJbtommeBqUU5Is2uublF3OBgiUxNM8NxrQdpjJFiqtYX3tkPMWnH3yF6YzJQDzE7o0x9u/q4/D5NC++luKd+zYtW69ruXauRmPraUbz/FyegA5PnkqTLlj0hAPsHIxyfq71lqpW00ZNttwNOxLw2qhWYruSgB+FdzjhdTR3DcaYzJj0+HU6Y1qkCzaPHZ3kwRfH6AkbFXqoHQmwlHJl73DPAo1UTrQ0a0F//twc8ZC+wKUUKXn+3Nyq7sl6oFvdYduox5Yz1BPmlfkCQgjPdWUZbBdcx+W12QJDPSEGe7z1eiVPltLSool5k+MTGSIBjc29EaIBjQspk4CRZt9wstxG3bXo/M16aO0dTvLOfZuUd1cXUivP359JKX9dCPEvVJkulFK+p9mLtjNs7qqRntDOz+Yo2C4ulwZ6Mzkvz1ciEqAvGmQ+b+Hl/BQMJ8PEQl7kzh5fjJWDufmCtwaiaDuMp+wlg6DFHUTLcTg1meE/fu1FBIJc0WJj4lLjFjI05gv2io3bUI/n6llqYE3bxXXlgoW4yzWSrRq4radO6uWinXr0j2+rJu+8foiHDl9gtYF4LVdiaAJNA13zAivNZi0viIWUaBpI17tBjgvRoMFAIsTrt/c1vb62NDEzkynSFw2Uo4b+1LZe3rpnkPFUoeY6plodUzU54hHSBQdPzZAIG+XIrE+dmmV/nekALgft1mQVVu2G3Y7BH3gDv4FYAN0wGE8V2D4Q553XDXFsIsuTJ6c4P5enPx5kIBZk8jWTyXmTaNCgP+6lSaoVCbAejWzpjXB6MsOFeXNBRNAdg/Ga5fbaVodJ3+0zaGjEAjqBRemYmqVbB1Dd6IZ9GfS4aj60f4SPf3UWp46GUdc1bMtlYt7kdSO9ZW+TkpHh/FweV8Kbd/UvqPfb/YFZrTZqNZOQ620JwpVCLcvfLwO/Dny2lRdsd9jcZlcUlY5z8QK8zJs2saBBznKI+Qk1dd/SMJyMEA3qhIM6+aJNJKh76x0sp7wWoepsf190WRFWdhCnMgWeHZ3z/KglBAzBXM4mqFtsiHk+36bfUK00u/Kh/SPl5JqJkI6UXo6YN1Z0qmrN0qiBW8fQFj1C+zUJXj265/Zd/Nrfv9B0Ob3ouwKJJKBr9IQNwgGDmUyxHN2s5D5Tini2rT9KxnRWFWSopOW+eBDTcspWghMXs+wd1lfU4EqzqkpjlzIzV9LabHRtoW2a5JIbtgT+yreuL3DD9q30S/Ddtj8CMDIysuCzYhuS4JZybM4X7HIEzrddM8BdN2zhLuADp6bZ3Bsp1/+wv27vQrpQHvytNhLgnqEY//jca8RCBomQTjpvMT6X510ruHhv74/w+LEpQgGdkCEwLZd0zuKtewaaLkuJbhxAlejSVDLt1GNbuOuGLfzF907yyoX5mg87XYOiI9naHyFr2tiu95u8fnsvjxyZLNex58/Oks5ZxMNGeS16PW3faiYh1QRmd1Jr8HcSQEr5/RZfcwj4JyFE6fp/L6U8IIR4GviaEOLDwFng/c2cvNnOQimlgyu9jqMtIRzQMDQvmfvRCS8/WSIcYEMsSLrgLZiNh3QQgnnTpiccYHt/lO0D8YbdUCo7iCcuZsth6RMRg92DMaYzRS7Om4QDXrjsjOkw0h9dcf1SyY2mtLh+UzJMLKizsSeCK6Wapeke2qVHaLMmS9x1wxb+1y+/UDVJey10AZuTXoJa2/Vcs7f3x/jJkV6khMmM6U+8eNZAXYKLLEcFjPuzkSFd8LmHjzU8C1/S8u7BGM+d9dzBgrqXx2yxdqrN9KuZ0ZUpOpLX79jAqalc2XKzdzhBsdV5CVpLOzXZFjfstuTA9U9ZdCT9caO8hu+12Ry5ouTlsRQ9IYOALogGDYZ6QpydyWNaDq7rrhgJsJ5B1LGJLDeN9HIhbZIueO3oNUNxjk1kl7i4VdIbDdIbDWI5DqbtYmiCiL9ttXTpAAro2ijd7dRj27h93yZMx+X0VBa7ytyMAPpjIbYNxNg33LPAgPC5h48tqGMD8RCpvMWJyWxdgcgqWc0kpJrA7D5qDf4GhRD/cbkPpZR/0swF2xk2t1EEl2abJV6HLmTonv81kmQkSNF2SEaDhAyNi+kCMzmLTT0h3rCjj9GpLM+fm+OmkV5G+mML1iIcODzRkB90ZQcxlS8S0jVMR5ajCd56dT9PnZ7xohoiuWVn37LRPhdz1w1bFqylWNxBVbM0XUFb9Ogfu2aa3BALMpkprrwjXjSqTckQfbGglyNM07h1dz8CCBh6WVtv2T3AD05MoQuBoQuKtkuu6KV1MC2XbX1Rzs3kcKUkYOgNz8KXJmYGE2FuGuktJ8btj4cWHF+rk6pmRmtTusf7d/aXt602Musa0E5NtsUNO7hSZIkmqOyvZosOQngJp//7Y6fY3h/DdSUzuSI5y2GkL0p/PEyu6JAu2FzMFFeMBFjPIOr8XJ5oaKGrZjSkrzhYKTqSW6/uXzDpsHMg2pJJhy4dQAFdG6W7bXpsJ3deP8Th8ykupArkiw6uXKgpQ/NSjG1KhJZMGi6uY7s3xnjmzCwzmaKa3FfUpNbgTwfirD4vc0cSDggsW9IT1nHxAkU4rmRTT5ir+qL8/E2b+fx3TxIOGuXw0uGgwU39UcbTJgFDZ8dgnHdd761rqNapa2S2v9J0rgkNhOCmkWR59iYcMHjPjVsazpG03LVUx7PrWBd69AJB1Df42xALEDJ0JjNFNvWEedOuPoKGzuh0Fk0I6IuSCBsMJSNcuymBablMZkxCAZ3tAzEiQYOesMGOwTiT8wWCFQPGRmbhKydm+uMhgoZOKm8tGTjW6qR2WbS8NadLraNt0WQ73bCHe6PM5NKtLG4ZQ4NY0MB2JDNZE9e/LcM9Ic7NFciZNuNzeQYSXsL3P/yFn6grAmA9g6hm14y2c9KhSwdQgNLjWrJ3OMkn3rWHzz9ynMeOTZKriFivCdiYCLF7KMGOwfgSb5XFdWwgHubaTQnG0ybjqYKaaFQsS63B37iU8vfXrCRriKHB1YMJfubGTWW3lHTBJhkx2DecLAvsGy+MkcpZZZfO67f00BcLMZ4q8Nn3XzKUVHMracYPujQoKz14g4auZm8UJdaFHm/ZOcAzp2dZKYZjJKABgr2bEmxMRhZ0oLb1xzyLfCRQ1tZ/+bnra2rrE19/kf54Y6GsS9Sr5W6e6b/cdOm6kXZpsm1u2Nv6Irw81rrBn4ZnpdCAgK4xmytiaMJbf6t5rtfhQAQhBBfSBVIFm50bA/zb1w1zbCLL977+4oou2PUMoppdM9rOQU6XDqAApce1Zu9wknvuuMDvBd4AABoMSURBVJqLGZMTk1mEhIAuCBga127q4X97Z/XJw2p1TNM0PvOefZ3+WykuM7UGf101e1IibGgUqjlO+wjgX+65tS5h7BtOLml0Unmr7pm7Zi1sXfrgVbSXrtTjYqJBgVujVybwpm+39cfYszHOicksu4YSC/ZJhA3GU3ZDVvDVzsLXo+VununvBLrQI6EtmmynG7blSvqjBtO52tMvKw2cDIEX6CxkYFo28wUHR0oMISg6XsLqyiTCAwkvGrbtwmfes6+hQCj1DKKaXTPazra229txpce15cDhCSxHsq0vWg4qVrAcpjJmzZRe3VzHFJePWoO/NV1/1wqOjKeIhWoP/m7Y0lO3MC7nzF0XPngV7aXr9LiYbx06zwNPniNkaBQsd0nnUgMMXZCMGNw00kt/PMTxyQzzBXvVA6q10HI3z/QrmqLrNJnK2/REgghNMJWxlt1vMBEklbPKgycNEJogoAks16U3GuSd+4b44P5tfPrBVzg3nSFjOhQdSVDX0HBw8aJjl5ZNZEyH/Tv7Gg6EUm+qh2bdN9vZ1qp2fE3pOj3CpRgM33jhPFnTZigRAn/wFzI00gVrxWTrqo4pGmXZwZ+UcmYtC9IKDhye4PrNSX5wYrpqPjEd2LKhdqdxcTCUO/YOLrumT6FYK7pRj4u5/+BZYiEDR0oKRYdc0abgh/7UBRialy/zzVcPMBD3LAKv2+rlMwIoWDZHxueZzVm8ZXc/R8ZTdWtxLWZI1SzslUU3alJIyXSmSNDQqn/OpRyZAV0joEsQwkt1JATxcIAdAzE+8a5LbmhewvYQG3u08kAvlSuS8fMJpgsWIUNnx0CMu/dv469/eKZh9+iVOrhq4kXRjXqsDBI2lAhxsmBzfq7AVRsEsZCBabuEjJXTCSkUjVLL8td1vDyWYiJdZDAeYGJ+4axmyBAMJUIcHptfttNYLVrfI0cmuyIvj0LR6UykC2yMBzE0wTkzh0QQ0iWW61n8HEeStxyOT2SYz9vousZH3roDgC8dHOWJkzNsiAZ48+4+AobecM6stZghVbOwik5GCkE8rDNfsJe4dhqaP+jTvJywt+7uJxLUeXZ0lom0STIeYP/OPu5eFGX6us1JogF9QYL1G67qLecaW5xapR3u0WriRdGNVFrBB+JBXr0wT77ocGoqw5ZkBEfCjoHYiim9FIpGWVeDv3TBpmDZ2K4gbAhMW5YXgm/dECUW8r7ucu4l3ZyXR6HodIZ6wqT9Tl9Q17AdieWI8sSM0Lwky9PZIumCl/erpLvBRJi3X7txiRuX0qZCUT+a8AZaQUMnqQlSebvcRuqaIKgL3rCjD13TiIUMio7k3T+xuWZAFs/qlmPfcM8Cq9tyqYjaZaVTEy+KbqMUJGxyvsCpqRzDyTBT8wXmCw4XMyZv3tXPPbdfreq1ouWsq8FfMmJw8qKNQBAPGRQdCyFB12C+YGHoGj+5Nbmse4mK1qdQtI8P7R/h3m8fBcB1JeGAhq4JNsaDxMIBQoZGxnR4x74hUnlrQYJmpU2FYvW40ksEbTouRRt6owHPrVp6aUx+8qokVw/1lC1z9QRVatTqpqx0CoVHyQp+YjJLyND86Ljea6+f0F3pQtEO1tXgb99wklfH53Fcl6Lj5f5xAU1oOBJuGuldkOtrMSpan0LRPko5ve4/eJbxVJ6wrnPLjl5OT+fKa4XiYe+RtHhgp7SpUKyenrBBOqfTEwmUNXdmKsuGWID3/uQly1ujEyuNWt2UlU6huGQFn8kU2RD18lOatsv1W3rU5KairVRf9d2l3Hn9ELGgQU8kyM6BGFf1RQkZOpuSIXYOxMrJmZfzn77zes/ikMpbuFKW3yt/a4WiNdx1wxa+9tH9fOUjb+RNuwfY2BMhETJIF2xM22X3YAxYOrBT2lQoVs91m5PsGYoTCuhkTIdQQGeoJ0wyElywn5pYUSjaT8kK3hcPMpOzCAd0fmpbLwPxsNKgoq2sq8Hf3uEk99y+C4DpbJEN0SA3bU0S0nWSUW8tX60AESUhJiMBxlOFFfdXKBTNUam1ZDQAEvZsjNMfD1Ud2CltKhSr587rh9B1jX3DPdy+dyP7hnvYsiHCgK87NbGiUKwte4eTfOY9+7jhql72DvfQF6veBioUrWRduX2CZ1nYORhfsJ7gt2ssVl+MckdRKNaGSq0tTrFSbQ2Q0qZCsTqqrbf75J3XAKg1eArFZUKtg1WsNULKKgnxugQhxCQwuszHA8DUGhanFp1Slk4pB3RPWbZJKQfXsjDdTA1NdsvvvdZ0Slk6pRyg9NgyltFjt/zWa40qS3WUHltEl/RZO6UcoMpSjZbosasHf7UQQjwjpbz5cpcDOqcsnVIOUGW50uike6zK0rnlgM4qy3qkk+6vKkt1VFmuPDrlPndKOUCVpZ3lWFdr/hQKhUKhUCgUCoVCUR01+FMoFAqFQqFQKBSKK4D1PPi773IXoIJOKUunlANUWa40Oukeq7IspVPKAZ1VlvVIJ91fVZbqqLJceXTKfe6UcoAqSzVaUo51u+ZPoVAoFAqFQqFQKBSXWM+WP4VCoVAoFAqFQqFQ+KjBn0KhUCgUCoVCoVBcAXTl4E8IcacQ4qgQ4oQQ4lNVPhdCiD/1Pz8khLip3mNbXI5/51//kBDiCSHEjRWfnRFCvCSEeEEI8cxqylFnWW4TQqT8670ghPjdeo9tcTl+q6IMh4UQjhCiz/+s1ffkb4QQF4UQh5f5fE3qyXpH6bGpsqyJHussy5poUumxvXSKDhsoj9Kj0uO6p5N02SmaVHqsWo611aOUsqtegA6cBHYCQeBFYN+ifd4NfBsQwBuBp+o9tsXleBOwwX//06Vy+P+fAQbW8J7cBnyzmWNbWY5F+/8s8Gg77ol/vrcCNwGHl/m87fVkvb+UHpsuS9v12Mz52qlJpcf2vTpFhw2WR+lR6XFdvzpJl52iSaXHZc+9pnrsRsvfG4ATUspTUsoi8BXgvYv2eS/wt9LjSaBXCDFc57EtK4eU8gkp5az/75PAVU1ea9VladOxqz3XLwFfbvJaKyKlfByYqbHLWtST9Y7SYxNladOxrThf2zSp9NhWOkWHdZdH6VHp8Qqgk3TZKZpUeqzCWuuxGwd/W4BzFf+/5m+rZ596jm1lOSr5MN6ovYQEviOEeFYI8ZEmy9BoWfYLIV4UQnxbCHFdg8e2shwIIaLAncA/VGxu5T2ph7WoJ+sdpcfmy9JuPTZ0vg7QpNJj83SKDhspTyVKj4tQelwXdJIuO0WTSo/N0dJ6YrS0aGuDqLJtcb6K5fap59hWlsPbUYi34Qnp1orNb5ZSjgkhNgIPCyFe9Uf+7SrLc8A2KWVGCPFu4BvA1XUe28pylPhZ4EdSysqZjlbek3pYi3qy3lF6bK4sa6HHestS4nJrUumxeTpFh42Ux9tR6VHpcf3SSbrsFE0qPTZHS+tJN1r+XgO2Vvx/FTBW5z71HNvKciCEuAH4AvBeKeV0abuUcsz/exH4JzzTbbOsWBYpZVpKmfHf/ysQEEIM1Ps9WlWOCn6RRebzFt+TeliLerLeUXpsoixrpMe6ylLB5dak0mPzdIoOGymP0qPS43qnk3TZKZpUemyO1tYTucYLYFf7wrNWngJ2cGlx43WL9rmLhQsjf1zvsS0uxwhwAnjTou0xIFHx/gngzjbfk02A8N+/ATjr3581vSf+fkk83+ZYu+5JxXm3s/wC2rbXk/X+Unpsuixt12Mj93itNKn02J5Xp+iwwfIoPSo9rutXJ+myUzSp9FizPGumx8sujiZv0LuBY3gRbn7H3/Yx4GP+ewH8uf/5S8DNtY5tYzm+AMwCL/ivZ/ztO/0f6EXg5dWWo86y/Lp/rRfxFvK+qdax7SqH//+vAF9ZdFw77smXgXHAwpsd+fDlqCfr/aX02FRZ1kSP9ZTF/7/tmlR6bO+rU3TYQHmUHpUe1/2rk3TZKZpUeqxajjXVY2lkrVAoFAqFQqFQKBSKdUw3rvlTKBQKhUKhUCgUCkWDqMGfQqFQKBQKhUKhUFwBqMGfQqFQKBQKhUKhUFwBqMGfQqFQKBQKhUKhUFwBqMGfQqFQKBQKhUKhUFwBqMGfQqFQKBQKhUKhUFwBXNGDPyHErwghNjdx3BeFEO+rsv0LQoh9Kxx7RggxUGX77wkhPtFoWdYDQojbhBBvatV+qyzLdiHE/1zx/81CiD9t5zUVq6NRHfv16JvtLFMnsbhOr3a/FpTnPy36/4l2X1PRPurRnxDiN4UQ0TaW4WNCiF9u1/lXuHbVNr2B4+u6N+2+h/41fq6yDyOE+H0hxB3tvKai9TTbt/WPfY8Q4lMr7LNsG9psPRVCPCaEuLnK9n8VQvT679veVlwp7WVXDP6ER0vLKoTQ8RI3NiWQakgpf1VK+UqrztcqhBDG5S7DCtwG1DOoq3e/mqxwP7YDZUFLKZ+RUv7Gaq+p6B4dr0O2U1GnW7BfTfzfpBYLGjMpZVsndBQel1l/vwk01CFcXI9q1Ssp5V9KKf+2kfO3gjrqej3Ue28avofVWKHMPweUB39Syt+VUj6y2msqqtOJbaKU8kEp5b2rKEJL6mlFed4tpZzz369FW7GdK6G9XE1G+na+8G7sEeC/A88DnwaeBg4Bn/H3iQHfAl4EDgP/k7/9dv+Yl4C/AUL+9jPA7wI/BO4GMsBR4AUgskw57gVe8a/7WX/bF4H3+e//i/+/BjwG3Oxv/wvgGeDlUnkryvCHwI/9125/++8Bn/Df7wIOAM8CPwCurXGffhZ4yv++jwBDFee7D/gO8PfAIPAP/j18Gnizv98bgCf8458ArlnhN/kB8Jz/elPFZ5/07/eLwL01zvEbFffzK/45LwDn/d/hLdW+0zL7Vf1Oy1x38f2o+l2AJ4GUf42P4w04v+l/1gd8wy/7k8ANl1snnf6ic3R8J/Cqf8yfVvymVeu/Xzd+suL4HwE3AP/Gv84L/jGJZa4ngD/2v89LFd/pNuBx4J98HfwloPmfvRM46NfHrwPxiu/7GX/7S9R+HiwpX5U6XW/d1/3vUPq9PlrjurcB38PT1iv+tm/gPcNeBj7ib7sXcPxr/J2/LVPrnqlXd+sP75lf9M/zvTrqeuncv1jl/3/vl/9FvGd/1D/u97jUfj7GpTb2GPCWGvfnV4B/xmtvjwKfrvhsSf0t1Vfg9/HaqFv9Mg4AEf88/36Zay25z8vcmyV9h0bu4TLXXvE+4k2szgCn/d9yFwv7OlXrg3p1nyYrjlnSrvia+DP//S68duFpv86XntW34ens/8NrV/8O7/m9pJ5Wua7u16vSc/7jFbq9Ga8vfT/wXyvKOVDSXq3r+5+9mypt/TJluWLby8suhBUE4gJvxHvI3ed/WQ34JvBW4BeA/1FxTBIIA+eAPf62vwV+s6ISfbJi/8fwB2vLlKEPT0ClStXr//0i8D7gj4C/qvi8fD6gr6KiP4Y/UPDL8Dv++1/mUif097jUeH0XuNp/fwvwaI0ybqi4/q8C/3fF+Z7FF75fyW71348AR/z3PYDhv78D+Ica14oCYf/91cAz/vufxus4Ryu/+zLnGOPSA6t38Xev4ztV7lf1Oy1z3cX3Y7nvchsVDwsWDv4+j985AN4OvHC5ddLpLzpDx6VzXe1f+2sVv2nV+g98CPhv/vs9FfXjX7g0cRIvHVvlmr8APIyn/yHgLDDs16cCsNP/7GG8Z8kA3qAw5h//28DvVnzfe/z3/wH4Qo3vuqR8Vep0vXX/I8D/4b8P4XVIdyxz3duAbOXnXHoGRvAaqH7//8yiYzO17tnlrsPd/KID9FdxTKkDt1Jd/+Si4yr/7694/18rdPF7LBz8ldqMdwOP1CjXrwDjQH9FPV3chi+uvxL4wKIybsebqPzlGtdacp8X35tF163Wd1jxHta4//Xcxy/iD/Yq/69VH9SrqzW5pF1h4eDvm8Av+e8/xsLBVwq4yi/3QS71xRbU5yrX/Sng4Yr/eyvK/Ebgy/h95Cr1vub1K+7RDn+/L1N78HfFtped7vY5KqV8Ek8g78QbmT8HXIv3I7wE3CGE+EMhxFuklCngGuC0lPKYf4778cRU4qsNXD+N11H7ghDi54FcxWf/Ga/SflT6v8QiPiCEeM4v83VUuFLgVcjS3/2VBwkh4ngzcF8XQryAN7gcrlHGq4CHhBAvAb/lX6vEg1LKvP/+DuDP/HM+CPQIIRJ4D5WvCyEOA59bdPxiAsD/8K/19YrvdAfw/0opcwBSypka5zgE/J0Q4m7AbuI7VbLcd1qOyvux3Hepxa3AlwCklI8C/UKIZB3HXelcbh1f65/ruK/VByo+W67+fx34GSFEAPhf8DpB4FkA/0QI8Rt4+l+uDt8KfFlK6UgpJ4DvA6/3P/uxlPKUlNLh/2/vXGPtqKo4/vvLhyqCNQX1AyG0UkkxNBiqEIIfaETBR6x8gGJKEZto5GEtYjAKGKIhKAqENFUxamskQMIrQIC2JEKqtQ8eWlCDmrQhwVQjDYjaFoG7/LD2XOZO954z5/aUc5qzfl/OnZn9nrVmP9ba+/o34MN4p/d+YGOS588Bx9TSuyf9PokPHkp0KV9X2f8YcEEqzxZ8gPy+lry3mtmO2vVySdvwFdKje8SF9jYLps+w9a9JL1lvpl2/PkHSr5PsLqHcN3TVF/CB6K7UN9yDyyGU5fd13FpW5z68D2xzPc21c462sUNFrzbMMZ12rOglD0F/jIpO9tKTU/E+Anyxvc5WM3vezCZwy1Qufo7twHslrZR0Fj7OrrgF+IOZXdshnVz+84DttX7o9lLkxNj2l6O+F+y/6VfAdWZ2SzOApAX46t51ktbjk4AuafbEzF6TdDJuaj8PuBS3+ICbdhdImtWc7EiaA3wN+JCZvShpDb4iMZl04W/wVYyXzOwDHYu5ErjRzO6XdDq+AlpRr+tbgFNrk5+qrCtx8/zZkmbjqy8lLgP+AZyY0ttbJZOpR4lP4h+sTwNXS8p1Om11qpOtUwv19ijVpQ1l7nWt9zgzVD1OlN7Td8jIv5ntlvQIsAg4F3dHwcy+K+nBVNbNks4ws2cz6eZkpVQWS+EfMbPPFuK8kn5fp+W7nStfJlhX2Re+MryulF+DyXeS9PYMXD93S3qMqd/AUn7B4BkF/ZuSHe2y3ky7fr0G+IyZbZN0Ib6CnqOTviT20cce8rs3LdzU2Qh8XNJthcVgzOwvzXY2s2/Xw3QYO0wGpb0Nc0ynHev5BYNjVHSyHz0pxe0rfpLrE4EzgUvw/nVZevxbYKGkG8ys15gsl39fcjrO/eWoW/4q1gHLklUMSUdJerf8NKPdZnYr8APgJNzXd7akuSnuUnxGnOPfuI9vlpTfTDN7CN/EWp+QrcX9cR/MWJvegb/Yf0l6D+4WWWdx7XdT/YGZvQzskHROKoOSopSYie+DA1/9K7Een7xWdavqUo9/YUv8KuzOtNKyFDc3V2kvUzrhSdKsXOS0sfloM3sU3yP4TtzU3nwPpTo1w5Xq1IVSXdpkYgO+Slop6wvpfQXdGIoep7TmSDo2XdcHTG3y/1N8z8Dj1QKPpGPN7Bkz+x7u1jGvkOcGYLGkQyS9C1/w2JqenSxpTtKHxfjehM3AaVV9JR0q6biWOmUplC+nX11kfx1wUbJ+Iuk4SW/vWJSZwIupI5uHWyoqXq3SbNDWZsH+Myz9a4bZH1k/HNiZ5GdJxzi9+KikWZLehh94spF2+c3xLWAXvo8rS6GdYWrbtI0dBtWGUG7H0rvsRx6C7gxTJ7uwGXcvBDeAdKHXuPpIfJ/73bgH3Um1xz8DHsK9caZjnHoWtyrOTteLy0HHu78cdcsfAGa2XtLxwCZJ4JtZzwfmAt+XNAG8ClxkZnslfZ43hOdx/FCFHGuAH0vaQ96CdDhwn6S34rPsyxrlujNN/O6X9Ina/W2Sfodv3NyOdyZ1Zkjagk++cyt3S4AfSboKNznfgW/8zXFNquvfcEWdUwi3HFgl6Wn8vW/AfbivB34h6avArwpxK34I3J0mpo+SVi7MbG2aeD0h6X+48n4zE/8Q4Fa5q6SAm8zsJUkPAHdJWgR8uaVOzXClOnUhWxfcLfU1ufl9De6OUXENsDrlt5v2yXbQYFh6nNL6Ir5Q8wI+2TohPS7Kv5k9KellYHXt9gpJC/GVxj8BDxfKdC/uMrMNtyxcYWZ/Tx/2TfjC0XzS4S9mNiFfgb9d0oyUxlX4gRX9kCvfBFNluqvs34y70jwlf2H/xAfHXVgLfCnpyp9xPa74CfC0pKfMrD7wzLZZ96oHbQyxHwV/5w9L2mlmC/dD1q/GXaqew13jBjHA/Q3uzj8XuM3MnpC7eJXkt8QK4OeSrjezKzLP59No53S/2TalscOg2hDK7XgH7uK2HN/rB0x+Q7vKQ9CRIetkF1bgY7bL8QNoSq7KdabIaeb5Ufg4qjI+faP+0MxuTGPEX0rqa4HHzPZIuhhYm/r6XpOhse0vq0M1giAIghpp9fUx/BS0iQGleTp+MMWnBpFeEATTJ02gPmhml/YKGwTjhtyba4+ZmaTz8MNfFg27XG1IOszM/pMmYKuAv5rZTcMu16hxsLh9BkEQvGnI/2H0FvzUsYFM/IIgCILgIGIB8PtkkboYuHzI5enCF+SHrvwRd6fcZz9lEJa/SSTdy74uk1/vY/PmAUXSlcA5jdt3djwVqd+8zsT/T1KdHWZ2dh9prAJOa9y+2cxW58IPiuQW8ZXG7Y1mdsmBzDcYDd5sPZY0n3QCbI1XzOyUA5FfLd+hyPmw6hscHIxqPzqIPq2PvI7A/11Tk4+Y2a5B59fIeyTbPxgew5SJtL1pRuP2UjN75kDn3ShH9JcNYvIXBEEQBEEQBEEwBoTbZxAEQRAEQRAEwRgQk78gCIIgCIIgCIIxICZ/QRAEQRAEQRAEY0BM/oIgCIIgCIIgCMaA/wOEIKm5IIEPLwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA38AAANdCAYAAAAk08WyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9eXyc133fi7+/z/PMhhnMgARAENxEUhIlUrRs2VJkxa7reJXjXrvpTWLnV+eqbe51m6ZO6zZJnea22W5a39SNk+s2adSbNKrdxk5yk8a1a8mSHVteaMtaLIoiRYr7BoJYZ1+e5fz+eJ4ZDoAZYAAMgHmA8369QA4OnuXMzPmc85xzvosopdBoNBqNRqPRaDQazebG2OgKaDQajUaj0Wg0Go1m7dGTP41Go9FoNBqNRqPZAujJn0aj0Wg0Go1Go9FsAfTkT6PRaDQajUaj0Wi2AHryp9FoNBqNRqPRaDRbAGujK7AahoaG1P79+ze6GppNzHPPPTeplBre6HqEBa1JzVqi9bg8tB41a4nW4/LQetSsJcvRY6gnf/v37+fZZ5/d6GpoeohTY1kePzHOtdkyuwcSPHx0hMOjmRVfT0QudbF6mx6tSc1K6FS3Wo/LQ+sxXHR7/FprtB6Xh9ajZqV00jcsR4/a7FOzaTg1luXRpy+QLduMZuJkyzaPPn2BU2PZja6aRqNpg9atRqN1oNFoWrMWfYOe/Gk2DY+fGCeTiJBJRDBEGq8fPzG+0VXTaDRt0LrVaLQONBpNa9aib9CTP82m4dpsmf74XEvm/rjFtdnyBtVIo9EshdatRqN1oNFoWrMWfUOoff40vclG+S3sHkiQLdtkEpFGWb7isHsgseb31mh6iTD5DmndasJKN3WmdaAJE2EaY8LOWvQNeudP01U20m/h4aMjZMs22bKNp1Tj9cNHR9b83hpNrxA23yGtW00Y6bbOtA40YSFsY0zYWYu+QU/+NF1lI/0WDo9m+PBbDpBJRBjLVsgkInz4LQf0apRmSxE23yGtW00Y6bbOtA40YSFsY0zYWYu+QZt9arrKtdkyo5n4nLL19Fs4PJrRg6VmS7PRGlwJWreasLEWOtM60ISBMI4xYafbfYPe+dN0ld0DCfIVZ06Z9lvQaNYPrUGNZu3ROtNsVXTbDz9650/TVR4+OsKjT18A/JWgfMUhW7b5wAN7Or7GShyJtfOxZquwVFufr8HLU0VOjxfYsy3BJ588o7Wh0XSBbox1ddZy/NJjo6bbPHx0hE88cYYXClWqjkvMMhlKxfjAuw9tdNU2Ld3Wsd7503SV1domr8SRWDsfa7YKnbT1Zg2+ciPH6RsFDu1IcXg0rbWh0XSJbvnhrOX4pcdGzVrhKQWAIHN+13SftdDxkjt/InII+D1gRCl1VETuBd6nlPq/VnxXzaZmNbbJzY7EQOP/x0+Mt73mSs4JK1qPW5tO23pdg5988gy7B/q2hDY2Cq3JrUs3/HDWcvzaSmNjHa3HtefxE+PcNpjk3j0DjbJs2d7U7WojWQsdd7Lz95+AXwRsAKXUceCDS50kIn8oIjdF5ERT2a+IyDUR+X7w88NNf/tFETkrIqdF5N3LfyuazcBKklluseS4K9IjaE1uBpbb1reYNjYKPUZqVsxaanSL6l/rcY3Zou1qw1iLz7uTyV+fUuqZeWVOyyPn8kfAwy3KP6mUel3w8z8BROQIvjjvCc75XRExO7iHZpOxEkfiLeZ8vFI9gtZk6FluW99i2tgo9BipWTFrqdEtqn+txzVmi7arDWMtPu9OJn+TInI7oABE5EeBsaVOUko9DUx3WI/3A59VSlWVUheAs8APdHiuZhOxkmSWWyw57or0CFqTm4HltvUtpo2NQo+RmhWzlhrdovrXelxjtmi72jA2Ksn7zwC/D9wtIteAfwL89IrvCP9IRI4HW+zbgrLdwJWmY64GZZotxkqc6LdYctxu6xG0JkPDctv6FtPGRqHHSM2KWUuNblH9az2uMVu0XW0YG5LkXSl1HniHiCQBQymVX/HdfCfcX8dfkfl14N8Bfw+CcEHzbt3qAiLyYeDDAPv27VtFVTS9ykqc6LdKctwu6xG0JkPHctv6VtHGRqHHSM1qWUuNbjX9az2uD1utXW003f68O4n2+a+B31RKzQa/bwP+mVLq/1zuzZRS403X/U/AF4JfrwJ7mw7dA1xvc41HgUcB7r//fh1bVtMxmyHfUTf1CFqTmt4hrPrUY6RmvQirRtYTrUfNYmgN+XRi9vmeuogAlFIzwA+3P7w9IjLa9OuPAPWoSp8HPigiMRE5ANwJzHfY1WhWzCbKd9Q1PYLWpKY3CLk+9RipWXNCrpH1ROtR0xKtoVssufMHmCISU0pVAUQkAcSWOklE/hh4KzAkIleBXwbeKiKvw98evwj8fQCl1Msi8ifASfyoTD+jlHKX/W40PUOvra5sonxHK9JjcKzWZJfptXYeVkKuTz1GarpKq34l5BpZT0KlRz2GrB9aQ7foZPL3GeArIvKf8QXw94DHljpJKfUTLYr/YJHjfwP4jQ7qo+lx6qsrmURkzurKRjoEX5stM5qJzykLaV6aFekRtCa7TS+287AScn3qMVLTNdr1K/mKzeHR9JxjQ6SR9SQ0etRjyPoS8nGmq3QS8OU3ReQl4O34Tq6/rpR6Ys1rpgktvbi6snsgQbZsN+oC4cxLo/XYO/RiOw8rYdan1qSmm7TrV67NlslXnFBqZD0Jkx71GLK+hHmc6Tad7PyhlPoS8KU1rotmk9CLqysPHx3h0acvNOqSrzhkyzYfeGDPhtVppWg99ga92M7DStj1qTWp6Rbt+pVMwiJbthu/h00j60lY9KjHkPUl7ONMN2k7+RORbyql3iwieeaGsBVAKaXSbU7VbCJWYo++mtWVtbJ/r+dJab72Bx7YE5rVNa3H9aWTdhjWVcRe9DEJoz61JjXzWa62Wh3frl85Mppp+P6FRSPrSRj1GNYxBOCLx6/x2LHLjOcqjKTjPPLQPt57b2+nOgzjOLNWiFLhjTx7//33q2effXajq7FpabZHb14lWcoefb3PW0tE5Dml1P0bcvMQshk02Wk77MX2uhRhrHMzWo/LYzPoMSwsV1vtjn/H4WGeOjURCo1qPS6P+XoMa3/8xePX+PiXTpOMWfTHTPJVl2LV4WPvuavnJ4CbmeXocdFUDyJiiMiJxY7RbF6a7dENkcbrx0+ML3pefXUlk4gwlq2QSUQ66sxWer+tgtbj+tBpO1xpO99ItMa6i9akps5ytdXu+DPjxdD1K71C2PQYxjEE4LFjl0nGLL/tGgaZRIRkzOKxY5c3umqaDlnU508p5YnIiyKyTymlv9VVUjfxODmWJVt2SMct7tmV6Qmzq1asxh798Ghmyfc03+Tl5etZHc1sEbQe14fltPtO2vlKaNZG1BQEqLpqWWaarUzKtI9Jd9lKmpzfng6NJDkzXuwp8+GNZLnamn/8RL7C2ZsFxvNVgC3/ea6EMOrx/ESBY+enGM9VuJyOc2gk2fPf+3iuwo5UdE5Zf8xkPFfZoBptfrrtrtFJwJdR4GUReQYo1guVUu9b8V23IPXtfc/zuDxVQkTIlWz6IiaPPl3qydWetbRHbxXi+OpMmb6ISX/C4uzNIrmKTdQ0OLqr50z1NxKtxzVmo/0wmvuKszcLXJouYRkGDx3cRrZsdRQKvF0I8UTE0BEDu8+m1+T89nRhosCfP3+V1+8bYN9gUoeoZ/n9RvPxE/kKz1+eBWCkP7bg8+xFP90eJjR6/OLxa/z6F07huApPeRQrDr/+hVMAPW0+OZKOkyvbZBK3jAfzVZeRdHyRszQrZS1SgnQy+fvVFV1ZM4e6icepsRzxiEk8YlKxXW7kqxwZTfdkaN/lRkZazgDVKsTxXSMpjl/NIiKkYiZRQyhUHK5nK5way/bc57NBaD2uMRsdEezxE+N4nsfp8QIzxRp9URPXg2cuzvLw0VjDlGy+Hpr1d3m6xGg6tiCEuO24OmJg99n0mpzfX9/IV0nGLG7kquwfSm3JEPWtdkKfOjUBdKat5n7m7M1Co/zOkbmfJ6BzwS2P0OjxP37tPMWqS1/UJGpYuJ6iWHX5j18739OTv0ce2sfHv3QaYI7P30fedvsG12xzUn8mODWWI1exSccj7EzHVtXfLurzB6CU+jpwGsgAaeB0UKZZBtdmy/THLXIVm5jlf+wxy6BQcXrW7Go59uj1lYls2Z4zQJ0ay7a8dv3zaGbfYBIRf+B0PIhFLR48uJ3bBpPaJylA63Ht2Wg/jGuzZcayFWKWgasUliHELANPKc7eLLbsL+brb7pQ45UbeSYLt8xw+uMWVVeF0sekl9kKmpzfXxcqDv0xk1zFbpT16ji2FrQa7546NcE7Dg93rK3mfmY8XyUdt3jDbQMMpfzdk/rnqf10l0eY9Hh5pkw8IlimIAKWKcQjwuWZ3tbRe+/dzcfecxfpRISbhRrpREQHe1lDTo5leeVGnort0h+zqNgur9zIc7LN83UnLLnzJyL/O/CvgK/ih8z9lIj8mlLqD1d81y1I3cQjHY9QsV3iEZOq45EKVgh71eyqU5+m5SYrbWciE4uYvOXQMIZIo9xTquOHis1uHqP1uD6slS9fJ+weSPDC5RkGk1FiloHjegAkIv7Ddqv+Yr7+tqei5Mo2Z28WGw+T9fPq762ulT/45sVNqZX1Yitocn5/nYpbgdnX1jQfbjfenRkv8tF3Hur4Os39TDuT0U58CTf7uLccwqTHiCnMj7ivlF/e6xwcTvHQwcFGmzs4nNroKm1asmUHESEeMQEa84ds2VnxNZfc+QN+HrhPKfV3lFKPAG8A/vmK77hFefjoCNmyzc50jIrtm15VbY+dgX3/w0dHNrqKq6LVTt5iK8H1zyNbtvGUary+b+8A+crcBr2cHIHL2X0MKVqPm5yHj44QMQ1yFYeBRISqq6g6HsmoSdQ0WvYX8/V3x3ASFEwWqnP0VT9vi2hlvdj0mpzfX+/sj1GsOuxMx1q2r83Ocse7pWg3Htbz/i02JmotLyA0enzgtm1UHI+q7eF5iqrtUXE8Hrht20ZXbVF0m1tf0nELFFRsF6UUFdsFFZSvkE7OvArkm37PA1dWfMdNSCerbs3JJUu224j2eWA4tSlW6Zbr7N4u2SawYn+r5e4+hhStx01Gq/7jI2+7nU995Zwf4TMTx3YVFcfjB3al+dBDty2ZcH64P86hkRQ38lXGspUFyWy3iFbWi02nyVZtsrm/PjCc4t1HR+ZE+9xKyZK7HRRqqeTTi42JWssLCI0ef/YddzJRqHJlukzJdolbJnfv7Odn33HnRldtUdbCB03Tnnt2ZeiLmNzIVylUHFJxi9u293FgFbutnUz+rgHfFZG/BBTwfuAZEfmnAEqp31rx3TcBy4nCs5GmZGvNSoJktPs8FhsEF2OLhLHXetxELNZ/fPKDr+3YlKuV/kzT4Fffd6TlOVtEK+vFptLkYm1yvknjezeojhvNWgSFajceLjUx1FpeQGj0eHg0w6//zaOhM9k9OZbl8lSJeMSc44NWst2NrtqmxO9vShwZTc/pb1ZjadHJ5O9c8FPnL4P/+xc7SUT+EPgbwE2l1NGgbDvwOWA/cBH4caXUTPC3XwR+CnCBn1VKPdHxu9hA9Kqbz1ID1HKvtZLzNjpE/zqxIj3C1tFkmFis//joOw91rIPl6m+LaGW92FRjpB7Tlqab412n99Na7phQ6TGMmwJr4YOmac9a9DdLTv6UUisNm/tHwL8H/ktT2ceAryilPi4iHwt+/+cicgT4IHAPsAt4SkQOKaXWZBmhm87RL1/PkivbFKouqbjFHcNJBlOxRVfdNsI5e7X3bHd+Lzmab3SI/vVgFXqEHtZkOzaqfS3nvqup42pX7Tu5d6tjmrVSsR1OjeWZKdn8tTsGdVqVZbLZxshOxrR6m3r5epZcxSGTsDgymtnwXYtu9BedXqP5oX0jgydthXFvOYRNj//4j5/lf750E8fzIzv/8Gt28Ds/cf8K38L6kI5b3MyWmSnWcJXCFCERMdizbcsuOKw53V4kkPmRhrqJiOwHvtC0inIaeKtSakxERoGvKaXuClZQUEr9m+C4J4BfUUodW+z6999/v3r22WeXVadmk5bmjnIl4c5PjWX56U8/R77qIkJDAPfuGeDAcKphItM8mMRM4Xq2wm2Dycb9L00V2ZWJ+/49azBwrPY9tzv/HYeHeerURFc+y27R7cmCiDynlOrtnngZ9KIm29GNdruStjD/vpcmi5wZL7B3MLHgAXe1dfzkk2cWrNrXf18qamAn917sGIBPH7vEN89Osa0vwq5MjOvZKjMlmzffMchPtvAt3Gi0HtdWj6fGsnz0cy8C/gNe1fGoOh6HdqRIxS2G++OcHMtyZapMMipcnK7geB6WIbxmV5ptqfiy+v9u9tfdGNtXco1uPlOslI1aJNN6XJ0e//EfP8tfvrgwZcf7XzvS0xPAf/Hnx/nKqXHyVQfHVVim0B+zePvhEf7137p3o6u3ZVmOHlceKmZljCilxgACMe0IyncD32k67mpQtgAR+TDwYYB9+/YtuwLdMGmpd7Sf//41pos1lIJE1EShmC7ZHL86y0//0O2NYx99+gKe5zGWrfDqzQIKiFsGmUSamuNyearEdLHGWw4Nr0kC19W+53bnP3bsMkdG0z1lHhRGE4oNZsM12Y7VtNvl+OK2uq/repwcyzGRq5Cr+MGZsiV7wXUWq2P9/8UeyFazat/J57OUWelwf5y33b0D23V57tIsMctgW8Li5es5nUh6Y9hQPT5+Ypy7RlKcHi9QdTxilkHV8Th+dZYd6TgvX89xdaaE4ypKNT85dTJmUnMUL13P86bbo3z62CWG++NLTkRWo9F2dV/t2L6Sa/SCmawe99aMNdXj/2gx8auX/85PrKrea8psqUax6pKIWMQSQtXxk9PPlmobXTVNh3SS5+9NSqlvLVW2SlolNWm5JamUehR4FPxVlOXeaCkzq/kraIdGknMimh0aSTZ2u3IVm6hl4HiKmuuvkCoFs+VbiW/rUZFOjxeIWQaGgON6fO3MBKfH81Qcj2TEoOZ6jQSu9fO61Zmv1rSs3fnjuQoPHti+5HV7yTQ07KyTHmEdNdmOdu3u5etZPvnkmUXb06ePXeL8RAHbVQ3TtXpi5HZmkSfHsmTLDmfHc4gYDCajVB0PAXIVB2Thg91idbw8XVr0wbZ+30LV5tpsmXTc4p5dma4GOFrqmPrfn7mQI2YZxCMmSikKVbft56WZy2YaI6/Nltk3mCQVt3jxSpbzk0XANw12PEUialKqudiuh+P55am4RdQSyrbLuckCk4UaO9Nxao7Hq+N5jl+d5RcevmtBO1rtwkmruq828MlKrrEeptuazgmTHr02F29X3itcnCqzayBOseZSdTziEYPBZISLU1s2yFDo6GTn71PA6zso64RxERlt2kK/GZRfBfY2HbcHuL6C6y/JYs7R81ciL04W+Nz3LtMftzAN4dXxPJ//vs29ezJkEhFEBAMwUBRrLqYpuJ5H2Vb88l++zB07Unzr3BQ1xyVqGkwVXGaKNh5+z5Er27gKSlWXPdtufRXdjtS1WofwduePpOPkK06jfCJf4eXrOWxX8cknzzQiEXWyurvUALjUpHwLDZjd1CP0gCbb0ardXZoscnWmzJ5tfYtOqr55doptCYtUzKRquzx/eZb9gwmeuVCZ02aAxs785akSIkLZ9jBFMVWs4XoKy4BSzaVUc/jO+SkODvdxcqzEJ588w8nrOV4dz3PPrjTD/beSqecqDsmo2QiFbYqQr9j85B9MsKM/zv7tCaquIhUzyZZspoo1cmWbH7lvV+N9fPH4NR47dpnxXIWRdJxHHtrHe+/dvejnM1/XSx1T/3uuYtMf8/ugquORiltbPWLgctgUY+SpMX/B4vuXZ4lFDIpVh219EbJlm3LNo1KrkIiaGAJe8HRadWG6UEUhCB6nb9iA39Ytww8IMVWo8eljlxaYg61m4aQV3Qh8spJrzD+n1TjYiclop++11VgJy58sL0WIJ6WbQo+9jEJRcVxyZdvf+DANTAOSZiepwzW9QNtvSkQeEpF/BgyLyD9t+vkVwFzh/T4PPBK8foRbUZg+D3xQRGIicgC4E3hmhfdYlMWSqTavRBoinJ8oUqy65MoO6XjQsRdqnLtZAGAgYZGtOMxWHKquwnGVHwHJMjl5PcezF2cY6Y+RK9tcn62QLdlIsF6k8HcIBXA9hYg/aBw7P8WXXrrB5elS1xJmLvaeV3P+Iw/ta7wez5X57vlp8hWH1+5NNwaxzxy7NOczrb+ur+7C0glD5//9wkSBj3/pNBcnC1smwega6RF6QJPtaNXuzowXuGskhe26PHNhmu9emOL8RIHPHLvUOO/xE+Ns64uASCMimVKK75yfIWLKnDZTb583clXiEZNMIoJlCFXHn+zlKzbTJRvb9U3gKrbLN85M8up4nmzZ5rV70+QrDt89P814rtyoryHwyo08FdvFAC5OFbk+W6Fqu1gGfPv8NC9dm+XFq1mqjsdgMgrAp75yjlNjWb54/Bof/9JpcmWbHakoubLNx790mi8ev7bo5zNf10sdU/971PTfW8X2V3LvGE5u9YiBS7KZxsh6HzuajmEacCNbYTJf5Ua2Qs3xA1F4+IsgUcvEMG5tfVRdhet52B44HiilUAo/N2XNZaJQ4fMvXueTT56Z00e3S16eCxYUF9N4K1Y7zq30Gs3ntBsH241N8585Wo2PzbQaKz/xxBl+8/HTXU24HcYk3ptJj73OYCLCtdkKNdfDEqHmelybrTDYtGii6W0W2/mLAqngmOYQuTngR5e6sIj8MfBWYEhErgK/DHwc+BMR+SngMvBjAEqpl0XkT4CTgAP8zFpFFayHTP30sUs8dWoKQdi/PcFnjl3im+emGOmPcedIiqFUnCszJRzPZbbsYc2W2dYXpS9qcC1bYSJfwfEgagq1YPxyPUUiYhK1DFxPMV2qcf/+bbx4ZRbb83f7pf4joBSYhpCOW8yWbJ6/NAsCpgGj6VjXfG5WGia2eeUvETGwHZdXbpQaCerPjBd5x+Fhvn12iqdO3cT1/IA1zearz1yY5u2Hd8y5bn1HoX79J0+OEzGFe3alMSQyx/ynlV/VjXyVZMziRq7K/qFUR6ayIV7FrLMqPULvarKZ+d/TOw4Pz9nh3TuYoC9mNvzT+mMWs6UaX3hpjPF8lXt2ZTg5lmVXJsYzF2fxlK/Jcs3B9QjamFBzXM5PFLg4VeKukRQThSrDqRgAUUuo2IIIuMrXq6ugWHW4Ml2iUHUwBZ48eYOYZZAM8hy9eDXLu47s5AMP7OGXP3+yMfG8WqiilMIw/EWfRNRCBPIVG0EYSfu7H+m4xXTR5vET43z11Di5ss1koQpAf8wiGbd47Njlxu5fJ7pe6pj63z9z7BLfCAK/vG5vhqhlbumIgR0S6jGyWWuXp0uMpmPsH/IDu3zx+A1KNRcPMMXFU37bFcB2PZJRf+ETwBAQBMMALxjnLEOwXY+S7bszuJ5asKvVzt81k7CoOg4vXM42NF6xXb5xdmrRSLTdCIe+0mskIgbfvTDFRL7KYF+U23ckOT9R8l1DTIPPHLvEb7QIhNFu9/PkWGvT9mZ/5Hqy55lilb6oxb17BoDu+ByGNIl3qPUYJmYr/hhYcxT+vj9ETL9cEw7aTv6UUl8Hvi4if6SUuiQiSaVUsdMLK6Xauau+vc3xvwH8RqfXXy1l2+PBA4NUbIfvXZhBAf0xk1zF4blLsxwc6qNkuwj+4DZbqjGZrxI1BU+El6/nyMQtoqbB2YkCEQMs0wgCv4BlCp7yJ3lGk3V43eDbEkjGLIb6YxzakeJ7l2awPY+hVIw7diQZSvmrbSsJRLOYOchPvXn/siMejmbijaikhkgj0WS2bPNnz13DEGEgEWVbn0XNVTx3aZY33DbA9mQMhZpjGgr+6m7MlMb1PeWBMnj+8iyv3zfAcH+8pV9SnULFCb6rW76Vi5modTuwwEawWj0G1+hpTbb6np46NTHne/rkk2f42umbDf+0Us3hZr6GZRjkgtX3s+MFaq6/m1aoOpRtl0LVN1M+O1Hk2LkpchWH7ckIluH78+XKDhHDYFsyilL+g2wiYuF6Np6ncD3/AbdUc6m5ioghVG2Pcs0lYhqYYrB7IMFH33mIU2NZJvIVpgs1Zoo1Ko4bnO8/FAMkIiaFio3rKYpVh+lSjXzZRgH/9TsXmS07oBSxiIECshXH35Wz53qDdBLoYaljDo9m+I2/de+c/iOTiKxp3rLNQJjHyPla+/7lWbKlGql4/ZFANcYqEZBg8qeAYtUP9BI1hVTMwgja9Eh/jLMTBaqOomJ7OMFEEEPRZ5kLJiXtJlqPnxifo3G/DsK2vrk+qIst6NXL6ztoy50AriQ66DsOj/Cll25QcVxOjeVJJyJLTlxbmZlenipyZarM7oGFpu0vX89ydbpMLGI0TNrHcxW290XnXHe1JtthTOIdZj2GjfFcBdf1NyrquK5frgkHnfj87RKRL+GvqOwTkdcCf18p9Q/XtmprR30nqea4PP3qJOWa75MnmEQsf7B54cosCcukWHNx8fy/G76Jy2DSIh8Ee9mWjDJUijBVtHFcj6pdIxk1cTxFMmbxxMvjLb2Abc9fJY2aBoZhcGQ0zeFRf1eiznKdxuc/OP/m46cxRNi7vb1/1PxrNK8EJyzh2mx5wQrj0d3+uZlEhOmiH91peypK1XYbg/XZm0UOj5rct3eAbBAAp766e2W6xI1chYrtMpSKYRkGiBCzhLMTRYb74y39kuoDZCpukQt+n8hXODtRZLpQY3sq2nKAbbVaurM/1nFUuh5j0+mxTidR8x4+OsLnnr0cTMgUZdvFEmH3QF8jSIllCjNlv225nke2XMPx4OpsBdMQbNdfqZzM19ie9O+RTlhMFqoYhr9LMdIfo1jzJ1qGCJZFMOnzRzvbU8yUahgieEqxM5MgV3EaOkzHI1giZCs2lZoLoogYJjXH48Urs35wKCBbrlFzXQSh6vj9TLHm4gWmc/6PwvOg4Hp4sKw8fMvZ8dYRA1dM6DTZrLWJfIWS7VCsOnzt9ATb+qIY3FqoVGphJIuo6euo4rgcGEoh+FYslghVVMPSBfxFj8FklMlChVfHC4zn/d3selts1eb+4oVrbEtYKKUa6SZetzczJzBbqwW95vRD3Vzoa6ejVp/jZL5KxPQtAiQwPZ8/ca3Tavfz9HiBQyOplv1gruJQdVxyVZua4xG1DATfT7mZ5ZhsnxrL8pljl3jhShaF4r69A1yfrVBzPPJVp3GfmGmEJYl36PQYNsq2C4JvERBscogE5ZpQ0Il35m8D7wamAJRSLwJvWcM6rSlfPH6N//rdS/zZs1f4ixeuMVOoErcMFIqJYo0Dg32k4xa5ikN/3MIJVv3Ltofj+JO1B/YPMtQf540HhxhMRijWvIYpJ0Ch6kdDS8UsPM/Da8qlaMqtD71ku+we8PMi3bMr09L/odMOvJXvwHSxxmSh2pE/wXwb/+szJZ69NMvZ8TzjuTKXJgtcz1bIzgvlW3M8qo7LHcNJqo5HxXaJmsJkoUq2bPOTD93Gh99ygEwiwli2gu34D7ZV22N7X4SK7TJdrHFxssilqSLnJwq8eHma75yfakR1PDSSnOOHsbM/RrHqkLCE5y/Nkivbc0xl5/slvHw9y5nxAlXbbayWHr86y1dfuRkqn4aA32YT6bGZa7Nl+uNWw/f1yZPjnLye5eXrWU4FZlC/9eQZSlXfH69U86jYHhXH39mr71qYhjAQtyhWHS7PlPEUWIGP0vXZCjPFCqWaQ7HmkK84HBjsYzgVIx4xSScibE9F2ZaM8fDREYaSMTzlT/xcBcXa3MHN9RSzZYcLE3km85WGD+HR3WlM02AgESUZs7Ad/9yK7T/IQmBC5/k7KTXXIx4xiUVMLMMPJCUCFdsL7u1PBpNRs+N2Gka/nZDy24RMk81ae/7yLKmohfIUN3MVTo7lmGl6yHfnTf5Mw/fni1oGtuNxZbrE5ekSV6ZLVF0PE19vQGAOZiAiPHdpllzFYaQ/tmhbPDya4c13DIIIhapLLGLy+n0DxCNWYzxs5yv32LHLy/Kh64TFdHRttkzVcfjKqXG+8NIYlaqDUgrbdbk+6yfBrjoeh0f7Wy7k1nc/6+NjJhFhz7YEtw0l5xxXD4Rzfcb/rGeKNcAfR23X7wO/dvomX375Bl87fZNLU8WOfB1PjWX5xBNnOHZ+GsuAqCF89/w0V6ZLjGcr1GyPiCHUbI+pQg1Zw7zQXeS3CZkew4bnuriKhjm4p/x+wnP15C8sdJTnTyl1RZp2pIBQfsNfPH6NX/sfJykGq1n1RhupOiSiFgnL4Ops2d99U4rxfLWxAqoAR0FfRLhtKMl4rsJ3zk1xcaqICPRFTWxPNfIiRUyDHek4+aqDIQZRw/P9h0QARcIUhvrj3DmSbqwGtvJ/eGD/wJJh7aG174D/Hud21u12E5sH08lChelijZLtUXNcBvqigGA73oIJajQY5Yf747x+30BjF24wFZuz2tpsthcJdlSrtj8RLNVcLFMwDaFiuzx/Oct9+zIcHk03TP/u3pnkK69MNiIffuiNe/nKK5MdmcrWw/TXdyXjEZOrVRfTYNFdpl5ls+hxPrsHElyYKHDmpp8WJRWYYd/MVfjEE2dIRk1evpaj6rhUnVvtuub6k7ojo2kAYpZJzDL9hY94hFjEYKpQwzLxo/E6YBkepiHkKg4vXpklGbfI9EV46OAgh0aS/Pnz1zlxLcdkoYrtKYxg0aZ5fb3uE+i/NrAMgy8cH2N7MsKOdIKhVIRTYwU8pYhYBq7r4Sh/AShqGSQsg0LVb/uuUqRiFoOpKFOFKrariBhQqHmg/AfuRMxs+Lh20k57If/YViFsmqxbU5ydKBILfNQrjou9RIz5uhuE46nGuGg7bmORNBYxiEbF14WiMSbOlm2GAp/aO3Ys7af9kw/d1jJxet0HtXm8q1t/5Ms217NlDg71zTGjXK0J5GI6ipnCsfPTFKsO8WAXTlUdjMBE/MpMiduHU5RrLvuHUi2vP3/385NPnmkb5dh2/X7C8RS5su9OMdAXoRQsStXH+7oF0VI7/4+fGGeyUKU/bjXGR0QYy5WJWAaxiP88UzczVXPbeM8SNj2GDcM0wVn4kRrmamLPadaTTiZ/V0TkBwElIlHgZ4FTa1utteF3v3aesu3RFzXnmEnkqi4l22Vnf4wLkyVG+mNETINKzcHDf+gzgwe9bMXl+JUZshWHu3amOD+ZR5RQDXIgge/oXrY9rs6UiFsGRQHXg2jEIB2P4HiKoVSUTCLSGJRa+T88sH+gYxOWVr4D9YlZM+12E+uD6WShwnOXZnE83zTOU/45dR+PquuRLduNAXl7MoohQrZsM5iKNQJFtDOzqd/njuEkz1+eZaZYJWL6UeKGkzEsQ3A8RdlRt3YwC1X+4oUx3nhwkAcPbCdfcXjmwiyT+cqC99hqoM8kLLKlGhXbbUzObddrRHBd7NweZNPocT4PHx3ho5+9AULjewKIRUxOXJshV/F3zlqbUSvO3MwzkkkwlIrhKcX5iSKpmBFE4SUI/OI1TNT8RwPFzUKNeMXhTXcM8rXTN/ns9yqYQH8i0kjLooIJmDfv4dgUGm225rhYgdnmTLHGlZkSEdMgHvHbqBkzKVQdIqZBJhFBKUXZ8YhFTExDGO73dx9rcY9izUV5ELOgP25iu7CtL8IdO5Idt9Nu5D3TdEToNFk3N5wu1NjWZ3F6okDNDdp6m3Pqj9L+cR6mBKv+COm4Sa7qPwyOpBNELYPpUo1ixaFku0Q8RTpucceOVCMlymL5dR8+OrJo4JX6eFdz/DQuMcsgYgoxy+B7F2Z48KDMSb2ymqi1i+koavr9SM31iFsGnoKoaWC7Hv0xC0P8vuH5y7O8657Oo2vPXwg+M17grp0pjl/N4niKeASUMhGBqqNIxSK89a5bgdWyZZtPH7tE2fYWfX64Nlv2Tc8dP1dx1DLYFuyaKmAoFWv0xRXbJZPoaL9gowmdHsNG3Xe9eXqtmso1vU8nSv4HwO8Au/Fzm3wZCKXt9NWZEvGIgVL+6mWTWwKGCFezVUyBKzMOzdZdHr7Dezwi1GzFMxdnGEpFuZGrkklEqTm+2UXF9gBF8MxKoeL4JmgJi3Gnhu14mAYM9EUREXam43MGpeYVwFNjWX758yeZLtRIRP06u0q1jRzWPGBUbIdTY3nGcxUSEZMLEwVuG0rOWT1tHmyLFZtnL8006j/QF8GcJ+Ka67E9GSVbcfjuBT9K6n17M/zCw3cBtB2k5w/qMVPIV5zGTuGXT47jepCI+qY9L1yZpT9mUqg4jRXd8zcLuIEpjSF+CPALk34ajrozej3ITMQ0Fwz0R0Yz9EVMbuSqjchlo5n4rZXOgJCEtt80epzP4dEMewcTZEs2+aqfXuXo7jRfPTXOzbzd9qG0zrmJEtniVUYH+pgt18hXHQL3ImIGuKZB1fUnbMmoRTnYebZ8l1MuTZeJWQZKKYq2R9VVKKUaA5w3rwL1aL31XZCS7ZJJmIznqtQcheN6eJ5HpSY4gdmmP5H0O4h6dGBPwfa+aCPNgiDctyfDxekyMyXfX3HvtgT37s00drfreUkXW9XvRt4zTUeETpP1xcZf/vxJpgpVSktt+TF3Uli3hIkYIChyFQcVWIdcz5axDIOoKVimkDAsBuIWO9PxxoQM2ufXbZ6kfPSdh4Bb48gffPNiI8/rU6cmOD9RIGb6Cq25ivtv28YrNwp87+I02/qijGUrlGoud+5I8kt/XkEFx3Xi412/58vXs7w6nufo7jRDqbkTypevZ4lHDSpZl3zFJmL6E0BBUMGDRjoR4dCOFGfGi7y3w+/mHYeH5+T4jFjCWLZCvuqgPA9lGL4VgvIjje4aWDg5ferUFA8eGFx05z9mCrMl/zklZhm4ruLabIWoaTQWo+pj5v7Bvra7lz1G6PQYNixTMIU5UYBN8cs14aCTyd8DSqm/3VwgIv8A+I9rU6W1I2L6uwC26zG/idqB/Zar/KhF8/GAqq0Cx1Z/4lax/Uh/06UayvNNLupzJgEKVYeYZQAmQ6koVdujLxoJwmArvn81S3/cWhDAoT4YThWqxC3hynQZ1/PzjDme4uJkkR+8Y3BOwufmFBbfPjfNtr4IP3T3MKWqy+nxAiXb5Z5dmYbZTH2wzZdrfOvcFEopTBHKtst4zsMShULoj1nELINC1WG65Ps8vOPwSGMiWb/34dFM2wG6eVC/nq34Jinb+xhMxdg9kKBQcXjw4HaG++Ok435SYcuQxoquq/zoivUJ3tmbRd8ERSmqriJmCVFTOHEtx8Hh1ILw9P7EuMThIEppc+TS5l3MkIS23zR6bMWR0UxjRf/sRJEXLmcZz9caA8xSE8DJksNUKbfguKoH1cBk2cN3TE/FLGzXI2oK+ZrXiC5YczxKtkPajDZuqIJ/LPEfeuvmb56nMAy//aFgpujv7MUsg1JNqLkKy1CN8+oPn4WKg4iQiprsHIhz10g/5yaLXJ4u4XmKdF+En3/3IQ4Op+aYv9V9Xx/YP7BkBNt2ofRD0MbDRig1eXg0w6++7wiPPn2BS9MlYGl9zcfP7eePi6moUHGgUnPpiypytj8m7t2WYM9AguNXZ7k0XWoEENmejPILD9+1qFklMCcNyeHR/oYrwDsOD/MfbuTxlEcmEW1MzjylOHZ+hrLtkivZGIbw0vUcJ67lGEhEePOhoY6Cn9X19do9Gb53YYZj56Z58OA2YpbV0OATL98AfH/zK7MVXE/heQoxfB/f4X7/EasvZi4reNtTpyY4MprmwQPbuTRZ5Gtncgymooz0x7gW5F7c0R8lEbWoOh4703Mnf/mKgyD0x+c+4s3f+VdAKmZRqDo4QUhiTyn6Iia7BhLcNpic03csJ2fiBhJKPYaJmGViiB/00AyCpDmuR8zSZp9hoZPJ378UkapS6qsAIvILwA8RIiGdGsvy/zz1KrPBKnorlhr06n/fmY4h4j/UxSMm/XGLm3kakY88Nfd4T/mTwLffPYyjYDgV45vBQPaG/QNELJNPPHGGkXSssSI5mfcdv4dSMS5OFjEEyq4fOCYZs3A9+NRXz3FwOLUgp9dwf5y33b3j1mp/P2xLxsgkIo1V1E8+eaYx2H75ZI645ZudKaWCSa4fw3cobuEpoeL49x5IRPmBA9vn5PGrryK2Wr391FfPcWhHiprj8t0LfqTNiCnsysQbJq9Hd6W5nq0QtUw/mEs6xvXZMvGIQV+wM2eIsC0ZJWYZnL1Z9HMnGcJw2jcfrft7IKrlYN7KpHapHcseJvR6hPZpSSbzFZ44Oc5sqRaYZxoLNLUUnRwXMerRyTxsV4gFJmPg5zGzgpVwMYQIfpRfwfdpMh0PDAn0rtidjuF6NPyIBWG4P0q2bKMCLxzLNHzzARRK+UlxR9IxfvD2IX7yodsAf0Hm7p23FiieOjXBh4dTbcPhL+XP1428Z5qOCLUmJ7JlHHe5075bKPymXXX9nexi1aHiKLb1RRjuj2EaBheny+SqNpm+KApFqeaQK9v81pNnuDZT4bV708BcP72TY1kuT5c4P1FgIDA3/P6VLK/fN0AmEeHbZ6dIxS2mC/7iUD0WyVi2yv7BPj+NSsUlahnUqrY/FtsuL13L8Y7Dt9IgtdJDs74yiQgPHvTTO714Jcc7j4w0NHjXSIrT4wWKNd/Ms2y7vr8uEuzqK6q2G5iibm/5+c3vCyeC8b85r+32vgi5sm8NsTsT50auyni+yt94zXZ+8I5Bnjo1sWAh8769mZZplpp3/muu4s13DvLy9Rxj2Qoo38pg17YE//Sdh8Lad4Raj2Egk4hiCkyXbGzXj3ExnIqTikeXPlnTE3Qy+Xsf8AUR+XngYeDuoCwUnBrL8i//+wlOXs+x2kBVhvi7h/fsSnN+0l8pzZVtDJHAMdpPhut6wYAYBIKJmAbnJkoMJKNcnSmzrS/SWKWcLFS4MFlkslDlLYeGyZZtvnF2ijfdsZ07diQ5NZbD8TwM/Ou6HmTiJjeyFf7ZnxznnUdG5uTz++/fvzYnUT0sXO1r9mHIlW1/0hd8NrsHEkwXq9guvPXuHZy8nmemZGMZER48uB2l4Nj5KT9lQsyPjli/9/yHUdv1ODdZ8AMBWLfyEr08ludn33FnS9PQ/UMp3nXPCP/hr85Tdf0V3QcPbPM/b6XIlmvELN8s9J7d/mR3uD/eMG9bbhj7kAxmzYRaj9A6TPvP/+mLXJgsUXXcOQs07nwnu1VS3/EvVD0iliIR8f1zhvvj/qJHECQgavk7gFFTiJgGdsXBEN9kOxWzyPRFyZdtsuUaZdslW/IfLlMxP83Lpamyb1Iq/j2rju8TNJpJkK04JGMW73/d7obpWfOCDMydzLVabe/Un0+nb1gXQqnJU2NZfvPx0zx/eWbV1/KAWBDV0zB8f/NmE8FrM2Uihslb79rRiDBqGpAt2URM4bvnZ3jodpljVpktO+we6KPm+v6FM8UapZrL189MsH97gpeu58kkIuTKNhP5Cq+MZRlJxylUXd561xBPnrxJ1PJNTz1PIeKbotZzkS3m/3pyLDvH/HwwGQkC11RvvafZMvsGk6TifkonEdjWFyVfsTENg6gl2EFgqrrlQqvvYH5f+M2zU/zg7dsbfUCh4jDcHwOpEouY2K7i9uEk6USk4f5xcDi1YKIGrYPINe/8103D33b3rT6meSwNad8RSj2Gifv2Zvj6mQmSUQvH87CCRdr79oayvWxJlpz8KaUmReR9wFPAc8CPKtXb8X7n56u7MFnEbZrgrJSoaRC3TO4cSTPQF+XsRLGRW6zqePRFrTl5cAygVHPYkY5xdbbM3Tv7/UTOSi0wYbTdWwFOYpbw1VMTDAbO1uWS0zAtG0hYTJVsopbgKT/4yieeOIOnFLcNJhnpj5GrOHzr7BT9MQsn8BM8uivdqFezs7zrKTylggAYwkzJJh4xiUfFnwDetYOHj47w+InxlpEY67nNWj2MDiajvHqzwL7tfXMiiTXnPGrnt3RmvDjHX2mgL8rL13MYYizYLdxK5mxh1ON85i8U3MyVOXk9T6tpXnenfr5PgiG+mfdIOkEqZmKI//BU35E/MJRkbLbMbLmGUlCq+Tt68YhBX9RERLhjOMmzF2fIlR2sIN+n7fiBWlxPkYj6CbArjuv7GCv/gXiqaGMaMifc/YffcqDtZK6++zHfvDMRMZZc1desD2HTZL3P/fLJG4xnK5Sd1VfVT1uiuGMowYUJD8dVcwJsVR2XoX4/2mc9wmjMMshXHe7bO8B3z09z4lqOtxyKNfrzdNyiP25hOx7nZ8qBJYC/kHIzVyUZM8kkLGZLNWquImoIubJDImpQqtajX/r4PuyqUTCRr/Dy9Ry2q/jkk2fm+P+dGstyZaoMAum4xXSxyqmxW2aX8zU4lIpzcDjlLx7h+8fvTMeYyNdAfAuhI7v6qbbYXW21aLqtL8KpsTwjaV/L9by2I+kEbzw4CDBnbFzM93epnf/NaBoeNj2GkR+8Y5CnXrmJGzj9ub6jKz94x+BGV03TIW0nfyKS59aClQKiwEHgR0VEKaXS7c7dSL54/Bqf+so5HE+xPennzsmWHZzVzvyAiAXZqj0nsmWubHNoR4qXrmWDiFgejudv/UUjBiBUbcXugTgHhlPcyFep2q6f0LzJhLGeo2wiX8F2FcWqw0g6xra+CLMlG1OEfdv7GMtWKNccauKHkn76zE2KVZd0wuLePQPcsSPFt89NMV2oUao6jGbiTBVqfOvsJB/4j99Gif/wO1u0cZXHUDLCjXwN1/aIWAb5ik0e+GfvupO//9fvnPP+W0VivGvEX3FsFVxiNBPnlRt5lFJzkvXet89P1ttq1bNuAjtRqHJlqsyhkRS3DSWJWiYHAxO4VpPGEJmkrIiw6rEVfpChGl8+maNYdShUnK5P8trhuAoTiEVN3nlkpNFmP/rOQ41kx0+cGGO65PjRDG89L1KqeVydLvGWQ8PBzqCLiJ/Y2jIMxBJAcDyP4f5okJDZ7wv6IgZl2yVmmQzELO4cmRvuvl1wlvrux/wdQdtxGz63m+WhLWyEUZP1Ptd1PSbyVWbLSwdS6gQj8BXzrWBMkoaaEyxkVyZBPOovANatRqqOH3F5uD/OAwe28eLVLGPZyhzT5ouTBSYKVd8n3fBTotQcD1G+Fc5MyaYvahFxXGqeouJ4pBMWL17NMtgX5dpsCVf5ulcolOewcyDGd89Po4AHD26bkyD+zHiRL5+8gav8vL4znsdY1k94fiNbYXcmzsmxnB+ILWIw1B/jtsEkB4f6+N6FGRS+a4jjwbZklDfcNtAI0rSjP7Lgc2u16HNkVz/fOjvdMOPc2R9jbLbMXSOpBYudiwXL6WQ83Eym4WHUY1g5M17kwf3buZGv+noO2mmnQY00G0/byZ9Sqn89K9INTo1l+dRXz4HA9qS/G5ct23hdmPj5EcUM4qaB7biMZf1V9o+87XaeOjXhmz8qRX/cYixbYWc6TiJwLJop2dy/fxtAI8VBzJQFJozgr4rGIyb7h5Ikoha2p9g1EGe25E86izUXS/xV1j7LYDawuS7bLhP5CsP9cZIxi3LN8X31uJVw9+xEkeH+GEopRjNxXriSZVvCYiQVZaJYw/UUEdPfsXjlRnFOIJp2kRi3J2Ncmy3zU2/ev2AF0TAM3nz7INeCKGX1cyKmyY7+yIJVz3oUz7oJbF/EbBmspjnv4U+9eX8oB6rlEkY9tqNUtfnGq1P+Q2LUnLNbvtYowAEinssXjl8nYhp85G2336qb7WGaJuk4QQRDn0Z+MwXHr85y92iGO3f2IzcLVGy3ESZ9V3+cK9MlJvI1Dg6nGOn3uJGrkK/4yZ/3bkvwun0DC0yyW+mnefejGb+PcTbNQ1tYCaMmHz8xjut6nLlZwBRZtStEHaX83XRPKY7u6mc8X5sTYOvKdAlPKbJlu2E1AnB0t/88Ho9YvOvIzoZfep2Pfu4GSvk7cCXbRbmB+0UQ/Ew5HgQpU1xPMZiy/MjOlSp7tsW5POO7ZyQigiF+Lt6qrRjqt+ZE75wpVvnUV87xxtsHgwiaJhOVCuWSP9mMGIKnFMev5diZjrOtz2K65Lt81AJT9QcPbkeA8XyVqzP+ZG17MtYI0tRqYabVok/Msvhrdww2/OIPDKd499ERzowXF2h9MXNxoKOJYbuAbUtFQ+01wqjHsHJttsxtQ0kODN8y7faU0mmEQsSSZp8i8iPAV5VS2eD3AeCtSqn/vrZVWz6PnxjHdj3iET9Ze6nqUKh2Z1fBj+QpRCyD56/M8q4jOxud48HhFJ8+dqlhNvam27dzPVtlpmTz5jsGESASREGqpzhoZ8I4XahhGvDavbceED2leOVGjmzZoVB1sV2X/rhJPGL65jWOS59lBpO7OErBSDpOIup/vYYIE/kqnlJkEhEqtkvZ9tg/2Af4edQG+/3UBxXbJR4xWyaSrkdibB6o6mHn260gAnOiFTYnr/8Pf3W+Eantjh3JBSaw+4dSc4LVrHaVczMQJj2249J0GVcpZou1rmbeHUhYFKq+2aUCoqYfVbfV863rCYPJKDvTcZ46NdHwmckkIlQcPxdo/QG1jgL6IiazZSfIj+UQMQzS/ZGGWXPFdokYRiP5ezJmsWdbH/mKQzJq8ob921uaarbTz+MnxtumawixT86mIkyavDZb5kaugucpqo7blV0/AAQycT+v3fZUnB9/YO/cycq7/Und4yfGSSci5CrOkpOjw6MZ9mxLkCvblG2XbX1RtvVFmSpW/cVFEUwR8jWn4bowmIxBEI275sK7jozMSfGzMx3j1ZtF3nJouJEIHWAsW8Hx/PGxPxGhart4SohZ0BeLUbU9ao5L1DQo1BwSUZOhVIy92/vmBFOr06llSjuzy1Zj2ntZmPLi5FiWu3fO3dCqLyh1EhSqub6bZWwNkx7Dik4jFH46Cfjyy0qpv6j/opSaFZFfBv77Sm8qIheBPOACjlLqfhHZDnwO2A9cBH5cKbUsT/Rrs2XilsH1mQoi+HnrujS6eZ6/epgIHK7nd47/+m/dO6fDf+vOTGNyWO9Ywe+YFzNh3J6KMpqONSZ+4IvqyKhvKnlwqI8vnbjRtGqrEBGSMZPpQg1P+bt3+YrDa/ZkeP7ybCMKWT3ZdMwyyFVs9m9P8O1z041AFf3xCIYhHN2dbukMv5R/QLuH0XbJ6yOmgDIaefpqjp+3L9W009Fcj+UMZpuYrusR1k6TrbiZq7RN1r5STIFHfvAAk4UKX3rpBjNlm0iQUgVuBVtQBJE+DWkknM6W7Ub7HM3EScZMSlVnQf08BcWq7387moljOy6XJguUaiaDyQgKKFRdohGT1+1JM11yGg+dR3b1M1moLWqq2U4/m80nZxMSmjFy90CC756fIluqNSLYdsvscyAZpeZ6jXGtlflXu/yv7SZH9+zKkIz6FiB1P8Fi1aQoLq/ZnWYyX2WqWMMQ2DUQxzSk4Vrw7XPTPHhg+5zAM55SnLlZWOAvO1WsMZj0IxXWrXNqroegyCSiFCoVRISICeWa27Ao+s75SQwxFuySdbowsxyzy1YTtCtTZfoi5pz3WH8I7zQoFGy6sTU0egwrm9FXdKvRyeTPWOF5S/FDSqnJpt8/BnxFKfVxEflY8Ps/X84Fdw8keOnKrJ9Ly/ETlnfNl0j8CIA3chU8BSfHcuzsjy0IrQ630gfUTS+W6uDnJ3d/9OkLLfPP1XcB9m7r42a+EkRBEw4MJrl9OMm5iSJPnRqnavtBJvJlh/6YRS5YJe2P+R161fGwHY9j52dwPM/Pa1ZzmC3bDR+Fi5MFxnJVfu5PX5wTir8vYvDMhWkUivv2DixYGawP6ifHsmTLDum4xT27MnMGx08+eQbP8810Ls+USFgGmUSEQtXPTVQ3gYW5q0nLGcw2MWulR1gDTbaiUOmOn1Ez9UX8oVScneko0yWbYlPi6ub72R6I5/H5F69z22CS1+xOU6g6RE3h6TMT4KmWu37gm31ui1qNnWnwzalrnkIQHgrCuUcsk0M75+6QHxlNNIInze8H2gVtaJXw+ZGH9oXxgWwzE5ox8uGjI3zmO5eouh6m4ft/ryLLQ4O7d6a5P9jVnt+eY6a0TK7eSRuu52i9ayTFWLbCVLFGLGLyMz90kFLNNzMT8Sd8pinEI2bDtWAkHV8wybsc5Hf96is32dbnL8rELAvX9Zgt2Tx5cpxU3GKwL8KV6SK2q4hHHe7dk+bCZIl8xc/dK4BhCDHxXTvmp2uaH0CmXUAWWHyiOD943c7+2JzUSWXb4a9OTzB8PcdgMspoJo5hGEtaDcxnk42todFjWNlMvqJblU4E8ayI/BbwH/CfgT6CH0Gp27wfeGvw+jHga6xgYPuLF64RsyBb7qJJC/7On59/zmTf9j6qtsuZwB+tzlKmE6tdCTw/UeDfPn6ayUIN2/VIRE2SiQi3DycpVF2GA+fz/rjF5akip8eD/EgK3w8j5+88zJaqTBdruJ4fPc0P4KJwXY9j56Y5fjWH7XpkEhbnb+apOoo/+MY5ElGLdCLSGGTKTQ/Xp8ayDdPXuGVQc1ziUYtcyaYvYvLo06XG53ByLMvlqRLxiMnegQSThRo3clX64xb7BvvaRvHUpgbA+ukRuqDJ+Zway3blYXM+hgg382XGZsqcmywSNaC2yMqPws9nOTZbplJzOTSS4nKxxqWpEs1RAVthimr41/bFTJTydyiaF0mWsyq6WL8BzEn4XM//Nz/Hp2ZDCc0YeXg0w65MjJfHalS7EOWzzlAy0jIIScSEY+enEeCBA9uWbU7YPB5GLJOHbh9aMHlqvl9dbyevZ5kqVPnTa1lSMYv79mWIWSbPX57lvr0D9MVMTo3l+dbZaY6O9rMjHWeyUCMe8f3/rs2UUUoRsQxqtseV6TJ3Dic5N1kiETGp2A6v3sxjO4pUzOR6tsy26SgDfRG+f3mWJ07c4CNvv52Dwyk+8cQZJgtVsqUa37A9/uTZK7ztrmE+9NBti076ml1JjuzqZ6pQ5WauAkqR6YtiiG+B5Lh+Gpnpok2u7PCRt9/euG6n/dAmG1tDo8cwo90Owk0nk7+PAP8Sf3tbgC8DP7PK+yrgyyKigN9XSj0KjCilxgCUUmMismO5Fz08mmHvQJxnLnV/tcrDX06KRQxS8Vs7aM07BN0ynWglqlNjWf7suWs4HvTFTEpVRdn2sEyXVMwiGfPNSev3rPvL2Y4/OX3hSpaK42AZBoWqG5iw+LmPbM+PxlmfxpZqDgYwma9hGkI8YpCvehRrNdJxi6rjcXq80Ij0Cf4gc36iwLaExY1clarjsTcRwRDhRr7KkdF043PIlh1E/FVaIiapuP/gkE5E+IWH72q7mqRNDYC10SOskSbn8/iJccxWCa9WQSZuEo9YvHglx0S+AkoQA6Li7za0w/agUHUY6PNTkngKRtJ+qPmK7eEphSiFrfwP2lO+eamjhJeuZbl3D3z3/Az9cWvBpG0p/9fm4/sixqJBGzaROdZmJTRj5KmxLLYHCcug4nhdW4h5eSzP6/aZPH5ifE6S8u+czzUCFp2fLPFQkKpgOe13qYfM+QumparNpaki25IxbhtMcDNX4+lXp9iVjnHf3oFGkIqRtD/hOTmW48iuDLbrcvZmkUvTJRzPD962M5gUTuT9HIMHh5KcHMtRqvnJ4zMJk2LNo1b2oxYnov1sT/o+jZ/66jkODvVxYbKIaUC+6iL4fsHPXpyhZHstJ8H1yWx9PAV44XKWRMTP72sawkjE5OpMFdMwSMUNkvEI7zg4SLZsNyIuLmd3ZpONraHRo0azUXSS56+Iv53dTd6klLoeiOVJEXml0xNF5MPAhwH27du34O+5im++JSz+4LcSDBGqttdIW6CUIpO49RFemy1jGb5JaD387cGhPgrV1UczfPzEONPFGoOp6JzgEgBD/XGuzZYZTN2qy6vjOZ65MM1s2WF7MsIb9g0wktnO10/f9P08lKLmgiHerYhv4ucy85PJeyB+XrRyzUMMUJ4fyWyo3zcPGctWiFhmY9Jru/4qqKsUUUuYLtbYPZCgUHHmmJCk4/6OYHMeKIKIbosN9NrUYM30CGuoyWZevp7t6o4DQNn2iFqK67MlcmUHET/CrdNBNBlPKR48uI3/+dI4I/1Rpos1ClXHDwuvFI7ydzVEfN9UEd+/aSxbwRC/n7lnV7qRoxN8rX70nYcWtMt2kfmeuTDN2w/PfW5o1ssmMsfalIRpjHz8xDg70zEuTBS6ugNfsV3u3plekKQ8V7Hpj/njUiFYKF2q/S5lJtmK5nHjx3//WCNQmH+/KNmyzWShym1DycY5k4UKr44XeHksB0px50iKO3YkOX51FqUU2bKD65WJmIJpgOMpfuDgIC9dz2KIkIqZfrqnSgUPP8bAZKHKtr4o6bjFVLHGMxdn2JWJM1WsYRlgmQaGAVOlWsugasCC8VQCm/Z6kB7LNFBKUaq5GCIMp2JtP9u18D3sdcKkR41mo1gsz9+/V0r9IxH5H7QwglJKvW+lN1VKXQ/+vykifwH8ADAuIqPBCsoocLPNuY8CjwLcf//9C+qVqzpEDH+S1k38lX9Fxfa4ma8wkk6wf7BvjqN11BS+e36aVNzy8xjZLt+7MMODB7evaEBr5tpsmZrjzQn7Xg/cUr9m3Wzj1fEc3zw7RdVxiVqC68G3zk1z7x6HG7mKP4HF/1KbHwAk2NmwlcLxgvfsKdxgdqiAUs3lykyJbX0RCkWHh24favgLpOIWVdtfEXVdr5HXLxWsJNZNSO7ZlfHDcTfliLlte9+csMHt2KqmBmupx+D8NdNkMxcni13P6RczjUYgFYW/Q+cuMfETfD/BZMwiZlkIirHZCranMA0QEVxX4Sl/cplOmOxL96EU3MxXqDoeNdfjgQPbGO6/NTlrfviar/mXr2c5PLowMp9CLZqwfROZY20qwjhGnhzzc+nFIiaO53RtAlhzFc9cmCZXsanYDs9fmuU9r0mQjkcai5T1QF6Ltd9WJtC/+fhpdmXiVFv407ViPFdhRyo6p6w/ZjKW9Ro6myxUeO7SLACZuL9T9+2zU/6Y6Pnjn2nUc9OCG/hITher2I6H68FsySZmOtjurS+/XHOp2BW2JyPELYOrFZsrrqLieiQjBpZ5K/hUu0nw/PE0HjGJWQb5qsOuTILZsp9uKRE1SUUtLNMgFiwIr6ZvCPvYGkY9ajQbRSvH2Dr/W/D/J4B/1+JnRYhIUkT666+BdwEngM8DjwSHPQL85Uqun4754d6RW53sahH8nQTBN/uMWxYj/TEMw2j4+NSPm69sBcwWa40gLs3mXqfGsh3XYfdAgmhTcnXwzU5jltkYEOshs1+4MuuHsVZ+gJZ4xCBiGjx3aRbXU43PZv7nYxn+6mVfMJDUnfSV8ieJjVxnjseVqTKup3j46Ai7BxLkKw53DCf9yV7U8iffCqq2x85+P5x3/bN6+OgIpmlwZDTN2w/v4MhoGtOc+1lqFrAmeoS112SdU2NZbmQrq7nEAgRwlcIL0jtYyxC9KTASRPvcHkQqlCZtmIYQMcA0DYZSMRIRE9PwAye99zWjvOvITuKRuetn9Yev5sBNdc1fnSlzabK44Pj79g40tFvPhVbXS7Ou5/9Ns+GEboysm9z3xy3MxUb/ZeIpj4rtR2seSES4OlvmwkSBg8N+mpNCxeHgUN+S7bfZdaKeQ+/yVIkT13Mdj50j6Tj56tzVn3zVZe+2W/d/dbzQ+Ntr9/gTnnzFoVR1MII+pD7m267XyBz+3KVZIpaBafiLTAX71ogvQNl2cVyPm7kq2bJDX8T0nwmUH0SqXHOpOYqdQTCaVhO1+eNpxXap2H6aiT3b+ziyK82DBwb564eGcDzV8We7BQidHjWajWIxs89zAEqpr3f5niPAXwSmDBbw35RSj4vI94A/EZGfAi4DP7aSi+/ZluCV8TxOF8NYmwIDfVH6oiaOp7A9jxv5Kr/6viNzVsqqrm9Cdn6iNCfE+/evZHnwwOCq/HYePjrC8auzXJ4qgVKNsPIHhpKNldC62Uau4pCJW0RMq5HLKGYJM0V/57BQdYhYgqvACfKgxS3BU/5uYsQ0iFtC1fF3PoTgoVpBKuYnnjcM4cjO/jmO5ZlEhNftzXBqLE88ajKcijGSiXNgODVntXYzmZisI2ulR1hjTdZ5/MQ4hrGM2VkHmOI/hEUtAxFBGR6OvTC3X3NfEDMBMUhGDR7Yv40PPXQb/+7Ltj8xDaIfGkKQhN7AC5ZJ8hWHqGWwb7CPn3zoNqB9QIVW/r93jaQ4faPA9lRsQU6v+ufTSg9aKz1L6MbIusl9X9TE7eIWfH/sVq7LRNRi77YEN/JV9kX6eOjg9sZCYiYRWbT9zo86eXbCz/1ac70FptXtrvHIQ/v4+JdOB/UyyVddilWHj73nrkY+z/F8lZH+WCPdy7ZklCdevkHVVcQjJqbhfziu54+Byag/iYtZBrsyCS5NFREBs+m+piH+rqF4mIZB1DK4d88gJ6/nyJUVhZpL2XbZ0R/j9uFkW5+6uv9d83g6W3b4a3cM8qGg3/H7A2dZn+0WIHR61Gg2isUmf8Mi8k/b/VEp9VsruaFS6jzw2hblU8DbV3LNZqaLNWKLJHdeLv7EL8L2ZBQR4fX7BhhMxRjLVhZ0snXTyzcGTu3gm2wJMsdcE5bvt3N4NMMvPHwXnz52iReuzDbCyjdHDKubbRw7P0WubGMZwli2AnjYrkLEN121gs9HxJ8UxiMmf/3QMN86N0UqamJ7inQigSHCTKlKtuyyrS9COm4RjZik4xEODvdRD3TaPJkrVB3eeteOJU1zwm5isgGsiR6Dc9dUk3Vevp71fUlXiUAjaIwRBCSqL1zkKh6WAa7nT+BEhIE+i4rt4Xh+Iui92/u4b+8AP9mknXt2Zbg0VSRXdnCVImYZ9EVN+qIW9+xKMxz41c43O2s3MfuDb15c4Ku3bzBJyXbJJCJtU760QmulZwndGHnPrgy24/LqRLGrPn9DqSjFqs1EvkrZ8dg7kCCTsPjEjy14G4syP+pkoeJgGZCO3zJ7XmrsfO+9uwHmpEf5yNtub5TXtdR8n+H+OHu29QH+os9MsUqp5lKqufQbELMsijU/ngAxix39MSYKVeqphPtj5hxf/Khl8ODBbezoT7AtGeXszSLj2TKFmsuhnf3sH0q1HSM7GU91f9CS0OlRo9koFpv8mUCK7llPrjlfPH6NUzfyWKbJQFyYrXQQ8aENAmxLmNQ8yFYcijWXN+wbaCSFnm+ucWosy0S+Mic0c8yyyJZt7tubWdSnp1PqyeSXor7ymYxZjPRHGc/XqDgeQ/1RciWbmGViiB/N0HEVmXQEwzB415GRORFDgVvR0EbTC8p39N/6XT+grjmh0+N8chVnVVvxfRFhezLGeK7qR+IMyv1w7K6fkytiopSiUPWDIaQTFrsG+qg6HneNpNg/lOKj7zy04NqNnXWvRCpmNnbWh1KxOZPE+bRr9+1Cpx8ZzbS8vyaUhE6Th0aS/PnzV4kaQiLipzFY+SjpYxn+jl3F9vPOphOW7xs+VebUWHZZ48L8qJMRU8hXHF6z59Y1Ohk733vv7sZkr5P75CsOQ6kYnlJ+btySTX/cIBWzuHtnP7mKw2S+ykzJYXsqyl+/awcvXc1y9mYBD0hETQj8g4dSMR66fZCo5U8Gh1JxhlLxRn/Qif71eLoiQqdHjWajWGzyN6aU+rV1q0kXeOzYZQZTUXJlB8uwMKou3jIeNgXoj5vYrsIyhHRfjIgpTBdtXE9xcizPYCrWSKJap9lJ/Qdv397IH/TX7hhsmHStZxjl+Suft+9I8chD+/jW2SmePjNJzXWBulO7QX88smg9H3loH0+dmli3+mtaEjo9zieTsLCXaWu2vc/CEIOoJVRsl5v5KoaAafqBjPpjJtsSUYqmn54hETHZNZDAUx5nxouNYAn7B/sW+Og208nO+nLYZKHTNa0JnSbPjBd5/b4Bnr00g2UIRAxs18NZwYZ83WVwOBVjqlhrJI23XcVUscZ9ezMrSnPUvJt+z64047kqEbN17teV0tL14N3+pOzxE+OUbNd3n0hYjV06YE4+wXpi+aG+CK7n+/uZhnD3zn5+8qHbtP7Xn9DpUaPZKBab/IVu9aQe5SsVs5gu1jACfyDwB6rFxrdIYN5pewrH9RjNxOiPR4KHR5PpYo18xWEst9DXr9m/J5OINPIHZRKRDfPbabXy+d+/f51MwmI87xK1TG7LxLlnVxrHY8l61n0ltN/RhhE6Pc7nyGiG75ybwrPdjh82/d03i9ftyfDqRIFSrYyIYBnQZ4m/y98X4d69A/zUm/fPaaN/901JzowXO46w2+nOeidov9YtQeg0eW22zL7BJK/eLLJ7IEHZdrkwWfRzv7L4xnxzfBgRiJiCYQiDqViQHsX3IfeUYmcmTtn2VpSSZP6u1/youd3SUbvdtcWu3axp0xTedPsgM2WHyXzF/0wM4dJ0ecGxWv/rQuj0qNFsFItN/kJnyzySjpMLJl19UYtExOTchB9dL2KKH7ly3jkJSzANA8sU+hMR+uMRHE9RtT1ilj/cJWMWpiHs2ZZg3/a+BR34fCd1WHm+nbXi1FiWK1NlEDg4lGykYSjX3DnpKhYbEPXAtaGETo/zefjoCH/5/WtM5Kt4NXfJlA9RU9g/mGT3tgS28v31tiejuJ7vt+rnqlRMF20euj3Rso2+d+3ezpJozWx6QqfJujlyPY1AX9Ri90CCi5NFHPdWJOjmVJwG4FswCqZA1DIZTEWZLtrsHojjKkV/PIIbpEmpuYptfdGGLldLL+mouS6ffPIM2bLNUL9LrmzTH4+AUiDCo09f4MNvOaBNvNeX0OlRo9ko2gZ7VkpNr2dFusEjD+2jWPXNKzzPwzIN+uMWyZiJESQwT0ZNIoZvLrY7E6cvFmH3tgS3be+jPx7h4HCKf/jWg1iGkKs4KKWo2C5Vx2M0E180NHMzvZaL6/ET4xwa8Sd5fooI/6s/PV7YyqGhQ0MY9Tifw6MZfv7dhxjujxKPGC2XaQV/oaY/anJopJ/3vGaU2waTZMsOMcukP27heL6vquP5aUgsQ3Qb1qw7YdRkPXXIzv4YVdtr5Mc8ujtNPGoSNYWIZZAOctXetj3B/qE+MokoEdMgGYuwd3uCtxzawc5MnNuHU6TjkYYua44iahrkKs6m12X9szxxLecHgsGP+H3PrnQjgbtm/QijHts9gHcxC4tG05LFdv5Cx3xft1TM4s13DFJzVcN+/8hohpNjWe7emcYQYbJQ4ezNItlyDUMMPvyWA42VvU999RxTxRqDyeiiPkNh8O95+XqWXNmm5rjkKjYx02C4P0a6yTR1LVltkntN+Dk1luXMeJE7R/rZkU4gSlGquZybKOB4Hgo/sbqfZsGgVPMXVPrjFum4hYpZXJgskowaTBZr1BxFX9TkR14/qtuSRtMBzebIzX5tR0YzvOueEb7yymQjQqYh8MD+7Y10QZOFCq+OFxjPV8kkInzkbbfz1KkJdqZjzJZqpBMWufKtPHkfefvtm1KXzWNZX8QgW66RiFj0J25FBvaUWpHJ61qhx9/eZHsqymSh1rJco1lLNtXkD275ujUHYanYDhP5KqezFXakYuxIxRrRN+dH4qp3iO+9d/cCP7dOQjP3on3/qbEsV2f8gWgoFWuYfO5M+zn41uP+9e+iOVFv80Rbs3k5NZblM8cu8Y0gEu7h0X52D/Q1ctw9fmKci5MFTo8XmCnWUCg8z09IPZGvELVM7tmV4eGjI3zqK6/yrXNTRE2TA4Nx7tiR4pUbxWVHFdRotiqtzCjrffSR0TQPHthOvuLwtdPjfPnEDQxTSMcj3LEjyZFdGR5qilhZHyNLtku27HD7sNXQ6mbU4/yxLF9xiEcs7tyRmjOW9pLljx5/e5eE1XqPr125RtMtNt3kr049CEvNcfn+lSwxy2AgYXHieo7tyai/mrm9b9GduuX4GvSSX8J8Hj8x7ieYHi80TD6rjseZ8QI//UO3r8v95ye8rpf36mem6Q71B4/zEwUGEn538/0rWV6/b6BhGvXw0RE++rkbAAz3R7k64ydbH05GePl6joPDqcZiyp0jaXakEwvSjui2pNGsnPl9dM1xcRzFbLnKbdsSlGsOx85Nc2Ao2YiKCb097q0Frcayu0ZSnL5RYHsq1pOWP3r87V1mS3bjdXPApeZyjWYt2LTLC9dmy/THLc5OFIlZBvGIn4S15nrcNphkJB0jk4gwlq2QSUQ29SpYPcLbG24bIB4xyVcd0nGLvYOJdXnP9e+imeUmudeEk8YijOs1NBizDM5OFBtt4PBohj3bEqTjFp4S9m5PsGcggWka2K6ao03dljSa7jNfV2cnigymogwkLGJRC8fzdTaSjm3acbITWvU/+waT7B1M9OzzhO4ze5eK62EJDVNpQ8ASv1yjWUs27c5fPapZoeKQivnJVquO13BOH8s6WyYSV/2zqJu4AgsSUK/H/Veb5F4TPuqRcNPxCBXbbUz+ChVnThu4Z1dmQRuZb4oNui1pNGvBfF0VKg6WASPpBG88OAiApxRj2cpGVnPDadf/HBnN9OzzhO4zexfLEDyBhHlrH6bmeg0/W41mrdi0O3/1SFwRU6jabiNi5x07kluu46t/FtmyjadU4/V6RWLb6PtrNo56JNw7dvjpRSq2S9V2iZgypw102kZ0W9Jous98XUVMoVB1uWNHsnHMVhs3WxHG/ieMdd4qvGHvgB8l1/Xwgv8dT/GGvQMbXTXNJmfTTv7qQVju2ZVmpuxHDbxvX4aIaW65jq/+WWyUWcpG31+zcdxahDG5b5//fc+UHe7ZlZ7TBjptI7otaTTdZ76u7tmV5sBQkohp6glDE2Hsf8JY563CL/0vR7h7pB/LEGqewjKEu0f6+aX/5chGV02zyRGl5qc9Dw8iMgFcCn4dAiZbHheJJYx4/4CYVky5TtWr5GeVXQ2DwXvb9xRiwvaeblNKDW90JcLCPE36GNYuMzmgNkh/G93etvL91+LeWo/LoKUeO/xe1njc3Mq66IX7d6sOWo/LoJUe6zpTTi0jVjQboufTOr3QllfCZqx3x3oM9eSvGRF5Vil1/0bXo5vo96TZDGzkd77R7W0r33+j37umNb3wvWx0Hbb6/XulDppbhPX70PVeX7pV701r9qnRaDQajUaj0Wg0mlvoyZ9Go9FoNBqNRqPRbAE20+Tv0Y2uwBqg35NmM7CR3/lGt7etfP+Nfu+a1vTC97LRddjq94feqIPmFmH9PnS915eu1HvT+PxpNBqNRqPRaDQajaY9m2nnT6PRaDQajUaj0Wg0bdCTP41Go9FoNBqNRqPZAoR+8iciD4vIaRE5KyIf2+j6LIWIXBSRl0Tk+yLybFC2XUSeFJFXg/+3NR3/i8F7Oy0i724qf0NwnbMi8v+IiKzje/hDEbkpIieayrr2HkQkJiKfC8q/KyL71+u9abrHWmlzrdvfEvfeKyJ/JSKnRORlEfnH63z/uIg8IyIvBvf/1fW8f3CeKSIviMgX1vvemtWxhppsp4tfEZFr4o933xeRH246p9vtckPHVhG5q+l9fl9EciLyT9byMxA9FoeetdLkWtOq7YWBdn1VryNtxv4Vo5QK7Q9gAueAg0AUeBE4stH1WqLOF4GheWW/CXwseP0x4P8OXh8J3lMMOBC8VzP42zPAQ4AAXwLes47v4S3A64ETa/EegH8I/Mfg9QeBz23096Z/lt1G1kyba93+lrj3KPD64HU/cCa4x3rdX4BU8DoCfBd443r2IcA/Bf4b8IX1/Oz1T09rsp0ufgX4uRbHr0W7vEiPjK3BZ30DuG0tPwP0WBzqn7XU5DrUfUHbC8NPu75qo+vVQb1bjv0rvV7Yd/5+ADirlDqvlKoBnwXev8F1WgnvBx4LXj8G/M2m8s8qpapKqQvAWeAHRGQUSCuljim/JfyXpnPWHKXU08D0vOJuvofma/0Z8Ha9MxA61kyb69D+Frv3mFLq+eB1HjgF7F7H+yulVCH4NRL8qPW6v4jsAd4L/L9NxaHqv7Ywa6nJdrpox3q1jY1qm28HzimlLi1Rt1XVQY/FoSe0z7Bt2l7Ps4K+qidYZOxfEWGf/O0GrjT9fpXe/xIV8GUReU5EPhyUjSilxsBvmMCOoLzd+9sdvJ5fvpF08z00zlFKOUAWGFyzmmvWgvXW5rprKDCBug9/BW7d7i++2eX3gZvAk0qp9bz/bwO/AHhNZZuh/9oKrIsm5+kC4B+JyPHATKxugrgWbaOXxtYPAn/c9Pt6fQagx+IwEcZn2E1Di76qp2kz9q+IsE/+Wq1A9XruijcppV4PvAf4GRF5yyLHtnt/YXrfK3kPYXp/mtb0yne4JhoSkRTw/wH/RCmVW8/7K6VcpdTrgD34K/dH1+P+IvI3gJtKqec6qWc3763pCmv+ubfQxe8BtwOvA8aAf7dEXVZTx54YW0UkCrwP+NOgaD0/g0WrtoL7aa2uLfrz3SCWMYb3DMsc+xcl7JO/q8Dept/3ANc3qC4doZS6Hvx/E/gL/G3/8cD0guD/m8Hh7d7f1eD1/PKNpJvvoXGOiFhAhhCaF2xx1lub66YhEYngDxr/VSn15+t9/zpKqVnga8DD63T/NwHvE5GL+OZJbxORz6zTvTWrZ0012UoXSqnx4IHFA/4T/ni3WF1W3DZ6aGx9D/C8Umo8qM+6fQYBeiwOD6F7ht0MtBnDQ8O8sX9FhH3y9z3gThE5EKy2fRD4/AbXqS0ikhSR/vpr4F3ACfw6PxIc9gjwl8HrzwMfDCJuHQDuBJ4JTDnyIvLGwP7+f2s6Z6Po5ntovtaPAl8NfBE04WG9tbkuGgqO/QPglFLqtzbg/sMiMhC8TgDvAF5Zj/srpX5RKbVHKbUf//v8qlLqQ+v13jWrZs002U4X9UlIwI/gj3fQfV300tj6EzSZfK7XZ9CEHovDQ6ieYTcDi4zhPc0iY//KUD0QxWY1P8AP40frOQf80kbXZ4m6HsSP5vQi8HK9vvg29F8BXg3+3950zi8F7+00TRG/gPvxB5FzwL8HZB3fxx/jm6/Y+CtXP9XN9wDE8U1mzuJHITu40d+d/llRO1kTba51+1vi3m/GN8s5Dnw/+Pnhdbz/vcALwf1PAP8qKF/XPgR4K7eifYaq/9rKP2uoyXa6+DTwUlD+eWB0LdoGPTK2An3AFJBpKluzzwA9Fof+Z600uQ71XtD2NrpOHda7ZV+10fXqoN4tx/6V/tQFrtFoNBqNRqPRaDSaTUzYzT41Go1Go9FoNBqNRtMBevKn0Wg0Go1Go9FoNFsAPfnTaDQajUaj0Wg0mi2AnvxpNBqNRqPRaDQazRZAT/40Go1Go9FoNBqNZgugJ38ajUaj0Wg0Go2m64jIgIj8w42uh+YWevK3RRCRXSLyZ8Hr14nID6/wOm8VkS90t3YaTTgRkX8x7/dvr/A6vyIiP9fhsftF5MTSR2o0m4teafu9Ug+NJiQMAAsmfyJirn9VNKAnf1sGpdR1pdSPBr++Dj+xqEajWQHiYwBzJn9KqR/coCohItZG3Vuj0Wg0mjZ8HLhdRL4vIt8Tkb8Skf8GvAQgIv9dRJ4TkZdF5MP1k0SkICL/d/C3p0TkB0TkayJyXkTeFxxzj4g8E1z7uIjcuTFvMVzoyd86IyJJEfmiiLwoIidE5AMiclFEhoK/3y8iXwte/4qIPCYiXw6O+Vsi8psi8pKIPC4ikeC4iyLyr0XkmIg8KyKvF5EnROSciPyD4Jj9wf2iwK8BHwjE8oFF6vmHgVBfEJH3d3qMiHxXRO5pOu5rIvKGLn+UGs2qCQaWf9j0+6+IyD8TkZ8P2vVxEfnV4G/7ReSUiPwu8DzwB0Ai0NF/DY4pNF3rFwKtvigiHw/K/o/gui+KyP8nIn0d1vMNwTnHgJ9pKv87IvKnIvI/gC+LyPZgID0uIt8RkXub3tenReSrIvKqiPwfq/7wNJqNwQrGxeMi8mci0ici/yrQ1QkReVREBEBEflZETgbHfjYoW3JsqyMipoj826a+4O93eoyIfE6aLGxE5I9E5H/t/seh0fQ8HwPOKaVeB/w88APALymljgR//3tKqTcA9wM/KyKDQXkS+FrwtzzwfwHvBH4E/zkW4B8AvxNc+37g6tq/nfCjJ3/rz8PAdaXUa5VSR4HHlzj+duC9wPuBzwB/pZR6DVAOyutcUUo9BHwD+CPgR4E3cksgACilasC/Aj6nlHqdUupzbe77S8BXlVIPAD8E/FsRSXZ4zGeBHwcQkVFgl1LquSXep0azEXwWaF4A+XFgArgTf4B6HfAGEXlL8Pe7gP+ilLpPKfV3gXKgo7/dfFEReQ/wN4EHlVKvBX4z+NOfK6UeCMpOAT/VYT3/M/Czgcbn8xDwiFLqbcCvAi8ope7F35X8L03H3YvfZzwE/CsR2dXhvTWaXuIu4NGgjefwzcn+faCro0AC+BvBsR8D7guO/QdBWSdjW52fArLBsQ8A/4eIHOjwmEbfEiy6vh34n6t87xrNZuAZpdSFpt9/VkReBL4D7MUffwFq3HpGfgn4ulLKDl7vD8qPAf9CRP45cJtSqrzWld8M6Mnf+vMS8I5gx+GvKaWySxz/pabGbjJXCPubjvt8U/l3lVJ5pdQEUBGRgRXU813Ax0Tk+8DXgDiwr8Nj/gT4seCYHwf+dAX312jWHKXUC8AO8X1iXwvM4E+S3gW8gL/Ddze3BqNLSqnvdHDpdwD/WSlVCu4zHZQfFZFviMhLwN8G7ml3gToikgEGlFJfD4o+Pe+QJ5uu/+b635VSXwUGg/MB/lIpVVZKTQJ/hT+51WjCxhWl1LeC15/Bb/M/FFicvAS8jVu6Og78VxH5EOAEZZ2MbTQd+78Fx34XGORWX7DUMV8C3iYiMeA9wNP6wVSjAaBYfyEib8UfLx8KFkVfwNckgK2UUsFrD6gCKKU8wApe/zfgffgbIk+IyNvWof6hR/uIrDNKqTOBCeQPA/9GRL6MPyjVJ+Lxeac0GruIzBeCNf84mgTS5rhOEeB/VUqdnlMoMrLUMcFxU4HJ2QeABaYyGk0P8Wf4O+U78Vfr9wP/Rin1+80Hich+mgatJRBAtSj/I+BvKqVeFJG/A7x1Fdeq01wnafF3Ne//+eUaTZho1Y5/F7hfKXVFRH6FW+Poe4G34D8c/svAHaHtuNUCAT6ilHpiTqHfFyx6THDc14B344+Df9zB/TSazUge6G/ztwwwo5Qqicjd+BZrHSMiB4HzSqn/J3h9L/DVVdV2C6B3/taZwNSqpJT6DPAJ4PXARaDuE7cePgGLCbHOE8BHmnwn7lvmMZ8FfgHIKKVeWn2VNZo147PAB/EngH+G367/noikAERkt4jsaHOuLYHv7Ty+HFyjL7jG9qC8HxgLzvnbLc5bgFJqFsiKyJuDosXOe7r+92BFdVIplQv+9n4RiQf+FG8FvtfJ/TWaHmOfiNTNn38C+GbwejLQ7I8CiB+Qaa9S6q/wx6IBIEVnY1udJ4Cfllv+9YdamIgudsxngb8L/LXgOI1my6GUmgK+JX6E3H8778+P4/vxHgd+Hd/0czl8ADgR7LzfzVxXB00b9M7f+vMafB8DD7CBn8b3UfgD8cPGf3cd6vBX3DJ7+Tdt/P5+Hfht4HgwSF7klh9FJ8f8GfA7wTEaTc+ilHpZRPqBa0qpMfzJ2WHgWPB8WAA+BLgtTn8Uv/0/3+z3p5R6XEReBzwrIjV8X59/AfxLfI1fwjfRXmoRps7fBf5QREos/hD5K8B/DgbSEvBI09+eAb6Ib+L260qp6x3eW6PpJU4Bj4jI7wOvAr8HbMPX00VuLWqYwGcCs2cBPqmUmhWRTsa2Ov8vviXA88GxE/i+vJ0e82X8h9HPB/72Gs2WRCn1/2tTXsU3i271t1TT619p9Tel1L8B/k3XKrpFkFtWhBqNRqPZjASmcAWl1Cc2ui4ajUaj0Wg2Dm32qdFoNBqNRqPRaDRbAL3zt8URkb8L/ON5xd9SSv1Mq+M1Gs3aISL/AXjTvOLfUUr9542oj0azFRCRdwP/97ziC0qpH9mI+mg0Gs1aoid/Go1Go9FoNBqNRrMF0GafGo1Go9FoNBqNRrMF0JM/jUaj0Wg0Go1Go9kC6MmfRqPRaDQajUaj0WwB9ORPo9FoNBqNRqPRaLYAevKn0Wg0Go1Go9FoNFsAPfnTaDQajUaj0Wg0mi2AnvxpNBqNRqPRaDQazRZAT/40Go1Go9FoNBqNZgugJ38ajUaj0Wg0Go1GswXQkz+NRqPRaDQajUaj2QLoyZ9Go9FoNBqNRqPRbAH05E+j0Wg0Go1Go9FotgDWRldgNQwNDan9+/dvdDV6nortki3b2K4iYgqZRIR4xNzoaoWC5557blIpNbzR9QgLWpOaldJJP6X1uDy0HjtDj5ErQ+txeWwFPWotbRzL0WOoJ3/79+/n2Wef3ehq9DSnxrI8+vQFMokI/XGLfMUhW7b58FsOcHg0s9HV63lE5NJG1yFMaE1qVkKn/ZTW4/LQelwaPUauHK3H5bHZ9ai1tLEsR4/a7HOT8/iJcTKJCJlEBEOk8frxE+MbXTWNRqMBdD+l2Th029NouoPWUnjQk79NzrXZMv3xuRu8/XGLa7PlDaqRRqPRzEX3U5qNQrc9jaY7aC2Fh1Cbfbbi1FiWx0+Mc222zO6BBA8fHdnS2827BxJkyzaZRKRRlq847B5IbGCtNBrNZqBb/a3up9YPPUbORbc9jaY79JqWdF/Xnk2181e3N86WbUYzcbJlm0efvsCpsexGV23DePjoCNmyTbZs4ynVeP3w0ZGNrppGowkx3exvdT+1PugxciG67Wk03aGXtKT7usXZVJM/bW+8kMOjGT78lgNkEhHGshUyiYh2vtVoNKumm/2t7qfWBz1GLkS3PY2mO/SSlnRftzibyuzz2myZ0Ux8Tpm2N/YFqQcyjUbTTbrd3+p+au3RY2RrdNvTaLpDr2hJ93WLs6l2/nYPJMhXnDll2nZfo9Fouo/ub8OH/s40Gs1WQPd1i7Opdv4ePjrCo09fAJiTY+QDD+zZ4JppepEvHr/GY8cuM56rMJKO88hD+3jvvbs3ulqaNSbMTuC9VHfd34aPh4+O8IknzvBCoUrVcYlZJkOpGB9496FlXaeX2qFGo9lcdKN/6db4tFn7uk2189dL9saa3uaLx6/x8S+dJle22ZGKkivbfPxLp/ni8WsbXTXNGhJmJ/Beq7vub8OJpxQAgsz5vVN6rR1qNJrNQ7f6l26MT5u5r1ty509EDgG/B4wopY6KyL3A+5RS/9ea124F9Iq9saa3eezYZZIxqxGSOJMwGuW9vPsXNj32Gs1O4EDj/8dPjPd8v9GLddf9bbg0+fiJcW4bTHLvnoFGWbZsL6sN9WI71GjqhEmPmoV0s39Z7fi0mfu6Tnb+/hPwi4ANoJQ6DnxwqZNE5A9F5KaInGgq+xURuSYi3w9+frjpb78oImdF5LSIvHv5b0Wj6ZzxXIX+mDmnrD9mMp6rbFCNOmZFegStSQh3Etow132TE5oxshttSLdDTY8TGj1qFtJL/Usv1aXbdDL561NKPTOvzGl55Fz+CHi4RfknlVKvC37+J4CIHMEX5z3BOb8rImaLczWarjCSjpOvunPK8lWXkXS8zRk9w0r1CFqToXYCD3PdNzmhGSO70YZ0O9T0OKHRo2YhvdS/9FJduk0nk79JEbkdUAAi8qPA2FInKaWeBqY7rMf7gc8qpapKqQvAWeAHOjxXo1k2jzy0j2LVdwD2PI9s2aZYdXjkoX0bXbWlWJEeQWsSeisJ7XIJc903OaEZI7vRhnQ71PQ4odGjZiG91L/0Ul26TSeTv58Bfh+4W0SuAf8E+OlV3PMficjxYIt9W1C2G7jSdMzVoEyjWRPee+9uPvaeu0gnItws1EgnInzsPXf1tL9fQLf1CFtIk2EOUhLmum9yQjNGdqMN6Xao6XFCo0fNQnqpf+mlunSbJQO+KKXOA+8QkSRgKKXyq7jf7wG/jr8i8+vAvwP+HgRhx+bdutUFROTDwIcB9u3r+V0aTQ/z3nt3h2GyN4cu6xG2oCbDHKQkzHXfrIRtjOxGG9LtUNOrhE2PmoX0Uv/SS3XpJp1E+/zXwG8qpWaD37cB/0wp9X8u92ZKqfGm6/4n4AvBr1eBvU2H7gGut7nGo8CjAPfff/8CsW3WnBwaDXRXj7A+mtzM6P5GE7Yxshvodq/pVbaiHruF1vXWoROzz/fURQSglJoBfrj94e0RkdGmX38EqEdV+jzwQRGJicgB4E5gvsPukmzmnBwaTUDX9Ahrr8nNjO5vNAGhGSO7gW73mh5nS+mxW2hdby2W3PkDTBGJKaWqACKSAGJLnSQifwy8FRgSkavALwNvFZHX4W+PXwT+PoBS6mUR+RPgJH5Upp9RSrktLrsomzknh6b7hHSVa0V6DI5dd01CaD/nJdH9jSYgNGNkN+hWu9+s/YJmw9lSeuwWj58Yx3U9To7lKFQcUnGLnf0xPZ5tUjqZ/H0G+IqI/Gd8Afw94LGlTlJK/USL4j9Y5PjfAH6jg/q05dpsmdHM3FD9myUnh6a71Fe5MonInFWuEDjzrkiPsDGaDPHnvCS6v9EEhGaM7AbdaPebuV/QbDhbSo/d4uXrWa5Ol4lFDFIxk6rtcma8QMkO9ZxW04ZOAr78poi8BLwd38n115VST6x5zVbA7oEE2bLdWImEzZOTQ9NdwrprEyY9Qng/507Q/Y0GwqfJ1dKNdr+Z+wXNxrLV9NgtchUHBOIRP11hPGJSdTy/XLPp6GTnD6XUl4AvrXFdVs3DR0d49OkLgL8Sma/4edw+8MCeDa6ZptcI865NWPQI4f6cl0L3N5o6YdLkaulGu9/M/YJm49lKeuwWmYRFtlSjYrvELIOq46GUIpPoaJqgCRltv1UR+aZS6s0ikmduCFsBlFIqvea1WyaHRzPcvTPJY8cuN1YmH3lon15J1CwgbLs2YdQjhO9zbmYpn6TDoxnecXiYx45dZjxXYSQd1/3NFiKsmlytr10991XzNT7wwJ5lXaOb/YL2HdTA1tVjt65xZDRDX8TkRq5KrmKTjkfYP9jH/qHUsq6jCQdto30qpd4c/N+vlEo3/fT3qoi+ePwan/nOFdLxCEd29pOOR/jMd67wxePXNrpqmh7j4aMjZMs22bKNp1Tj9cNHRza6ai0Jox4hfJ9znU4in50ay/LUqQmOjKZ532t3cWQ0zVOnJnR0tC1CGDXZrYh+h0czfPSdh/jEj72Wj77z0LIfNLvVL+gIhZo6W1WP3dLAw0dHMAyDw6Np3nF4hMOjaQzD6PmxWrMyFk31ICKGiJxY7Jhe4rFjl0nGLDKJCIZhkElESMYsHjt2eaOrpukx6qvXmUSEsWyFTCLS88EGwqZHCOfnDHN9kgyRxuvHT4wv6xjN5iZsmuyVNtutfqFX3o+mN9iKeuyWBsI6VmtWxqLGvEopT0ReFJF9Sqmen0GN5yoYSnFypkTNVURNYSgZZXyLRyvSZjGtOTyaCdXnEDY91um1z7kTPVybLZMv1/jyyRzFqksyZvKaXWkK1eicY7Tf0tYmbJrcbG22W++nV0zvNKtjK+rx2mwZy2BOioaDQ30UqhsTqEXrIBx0kuR9FHhZRL4iIp+v/6x1xVaCKXB5pkyp5mI7HqWay+WZMqZsdM02Dm0Ws+kIjR43glNjWT755Bl+7k9f5JNPnlnQzjvVQ7Fi861zU9Rsj76IQc32+Na5KYoVu3HM7oEE+XmR0MLiz6jpKqHR5O6BBJeninzn/BRfPnmD75yf4vJUcd3bbLfGpW5osJdM7zRdIVR6XG37jZrCN1+d4uJkgfFcmYuTBb756hTRZT74ah1sLToJ4/Ora16LLmG7Hq7yJ4GmAZ4CV/nlW5XHT4zjeR6nxnINJ96daZ24M8SERo/dZqkVxU5yh3UaYv7qTBlBMA1BRDANEISrM7dWZHW0T01AaDR5aCTJZ793GddVKKWYyFW5OFXkXfesr19Pt1I9dEOD3aiLTl3RU4RGj91ov7OlGrOlGrGIGUTpVMxW/bLl0C0d6OfNcLDkzp9S6uvAaSADpIHTQVnPkau49McMTEPwFJiG0B8zyFW2rtnnybEsr9zIU7Fd+mMWFdvllRt5TuqVmFASJj12k05WFDvxfbg2W6Y/PnfNq5WZTa7qsG97HMsUaq6HZQr7tsfJNZnSaB8JDYRLk986O0VEgkUNw/8/IsK3zk6taz061eFSdEOD3ahLt96PZvWESY/daL8Xp8rsGogTjxjUXEU8YrBrIM7FqeW1vW60Yf28GR6W3PkTkf8d+FfAV/FD5n5KRH5NKfWHa1255RIxBVsZxCyF4yksQzBEiGxhu89s2UFEFiTuzJZ14s4wEiY9LoeldvU6WZXsxH+i0xDzI+k4ubLNnm19jbJs2WYkPff6vebPqFl/wqTJF67MMpiKEo/eGvorNYcXrsyuaz16KQVMN+rSS+9nqxMmPcLqxxCFIhEx2ZaMNcoqNYeapxY5ayHdaMPdet7UfoNrTyc+fz8P3KeU+jtKqUeANwD/fG2rtTLu3pGiUHOouR4GUHM9CjWHu3ds3Twl6bgFCiq2i1KKiu2CCso1YSQ0euyUTnb1OlmV7MR/otMQ8488tI9i1TfB8TyPbNmmWHV45KF93Xzrms1BaDQpCPMfCVVQvp70UqqHbtQlrCltNimh0WM3uG/vAIWqO+cZr1B1uW/vwLKu04023I3nTe03uD50Mvm7CuSbfs8DV9amOqtj31CSdMzC8xRlx8PzFOmYxb6h5EZXbcO4Z1eGQyMpYhGTQtUlFjE5NJLinl16FSWkhEaPndKJuWa3Jnb1xOwnx3J8/sXrnBzL8Y7DwwtWFd97724+9p67SCci3CzUSCcifOw9d/Hee3ev0aegCTGh0eR9ezNtHhTXdzzopVQP3ahLp/2KZl0IjR67wU8+dBv7Bn0LlfoYuW+wj5986LZlXacbOrhnV4ad6SiThSqnx/NMFqrsTEeX9byp07esD51Mx68B3xWRv8RfJHw/8IyI/FMApdRvrWH9lsVEoUo6ESFqmbhKYYoQjxhMFKobXbUNw3coLnFkND3HoVivSIaW0OixUzox1+zEMb4+eDWbi3zggT0LgsLUE7M/eGA7+YrDU6cmODicajkB1JM9TQeERpMfeug2buSqTBaq5Co2McvkwFCSDy3zQbEbdMNkulupHlZbl+X0K5o1JzR67AaHRzP8wsN3dcVMcrU6ODSS5M+fv0p/PMKuTJx81eXcZIkfe2Bvx9fYbOloepVOJn/ngp86fxn837/YSSLyh8DfAG4qpY4GZduBzwH7gYvAjyulZoK//SLwU4AL/KxS6omO30VAtuyQiFrszESayuwt7d/WyQOxJlSsSI+wMZrshE58DTptx0sNXjoqn2YNCM0YeXg0w8+9+9Cm8afpFV873a/0FKHRY7foFd/zM+NF7ts7wI18lULFIZ2IcGhHijPjRd7b4TV6RdObnSUnf0qplYbN/SPg3wP/pansY8BXlFIfF5GPBb//cxE5AnwQuAfYBTwlIoeUUssK05mOW5y8NssrtVupHVJRgzfePrTCt7A56JWOodcIo1PxKvQIG6DJTnj46Ai//Jcvc3GqSMV2iUdM9g8m+dX33zPnuPMTBY6dn2I8V+FyOs6hkeSyv69eS4hbJ4xtUeMTpjGyW3zx+DUeO3aZ8VyFkXScRx7at+xd8m60+U77jrVG71b0DmHTYzd00A09dqMu12bL9MXMOUa3fTFzWTp4+OgIn3jiDC8UqlQdl5hlMpSK8YF3H1rOW9EsQSc+fytCKfU0MD2v+P3AY8Hrx4C/2VT+WaVUVSl1ATgL/MBy73l5skChNjenX6HmcXmysNxLbSqWSny9FdmKTsUboclOOD9R4Ox4nnzFoeoo8hWHs+N5zk/c0u0Xj1/j175wivM3CxTKNudvFvi1L5zii8evzbnWUm09agrfuzBD1XZJxUyqtsv3LswsOyFuN9mKbVGzMXo8NZblE0+c4Wunb3Li2ixfO32TTzyxvDGhUy0uVY9utPlO+o71oBvJujUby0bpcbU6+OLxa3z8S6fJlW12pKLkyjYf/9LpZemxXpfV9g3dSjifLde4ka0wlq1wI1shW15ezkLN0qzZ5K8NI0qpMYDg/x1B+W7mOuReDcoWICIfFpFnReTZiYmJOX87M1FqedN25VsB/WDZGu1U3GBNNdkJv/u18zhBRLDBZIR03MJRfnmd3/vaeXLlGrPlGjNlm9lyjVy5xu81HdNJWxdoE+1w49BtUdPEmurxM8cucfpGjhvZChP5KjeyFU7fyPGZY5c6ruDvfe08hYpDyXYo2S4l26FQceZocSm61eY76TvWAx3tc9Oypnrshg4eO3aZZMzyr2EYZBIRkjGLx45dXsbb9PuGl67N8urNPOcnirx6M89L12aX1TfUE867HsQsA9e7VdYpnz52iZmizc5MnLtG+tmZiTNTtPn0MuqhWZpO8vy9SSn1raXKVkmrZ6+WSUqUUo8CjwLcf//9y0tksgV5/MQ4ruvNMXPb2R/b8r4IYTXTWSc9Qhc1uZQpydWZEsrzmCm6jUBNMUu4OnNr0eb8RJGyfevSngLHU5yfKDbKOvG7qbqKBw9u4/xEiVzFJh2PcGRXP1V347qSsLZFjU+Yxshj56eYzFdwFXhKMERhil/eKRenilRtFxFQQfIIpfzyTrk2WyZfrvHlkzmKVZdkzOQ1u9IUqtGOrwF+3xGPGFimv45tmUI8KF9PtG997xAmPXZDB+O5CjtSc4/vj5mM5yodXwPg62cmuJm/NUmruYpSrcbXz3S+oFtPOF+suVQdj3jEYDAZWVbC+ReuzJKKmXNyBaLUuuci3ex0EvDlU8DrOyjrhHERGVVKjYnIKHAzKL8KNIcD2gNcX8H1NfN4+XqWk9ezzJZtHNfDMg2uJiKU7A1xFekZdg8kuDhZ4Eau2pgE7EzH2D/U8zkhu6lHWGNNnhrLLvDJOXZukl99/z2NByPXVXPMtV2lqNUUqeit8bVde20uX06S9zceHGyUZcs2O/ojbBTawT30hGaMHM9VqDQko3AV2EF5p9iuh6MIHnXVnPJOKVZs/uqVCWxPoYBc2WYyV+Xth3cseW4zEdOgUnMp4+J4CsvwMxZGgwfHTumG35X2re8ZQqPHYsXmG69OooIFlJrj8I1XJ/nrh4Y7vsZIOs6VqQKFqkvNVURNIRUz2Tu4vGeZsdnWfUC78lYoFNPFGtMlG0+BIbC9L8JwOr70yQG9kot0s9N28iciDwE/CAzXQ+QGpIHl9ay3+DzwCPDx4P+/bCr/byLyW/jOs3cCz6zwHpomLk4WuZmrErEMPwWGp7iZq9IX7XyVdjNyaCTJZ793GddVKKWYyFW5OFXkXff0ppnOGukR1liTn/rKq7x0bZb6QqntOrx0bZZPfeVVfvdD9wNQdVpP7NqVt2P3QIILE4VGpLH6LveB4VuDYCcpI9abXqyTZmnCOEZWndYTtHblrWm3S9757vnzl2eoebeOV0DNUzx/eWYZ9YC7d6b49tlpJHgurAFKwQ8uI29h3Vw8k4jMMRdfSd5BzcYRRj2+erNAzfGIWAaWKbieouZ4vHqzc5/Vo7tSPHdxGtMQIgZUHUWp5vKe1yxv8tdutF3OKOx6LpNFG/BHfE/BZNFme6rzxdX79mY4dn4aESFmGVQdj0LV5aGD25dRE59uLOps1mBsi/n8RYEU/gSxv+knB/zoUhcWkT8GjgF3ichVEfkpfAG9U0ReBd4Z/I5S6mXgT4CTwOPAz2xUFLPNxmShhgKqti+gqu2hgvKtzLfOThERwTQEMfz/IyJ862zn5k/rzKr0CBujyW+fm6bmKKq2R9n2qNoeNUfx7XO3/OrtNs+d7crbcWgkyTMXpzl/s8CNbInzNws8c3GaQyPJxjHdSi7dTXqxTpqOCN0Y6bWZn7Urb1PzZZYvZKLN+NOuvB3pWMR/aFY0fixTSMc6f9jUPrebhtDpcaJQIxE1cD1FuebieopE1FiWDk5cLxAxhZqrKNqKmquImMKJ6+sf6PBKYN5Zn1gY88o74UMP3cZQKspYtswrN3KMZcsMpaLLzkXajXgXmzlmRtudP6XU14Gvi8gfKaUuiUhSKdXxdpFS6ifa/OntbY7/DeA3Or2+pjMqtkOzO5MHoPzyrcwLV2YZTEWJR29JoFJzetaufLV6DK6x7prMV+yW7S9fsVdz2ZZ8++wUnlKUbRfH87AMRdIw+fbZqTlhr3vRPKsX66RZnFCOkavftOvC1K9bk1B4ZTxPxBAipjR8GFF+eadon9vNQRj1KCiqjkfENIla/q511XHpi3Yei/HEtSwVZ65wKo7ixLX1n6DYHkQMfxGmHkktIstfyAXfzFNEVmzu2Y3cm4+fGMfzPE6N5ea4B22GmBmdtLBdInISOAUgIq8Vkd9d22ppuoXTZjRtV75VCLFdeaj02C6OylrEVzl2foqq7ZGKWQwmY6RiFlXbW1YwC41mBYRGk+2ewZbzbJZo40/XrnwtyVUcLNPAED+OryGCZRrkKp0vbuo0DZuO0OhxezKK7UKx5lKouhRrLrbrl3dKqdbGH75NeTsSbbaC2pW3ImIKtucv4ij8/23PL++Uzxy7xGShNifa52Shtqyoo+Av6oxnS/zpc1f4o29f4E+fu8J4trSsRZ2TY1leuZGnYrv0xywqtssrN/Kc3AQ7f51M/n4beDcwBaCUehF4yxrWSdNVurFOu/m4b2+GQtWlYrsopajYfud73zJ8RTaI32aT6THSphdqV96O+gNfseYwU6pRrDlzyjWaNeK32WSaXBRpM3a0K19DoqZQqvnBXgzxFzVLNXdZecW6labhi8ev8eO/f4y//m//ih///WPLzrPWa4Q4P/BvExI9ilKtF6HV+i/OxyOtZ3ntyluRjrcetNuVt+KFK9lGtE8RIR4xScVMXriyvPZXqtp841V/QTgZNanaHt94dYpStXOro2zZadSh+f9sOfzPFB19I0qpK/OKtD9eSDCNhZ7OZlC+lfnQQ7dxYMj3BcsFJogHhpLLtivfCDabHiNtGmO78nbUHwTd4EHQXcGDoEazEjabJhejVGv94NOufC3ZlowRMQVDaEQXjJjCtmSs42t0w+e2W4m2e4Ww+zqFRY+XZlrvQrUrX0vKbWwz25W3Yrbc+mNuV94KhVqwNSFB+XK4NF3GMAQreIywDDAM4dJ0559tOu7v9l2YLHD2Zp4LkwUqtks6vozt0B6lk3dwRUR+EFAiEgV+lmA7XdP7DCWjXM9WMeVWgmtP+eVbmcOjGX7u3YfCGMVp0+nRaRMivrm8/nA3H6NplNiWjDFdrOG4XuNB0DSW9yCo0ayATafJxag6rR/C2pWvJaOZONOFCrmK09B8JmEt8OFbitX63DYn2gbIJIxGebO/cVjohr/UBhIaPbYLsruc4LuWQCvpWctc86y1GYfblbfCDvw5msdlT90q74T79g7w9OkJbK/ayPsbMYS33NV5+guAQtVhz0CcbMWh6njELIM9ySiFaueLVDv6Y7xyPRf4H/puQY7jsaM//M8UnUz+/gHwO8Bu/NwmXwb+4VpWStM9Xrt3gInCuG+DrXzLnIjhl291QhpkY9PpUdrM7KRpBImZ0MrSIta0rd0ft1BNZjQKUErRvwlW6TQ9zabTZFjY0R/juFePV+PvGbge6/5w1q1E271CyIPgbCk9mqbgtJj9mcu0eOlGEKb6UD7/HGMZVXnTHYM8/vKNIPqph2kYJKImb7pjcOmTmxhJx8mVbfZs62uUZcs2I8vKOejnDB2MW420E/mKsymcpjqxq3pAKfW3lVIjSqkdSqkPAT++1hXTdIe+WIS3372DHek4qbjFjnSct9+9g75lhMLW9BSbTo9em9GluVykdVfVXF4Igj/ELJOo5f9vmQYF7fOnWVs2nSbXmnYPHsv1Rpgt1shXHX9hE3+BM191mC2ubyqjkXScfHWuaVu+6i7rQbOXCHkQnC2lx1qbHfd25WvJYBuLsnblrfj22Sn6IibpeIT+eIR0PEJfxI/avRweeWgfxaqfM9fzPLJlm2LV4ZGH9nV8jaqrePDgNuIRk3zVIR4xefDgNqprEbFunemkr/2XIvK2+i8i8gvA+9euSppusnsgQcQ02bOtj90DfezZ1kfENMPSiWsWsun02M6qpLm81sYOprm8ULWDaK239v4EobAMB2+NZgVsOk2uNVabXYl25e04NZ7Hdf38odUgn6jrepxaRqqHbtCNB81eoltBcDaILaXHLmRvAbqzIJOMWQvMTS3xyzvlhStZtiej7B9KcseOfvYPJdmejC474Mt7793Nh964l1zF5uSNPLmKzYfeuHdZZti7BxLELIs3HhzkXUd28saDg8Qsa1M8P3fyjbwP+IKI/DzwMHB3UKYJAYdGkvz581dJxiz6Yya5ss3YbJl3h6MT1yxk0+mxk/DznZikCIKnFDXXw/PAMCBqGmFI36EJN5tOk2uN20bQ7crbcTNXaeQQq59pe375elJ/oHzs2GXGcxVG0nE+8rbbQ+nvB7eC4DT7xH/ggT1hcZPQelwB3cnf6SeYF081fHAtwx+XO0UFi7bz67DcgC+nxrK8cqPIu47spD9uka84vHKjyKmxbMft+OGjI3ziiTO8UKhSdVxilslQKsYH3n1oWXXpBqfGsl2NUbHk5E8pNSki7wOeAp4DflSpDYhDq1kRZ8aL3D6c5MzNAmPZMsmYxaEdKc6MF3nvRldOs2y2qh6leUNvfnmAaQg1xyNiGZgRwfUUNcfDXI7DgUazTLaqJldDu09nuZ+a7cx9JFRN5evNe+/dHdrJ3mZC63FldCMHqClCxVUNHbsKnCBoS6fct3eA756fBpGGn12h6vLgwe3LqEn3ghbVJ671CelyJrLdoh59N5OIzIm+u9yoxM203dEVkbyI5EQkD5wFDgE/BuREJLeiu2nWnZNjWcayFYZTMe4a6Wc4FWMsW9kUSSq3EptZj52Ym6TjfsctTT/N5XBr1dFxPco1F8f1iJjLW3XUaDplM2tyrTHaLMi0K2+H20bb7co1nRHGVA9aj6ujG+ajMyV7wQKOUn55p/zkQ7exb9AP0lL3O9032MdPLjMN17XZ8oJgb8sNWvT4iXH6YxaxIL9fLGLSH7N4/MT4suqyWponsoZI4/Vq6tF2508p1b/iq2p6huYklQDxiEnV8TZFksqtxGbWo2VCrUUaIKspkuddo/18//IMzjxzkrtGb30sCrBMAzFUI7KtKbJs3weNphM2sybDQru4C5sgHsOGEsZUD1qPG0+7Sd5yJn+HRzP8wsN3rdrEcfdAgmzZbrRdWH7QopevZ7k6XSYWMUjFTKq2y5nxAiV7fdNGrkX03SV9OUXkR0Qk0/T7gIj8zRXfUbOupOMWKKjYLkopKrYLik2RpHIrshn1KG1MQprLHzwwyBsPDrIjHac/iFr7xoODPHjgVvjnvqiFiNAfs9jWF6E/5v/eF9VtXbN2bEZNrjVmmyePduVrzamxLJ988gw/96cv8sknz/T0Dtd60I1dk41C63Hj6FbwmW7QjaBFuYoD4m+aNDZRJChfR9Yi+m4nXe0vK/X/Z+/N4+S6yjvv73Nvrb1rbS2WLMm2bMnCNmAWscXsDiQwycBAZkicN8yQzBCS1/OSBCaTgSSTGYYwkIRMFs8kgxMSskLiQBAYE+MAArwbWbJkWZIltVqtpdXVXd213XvP+8e9Vapeqruqa71Vz/fz6U9VnbrLqdvnd9bnPI8p1YTGmCngI6u+IyAip0Tk+yLyhIg8EqStFZH7ReTZ4HVNPfdQfG7eMszu0QHiUZt0ziUetdk9OsDNWzpz9k5ZkYbrEdqrSUssbPzKSIJXO0gvcue+Udb0x3nT3k38xP4dvGnvJtb0x+dV5FtGEqzpiwJC3jWAsKYvypaRcLpbV0KDtpE1kqgQgbpSeiUqWYnWYj0aRhPHZhPyUA+qx1UwUB40t4r0ZnFkPMXHDxzlwaMXeHosxYNHL/DxA0dr1mPRadFwMsp4KstwMlrzHrnhZKS0aFL+Opxs7YRyM7zvVjP4W+qYRvzy1xpjbjPG3B58/hDwgDHmBuCB4LNSJ3fuG8W2LfZuHuL1ezayd/MQtm2FxWWzsphm6RHapMk1/VH64jb9cZtE1KI/btMXt1nTf9Vco5qKfO/mYW7bNsKO9f1sGIyzY30/t20bYW+HmikpXUNPtZGNcAlfTdzOatgyvPTETqX0pWjGfpqwE/JQDz2lx0Yxklw69nOl9KWo9JBrefh/evB5Tl+eAyitPp++PMefHny+hqs0hr2bh7lp0+C8OH83bRpseZ+iEQPZhVTzP3lERD4J/C/81dsP4HtQajRvB+4I3t8LPAj8UhPu01OE3GWzsphW6RFapMm79m/ntx84Tsy2GYgLmYIh77qLYmTt2Ty8bLm9c98o9zw0x57NQyXXziHqsCjhpafayJG+CJNzi82eRvqq7+LlKsTtrJReiQ+/5SY+/PlDzOadUniX/liED7/lpqqv0aj9NI12xd5OQt5v6Ck9NorL6aXDo1RKX4p9W4d4Ymyxb519W4eqvsbjZ6YYiNvz/FRgDI+fmar6GtAYD5mN6lM0om5Yqf9TK9XU1h8AfgX4S3yrrK8C76/zvgb4qogY4A+NMfcAo8aYcQBjzLiIbKzzHkpAowuN0laaoUdooyZ/+gdu4PC5FP/4/QukMoaIJbzlBRv56R+4oabrhLzDooSXnmojrywx8FsufSkqeeCt1TPvUvH17tq/veZAzvU6hmiGK/Z2E+J+Q0/psVFU8gFYi2/ARMzGYn54CCtIrxZBmMu7XJzNk3c8YhGL/qhNNFKb+WkjnBY1ok9RNGOdDH7PsxMzPHV2il+888a26quaOH+zNH45+5XGmHOBWO4XkWeqPVFE3ge8D2D79u0rHK0o3UWT9Aht1OSXnhrjsdPTXLdxgMG4zUzO5bHT03zpqbGa42aFuMOihJReayMb4dTBVAjmXil9OeqNr+fP7p8EmDe7/66XXFP1NcLoHbNb6TU9dhLPnJ/xvW5bxcDs4Hp+erXsWJfkoWOXiEdt4hEhV/CYnivwmt3ra8pLo1b06+1TFM1YBxIRBhMRco5XMmP9bz96y6qvWy8VB38i8rvGmJ8VkX9giXrdGPO21d7UGHMueL0gIl8AXgpMiMjmYAZlM3Chwrn3APcA3H777erQWekJmqnH4Py2afLeg6fpj0fKOk5WKV2DJiudiraR9VDsGi6V3loaMbvfDFfsSm2oHtvPbBCzSQBEkGAlf3apWE4VGOmLMdIXo+C65ByPiCUkg7RaaMSKfiNolBlro1lu5e8ngJ8FPtHIG4pIP2AZY2aC928Cfg24D7gL+Fjw+veNvK+ihJym6BHar8mJ6SwbB+ZX7INxm4np6vcaKEob0DZylRjxO4jFIWDx1bR+7AfUP7vfKR3NHkf12GYsEaK2r2jPmNLnSuGcliLvGl51wzpOXJojnXUYSETYtb4v8OBdPY1Y0W8EwuJYwyZIbyfLDf6eAzDGfKPB9xwFvhAUhgjw58aYAyLyMPBXIvJe4DTwzgbfV1HCTLP0CG3W5OhQgulMobTiBzCTcxkd0hANSkejbeQq6Y/ZpDJOaW9QcQDYX8PeoE6iUzqaPY7qsc1sG0lwajJD1BaiIngGCi7sWFN9W16cSNm/62oM34UTK9XQKT4AXrhtmIMnJhER4hGLnOORzrns37W2pflYyHKDvw0i8h8rfWmM+eRqbmiMOQHcukT6ZeD1q7mmovQATdFjcG5bNXnX/u187MtHAUp7/mZzDh943XXNvrWi1IO2katkx7o+njg73yugCdLDSKd0NHsc1WMdbOiPcnG2sGR6tdz9pt38yt8dIlPwKLgG2xKGEjZ3v2l31ddo5ERKJ/gAeM/+azk/neNSOsd0tkA8YrNzfT/v2X9tW/O13ODPBgZohxG+oigL6Vo9LuWx7wOvu073+ymdTtdqstk4nh/Q3fEMxoAIRCyhxkgPHUUndDR7HNVjHbzx5k0c+P440zkHz4AlMBSP8MabN1V9jUZ43+22iZQ9m4f54Jt3d1wYmOUGf+PGmF9rWU4URVmOrtZjvR77FKUNdLUmKzEQs0jnF4/SBmLVB2ifyTns2tDPVMYpuXMfSUaYydXgV15R5tOTemwUP77/WsZT2VJIgljEYm1/jB+vcYWqEW15t02kdOLvWW7wp7MnitI5qB4VpbPoSU2+5oYNPPDMBK6htGpni59eLcV9vtvWXDXzTGUKus9XqYee1GOj/Obu2TzML955Y8etUCnNYbnBX9fYMitKF6B6VJTOoic1+YE33MCl2TzPX54j67gkIjbXruvjA2+4oepr6D5fpQn0pB77K6zE99ewEl+kE1eolOZQcfBnjJlsZUYURamM6lFROote1eSezcP86ttvrmuFQPf5Ko0mjHpMRISss3jdLhGpft3utmtG+PaJScqHf1aQriiVWG7lL3SsTUaYzCzeM7A22VU/U1FCg2pSUTqHRumxESsEus9X6XVuHB3kybHpJdOr5dr1/Ry7mGY25+J4HhHLoj9uc+36/kZmVekyuqoHVslRWIgdiClKqFFNKkrnoHpUlM7B9ZYOXF4pfSlyruH1ezZy4uIc09kCQ4kouzb0kasxKLrSW3TV4C8deAqzoLQL1itLVxSltagmFaVzUD0qSufw3KVZBIhY+J6TjMHx/PRqKQZFf/mCoOgbB2sLiq70FrXvCO1gvGD60uB7ITML0hVFaS2qSUXpHFSPitI5FEqrczLvtVDDqt2d+0ZJZQqkMgU8Y0rv79w32tjMKl1FVw3+4lGLCP4ECsFrJEhXFKX1qCYVpXNQPSpK5xC1hahVXPQziEDU8tOrpRgUfTgZZTyVZTgZ5X2v2aleO5Vl6SqzzxdvG+HgqUmilhARwTEGxzO8eNtIu7OmKD2JalJROgfVo6J0DkU9RgTiluXr0cBLa9SjhmhQaqWrpvt++Yf3ctPoIBFLyHuGiCXcNDrIL//w3nZnTVF6EtWkonQOqkdF6RxUj0q7EGPC6xFIRC4Cz89Li8aTVmJwxDj5YYnEUl52ZsoUcpk2ZbHIeuBSm/MAnZMPCE9erjXGbGhlZsJMiDRZC51UVmuhG/OteqyBkOixk8qp5mUxqscGERI9QjjKXqvplLw0RI+hHvwth4g8Yoy5vd35gM7JS6fkAzQvvUhYn7Pmu7WENd9ho1Oec6fkAzQvnZyPbqeTnnOn5KVT8gGdk5dG5aOrzD4VRVEURVEURVGUpdHBn6IoiqIoiqIoSg/QzYO/e9qdgTI6JS+dkg/QvPQiYX3Omu/WEtZ8h41Oec6dkg/QvCxFp+Sj2+mk59wpeemUfEDn5KUh+ejaPX+KoiiKoiiKoijKVbp55U9RFEVRFEVRFEUJ0MGfoiiKoiiKoihKDxD6wZ+I3CkiR0XkuIh8aInvRUR+J/j+KRF5UZvycYeIpETkieDvvzQjH8G9/lhELojIoQrft+qZrJSPljwTEdkmIv8kIkdE5GkR+fkljmnJM+lFVtJGpyIip0Tk+0HZfKTd+anEUjoTkbUicr+IPBu8rmlnHitRIe8fFZGxsnrhLe3MY7fRKXqspl5ucX5sEXlcRL7Y5nyMiMjfiMgzwbPZ38a83B38bw6JyOdEJNGuvHQrqseK+VE9Ls5L4/RojAntH2ADzwG7gBjwJLB3wTFvAb4MCPBy4LttyscdwBdb9FxeA7wIOFTh+6Y/kyrz0ZJnAmwGXhS8HwSOtaOc9OJfNdro1D/gFLC+3fmoIp+LdAZ8HPhQ8P5DwP9odz5ryPtHgQ+2O2/d+NdJeqymXm5xfv4j8OetaqeXyce9wL8N3seAkTblYytwEkgGn/8K+Ml2Pptu+1M9Lpsf1eP8fDRUj2Ff+XspcNwYc8IYkwf+Anj7gmPeDvyJ8fkOMCIim9uQj5ZhjHkImFzmkFY8k2ry0RKMMePGmMeC9zPAEXwhldOSZ9KDdJQ2upEKOns7fqNF8PovWpmnaumUOqKH6Bg9VlkvtwQRuQZ4K/B/2nH/snwM4U+I/BGAMSZvjJlqY5YiQFJEIkAfcK6NeelGVI9LoHqsSMP0GPbB31bgTNnnsywurNUc04p8AOwXkSdF5MsicnOD81ALrXgm1dLSZyIiO4AXAt9d8FUnPZNuIszP1QBfFZFHReR97c5MjYwaY8bBb9SBjW3OT638bGB+/cedarIaUjpSj8vUy63it4BfBLw23b/ILuAi8H8Dk7f/IyL97ciIMWYM+ARwGhgHUsaYr7YjL12M6nFpfgvV4zwarcewD/5kibSFsSuqOaYV+XgMuNYYcyvwaeDvGpyHWmjFM6mGlj4TERkA/hb4f40x0wu/XuIUjYNSP2F+rq80xrwI+EHg/SLymnZnqEf4feA64Db8Ru5/tjU33UXH6XGFerkV9/8h4IIx5tFW33sJIvhm0L9vjHkhMItvtt1ygkmXtwM7gS1Av4i8px156WJUj4vvr3pcgkbrMeyDv7PAtrLP17B4GbSaY5qeD2PMtDEmHbz/RyAqIusbnI9qacUzWZFWPhMRieJXaH9mjPn8Eod0xDPpQkL7XI0x54LXC8AX8E10wsJE0Ww5eL3Q5vxUjTFmwhjjGmM84H8Trufe6XSUHquol1vBK4G3icgpfLO714nIZ9uUl7PAWWNMccXlb/A7n+3gDcBJY8xFY0wB+DzwijblpVtRPS5G9bg0DdVj2Ad/DwM3iMhOEYkB7wbuW3DMfcBPiM/L8ZdKx1udDxHZJCISvH8p/rO/3OB8VEsrnsmKtOqZBPf4I+CIMeaTFQ7riGfShVSj0Y5DRPpFZLD4HngTsKTX2g7lPuCu4P1dwN+3MS81sWCv7Y8Qrufe6XSMHqusl5uOMebDxphrjDE78J/H140xbVnhMsacB86IyI1B0uuBw+3IC7552ctFpC/4X70efx+Y0jhUjwtQPVakoXqMNCxbbcAY44jIzwJfwfea9MfGmKdF5GeC7/8A+Ed8T47HgTng/2lTPt4B/HsRcYAM8G4TuOxpNCLyOXxPmutF5CzwESBalpemP5Mq89GqZ/JK4MeB74vIE0HafwK2l+WlJc+k16ikjTZnqxpGgS8EcxMR4M+NMQfam6WlqaCzjwF/JSLvxW803tm+HFamQt7vEJHb8M2fTgE/3a78dRsdpscl6+XACqSX+QDwZ8Fg4ARtaouMMd8Vkb/B357hAI8D97QjL92K6jEUdKUepUnjD0VRFEVRFEVRFKWDCLvZp6IoiqIoiqIoilIFOvhTFEVRFEVRFEXpAXTwpyiKoiiKoiiK0gPo4E9RFEVRFEVRFKUH0MGfoiiKoiiKoihKD6CDvw5FRH5ORI6IyJ/VcM6IiPyHss+WiPyOiBwSke+LyMMisjP47h9FZKQJWVeUrqEROgzSbhaRr4vIMRF5TkR+VUQaUv+KyE+KyO824lqKoqyMiHxGRN7R7nwoSlhYql1c8P23q7jGKRFZ39ic9SY6+Otc/gPwFmPMv6nhnJHgvCLvArYAtxhjXoAfMHkKwBjzFmPMVENyqijdS906FJEkfuDejxljdgMvAF4K/HwD86koiqIoncoI8/unAIiIDWCMeUWrM9TL6OCvAxGRPwB2AfeJyC+JyLdF5PHg9cbgmJtF5Hsi8oSIPCUiN+AHdr4uSPtNYDMwbozxAIwxZ40xV4LzT4nIehF5SXB+QkT6ReRpEdkXvP/jYLXwcRF5+zL3VZSuo4E6/NfAt4wxXwUwxswBPwv8QnCNj4rIB8vue0hEdgTv/05EHg10+b6yY/6fYBXxG/jBeYvp7wzOf1JEHmruE1KUzkdEfllEjorI10TkcyLyQRF5UERuD75fLyKngvc7ROSfReSx4O8VQbqIyO+KyGER+RKwsX2/SFFCSXm7+LCI/JOI/DnwfQARSQevd4jIQyLyhUBvf7CUlYyIvKes7f3D4iBSqY5IuzOgLMYY8zMicifwWiAP/E9jjCMibwD+G/AvgZ8BftsY82ciEgNs4EPAPmPMbQAicg3wTRF5NfAA8FljzOML7vWwiNwH/FcgGRxzSET+G/B1Y8xPiW8e+j0R+VqF+ypK19FAHX4SeHTBtZ8TkaSsbHr9U8aYyWD18GER+VsgBvwq8GIgBfwTUNT1fwHebIwZq+LaitLViMiLgXcDL8Tv7zzGAi0u4ALwRmNMNpjI+RxwO77VzI34q/ajwGHgj5uYdUXpNkrtoojcAXwp+HxyiWNfCuwFngcOAD8K/E3xSxHZg2/Z9kpjTEFEfg/4N8CfNPUXdBE6+Ot8hoF7g4bIANEg/SDwy8EA7/PGmGdFZN6JxpizwQrF64K/B0TkncaYBxbc49eAh4Es8HNB2puAt5WtSCSA7Uvdt4G/VVE6lVXrEJDgnKXSV+LnRORHgvfbgBuATcCDxpiLACLyl8Du4JhvAZ8Rkb8CPl/VL1OU7uXVwBeC1XaCic7liAK/KyK3AS5XdfUa4HPGGBc4JyJfb1J+FaVX+F6FgV/xuxMAIvI54FWUDf6A1+NPfj4ctLdJ/IkbpUrU7LPz+XXgn4wx+4Afxh+EYYz5c+BtQAb4ioi8bqmTjTE5Y8yXjTG/gL9a8S+WOGwtMAAMFq+P3zH9l8aY24K/7caYI9XeV1G6jHp0+DT+6kEJEdkFXAr23TrMr4sTwTF3AG8A9htjbsVf3Svqc6nBJMaYnwH+M/5A8QkRWVfj71SUbmMprZRrLlGWfjcwAdyKr9nYCtdRFGV1zC7z3UKtLfwswL1l/dMbjTEfbWjuuhwd/HU+w8BY8P4ni4lB5/GEMeZ38J1J3ALM4A/gise8SES2BO+t4Jjnl7jHPcCvAH8G/I8g7SvABySYVhGRFy5zX0XpdlatQ3xdvSowFy06gPkd4CPB96eAFwXfvQjYWXbPK8aYORG5CXh5kP5d4A4RWSciUeCdZfm5zhjzXWPMfwEu4Q8CFaVXeQj4kcDEehB/4gZ8zb04eF/utXOYq/vkf5yr2xoeAt4tIraIbMY3BVcUpXoWtovL8VIR2Rn0W98FfHPB9w8A7xCRjQAislZErm1cVrsfHfx1Ph8H/ruIfIv5++veBRwSkSeAm4A/McZcBr4VOHz4TfxN6f8gIoeAp/BnO+e5hBeRnwCcYAXjY8BLgtWLX8c3gXkqOP/XK923Cb9ZUTqNVevQGJPBXx38ZRE5hj8o+5Yxphg+4m+BtcE1/j1wLEg/AERE5Cl8/X0HwBgzDnwU3+T0a/j7mIr8pvhhXQ7hd1ifbOAzUJRQYYx5DPhL4Al8nf1z8NUngH8vvnv5ctfxvwfcJSLfwTf5LK5OfAF4Ft85xe8D32h65hWliyhvF4HfXOHwg/j90UPASXz9lV/rML6Fy1eD9vF+fAeHSpWIMWrJoCiK0ipE5F8AnwRea4xZaiVeUZQmICIfBdLGmE+0Oy+Koiwm2O7wQWPMD7U5K12NrvwpiqK0EGPM3xljdunAT1EURVGUVqMrf4qiKIqiKIqiKD2ArvwpiqIoiqIoiqL0ADr4UxRFURRFURRF6QF08KcoiqIoiqIoitID6OBPURRFURRFURSlB9DBn6IoiqIoiqIoSg+ggz9FURRFURRFUZQeQAd/iqIoiqIoiqIoPYAO/hRFURRFURRFUXoAHfwpiqIoiqIoiqL0ADr4UxRFURRFURRF6QF08KcoiqIoiqIoitID6OBPURRFURRFURSlB9DBn6IoiqIoiqIoSg+ggz9FURRFURRFUZQeINLuDNTD+vXrzY4dO9qdjaaQLbikMgUKriFqC8PJKImo3e5s9RyPPvroJWPMhnbnIyx0syaV5lJNnad6rA3Vo7JaVI+NR/WorJZG6zHUg78dO3bwyCOPtDsbDefIeIp7HjrJcDLKYCLCTNYhlSnwvtfsZM/m4XZnr6cQkefbnYcw0a2aVJpLtXWe6rE2VI/KalA9NgfVo7IamqFHNfvsQA4cmmA4GWU4GcUSKb0/cGii3VlTFEVpOFrnKUrnoHpUlM6hGXrUwV8HMjaVYTAxf1F2MBFhbCrTphwpiqI0D63zFKVzUD0qSufQDD2G2uyzFRwZT3Hg0ARjUxm2jiS5c99o000vt44kSWUKDCejpbSZrMPWkWRT76sozaAdGlLChdZ5Sqeg9ZXqUVmM6qJ9NEOPuvK3DEU721SmwObhBKlMgXseOsmR8VRT73vnvlFSmQKpTAHPmNL7O/eNNvW+itJo2qUhJVxonad0Alpf+agelXJUF+2lGXrUwd8ytMvufc/mYd73mp0MJ6OMp7IMJ6Pq7EUJJbp3RKkGrfOUTkDrKx/Vo1KO6qK9NEOPava5DGNTGTYPJ+altcrufc/mYa1oldDTTg0p4ULrPKXdaH11FdWjUkR10X4arUdd+VuGrSNJZrLOvDS1e1eU6lENKYoSFrS+UpTFqC66D135W4Y7941yz0MnAebF1njXS65Z9TW/9NQY9x48zcR0ltGhBHft385bb9naqCwrSkdx575RPvGVYzyezpFzXOIRm/UDcd715t3tzprSYahDAaXd1Nrml5fZuC0YIO8aLb9KV9HovnBRN4fHU6QyDkOJCDdvGVbNtBBd+VuGRtvZfumpMT725aNMZwpsHIgxnSnwsS8f5UtPjTU454rSOXjGACDIvM+KUkQdCiidQC1tfnmZjdpw8MQk3z0xScRCy6/SVTSyL1zUzalLaU5fnmM6U+DsZIaTF9OqmRaiK38r0Eg723sPnqY/Him5ax1OWqV0Xf1TupEDhya4dl0/t1wzUkpLZQocODShM3xKiXKHAkDpVcuJ0mqqbfPLy+x3TkyX4nCduDTH/l3rSsdo+VW6gUb1hYu6OTI+TSJqk4jaZAsu52dy7N08pJppESuu/InIbhF5QEQOBZ9vEZH/XMV5fywiF4rnBWkfFZExEXki+HtL2XcfFpHjInJURN682h/UyUxMZxmM2/PSBuM2E9PZNuVICRur1WNwbMs1qcGClWoIcznRNrI3KS+z09kC8YhFPGKRDvZGhaX8dhuqx86mqJuiZoCSblQzraMas8//DXwYKAAYY54C3l3FeZ8B7lwi/VPGmNuCv38EEJG9wTVvDs75PRGxlzg31IwOJZjJufPSZnIuo0OJCmcoyiJWq0dogyZ1o7hSDSEvJ9pG9iDlZXYoESXneOQcj4FgQBii8tttqB47mKJuipoBSrpRzbSOagZ/fcaY7y1Ic5Y8sgxjzEPAZJX5eDvwF8aYnDHmJHAceGmV54aGu/ZvZzbnb5T1PI9UpsBszuGu/dvbnTUlPKxKj9AeTWqwYKUaQl5OtI3sQcrL7K4NfcxkHdJZh13r+8JWfrsN1WMHU9TNpqE42YJLKlMgV/DYNBhXzbSQagZ/l0TkOsAAiMg7gPE67vmzIvJUsMS+JkjbCpwpO+ZskNZVvPWWrXzoB29kKBnlQjrPUDLKh37wRt3vp9RCo/UITdSkBgtWqiHk5UTbyB6kvMwWXNi/ay0v27UWxyNs5bfbUD12MEXd7Fg/wPZ1fQwlo1yzNsnODQOqmRZSjcOX9wP3ADeJyBhwEnjPKu/3+8Cv44vy14H/CfwUBG4A57OkS0AReR/wPoDt28O3YvbWW7bqYE+ph0bqEVqgSQ0WrFRDiMuJtpE9SojLbDejeuxwVDftZ8XBnzHmBPAGEekHLGPMzGpvZoyZKL4Xkf8NfDH4eBbYVnboNcC5Cte4B1/Y3H777U33Ga+xp5ROopF6DK4XOk2GAa03eodebyM7GdVh76F67GxUk51BNd4+/5uIjBhjZo0xMyKyRkT+62puJiKbyz7+CFD0qnQf8G4RiYvITuAGYKHNdsvR2FNKp9FIPQbXC5Umw4DWG71FL7eRnYzqsDdRPXYuqsnOoRqzzx80xvyn4gdjzJXA3e2yrnNF5HPAHcB6ETkLfAS4Q0Ruw18ePwX8dHDNp0Xkr4DD+Btz32+McZe47Io0clZBY08pHciq9Ajt02S7aNcMo9YbPUeo2shW0s5ZftVhz6J6XIJOWHFTTXYO1Qz+bBGJG2NyACKSBOIrnWSM+bElkv9omeN/A/iNKvJTkeKswnAyOm9WYbWbSMemMmwenh+GQeOQKG1mVXqE9miyXTS6LqgFrTd6jtC0ka2knRoE1WEPo3pcQLu1WEQ12TlU4+3zs8ADIvJeEfkp4H7g3uZma3WUzypYIqX3Bw5NrHzyEoQ89pTSnYRGj+2k0XVBLWi90XOoJpegnRoE1WEPo3pcQLu1WEQ12TmsOPgzxnwcf3ZjD35Ay18P0jqOsakMg4n5i5n1zCqEPPaU0oWESY/tpNF1QS1ovdFbqCaXpp0aBNVhr6J6XEy7tVhENdk5VGP2iTHmy8CXm5yXutk6kuTUpTTnp3NMZwsMJaJsGoqzY/3Aqq5XjEdSbif9rpdcU9cyeSfYXSvhJix6bCeNqAtWq9Vm1BtKZ6OaXMzWkSSpTKG0rweqn+VfTnvV6lJ12LuoHudTjxaLNKLvWq0mtZ/cfCoO/kTkm8aYV4nIDPPjlwhgjDFDTc9djewe7efzj52lPx5hMG6TyhQ4N5XhTTevflahkfFIOsXuWgkfYdRjO6m3LqhXqxrHqPtRTS7PnftGueehk4C/yjCTdUhlCrzrJdcse95y2gNq0qXqsHdQPVZmtVos0si+60qa1H5ya6ho9mmMeVXwOmiMGSr7G+xUER2bmOWF20YYSkaZzXsMJaO8cNsIxyZm2501oHPsrpXwEUY9tpN66wLVqrISqsnlKc7yDyejjKeyDCejVXXgltOe6lKphOqxMqvVYpFW6k413hqWNfsUEQt4yhizr0X5qYuxqQzXru9n54arpl2eMUvaNf/hN57l3oOnS0vhd+3fzk//wA1Nz596OlJWS9j02AhWa/5RS11Q6fyIBYfHp0lnHQYSEXat7yOdc1Y+uU7U5CU89KIma2HhLP+R8RSfuv/YsmV7pXZyue+aoR3VY3hQPVam0opbNeV7oSYvzmQ5fiHNxEwOYNWaWOre2k9uDcs6fDHGeMCTIrK9Rfmpi2o9Cf3hN57ltx84zlzOZShuM5dz+e0HjvOH33h20TWLjdUH//pJPnX/sbqCUaqnI6UewqbHIqvVUD0BYevVWswWHj55hVzBZSBukyu4PHzyCjFbqjp/tWgQ3HARVk02mmo0Xm3ZXk67y33XDO2oHsOF6rE2VqPJizNZHjs9xXTWYSBm8+DRC/z0nz7Gf/r8UzXpotK9Y7ZoP7kFVBPqYTPwtIg8ICL3Ff+anbHVcOe+UZ6/PMuDRy/w1afP8+DRCzx/eXaRJ6F7D54mZtv0x20sy6I/bhOzbe49eHrecY2u+NXTkdIAQqNHqE9D9Zh/VFsXVEKYv2mE4HNzh35q8hJSQqXJRlOtxlcq28UB5OHxFN957jInL6YXtZPLtaHN0I7qMZT0tB5rodryXdTdyYtpHjx6kXNTGcZTGa7MFQBYk4zw9LnpmvrHle4toP3kFlCNt89fbXouGoglfvfMBF234udyUpkCQ3F7XloyKqQyhXlp5YUTKL0eODSxqiVu9T6mNIBQ6bEeDdVr/lFNXVCJnGt42a41nLg4V/IWunfLIDl34ZCwsajJSygJlSYbTbUaX65slzt5uGnTEH1Rm6MTaeYKLjdvGZ7XTlZqQ//om6carh3VYyjpaT3WQrXle8/mYd6wZwOf/vpzzGQdBuI2eccjk3dxPUNfzCadc0sDx2q3Zix17/GUo/3kFrDi4M8Y8w0R2QS8FH/y+2FjzPmm52wVHDg0wba1fezberWQpDKFRYVxOBllJlMAXBzPELGklF5OMyp+9T6m1EOY9Aj1aage99TV1gUr3fvlu9bNO3/jYHSZs66y2n1CjXDJrbSWsGmy0VSr8eXK9sIB5I71A6zpjzOcjHL3G3dXlY9maEf1GD56XY+1UEv5PjYxy8t3rePw+DSpuTynJ+fwjOH5y7NsGUky3BerqX+83L21n9x8VjT7FJF/C3wP+FHgHcB3ROSnmp2x1VBtIMs7b97IXN4l53hYGHKOx1ze5c6bN847TvfoKZ1GmPQI9WmoHjPpeoPa1nPvekxd1TQ8fIRNk42mWo0vV7ar1ety2mqGdlSP4aPX9VgLtZTvokbX9/seQ8EfQOQcj/FUlvX90Zr6x6qt9lLNnr9fAF5ojPlJY8xdwIuBX2putlZHtY3QYCLO7o19YGDOMWBg98Y+BhPxecdp4VQ6kNDoEerTUNHU5PD4NPc9eY7D49O8Yc+GqlfQ6pm4qcc1dj37hOp1ya20hVBpstFUq/Hlyna1el1KW57n8ZH7DvNH3zxFMmpRcNyGaUf1GEp6Wo+1UEv5Lmr08myB0aE4A/EIroGoLYwOxhibyi7S/XKOoFRb7aWaPX9ngZmyzzPAmeZkpz6qDWR5eDyFh8WeLUPEIxY5xyNbcDm8YGZe9+gpHUho9Aj1aejIeIqvHbnI3s1DvGznWmayDl87cpFdGwZWPL/eoLbFvK9G6/Wai6vJS+gIlSYbTS0ar1S2q9XrQm1dSmd55vwMrkepjkhlCg3tRKoeQ0dP67FWqi3fRY1eSudY2xelLxahP+7/eZ4h73rzdFdNsHbVVvuoZvA3BnxXRP4e33767cD3ROQ/AhhjPrnUSSLyx8APAReKMVdEZC3wl8AO4BTwr4wxV4LvPgy8F3CBnzPGfKXWH1NtI5TKOIgIiajv9CURtck5HqnM4hheWjiVDmNVeoT2aBJWr6F6nMW0c+JG9wn1HKFpI5tFve1ktXpdqK3jF2YREdYOXF0JhNU7ZVO6gp7XYzMoavQj9x1mMp1n7UCMV2wZYsNgoqTJcs012mGi0liqGfw9F/wV+fvgdXCF8z4D/C7wJ2VpHwIeMMZ8TEQ+FHz+JRHZC7wbuBnYAnxNRHYbY9wq8jePh45d4K8fPVMqjH0xWVTQhhIRpucKZAtuaeUP46cvpFrHDY0OBKuBZZUKrFaP0CZNfumpMe49eJqJ6SyjQwnu2r+dt96ydcXz6g20fuJimoMnLjMxneX0UILdo/01aWi1GmzEqqMSKkLVRjab5XRT/t1ctsDpKxlmcg6jQwlef9P6Fa/59LkUZ69kuHF0gO3r+rmUzhG1LK7f0F86Vr1x9jxdq8da2qTydncwHmH7miR9ieiq+pPl971hQz/nYjbXrutnMBEpmXmvtEoPy2tT+7ytpRpvn6tym2uMeUhEdixIfjtwR/D+XuBBfFvstwN/YYzJASdF5Di+p6aDtdyzGLw9ZtvzgrcD/PQP3FA67uYtwxQcl2cvzjKbc+mP29ywoZ+bt8wvaNUsW9dyXLUcGU/x8QNHmZzNk3c8np2Y4amzU/zinTeGSgwq5sazWj0G57Zck196aoyPffko/fEIGwdiTGcKfOzLRwFWHADGbOG7JyYZSETmBVp/2a61Vd331/7hMI7nx+Z7Lpvm1/7hcFX3hfo0Xe+qYzt1o5qtnTC1kc1mOd0Ape/S2TzfPH4ZC+GatQkuTmf57QeO89Jr1/CCbWt48swVPvud54nawoaBOPGoxb6tI+zZHISBOO+HgVg3EGfTYJwNg1c7mZ24yq66ah3dqsda2qQ//Maz/K+vnwDx29FLM1lOXZ7lVdevI5WJVDxvqXIKzLvvTNZhNufwyKnJ0sTNXfu3r7hKD5W12eg+tLIy1Th8aSSjxphxgOC16F5zK/Ntss8GaYsQkfeJyCMi8sjFixfnfVdt8Pbdo/08M5EmX/CICOQLHs9MpNk92j/vuGodNxw4NIHrehwen+aBIxc4PD6N63qrDgT7pwef5/TlOYCSB7TTl+f404PPr+p67aAej4dKS2m6JvvjEV9DlsVwMkp/PLJIk0tel9UHWv+9B0+QKXhELIhFhIgFmYLH7z14ooqz6w/uXFx1fPjUJAdPXObExXRV57VTN6rZjqCpemw2y+mm/Lvvj01ji+Aaw8lLc1xM5wB45PQUn3/0LN9+7jJ5x8USGE/5+/omUhksEXZuGODl161j7+ZhfvVte7Ftq6OdsqmuQk3H6LHaNskvb6ewLGEgHmGu4FJwDbmCy9eOXOSLT53j0NjUov5kpXL62YPPz7tv3nG5nM5jW8Lbbt3C3s1DfO3IxUXluRZnb/W2t0rtVGP22QqW6s8tGU3ZGHMPcA/A7bffPu+YVKaAjeHitINrDLYIiaiQynjzrvHt45cxnkemcDXOX7/YfPv45XmrAtUuWz99LsXZyQzxqFVaoTgWBKhdSDUzgI+fmWIgbs/bk4gxPH5maqlH0pGovXfoaYgmJ6azbByIzTt+MG4zMZ1dMQM517BpKMb3x6bJOh6JiMULtg5VFWj97JU5bIG5vItrwBaIWMLZK3Mrngv1mZzWs9rZTt2oZjuahuixHqox5/y7J8YYiNmICJ5hkW6KmpqYzmGMIWoLIkLe8Si4BtsWyBYQEQquR6bgYVtCImLx5FiK3ZuGgKvtcBicsqmuupKW63Gp/mi24PDdk5cZm8oQtwUDPHEmxUy2QDJqMZ31yOY9ij1gSwyWwMWZPAcOjSP47ezWkSQXZ7JLltPvnZzk9XuuhkE7fnHWD/Luesvus61Fm82Iqa0sz4qDPxF5pTHmWyulVcmEiGw2xoyLyGbgQpB+FthWdtw1wLlaLx61hKnM1QGXawz5nGEkOf9nfvu5y6TzLgXHw/XAswwmSC9n60iSbx2/wDPn0+Qcj3jE4qZNA7zy+vnxAKezDjnXZSZXKB0Xi1hML3BdfWQ8xSe+coxL6Rw5x+XZiRkOjaX44Jt3zxOEIBVWPKpZ8+gMVMzNocF6hCZrcnQowXSmwHDyqpHBTM5ldCixzFk+s9kC3zt5BdePxoLjunzv5BXemIyteC5AKuvglQnJEhbFEqtEzBYeODJBOudQcD2itsXzl9K8fs/KKwr3HjyN47qMXcmTdw0xWxiI+xYIKw3+2qkb1ezqCFMbuVoWmmU9eXqSz37neWIRi/X9sZJZ5kDM5tTkHI7rt4NRy+LIuRTrBmL0x6OcuTwbTLr61/UcQyJ6tV0TAwXX76AWHMNMtkAiaiMYZnIu9x+ewBLIOS5R2+ZT9x/jzn2jVQeCbweqq9bSrXpcaEZ5cSbLwyevMJCIELXh4IlJ8o7HdDaP4xpSrosFlC99eAYupfN4xh+9fvP4JV5x/ToePHqB4xfS7FjXx63bRtgwmODiTJbjF9KMTc3x1afPE7UtXGO4OJOjL2rhGPjq4fMMJaLs2tDH2NTqHSaW/7aLM1mOX5wtOZU5Mp7SSZImUI3Z56erTKuG+4C7gvd3cXUj7n3Au0UkLiI7gRvwg3TWhOd5VaVfTGfJ5D0MYFt+xzKT97iYnr8aMZPN8fjpFHnHI2ZB3vF4/HSKmWxu3nGWwKWZHNmCR8wWsgWPSzM5rAVjtc8efJ6Tl2YBGEr4Aj55aZbPLlh+f+G2YdI5l2zBxRhDtuCSzrm8cFt4BFBvnDWlIo3UIzRZk3ft385sznd44nkeqUyB2ZzDXfu3r3juY89PEoThLJmAOsZPXwnbYt7AD/zPdpWG7qcnZ7kwkydT8PCMbzJ6YSbP6cnZFc89PjHNxZk8mYKLG1gYXJzJc3xiesVz26kb1eyqCU0buVrKV6+euzDDY2dSuJ4BY+aZZeYcj3zBBQTHNczkHDIFF1uE81NzTOeuDvzA13S+4GGML9aI5a9OZAt++2wJ2CLM5LzgaI9nz0/z3IVZTl2e5S++d5pf+btDHW1CqbpqOV2px3IzyonpDA8cucDEdBbPMxw6O03UFtI5B9czpb7nUj3iYrtogLNXMnzj6CUA+uM256dzPHZ6imPnp3ns9BTTWYf1/THGrmQ4PTmHGIPjeoxNZYlawmA8Qrbg8t0TV4jbq1+cKP62kxfTPPb8FNOZArYFm4fiaiLdJCpOg4vIfuAVwIaii9yAIcBe6cIi8jn8jbLrReQs8BHgY8Bfich7gdPAOwGMMU+LyF8BhwEHeP9qvCb5DcTK6QXXL/jugkZooZXmgacvELH9mciCCyIQtf30//LDV4/zDKwfiJNzPfKORzxqMZSILOp8Pn4mhS1wMZ3zB5QRi/6ozeNn5hfs9+y/lmcvpDl1eZZswSURtdmxrp/37L+2xifSPtTjYWOpV4/BNVquyeJKV7m3zw+87rqqnK5cnC2U3psK6ZWYrVAXVEpfyPfHphF8bRd1bAXpK5EJTE0jZW2hY/z0lWinblSztRHGNnK1lK9ePXk2hSXgeB6Tcw6WCLbAPx+/RME1GONPlBYnbSyBs1NZ8sGob6FViwtYCEMJYSDhm0mLuEF7a5FzXWyBRNTi+ctz5AMJZ/MuxngcPlfgd772LL//47e36nHUhOqqNXS7HotmlH968Hm+/dwkeddjdCjGhZkck7N5IraQjFpEbZtMvrp2zjP+1gwRGIxHuDSbB3yNDwUrjMlYhC0jFlOZPBfS/n0SUYtsWYd5qf35S1HJdLw8jETB81g/EOf6jf2sH/D3HqqJdONZzgYqBgwEx5S7yJ0G3rHShY0xP1bhq9dXOP43gN9Y6brL3rPK9OKsSKX0IpfTecq3+BgDOcdPL2coEeHCNDiuP4PpuB4x21oUOiJTcLgyW/DNQm0L1zVczOVZ0x9lIf3xCJuHk1cHifFO2Z5ZHWHYixEy6tIjtEeT4A8AqxnsLb5/benlFNylG79K6QtJZ51Fs6ZekL4iIhjMohUOZOWZ0XbqRjVbM6FrI1dLuVlWKlPAcT1EhKht4biGdMEjagsYg1OmTwO4BizPW7ZzuHUkwfmZHCOWIAL9UYu8ZxARxMD2NQkS8cg8x0m+KThgPA6euFzx2u1GddUyul6PezYPs2Ewwetu2sijz09yZjITbDMS5vL+HtlqB2JFfB0ZLucKbBiIM5SI8PzlOQyGRNTmUtZhdCjOhoE4EzM5Ci4kghBp6ZzLQCLCns2D5FfYi7+SR889m4fZvraPl+1ci1XWVqqJdHOoOKIwxnwD+IaIfMYY87yI9BtjVrZ5CgHxiEWmsLgTGI/MtwkrOBU6kAvSNw7Geer0FWaDvQwRC/AMGwfj847ri0WCgWNRJAbPGPpi8/8NBw5NcO26fm65ZqSUVmn2Y7Ux1FpBvYF/lauEWY+rdXNe7WTOUixcdV8pfSGV2rEqfM2QiNil2KHF1Q8RP73TUc1WT5g1WaRabZavXoHBdQ1GDJ4R3/wTcF2zpJkZwBLN7TwuzOQQ43EpncPx/K0axviWNhFLyLkeGxNRf2WRq5oCf1V9ropV9Xaiumo+3aDH5VjoVOncVIa5vEveFUzZ5EqtAz9j4MpcHtczFFzfRDsWERJRm3TW4cpsPvDu6W9X6o/ZzOVdbEt44fbh0upceUiHpajG8VEt4SGU+qhmB8wWETkMHAEQkVtF5Peam63mkissPXu/ML1Se7UwfWo2z0zeDTbRGjwDM3mXqdn5K4RbRhKs6YsCEsySCGv6omwZmb8ZfGwqQ85x+M6Jy3z18Hm+c+IyOcdZNPtR9Co4nSnM8yr4pafGVngCSogJlR6LTo4ePHqBQ2NTPHj0Ap/4yrGutuFfNxDzzd0s35rAsvzO6rqBlR3VqFv4UBIqTRappawVV6+Gk1Fsy3f2YAERESrMkdaE43lkHfA8w4b+KAXPH9Slcy6Zgst4Ksfpy+l5+5V8Sx0/oYpFdaV3CKUeyzkynuJT9x/jg3/9JJ+6/xhfemqspNWBuM2ZyQzpnEtfzMLzIFOFQcpy5F2DG+xtPz05iwWcT2VIZQpELN8BoeP5jpb8/fSGoWSEZyfSVYdXGZvKLHK4tnBVr5bwEEp9VDP4+y3gzcBlAGPMk8BrmpinplPJcmtheqX2ZGH6kYkZPM8jV/DIOYZcwcPzPI5MzMw7bu/mYXau6yNi+26sI7awc10fexfMCMZt4aFjlzh1aZaL0zlOXZrloWOXFm2orSeGmhJafosQ6bFaJ0fdxPqBGNGI+Ct/BjAQjQjrqxj8abyjUPJbhEiTRVYqaws7oAB3v3E3N24aYvNQnFjULg0CofJk6UoU99YaIOcYxmdy876LBPsxpuaceR0W1/P1ZVuwrq86D8BKT/BbhFCPRRZOypy6lObDnz/E1w5P8MWnzjF2JUPB9Z0BpjJu1VsZKiHBny2+lguBuXUxFIttW1jiH+N4/uLGq65fVzIDHU5GqwrGXo3jo/JJpvFUtuprK7VT1UYyY8wZmT+11tk2FitQrTlZJdvphYO/i9M58q4vnuJJeddPL2f3aD+ff+wsg4koW4YTzORcnrs0xztfsm3ecZOzeVKZAomITdQWCq5hNu8wuWAlsZ4Yakp4CZMeHz+TWhSz0hizyMlRN+EhbBpMUPBMKfRL1BK8KkK11BNfUGkfYdJkkeVCECy3P2c4GSGVjLJhKEE8YvHEmSvUY3VZXFWAYABZ1pcVfKcv4Mcqu3nLEMcvzFDwDMYI8ajQF7V57U0bF15W6WHCqMci5ZMyz05M883jl0uDptn8fAdkRbPNejD4fddYxI9TPZN1SeccRPwFBRFhag4MhmTUZjgZ44bRITYOFdifjHL3G3eXJoqWMx+v1vGRmki3hmoGf2dE5BWAEZEY8HMEy+ndTtSG3BJVRnTB1p1CEEpCRK6ODI0ppRc5NjHLdev7ePbiLOOpDAPxCDds6OfYxCxvLTvu1OQca5IRpjIOMzk/TtiaZIRTk/MDVNcTQ00JLaHSo8GQybtcns2XBkJ9UYtICPa/rZahRIQLKX8TPfivUUsWOYBaipgtPHT0IgXP4BrD5bRwbnKO19y4oer7r3aPpbJqQqXJIsvtrzlwaMK3XhmfZjpbYCgRZdNQnAOHJti7eZgrs7lS/NuFXrJrxZZl9tKWfWcJ3LJtmHTOYTbnkHM9dqzrZ/1AvOQJW8u+Qkj1WKQ4KfPsxDT/dPRiKewJzB/oFXuXqx37lccALMbAFfzXVCaPJYLjmdLqu2cEwY9ZWzTHfNdLrlnRkUsRdXzUWVQz+PsZ4LeBrfiBLb8K/IdmZqpTqLSXYWF61LYoOC6FMm8SFsUZy6s8fS7FqckMjusRsQTH9Tg1mSESmb8Kks27XJlzMPjxWjxjuDLnELHnd5jv2r+dj335KOCv+M3kXGZzDh943XWr+8FVog1sWwmVHnes7ePrz1zA8XwX8CJ+Q/K6KmbqK3UK6wgn1BI2DsZ5ZnwGg8EYgxG/zljoAGoppmbzXJ7Nzd/EZMyi/cOVqLYhVhpKqDRZZKmZ+Ocvz7JlOMHXj14kV3DZMBhnOBklW3D55rMXOfD0BJ4xFAJhrlaK5VY15R3ahSakAr4Hbc+wY10f6wcSvOL6dRwamybvetxx48ZS+6NlXwkIpR6L/arD56Z5+ORlxq5k5nnOrcRqB39FjdkCyaiN5/soYzBuE7PjeMaQzrkkYzYbB+PMFVzfi32wKlkcuH3q/mMrOnIpoqt6nUM1g7+XGGP+TXmCiPwM8AfNyVLnUK3HvzXJKOkFS4RekF7ORCrL+dQcrid4xvjxkTJ5BheEcbAFZpewo9m0oKV96y1bOXtljnsPnubMlTmGk9Gme/vUBrbthEqPM7lCyQW0AcT4m8tncivH6qsn1EO9VGvyXfFcYxB8t/WCBJ9X5vB5P46g4/rB5a1gsFxMX4lqPKp1KiGeVAqVJossnImP2YIlQjRiI/hhUU5PzhGPWLiux8wSscNWK8VIsJ0B5u8VjEaEZNQmlXFKYSLyjkc8Ity8ZQjPGKK2za4NA4vanOVWK0NSjpTGEDo9FvtVvu8Ih+cnWxPawDerFvriESzx9Z+IRviFO69j14YB/vTg8zx+ZgpBuGPnWt6z/9pFWlrOfFzpXKoZ/P2KiOSMMV8HEJFfBF5LBwup1ZgKvdGF6eenM4FTmcA1tjEUPD+9nFS2sGSjmsrO7zAfGU/xzPlZ3rR3U2nm9pnzsxwZTzWtsQtz57JLCJUeD43NYIu/kFV00W6Mn74S1XrbbQb1hJmYmMlh8Ae4jusRsS1GklEmZnIrnntlroBr/P0XxQFowTVcmVt5sAzhbYhDPqkUKk2WUz4T/6n7jxGL2P4+H/z9qiL+IHC2yqDR1eJUmFnNOYaC45R0JvhaiEYs8o7HeCpb0Vzs8HiK05fnSERtBuMRsgWXZ87PMFevXaoSNkKnx+LExdGJdFN9NhQnIG3L99QbiVjcvn2EOcewfW1fadKtmKe8a3jT3k3z0v7om6fmTc5peIZwUs3g723AF0XkF4A7gZuCNCVgKutgE2y+5ar3pKkFno2mK7gZXZiezrlEAM+PmYsIWIHb63LaMRALa+eyiwiVHjMFh4gt80ygC65HpkK4lW5gIpVlJusyGI9iW34ctJmsy0Rq5Ubd915vAOvq8qOpxlWMT1gb4pBPKoVKk5WYV7eLvwLnlpl4NpLlnKuVDzMH4jZ9sQiZvMuZKxm++HO3V7xmKuMgIvOcS+Ucj1S9fvCVsBE6PY5NZRhPZTHGkG7wREuRqOU3LWv6Y8QiFo7rAcLFdJ5yu5SHjl3gC4+N43iGtf1R8gWXjx+YwhJh29q+RZNz1TpyUTqLFQd/xphLIvI24GvAo8A7TKWlrh7FNWDbMi9IfM7xFpmHuhUiTC9KNwYH30Qu+IgDRBc89nYMxMLauVyKMJqZhU2PicCEK+vMn7gYTlblaLht1GP2OZt3MMYjnTMl827B99i7Emv7Yziuv8Hf9fxzYxGLtf3VubK/c98on/jKMR5P58g5LvGIzfqBOO968+6qzq9HE/WcG+ZJpbBpshLldXs0CEeUd72WmFlX0lrW8RhKCrYFz15I88G/frJi2RpKRJieK5AtuMQjFjnH38RUjaOl5QhjO9HLhFGPW0eSPH76Cpl63OZWIALs2NDH6clMEB4iT9S2cDxIRi1OXEyze9MQm4cTnLyY5sFjF1nXH2PDYJyc43HsQhrX8+iLRdi31S/35ZNzd79xtzpyCSEV4/yJyIyITIvIDHAc2A28E5gWkeo2oPQIa5NRXNeQKbhkCh6ZgovrGtYu2PPnVZjQWZgej9pXJ/25upoYX+BmtJq4KY2mW4Jwhi2Ydlj1OBxf2qtnpfROoR6zT4Pv+ddQ3OsYxE2q4tz9u9Yx0hdjIB6hL2YzEI8w0hdj/651VebcdxAF/l7D8s8rUY8m6tVTO+qyegmrJitRXrdb+BOYntc+B0sG3zy04HrM5hwEli1bN28ZZvfoAPGoTTrnEo/a7B4d4OYtq++Ehq2d6GXCrMc7940Sta3mhPQJVvyGEjYYKLh+uIjBuE2m4OIY2DKcwBLhfLA1wTf59lfR4xGLK7MFcgsmcMsn5/ZsHubuN+7mE++8lbvfuFsHfiGg4uDPGDNojBkqe00YYwaKn1uZyU7nlmuGiUQEY/zZemMgEhFuuWZ1AuiPRwJHDxAJXi3x08tpx0CsW4Jwhi2Ydlj1eGl26b1qldK7gb5YBC9w8FJ09OIZQ19s5RWI9+y/li3BgMcJLAK2jCRLruxX4sChCa5d188dN27kTTdv4o4bN3Ltuv6qynU9mih3tvG1IxMcGZ/G87yq9RTGSaWwarIS5XX75FwB2xJG+qKsH2xs6CBrhcFkeafE4E8CGIStI4lly+Wd+0axbYu9m4d4/Z6N7N08hG1bdZWhsLUTvUyY9bhn8zAfeN11RG1r1R50K2GMvw993UACO2IxlIiwpi+Ga/zvNg/HuRzsKU9nHfpj/qCwSDxi4RpDfEF4pk6fnFOWZ8XeiIj8CPB1Y0wq+DwC3GGM+bvmZi08rO2PsX4gjuMaXM9gW0LElkWmWlLBlkwWqH04GcMWmJwrUHA9orbF2r4oA4n512tX3JRucNcbVjOzsOkx7xpiFjjm6v7ViFDyANqNDMZtjGcwIogIngExhsEqVzsHE1E2DSdKZpuDiejKJwWMTWWI2vCdE1c9Hu7a0MfY1MozyvVool5nG2GOARU2TS5HsW7/uyfG2DpiMZVxfPPJRrKC9Bd+bQysH4jxsrLV76XKZTPKUFjbiV4mrHosemn/+b94omKYsdXgBR5zHdcwmIgwOhjHA7Yl+pjLOYj4gz6AgUSETMEh75qS+fR01mE4GWH9QJxUpqD7+rqEaozhP2KM+ULxgzFmSkQ+Avzdam8qIqeAGcAFHGPM7SKyFvhLYAdwCvhXxpgrq71HK8m5BlsMY2Xe/LaviZNb0MGN2oK7ROCW6AK7mhduG+b+I348JWP8VYOs4/HqbZ3fEQoLId672HA9QvM0GbOFuYLxZ/ODyY+8gb5ohwfrqwMPYaQ/xkzWb0RjtjCYiFKN25YDhybYtravtLcCIJUpVO34JG4LB09MMpiIlAZh3z1xhf271q547taRJCcvpjk/kyOddRhIRNg0GGfnhoEVz22Es40QTyp1TRtZ3N82m3NIZ30zy/54hEvpyYbdY6VpHz+2rf8+agtrB2LcsKGfDWUrkJXq6kaXoRC3E71MaPX41lu28stfOMRUA50U+dsQ4GW71vqhHQKPvpfSWZ46k+LExVn64xEmpjNsGowzPpXhBVuHmMu7XJ719wf+wptvZNeGgVBOzilLU83gbynT0EZ4a3itMeZS2ecPAQ8YYz4mIh8KPv9SA+7TdJ46O8npK/PduJ++kiNxdn6DORi3yTqLRb1wRWD7uiRXZvMUgtmfvGsoOHm2r5vf4ITcPXpbCbGHqmbpEZqgya0jCZ69OOd78DNXO35bRxprStZJWJjAfBEEg+P5A7jtVez6G5vKMJvN89XD08zmHPrjEW7dOkQ6V53DFwPkCy7ncw6uMdgiRK3q9hvuHu3n84+dpT8eYTBuM50pMD6V4c1VmM01y9lGSOiKNvLIeIpPfOUYl9I5YrYwMZ1jcjbflD1/lRwqAYwkI0xnXRzPnzgZiEU4OpFmOBnj2vX9nL48y9GJNNesSfKp+4811QFLiNuJXia0ejwyniLf6JV2YOtwgh8Ptg7c89BJrszmeOb8DCLC+sE4UVv49nOTvOr6dXzoB2/k2MQsY1MZ9l+3fp6+iq/FSaKFYR+U8FCNIB4RkU8C/wu/vv4AvgelRvN24I7g/b3Ag4Rk8Hd8Yq6q9P5ElOmcQ9656sQlFvHTy/nrh89S8OZ7Fix4fvpP/8ANpbSQu0dvKyE2M2uVHqEBmpyr4La6Uno3MJtzcY3BdQm8fYJt++krMZcr8OCxoH9hIO/kefDYJV5744aq7n1hJsd0Ns9MzivVMYNxiwtVxBg8NjHLi7aPcH46x3TWX+24cXSAYxOzvHWFc2/eMkxf1J63anjt2r6qVg27gK5oIz978HlOXpplMOE7G/KCyZoljFXqorgSsXD0ZwOWJaWBX9QWCp4/kZJzXL5z4jKPPH+FnOOxb8sgezYPLZrwbLRnzhC3E71MKPX4h994lt/7pxPMFRrbNkYELszk+cW/fopNIwnOTWUZuzKHiLB1JMkrrlvHhsFEaYX7rbdsXba+10WH7qCawd8HgF/BX94W4KvA++u8rwG+KiIG+ENjzD3AqDFmHMAYMy4iG5c6UUTeB7wPYPv27XVmozFUG4x6IB4lYuWxY6a0/0kQBuLzB3+nJuf8DmPZ6M81fno5uh+hPkJqZtYMPUKTNHlpNofgOy0q4nh+ercyOZcnXzAlT72eMbien74SR8/P4LiGiC1Ylm/+5riGo+dnqrr3kXMpZnIellxdXZnJeRw5t7J3wrGpDNvX9bNj/dUBm2dMVfWJv0Iyx97NQ/NWSDrZYUsD6Yo28vEzKQbiNomozbMTM1WtFq+aBRdPRi0KrsfGoTjpnEM272JZgl0MMp9zcaOGPev7mc46TMzkuZzOlUxBiw5YmtEpDWk70cuETo9femqM33ngOLNNmBS1LCHvepy6PEve9YJ96IbRgVjJqRhU33fURYfuoJo4f7P4y9mN5JXGmHOBWO4XkWeqPTEQ3T0At99+e6i8RgwkIhjjlQJq+h7YPQYWmEZ5Qa9Ryt2ieWbRYFL3I/QeTdIjNEmTV8OYlI1GMBXDnnQD05kCfvjcq6v3XpC+Epdm8wzE/RhMrvEHzYmIcGl25YFj8Xzw65ZiHsrTl6Oe+qSXV0i6pY00mFJ4kEavPiyHJTAYjzCbd3Bc45u9BQW3Lx5hLu9iWb7325mcw1AiQs7xOH5xlg2DiVKnVTulCoRTj/cePN00a5jivnPHMySi/uTOlVmb6azLpuFoSUfV1vW66NAdVBz8icjvGmN+VkT+gSXM840xb1vtTY0x54LXCyLyBeClwISIbA5mUDYDF1Z7/U7FMzA6nCTveOQcj3jEIhaxWBjjvT8WYSbnBO7i/XhhHjAYWxzqQfcj9AbN1GNwflM02Re3SWcdHM+UzBAt8dO7lZzrN+LFsW7xtZi+HFHbohDEUzKBeYBnIBqpGJVnHq539Z5FTJC+EvUGiO+1FZJuayNfuG2EA0+fr2qSol4iluAGE5q2JYj4g7V4xGY27+A6hr64TcSycFwHY/w4t0OJaGlfadFDYbHTqp3S3ibMejw7OdfUlXbPGPoifsw+gA2Dcc5c8YO+zwRhdartO+qiQ3ew3MrfTwA/C3yikTcUkX7AMsbMBO/fBPwacB9wF/Cx4PXvG3nfZmKLP0u/VHo5vlMEvwErOkXIFbxFThFefcM6vvbMBTzP4AZ7hmIR4dU3zA/03Muz7T1IU/QIzdXkC7YO8a3jk0hgxuwZ/+8FWzs67FJd2Fwd8BWrBQnSV+KmjQN868TkvI6AAK/cVZ2mo7aUws0UM2GC/VPVsNoA8T1KV7WRiahwZbawKPRQoxGgP24zm3OJiD/480uc8Irr/DbuwWMXS6uAtiXYwLa1Sa7f2M+jz0+Rc/x2s7zTeuDQhHZKe5vw6rFJmitOtkZti21r+sg5HomojW1ZbF/bh4iAGIaT0ar7jrro0B0sN/h7DsAY840G33MU+IL4LUwE+HNjzAEReRj4KxF5L3AaeGeD79s0fuiWUf7+ycVBX3/olvn7Xap1ivCB19/ApXSeU5dnyRZcElGbHev6+cDrb2AhvTbb3sM0S4/QRE1uX9vPs4OzzOQKOK5HLGIxGI+yfW1/Q39Ao7FYei9vNetvA4kohdk8yNXYhhg/fSXSBWdxnLMgvRquW9/PkfMzuGV2n5b46StRDBB/yzUjpbRawkz0IF3VRh54+gKJiOB6kG/ioH/H+iR90QhnJjNYtrB1OEHE9lfyDPDj+6/l/HSOS8EKtOfBdLbAznX9rO2Pc+PoAEcn0gwFJp7lnVbtlPY0odXj2mSUc1PZVWcwGbX8lXRjGAramXwQI1qAoWSUXRv6eeb8TMkT8+7RAWzbqnlPrC46dAfLDf42iMh/rPSlMeaTq7mhMeYEcOsS6ZeB16/mms0iERGyS7g6S0TmT9P89o/dDjzCP37/Ao5niFjCW16wMUi/SrVOEfZsHuZX335zQ72WKaGnKXoMzm2aJvOu4bZtw3z/3DSzOZf+uM0Ltgx1fJD323eu5bGTk5QPuSLAi3auHC/vuo0DPP785DxrANvy01fi6MQsNldXDYv7Bo9OzFaV79fv3UQ8Ihy9MFsyLb9xYz+v2r2y4xU1m6uZ0LeR5d4xJ1JZbEuIRoR8vjH6jFlQ3MoUtYStI3E2DCaZmM6ybV0SkJJJ557Ng+Rdw57Nw3zwzbvntX+7R/tL7ud3rB/gZ+64blF7qJ3Snie0euyrYmJwKYbiFmJZXLu2j+lMwXeOlPeI2hA1Fmv7Ymxf18c7XryVYxOzzBVcUhl/3+zODQOr7lfqokP4WW7wZwMDNG1BuvMRESJiSi6vi0vosoRdzG//2O389o8tf71aGicVl7KAUOoxZgvHL8yyYSDONSO+qfPxC7O8bFd8xXOjlu/qfan0ZnPX/u2MT2VKMe9mci6zOYe79q/sPfG69f2cuJgmnXNKnjsH4pGqVt/yBRcWePr1TJBeBXfuG+X05Bwv2La2Zq+bupejZkKpySILXbZbAgXXn7xcLQsjOIz0xeiLR3jl9etYP5DAM4bxVJb9u9YtKmvln5dq/1YKN1LpPKVnCK0eh5O1hyHcPBQjU/CnCUWEV96wHmPg+2Mpzl7JYNvCy3at5cf3X8uezcNV6UfpHZYrcePGmF9rWU46kDXJKBfTeeIRsAL3uI7rp68WbZyUVRJKPS4VzHmhQ5JK7Fjfx7MXZkthT9xgv+CO9X2Nz+gC3nrLVsD3wjYxnWV0KMEHXnddKX05DDAYj7J5OFna21s0aVuJmO1bGyxw9LvI2qAS9ax+6F6OmgmlJoss9I65pj/GhZm8bxa2AgIMxC3i0QiX0/lS2S7t6w0+bx5Jsm/rEOsH/BXl4mSCljWlCYRWj3s3D/PAkQuLnP9VYiBmsXEoSTrrsHt0gEQsQtS2GUxEePG1a7l+Y0Hj7inLstwWltDNnlSasFyYnowu/bMXpr/2po2MJCNYIjiePwAcSUZ47U1LhnNRlGYSOj0C5FzDy3atIRG1mck5JKI2L9u1hlwVZp9vecEW9mwewLZ8/dmWsGfzAG95wZYVz63kXKUWH6O7Ngywf9c6XrJjLft3rWNXlQHL867h+o39XEznODqR5mI6x/Ub+6sydb1+dBDwB7qGq46kiunVsGfzMHe/cTefeOet3P3G3VV3AIoDx+FklPFUluFkVDsQyxNKTRYZm8owWOZsbMf6ATYNxpZ1+CL4ToXiET9e51zeZTBxVVUmOChiwU+9cju7NgwQtW08Y0rOWYqmZlrWlAYTWj3euW8Uu0pPS7aAbdvEozYv2bmG/kRUtaTUzHIrfx21/64atgzFOZtaHDx6y9B8E7PBeIR8IY9lQTGYguf56eW8Z8HG86Lr8/fsv7apv0NRliB0eoSrpoQv33XVU20qU2Dj4Mqr50UTxpftXF+zCePO9X08d2luyfRqWGgSV0vA6HpMXV930yjxiPDM+TQ5x6MvanHTpgFeeX1rJpzUMqEmQqnJIgvNfK/f0M/lmRyjw0nOXZljcrbgmyBbAgbyniEWESwMfpQFj+FkpLS67TiGRMxmOBnlrv3b+ekfuGHensKFq9Ba1pQGE1o97tk8zLa1SU5eWjrkQ9SCiG2VwoPtWD8wz3RataTUSsXBnzFmspUZaQS3bBvh/PQE5T5aIuKnl3PDxgEuzU4GS+x+/DEjfno5S208V8crSjsIox7BH8B9/MBRJmfz5B3f2+fa/hi/eOeNK567Z/Mwb9izYZ7p5V37t1elv7vftJtf+btDZApeKfRBMmpx95uqi1lXT8Doekxd79w3yqGxFNdtoDThNJyMVzXgVVpLWDVZHJAdHk9x5nKG3aMDXLu+n1jEZk1/lFzBAxEsC2K2RTxqMVdwiQtsW9PH+VQG8BB8M85cxMIS4c37NvJ775nv5Ew7pUqrCKsewdfkTaODnLw8t6jxEPw4r1FLmM05DMSTrElGePDoBa7MFXj19es4Mp5SnSk1Ufsu0w5mcs6PUSRlDlpE/PRykvEIa/siTGUcPOObha5JRkjGFz8ObbwUpT6swJzFBK2aVaV5y5HxFF87cpG9m4d42c61zGQdvnbkIrs2DKyoyaX27N21f3tVe/bAN4mLWHB4fLoUlmXX+j7SuZVDLhRNXU9cnGM6W2AoEWXvlsGqTF1BY+0pzaN8RfumTUP0RW2OTqSZK7hsHIwznIyxbWsfg4kIB5+7yNPnZpjLu4gIL9w+wkt3recfnhxjIpUh7xpc4+t5MGEv6ZxJUZTl+dJTY3z6gedI55x5e2btIL5zzLbIOoa+mM3GeJQXbB3i6fEZ1vRFeeX1a4lG7KqtUhSlSFcN/p67kAagL2YjQYytvOOW0otMZx3WDya5buN8T2PT2epiaSmKUh0HDk2wbW0f+7ZebZSqjR1Xz+ob+APAagd7C4nZwndPTDKQiDAQt8kVXB4+eYWX7Vo51EM9pq4aa09pJgs1tWP9AGv646XPsYhvtnkpnSWd87h2XT9DiQg5x+PCTJ6LM1myjkcyFmXAEiK2cM2avmA/n7afilILR8ZTfPrrz4H4k3xR28Kz/M1ItuV7iTYYbtw8wN7NQyWdjg4n53nKherbRUWB6mIWh4a5vBOsKhh/5IfBEmEuP79RGk5GMMaQLbjzXlfjbldRlMosdCoB1ceOq+fceqnXdLPo3GKho4uVaOdvVrqf5cpX+XfHL8wSj1gMJSKkcy77tg5hgKfPTROzBMcz5ByPNX1RsgUXDAwltP1UlFo4cGiCgusxlIiQdz36YxbF1ifvuDieR7bgsWkwXmpDtI1QGkFXDf6SsQjxqL//wEOwRIhHLZKx+ULZu3mYmzYNzvNAeNOmQfbqrImiNJStI0lmFqyoVxs7rp5z66UeL6X1eDJs529Wup/lylf5d9PZQsmRy0AiwvqBBC/btYaCa0jGI2wYjLFtbRLPCPGoze7RAW7eou2notTC2FSGdf0xco5HPGJhWxaDcRsQBuJRIpbF2v4oOzcMlNoQbSOURtBVU3UvvXYNDx2/RCJiE7WFgmvIOi4vvXbNvOP8GENz7Nk8VLMXQUVRqqeeeF7tjAVWj+kmrH6vsMY/U5rJSuWr9F08UtoGcfOWIQDikQhv3DtausZwMqrtp6LUwdaRJAXH5ehEmr6YzeSsh+v5W5defcN6LMtaNHGobYTSCLpq5e8Db7iBvZuHsC1hruBiW8LezUN84A03zDtOYwwpSmuoR2vt1Gk9ppv1oHWT0kyWK1/l3w33RcHA7o0DrBuIa4w+RWkCd+4bxbIsbhwdYE1fjGTUwraE3ZsG2bF+YEldqf6URiAmxJ7kbr/9dvPII4/MS1sYV0hDMyj1ICKPGmNuX/lIBZbWZFjRuqTzUD3WRj161PKvrITqsTa0z6o0k1r0GOrBn4hcBJ6v8PV64FILs9MsuuF3hPk3XGuM2dDuTISFDtVkO8tfL967mfdVPdZAh+pxIZ2SD9C8LMVy+VA91sAyeuyU//VyhCGPEI58NiuPVesx1IO/5RCRR7phRqobfkc3/AalftpVDtpZ/nrx3qr3cNAp/6dOyQdoXjo5H91MGJ5xGPII4chnJ+Sxq/b8KYqiKIqiKIqiKEujgz9FURRFURRFUZQeoJsHf/e0OwMNoht+Rzf8BqV+2lUO2ln+evHeqvdw0Cn/p07JB2helqJT8tHNhOEZhyGPEI58tj2PXbvnT1EURVEURVEURblKN6/8KYqiKIqiKIqiKAFdOfgTkTtF5KiIHBeRD7U7P6tBRE6JyPdF5AkRCU3gNBH5YxG5ICKHytLWisj9IvJs8LqmnXlUWku79Cgi20Tkn0TkiIg8LSI/36p7B/e3ReRxEflii+87IiJ/IyLPBL99fwvvfXfwrA+JyOdEJNGqeyvV0c72sVPah0p1Q5vykhCR74nIk0FefrVdeQnuO6/e0va7eXRSX7VWbYrIh4N8HxWRN7cojzXrtk35rFnTrc5n1w3+RMQG/hfwg8Be4MdEZG97c7VqXmuMua3dLmFr5DPAnQvSPgQ8YIy5AXgg+Kz0AG3WowP8f8aYPcDLgfe3uC74eeBIC+9X5LeBA8aYm4BbW5UHEdkK/BxwuzFmH2AD727FvZXq6ID28TN0RvtQqW5oR15ywOuMMbcCtwF3isjL25QXWFxvafvdBDpAiwv5DFVqM8jnu4Gbg3N+L/g9zaYm3bYxnzVpuh357LrBH/BS4Lgx5oQxJg/8BfD2NuepZzDGPARMLkh+O3Bv8P5e4F+0Mk9KW2mbHo0x48aYx4L3M/gdmq2tuLeIXAO8Ffg/rbhf2X2HgNcAfwRgjMkbY6ZamIUIkBSRCNAHnGvhvZWVaWv72CntwzJ1QzvyYowx6eBjNPgz7chLhXpL2+/m0FF91Rq1+XbgL4wxOWPMSeA4/u9pdh5r1W278lmrpluez24c/G0FzpR9PkuLOnwNxgBfFZFHReR97c5MnYwaY8bBFy+wsc35UVpHR+hRRHYALwS+26Jb/hbwi4DXovsV2QVcBP5vYLr1f0SkvxU3NsaMAZ8ATgPjQMoY89VW3Fupmo7Q4wLa2j4sqBvakpfA1PIJ4AJwvzGmXXn5LRbXW9p+N4dO1OJCKv3v2573KnXbtnzWqOmW57MbB3+yRFoYXZq+0hjzInyTgPeLyGvanSFFWQVt16OIDAB/C/y/xpjpFtzvh4ALxphHm32vJYgALwJ+3xjzQmCWFplpBfsX3g7sBLYA/SLynlbcW6matuuxk2h13VAJY4xrjLkNuAZ4qYjsa3Ue2lxv9SJh1mJb816DbtuWzxo13fJ8duPg7yywrezzNYTQ9MgYcy54vQB8gRYsVTeRCRHZDBC8XmhzfpTW0VY9ikgUv5H4M2PM51t021cCbxORU/imPK8Tkc+26N5ngbPBLCPA3+APBlvBG4CTxpiLxpgC8HngFS26t1Idndg+tqV9qFA3tLWtCky0H8Tf99PqvFSqt7T9bg6dqMWFVPrfty3vNeq27c+4Sk23PJ/dOPh7GLhBRHaKSAx/E+V9bc5TTYhIv4gMFt8DbwIOLX9WR3MfcFfw/i7g79uYF6W1tE2PIiL4e9+OGGM+2Yp7AhhjPmyMucYYswP/937dGNOSFTBjzHngjIjcGCS9Hjjcinvjm3u+XET6gmf/etrj8EapTCe2jy1vH5apG9qRlw0iMhK8T+JPojzT6rwsU29p+90cOlGLC6n0v78PeLeIxEVkJ3AD8L1mZ2YVum1XPmvVdOvzaYzpuj/gLcAx4Dngl9udn1XkfxfwZPD3dJh+A/A5/P0+BfzZjPcC6/A9Gz0bvK5tdz71r6Vloi16BF6FbzrxFPBE8PeWFv/2O4AvtvietwGPBL/774A1Lbz3r+I3coeAPwXirfzt+lfV/6ht7WOntA+V6oY25eUW4PEgL4eA/xKkt63dLK+3tP1u6nPumL5qrdoEfjnI91HgB1uUx5p126Z81qzpVudTgpsqiqIoiqIoiqIoXUw3mn0qiqIoiqIoiqIoC9DBn6IoiqIoiqIoSg+ggz9FURRFURRFUZQeQAd/iqIoiqIoiqIoPYAO/hRFURRFURRFUXoAHfyFGBH5qIh8cBXn/aSI/G6F79L150xRlOUQkc+JyFMicne786IoiqIorUBEXBF5QkQOicg/FOPhKa1FB3+KoigtQkQiIrIJeIUx5hZjzKfanSdF6UREZERE/sMKx+wQkX9dxbV2iMihVeThlIisr+H420Xkd2q9j6L0EBljzG3GmH3AJPD+dmeoF9HBX8gQkV8WkaMi8jXgxiDtNhH5TrCS8AURWROkPygitwfv14vIqbJLbRORA8G1PlLhXr8gIg8H1/3VJv80RQkNItIvIl8SkSeDGcx3lXcUg07gg8H7j4rIPSLyVeBPgK8CG4PZz1eLyL8LdPakiPytiPQF540Gen4y+HtFkP4eEflecP4fiojdnqegKE1lBFh28AfsAFYc/LUKY8wjxpifW5guIpF25EdROpyDwFao3F8NLNU+H/RXnxWRjwfptoh8Jmh/v69WNLWhg78QISIvBt4NvBD4UeAlwVd/AvySMeYW4PvAkoO5BbwU+DfAbcA7i6Iru9ebgBuC424DXiwir6n/VyhKV3AncM4Yc2swg3lgheNfDLzdGPOvgbcBzwWzn/8MfN4Y8xJjzK3AEeC9wTm/A3wjSH8R8LSI7AHeBbzSGHMb4OLrWFG6jY8B1wWTHL8Z/BU7eu8qO+bVwTF3Byt8/ywijwV/r6jmRkFH8hPBtZ8SkQ+Uff2B4FrfF5GbguNfKiLfFpHHg9fiROwdIvLF4P28SR8Rubls0uYpEbmhYU9KUUJGMGn5euC+Kg6/Db/dewHwLhHZFqRtNcbsM8a8APi/TcpqV6KzUeHi1cAXjDFzACJyH9APjBhjvhEccy/w11Vc635jzOXgOp8HXgU8Uvb9m4K/x4PPA/iDwYfq/RGK0gV8H/iEiPwP4IvGmH8WkeWOv88Yk6nw3T4R+a/4Kx0DwFeC9NcBPwFgjHGBlIj8OP5A8uHgfkngQp2/RVE6kQ8B+4wxt4nIvwR+BrgVWI9f/h8KjvmgMeaHAIJV8zcaY7LB4OpzwO1LX34e7wN2Ai80xjgisrbsu0vGmBeJb4L6QeDfAs8ArwmOfQPw34B/ucR1Xwy8yhiTEZFPA79tjPkzEYkBumKv9CJJEXkCf9X+UeD+Ks55wBiTAhCRw8C1wNPArkBXX8K3qFGqRAd/4cPUcKzD1dXdxArXWfhZgP9ujPnDGu6nKD2BMeZYsBL/FuC/B7P7y+ltdpnLfQb4F8aYJ0XkJ4E7ljlWgHuNMR9eTb4VJaS8CvhcMAkyISLfwLd8mV5wXBT4XRG5DX9VfHeV138D8AfGGAfAGDNZ9t3ng9dH8S1uAIaBe4MBpgnuuxTlkz4HgV8WkWvwV/ufrTJvitJNZIIJnWHgi/h7/n6H5dvPXNl7F4gYY66IyK3Am4Nr/Cvgp5qa8y5CzT7DxUPAj4hIUkQGgR/G71ReEZFXB8f8OFBcBTyFP/MI8I4F13qjiKwVkSTwL4BvLfj+K8BPicgAgIhsFZGNjfwxihJWRGQLMGeM+SzwCXyzzFNc1dtSqwCVGATGRSTKfBPOB4B/H9zPFpGhIO0dRS0GGr62nt+iKCFg2WX1Mu4GJvBXCG8HYjVcv9LEarHj6XJ1wvzXgX8KTL5/mMWd1SKlSR9jzJ/jm3xngK+IyOuqzJuidB3BSt7PAR8M2r5TVO6vLkL8/fWWMeZvgV/Bb4OVKtHBX4gwxjwG/CXwBPC3wD8HX90F/KaIPIVvB/1rQfongH8vIt/GN5Up55vAnxavZYwpN/nEGPNV4M+BgyLyfeBv8DupiqL4ew++F5iv/DLwX4FfBX5bRP4Zv6NYLb8CfBff/OWZsvSfB14b6O9R4GZjzGHgPwNfDfR+P7C5zt+iKJ3IDFfbnIfw9/rYIrIBeA3wvQXHgL8iN26M8fAnQqs1rfwq8DNFxywLzD6XYhgYC97/ZDU3EJFdwAljzO/g73O6pcq8KUpXYox5HHgS35fFcv3VpdgKPBi0wZ8B1BqmBsSYWqwIFUVRFEVRmo+I/Dn+IOnLQdIP4q/Q/VdjzF8GKwYH8DuLn8E3I/tbYA74J+ADxpgBEdmBvzd3X4X7RICP4ztyKgD/2xjzu4HHwduNMZcCp2ifMMbcISL78ffXXwS+Dvy4MWaHiNxBsAdRRD4KpI0xnwju8WHgPcH1zwP/eoF5qaIoSkvQwZ+iKIqiKIqiKEoPoGafiqIoiqIoiqIoPYB6+1QURVEUpesRkTcD/2NB8kljzI+0Iz+KoijtQM0+FUVRFEVRFEVRegA1+1QURVEURVEURekBdPCnKIqiKIqiKIrSA+jgT1EURVEURVEUpQfQwZ+iKIqiKIqiKEoPoIM/RVEURVEURVGUHkAHf4qiKIqiKIqiKD2ADv4URVEURVEURVF6AB38KYqiKIqiKIqi9AA6+FMURVEURVEURekBdPCnKIqiKIqiKIrSA+jgT1EURVEURVEUpQfQwZ+iKIqiKIqiKEoPEGl3Buph/fr1ZseOHe3OhhJSsgWXVKZAwTVEbWE4GSURtecd8+ijj14yxmxoUxZDh2qyd6lGT/WieqwN1WP7aIUe2o3qsTZUj0olGlFf1KLHUA/+duzYwSOPPNLubCgh5Mh4inseOslwMspgIsJM1iGVKfC+1+xkz+bh0nEi8nwbsxk6VJO9SbV6qhfVY22oHttDq/TQblSPtaF6VJaiUfVFLXpUs0+lJzlwaILhZJThZBRLpPT+wKGJdmdNUUKH6klRrqJ6UBSlWtpRX+jgT+lJxqYyDCbmL3wPJiKMTWXalCNFCS+qJ0W5iupBUZRqaUd9oYM/pSfZOpJkJuvMS5vJOmwdSbYpR4oSXlRPinIV1YOiKNXSjvoi1Hv+FGW13LlvlHseOgkwz8b6XS+5ps05U7qNI+MpDhyaYGwqw9aRJHfuG+2qfT+gelJqo9s1oXpQFKVa7tw3yscPHGVyNk/e8YhFLNb2x/jFO29s2j115U/pSfZsHuZ9r9nJcDLKeCrLcDLadZvxlfZT3MidyhTYPJwglSlwz0MnOTKeanfWGorqSamWXtCE6kFRlFqwRAAwmHmfm4Wu/Ck9y57Nw9oYK02lfCM3UHo9cGii68qe6kmphl7RhOpBUZRqOHBogm1r+9i39Wp9kcoUmlon6sqfoihKk1DHD4oyH9WEoijKVdpRJ+rKn1IX3b53Q+luml1+t44kSWUKpdUN8Ddyx23hU/cfU90oPUclTZQ7N6hXl9ouKUp30AtabkWduBBd+VM4Mp7iU/cf44N//SSfuv9Y1XsvemHvhtK9tKL83rlvlFSmQCpTwDOGVKbAmck5zqWyqhulJ1lKE6lMgTv3jQL161LbJUXpDnpFy82uE5dCB389Tj2FSgPZKmGmFeV3KccPo0Nxrl3Xr7pRepKVnKHUq0ttlxSlO+gVLTe7TlyKFc0+RWQ38PvAqDFmn4jcArzNGPNfV31XpWOoZ/P92FSGzcOJeWm6d6O51KNHEflj4IeAC8aYfUHaR4F/B1wMDvtPxph/DL77MPBewAV+zhjzlUb/nnbSqvK70PHDB//6SdYN6J6nbmG1muxlPS7nDKVeXWq71NuoHruHXtJyM+vEpahm5e9/Ax8GCgDGmKeAd690koj8sYhcEJFDZWkfFZExEXki+HtL2XcfFpHjInJURN5c+09RVkM9G001kG1bWJUeAz4D3LlE+qeMMbcFf8WGbW9w3ZuDc35PROw6895RtKv8qm66jtVq8jOoHhdRrz5UXz2P6rFLUC37NOM5VDP46zPGfG9BmrPkkfP5DCqkjqeeQrWSnbLSFFarR4wxDwGTVd7n7cBfGGNyxpiTwHHgpdVns/NpV/lV3XQdq9Kk6nFp6tWH6qvnUT12Capln2Y8h2oGf5dE5DrwIw+KyDuA8ZVOUiGFg3oKlQaybQur0uMK/KyIPBWs1q8J0rYCZ8qOORukdQ3tKr+qm66j0ZrsST0WqVcfqq+eR/XYJaiWfZrxHKoJ9fB+4B7gJhEZA04C71n1HX0h/QTwCPD/GWOu4IvmO2XHVBSSiLwPeB/A9u3b68iGAlcLVbkL2Xe95JqaGtpeE2KbabQefx/4dfyG8teB/wn8FCBLHGuWukCYNdmu8qu66Soaqcme1mORevWh+uppVI9dhGrZp9HPYcXBnzHmBPAGEekHLGPMTB33q1tIxph78IXN7bffvuQxSm2ouMJDg/WIMabkLkpE/jfwxeDjWWBb2aHXAOcqXEM12QX0QjylZtBITfaCHrWcKc1E9dg8VLvdw4pmnyLy30RkxBgza4yZEZE1IrIqT5/GmAljjGuM8fA35RZNO6sWUiez2nh5ilItjdRjcL3NZR9/BCg6aLoPeLeIxEVkJ3ADsHAfhdIl9Eo8pWbQSE12ux61nCnNRvXYHFS73UU1Zp8/aIz5T8UPxpgrgZfO/1zrzURkszGmaHu9UEh/LiKfBLYQQiEVhTGcjM4TRi/aJytNZdV6FJHPAXcA60XkLPAR4A4RuQ1/pf0U8NPBdZ8Wkb8CDuNvln+/McZt7E/pHsI+I1pPyBdldZrsBj3WWu61nCktoGf12Eyaqd2wt59hpJrBny0icWNMDkBEkkB8pZN6TUjtbtRUPD3DqvQIYIz5sSWS/2iZ438D+I1V5bKH6IaJn16Kp9QEVqXJsOtxNeVey5nSAnpSj82mWdrthvYzjFQz+Pss8ICI/F/8QdtPAfeudFKvCamdjZqKp6dYlR6V5tHuiZ9GsHUkSSpTKOUdejOe0irpSU2uptxrOVNaQE/qsdk0S7vd0H6GkRX3/BljPo4/KNuDH4fv14M0pYx2BqMsF48lUnp/4NDEyicroUL12HmMTWUYTMyfRwvbaobGU1o9varJ1ZR7LWdKs+lVPTabZmm3G9rPMFLNyh/GmC8DX25yXkLNnftGueehk4BfcGeyDqlMgXe95Jqm31tNaXoL1WNn0Q2rGfWGfOl1elGTqyn3Ws6UVtCLemw2zdJuN7SfYaTi4E9EvmmMeZWIzDA/7IIAxhgz1PTchYh2Nmoqnu5H9di53LlvlI8fOMrkbJ684xGLWKztj/GLd95Y8ZxO3KOrIV9qo9c1Wc2EZ6VyvlI560R9KJ1Nr+uxFTSjjah24UTrhMZS0ezTGPOq4HXQGDNU9jfYySLqxXALakrT/YRVj72CJX6oUhP0OYqfl0JdZncHva7J4oTncDLKeCrLcDI6b5/5asu56kNZDb2ux7CyUj0CWic0g2XNPkXEAp4yxuxrUX7qop2OT9p5bzWl6Q3Cpsde4cChCbat7WPf1qt6S2UKFTesHzg0wWQ6y3dPXmY259Ift7lhQ3/Pb3AP48xut2qynv9F8dz7D08QtYWbtwxhSbRqRw7qAEJZLd2qx0bTaXXtSiuKy9UJxddO+S3ldNpzLmfZwZ8xxhORJ0VkuzHmdKsytVra2WjUe+96C0k9y/GdXECVq4RNj+2klWW61j2333nuEkfGZ4hFLPqiFvmCx+OnU2QLHrxxd1Py2OmE1WNxN2qy2v/FUsd9/MBRLBG2re3DMx4Yi8dOT/Gi7SNsGExUtRe9qKdL6SzHL8wynS0wGI8w3Bdd9jxF6UY9NpIj4yn+9ODzfPP4Zdb0Rdm7ZTAUdW2lNvbpcylOT851ZLvR6W1aNQ5fNgNPi8j3gNliojHmbU3L1Sppp+OTeu7dqyuWyqoIjR7bRavLdK17bs9MZbAsIR71re7jluB4hjMV6opemJwJ+WpPV2my2v/FUsdNzuYB2Ld1mOFkjGzBJR4Rjl+cZcNgoqq96FtHkpy6lOboRJp4xGIwHmE66zCdcTgynmLP5uGe0ISyarpKj42i2C6euJhmTdLv+j9+OsWLrx0peYfvVA1VamOnsw7XrOnryHajUj362YPPs34w0fa6q5rB3682PRcNop2OT+q594FDE3iex5HxaaazBYYSUTYNxUOxYqm0nNDosV20ukzX7OnXgCUGxzXYluB6BkvMfBcFAb0yORNyj8Vdpclq/xdLHZd3vNK+1+s39vPo81PEbGEm2IdejQfsO/eNcvdfngcgHrHIOR4Au0cHSmZevaAJZdV0lR4bRbFdLLiGgbiNBPvSj1+Y5aU713Z0XVupjR1ORjo2TMRS9WPOcfjW8Uled9PGttdd1cT5+wZwFBgGhoCjQVrH0U7HJ/Xc+/B4imfOz5AtuAzGI2QLLs+cn+FwCzazaoyVcBEmPbaLVpfpajasl3PN2j6G+2JEbCHvekRsYbgvxjVr+xYd22kxPJvlUKudcVLrpds0We3/ovy4S+ks3zlxmfFUlsnZPJfSWdYPJHjxtSN+J1NYURdF9mwe5po1SYYSEdI5l3jU5kXbR7h2fT9jU5mO04TSWXSbHhtFsV0cSERKEyrxiMV0ttDxdW2lNnbv5uGObTeWqkcPn5thTd/8usvzPD5y3+GWO6lccfAnIv8W+B7wo8A7gO+IyE81O2OrodZOWKfcO5VxEBESUXveayrjrHhuvYS509WLhEmP7aIdZXrP5mHufuNuPvHOW7n7jbuX1f1d+7fjuIbBRJSd6/oYTERxXMNd+7cvOraTJmea6XEtzB6Lu02T1f4visedupTmkVNXSGUKjCQjxGybg89NcmEmQ9S22bVhgE/+q5V1Uc7NW4bZu2WYN+4dZf+udfNMRjtJE0rn0W16bBTFdvH6Df3kHI9swSVbcInZVijq2qXa2E5uN5bK25W5Ans2D5aOuZTO8sz5GSbT+ZZ7Ma3G7PMXgBcaYy4DiMg64NvAHzczY2FktU5XhhIRpucKwf6IwMzF+OnNpp3B6ZVVoXpcgU4v02+9ZStnr8xx78HTnLnib1a/a/923nrL1kXHdlIMz2aa04bcY3FXabLS/wLgU/cfm7dX5X2v2clH7juM68HagSgv2j4CwNPnpnnyzDRv3Du6qv/jcho+cGiiYzShdCRdpcdGUdTUcDLKbduGOTI+w1TG4dXXr+M9+68NS107j3a1G9XsOV4qb6+6fh2xiF065viFWUSEtQNXVwKhNduuqhldnAVmyj7PAGeak536COv+mJu3DNMXtTk/kyOddRhIRLh2bR87Nww0/d4h73T1IqHRY7vo9DJ9ZDzFM+dnedPeTaWO7TPnZ0vOLMrppIFss/flhTjIfNdpcuH/Yrm2dfvaPl62c+282Jav2R1nPJXl7lV6r11Jw52iCaUj6To9NoJyTaVzDnfcuLErHCW1ut2oZZxRqR4Fv+66lM4RtSyu39BfOqZVVgzVDP7GgO+KyN/juyR4O/A9EfmPAMaYTzYxfzURVuclfgdvjr2bh+Y1ZrUsXdfj/SzEna5eZNV6FJE/Bn4IuFCMgyQia4G/BHYAp4B/ZYy5Enz3YeC9gAv8nDHmK036TQ2nk8t0LfVUJw1kO2kVssNYlSbDpMflymyzykUlDXeSJpSOpOv1uFo6uV0MC/WMMxbWXesG4mwajLNh8Oqkaqva1GoGf88Ff0X+PngdXOLYthJWj3H1NmZhXfFUVkU9evwM8LvAn5SlfQh4wBjzMRH5UPD5l0RkL/Bu4GZgC/A1EdltjHHrzH9TaaQL+Fqu9aWnxrj34GkmprOMDiUqmnFC8+upZrnB76RVyA5jtZr8DB2mx/JyPBiPsH1Nkr5ElKfPpbj1muF5A7ximX3tjev59Nefo+B6rOuPsXk4gWVZdZeL5cpxMzqxGj6iawilHovl7/B4ilTGYSgR4eYtw1oOl2EpzULtQd9r0f5q2++F93jvq3YAlPbRt7pNFWOW8C/eiAu3YBbl9ttvN4888kjp86fuP7ZoBrL4ebXmJ2GgV393KxCRR40xt7c7H41CRHYAXyzT5FHgDmPMuIhsBh40xtwY6BFjzH8PjvsK8FFjzMHlrr9Qk41kpQq6fBKkvCJdzSTIkfEUHz9wlMnZPNPZAnM5FwTecNPGRfsjvvTUGB/78lH64xEG4zYzOZfZnMOHfvDGJQeAtei11t/UyGdQ6bm0s4Osemy8HosDvpMX06QyBdb1R1nTH+PsZBYPw6uuX8d4yt+S8LJda0uz1KlMgYLjMlfwcF2P89NZJmcLRCzhA6+/ruLkRzVlqNnleKk8tfJ+3YLqsTF6/NJTY3z6geeYzTvM5R0G4xES0Qi7RwewbatjymGt9X8z24ulNPv85VksEbat7atax7VqfzX97eXuAbUPVitRix6b6VHkM7R4FuXOfaOlDlve8YhFLNb2x/jFO2+s+hr1FNZ6zq1l5WAhY1MZIhYcHp8u7Rnctb6PdK753kKV0DNqjBkHCBq4jUH6VuA7ZcedDdIWISLvA94HsH37Yo+VjeDIeIpPfOUYl9I5co7LsxMzHBpL8cE3X/Ug2Aiz76KG73tijCuZAsNBRW2JH4j9e6cmmSt48xqGew+epj8eKbuvVUpfSsO1rKDV+puabfquZkNNp6V6/MNvPMvvPOCv2uVdgwCX0gXmCi7JWATXM3x/bJo7btzAwecmefrcNK/ZHS+V2WTUKpW34h71VKbAsYlZ3rrE/aq1Umn1Fo6wbhlRmk7T9XhkPMWnv/4cCLiehyDM5FyiEYvzMzn2bh7qiHL4pafG+M2v+AMfS2B9f3xRG1xOsy3StHTZigABAABJREFUltLs5GwegH1bh0tpxWMr3bNW7a/GAma5e9TiBbmRNG3wZ4x5KJhFKeftwB3B+3uBB4FfCtL/whiTA06KyHHgpcCysyhLUdx0Xgw0W74JfSXqKaz1nFu+crBxIMZ0psDHvnwUoKoBYMwWvnZ4gnTewfX8wNGnLqZ5w97q9gy2ezZf6UiWEs6SZgLGmHuAe8Cf2WzEzReWyWfPT3Py0iyDiQhDiSg5x+PkpVk+e/B5fuNHbwFWNseoZeVwOlvAeB5jUxksEeIRi4glXJkrlGKKFc+dmM7SH7M4c2WuNOk0kowwMZ1d8rfVYuZdq4lJWE3flRVpqB6PjKf47MHn+fPvnZl3EQM4nmEm69I/FMUSSOcc1g8keNmuNTx5ZprxVLZUZv/om6dYN1B92IVqO1qtLseqG6VGGqbHA4cmSibTl9I5YhEL1/OYzblEbaemclhLX+7IeIo/Pfg8j5+ZQhBeuG2YV1y/jmMTs4vOPzKe4je/cpTJdIFkzMIAEzM5ZvPOvDZ44e9q5oTKUprNO16p719kpedXq/ZXs02rE+uXFQd/IvJKY8y3VkqrkqbOohw4NMG2tX2lUT/4s5DVFrZ6Cms959578DSO6zJ2JU/eNcRsYSBuV1w5WMjpy7Ncns0TsYWI5a9QXJ7Nc/ry7Irn6n7BcNFgPQJMiMjmMrOWC0H6WWBb2XHXAOdWeY+aWKpMfuvEJBsHoiSivpvkRNTGGMPBE5dL7udPT85RcFx2rB/gUjrL8QuzXErnWDcQ50tPjfG1IxeXLeflGnY8w1zexY+Fayi4LhEL+uKRRZX2YDzC6ctzJGM2MdvCdQ1nJ7NsGIzxqfuPLbmH48TFNAdPXGZiOsvpoQS7R/uX1FutzjTUKUvrabAmm67Hor4OPndxyd6qAYyBbN7BsizitsUDR/yOjm0JL7Sv7kNarrwt1RGtthO0dSTJyYvpeR6wNw3Gm+YBW3XTPYRNj2NTGdb1x8g5HvGIheP6E/iZgss1wcpSNeWwqGvP8xhPZXn89BW+8vR5PvC6xSbYxW0Npy/PMRC3McA3jl3ka89c4GU71nLt+n5SmQIfP3CULcMJHj+T4nwqRzJqEbF9yxbBMJdz+MrhCS6kH17Uxi2l9WzB4bsnL5fqhN2j/UsONqthKc3GIotDl6/0/Faj/VotYDqxfqlm5e/TwIuqSKuHhsyijE1lSGfz3H94mnTOYSAe4QVbh0jnYlVlop7ReT3nHp+YJjXn4OH/6LwDczmXnDNdVb6fmUgzEI/gGYPjGWK2RSIiPDORXvFcNXcJHY3W433AXcDHgte/L0v/cxH5JL4p9g34gXObzlJl0hKYzjqsLev7ZQsul9L5UtDxfMHlOycu88SZKa7MFYjaFoNxm02DcT79wHNsGooFdcTVzmR5OS/XsPEMBW9+vgoeGGMWVdrb1yQ5dXkW1zNYAq7nDxazBZdTl9KcvjyHiDA9V6AvavORv7/E85NzrOmLrbjSX6spe60mKbrq3xAaqcmm67Gorwsz+WWPm8w4RASGkv7khmUJa5IRDp6Y5Px0jg++eXfF8vaSHSNLTir2RS1mss6KnaDdo/18/rGzpX2005kC41MZ3tyk4M3qzGgxIa4bQqXHrSNJCo7L0aAf529tANsSNg3Gqy6HBw5N4HkeRyfSxCMW6/pjTGcdPv3Ac+zaMLDIrHpyNs9AIlKaUC1M53A9w/mZHDs3DJB3XE5fnmNyNo9n/MZwruASsS1iEQvPGGZyDslYpNTGXUhlOH15ji88PsZwIkK+4DKQiHD84iwXp7NcyRTYOBBn83CCU5fSfP6xs7xw20hpsPmJrxxjdChO3jUrlrmlNLu2P4YlUpMDlVZovxPrl4qDPxHZD7wC2FB0kRswBNhLn7UiTZ1FmcsW+MbRixCYek46eb5x9CKvvXHjCmf6bB1J8uTpSZ69OFsaPN6woZ9bt6+t6tzVzlSmcw7lmxsNvtebavfsFVyPeESIRq7+OwuOS871ljnLpxOXo6slxI1TzTRCjyLyOXyz6/Uichb4CH6j9lci8l7gNPBOAGPM0yLyV8BhwAHe3ypPn2NTGaI2fOfENNPZArYIxvO4nPUwpBmMR0jnHK7MFUhELR45NYlrDLYIBcfj8mw+2KPn+avoCf/4x89mSEQssgWXgmd4Gtg4llpyFWOhdoqzTNmCt6jS7ktEedX16/j+2NVJp+G+JCCcn86RiNokojbZgsv5mRzPX57D9UzVewRrMWWvxSRFV/3ro15NtkuPxTq/Gl9vIkLBNfTFImwYjNMfj5AtuJyenOUj9x1m+9o++qIWecdlPOUQt4Vk1OJ3/+k5PNcQjVi4xjCUiLJpKI7BIpUpAMt3go5NzPKi7SOcn84xnfU1eePoQMW9hPWi4SPmE8a6Iax6LIb6unF0gPFUlrm8w1ze4/oN/ezcMFB1v2ZsKsN4Kks8YpGI2szlHaYzeaYyDu+99xFu3jLE3s1XV+Xyjsdgwu8zzuUdprMFXM/jxMU0N2zs5/jFWfKuy7GJDJ4Bx/XA+MeCzeRsAc/4fc1swWU27zCdcYjYwtbhJNPZAg88M4HnGQaTURzX4LqGgusxOZvj/HSO/nikNNgsuC4nL/nWOq/ZvWHFMreUZouTorXouBXa78T6ZbmVvxgwEBxT7iJ3GnjHKu/X1FmUoxMzOB5EbLAEv8B6fno19MWEgycnAX8p0l9ZyLH/+nUrnlvPTKVTocqolL6QbWv6OHEhjVgunhEsMRgPdm1ceeBZ73J0PY5q6iGMjVOd1K1HY8yPVfjq9RWO/w3gN2rIY0OI28LBE5MMJiJYAmNXMhQ8QyIi5B2P07MZ+mI2lhg8z3B2KsPW4QTnrswxk/NFs64/hmcMGcfjybMpco7LbNYh0hcl7/q9Xscz88pN+eycVzb2swQw4AGOa5jJ+qbkQNmgMcKNm8o9gI6ztt/fOzgY96vZeMQinXXIOi6RBQO4wbi95B7B1ZiyV2uSoqv+dVOXJtulx2KdL8KKA0DbEuIRm2vX9SFBmXVcj4npLJ6Bl+1cWxrAvWHPBj7/2DkupXOcmfT3v8YjNtvXJckWXJ45P8P2dX38xzfuXrETNDaVYfu6fnasv9qGecY0dVJSnRldJaR1Qyj1WD4wiEZs9l+3flUT2VtHkjx++grr+mPM5R3OTWVxXA9jDOmsw+nLc/RFbe55aI5cwWFyNs/56SwRSygEk522JdgiPPr8FJPpLFfm/MHcYNwmlfEoGMjmfedQxkBfVPCA8VQWS/xtR54HF9I5HNcQsSwKeBRcfxvFNSMJBhJRjl+YDdpGm3TWX+Q4fmGWgbhNwTVYIlWVueVigdZCK7TfafVLxcGfMeYbwDdE5DPGmOdFpN8Ys/ImsoB2zKJcms0TiwiZgodn/E5bMmpxaXZ585Yi//DkeYzxO3geYAERW/iHJ8/z0z9ww7LnHpuYZTBu8eyFNI4xRES4YWNfVTOVldrfaj1n/PCtm/jk146DZxBjcAQQ4Ydv3bTiufUsR9frqKYeQto4rZp69RgmDDCbK3B+OkM272EJxKIWm4YSZBxf2/2JCFFHMEaIWDCVKZBxPASDawjMPoWobTExnQ02gsOV2UJJ2xJMEBUduNz9xt2lRljkqvq8MiEKsH4gxsmLae7+i/NsW5dkw0Cc4xfS5ByPnOMSj9i4nsfm4QQynSNbcElEbXKO55vZRGzS2QJPn0tRcA1RWxiKR7hmXT8wf0X78Llpbt02BCyOr1aJalfEw7zq3wmEVZPFOj8ZEWYLy7cyWcfDMwWevzxXWvkbn8pQcP2Jk++enOT6Df0MJ6P8wYMnmM27pdUEEci7HhemcwwlIpxLZTl1eY5UxuGu/duXDUNUaVIybgufuv8YT59LMZ11GE5GSqsZ3Vjvt4sw1g1h1SOsPDCopk7fPdrP1FyBizM5PK9opulhDBRcw8XpLFHb4roN/Rw+N03UEubyHqk5l3I7l6jlEI8IF9L+Cr3j+at1yaiNFFwKHgzFI0QsoS9mcy6VxXUNRgwxS4hFLL+9NYZgsZBkzEbwrdnWDcSZzhYYSkRJZQoMBRqfzhaIWb6lTpFOL3Mr0cnWaYt3Ry5mi4gcBo4AiMitIvJ7K51kjPkxY8xmY0zUGHONMeaPjDGXjTGvN8bcELxOlh3/G8aY64wxNxpjvryaH+N5MJv3C7vgz2rO5r15s/jLceLSrD/rYEHUEizLF82JSyvXH19/ZoJjF2axLOiLWlgWHLswy9efmVjx3EpWXNU6Kp3LG/bvXMu6gTjxmM26gTj7d65lLr/y8LE46zScjDKeyjKcjFa9elbu4t6yfJff/fEI9x48XV3G62BsKlPqZBQJe0VRJavSY5h47kKamYzj61jACOQLHnN5p2T+NZKMMZiIks7muTCTZ2wqS6bgkfd83eddj0zBZSZTIO945B0XE6zeBQt5uAYc151XbvZsHubuN+5m42B8ybyJwHeeu8xTYykQSM0VSAfxhbIFFwm2L68biJHOuWwaipMtuKQyBXIFj02DcfpjFnMFj7mcS8HxX8/P5Ni3ZaC0ol3cxxi1he+euMKl9NVVweVW5heeX1zZPDKeWnTs1pEkM9n5puXt3oQeUkKlyT2bh7mSzqw48CvieYZUJs+xiRkePjnJZMah4HgMJyLkCi6PnZ4iW3A4fSXDQNw3cbYtwRJBMEym85y+ksH1DPGIlCYJv/TUWMV73rlvlFSmQCpTwDP+QPPM5BznUllOXkxzdjLDdKbA6ctznLqUrljGldUR8rohVHpciUp1+peeGuNT9x/j3/3Jw7z1d/6ZX//iEaI2gQmmRzrvlSYubQtmCy4nLqU5fiFNxLZ5wTXDeEGbWCQCzOVdTl+52t74HoAhnXOJ2EIiavHmm0cZTkZLAz+PYrtr8IwhW/DIOQbHNQiC6/r+KNJ5l+msH8dw01Cc2ZzDpsE4nvF9VaRzLtdv6C/dO0RlbhG1tMXtoBqHL78FvBnfNBNjzJMi8ppmZmr1+MV4cZNW3egv77v2K+2pEQQXU0pfjpOXZnE9f5YkF+RAgvSVGEpEmMos3t83lKjm3+MPhF5wzQi3bltTSqvFRGa1y9ET01k2Dsx3plPJfK3RdKL3pBbxW4RGj9VTPkP29Pg0liUM9/kzg8aA43lMZRzEshi74g/8CwWHvLv0Cnk8YlFwfTOVASFYefM1Vn686y124AIwOVtYMp+ugUzBdye9cTDOTM6BmRxr+uMMJ6O8fJdvIp7KFMg7LhsGE8wV3JIntJ0bBjg8Pk08IrieKVko2Jbw8MkpBhPxeSvaN28Z4rsnJjk0Nj++WqWV+VpWxDtxE3pI+S1CpMkvPTXGg89OrnxgQDTi7/tzPL9NK66aX57N0xePEI9YHBmfIWpLyXPbQDxCBoes6+FiiFrQF42QjNmlMrmcN+ul9sjkh+LEIravn6h1dR/tdI49HRILrVsIed3wW4RIjytRrNPzjst3T05zaSbL1FyBrzw9zraRPrKOSzrnki+4EIQl8kzRUzXYgXl3wTUIhqPnZ1jTH+OR5/M4nkdgKIYlfruZdzzE+O2kFQi6aB7uer4DqIdPXuHKXB4LQ3lLKeLvi4egrhDBcT0KrkfEEmwDGBjui7Jj/QBvunm05O1z35YhzqWyxCK270wmXGVuEZ1unVbV6MIYc0bmL0O1xPFDrczllh6kVUpfSNTyC3dxTxD4BThaxfpoJu8u6oSaIH0ltq3tY2psep7LUxOkV8PWkSRPnrnCsQtpZnMO/fEIuzcOzBsMLsdq9+2NDiWYzhRKDisAZnIuo0OJZc5qDCFvnOoiLHqsloUB3P0VNMjkhGTUZibr4LoGVyBuW6SNvzI/Pudg8Bu3eMRfTYOix1zfXDQZEUb6YlycyS45SMw6hucvzy7ynpld6OozwAAX07lSQ7llpI+ZrOPv881ebQYHExHGU86Spm2f+fYpBhMRYpGrPgjyjsvpK5lF5lYbBhO8ZOcanjybmhdfrVLjUYu5ViduQg8rYdLk7z14oupjIwI5x1wd9FnCYMwi4xhyjsfldJ71AzGmMg4vuXYNxybSIMKaviipuQKO63vAFfwQRGv7/cnCaiYJF05KfvCvn2TdQMR3qBb3tROPWP7eod6w+mgZYa8bwqRHWN48cGwqQ8SCJ86kMMYwNVdgruDguQTtmvh9zYKLa65uZyjiFM1c8Nsvz8BM1nfWYowpHW+M3+4Vu782VweAIv7qn2PgxtEBTl2eYybrELUtEgI5xx/c9cUtMnkPPN89mcFg2/5qYixisW4gxqfefeu8clS+LWrhcwhTmVtIp5tOVzP4OyMirwCMiMSAnyNYTu80Kqm7WtVvGUny3KW5eWkmSF/x3hUsaCqll5OMRdgy7M/q512PmG0xmIiQjFW38tcXE753apKYbdMXtZjLuXzv1CT7r1vZS2k9+/bu2r+9dOxg3GYm5zKbc/jA666rKt/1EPbGqQ5Co8eVKFb09z05xpXZAqND/qpXPGKTK7hkHI/+QAvTmQIiwoahBDdtGuTyXIHnJ/1K1DWUBn5ForaUTM8MhmyF1Xu/cVtsX72cbAXfxPx8Kse1a/sYCPJX7Sp01Bbyjku24OF4hogl/v4IA0+fS/HsxAz7tg6xfsBvOBLRCG/au2nZPVJFal0R77RN6CElVJp8dqK6EEKW+Hves46vBgvAGKazbtCxAyedYzAe4dXXr+M9+68thSVJZx3fO63xHUPkg87hXM53NJEOJimPjKdqjus1EJibFvfRDiWivWL10VJCXDeESo9femqMTz/wXDA5EiVfcPn4gSm2DCfIuYaj49OMTWXIFhyyBX9PkzEQsSDjeAwlIlyZzRPIdEUnToJvoRa1LQplHdSyMSIAtg3xiM1s7uqewC1DcTaN9HFlrsCVuQKu5+9ZT0Rsso4hk/fz4wSjT8czFBwPI/Ci7b512kqeN0Na5hbR6dZp1ez5+xng/fhB188CtwH/oYl5WjWVtshVuXWOzWUrVlIhvRkMJSIMJWLs2jDArdeMsGvDAEOJWNVmnw88c4mNA3H64zYFD/rjNhsH4jzwzKUVz61n395bb9nKh37wRoaSUS6k8wwlo3zoB29sibdPuLo/6xPvvJW737i7ayqNFQiNHpej3B5+JuvgeR6nJ+d49kKamG35exEM7FznD648A2v6fD2s6Y+xf9c67GWEXXB9c+2C6zEQj7Jc1JNta/tK3juL2MvUjJYItu3vZ3r09BRXZnOcm8rw7MQMn/n2Sf7ie6c5fM4PIbEUN24cIJ13ybseFpBzXNJ5j6GEza3XDJPOOhx8bpILM5nSvqdK11rIUnulajlfWRWh0eSR8RRVGKMAvv6KAz8IJkSCPUKGYCUQmMoWeMX169izeZh3vHgr8ajNpdk8jgebR5Ls2tCHZQlzOZezVzJ+Z9Iz7N44UNMemGLZ3jQYJxeEXMkW/H21WsaVMkKlx09//TkQWNsfJed4PHV2iqfHUnz5++N87fB5jpyfYXKuwFzB31vnBSaZBQ8KjseV2Tz5Kv1awFUdYzxcb/4qIVzt+zquv6IXtYWY7fuyGB1OELeFVLZAX8zGEGxdsCyGkn7MwHX9cTYOJrAti/5YhOG+KAPxCOencz2l0U5vi6sZXbzEGPNvyhNE5GeAP2hOltrH2VSm5AyiqAcJ0pvJzVuG6Yva82IEXru2r6oYgRDsvRuMY1lXe6ye51W1967efXtvvWVrywZ7CtAFejwynuIj9x1mMp1n7UCMTN7B8Xz3ztl8Acuy+P/Z+/M4yc76vhd/P2epfel1enr2TSPNaJAQkgABxmAJkE0Mtq8xzi8Q8otvuLmJ8b0khJBf4mDskB9xiOUEXzshsWNsktjGARtDGBBg9kGAJCRGM5rRaPaZnt679jp1luf+8Zyqqe6u6q7eu7qft16t6TpVdc5T1c/nPMt3E6EryTPXc5iGoC9pM5iONRJMvGxfz4JWdV/WS70ot5aFNkMdz+PGzJyY2wXesL8/wXjRoeb6eIFaZJYclaBGAiXhUXU9Lo4XW25IHBhIcn6sQLmm4jKkFMQsyWA6zlAmzisOCZ67meeZa3necHxoSRbtbWwR30i6RpN/fOpKx6+tj4V16uNi/bhlCtIxi0zM4vxoiUMjOb58dpzjwxleHCtgioCxgkPEMkhFLBUH60v6oyYv3dPHHUOZRcuWNNPct8uu38j2eWCg81pomm1B1+jx5OlRXD+gPxlBCEHMNrlWccnXazzLhb3HvObJ6hLwJESFQTYumKnM3g2yDJXRerxYa5R36Ynb3L+vl6FsnNFchXzFwxCCdNSiVPMoVAN2ZqMcHUzx7M08pqHKPtQ8nwDBnp4Ywz3xTa3R1c7MudnH4k4Wf78qhHCklF8FEEK8H3g9m1BIMQta5E2hQwMa1ycrLeP2rk+u7eKvXuTz+HBmVvxapzsEQ5kY1ydL5B2vZer4xd67UXF7mmXRNXpsRd3iN1l0iFmCKxPFRmkW25ChhS5olGOIR0x64zZCiHCyZxM11eJooTHPQFnvpIRbuYU3Mp64OM1Dh2a7SC+0kVpxfWKWiR0uUm/lqyrWAohZKkCiVPN57PEXWm6MOL7kkeNDXBwvk6+q1Nw70pHGDuxgOsZrj0YZyVU7cvWcy1ZynekSukaTT1+b6eh1BhCxlMun0qHRiAcyUCWUDu9INWJyb8xUZiU48AKp3iskfhAQi1iNTIGvOzrIhfESl8+MkoqajVTvc2k3GdN9W7MIXaPHGzMV+pMRHC8gZqs41ooXNEokgHK/XsyVczlUvAAhbs/76mOmL2G0UEMA9+7JcmRHisG0mg8GUvLEpTIv25vlRzcL+FLSm4gSCd1wohGLnZkYM+UabiAxDINXHlCLxmwbnW8G1qpu9Ga+X3WyLHoL8DkhxD8BHgXuCo9tOvpTMa7PzJ/o9ac6W8i0WDcueHy1WOkOwYldKZ68PIVpCGwDap5ktObw6EsWXzxuZNyeZll0jR5bUZ8gJmyTa9MVopaBZYDrKzcWUIsogbIsVGoeEdNgV0+cIJDEbJNcpYYhFvZYF6K++BOUax4G7Rd0cy0c9WPtqNTUrmfF9cnEbGre7WD6iiexhEpycW269aZRPRagnhn0uxcnw3pHt2/Hmyk2QLMoXaNJx+3M51MIEEJgG5Jk1CZiCQLpEUhl+zs0mCIRsai6KpHD7p74rAQHEdOg7Hj4EmpIpFSuniB46uoMUcsgFTXJVz3yVa/h+lkfA6Om4Gauyv7+5KpOxjTbgq7R4+6eOK7nc260CKgERl6YLKVOK7fMla4FDaEsfGU3wBRqwVdPBlO/XtQUjOWr5KseL9vXw2A6RqHq4bg+ZTcgE7fUotUyGEhFGS867O1LsDMb5ckrSuNIyc1clVjE2tTJ+DZ7Zs61YNHFn5RyQgjxFuDLwJPAz0u5FvsQK6fstF6mtTu+VTh9s0hf0iZX8dTkM3STO32zuOh765aJ5myf7/mJw+vmyrmZi2BuRrpJj3M5O5Lj8TOjBFJlCay6HiVHMjexZv3D1LPujhdrVGoeAQJDQM31idgmC+FLkB7EbZVQqVKrtX3tHUPJWRl+QS0cgzZlJGq+JBkx2ZmxScVsRvJO4zmBGjx9CVabIXpuptqdmSg3Zyoc3ZHaEimutxvdpMlWyY1aUS9pAqpsSf3DmAbIQHJzuoIMLRJHdiR59MQQJ0+PNhIcRCyj4SYqpYprDVBZ/6o1j0wshhMmYbpzKMUfn7pCxQ0aO+/fOD9OseoxnI1hCHtbTMY0q0M36bHu9XXnUIqRXJXJUo3mprZa6K30gwhUaaGBVITJkksyYjBT8RrjVp2+pE3B8RFC8LVz4xhCUHRcSjWfq1MqMaIVunfOlGvkqz5//uQ1snGbg/0J3IDGRm1902a153urdb6lZubcCvPWtos/IUSB2S7+EeAQ8PNCCCmlzKxPEztnqpXP5wLHV5N2loVOMuqcHcnxwb98jsthoeiYbXLqxQk+9Na7O+pQ16bK+AH0JiKYhqof5voB16bKi74XNi5ub61M7VuRbtRjM/W/tW0KkAblmqdSyHeYjakYRrRb4S6luVAGlzoCqr7kvh0pvl1sX9fs/GiJhw7NLuo+lI5xbaaKwewY4GTE4BUH+wmk5NpUhYgpZmm/OS6qno5+LnMt/XPrHW222ABNa7pRk7lK+02QdjRPNkUAhiEo1lzitslQJk42rmLGmzc1AimJ2yY1LwiLuxtYhrKWFxwfClWGMnFO7M7Ql4zy5bOjvOJgf2ORV/MDUlGTC+OlhsvZZkqTrtl8dKMem8cC2zJ56PAAn/rBVcbyTsMat9pIaGT5zMQsqm6gLP1N14uYAseTWKYgV3Gp1HwSUQvH8xvvNYBqEI54tYCIqbL6Fqsez97I85oj/RwbzpCN242F32rO91bzfEvJzLlV5q1tF39SyvR6NqTraWeL72By+7GvvMCZm3mitkkqauF4kjM383zsKy/wu+94YPFLC8JCnx5+IFWwrSmIRRa2jmw029HUvly6XY/1v/XduzKcenGSci1oWAWWgmEIhJQLZu+sIyUMJG32DyQ5dWmqbeB8K+netStDoeoyU73tJhcxVYzs3r4ErudTqvlMFh0SUZOy489a+EUtuHNn+z9Zq1iAN7d5rWZz0o2aLC4lLWALPKA/ZrGnL0HMNnnlof5G0pb3vuFoYyILgohlYhsCyzIadf7iQjCYjpKJ2w2351zFRaCSx9TJxGwqNY9i9fbGrXaF1ixEN+oR5o8Fj58ZxTKU23Nz7N9qIoDpssuRHSmKVY+RnE8gVFkWIQTZuI2UylK/pzdBvuoymIry3M0aZlj3zw9mj53ZeIR81cMNAuK2yZNXZnjVkdvunqs931vN8y2lbvRWmbcuapgSQvysECLb9LhHCPEza9qqbcb3Lk8TsQxithFmfDKIWAbfuzzd0fsTtkG5FlDzVa2wmi8p1wISnVSn30BuzFRmDfigd3cXo1v1WP9bCwFV11vWgCZQA5MfQLDIGaKmIBO3ePj4EI4v6U9GWr7OMuDBg73z3D53pKJEbBNTqPgI2xBYpkEyapGOWTi+5ENvOc49e3o4PJhiT2+MRMTANgQDKZtXHuznFYcGlvEpNd1GN2kyCFa2+DPCgNx6cXWYfc+ul9/5hQf28urD/RimoTYkTUF/MsLe3gRSSqaKtVnpz+/bm6XQtNA7siNJ0fGxTbEp06RrNi/dpMdW3Lc3SyAhbpvEV3kOV4+nj9kG/ckoR3aked+bjrIzGyNmW6RjNjHLCDNXS/xw9RmzDKLh8bo9wxDKfbROxDLIxCy1oSuVQaLZGrba873VPF/dApuN24zkqmTjdltL3laZt3aS8OWDUsrP1B9IKWeEEB8E/mLNWtWFtLNgdGLZcP1ABcc2YZmiEROxGPmK11jF1y0P9eObmc1eBHOTsiZ6FEJcBgqAD3hSygeEEH3AnwIHgMvAL0gpO9uRmMPunjiXxoucujjBVNFdVhslNDSx2BzW9SV2IBmZqXLv3l4eOT7E5565Sd5ptuQJjg6lidnWvExk06UahaqndjbDgbDmSSqO1+ij9QHjk6eu8M0LkxzZkebYsDqfnqhuK1Zdk2ulx5VOJQMJJcfjhbEi8YjJRLGKbZrz7tn1WKbdPXFCcwKOF3DvXlXHciTvMJKrNlycAT7+jUtMl5xZsU+7srFZr+umnXXNhtE1epzL2ZEcVyZK3JiprrrFzzLANg0MAZ4fcHOmwl88fYPPPXOTu3elOdCX4IXxErlKgOP5JCIm6ZiNLwPyVY+S42GbBjUvwKz7iXLbBRRUTHFvMkImZpMJ3T3rrPZ8b7XP12lmzq0yb+1k8ddqvOiweML2YQVen+zpTfDCaB7Xv714s024Y6gzF/VSTe2QWqZotMPzJaVOq/luEEsxtWsarKUeXy+lnGh6/AHgK1LKjwghPhA+/qfLOfHRoSSffuo6U0WX9eiVEqjWfL75wgSuF/DaOwewTEHUFLhhOjOBZCAVIVdxefBAD489fr4Rc/fM9RmQsuHK6Us11o0WnFl99Nhwlg//3D2zAsCzcXvRiepWCBjXNFgrTa66Hlcj74XrS2w/wBImn3/2FjHb4Cfu2sHZkVyjDx8bzvLIsUF+d7TA5YkSyajJ/ft6sE0Twwj40FuOz+vvjxwb5GNfeREvUJb6nZkYpmnwS685oLWhWQpdo8dm6rkffnQjtyaunl4AyABvzsndQPLM9TxxW7CvP8WubIyC4zNdrjGYilB1A3rjFuNFF7UNqsZOUPs6alEpKDk+hoBExG6ZMX6153sbNX/cKvPWTjYCfyCE+C0hxGEhxCEhxGOoDEqaJgyj9TKv3fFmjgzGqTVlFpRAzVfHOyEeMYnZBoYQYUZE5Toa3+Qxf0sxtWsarKce3wp8Ivz9E8DPLPdE50dLHB5MrsvCD+qp6lXSlbO3Cvze1y5SqvlYpkHEAFOAJwVnbua5a2eSL58dJ1dxGwHco3kHL1DuMTFLYBmAUFkLV9pH6wHjzdf7+DcuNdLda7qO9dLkivVYXaEABZCNWViGIFf1MA3lzhmxzFl9+GxY8P3BA3389L3D9MQjfOfFKb5+fqytK9v50RKvPNzPm+8Z5qHDAxwcTJGN22EMoUbTMV2jx2ZOnh7lymRnSfqWSjpqIWhfMF4CZVdlii/VAixD4Lp+WKbBJGpb9CZssvEIg6kIA5kY/akodw1neOOxIe7d00MiahK1TQYzMT7wk3fOSyK42vO9jZo/bpV5aye7Ie8BfhVl3hbAl4B/uJKLrpcJfT0xjXBnpcXxxfj+lRwJW+AF3E7YYqjjnfDg/l6+eWFCFZ42Ba4vqXo+r9rfu8RPsf5s5iKYm5RV12OIBL4khJDAf5JSfhwYklKOAEgpR4QQO1q9UQjxbuDdAPv27Wt58jMjOZ6/lV9xIy1DuXwahkog0Y6IqfRUrvn40scyBKZQsYBFXyWXMA216/mZp0c4uiM1K4DbMJSOIhiYpsAwwPV8EhFrXn9davavrRIwrmmwFppcUz2uhN5khJt5B9sQVF2PK1M+yZjNznS00Yeb+3jN8zEMwXBPnEzMaiwU5+pjqenWNZo2dJ0ez47k+MsfXme04LR8fqX83dcc5Ctnb3F5okxxAY8wL5Ac7E9wabKMRCBQC0LHC3jocD/9qSgjuSoffdu9y2rHas/3Nmr+uBXmrZ3U+SuhzNmrzZqa0Ncb2xA4LYz1dgeWP5XtTLlqBoD0JbahUux2wq88cgdXJktcmSqTq0oipmB/X4JfeeSOjt6vXdC6hzXU46ullDfDAexxIcTzS2jTx4GPAzzwwAMtV2QXx4qMF5aeZn4utx2bF3aMcTzZeKXamFHa8gMfL5AUHI901MQ0DFw/4Fa+ysHBVOP9iYjZSEDhBxJDCCKWQV+LxDFLXczpSe7WYo00uaZ6XAn1Gl8eoTs0cGG0wFiuQjksIt/cxy+Ml4iGCSMKjtdWH1sllkazsXSbHs+O5PjNk+eYKK58fGxFfQpadSVD6QjFyfbjTNQyeOZGjsFUlEiYhyIW1tS9MF4iYs2P79V0JwvV+fsdKeUvCyH+ihYzLSnlW1a5LW8FXhf+/gnga3TR4m9uoerFjjdjICm4t7/iACi5knS083F7uCeBbZk4nk/UMhlIRRd/E1unZslWZ631KKW8Gf47JoT4DPByYFQIMRzuag4DY8s9/2ih2tblZCnU4/VaFtVsYtbyMHzgASYSQ6gFXcHx2d8XpS8ZYao0e6NlRzqGH1RIRCy8IMAyDGxT8FCYnr6ZpS7m6slvbhUcilWPVMxiZzo6a/Gp2fyspSbXWo/LwRT1BGYqbtYQauFnGcodeqosGclVgdkLuWLVIxU1cbyATEwt7FrpY6vE0mg2hm7V48nTo0yVakuve9QhdlirzzIE0jCJWYLq3MA/IGKomOCS4zGQjBCPmAig6vpETMFUsab1uIVYyPL3t4FfBj66BtfdtC4tyyUIZDgQikb2Fy+QBAu4ptXx28yK2x2fy8nTo+ztS3Bi9+3FWr320mILOO2C1jWsmR6FEEnAkFIWwt/fCPw68FngXcBHwn//cjnnPzuSo7zC+mKGUJkG63RytrrNPWh6bAjRcK2OWQZx22Q4GyNfURPN+qRzd2+cnoSN4wWzNlTe8dD+eddZqsWinvwmGbVIR03yFZeRmQpv0tlBu4010eRa67HjdnB7Bm0KFVuOlMRsg8mSFyYmE1iGgRdIbBPKNWUtb17IpaIm+dCKfmK3SmLWSh/NBa/rXig6w6dmCXSlHm/MVKh5AZVOLAUd0Ig0Eur3gVSUbNzmPQ8f5t+cPM++vgSXJ0s0e39GTHjk2BA3ZqrYpio59uojaqPzwliJiaJDfyqqjQJbiIUWfy8CSCm/vgbX3bQuLculXugZpIpJEmohmIgunnSl1S7MQsfnshI3Mu2C1jWspR6HgM8IIUDdE/67lPKkEOL7wJ8JIX4JuAq8baknrluWV5K+zEDVsgxkvc6fWrwtlM22J27hBZKa56titIbANlTtpILjk45ZDGejlF0fwzB4z8OHOT9aakw63//onQAduUMv1WJxfrTEy/b1cCvvkK+qReOdQynOj5Z0offuYq00uWZ67AQDME1I2GbD0n5wIMW9e7JcGC+Rr7iU3DJxS8XFur7ENgU70lEsU413zQu5TNwmX/W4cyhFXzLaqNnXSh9bIZZGs2F0pR5398R5YbSwYs+YRMRopIt3vQDbMjixK8uH3np3Q1PfuTDJ6Zt59vQmKFY9SjWfuG0ylI2yIxMnalu8+7UH+fLZcWzTJB2zODZskqu4euG3xVho8TcohPhH7Z6UUv7Wci+6GV1aVsqrDvXztXNjIJoyvEjJq1q4ic2lneY7vResJFZCx1l0DWupx4vAvAhuKeUk8PByzwu3LctzLXedIoDehIUbQNwSGEJZGYazMU7fbJ9AxjQEUcskETHxfEm55iORxKIWsYiJEIJ81We4J94Y1N7M7fjX3//W5Y7jX5dqsbgxU2Fff5IDA7fdPAMp9YZL97EmmlxLPS6GbQiG0jYVT5KK2bzmcD83c1X29ydJxyxVo2+mwo6wRErEMolY0J+M4AWSBw/c7vPNC7m5ceXaoqdZA7pSj4+eGOLZ6zMrOodtQCpqcf++Hm7mHKbLLq850s87H9o/S2fveGh/I8wnHbO4Olni3GiR4Wx8VomiQ4MprdctzkKLPxNI0Vmpuo7ZLC4tq82vPHIH40WHa1MVqp5PzDLZ2xfvKOmKbQpqLbZ9bLOzr/7RE0N89IvnebrozHJRe/ubjnb0Xh1n0RWsiR7XmrplWbQrhNkC2xDYlkFvwuaOwSS7exN88cwoVddHotJQT5UXDo7vT6rJadUL2NebIGoJXhgtkYnZpKPK+ldyPN710L5ZE9Tlxr8uxWKhN1y2DF2pyYVIR02KNclQOsqjLxnmvW84OmvhdnAwxZtODPHtC5N89dwYQSBJREzikfZu0aAtepp1oSv1eGw4y/sfvZMzN2cYLXSW5K+OAIazMZJRE9dXNfxed+eOtpuWczcqDwyk+PuvOzzvtVqvW5+FFn8jUspfX4NrbqhLy1pxbDjLb/zMiWVlzeyJ24wXa7PmxiI83ilBGCwswvte0GHwsI6z6BrWSo9rSn2hI8TsGKJmBGrn0gdeebCXBw4MNJ4LpEoiMbecSS2Mj1AuaoIgkBiGwBKSABXQvjMb59hwmpht8d2Lk9y3L0vFkxSrHpm4zdEds10t1yv+VW+4bBm6UpMLYZkGVTfA8QMeDWNQW00E33zPbp0lWrPZ6Fo9HhvO8vCxnXzl7CijHWbFFsCubJQfv3OQwXSssaH43jcsvOmvF3YaWHjxtya7Jxvp0rIYmahB3pkfdJuJdlCsj+WL6tBgklLNI5Aq25IQAkOo451w8vQo+/uT3LOnp3Gs04QvK2m3Zl3pqt3MOvWFTsy2CHyPoIX7p2kIehI28YjJWKHGqYuT87JgThQE2ZiNF0jcMOYvYqhkLtmYPau+5euODPArj9zRmJhm4zZ7euMcG85giNtf41xXy/WKf9UbLq3pwsVE12nSoH2yJBE+t7c/znA2vqrWbo1mHeg6PTZT8yWvv2sHP7g8zYvjpQUdZSyh6m0OpGNcGC8xmI7pXA2aJbHQ4m9DF2IbwWuODHLyzOisyakh1PG15BWHBohZBi+Mlyg6HqmoxR2DSe7d19fR+3XSlm1BV+qxvtC5MFrgxYmiskxLieMHSKncM99w9xADqRjPj+T45oVJTMOYlwXzxkyF1945wMXxMvmqSyZm87J9WZ64NIVpCMqucrW+a2eaX3nkjnkT08ceP7+oq+V6umPqifNsurTkTNdp8siOBOfHyi2f609F+Fuv2D9PAxpNl9B1emymPv684lAf44UquWrrhGY7MxFcH3oTEaKWQTHMpKtDBzRLoe3iT0o5tZ4N2QwkYjZvPL6DH93INxZhL9mdIRFb24Hw0RNDXJ0q84bB9Cw3sEc7TP2uY4i2Pt2sx2PDWX7zbffw0S+eZ6LokKvUGCs4SGBH5vamxa28w54eFXg+NwtmvY+/simBUq7i8sqDgomyy2i+ylAmNiuGr5lOXC1X4o7ZhVarTUU3lpzpRk1GrNZDvgCGMrczcT54oIfHHj+v+7Oma+hGPcLtseOJixO8MFYKM1RL0hETxw8QYX1NP4yv3d+foj9pc3GiTL7qkYlZC2bQ1Wha0Zk/Y5cQtVpb/dsdn8vunjgR02R3b4LdPQl29ybU4zVeRNWtI9m4zUiuSjZuL2nH+9ETQw3xB1I2fu908ajRrDXHhrO8701HObErQyAFu3viDKVjeIHkB5enuTxRZLrscv+BHl55qJ83Ht/JKw/1s68/yY2ZSss+fmWyxESphuP6xG0Dx/X59FM3OTuSa3n9xTS2XB3WrVa5ijvLatWqHZrW3JipkI7NXpho74XVZ7JUw24x6ksgFbHIxm0eOTbIl8+O6/6s0awx9bGjPv6loyZV16fqBZRqPsmIyR070rx0bw97++L0JqMcG85weEeaO4dUtuhMuGm2yb0kNJuMhdw+u459fQleGCu1PN4JG1l8eSVuYDqGSNMNHBvOMpCO8RN37SAbtxkvVLkwXmKqWGMk7/BjR/qxrdl1MesW7FZ9PG4bXJmskY5ZZGKqIPuliRKfPHWFD//cPS2vvxZxTN1otdpsaO+F9cHzA7ywDi1SLfokEDEErzw8wHvfcJTHHj+v+7NGsw7Ux46zI3litoltGhhGFRlILFPg+AEjuSr9yQjZeIQTuzJk4/aCmTo1mk7YUou/3mSUwVSNXMXDCySWIcjGLXqT0Y7e383Fl3UMkaYbaI5PHUzHGEzHGhk96zWIoLXb5dw+/lP//pukoiYxWy0YY7aJlJKnr62vhULH3K4cnQF1faiXDxKEJWmlSvJimzT6q+7PGs36UNdavuqSjlpcn6mQjJjkqx4S5eoppWSs4HD//l7eMadun0azXLbU4i8Ts+hPxtjVYxC1DBwvwHEDMrHOPqYuvqzRrC0LWXiWasGWyEZpkzoiPL6eaKvVytHeC+tDTyJKsepRcX0CCaYQJGwD0zQa/VX3Z41mfahrLROzqbo+NS/AMg36khE8L6DiBRiGIBuzeN+bjur7oWbV2FKLv7t3ZUnYJrcKTiNV/P6+BAcHU4u/GT3oaTRrzWIWnqVYsO/b28MTF6dAiMZmT9HxecWhzrLkrhbaarU6aO+Ftee+vVly5RqGaRAxBUiouAE9cbsRI677s0azPtS1tjMT5flbBZCq5MNgOoJpGNy/vwfbNMnGbX1v1KwqWyrhy6MnhjBNg+PDGR4+toPjwxlM0+g48YlOnKLRrC0rTW7UzDsf2s++fhXPWwjTXe/rT/DOh/avapsXYzU/k0azlrzjof3cNZxhMBXBD2tmDqQis6wKuj9rNOtDXWsHBlLs60+wMxsjahskIhb37ctim6aeg2rWhC1l+Vup65B2PdJo1p7VsvAcG87y/kfv3BQlFrTVStMN1LPuLqYZ3Z81mvVhrtaaywbtSNt6DqpZE4SU6xsfs5oIIcaBK2t0+gFgYo3OvRmvq6/dmv1SysH1bEw3s4gmN/JvvBJ0u9cXrcdVYpPrcaOvr9uw8jZoPS6BTa7HhdjMbQPdvjod67GrF39riRDiB1LKB7bLdfW1N+ba24lu/Z51u9eXbm13t7HR3/NGX1+3YXO1Ybuzmf8Gm7ltoNu3HLZUzJ9Go9FoNBqNRqPRaFqjF38ajUaj0Wg0Go1Gsw3Qi7/2fHybXVdfW7PWdOv3rNu9vnRru7uNjf6eN/r6oNtQZzO0Ybuzmf8Gm7ltoNu3ZHTMn0aj0Wg0Go1Go9FsA7TlT6PRaDQajUaj0Wi2AXrx14QQYq8Q4q+FEGeFEM8JIf6vDWiDKYR4WgjxuXW+bo8Q4s+FEM+Hn/+hdbrue8Pv+rQQ4n8IIWJreK0/EEKMCSFONx3rE0I8LoR4Ify3d62uv10RQjwqhDgnhLgghPjARrenEzbDvWAlbNR9ZCVs1D1ou7FWemynmYXusUKIfxa245wQ4k1Nx+8XQvwofO4/CCHEEtsyq/+vdxta9eX1bEOrcXUj/g6axdno8XE1dbvG7Vyxptewbaui93VFSql/wh9gGHhZ+HsaOA8cX+c2/CPgvwOfW+frfgL438PfI0DPOlxzN3AJiIeP/wz4O2t4vdcCLwNONx37TeAD4e8fAP7Nen7vW/0HMIEXgUNhv3pmvTW1zHZv+L1ghe3fkPvICtu87veg7fazlnpsp5l299jwuWeAKHAwbJcZPvc94CFAAF8AfnKJbZnV/9e7Da368nq1od24uhF/B/2zcXpcQhtWTbdr3M4Va3oN27Yqel/PH235a0JKOSKlfCr8vQCcRd1I1wUhxB7gzcB/Wa9rhtfNoBZGvw8gpaxJKWfW6fIWEBdCWEACuLlWF5JSfgOYmnP4rSjhEv77M2t1/W3Ky4ELUsqLUsoa8Ceo73xTs9H3gpWwUfeRlbDB96DtxJrpcQHNtLvHvhX4EymlI6W8BFwAXi6EGAYyUspTUs2W/ogl3Jfb9P91a8MCfXk9v4dW4+q6/h00HbHh4+Nq6XYt27gaml7Dtq2K3teqfe3Qi782CCEOAPcBT6zjZX8beD8QrOM1Qe06jQP/NTSr/xchRHKtLyqlvAF8FLgKjAA5KeWX1vq6cxiSUo6E7RkBdqzz9bc6u4FrTY+v0yWLqDobdC9YCb/NxtxHVsKG3IO2IeuixzmaaXePbdeW3eHvy23jbzO//69nG9r15XVpwwLj6nr/HTSLs6nGxxXqdi35bVau6bVitfS+rujFXwuEECngfwL/t5Qyv07X/BvAmJTyyfW43hwslDvk70kp7wNKKDP1mhL6QL8VZfreBSSFEO9Y6+tq1pVWMSJdk2J4I+4FK2GD7yMrYUPuQduQNdfjEjTTri3LbuMy+v+qt4Gl9+VVbcMyxtW1+A40nbFpvuNV0O2asIqaXitWS+/ril78zUEIYaME8N+klJ9ex0u/GniLEOIyyvT/E0KIT67Tta8D16WUdcvGn6M681rzCHBJSjkupXSBTwOvWofrNjMaurcQ/ju2ztff6lwH9jY93sMauvauJht4L1gJG3kfWQkbdQ/abqypHttopt09tl1broe/L6eN7fr/erahXV9erza0G1fX8zvQdMamGB9XSbdrxWppeq1YLb2vK3rx10SYyer3gbNSyt9az2tLKf+ZlHKPlPIA8IvAV6WU62IFk1LeAq4JIe4MDz0MnFmHS18FXimESITf/cMof/P15LPAu8Lf3wX85Tpff6vzfeAOIcRBIUQE1bc/u8FtWpSNvBeshI28j6yEDbwHbTfWTI8LaKbdPfazwC8KIaJCiIPAHcD3QhepghDileE5/zYd3pcX6P/r2YZ2fXm92tBuXF2370DTMRs+Pq6Wbteqfaul6TVs36rofa3a1xa5zhlmNvMP8BqU+fVZ4Ifhz09tQDtex/pn+3wp8IPws/8F0LtO1/0Q8DxwGvhjILqG1/ofqBgIF7X78ktAP/AV4IXw3771/ntv9R/gp1AZxF4E/vlGt6fDNm+Ke8EKP8O630dW2N4NuQdtt5+10mM7zSx0jwX+ediOczRlkgQeCMeEF4HfAcQy2tPo/+vdhlZ9eT3b0Gpc3ai/g/5Z9G+1oePjaup2Hdq6Ik2vYbtWRe/r+SPChmg0Go1Go9FoNBqNZguj3T41Go1Go9FoNBqNZhugF38ajUaj0Wg0Go1Gsw3Qiz+NRqPRaDQajUaj2QboxZ9Go9FoNBqNRqPRbAP04k+j0Wg0Go1Go9FotgF68bcBCCH6hRA/DH9uCSFuND2OrNI13iKE+MAirzkghKiE1z0jhPiPQoiO+4QQ4teEEO9beWs1Go1Go9FoNBrNWqMXfxuAlHJSSvlSKeVLgf8IPFZ/LKWstXufEMJa6PGca3xWSvmRDprzYtiOe4DjwM908J4Fr63RbEaEEMWNbkMdIcTPCCGONz3+QyHEpXAj5hkhxMMb1K7/JYTo2Yhra7YuQoh/LoR4TgjxbNjHXyGEuCyEGGjx2u8scq4DQojTbZ77mhDigQXe+5nw+heEELmmTddXLf1Ttb3GLiHEn6/W+TSataKVLtfhmgeEEFII8RtNxwaEEK4Q4ncWeW9Lg4MQ4teFEI+sRXu3KnoCv0kQQtwP/BaQAiaAvyOlHBFCfA34DvBq4LNCiJ+e8/g88C+ACDAJ/C0p5agQ4u8AD0gpf1kI8YdAHlWwdSfwfinlrMFJSumFg+4RIcTfA94dnvMC8E4pZTk8zxRwH/AUUGhq/98Dfi78+XvA3wc84IyU8hdX87vSaLYAPwN8DjjTdOyfSCn/XAjxeuDjwB3r3Sgp5U+t9zU1WxshxEPA3wBeJqV0wgVfWw8XKeWqLcRanPtnwza9DniflPJvdPI+IYQlpfTaPZ5zjZvAz6+8tRrN2rFUXa4yF8Nr/2r4+G3Ac8s9mZTyX65Go7YT2vK3ORDAx4Cfl1LeD/wB8OGm53uklD8upfx3LR5/C3illPI+4E+A97e5xjDwGpTg5lkEhRAJ4GHgR8CnpZQPSinvBc4Cv9T00qPAI1LKf9z03l8Gfhr4GSllBfgAcJ+U8h7UIlCj2ZQIIV4qhPhuuPP5GSFEb3j8a0KIfyOE+J4Q4rwQ4sfC4wkhxJ+Fr/9TIcQTdUuDEOKNQohTQoinhBCfEkKkwuMfCd2qnxVCfDS0MrwF+LfhbuvhOc06BewO3/t3mndDhRCfCyeuCCGKQogPh5bC7wohhhb4nH8ohPg9IcRfCyEuCiF+XAjxB0KIs+GmTv11La0xGs0KGAYmpJQOgJRyIlwgASCEiAshToYbiA0LvRAiJYT4SqinHwkh3tp0TksI8YlQU38ejl+zaKfHFq8bFEL8TyHE98OfV4fHf00I8XEhxJeAP2rx+IAQ4pvh+Z+qWw9Fk2Uy1O+nw8/3ghDiNxf6okKN/iC0xnyo6fiDQojvhFr/nhAi3ckXr9EsQFtdhuPAh5q0d1d4vE8I8Reh7r4rhLgnPP4jIUSPUEwKIf52ePyPRWuLXAU4K25b6d8O/Fn9SSHET4dj69NCiC+3GtuEEH9PCPGF8P7xh0KIn1+k7YNCiMfD4/9JCHFlobEu/JxPhlp8d9PxR8NzPCOE+MoSvu9NhV78bQ6iwAngcSHED1GWvD1Nz//pnNc3P94DfFEI8SPgnwB3t7nGX0gpAynlGaBZSIfDa34b+LyU8gvAiXBQ+xHwt+ac81NSSr/p8TuBnwT+t/pNBHgW+G9CiHegrH8azWblj4B/Gm5U/Aj4YNNzlpTy5cD/3XT8HwDT4et/A7gflNsKSrePSClfBvwA+EdCiD7gZ4G7w/f8Kynld4DPoix9L5VSvjinTY8Cf9FB25PAd8NNmm+gLO4L0Qv8BPBe4K+Ax1DafokQ4qUdXE+jWQ5fAvYKtYnyu0KIH296LoXqi/9dSvmf57yvCvxsqKfXA/9OCCHC5+4EPh5qKo/SZYN2emzTvn+PCr14EPjfgP/S9Nz9wFullP+fFo/HgDeE53878B/anP+l4fMvAd4uhNjb5nUA/1xK+QAqDOPHhRD3CJUH4E+B/yvU+iOoybNGsxIW0iWoheHLgN8D6q6WHwKeDnX3/0ONn6Dmj69GjScXgR8Lj78S+G6b6/8J8ItCiD2AD9xsem5Bo4aYb3CYS6u2fxD4anj8M8C+Nu2q83dDY8wDwK8IlatjEPjPqPnuvSiLZVei3T43BwJ4Tkr5UJvnSws8/hjwW1LKzwplEfi1Nudwmn4XTb/XY/6a+UOUqJ4Ryn30dQu05TRqcNsDXAqPvRl4Lcq68atCiLvbuchoNBuFECKLsqJ/PTz0CeBTTS/5dPjvk8CB8PfXoCaLSClPCyGeDY+/EhUz++1wfhpBWfDyqEnsfxFCfB7l6tmOfxtaBnaE51uMWtP5ngTesMjr/0pKKcNNnVEp5Y8AhBDPhZ/vhx1cU6NZElLKolBhDT+GWsT9qbidjOwvgd+UUv63Fm8VwL8WQrwWCFDW8PrG5TUp5bfD3z8J/Arw0ab3ttNjKx4Bjt9eV5Jpsqx9ds7ksvmxDfxOuHHio7xiWvEVKWUOQAhxBtgPXGvz2l8IrQwWyjJzHJDAiJTy+wBSynyb92o0HdNOl1LKPwxf0jz+/Vz4+2tQGyRIKb8aLoiywDdRc74rqAXXu4UQu4EpKWW7WPuTqA3UUeYbOPaE7RlGafdS03PvBK6j5qhum3O3a/vPhm0/KYSYbvPeOr8ihPjZ8Pe9qDCMQeAbUspL4XmmFjnHpkVb/jYHDjAolA82QghbCNHOgjeXLHAj/P1dq9SeNDAihLBRlr+FeBr4P1Dxh7uEyha6V0r516jdmh7U7q5G023UN0x8bm+UiTavFcDjTYmbjkspfync9Hg58D9RcX4nF7jePwGOoCwWnwiPecy+T8eafnellLJFGxf7PAGzN4OCDt6r0SwbKaUvpfyalPKDwC8TTiBRFoOfbLLoNfO3UJOt+8MNylFu938557VzH7fUY5vmGcBDTa/dLaWsx7MvtPH63rBN96KsA+3ipZq11lanQoiDKCvFw6Fl5fOozytafD6NZsUsoEvofPyTKM+THwt/vgaMo+Jev7nAtWuoxdk/Ro2PzXwM+B0p5UtQ88vmce80arNyD+1Zytg9j9CQ8gjqvnAvap67pbSoF3+bgwAllH8jhHgGtQPfadD7rwGfEkJ8E5UoZjX4VeAJ4HHg+cVeLKX8FmrQ+jzQD3wytC48jXKnmVmldmk0q0a4Gz8twng+1I7i1xd4Cyh3lF8AECpb50vC498FXi2EOBI+lxBCHBUqzigrpfxfKPfRl4avL6A2Wea2KUBZFg0hxJuAy8BLhRBG6C728mV8VI1mwxBC3CmEaE5e9FKUhQDgX6ISlf1ui7dmgTEppStUEqT9Tc/tq2+WAn8TpctmWuqxTRO/hJr41tv70kU/1O32jYSafSdgdvi+dmRQi8tcGOP0k+Hx54FdQogHw/alhc62rVkhi+iyHd8gNAiEC6QJKWVeSnkNGADukFJeROnxfSyw+Av5d6iwi8k5xxcyaswyOCxy/maax+43osIg2pFFhXeUw5jBuifOKZQ79sHwPH1LuP6mQt9ANhgp5a81PXxti+dft8jjv0S5zsx93x+i3DeRUv6dOc+lwn8vo2IN577391Cm+7nH557n15p+/yLwxfDha+a+V6PZBCSEENebHv8WamD5j0IljLgI/H8XOcfvAp8I3T2fRsW35qSU46GL9P8QQkTD1/4L1CLvL4UQ9V3D94bP/Qnwn4UQv8KczICha+a/QlnOH0G5vPwIteP51NI/tkazoaSAjwlVQsRDZZB+Nyr5GKhNkT8QQvymlLI5tue/AX8lhPgBakO0eSPyLPAuIcR/Al5gzni1gB7Pt2jfrwD/T6hpCzXB7SRR2e8C/1MI8Tbgr5lvJVwSYZjF06ishxdRVlGklDUhxNtR32EcFe/3CLBpStdoupJ2ulyIXwP+a6iVMrMXZk9wewPkm8D/n/mbMrOQUj5H6yyfv4YyatxAbeQcnPO+bwlV8uHzQojFwh3qfAh1P3g7apN3hKaM9XM4Cfz98HOeC9tQv6+8G/h06OU2xuLhFpsScdtrSKPRaDQLIYQwAVtKWRUqS+dXgKNygfqcGo1Go9FoNo5wE8iXqqzZQ8Dvtch3sW3Qlj+NRqPpnATw12E8rAD+T73w02g0Go1mU7MP+LPQYldj8ezYWxpt+dNoNJotghDinzM//fSnpJQfbvV6jUaz/gghnkCVeGrmnfUMvBqNZu0RQvSjvHfm8nCLOMQthV78aTQajUaj0Wg0Gs02QGf71Gg0Go1Go9FoNJptgF78aTQajUaj0Wg0Gs02QC/+NBqNRqPRaDQajWYboBd/Go1Go9FoNBqNRrMN0Is/jUaj0Wg0Go1Go9kG6MWfRqPRaDQajUaj0WwD9OJPo9FoNBqNRqPRaLYBevGn0Wg0Go1Go9FoNNsAvfjTaDQajUaj0Wg0mm2AXvxpNBqNRqPRaDQazTZAL/40Go1Go9FoNBqNZhugF38ajUaj0Wg0Go1Gsw2wNroBK2FgYEAeOHBgo5uxJai6PrmKi+tLbFOQjdvEbHOjm7XhPPnkkxNSysGNbke3oDW5OdiqetZ6XBpaj1tXC5sBrcelofW4fLSOF2cpeuzqxd+BAwf4wQ9+sNHN6HrOjuT4+DcukY3bpGMWhapHruLy7tce5NhwdqObt6EIIa5sdBu6Ca3JjWcr61nrcWlsdz1uZS1sBrQel8Z21+Ny0TrujKXoUbt9ajh5epRs3CYbtzGEaPx+8vToRjdNo9EsEa1njUahtaDRdD9ax6uPXvxpuDFTIR2bbQROxyxuzFQ2qEUajWa5aD1rNAqtBY2m+9E6Xn304k/D7p44hao361ih6rG7J75BLdJoNMtF61mjUWgtaDTdj9bx6qMXfxoePTFEruKSq7gEUjZ+f/TE0EY3TaPZMM6O5Hjs8fO871PP8Njj5zk7ktvoJnWE1rNGo3j0xBBXJkt87dwYX3ruFl87N8aVyZLWgkbTRegxbfXRiz8Nx4azvPu1B8nGbUZyVbJxWwfSarY19QDzXMVlOBsjV3H5+DcudcUCUOtZo7mNIQQAEjnrsUaj6Q70mLb6dHW2T83qcWw4q4Wk0YQ0B5gDjX9Pnh7tCp1oPWs0Sq97+xKc2H1bC7mK2zU61mg0Cj2mrS7a8qfRaDRz0AHmGk33o3Ws0Wg089GWP82KOTuS4+TpUW7MVNjdE+fRE0NdsUPTre3WrD27e+LkKm7D4gcLB5ivZ1/S/Vaj6YzdPXEuTxS5lXfIV10yMZudmSgHBlIrOq/WoEbTfWjd3kZb/jQroltjo7q13Zr1YSkB5uvZl3S/1Wg65+hQkqeuzpCruKQiJrmKy1NXZzg6lFz2ObUGNZruQ+t2Nnrxp1kR3Vp8s1vbrVkflhJgvp59SfdbjaZzzo+WuG9vD5m4TakWkInb3Le3h/OjpWWfU2tQo+k+tG5ns6jbpxDiKPB7wJCU8oQQ4h7gLVLKf7XmrdNsem7MVBjOxmYd64aYim5tt9bj+tFpgPl69qVu7bdbGa3JzcuNmQr7B5IcHLzt5hlIuSK9aA1ubrQeNa3Qup1NJ5a//wz8M8AFkFI+C/ziYm8SQvyBEGJMCHG66divCSFuCCF+GP78VNNz/0wIcUEIcU4I8aalfxTNRtCtxTe7td0sU4+gNblWrGdf6uJ+u5XRY+QmZS30ojW46dF61MxD63Y2nSz+ElLK78055rV85Wz+EHi0xfHHpJQvDX/+F4AQ4jhKnHeH7/ldIYTZwTU0G0y3Ft/s1nazfD2C1uSasJ59qYv77VZGj5GblLXQi9bgpkfrUTMPrdvZdLL4mxBCHAZVIVUI8fPAyGJvklJ+A5jqsB1vBf5ESulIKS8BF4CXd/hezQbSrcU3u7XdLFOPoDW5VqxnX+rifruV0WPkJmUt9KI1uOnRetTMQ+t2Np2UeviHwMeBu4QQN4BLwDtWcM1fFkL8beAHwD+WUk4Du4HvNr3menhsHkKIdwPvBti3b98KmqFZLbq1+GaXtnu19QhakytmPftSl/bbrYweIzcxa6EXrcFNjdajpiVat7dZ1PInpbwopXwEGATuklK+Rkp5eZnX+z3gMPBS1E7MvwuPi1aXbtOej0spH5BSPjA4OLjMZmg03ckq6xG0JjWaFaHHSI1m86D1qNEsTifZPv818JtSypnwcS9q9+NfLPViUspGTlUhxH8GPhc+vA7sbXrpHuDmUs+v6Rxd7LI7WU09gtbkaqH1tH3RY+TmQetQo/W49dC6Xn06ifn7ybqIAEKT90+1f3l7hBDDTQ9/FqhnVfos8ItCiKgQ4iBwBzA3YFezSiyn2OXZkRyPPX6e933qGR57/Py2LYy5CVg1PYLW5Gqg9bTt0WPkJmClRZy1JrcMWo9biE51rfW7NDpZ/JlCiGj9gRAiDkQXeH39df8DOAXcKYS4LoT4JeA3hRA/EkI8C7weeC+AlPI54M+AM8BJ4B9KKf0lfxpNRyy12OVKB1XNqrIsPYav1ZpcA7Setj16jNwErKSIs9bklkLrcQvRia61fpdOJwlfPgl8RQjxX1E+zX8X+MRib5JS/s0Wh39/gdd/GPhwB+3RrJClFrtsFh/Q+Pfk6VFtel9/lqVH0JpcK7Setj16jNwErKSIs9bklkLrcQvRia61fpfOoos/KeVvCiF+BDyMCnL9DSnlF9e8ZZo1Y3dPnFzFbQgEFi52uZJBVbO6aD1uPrSetjdak5uDpeqwGa3JrYPW49aiE11r/S6dTix/SCm/AHxhjduiWScePTHEx79xCVACKVQ9chWXtz+4p+XrVzKoalYfrcfNhdaTRmty41mqDpvRmtxaaD1uHTrRtdbv0mm7+BNCfEtK+RohRIHZKWwFIKWUmTVvnWZNqBe7bM6e9PYH97Q1jz96YoiPfvE8TxcdHM8napkMpKK8/U1HV9QOncGpc7QeNy/NenruZo581SMbtxoxCXP79EomqWuB1uHy0JrcXCx1XGtmM2jy88/e4BOnrjKarzKUifGuh/bx5ntalo7TtEDrcWvSia7XYo661cfFtos/KeVrwn/T69cczXqx1GKXgVT3UhGWt6k/Xi71AN1s3J4VoPvu1x7cUgJbLbQeNzf1Pnt1qsye3gTpmNW2T69kkrraaB0uH63JzcdyizhvtCY//+wNPvKFcySjFjtSEfIVl4984RyAXgB2iNbj1qUTXa/mHHU7jIsLun0KIQzgWSnliXVqj2YT8senrjBVquH6knTc5shgkohl8senrjCYji1rZ6Q5QHe8UOXCeImpYo0PfvYMH3rL8S0jsNVE63Fzs5Sg88UGs7oV4PpUGQTs7YnzysMDq777qAPlV4bW5MawFlay5S4cV4NPnLqKKaBQdZkoOkQtA9sQfOLUVb34WwJaj9uPsyM5PvjZM0wVa/SlIty9K8NgOsal8SIf/OwZ9vUlVjQ/ha05Li5Y6kFKGQDPCCH2rVN7NJuMsyM5vnVhEqQkFTVxXJ+nrs4wMlPmWxcml51a98ZMhXTMYrxQ5amrMziuT2/CYrLo6BS9bdB63NzU+3Qzywk6r1sBxgtVqq5H2fE5O1Lgh1enVl0bq9Xm7YrW5PpT10e+4s6ykn3+2Rsb3bRlc3WyRMHx8PyAiCnw/ICC43F1srTRTesqtB63F3UL3WTRoTdhNean52/lOT9aZLLorGh+2sxWGxc7SfgyDDwnhPge0LgTSSnfsmat0mwozb7OV6fKCCS38g6+lEQsg1TE4ofXcuzMxpa9M1IP0L0wXiJqGcRsk6rrM5CKNmq4bJUdllVG63GTslpB5584dZVk1KJQdbFNE8sUOG7AC+Ml3jiYXlVtREzBN86PU6i6VL2AqGmQidvcvUuHxywBrcl1pK6P22OP0TjeykrWDbE7hiHwXYjZ6rNYplCxS7aY99pu+DwbjNbjFuTsSI5PnrrC09dySCT37e1BoOaeA6koVdcnZpsAPHMjRyamjtdrA8LS56dbOYFMJ4u/D615KzSbhrm+zk9cnGSy6GAagnjExPcDxvJVHD/gJ44NznrvUnZG6gH2U8UavQmLquvjeAEndme23A7LKqP1uElZraQRo/kqO1IRJooOEVNNBm1TUHL8VdXG2ZEco3mHiaJDqephmYKy41PzAkbzDmdHcnpS2Rlak+tIXR/NpKMmo/nqvNd2S+zOvr4Ez93IUXUFUUvgeBI/CNjXNzt8rVs+zwaj9bjFODuS46NfPM+liRKpqIlA8MTFKUo1j9ffNciRHUmevDIDqA3NQsUjHbU4siPZOMdy5qf19210Ura1YEG3TwAp5deBc0AWyADnwmOaLcLZkRyPPX6e933qGT742TMEQUA2bmMIQSAlEcskHjGxTQNfgmUapKMWUWv23sFSdkbqAfZ9qQhTZZeYbXL//h4GUrEtt8Oymmg9bl7qfTobtxnJVcnG7WVNyoYyMQqOT9Qy8AMVtF5xfYIg4H/9aISrU+VVcf08eXqUvX0J+hIRorYJQk08+1IR9vYlGtlKNQujNbm+1PXRTMHxGcrE5r325OlRgiDg7EieL58d5exIniAINl3ffsXBfu7f30vUNijVfKK2wf37e3nFwf5Zr2uORapbNOqeMhqF1uPWoh7T99TVaUqOhwRiEYtUzEJKOHOzwEAqxv37e4jZJlNll3Tc4q6daQZSt+8Jy5mfrnQs38wsavkTQvzvwL8EvopKmfsxIcSvSyn/YK0bp1l75u4k/vDqDLlyjVTMYiAVwzYFpgGuLznQH8fxAhw3IBtX2Qxh+Tsjx4azfOgtxxvXr2dI3Go7LKuJ1uPmZjWSRrzroX185AvniFgGlVqNck2GLtERbMNgZzq6Krv99cK4npTs708ghEBKSXGVLYxbHa3J9aWuD1AWv4LjU3I83vMTh+e99sxIjquTZWK2STqqPEyev1Wg7PrzXruRPHpiiKtTZd54PDVrPH30xNCs1+li1ouj9bh1qM9Pp4o1DEAiuTlTZVdPjLhtErcNpstqztiXjHJs2CRXcXnk2CBfPjtOruKuaH66lRZ7c+nE7fOfAPdJKScBhBD9wHcALaQtwNysRn1hAP2FsRIDqRhDmTjICrVATQpTMYv9fQkODqZ49MRQI/YgagritsHvf+vykuIQNjrFdhei9bjFOTSY4sSuDN+/Mk3NlwSBpDcRYW9/iiODSQbTyt1rpbF/9biGTMxuxEs4XkAqHCy19b1jtCY7ZDXi1epxfc3ZPt/zE4dbxvvlKh5CiEYsUL2P5yreyj/MKtLpOLgdYpFWAa3HLUJ9ftqXipCv1hAILAOmSjWVHyKhsntm4/Y83RwaTC2qp+0cP9vJ4u86UGh6XACurU1zNOvN3J3EI4NJnroyw0TRIZCSnZkoN2cqPLCvl/0DyVk7kvWdkWbrYX+qfX2zdmz1HZZVRutxC1PX0lA2zt98eZpC1eOrz4/x6iN97EjfnuCtxm5/Pa5hZybK87cKOF4AEvb3JbT1fWloTXbAasarvfme3R2VQMjELPJll6qr3KjrfTwT62Tqs750Mg5uh1ikVUDrcYtQn58eGUwylq8yU3aJmFByJDHLZF9/gnc+tL+lbhbT03aPn1005g+4ATwhhPg1IcQHge8CF4QQ/0gI8Y/avUkI8QdCiDEhxOmmY31CiMeFEC+E//Y2PffPhBAXhBDnhBBvWsmH0nTO7p44hertXdDBdIyjQyn6U1FGclUODKT4wE/eycHBVFvfZx2HsK4sS4+gNdkNtNJSb8LmzM3CrNetxm5/3dpwYCDFvv4EmbjNnr44BwdT22YAXCX0GNkBGzFO3L0ry9GhFFHbpOj4RG2To0Mp7t7VnX17O8QirQJaj1uE+vx0MB3jVYf72dMbxw1U3olXHOrj/Y/euey+v93nrZ1sf70Y/tT5y/DfdIvXNvOHwO8Af9R07APAV6SUHxFCfCB8/E+FEMeBXwTuBnYBXxZCHJVSbi7H/A2kbp5+7maOfNUjG7c4PpxdsZm61U6iaRrzCq2/uU17bsxUOHMzz717M8BtV5S5lonm10dMgQAcX247U/sqsFw9gtbkmtCp68jc1x0dSnJ+tDRL09enK9y7J0vN87kwXqJY9RBCMlGstYxfWKnbira6rwp6jGzB3L753M0cx4ZnlxBpHifWonD7oyeG+OgXcziuTyADHNenVPPnxdKtB620CixZv1qzi6L1uMnpdD7bPD/tT0V54EAfd1TcRTc8OhkXF4ufbTdebxUX0UUXf1LKZaXNlVJ+QwhxYM7htwKvC3//BPA14J+Gx/9ESukAl4QQF4CXA6eWc+2tRt087fsB16cqICBXrpGwTT7+jfKKhLCcmLu55vIXRgs8cXGahw6LRnalZstE8+stA564OIUEXnGod9uZ2lfKcvUYvldrcpXp1HVk7usuTxT59FPXOTSQYDRfa2haSvjWC5P4QYAvJX4gEQgilqDm+YzkvIZGgW3ttrJZ0GPkfFrp4vp0hYRtkopZjY0N2xTcvSvTKNyejFqzCrcDK14ABlJlzFVbjrcfryetvo/fPHkOQwj29iW0flcRrcfNzVLms63mpw8e6OHk6dG2+SU6HZMXip+de45L42q8ftm+Hvb1J7eEVtfb8X1ISjkCIKUcEULsCI/vRpnm61wPj81DCPFu4N0A+/btW8Ombh7q5ukzI3mi9u2C6LfyDseGMwsmfvj8szf4t188R67iYQpBb9Lm1IsTHNmRotZkeXvvG44CtxeKCyVumZsk5u5dGZ64OMXpG3leezQ6Lw6h+fVnRvKkwniLi+NlXnmov/GabhVRl6M1uQLmaqFdMdn662qezxOX8lwcL6o01SMFdvXEidkm06UaM+UaU6UaAdATt7BMg5oniQkDAXz0bfc2zvnY4+fnXXuq6PDBz55hX19iWbuT2zkAfpPQFXo8O5Ljj09d4elrMwgE9+3N8o6m2Ju5/b1Y9ZBS8v3LkyQiNqmoiWWoydZo3uF3v3ZxSYXbO+Xk6VH29ye5Z09P49hqJEtqRzv9tLpPTJVqAJzYnW0cq7dZa27T0BV67CYWm8/+8akrDKZjsyxudc7fyvOpH1yj4voYAvqSEU7fyPG+Nx2dd+9ZbExeKH527jluFRySUYtbeYcDA6ktodXNEvUsWhxruT0npfw48HGABx54YP238DaAGzMVLAMujhcBiFoGPXGbvB9QdT2euDTZcrJ2diTHv/3ieaaKLjHbAAGjuSrXp8pMl2s8emK4sQO5KxtjrOhwbbLC0aEU+wfa727MNZcPpmM8eLCXZ67nGMlV51kPm19frHqkoirzWr56u1SETlW96diWmlzq4qfT1Ot1Df/wWo6oZSClxDQE02WXHekopUAyWaoRSIlhgAygWPPJxgz29sURwNPXcvPO2Xzt8UKV86NF3CDgFQf7lrw7eXYkxwf/8jkujBUp1TwEgk99/yr//G8cW7H1RbNiNkyPrdyf/vzJG1ydLJOKmkjg6+fH+faLkxzZoeLpnruZYyAV4YfXcvhBQMnxqbg+xapLXxJy4b1/OBsjGTG5Pl3m6I7UrOu2K9y+FNazNMJCFodW7ah5AXLOn1CPhV3DthwfV0L9PvIXP7zBUDrKeMFhMB0F1Jw2X3Wpuh7feXGKn7hrR8ND5k++d4VsPIIbBNyYquAFkp6EhWkYjBdrlB2fT566wod/7h7OjuT40plbICEdtxvZsVvpaiGvt9//1uVZei1WPdJRszFnhe7Xaid1/l4tpfz2Ysc6ZFQIMRzuoAwDY+Hx68DeptftAW4u4/xbkogpeOLiFIYAJHh+wI1clf6EzfcvTZOKWbMGm0eODXJ+tMSXztxiJFchZhlUXB8vkLh+gACuT1f48tlRTCGYKbtMlWpELbVA/NGNHBcnSvhS4vkB7//UswxlY+SrHpWax6WJEr4v6U1FuHd3lqM7M8Rsizce39mwIDbTbF5PxSycsMZSJqZ2T3Sq6s5ZZT2C1mSD5WT/Wsx1pD6wXJ0qM11yqHkBN6ZrlGs+QoAhBONFB8s08IMAL5B4Puo5BEXHY6pUwxRQdgPe96lnGovSude+MF4CAQOpaCOAHRbfnTw7kuOTp67wlz+8QbGm7g8RU4AhGSvW+PDnznJoMNW1O5xrzVYeI1tp4mNffRE/UCVBYrZJuab6aM0LGMlV+NH1HIaAdMxGIpkquVgG2IaaL0+XXfb3J+hNRHC8gPOjalNzvODgBhLHC4haBrYhGMouPC4sFie4lNIIK405XMji0KodEWt2vr3xQpXnbuZxfcljj5/XVvdlspX12K0030eG0lHyVY981SOQEi+QlGs+8YjJ01dnEEi+dOYWJcej5voEQNHx8ANJLZAYQKXm05eyEAS4QcDT13LKy+3kOW7lVaZ6Qwieu5HjwECSgaRNxZOzxs967Gwrjc3Vaypmkd9iJVY6yfb5sQ6PdcJngXeFv7+L24G4nwV+UQgRFUIcBO4AvrfMa2w5wjUfPXE1WOarHqWqy81clarrc2J3pjHZC4KAj33lRVWAXYLnS3JVFeRe8wK8ANwAHC/AQA24RcelUHUpOB6u73MzV+HCWJHxfJVbuSoXxgpcGCtyfarEmZt5AinxpSRfdvn2hUl+eHWqZUHaOo+eGGoUbz80kKBY9ShUPQ4NJhrHNyIAv0tZTT2C1mSD5WT/evTEEFcmS3zhRyP8tyeu8EffuczXnh8lERF8/BuXyFVchrMxhjNRrk6WuRbuXBoCvABqvmSqVGO6VKPkeFiGwDQEvlSWAT8IKFY9buSqJCPmrEXp0aFkQz+BlEwVa0gpObLjtpvMYruTZ0dyfPSL5zl1cYqKGwDqXqPaGNZUKis3ubMjOR57/Dzv+9QzPPb4ec6O5Nqed5uxZcfIVppw/YDpkqs2C4HrU2WqboAv1WaGH0imSg4Xx4tcm6pQclQfzVVdJBCEk71yzWei6DCSryClZCRfoeT42AaUHJ+xosPDdw20bVs9TjBfcWfFCX7+2RuN1zSPPYGUbcebTs61GDdmKqTnlJCo669VO/qSEQZSUXIVl9F8hW+cn+DKZJlyzeVr58b46Be1xpbJltVjt3Ly9ChBEHB2JM9E0WG84GAIychMlZLjI4CoaXBposRovorjBiQjJo4vcTxJzbttIw+AiiepeT5+IMlXPK5Olfhnnz7NeLFGxBK4vtpEcv2AS+NFvn9lmoRtzBo/F9LWXL3uTEcpOR47M9EF7yPdRFvLnxDiIeBVwOCc9LgZwFzsxEKI/4EKlB0QQlwHPgh8BPgzIcQvAVeBtwFIKZ8TQvwZcAbwgH+osybdxvElrzjUy4+u5/ECiRCQiJhU3ADbMmiOXx/JVSnVPM6O5Lk+XcIPnwvmOBsI4PpMlUrNw/Ul+apHxBQ4npqYWiZUXB/XlwhgrFCl5gWN96djlnos4IXxEr//U8fa7lI2m9eLjscrDvU1sn3uSNtrVtR9K8UvrVSP4Tm0JhfgzEiOXFltgmRiNkd2JOlLRhd17Sg5HmMFB5BELAMvgP/xvWvcu6ensVN4YCCFCB2FHDdAonbeJOAHAAG2aZCMWvh+gFuTBEDNhyBQiTHSMXuWRe/8aGmW20pfKkLCNrgwVuKpqzNYQuB4AaYp2loSTp4eZaLozJq0CsCXUKkFGAIMQ303V6fKHVtFt5L22rEdxshW7or9yQjjBYfLkyVqXsBMU8F0VUfPxQtUH/K9sK8LyMYsio6PJyUzZZeqq6zMplAbkj3xKL4MKLsByajFS3dkuTpZ4bHHz7fsR584dXXROMFOE5p94tRVLFNQqLpMFB2ilkHEMpYUc7iQlbFVO97/6J2A0uDXz4+Rq9SwTYNC1aNSC5gsOg13to2g2zS8HfS4kaykP5wZyXF1skzMNhlIRbFNgyuTJQxDkIiaxCyDRMTCDySuBF+6GOL2vNULJMacOexk0VX3D0MQi5rMVNR9B9QYZghl/AikZG9fgoobdOwRM1evBwdTvOnE0Kxsn2s1b23HautxIbfPCJAKX9OcIjcP/PxiJ5ZS/s02Tz3c5vUfBj682Hm3I/VBJRm1OLIj1QiQnSg6xGyTC+MlBtNqgB7JVSjXfGbKNTUQt0EAZcfFrb9EghPurvgSAk/iG2rh54Wik1K9r74rE7VNDvYnGCvWNl166i1YwHNFegStyYU4O5Lj2qTKPJaJWVRdnyevzHDnUIoDA6m27zt5ehTHC9jfnyBmq/lF1fW5OlVu1MmsI0MB1d23CQe3iKmy5FZcn1TUYjSn4pzqL/NCPV6fLjNRrDKQuh3D0Kyr5oyJppBcnqwgkbz6cP+C8buO55OJ2UQsg0q4MK0TSDAkjMxUeeBAYtEg+vp3ucW0144tP0a2WtAkIqaK46tJXG/OfFeqTb0gHCtMAwK1R0jVC7BMgW0Jal5AxDJIRExS0QiTpRo7M1GiEYuHwiRgY4UK37ww2Yj/mduPRvNVdqQisy6/3DhBZb30sE2TiGng+ZJKrYbjth9D57JYAfZ2Y+Cx4Sx/9cwNDCGwTUNZ/gNJoepx6uLkkj/LatClGt7yetwoVtofchUPIURjjOxJRBjJVUlFLd52/17GC1WeujqDlDS8A5qVJ5lvwKg/byApuz5zp7u+BEuAaRgMJCNLjtdrpde5Jc/Wi7XQY9vFn5Ty68DXhRB/KKW8IoRISilLy228ZmnMrYs3mneYKDr0JWyqro/jBdy7J8tzN/OM5qvcmC4zU65RqgVETTV4GMIAWg9evmSWxXBuFHLdImGHjsGmKQhQojSEoFzz6UlEKDg+Q5kYrVitnYrlnKfTjE/dwnbV43rtPp88PcrRoRTnx4qNmCPHCzg3WuTvv+5w2/c1L57qRC0DUwhu5ip89+Ik+apLJmYjUZqrb6bURecFanfSMiRFx6uvC2f9G6AG0E/94Dr7euPcvTs7b1F6frTE4YEEL4yXGCs4BL5EGPCNC5McHqhyaCA5r//v7onzwmiB6XKNqCWo3B4fG9fvTdgUHbetS1ur73Iraa8dW12TZ0dyjBeqfOvCJL0Jm+O70pQdnx/dyBM1DXJVb96EzDBoTMJMAxVv7gXIAKpugG2C66u+1ZewSMVUKMPOTAyJSqwAKv7tq2fHqfkB3788hUBN/mxT8MenrvDOh/bj+gHnx4qkoha9iQjJqNWIG6zH9hwdSvJfv32Za1MVqp5PzDJ5/LkR7tvXi+NLoqZAAtNllWwpEzOwhMAyBY4nWqf1oH3Nvrht8MSlyUYG1E4nZ/mqh2Wq6wLq90CQr3qLvHNt6EYNb3U9biQL9Yf6vwuN0ZmYRb7sUnV9opbBaL5KyVHhP7//rYsIBImIqbxjJA2PtWbaZcqREqq11vNcT0JvzKLg+MuK16vr/MxIjlzFIxOzuHvXyutrL5W10GMn2T53CSG+gNpR2SeEuBf4P6SU/2BZV9QsytxV/tXJEi+OFZipqMQs/ckIMdvk7K2CGuz8gJmyiwjHqpovcSoLDxqLpZyyBBiG8p02DbBNAwNJyfcxhcT1VQB/yfF4z0/Mnxyv1k7Fcs+znlne1plto8f13H2+MVNh/0ByVg2yTMwiE7cXvFZ98eR4QWNXM1dxqXk+uYpLtRYwlIkwlq82Jr1zMUMdlWs+tqUsKfVFX/PrZfj/a9MVCo7HG+9WE876APVnP7iG4/qkYxYykEihsoZ6ns/16QpFx6PszrbUPHpiiFMvTvDieBXfn++1JIHhbBQ3EBSqXkcD6BbWXju6VpPtNleatfeqw32cHSnwtXMTRC0VB+pK1W8jhsBxg8YWY31DUQAxyySTsIk4HsWaT63JIghwcaJCT8KjJ2FjRywmSzUGUlFG8xW+9cIkUyWHiCm4MFYgYhrs60uAhK88P8aFsSK2IShWPaquT9FxSdgmuarHyw/0Ne4XH/78WaZLNZJRm4RtUq75nBtzKDo+r76jn1MX1cIyYavF7GSxhmmoxZchDPb2zLf6t7ovffSL5wmkZH9/kkeODTWsfp2SiprMlD08P2hY/vwAehIdefSvOl2u4a7V42alVX+ouh5fPz/Gn37/KlKqzR4/gD/5/lUevmsH73xoP3B7YejLgEAKbs5UGCs4WOFGUM0LcH2JlEHLRd9i1DdH5x4DFVpxfDjNxYkydw6lCKScZ5FvR13nQRBwdbKMEIJ82e24vvZqshZ67GTx99vAm1ABrkgpnxFCvHbZV9QsSvMqf6JY5dxoEWEILEPFJOTKLvGIqfyjPTXwmkJlCHSXIZ5WKJO5wBSqFqAhBI4fkIiYlGoeINiRjfPwXQOcHy3x13OyKK3WTsVyz7OULG9dxm+zTfS4nrvP9f4ymI41XKjn9p9WPHpiiNM3clyaKCGlpOr63MxVQUJf0qLoeJwfczGFaLvh4ngSGahEF5VwB9M2BbU5I6GBGlxNQ5KNRzg/WuJQ00S0bh0ZKziNmEIMQAiilkExzLDWzLHhLHfsSDGar3JlavZAYgj19udGCuzrS/DdFycbZWAWGkC3sPba8dt0oSYX2lz541NXuDheVDHf4aZi1fVxapKKFyiLnwR3jq+VYQjwJRFbxfL0xm1uOCp2HNQmIiYIGVD2IFd2MYBCRVm8d2VjPHFpiqLjkY7ZVD0fA7WhOVZw2NUTxwszhO7vT2CZgls5h1LVp+ZJXnGwj3v39gLqfjFZqmEIQTR0YVEWdpVh9+J4uWHNLlRdbEPgohaohhAkbIMjO+Yv/pqTV9St+jOlGrGI2agnuNR71asOD/CNc+O4gaTmS0whSEUMXnW4fcKbtaTLNfzbdKEeNzNz+8N4ocr3L02TK7sE4Y5OyfEQAgIfPv3Udb743CiZmMVLdme5d0+W71+apuT4VF0fy4AwJyGer8KNqmESws4drVsTtcLtJQmxiMlL9/XxCw/ubRmvt5BnUX3+cXYkT8w2b9cjLDgcX6S+9mqzFnrsqM6flPKaELP8H7Z0YOt6sFCna17lXxhTk8pc2cX1A+o2gUpN/QmscJfQm2smWAH1RBR7++LcMZgiGlFB9VXX4+xIgemyy48d6edVR/r58tnxjusaLWenYrnnWSz+opvZLnpcz93nR08M8ZsnzzVS1kcsg75kpJGUoR3HhrO8701H+eSpKzx9LcdUWWX3LNd8KjWfVFSlu58MCzqD2qiZu8NZC9Sks3645st5A6FhgCkEtqkygt6YqcxeIEuJ4ymX8HrshBleT6Key8bn3/JfnChRaOFeFsjw+hJecaiPsuNzbrRI2fW5e1e2bcD7VtZeO7pRk80LvFTM4shgkmzc5pOnrihXz7iFQHJjRm1m1FwPL1ALqEbfaMISys1z72CMy5MVqm7AaMEhZgtmKmozwfcliaiB46pxLADKro+UytomgLhtke6zKNc8Lk6opA5CwEy5Rn8qih+aF+sTsoFUjErN48pUhZc0FXMHZYlsjmL1wlTxgVR1ZtNRpYeaL4nZFukwvGF3T1wVpm/xvTUnr0hHrXDDp8JAOsp4odrwHEhFTTKLbB7VeedD+xnJVefdf+rWk/Wm2zXcjXrcaBaak87tD8/dzIdxeJKorZIU+WFsLwJqniSQLp4f8OyNHMmoRSBVlt/JktvQleD2fWSBFBWNxFBeC0HWSxPVx0wQGEK5YP/Gz55oJGyaG6+3mGdRff7RfJ+ob6KutxV8LfTYyeLvmhDiVYAUQkSAXwHOLvuKmkU7XfMqP191KVQ9jPBGJlFumPWYvblFYldKPUsSAqZKLlPJGoeTEUZzFZ4bKdCbsHn1kT5sy+RjX32RoztSHdc1Ws5OxXLP02mWty5ky+ux4Wd/M88LowXu3pVpWOOW2oeWEjPYrLHmx4txbDjbyMj3vk89w3A2xv986roqlWAKpBSz4mvbubbMHdhajYVuILFMQcQy2N0TbwxQ44Uqji+JmAauH+DJ0HIXum8LBLuycY63SM7ywmhxXuxWM5YBO9JxSENvMko2bres59n8fWxR7bWj6zR5diQ3a4F3ZaLEuVt5MlGL0aIDEiaLKgGJKukgKDlqgSZD9825GGEW6tGCy8sP9lGu+dycqah4trAvSiT5qt94v0DVezUNgeP5fOvFSfqSNrYhmC57RCyB50mCcN/z0ECCW7kqhoBr0+XGQikZMbHN+a7J6ajFTMVlLF9VmyvhpkjcFowXHKaKNXoSNpYpGMqowtNIiNomx4bT86zvMD95Rcw2iVomuVKNp67OELUMUlGzUcvs7Eiuo4Ro73/0zk2TXbPLNdx1etxoFpuTzu0PbpiB/vEzY1RqHuXmxEgy3OAMVBb5ouNhCsFAOkI2bjFacJpf2jHxqInvy1nXUhubKhcFqDGznujQXGT4XsyzqD73zMRUno2YbeJ4qr7pelvB10KPnSz+/j7w74HdqMKWXwK07/QKaNXppksOH/zsGfb1JShVXZ6/VcA0DMo1j5lyjXiYBrc2Z/9qCcnIFqVukQiAmCnIxC1u5aqM5KrcyjtELEEmZs2q93QrX+Xg4G3XmPqOyC+95gAf/eJ5ni46OJ5P1FIpft/+pvaTxlasZMdjvTOMrhNbWo/Ng9C+vhjfvTjNxfES+/rjDCQjjOZr7O2Pd1QEeSkxgydPj7K3L8GJ3beP5yrukl07SlWXPzs/Hlr6JAnPxDRmL/6WSmMMk8q64gXQl4yQiAi+fm6sUYsoYghs2yQZsai4PlJKDEOwtzeOF8CevsS8ukQnT4+qAvJzszY2Ud/1hM4tr1tUe+3oOk2ePD1K1BJcnizfTjIkw4UNkLCh4spGArFExESi3JGdNuHktUDVhDSFev29e3s5dXGSVMXl5nSZfFjPqxmBssBZxm2Ldipqc2WyjBf4BEFowTZE2PeqxG2DXMUNs2MKam5AvuJyeCDJdy9O4voB/ckIw9kYPUmbybLb0F99uIxYgh3pCNenVGmkHakIfgB9ySgv29fDYDrW1u07E7O4Nlni6lQJP5CYhnIRdVTNlkayKIA7h1Id30M2m2Y2W3uWQNfpcaNZbCFU30R97mZOzQlnKozMVKi6HpUW5rjmPRM/NFJUaz7lNolZ6tRj3eu/Ez42BNiGwUDSxvF8JosONX/+RmrEhIhp4ktJ1Qt47PEX2pZqWcyzqD733JmJ8vytQljGBvb3JRacg65VkrrV1mMni78HpZR/q/mAEOLvA/9x1VqxhWnVEeZ2uoliledvFfADtbN5frRIzQ/ojZg4nnJVIax/tNrUzem+VBYCU0IyaoIQFKsu5ZqPF0iklPi+wfWZCsWqy6vvGKA/GWGqNDuovXlHJAhHXBHKOFjGDLjLdyDXgi2tx/ogVPN8Lk9WGMpEmS7VGgXSX7Y3y107Mwsu5Oqa+9KZW0RMgxO7MxjCnjegNbMaLqaff/YGT1+bUYlbTPB9KIQT3ogpcJYRzW4IVfw2ahtU3YAgkAwkbV55qJc/+PYVyjUfUMkhKoHElx6xiMVgOorj+mF6fZMHD2R5x0P7533u527mlPbbXD9qQbxp8ddFcT/rSddp8rmbOUqOskwJwiydYfc0BVQ8tUCquhLHl7hhHdjeRIRCtb0mPF8iTMm3LqgSBcWqRzpqEkiJGZY2aVZBEL7HDwKqLuzrT5CKWWGIg1r0gSqTErMNXF9y394evn95irLrUXCUZdo2VGbMl+zOcitfZarkkq94IGFXNkqh6qmEM4FEIEMXM4N9/QmcsFg0Eo4OpegPC6+3m+DZhiBXcW9n45VQrgUkoyaZmNWoE3pid6ajOqGaVafr9LiWdLIYWWj8q2+i+n7AhbEiU8UagQwQiJYLv1YEEspuQNxeOIFRT8KiUPEa9yLLUPqyLYNASm7lq2TiNqZhIP3bFr760Or5asyyhPK4uTbdXnuLeZU1zz3Lrt/I9nlwMNV2QddNJVI6Wfz9qhDCkVJ+FUAI8X7g9WxTIS2Fdh0hYRtcnSxxK++Qr6pBRhXRE3z57BimUFa3ZMzm4eM7+faFMZ66klt2O5p3U+Yek4BpGiRtI6zjp9pR312t1ILQzczEC1NjV9yAC2Ml5Q9dUZa4uVa5k6dH2d+fbATAw/IsKdDVO5BrwZbWY30QeuJSnqhlELNNsnGbixMlBlJRyp5csFBrs+aQatL45JUZ7t/fM6s+3lw6cS/+/LM3+MSpq4zmq5hCuYW6gWQoE+Phuwb4xKmr5CsugaSR2RBUuZRE1CKoemojZQnfR8I28APIVzwMAyKmQV8yyl89cwvfl6SiFhKTmbKL60t8Cft6E+zti/PklRlMQ8VzvepIf+N7ap4MnBnJIwhwg9kxhgLYkY5QqfnhpL3zLGnbkK7TZL7qUfMkRt3bo2lfsT7xqjZlDwukcuO6MVNdsP9KlGW67Hh85fkxBlJRKq6BL2l4izheMMud0g9UUpmIKTCEIJAoF8yiEyY4EkRMk4obsCemsoJKoWoFegEEBsjQ3fngYKrhiZKruHzm6esc3ZHCMNT2xovjRWwDyq7kDceHws8mGclVef2dSsPP3MgxlInxrof2tRx3rk9XMA1Vo7CembNc8xEIju/KzrqH5Cqu3ixZf7pOj2tFp4uRhca/+obsmZE85ZpK6uK4El8uzRhR9QJq/sLv6U9GcdwA6amC7ModPMBzAypugAnkpIPjqY3RbMwiEVUeAbC0ZDGdeJUtde7ZTSVSOln8vQX4nBDinwCPAneFxzSL0K4jjOYqPH1tBs+XBDKgENZLGkxHKFbVjmK+6lJ2PCZ2JBkv1Br1T5ZDq7c1HzMIGErHuTJVwTIgaQv8ANQeqXptxDTwAxWYH0jJRFFlXnvPw4dbZlH6/W9d7uZU0ZuZLa3H+iBUT5gAt33401GzUQcMWvenZs2l4zaO6yNlwF+fU4mJIqbBiV2ZedddbCBoLqDuuh7X8jUCoCdm4no+//4rM43Mh3UDfV2ytQBw1KIwbhsdW/AFKvunELdd31xfcitXoVjzsQ1BKmYjwsVwoaquMVmscmmyhIFgT1+MfMXlI184B8ChwdSsyYApBPmKqr0kCSDMvGYIsEyDl+1LU/bU5Fhb3dvSdZrMxi0K1dqSUqu7AcQswrGhNfWMswCBLwmCgNF8LZzIgW1aeIFLBLUx4wUQsQwMA2KmgeNJhJTKWm6ZGEDR8agEPrYp2JmO8tfnxig5PlHbIGoJfKnigCJz/FHTMQvbNLgxU5ll+bMM6E1FG68rhFbNL58d5/hwhlcc7KNQ9fjy2XEODabm9fe847GvL8ZMxWvUBN3XF2OqfLu8QzcmSdlCdJ0e14qluHNen65w51CKff2zsznX53LFqkfZ8SiFrpvLmY4uFFsOcCtXxQsCYrYBUtUGbX6LD/ihzKOmUF5xzLb+1RNSeQEc6GtdgxpWx6tsrlX1uZs5jg3Pnl9s1nnvoos/KeWEEOItwJeBJ4Gfl3IlESxry3oVhe6EMyM5cmW34QZyZEeSvmSUr58vqNTvBiANtasqYSyvagyZhoHvB4zkHf78yesq3fYatVEAvhSMFRwMJK4HU26tseiTgOtLSjWPRMQKXUChPxVt7B7NzaIEXZ8qetPSbXpsRSdZxWxT4Lg+CLXzN5yJUXD8WdnzWvWnZveVI4NJTr04yXRZZdocTEYoVj1u5qqNJAzNbYnbBq7nM5Lz5g0Enzh1lWTUwjIEY0W1GWMJ5dZZrKkCfnWLSXOsQp1ArauW5LodMdVEuz6oyQDilrI0uH6A46rnEhGTiGUQtUy8IGC64hExDSKWwVihpp4zDT5x6ioPHepvuNU+cSlPxfUJpFSfgduF3VNRE0MIbhVq7OmNb/i9dDPTjZo8Ppzl6+fGlvy+amgtbPfp6ofrWWILVY8H9/dyZqRApeaTjBoqKRHKatcTt4hHTRzXp+YFZGIWL06U1BiTsNW4JARCQDxicnAwxcnnbgFhQiYBRhhYUJkTEF+oeuzpifHD6/lZx90ADkSNWdbshK3G3DMjecbzVRw/wBQqo+6H3nJ8Vr8fysQYz9+2gEqU2+fevgSPHBtseAcsZD3c7GymedRS6UY9rhWduHNm4zbHhjMkbJNzt1Q25+PDt7M57+6Jc2m8yEylRnGRmL2VUqz5RE2VaEoIQWmB8dIP683UvEBlvQ8HSscNsC2DTMzkvW+cn2Nitfp2K6vq9ekKCduclQdjs85724V6IIQoCCHyQogCcAE4CrwNyAsh8u3et5HU/xi5ijvLxH12ZPkukytpy7VJlemsng76ySszXJ1UadX7UxEODCTV7ns9rgEaZu5aoAZYtz6jXINbl0AV5kyEmdIC1E6KqnM0e5cmYghMATU/4PCO5LwBcS6PnhhqxE0EUjZ+n5twQtMZ3ajHViym0fpu3N27MkxX1BbfffuyHBpMUnI8dqajC/an3T3xRtmCwXSMZNTCNAws0yAasXjFoT729yc5eXq00ZZL40WuTpb43qVpnrwyw+vvHOC9bzg6q3+P5qukoyZT5VroHq2oZ91tpr5p0kyHoRGzcHz1PomKY7AtQdkNmKl6jUQYjuuHllIXX0ru3pUNP7NyoYuYBo7rM5Kr8KPrMzx+ZpRbuTJPXZ3BcX0yUTMMyA8z/YZtz1V9pksOR3ekODac2dB76WalmzV5dCiJF7CsTcXmcWGx9xdrATenyySjJqm4hQz/i5gGtmkwkI6wpydOOmohEBweTJKOmvhBwGTZxTBUkrFExCQTq2/8yLAIO7i+ciUzhdqkvDxRnHV/uNlmx/36tEpklo3bvPu1BxktOJwfLTJdcpRLrBtQcjxuzpTn9fuH7xpgtFCl7KjanGXHZ7RQ5cSuVMN6+JZ7d3F8OMOXz453nWY20zxqKXSzHteK5vGwTrM7Z71e5ZfPjjJacLhzZ4rjw9lZ49/RoSRPX5shYqyVCWI2ji/JVTxKVXfB11mmgZSSmXINQrfxTNQkapscGkzxGz9zYl6yl9Xs281W1Xooyp1DKc6PFrti3tvW8ielTK9nQ1aD1fK3XY2dgZOnRzk6lOL8WLHhGuJ4AedGi6RjVmPQnCrV1OIvdLfymkbW+iTSFmBZBpVVTvhSj88oVDwsS8X9zfgBAjVxni7XcP2AZMTCDVQs4HA2xp1D6Y5SV+tELatHN+qxFZ1o9Nhwln/9c/fM0uGBgRRvvHuopYtxM3PdNyuuz2Aqysv29zTKRQRSNmrk+X7A+bEiUcugL2mTr3p87KsvznP3Gsoo98laGIsgpUqyYqASJXmL+M+ttHitqqEkZwXCI9U5fV8SSJ+dmRgDqQg/uj6DF0iitoltGlRdlVo/YqrsiN+9OM1QJkrMNpkozr7fmOJ2OvxSLeDiRIlUzGp8d5sxdmGj6GZNnh8t0ROzyDvegm6cq8ELExWO7kjxykP9nB0pMFZwiFqCA30Jym7AZKlGwfF52f4eDgykwszSJjPlGvmqT8wyGEhG6UlEAEhFbYqOR8RScX6WoWrzJUwxz3Lxlz+8gYEqUVHH8yUlN+Cjb7u3cSxf9UCohZxlqIll1VXF7LNxe1a/L9ckL9/fywvjJYqORypq8dLBDKdvFjk+nOmKeJ+F6Ka4pWa6WY+tWI156ELhDL/1+Pl59Sqfv1Wg7M62oJ8fLfGyfT3cyjtcnlof98X63HQh+hI2pZqPH0AmbnHvnix3DGUaHmetsnyuZt9uZVXd15+k7Ppk4/amn/cu6vYphPhZ4KtSylz4uAd4nZTyL9a2aUtnNTL2LRYg26kgb8xU2D+QJBWzGkVfMzGLTNxmRzrKExenGhk13aYg2OYOX6+55wbgBau78GuejCo/6oCeuIUpBELIRmBuMmpx51CaouPzhuNDjeD4TtCJWlafbtJjK5ai0Vb9p5WL8dz3NG869Kei7ExHG4sXuL3zeWOmwq18tZFYBlQa98lSjZOnRwFunydhc3WyBFLFPRVrtzdnZLhxY4aP67qyjdvxf9mExXS5TY78DnCD2TU9DSHIJmwcL6Dq+gxlorzmjgGeuDhNQOg14AeNhC0IQTZmcfeuDBfHS0yXamTjdpgtFKKmuvcE3F4IGEIltyg6Hq863E9/SmcubEU3avLMSI6ehM1MxWskfVkOnYaiB1IylIkzlFHhAK7nM5COcWOmwkOHBzgzkuOunSpW5siOJE9ecRnKxEhEPQxUrOuhQZVi/ciOFBdGC5RrfsNibRqCV98xyFA2Pq8OZX1TNcyp1nhPM9m4xViuwmRRlWgxDQPLEGTj1rz7042ZCi/Z28u9+/pmfb7PPnOTVxzsm3XezRrvsxCrMY/aSLpRj3NZrayRc8fDiKnKkvz+ty7z3M08UdNobKrU69jlKrPHqRszFWqez8Xx4qzjK0hD0RELzXgtAffv7+OH13O8+kifqkMbslBfXc2+3S60qW453ex0kvDlg1LKz9QfSClnhBAfBP5iuRcVQlwGCqh1hyelfEAI0Qf8KXAAuAz8gpRyeinnXY04s4V2BoCGIC0DvnZujM88fYMfO9I/L416vS2D6Vhj4llv26MnhhjJVZkq1aj5MoxZUDJqFpOkKd5nKV9EB0QsQc2XjV1+haqlZJmCgwMpLk+UGu0uOt7t1PlzEmZ0c3xAF7LqeoS10+RcWmn06mSJkbzD+z71zIL9Z7F+Nvf5X3rNAYCGm0erjLRPXJzECwJcXxKxDCyhXJ8/9YNrfPH0LY4Opdg/kKQQtdhTdJgpu9yY8RCEcbhN7tFGuNgzBJhChDEJahFYWYVYifrGkAB6Eja2aTTq+fkSLo6XSccssnEbxw0IpMT1fSSC4UyMnT1xBtMx9vXHuTlTpeB4JCImlZqH50nmVvrzJWESGcmF8RIRy9yUsQubgK4ZI0Hp5PT1GWYqqr7fYkkYFqLTt14YL/EfvvICpgF9CYt4NMLPvHQ3v/SaAxwbzvLY4+fVotD3uTBWoub5TJU8klGLo0Mprk9X+M6LUyqO7lX7uT5d5re/fIFAqtqD9+7O0puMcOZmrlFE+tETQ6QiJnnHb7hm1/9NR2annN+RinImyGMat3UWSEkyMr+g8+6eOM9cm+b8WJGSE7ZxR4qhTGxekfnNGu+zEFsgXr+r9NiK5nnoRLHKhbESE0VVC3qxkJu51DdRmxeUfSkLA5gs1rBNg55wIxGpNkCbKTsuXzs/Hnqf3Nb8RgRRClQIxJEdGdJxC8f1Qy+7NEd2JBlIxRbsq7t74lyeKDYy7WdiNjszUQ4MpFq+fiFWUoN6M9A25m+R13SyaFyM10spXyqlfCB8/AHgK1LKO4CvhI+XxGrEmd2YqZCe0/nrOwPNNch+eE35CPfELU7fzM/zG57blh9eneIzT13n9791kb/58e/ywmiBXEW5fEoktqkGsfXC8WSj5pIIfyxDkLBNEhGLXMUlZhtIlItcwjaIGGJWwgzo3viALmat9AhroMm5zNXF5YkiT12dYWc6umD/WayftXse4N2vPUg2bs+K8Tk2nCUREYzmq0wWa1Rdj+lilWvTFabLDrlKDcfzOT9W5MJogTMjeWbKHn2pKC/b28NgOkoiamIbAgOIWSpIPRVRtb729MUZ7omRDItjG0KSjBgrStxUD7mQwEy5xlTRCetwqtT616fLjBccqmF9v109cYbSUSKWQanmM56vcuriJAPJSCPzqW2oxW47m6QvlUvc01emOXMztyljFzYBXTNGAnzgz5/lVr5GJcykt5I+aXUygwipu3KNFT2qjsvliSLv/dNnePt//A5fPjvK5569yeefvcVU0SEdtUhHbfqTEWq+5OBAkqF0lKlijX978hx/9oPrYQZsSSAl58eKfOfCBPmqx1A62tB/T6L1n2FnNjqvbTHLZFdPnFTUJm6bmGGyqblziEREcOrSFJNFB6emCk6fujTFiV2pLRHnvgXi9btKj62oz0MnilWevDJD1fXpS9hMFWurFqO2uzdBX9KmWPMoOj5R2+ToUIq7d6mF5eefvcEv/KdTfOnMKBVXKmPBan3ADjBRpRxE+G82btGbsIlYFqP5Cp9+6gaFisqKP5av8oPL01yeKC7YV48OJXnq6gy5iksqYpKruDx1dYajQ8klt69uVW01t+gGOhHED4QQvwX8P6h75HtQGZRWm7cCrwt//wTwNeCfLuUEqxFnttCuV6saZFJKCo43Ly6guS3ffXGCZ2/MNOKCSoGaUMVtgyCQyloABOsoLUMoF5ggTFhhm9CXjPCSPVnGCirofW9fnJGZKo7nY5sm0YjF3buzRCyz8Vm7NT6gi1kvPcIqaHIuczU6kne4b29PIztWu/5z8vQo08Uq37s02YizuWMw2VE/nJu8BdRi8TNPjzCQijBVquG4AW6gBhwQSAk3ZsoEPpwfLZCKWkRMwY3pEjVfkoiYRC2DmucToLIgCiQ9CeXWHbNV4PkdOwyevjaD46pY2pgtGvXTlqr2ZguNF4CHDMtHqHpI4wWHuG0Ss00sQzIRurC5XsBgKsJAKkK+4nKlXGMgqVx94hFLZU1cpDVuILkyWeLieFHrej5dM0Z+/tkbPHsjP8/DZLncHruWxnjJ5dxokWrNY7zgMJiOUq66+MDlKY+euM0D+3u5matydaqEaRiNuNwzI2VKjiqqrurswUSxRiVisKfP4o6hVEP/Izmn5fWvTVV47PHzjXnCWMHhwYO9XJwo4/kSxw9Ixy1MU8yb0P3VM7cwJQhDEEiBKSQygO9dmuHfvu2ero9z3wLx+l2jx3bU56EXxkqNuWbV9elLRebNNTtlrsvjkR1JZso1rAAePraDH12f4Wvnx/nK86P8wbcu4gWSoXSUJZbzWzVitvrcUUswlIlTrHlMl1x64jbjRYdAKs+1mGWQryovlpG8s6Bl9Pxoifv29nCr4KhQrLjN0R0pzo+WFg0paUU3hzZ1svh7D/CrKPO2AL4E/MMVXlcCXxJCSOA/SSk/DgxJKUcApJQjQogdrd4ohHg38G6Affv2zXt+pX+MhUy5J0+PtqxBZgrBmZs5rk1XOHVxEgNJwfEp1zzitsXITIWaKxGGStwAaiJXqgWN3fz11pcv1aBdj5d4+K5BkrEI//rn7pn1uvd96hmGs7FwgqioJ8yA7o8P6ELWQo+whpqcS7NG6/2rmVb954mLE5y5mSdimSRsVe/vOxenOH1TJXFrjhla6Dx1Tp4exfUD9vQm6EtGuTJZwnN8DEO5bNZ8ZVGT4TdTrHqYhkruEkgoOT6WIWiOjTcMZYG74fmk42qxdW6kRMUNGoWsDSGI2QY70lGmwkQXyyGQytpohoXmZej+Vqh6FBxlkYnbFgh41ZF+Km5Avqo2tWQgsUyD1925g4lilRfGiotfEOhNRvnEqastA+m3OV0zRv7Hr11c9S3Geryrj0oYVE+IZJmCapihqHl7wUD136hlkK8oy51lhP0Ypb9yzeP5W4XG5uqe3kQjLrfqqtc5XhCWnVCPq17A/ft7GEip+0k6ZjUWp5YpCAJJEF674kkujRfZP5CclaL9oUP9jc9V3wSeO5+4Nl0mFTOxrduuo67nc2263NWTwWa6/HN0jR7bUZ+HThQd+hI2VdfH8QLu3pXpaH71+WdvzCs50srlcTgbY7xY49NPXedWroqUyjBQTyx2c6Y6LxxgLVEeaKrG52A6wlAmzqHBBK6vEpY9cXGKouMRSNnY+InaymKv6m0mFuy39VwczaUYmuezzWz1cKZO6vyVWEVzdsirpZQ3Q7E8LoR4vtM3hqL7OMADDzyw6qayxXa95tYgy5Vrqh6J4+G4PuOFKqMzFYQhsE0TKyWYDgu/GuEKr7nRK4m3WAmWUAvOqGXQm4wwlE3MsnbWWcz/fwvEB3QVa6RH2CBNdtp/rk5XMAyDqG1Q81R6dxm6JH3u2ZvMlF1cL+Devb0LnqfOjZkK/ckIjheQjFpEbZMgLDqNCGttBgHhw4aVPPAlEVNZPIpzFm5Ry2jU80vYBtemypRrPrZlYIQuZB4SK5Bcm66sWPtCCLKJCFIGVNxAFbEGDBlm8a2qmK4rkyV2ZOK8bJ+aGH/xuRFqYWDThbESnZTAEkA6ajKa7yzZ03aim8bIq9OrvyknAQQIqUoHKUOycoOuekojtjk7I66K3VExqzHbYKxQVTFFAmzLwAsk02UX07i9UKxTj6UNAkk0YiIleL4PiMbCD1T/r9ckrLXIaHN+rNjIZHvnUIpzt4r0paKLxu/YpoEvJc2jpS/Vcc3G0016bEd9HvrBz55hqlijLxXh7l0ZBtMqpGGh+dXnn73BR75wjmTUYkfo7fGRL5zjDccHeeLSFJ4vCWTAeN4hkAFHdqQZmfFv55doamEtkGue2KWZu3dlGqXPorbJKw/1k6u47Eir7JkPHuzly2fHwlAlQSZmhqWQDKZKLg8dXnje2el8Y7US7mxm2i7+hBC/I6X8ZSHEX9Hiby+lfMtyLyqlvBn+OyaE+AzwcmBUCDEc7qAMA0uvQLtKtNr1qu8CFB0XP5CMFx12ZmKkYhZeQMN1peh4SCEag1vJ9WeJRyxQIHe9iFuCRNRuZBMdSEXbDnSLBbV2e9Brt7CWegzfvyGa7LT/NHYkfdkoTO4Fymrdn4zg+wFPXZkhG7fZ159ctB/u7onjej7nRpXVK2IaOAikDMKS0WoiG4TrO0OEdcVC60T99zqGgJ64jRdIlSIeNUk1wnuB69926l5Ozb9W+IHEDySD6RhT5RpFx8MUyl0mCCRVT7U1V/HIxFWd0fv39xBtsljkqy4deH0CqqD9UCa2+Au3Cd04Rq5VXLkvVWIjQ4hZi7WULSi6EndOvFDcgutTZaqujx9IyjVfecEI8OXtOn6OGzCYjpIPs2U7XtAYTwOpCrvX32cIOS+x02AqwmihNq+9EUO18cJ4KUyC1HmK9pfv7+UbFyYQqNIpri9xvIDXHhlYi69W0yHdqMeFODac5UNvOd5YhKRjViP+cqH51SdOXSUZtZpCIJQWP/fMLWzTQBqANFRMa02SK7sUwpp6re4O6zVdjVqCe/dmefLKDBFTUAg/61zPu0ODKXLlGhPF2m0PgqqHF/hMFKoLJo7rdL6xHcKZFrL8/W3gl4GPruYFhRBJwJBSFsLf3wj8OvBZ4F3AR8J//3I1r7sSmncB7tqZYXdPgmtTZYYyUb794iRD6Sg1z8cLAkbz1Ua2MNv0saSBFWYBrO/KbxQGavDf05cgYhpMFB2Kjs+JXZl52UrrLGYJ3QLxAd3CmugRNlaTnfafvX0JxvNVHF9l5gwCiW1AxDYQQrAjE8MLYCTvYIdZKRfqh2oQKHPnUIqRXDW0WAhesivNSL7GeMHBa4pn8gOJ0SgsrSa6lrg9CbWEsi6YQjCUiWKbJhHLxQoTqgRydVNj120M5ZpP0fHwfVXvyDbV56g1LTZnKi4DNWVhOX0jz0Aq2kjkkI5amIZBEAQYRvvaSgIoOR7v+YnDq/QJtgRdN0Y+uL+XLzw3uprNBW4nDItYJmXXp+r6GIbBw3fu4NytPFemK6oupoD+pIUQBuPFGj0JCz9QVjyJspgHUp3LMgXZRJT3vfEoH/vqi0yWavQnI6SiKoNn/bq+VFbHfX2JeYs3p+bxlefHGskq6hqMRyyilkExLIC9lBTt73nkDiZKNa5Mlim7PjHL5Phwhvc8cseqf6+aJdF1elyMpcyv6gaK527myEQtLEOQjKopfjpq8uK4y7GdaeKR29P+86MFJkrObeMESxuj4pagsgq7mYZQi7GBVIz79/dw+kYehCQbt+d53u1MR8mXXTJxi1zZxTCg6vrsSMewLZO+lNXWUtfp97kdwpkWWvy9CCCl/PoqX3MI+IxQMWQW8N+llCeFEN8H/kwI8UvAVeBtq3zdZdNyFyAcaH7mpbvJVVy+9cI4V6bKwG0B5SteWCfIJld2b2+rNGllrthaiS8WFrNdai2miAHD2TiGIRAC0jGbXdkYk2UVt7gzG+fuXRk+PCfOb6l0eXxAt7BWeoQN1mQn/eddD+3jI184RyamYtYmig4IwVBaZe1zvIBdPTH29SVmFW9e6Jr1QcC2TB46PEAiIvjK8xM4XqURo2dbAs9V2TDdQJKMmGH5BIO4KXBc5X6ailrszsaYLNZw/UAt+AKJF6jkMOWav+xaanWioZUhACK2YE9PgritJtumaRKzfVwvoOyoJDQGhHGGMFmqkYlbxGyT971JTXBPnh4lm7CJWaqmWSpqMlGsNdrZfLuK2gYf+Mk7dbzfbLpujPyVR+7gS2dGV9wX56Ji8CRVzyNqGSSiJlIKohGL33nH/Y1d+/oYeuriJIloFccLSFkGlZrXWKAdGkhimWph9opDfbz5nt0cGkw1JmzXZypELIHjqXq0cdMgHbPoS8XmLd4SMZvX3zXIty9M4ng+UcukJ26Tq3oNa2In1pRmjg1n+dBb797S8UBdStfpsRM6GR+bDRTZmKrfOpKrMpyNkYxaFMIY9bmWvYipSn7FbZNCOG50Sswy6EtGlMFjifeTejtitkrkVKh6JCMWgZTYpsmhwdSCC7ey65OvehzZkeL4cJbxQpWIpcbm713Kk6+6REyDT566Mm9+28n3uR3CmRZa/A0KIf5RuyellL+1nAtKKS8C82ZnUspJ4OHlnHOtWWgX4Jdec4CPf+MSU6UahEGoXpOfdMnxiFompilIRUyyyQiTxRr5qteYnNVr7cUsiNo2yahKaOF4AV64g2+bAn8BhUUM5U5Wt+7tyMRIRm3ecHyokfa2fnM4MpRumLvf+dD+BT/7dvB97hLWRI/heze9Jt98z26uT5f5xKmrjfpk2ahJfyraCIbf35dY0s25eRCo9/PjwxmQknN+gVLNU4lUIiZJQ1n9AuBwXxpDCDwpscLkFBMll1zVxbIM7t2TJR4x+dYLk0wWq7ieoYLTlzjjFkAyYuIHKmGMF5oP92Sj/PidOxrxTYGUfP/yVBh/rBZ7QehpYAG9yQjDWfW9vO7OHbOs9qBiRP71588yUbq98LMNQSKiMofGbIOjO9N64Tefrhsjjw1neeXBPr5zcQrByhONNWf6DFAWcSGgUPXZ3x9vZCacO4YWqx4J22jUxTuyI814sYrjykYs7L7+RGN8atbq3/uj73N1shxmAjRwvICq65ONz5/OqEmcxU/fG+WpqzNELQMpJYnQ+pEJN3WX6q2iNzw3JV2nx9Wi2UDx0r1ZvnVhEgKYLDp4gaTkeLxsbw9Xpiq4+SpeoJIsSamMGVHT4Op0Semv6byZqMoy2lym1kDNV/f0xuhLxbBNQanmU6opi79yxRQqQ/50BS+QjXHFQIVTSKks9jUvoDcZ4e5daabLasG6kHWzne7e96lnkHg8fTVH1DJIRy2qrs83L0xydiS3ZK1uh3CmhRZ/JpBiZWWAtgQL7QLUdyO++vwoiaiFH0hsQzYma66E4VQEU8B02WOqWCMbs/CCoBH7V48n2tUT59ETw7z3DUc5O5Ljg589w5WJIqWaCmY3fX/WrnzzVNI0DYZSEZJRm/v399CXjDKSq87aCV2Oe+Z28H3uErpWj6uRNevsSI7nb5V44/GdpGMWP7o+w1NXZrg5U2VXT4z9fQlM01h2Larmfl50VJKWPiuCbRns6U0gpQzj4wQPHuyfdS9ovjc0//7aowM8eWWayVKN3b1xrkyUVbKoBRaBzdY2iUp+ETdMkhGTRNTmvr1ZbMucdy8KJDywv5dnrufJV9zGpNwwBIOpKFJKZipey+/n0GCKozszDJRq3Jip4PkBgYT+VITBdGzZRXC3AV2pyX/x08f5u//1e8xUPKre7XFoMRqZqSVETDCEQc0PGtk7QU3oTKksxTHbamySzh1DTQMuT1RJREzSURXLF0iVlbPs+qTjNj9//+6W94njw1kStjkra+GB/kTLPlqfxNUnxWdHCsxUPH7sSH/bUAdN19KVelwN6psrE8UqkyVXuUZXXWYqAXv7kw13/V//qzN4gUqW4gUqs+bffPkerk5WyDseQSCJ2wa5sBRZbzLKuVsqo3b9SzUNgWVA2Q04GLfIlU2yiQhRy+BWrsqtXBXTMBhIRemNW1yeqlKu+UQtgecHKpzCgKhp4Et4/Z2D2KYa0zpxu27F7p44Xzs31iiLASr8oTexvLIY2yGcaaHF34iU8tfXrSWbmMV2AY4NZ7lzZ4b8nAXii2NFAikb8QUD6Rj5qsdIrsJ9e7M8f6uknrdNUlGTihs0Jmetgn0/+d0rlKoehqF2++txRG5AGDQf8JLdCQZSrTNCLWe3cjv4PncJXanH1bIcz92EuHdvryqumnfYF1r8VuJ61dzPUzGLyaJAohI5gHIrjVomd+/KkAuz9869F/z+ty7P0spgOsYb797JSK7KR992L//gj3/Ady5N4ZRvB9fPnXcPplXdwUBCb9zm8I4UjhdQrHq8dG+Wdzy0v+W9KBOzODacYXdvgq+dH6dSU24+NV8ln7GE4MeO9Lf8fk6eHmV/f5J79vQwXqjy1NUZgMY5u6zA83rSlZo8NpzlX/yN43zsqy+q7K1SUnQ83HB3v55u3ZeqdINtGSQiFhHLIGkbXJ5S934/UMlX6uMQqIyXlinY35fAl7KxSTp3DK26PhLZ0HOl5lOu+QxnYzx6YphC1ePLZ8c5NJhqk7ShzLHhzCwNtOqjzZO4ouPxujt3aBfNrUtX6nE1qJdxODdaJBpuWOarHkgade8ee/w8rzjY36hxl4pZ7ExHKdckH/65e2Zt0l6dKrMzHeXgYEqVQfIDhFD1ZJMRSyUwk7M3YkbzFUo1n4F0BIkKNbBNg19/63HOj5b42jmVD8cPJCO5KgKwBZy+kefQYGpFVrVHTwzxmadv0Bu3kFKN244X8NK92WXPVbe6dX+hxd+22z1pR30A+eNTV/jy2UkEgvv2zu4U9ZgkUMG1Bcen7PrszERm7UZkYha3coKioxZ6F8ZKDf/kBw9kFgxO3dMT59xYHsMw8DzlKyoMQU/cJJAwmI4yUayxI7O0GIaF2A6+z11CV+pxtSzHrTYh9vUnsS2zoxi/xWju50cGk4zlKkyVXWK2ikcqOj4HB5INN7RWO4KLaeU9j9xB5eQ5vn9piqrrq/T4CCKWoFoLEIbAD2MEXV8yEMYzAo1kFe12JOsxVQB9iQjXnDKBFOzpifPgQZUu+x1tXLybv9vBdIyX7evhwliR0YLDQ8twiVsuXVhXqSs1CTTi6D556grfvDBJKmYxUagSzhcB5aIVsQwG0zFedbifH17LYRkqq221psa3etiCFSZsMAyjUYPLEoJcxeXBAz2cPD1KoepyY6ZCNm5hmQavPtzPdMWjWPUo1jyGM1EsU5VFWeg+sdRd+a0+idM06Fo9LkQn98VHTwzx3j+9BdBwhQY4OpRqaGixGnetwiDUxqJNoeKqMAdDYJqCRMRmMBPj0RNDfPSLOaquT6HqIRBELZNXHelvGCHOj5ZmLc4SEZO+pM1UySUZs6j5wYrDiI4NZ3nNkX6eu5mn6PikYhZ378oQmeMlo7nNQou/TeHLvJmouAGvONjf2G1stmDU42GaC2v++B0DvDBWmlWjyPECdvfEmC672KbJyw/2NXYuW03OmgX5+Wdv8P4/fxYvLOoMqsCtsgzaJCLmqk/YtoPvc5fQlXpcLcvxWm9CNPfz/lSUe/b08Oz1GYSh3GMeOtQ3y02slbY68RB4/6N38sHPnuHmdIUASSz0CKhnTdvXl+DMzTz7+2JMlb2GW9vxXemGu2i7yexvnjzH1ckyqajJjlSU8WKNyXKNmucvOLjO/W4H0zEilslDK3DDWSpdGlvclZqsc2w4y4d/7h4+/+wNPvbVF1Wh9JpPxfXxfEk2YZGIWtyzO0t/KoptCgpVjwcP9HJmpIBfqOJ6ATFLKDevdBSkJF/1G66VrzrSz5fPjofF0jMNTbxsbxTbMrlrWPW5x8+MYhnMykS40H1CL+g0LehqPbai0/viseEse3rj5CvurMVPfyra0NBSxtDmDZa9vXHOOh47U1EGkhEKjk/J8XjXQ6pgfRBORr1AEjXFLG+WuobnLs56k1EePNDXWJythpbfGXrF1D3l9Fx1Ydou/qSUU+vZkPVkOTvMnVgw3nzP7llJEc6O5Hjvnzwzq0aR4wXcOZRq1GFZij/x+dESD+zv5fTNAiVHuX/ahkHR8XnNHQPYZmcTtqV8/u3g+9wNdKseV2vRpnYYz/N00Wlk7RtIRXn7m46uyGLU/N6EbVDzfEZyHgcHU/yfrz+85CQQi2mllTt3fZCqD+iPPX6eXMXl6M7ZcYU70u13MI8NZ9mVjTFVqlHzA/pSUV5+qK8RS7HQ59gMGzzdGFvcrZoE5rl43TmUmhUzd3miyEjeIRu3uFVwKLs+d+/KMJp32JGJk4nbPHVlhuszFfb2xjk4kGAk5zBddnn42A7eGW6UPPb4+ZZ/15rnz3Kfri8sX7Ln9t+6XfHlLrMOa9aJbtXjQn16KffFu3dl5421zeE/S73PNzZY3nCUzz97Y5Zh4z0/cZg337Obxx4/3wgZOHVxEsdVJVgujJUYSMVmaXg1FmcLfVd6rro0FrL8bUmWu8O8HAvGseEs73n48KwaRQf6ExiG0Rgcl8KNmQr37O1ld2+CZ67nuDxRwg0CvCBo1O96+5sWX/gt9fPrXVbN/8veu4e5dZX3/p93b13nbs+Mx+O7ncTBjskFEoKBhrQJYAgHKAcKfQoNB9rQcyi09AQKp78WaEtPSilpSw9tU0qTQimFFkogEEgCIVwMIff4EjuO7/Z4PFdpNKPb3nv9/thbGo0saTQaaaQ9sz7Po5G0ZmvvtaX1Xdf3fVetVNvgVNOpy80w5gJWO0pxdCSRX1lY6IpRsRaKB2G1UI1W5mukah2MpW3Fddv7MWTW+qnQrKfW/CwF2rd46Sgu90+cnCQ2425RMjadZWQqxeRMlvZwgGu3rr8gMnTOf+7Vzx9k+0A7h4enOTOZ5Pq13RfottzvOhSz5pS53MAyaJo4nq9gcZn36eqwRlOW+cr0QurFaixPaq3nixc2cuTyNzKVYjptcXoiSTjgRoou3kJlse1MNfrXfdXqWXGDv1pnmGtdwSjeo2gxs5W5PPR3RrhiA0ynskylXb8LmO0cV8KPM+wa/1JNhV9NpV4YlCRHLJnlrr0n2TnYVVN5bqYWKjVStTaSi1llbXajqX2Ll47icr+6I8TIVIqfHZtgw6ooqawbeXMmYzOWSNPfGcl/7v2v2H5BObmpwrXmi5RdXA9UKvO67dIsN+Yr07WaalayPKmnVtb3RDk2kuDweS/QTE+Ec3HXAiBbwt1gMdfX+q8vK27wV+sM82JMo+oluMI8HDmfIBIKEAkFeOHmnrxz7XxC0DPsmqVmvvJfTaVertwOx1Ncu3X1BenVlOdW1kItdUYrmG/Wip/z7jeKy/3F/e08dz5B1nYIBwySWRvTEFa3BzkyMk1/Z6RmXSzkd52vzLeyXjWaWpivTNdsqrlE7Nk1wPu/dA6EfGyL/s4wlw500NcZqWtetP7rizH/IcuL9T1RplLWnLRqZphzsyrd0SBDsRTd0eCSm5sU5mF4Kk1XZHbgB9UJodb712gaxZnJJJ2RufNQxWW5XLkd6IrUXJ6XmxZaoY6qFT/n3W8Ul/v+zgjRoEFHOEAibeej8a1qC5HwjqtVF/X8XZebXjWa+cp0q9eLOwa72dgbpSsSYCptEQmavHBzD5t62+s+KNP6ry8rbuWvFVbwFkNhHmoxk9Iz7JpWoxrTlnLl9ubdm7j/4MgF6dWU5+WohVaoo2rFz3n3E6XKfUckyPY1HWzt72A0keLRE5P5QGXFvjsLpRGWL8tFr5qVTTVlutXrxZ2DlQPN1Aut//qy4lb+Wn0mpVr27BrIN8qOUvnX823GvFzuX7N8qKYslyu3N12+vubyrLWgWYmUKvfv/aWLME2DWDLL6nbXbAugyzPHbgVdaL1qlhvLoUzX2hddKMvhu2olRFURJKRVufrqq9UjjzzS7Gw0DR32uvGIyKNKqaubnQ+/UKsmdVnWVIPW48JYiB61BjULRetxYSzXPquuO1qDhejR14M/ERkBTpT4Vx8wusTZWWpWwj1C8+9zs1Kqv4nX9xUVNLmUNLvMFNNK+fF7XrQeF0CRHlvpt6+EX/IJ/slro/Kp9bgAGtQ+tkoZ1PmYSzPyUbUefT34K4eIPLLcZ6NWwj3CyrlPTf1otTLTSvnReVm5+OX79ks+wT959Us+NQunVX5bnY/WzEc5VpzPn0aj0Wg0Go1Go9GsRPTgT6PRaDQajUaj0WhWAMt18HdHszOwBKyEe4SVc5+a+tFqZaaV8qPzsnLxy/ftl3yCf/Lql3xqFk6r/LY6H3NplXyUZFn6/Gk0Go1Go9FoNBqNZi7LdeVPo9FoNBqNRqPRaDQFLKvBn4jsEZFDInJERD7U7PwsBhH5nIicF5F9BWmrReQ+EXnWe15V8L8Pe/d9SERe1ZxcLwwR2Sgi3xeRgyKyX0R+x0tfVvepaRwVytBHReSMiDzhPV6zRPk5LiJPe9d8xEsrW54bmI9LC+79CRGJi8jvLuX3shLqMD/Qau2i3+p9ETFF5HER+WaL57NHRP5DRJ7xvtvdrZpXTW00q31plbq8TD7KtmkNzIev6rCSKKWWxQMwgeeAbUAIeBLY2ex8LeJ+rgNeAOwrSPsE8CHv9YeAP/de7/TuNwxs9b4Hs9n3UMU9DgIv8F53Aoe9e1lW96kfTSlDHwVubUJ+jgN9RWkly/MS5skEzgGbl/J7WQl1WKs/WrFd9Fu9D/we8EXgm977Vs3nXcBveK9DQE+r5lU/av6Nm9K+tEpdXiYfJdu0BufDV3VYqcdyWvl7EXBEKXVUKZUBvgS8vsl5qhml1EPAeFHy63EreLznNxSkf0kplVZKHQOO4H4fLY1Sakgp9Zj3ego4CKxnmd2npnFUKEOtRLnyvFTcADynlKr35sIVWQl1mA9ouXbRT/W+iGwAbgI+W5Dcivnswu0Y/xOAUiqjlJpsxbxq6k7D25dWqcvL5KMcjcyHb+qwciynwd964FTB+9O0XidwsQwopYbALXzAGi/d9/cuIluAq4CfsYzvU9M4isoQwG+LyFOeqUjDTS09FPBdEXlURG7x0sqV56XircC/FbxvxveSQ2t7aWnp79UH9f5fAR8EnIK0VsznNmAE+GfPRPWzItLeonnV1E4rtS+tVLZKtWlLkg8f1GElWU6DPymRtlJCmfr63kWkA/hP4HeVUvFKh5ZI8819ahpHiTL0d8BFwJXAEPCXS5SVlyqlXgC8GniPiFy3RNctiYiEgNcBX/GSmvW9zIfWdmNo2e+11et9EXktcF4p9Wi1HymRtlTfdQDXHO7vlFJXAdO4ZmflaNlyoalIS7UvZVjqslWuTWt4Plq9DqvEchr8nQY2FrzfAJxtUl4axbCIDAJ4z+e9dN/eu4gEccXzr0qpr3rJy+4+NY2jVBlSSg0rpWyllAP8I0tkYqGUOus9nwe+5l23XHleCl4NPKaUGvby1ZTvpQCt7aWlJb9Xn9T7LwVeJyLHcc1lf0lEvtCC+cxd+7RSKmf18B+4g8FWzKumRlqsfWmJslWhTWtoPnxSh5VlOQ3+fg5cIiJbvdnutwJ3NzlP9eZu4Gbv9c3A1wvS3yoiYRHZClwCPNyE/C0IERFcH4WDSqlPFfxrWd2npnGUK0O5Ctjjl4F9xZ9tQF7aRaQz9xp4pXfdcuV5KfhVCkw+m/G9FKG1vbS0XLvol3pfKfVhpdQGpdQW3O/te0qpt7VaPr28ngNOicilXtINwIFWzKumNlqwfWmJslWhTWtYPvxSh1WkmdFm6v0AXoMbdec54A+anZ9F3su/4S5hZ3FnDd4F9AIPAM96z6sLjv8D774PAa9udv6rvMeX4S59PwU84T1es9zuUz+aUoY+Dzztpd8NDC5BXrbhRvR6Etifq4MqlecG56cNGAO6C9KW7HtZCXWYHx6t1i76sd4Hrmc22mdL5hPX7O0R73v9L2BVq+ZVP2r6fZvWvrRKXV4mH2XbtAbmw3d1WPFDvExpNBqNRqPRaDQajWYZs5zMPjUajUaj0Wg0Go1GUwY9+NNoNBqNRqPRaDSaFYAe/Gk0Go1Go9FoNBrNCkAP/jQajUaj0Wg0Go1mBaAHfxqNRqPRaDQajUazAtCDvzohIh8VkVvreL43iMhTIvKMiDwtIm+o17mLrnNcRPoW8fkeEflf3uuIl9/nF/z/gyLy9/XIq0azHBGRWzzdPCMiD4vIy5qdJ41mpSEihoj8jYjs89rcn3t7cjXiWmERuV9EnhCRt1Q47k4ReZP3+kERuboR+dFoSiEi3xKRnho+d72IvKSGz+X7oyJie/rYLyJPisjviUhdxywiskFEvi4iz4rIcyLy195+qMsePfhrQUTkCuCTwOuVUs8DXgd8UkQub27OStID/C8ApVQK+F3gM+KyHng38OFaTy4igTrkUaNpKiJilkl/La5GXuZp/beAL4rI2qXMn0bjR8rpqkbeAqwDLldKPR93w+jJOp6/kKuAoFLqSqXUvzfoGhrNvFTSkFLqNUqpyRpOez2w4MFfEUlPH5cBr8DdR+8jizxnHm+j9q8C/6WUugTYDnQAH6/XNVoZPfhbBCLyByJySETuBy710n7TmzF8UkT+U0TaRKRTRI6JSNA7psub4QiKyPtE5IC3yvcl79S3An+mlDoG4D3/X+AD3ucfFJG/EpGfeLOUL/LS20Xkc971HxeR13vp7xCRr4rIvd4Mxyfmua8Xeed+3HvO3dtl3srEE15+LwFuAy7y0v5CKXUv7iacvw7cDnwUCHjfxc+9x0vnuc47ROQrIvIN4Lv1+K00mmoRkT8Rkd8peP9xT6cf8MrvUyLysYL//5eIPOrNUN5SkJ4QkT8WkZ8Bu0XktgKtf9I77PeBDyilRgGUUo8BdwHv8c5xXET+3NPdwyJysZfeX0ZTH/XqgAdF5KiIvK/BX5dGUzXFWhGR/1nYHnl1/6e9128raG/+IddJLaGrP/I0sE9E7vA6dYjINZ7W9orIX4jIPi/d9N7ntPxu7/KDwJBSygFQSp1WSk0UXPPjXrv+UxEZ8NI3i8gD3nkeEJFN3vmPikuPiDgicp13/A+99voLwJXevV1U7h40msUgIlvEtSi5yyuj/yFun/S4V+Z+BLxZRH5V3NXufSLy5wWfL1yJK6fHPSLymKeNB0RkC+4k5vu9Y3+hQnvVKyLfFbcP+A9AyXKvlDoP3AL8tqerLZ6WHvMeL/HO93nx+r3e+38VkddJ6b7rLwEppdQ/e9ewgfcD7/S+o3eIuyp4r7j9/I8UnLdS3XRBPdGSNHuXeb8+gBcCTwNtQBdwBHfQ1ltwzJ8C7/Ve/zPwBu/1LcBfeq/PAmHvdY/3/BhwRdH1rgAe814/CPyj9/o6YJ/3+s+At+XOBRwG2oF3AEeBbiACnAA2escdB/qKrtUFBLzXNwL/6b3+NPBr3usQEAW25K5f8Pl1wGng+977L+KubABsAg7Oc513eJ9f3ezfWT9W3sMr0zmtGcBzuKsCd+A2TgbwTeA675jV3nMU2JerAwAF/EruGOAQIN77Hu95HOguuv7rga96r48Df+C9/nXgm97rcpr6KPATIAz0AWO4KwxN/171Qz9KaGUAOFLw/28DLwN2AN/IlV3gM8Cve6/zuio8p/f688B/817vA17ivb6N2XbyFuD/816HgUeArcAGT29PAH8JXFVwXlVw3k8UfP4bwM3e63firiIA3AtcBrwW+DnwB961jnn/vz6n5Xnu4U7gTd7rB4Grm/0b6od/HrhtmQJe6r3/HG4/9TjwQS9tHXAS6AcCwPeY7ase99qRknr0PnMK2Oql5/T9UeDWgnyUa6/+Bvgj7/VNXl77vPeJEvczgVtntAERL+0S4BHv9csLNNgNHPPuqVTf9X3A7SWu8ThwOW4/dAjoZba+urrcd+G9LllPtOJDm9TVzi8AX1NKzQCIyN1e+i4R+VPcwVcH8B0v/bPAB4H/Av4H8Jte+lPAv4rIf3n/A7eDqYquV5z2bwBKqYfEXUnsAV4JvE5mfQ8juEIDeEApFfPyegDYjCvaUnQDd3mzIwoIeul7gT8QkQ24ndNnS01QKqXOisj3cDvI4A7sdhYc2yUinRWuA3CfUmq8TP40moahlDouImMichVuQ/M4cA2uvh73DuvAbXQeAt4nIr/spW/00scAG/hPLz0OpIDPisg9zGqjFCW17j3f7r0upymAe5RSaSAtIue9ezhd5e1rNI2kWCtbgaMi8mLgWVwLmh/jrny/EPi5V8ajwHnvc4W6AvhFEfkgbodwNbBfRH4IdCqlfuId80XcgRi4Or5cPF863HboEqXUd8W1Pvkl7/GAiLxZKfUAkGFWs4/imqEB7Abe6L3+PG6HD+CHuBOzW3Gtdn4T+AHuQLAUF9wDbgdTo1ksp5RSP/ZefwF30AOQMze+BnhQKTUC7moZbtn9r4Jz3EBpPb4YeEjNWqmV67OVa6+uw9OPUuoeEZmY515yJwgCfysiV+LWB9u9c/xARP6fiKzxzvufSilLREr1XUv1s3PXyKXfp5Qa876Xr+JOTFllvgsoX0+0HHrwtzhKFZw7cWdNnhSRd+DO8KGU+rG3VP1ywFRK7fOOvwlXAK8D/lBELsOt+K/GHRjmeAFwoMK1FW6h/e9KqUOF/xCRa4F0QZJN5d/+T3BX7X7ZW8J/0LuHL4pranMT8B0R+Q3cFcVSON4D3JWS3UqpZFG+Pl3qOh7TFfKn0TSaz+LO/K3FnS29Afi/Sql/KDxIRK7Hbdh2K6VmRORB3EkXcE1KbACvAXqRd563Ar+N28E8gNuQfK/gtJW0nntdTlOwMK1rNEtCBa38O/ArwDO4E6rK65jdpZQq5S+e15WIRHBn3q9WSp0SkY9656xkNim4FjnfKf6HN2nybeDbIjIMvAF4AMgqbzqfyprKHfNDXNO3dcAf4bpsXI87WTQ3M+XvQaOpB6X6ijDbx6rGxLikHkXkdSXOX4pK7VU1n0dEtuFq7zyu798wrkWcgTuxmuPzwK/htrPvhLJ91/3Afy+6RhfupNRzuO1yuX52ubqp2nqi6Wifv9p5CPhlEYl6Mxj/zUvvBIbE9e/7taLP/Avu7P0/gxtdDNf88vu4q4I9uCsKnwQ+7A2I8J7/D64pSo63eP97GRDzVvW+A7zXazjxVi5qoRs4471+Ry7RE99RpdTfAHfjLo1Pefdcie/idnZz57my0nU0mhbga8Ae3FnR73iPd4pIB4CIrPdmF7uBCa8z+zzcmdAL8D7XrZT6Fm5QpCu9f30C+HMR6fWOuxJXC58p+PhbCp73eq/LaUqjaVXKaeWruIOsX2V2NeIB4E2exhCR1SKyucQ5c4OkUU9jbwJQrq/elLeiCG5HMMd3gP8psz7428X1l3+BiKzz0gzc9u3EPPf0k4Jz/xrwI+/1z3ADXjjKDYT2BG5gpx9Wew8aTZ3YJCK7vde/ymwZzfEz4OUi0uf5rv0q7ip1IeX0uNf77NZcund8cb+wXHv1EF4/WUReDawqdQMi0g/8PfC33uCqm1n/3LcDhUFr7sRtY1FK7fc+X6rv+gDQJiK/7h1j4vax78xZ9AGv8O41iltH/bjCd+ErWnZU2uoopR4TkX/HrdRPMFup/yGumE7g+gQWCuBfcf0Ac2ZcJvAFEenGnU24XbmRlZ4Qkd8HvuE1UFlc++wnCs41ISI/wfWbe6eX9ifAXwFPeQPA48yaulTiKRHJrdJ9GbdDepeI/B5zVyTeArxNRLLAOeCPlVLjIvJjcZ3pv62U+kCJ878P+H8i8hRumXsId1a03HU0mqailMqIyPeBSW+V4bsisgPY682tJIC34fr2/JZXtg8BPy1zyk7g694sv+A6lqOUulvcqLg/ERGF22i+TSk1VPDZsDdraeA2zFBeUxpNq1JSK0qpCXFdEXYqpR720g6IyP+HqzsDtw18D0WDMaXUpIj8I25be5y5ZpXvAv5RRKZxrUpiXvpn8fx6vXZyBLdjt8Y7Puwd9zDwt/Pc0/uAz4nIB7zz/A8vX2kROcVsffBDXO0+XXyCee5Bo1ksB4GbxQ2o8izwd8B7c/9USg2JyIeB7+O2Td9SSn294POqnB6VUj8VN8jZV73087imjt8A/kPc4CvvpXx79THg30TkMdwB58mC60ZF5AlcE08Ld0XvU97/PgP8p4i82ct33lJMKTUsIgeZa7Zaqu+qxDVB/4yI/CFu+/ot3IWWHD/yrnsx8EWl1CMA1dRNrU4u+IBmCRDXx+D1Sqm3L/I8D+I60z5Sl4xpNJo5eJX6Y8CblVLPNjEfx3HNwUablQeNxo+ISIdSKuG9/hAwqJT6nSZnS6NZMjyrsW8qpXbV8FkTdzC3VimVrXfeGoWItOFOpLwgF+eixvO8A7ft/e35jvUjeuVviRDXv+3VuHuVaDSaFkVEduI6bX+tmQM/jUazKG7yVjQCuLPy72hudjQaX7Ef+KzPBn434vrof2oxA7+VgF7502g0Go1Go9FoNJoVgA74otFoNBqNRqPRaDQrAD3402g0Go1Go9FoNJoVgB78aTQajUaj0Wg0Gs0KQA/+NBqNRqPRaDQajWYFoAd/Go1Go9FoNBqNRrMC0IM/jUaj0Wg0Go1Go1kB6MGfRqPRaDQajUaj0awA9OBPo9FoNBqNRqPRaFYAevCn0Wg0Go1Go9FoNCsAPfjTaDQajUaj0Wg0mhWAHvxpNBqNRqPRaDQazQpAD/40Go1Go9FoNBqNZgWgB38ajUaj0Wg0Go1GswLQgz+NRqPRaDQajUajWQEEmp2BxdDX16e2bNkyJy2VtYkls2RtRdAUuqNBIkGzORnU+J5HH310VCnV3+x8+IVSmtQsDSuh7tN6XBhLpceVUPY0F6L1uDAapUetPw0sTI++Hvxt2bKFRx55JP/+4FCMOx46Rnc0SGckwFTKIpbMcst1W9kx2N3EnGr8ioicaHYe/ESxJjVLw0qp+7QeF8ZS6HGllD3NhWg9LoxG6FHrT5NjIXpcVmaf9+4bpjsapDsaxBDJv75333Czs6bRaDQNQ9d9mmahy55G0zy0/jS1sKwGf2cmk3RG5i5mdkYCnJlMNilHGo1G03h03adpFrrsaTTNQ+tPUwvLavC3vifKVMqakzaVsljfE21SjjQajabx6LpP0yx02dNomofWn6YWfO3zV8yeXQPc8dAxgDm2z2+5ZkOTc6bRaJYDB4di3LtvmDOTSdb3RNmza6Al/Cp03adpFrmyN55Icy6eYnw6S8AQ3nvDRc3Omkaz7Chug7YPtHP/wRFA1/2a6llWK387Bru55bqtdEeDDMVSdEeD2ulVo9HUhZxjfSyZZbA7QiyZ5Y6HjnFwKNbsrOm6T9M0dgx2c+OOfg6fTzA2nWF1e5BL13Zw/8GRltCGRrNcKNUG3X9whBt39Ou6X7MgltXKH7gNkS70Go2m3hQ61gP553v3DbdEnaPrPk2zODw8zYu39eY1ARBLZltGGxrNcqBcG3R4eJr3v2J7M7Om8RnLauVPo9FoGoV2rNdoSqO1odE0Hq0zTb1Ydit/Go1G0wjW90SJJbNzVjea6Vhfyvfj8PB0y/kjalqTevqvhk3hocMjZGyHrkiQi9e0EzRNHXRCo6kTB4dinByf4fGTE/R1hLl4TTt9HRGmUhZhU7j9vsO67tdUjV7502g0mirYs2uAWDJLLJnFUSr/es+ugSXPS7Hvx7GRBLd9+xDHRxMt54+oaT3q6b96cCjG2ViKRMoiZAjJjMXe58Y5NT7TFG1oNMuNnF7XdoYJGgaxZJZHjk9wfDTBqfEZzsZSLemLrmld9OBPo9FoqqCVgqoUb+x7bipNezjAuXhab/SrmZd6bgx9775hNve2c+221YRDASzHNUUb6Arr1QeNpg7k9Lq1v4MXbO6hKxrEdmAonmagK8zm3na9ybtmQcxr9iki24G/AwaUUrtE5HLgdUqpP2147jQazRy0HptLqwRVOTOZZLA7kn+fSFl0hk3iqWw+TfuCLA1+1GRx+YHay0vuXIYE6e90z+koxVAsVZe8ajQLwY96nI9CvfZ3RujvjOQ1lrEVvR3aD1CzMKpZ+ftH4MNAFkAp9RTw1kZmyo8cHIpx+32HufUrT3L7fYf1krumUdSsRxH5nIicF5F9BWkfFZEzIvKE93hNwf8+LCJHROSQiLyqzvehWQTFG/t2RAJMpW26Iq3hj7jCqEmTzdRjPTeG1ptMa1oM3+lxPippTOtPUwvVDP7alFIPF6VZJY9cobTy/l+aZcdi9HgnsKdE+u1KqSu9x7cARGQnboN5mfeZz4iIWWOeNXWm2P9wbWeY6bTF2q5w0/0RVyC1avJOmqTHevqvtpIvrEaDD/U4H5U0pvWnqYVqBn+jInIRoABE5E3AUENz5TPq6T+h0cxDzXpUSj0EjFd5ndcDX1JKpZVSx4AjwItqyK+mART7H27t7+BDr76ULX0dTfdHXIHUpMlm6rGe/qut5Aur0eBDPc5HJY1p/WlqoZqtHt4D3AE8T0TOAMeAt833IRH5HPBa4LxSapeXthr4d2ALcBz4FaXUhPe/DwPvAmzgfUqp7yz0ZppFPf0nNJp5qEmP8/DbIvLrwCPA//Y0uR74acExp720CxCRW4BbADZt2rTIrGiqpZT/4U1NyssKp96aXBI91tN/tVV8YTUafKrH+aikMa0/zUKZd+VPKXVUKXUj0A88Tyn1MqXU8SrOfScXLqF/CHhAKXUJ8ID3fsmX0Ovtn6dtrjVLxSL0WI6/Ay4CrsSdHf1LL11KXb5Mnu5QSl2tlLq6v79/EVnRaPxHnTWp9ajRLAKtR41mfuYd/InIn4lIj1JqWik1JSKrRGTeqEllltBfD9zlvb4LeENB+pIsoTfCP6/Q5no4nuTBQ+f53jPnGZ1Kab8/TV2pVY/lUEoNK6VspZSD6yif091pYGPBoRuAs7XnXNNodNCp5lBPTfpVj7rsaVqFlahHrT/NQqnG5+/VSqnJ3Btvyfs15Q+vyIBSasg7zxCwxktfD5wqOK7sEvpiaYR/Xs7mOmPZ/OQ5d7z70otXEwyYOvCLpt7UU4+IyGDB218GcpHO7gbeKiJhEdkKXAIUO9E3BN2QLRwddKqp1E2TzdRjrbrTZU/TYvhWj7VoUOtPUwvV+PyZIhJWSqUBRCQKhOucj6qX0BdrP13snzcyleLI+QTDU2nAXcWr1em9vzPCLz1vDd3R4Jz/3btvWNtj18DBoRj37hvmzGSS9T3Rmn+bZUbNehSRfwOuB/pE5DTwEeB6EbkSV2/HgXcDKKX2i8iXgQO4kdLeo5Sy63srF5JryLqjwTkNmXZgr0zhpBaQf9Z1z5JQkyZbSY+L0Z0ue5oWw5d6rFWDWn+aWqhm8PcF4AER+WdcAbyTWdPNhTIsIoNKqSFvRuW8l171ErpS6g5cZ16uvvrqkgPESqzviRJLZumOBhmZSvHYyUkABjrDi+5o6sAv9UMPAspSsx6VUr9aIvmfKhz/ceDjtWSyVnRDVhu67mkqNWmylfS4GN3psqdpMXypx1o1qPWnqYV5B39KqU+IyNPADbgrdH+yiEicdwM3A7d5z18vSP+iiHwKWEeDTFru3TfMgaEYp8aSbB/o4Fw8BUAqaxM0hJ8dGyNkGnxh7wk+/sbLF3yNwoFljkqBX/TKVnn0IKA0ddZjy6EbstpYaN2jqR/LQZOL0Z0ue5pWwq96rFWDWn+aWqjG5w+l1LeVUrcqpf53tSLyltD3ApeKyGkReRfuoO8VIvIs8ArvPUqp/UBuCf1eGmTSEktmed7aLi5d28Hh8wlOjs9gils7GIbQGQ6glOKHR8ZqspdeyGab2k67Mmcmk3RG5s5N6EGASy169As6cm5t6I1+m4vfNbkY3emyp2k1/KjHWjWo9aephbIrfyLyI6XUy0Rkirn+dwIopVRXpROXWUIHdzam1PF1N2nJrax998A5QqbBrvVdGBJkS18Hq9rDHBiKk87adEUNIkF3ZwkRYVVbsKYVplzgl8LVvLdcs6HkeRq1srVcVhP1bNZcFqtHv7Bn1wB3PHQMcAf7UymLWDLLW67Z0OScubSSvorzcuOOfg4PT89b92jqg981WVh+QqYwHE/D6rYF6y7X7n1+7wnuPziGIFy1UZc7zdLidz3O1/bl9Lr/bIx4yqI7GmDnYDd7dg1U3e/UaHKUHfwppV7mPXcuXXbqR6HPGAqUUjx6YpIXbu6hryNCZyRAdzTAoViKVVF3xS9tOaQthys3drP/rBt1aaGdvGo32zwzmSRowk+PxomnsnRFgmzrb+PMpDXvZ6u5Z7/7ybX6IGCp8bseq2UhEyhLTSvpq1Re7j844kut+xU/a7K4/EylLBylyFo2QzGrJt0lsw7Xbu3N19d+bXs0/sTPeoTKbV9Or7btcHo8CQKxmQxtQZM7Hprhluu28v5XbG/2LWh8REWfPxExgKeUUruWKD91o3BlrTMaJJ21CQeEI+en6etwG7udg930d4TZfzZOIm3TEQlw2bouEimL0xNJNqxqq7mTN98KQdgUHjw8gmUrbEcxnshwemKG67fXvgnocvKTK6wIDwzFiCUtuiKB/JYcfrufeuBnPS6EaidQlpp79w1j2w4HhuIkUhYdkQBrO8MX6Ouep85w196TDMdTDHRFuHn3Jm66vL471ywnrfsZv2qyVPnZ3NtOdzRYUyeyWm1o/MNS1GP1xq96zFGu7cvp9cBQHFs5zKRtZjI2ibTFCzet0jrzIc3WV0WfP29jyydFZOF7KjSZQp+xi/vbSVsOKEUsmZljE/323ZvZ1t/Bi7au5qL+NvafjfPg4REcR5G1bQwRsrbN0ZEEv/fl6vZeqcafb3zazYftKIKmYDuurfb4dKYu95zDz35yOzyTho5wkJ2DXewY7FrRvpF+1uNyYP/ZGIeHE6SzNh1hk3TW5vBwgv1nZ8viPU+d4bZvHyKezLKmI0Q8meW2bx/inqfO1DUvy03rfsWvmqx3+alGGxr/sFT1WL3xqx7nI6fXkXiK8ekslu0QCRjMZLTO/Egr6KuarR4Ggf0i8jAwnUtUSr2uYbmqA4U+Y/2dEV6wqYf9Z+MYYtAdDc4xabnluq18Ye8JfnxknFVtQXo7QkSCBo+emGRbXxtHR2cImQKKqlYBq5mVPz4+w2BXmJmsa2oaDhqsagtwfHymLvecw+9+cnqF4wJ8qcflQDxlEU9liE9aZG2HoGnQFQkQT83q7a69J2kPBwrKq5FPr+es3nLUuo/xnSbrXX6q0YbGPyxVPdYgfKfH+cjpNW07ZLI2cdvBdhSmIUSDGa0zn9EK+qpm8PexhueiART7jIUCJtv6O0oO2nYMdtNXsEH73qNjeTPRJ07H6AgFOB1PkczajCTSrG4L8fm9J/izMttBVBOyVxCioQCrO2Z/gmTGwnLqd8/LwU9uoeGPWykgR4PwpR6XA8mMxXA8TcA0CBpC1lYMx9P0dszuHzwcT7GmIzTnc51hk2FvW5l6sRy17mN8p8l6l59qtKHxD0tVjzUI3+lxPnJ6TWdsEhkb8aLUC2id+ZBW0Fc1+/z9QETWAi/CjaD0c6XUuYbnbJHMFziieJCw/2yMHYNuMKiL+9t57OQkYVOYnM4wNZMlZTt0hEwMYGgyydefTHJ+Ks1l67ovGGDkZmnOx5M8eTpGIm0RCZi8cFNP/pirNnaz9+g4IkI4YJC2HBJpm93bVjfsnv3IQmaoWykgR6Pwqx5bgcVODIxNuw72CFiOImQKIcNkrMBUe6ArQjyZzc/kAUylbQa6IqVOWTPLUet+xY+arHf5KdRG1lYo5QZbPDY6zcGhmC6XPmOp6rFG4Ec9lqJUNOf7DpzDEDANwRAh6FmkjS3CXUiz9LSCvuYd/InIbwB/BHwPd6Lh0yLyx0qpzzU6c4ulnPPswaEYn/zOYUYTadKWzbPDU8SSWbKWTdJSjE6lmEplSWUdMrZCcDANSNuKlGWRtRwCASHu+Q4WDzD27BrgI1/fz4GhOOGAQdgUkhmbR09N8g8/eJaZjGJ4Ko2jFKmMTdqyCQdMtva187bdmxtyz35lITPUK8FE1M96bCb1mBhwHEUoaBAwBNNw/XQtR+E4s1HFb969idu+fQhwZ/Km0jbTaYv3/tJFdb+n5aZ1v+JXTdaz/OS0AZC1LUxDMA2wbbXsJuBWAktZj9Ubv+qxkHLRnCMBg3CgchukaX1aQV/VmH1+ALhKKTUGICK9wE8A3wipmC/sPcGx0Wk6IwG6IkHSlsNMxuKRExOs6YoQm8ngKEEQ2oLCVFohAiaKjOXgACaQSNtlBxjHRqfJ2grbsWkPm2zqbSORynLHQ8f5b1esY8dgF21Bk8PDCTaujub3a9EN5FwWMkO9UBNRn7Ls9LgU3LtvGMdxODg0u7XK2q6FRSPc1NvO+ViSrONuCxMOGESDwpru2VXonL1+YRSv9/7SRX7wk9HUzorXZE4b7gqEEDAEQwzaI65fSzU6WwEm+77B5/WY7/VYbiI7FDQJGVKxDdI6an1aQV/VDP5OA1MF76eAU43JztLw+KkYHWEzv7F7JGiCAtNwzS8VQlvYpCMU4NTEDAJkbbAdB1u5U0lpW2F6K7aFA4zcjE0qa7O6LYCjyPvxZWyHjDU7YNza38HqjnDN4bVXCtXOUK+QIBjLTo9LwYGhGCfHZogETTrDAVJZm2fOTTGTtas+R262rjMSZF3BbN3Nu+cGlrvp8vV+6SRp6sOK12ROGyLCqjaTrO22d1es765qAm4lmOz7DR/XY77XY7mJ7I09Uc7GUmXbIK0j/9BsfVXc6sHjDPAzEfmoiHwE+ClwRER+T0R+r7HZawwKhRSlZWyHkOlGAr1kTQcbV7URNF3HdcE1HLdV7vNuwJapZJbRRGrOACM3Y9MZDZKxIWAaBAyYmMkwnXH3EixkGa5MNY09uwby23g4Ss3Z0mMZUbMeReRzInJeRPYVpK0WkftE5FnveVXB/z4sIkdE5JCIvKphd7QExJIWIkIkaM55jiWtqs9x0+Xr+dCrL6UrGuR8IkNXNMiHXn2pXztImvpRkyaXkx5z2uiIBEikHUJBg5de1Mv2tV1VTcAVrnQYIvnXuX1dNZoF4Hs9ru+JMpWa2zZNpSxefFFfxTZI60hTLdWs/D3nPXJ83XvurH92loarNvbws6PjUBBsBRFWtQcxRTgxNoOtFMmMhXIUpQJwKhSxlMX9B86zc10XH9xzKTA7Y3Plhm5+dGQMgJAJibSFUnDpwNyvbRmuTDWNFRIEYzF6vBP4W+BfCtI+BDyglLpNRD7kvf99EdkJvBW4DFgH3C8i25VS1S+V1UgjzFa6IgHOx1NMTKexHEXAECzb4Vwsycv/4vtVb7Jay2zdcjPDWW73Uwdq1eSdtJAeDw7F+PzeEzx+ahJBuGpjN2/bvZkdg9353/zAUIxY0qIrErgg2NlNl69nW39HfuWhMxLIT8DNF0X0zGSSoAk/PTprlr2tv40zk9VPztR6z7osLzt8q8dcedx/NsbpiSSXDnQQDZkcHJpiYibLrsFORqdSbFrdxu5tvReU12IdmeIuXUyl3Wzp8u1f6l1XVRPtc9mFzX377s0cHp7i1HiSlGUTCZis744QDZmci7lBYAwR0lnXvy/nSisFr20HbNshAxgyu46YMz3saQuxpjPMmViKqaRDV1uA3/yFrTxzbppYMrsk4dlXYsO23INgLEaPSqmHRGRLUfLrgeu913cBDwK/76V/SSmVBo6JyBHc6Gl7a71+NTTKbGWgM8zBs3FAEIFk2iKRdegKB+ZssgrUdSVvuZnhNPJ+/Fpf1arJVtLjwaEYn7j3ECfHZugIm8xkbO55+hwPHDrPVRt6yNiKjrDJybEZRIT4TJa2oMkdD83M+e1rnYALm8Leo+N0RgJ5s+yfHZ1YVPTrau55OWlT4+JXPRaWx1xMiCdPTZKyHQY6I+wc7ODQcAIFXLttVcnyWqgjAzg9mcS2FZtXRxtavv1ad/uFRtRV1az8+ZpShfLoSIKxRIaM7a7pZSybsZkMHVaAtpDpruols1hFAZQK34YDBtFQgC197Wxc3ZZ3aN+za2BOI3pJfzuJtM3Wvnau276G67azJCtTumHTVMmAUmoIQCk1JCJrvPT1uOYyOU57aRcgIrcAtwBs2rSp1CFV06iIrQrXt7cjEiAcMNh/NoYoSNsOx8ZmCAfc/cnqvcnqcotA26j7yQ0+xqczZCyHZ4eneOr0JB/cc6kvv6dF0BQ93rtvmPHpDIYBZ2MpJpNZlFIk0vDQsyP0tIVY1RYiEnR95VNZm3NTaXYOdl3w29cyAee6UhTdB3Pb3Hqz3LSpaQhLpsfi8ri1v4MT4zN0A9dfuoa9R8cwDIgnLe47cJ5t/R2s7ZwbtKxQRxMzWQIiiAF4JqC569SzfOu6u/E0oq5a1oO/UgOgT37nMM+dnyISCrA+bHJ6IoUS6AyZjE5n6I4ECJoGve0hEulKvniKZNbm4jXtc/z2dgx2s6474grBduiKBHn+hm6Cpsm9+4Z5/yu2L4kgdMOmWSTFfTEo0xdTSt0B3AFw9dVXL6q/dmYyScCAA0NxEimLjkiAbX1tJNKLM//K2Iprtq7i6OgMiZRF2nIwTcFR7n59lu2QyipSY9OLug7APU+dyUfxmk5brIqYDE1l8tHZnr+ui/Wr2xd9nWbQqIi6n997wp0wiwTojARIWw4nx2b4/N4T/NkbL1/UuZcJDdXjmckksZmMF0Aii227Ea4VkMw4WHaac7EU0ZBJwDBoC5mEAwadW1fXxWe9WJ8dkQA7BjvJ2I0b/p2ZTHJmfJqnz8aXhTbrjV7NqUjd9Viqbs1YDso77Ug8RTxlYRrugsWJ0WkODcV5+mwsH9fg8VOTOChGEmliySxd0QAD7WFsb9/NRsSY0HV3bSxEX42oq6rZ5++lSqkfz5fWipQaAD2eSDOZtNjeFeHMZBJDIJHOcmQmiwJiM65JZk4s5cjaikgQjpyfJhqYYcZS3PqVJ1nfE2V4Ks112/sZn05z5Pw0j52cpDMcoLstOOccjaxcV8i2ByuOBuhxWEQGvVnNQeC8l34a2Fhw3AbgbI3XmEOlch8yhZ8dHacjEqAjbJLO2vz82ATX1mD+VXidk+MzrO0Ms3tbLwAnx6fJWG6QJxEhYIq732awVJtePfc8dYY//uZBbG+j61gyy2hi9v+WbfPTYxO8RBZ3nXLXLgwdXY0P40JpVETdx09NYhp4e6+6jVt7yOTxU5OLzHHjqbMml0SPxRoMm0Iy6yCA5XgDP0Xe3922FTaQtR0s20EpRdoyODE6zdb+jkWXvVy5yukTuKCc1ZuhiRl+emwCcHvt1WhzpQyI/Lya41c9nhyf4fGTE/R1hLl4TTtKkV9E2Ht0jKl0FkGwLIesrYgGFaYhTKctbv3yk5yeTJHMZDENYU1nxLV0CQcIGEY+sn0jYkz4ue5uFgvVVy111XxUE+3z01WmtRxnJpN0etE1RxMpfnp0jGOjCdKWTSyZJZG2iKeyZOzZKRsHiKUsptOV/XYFWN8TYTiW5OETE7QFjfzq4umJJE+fmuAnR8Y4PjrN2ckkT52Z5CfPjfJ/vvoUB4di+VXJWDI7xyzz4FCsLvdeLlqUDi7je+qtx7uBm73XNzPrHH838FYRCYvIVuAS4OFFXAdg3nIvQMqyORdLcXRkmnOxFCnLLjnNupDrDHaFefzUJMdGEjhK0R4OYDtu46mUIpV1sB2HTavb5j3v7fcd5tavPMnt9x2+QK9/9+BRkmkb0xDCQXOO6XjOjE0BT52urPP5rlPMPU+d4bZvHyKezM7xYbznqTMVP7dQGhVRN521OTuZZHImy3TaYnImy9nJJOkFbMXRROqpyYbrsZQGz8ZS2Eph2Y7rz14w8APItSS2o3AcPKuWAIeHE7SFhNu+fcjdA9OyOXQuzoe/uo9/+MGzVeepGZGanzody+uxGm02us1uJXKrOUC+D5VbzfEBvtTj2s4wQcMglszyo2dHeejwKAFT6I4EiCezJLMOqYxFIm1jOw6jiQyTySzxpMWh4SlSWYuuSBDbgbOTKUIGjExlmEpZbOtvq6iphbY3hfi87m4KC9XXQuuqaii78iciu4GXAP1F4XG7cPc4b3nW90Q5Pppg/9k4J8dnvMAsioApDMVSpLN2fg8+mOtjMJ+xSShgkMw6ZBzFQGeEZNbJh9a9dKCDHxwewXYgYEAqa6MUBAQePTFBMuvQFjSqNsusZbZxz64B7njoGMCSBJfRNJZ66FFE/g3Xeb1PRE4DHwFuA74sIu8CTgJvBlBK7ReRLwMHcPt+76lHZMFSq/ET02k+cvcBNq1u47ET4ziOqz7lVXVBQzifSC/qOlv6OgAYiqcJBU0297azcVWEs7E002mL9nCA56/v4oqNq8qe8+BQjE9+57A3w2nz7PAU+87EeOML1nF4eJozk0mePZ+gLWgQMC8crhYGjpqu0DBW669bWC/85LlRMlmLyZkMGds1Ze2MBOruw7hjsJsbd/RfsMqz2NUAQ4SU5RA0DUwRbKXI2s6cYFqtxmI12Sw95rSRsWx+dsw1rw6aQk80SNZ2mEyVN7G2HbBQGI4iZdkMdEd44JlRkpks4zMWTkHD+anvPsuGVW1Vlb9mRGqeztpzOlJQWZsryZXi8VOTJfZCVi29muNXPX5h7wmOjiTI2A4B0w1INpy0CAaEV+x0B2pHzk9zZsLdXzrjzO2dprxOrOUoLDuLAGLARDJLb0eY9pDJT54bL1tXLzY+hB/r7mazUH0ttK6qhkpmnyGgwzumMERuHHhTzVdcQrYPtPOln59kYjqDIQCKrOdDsLrdvGBlrFrvgvagsGF1G+IV7t72EPFUNv//Tb3tWM552kLuJpwBQ2gLmQjC2HSG7miQh4+Nc8OONXPOW8oss1yH89ZXVfYdXCHbHiwKn5nwLFqPSqlfLfOvG8oc/3Hg4wvI47wUmyOPJlI8c24K24Frt65mOm0zk7HZ0tdGW8itntwZy4X5/JUye97U204wYPLJN1+Rb/B2rV81Z3Kk0krDF/ae4NjoNJ2RAF2RIGnL4dC5OH/xnSmuv3SAwe6IWyGnLYIBg6A517Ai986htMNIjmo6mcVmI8OxFLaCcEDcbSwcxWjC/V89OTgU4/6DI+wc7OLarauZSlncf3CEbf0di9KO7SiiQRNHKSzHwTSEaNDEdqqtlZvCojTZLD3m/Gp/+twYyayDrRSmuCad3dEQQYP8pGjxt28a4CgwBCIBk8npLEOxGeIp+4Jj07biL75zqOqy0YxIzYq55k+VtLmSXCkEueD3VF56C+M7PR4civHDI2P0RN0ot2nLIW059LQHCQcM+jpmy9uJsQTTmcqdfcPz07UdEFF0hoO8cMvqfBtXqq5e7KSGT+vuplKLvhZSV1VD2cGfUuoHwA9E5E6l1AkRaVdKLT4awhJyeHiarkiA2EzW9esxoC3oBneY8Hz8aiFpKc7H0/R1hkikLOJJCwQeODiMADNZG9tRdEeDOApCpkHWdkhkLGxHceBsjGTW4uTYNOfi6fy+Rmu7wvkVihylOpzHRqf5wt4TfHweZ9rlvu3BYvBbNNTloEdwV+OPjSQ4N5UmkbKIJTMEDWFNdxRD3EmStOVwPp5ic2+7uwencvfpW+h1in2GTo5NMxRP531zb9zRn1+xy02OANx+3+F8WltIeOCZUYbjKc5PpekKG6QtO+/bMJO25kRSW98T4fjYDOOJzAWrf4X1TXuo/ER0NZ3MYif7nIuy7ShCpoEh7utUnQd/jVr9iIRM1naFmck6+e+2LWgQCLSukYlfNRkyhXv3nSORdlf8okEDWxk4CBlvmyNDFKX6bkq5HQ4B4imLl17UzXMjibJt6blYuurAD0s1GZe7joHbgSruRJXTZqP8XVuRqzZ28+ChESwn7U0OuJNK11/a3+yslcWPerx33zCrvFgQIpJfCZqYzuA4iq88eorptEXWcnCUYp5QFHjNJQAZBdsHOuatqxc7qdFqdbcfJvUXqq92byGp+Oev1I+Yj2p6VOtE5Nu4MyqbROQK4N1Kqf9V81WXCHeG03D3LfJMPC3b8RzaJT/DWUpPBm560BRsR5ELOia4DeBkMksinSXruMf0tgU5PT6DraC3I0RfR4ihWIqQaZC0LWayrmNhZ8QknrJIZSx+dmycnrYQnWHT9buYTPLKy+auPDx+KnbB8rBSisdPLZ2fgR/EtFB8bMLjOz0Wlp+ZVJafHh/HwPW1m/I6oDsGuwDo74oQMGAi6fo2dEQCbF7dxtb+jnmuMpdis+eTY9P86MgYjuPwzFCMSNBkS287H3v9ZXNW0wonBJ48Oc7DJyYY6IywpiPEmYkZzmdsOiPunmeW7ZBI27QVVMDbBzo5MTaDpcAq2ism9y5owGXrusrmPWeuXmli6PFTk2Rtm6MjKTK2yvtnWQ4kPH9lAbqi9W2AGxWN9aqNPTx0eJSsF0wkazskEa7b2lOfjDcW32jy4FCMI+cT+cnPjK2YzrilZ21XkETGxjSgnDWRiLvypwDLcWgLmxiGl1iClOXwnf3DvH13rGK9ulSTcYXXWdMVZiiWnmNKVUmbK8mV4iUX9/KNp4aYzlg4DhgGtIcCvOTi3vk/3Hx8o8czk0l2DHby0+fGOFewCj+VzDCagIUGu71g9d2y2Xt0rGJdXU17U4lWqrv9Mqm/UH1dtq6LR09MkC2Yy52vHzEf1QR8+SvgVcAYgFLqSeC6mq+4hKzviWI7inTW8ZbB3cbOcsBRinCgtG+OKRAJGgQM9/hCAQa8b0wBWc+nb21XmFjKwgHaQm6Epeu299MdcQcUM1l3bjEcNOj1lvG7oiF3NS8aZDrj0BUNctXGHg4Pz52oUqgy+x8tzZL6cnVyLwwGlMMnJjx/hY/0WFx+nhudJpmxcbwlBFd/wqkJ93u/uL8dRwnre6LcsGMNOwe7ME3jAnPM+RzUc2bP3dEgQ7EU+8/GmUplSFkOGcthKmXx9JkYn35gNihF4YSAIcKzI9OETJO07WAYs2acMxmL3PqHCJjGrEIPD09he6sjpsyuKAiuSWZ7yGBVW5CLKgxmtw+089jJSWLJLB0hd2LosZOTbB+YDescn8lwZjJFMmNj2XNX9wprhp46R0sMmcLPj02QztpzorGGStSjC+GlF/cST6YZn84wMZNlfDpDPJnmpf7obP4VPtHkF/ae4OxksmTrcS6eJZm28sFeio/pCBkYIgRNg85wgEjAdH97o/JvH09m5uisFPfuG8a2HQ4MxXng4HkODMWxbYd79w0v6P7mo1Djq9vDRAKuRZApzKvN4jqlOxpsuU5lvbjnySFSWQvBNSUUIJW1uOfJoWZnrRr+Cp/ocX1PlJm0DSIo3AjRtgMpi3w7spia9cHDo8RmMhXr6mram0q0Ut1d3IbnXte7HlksC9XXRf0drGoL0h4yqu5HzEdVtlRKqVMy13nTF2F89uwa4OuPn0YMoT1gkMra+QlKy3EHZUFTCJtCumCEZyv3f6VElxt55/7XEQ7Q0xZiZCpDxrLpCAeYyVj0dUS47tI+njwVZ2ImA7h20T1tIS5e085jJyYRYU5oa0epCwYfV23s4WdHx0GEcMAgbbmrDbWEvq8FH6+QVcTPJjx+0mNx+RmbzhANmkRCJhtXtTGTsTg5NsOZyaS7517AZFNvG+u6IwzFUiV9Vaud3Ss0e77qY9/FtkEpB4UgODgO7H1uPH98sflLIm3RFjTyfnPhgJmPhpixXN+G3vaQu0VM0t0i5uT4TL7TXDxre8WGHle/Kavi1M3h4Wm29bXx7Mg0Q7EU7WGTS/rbOTw8zU3eMTMZB1u5k08GMmdrmvaQgaPc7WjmtRNaIKU23s5FIFsM9zw55FlRGCjlWmZkHTe93ttVNAK/aPLxU7GKfqBZB4JlSmcq65b5SMDAMAy6ogFsB5DKZSwUMHj4+ETFY/afjXF6PEk4aOQ7qoeHE67FTB0p1LgCwqEAnZ51z4ZVbfNqc6W4Uvz46Bi2M7vKKwqUuOl+wC963LNrgPd/6RyRoMmaznDe5290OgO49Wq1hvu5gUShlZrjKIbjaYKmYBpGybq6mvamEq1Ud/vFL3eh+lJAZyTEYE9gdhwwT101H9UM/k6JyEsAJSIh4H3AwUVcc8nYMdjNJWs7OTuRZHgqTThgekvTnqC8DlJu5q+4s1bpixUgFBBMQzg7mcqLLi/eRIpwIJCP1lQ80AgFLlx0LTX4ePvuzQzFUoxPuyF7QwGDTb1tvH335tq+lAXiFzEtFB+b8PhKj6XKT8CUfAe0LRRgoCvM+Ew2P9h78bZVeT+7k10Rtg+0X+Cg7jgOB4fic8xUKk1IJNKzFWXO1drG1WXOBzBkCidGp/P+iI6jGJ/JoJTwxKkJlGeeEQ6a9HeF89ftCAfojgY5M5nMB8rIzdjmGm4FHBpO0B42ef66roqbV+8/G+PwcIJ4KutFcLM5PKwIFvhQZB2HoFeFOEUDvOmMgwH0tgfI1tlAIG0rrt22iqMjM/nvfue6zjmTZ7Xw8IkJQqbhBQ2AgCEYIjx8ovKgoUXwjSYVioxdvjupgEyZf1vK7aRkLJu2kMHq9jDb+tu4+8kU0aCQLFHYAoYbhTCZqWwWHE9ZxFMZpiYtMra7/2ZnJEA8Vd+V68JJP6VgdTTA8FQay4GRRHpeba4UptN2fuUp5wJjK+bdAqtF8I0edwx2s7E3Smwmy1TawhQhWLAyt5CSmPuNwNWd7UBPm7sCdi6e5qL+jpJ1dTXtTSVaqe4ujinQEQmwtjO8YLeRRrNQfWVsxcVr2nn6bJzptF1VP2I+qhn8/Rbw18B63I0tvwu0nO10OXYOdrO+p43uaJCfHh3j4JlJElkHR7kDPqW8yGbeLHrAENeHpsJ3mpNmb3uIqbTtrh4GDGayDraj6O8Ise9MnG39HfnBRPFAY3V7CEMkv2JQbvCxY7CbD+65tGk+d35eIauEj6Oh+kqPxeVnbVeEk+MzRIKGt1G0u5L2yp0D/NkbL+eep87wh1/fTzLj7mV0Pp7iD78+BZCfRTwwFOPwuSlvbz7FeCLDuViy4iqBiJoz5el4HVwH2H8mxrPDU1i2w1AsiSEGjnLIWDZpG0wUkaCQVgrLgm39UW7cMZDX7Nt2b86Xm689djpfqRcTMFyf4/1np7hue1/ZvB4fSTA8lUZ5s4IZFMlsmvaR2d3iI0ET23bzV7y4l1v5m0zadNVZput7ojx5aoJTEzNMpy1i4SzRoFFxi4xqSGVt0plZ8yfLdivnsGrdgC8F+EaTV23sYSiWWsQZFGkbzsczZJ0pokGDoCFMpRWlXP9yndBopPLvmMxYDMfTBEz3fBnbXbHo7QgvIq8XUjjpJyhv4KeIBIyqtLlSUF6lUmi2rgrSWxzf6BHcPmosmSVj2Tx2cpJwwcJArd+25birgKbhTnymLYdTEzMl6+pq2ptKtFLdvX2gnX//+UksW+EoByNucHJsmlc1cL/QWliovkKmsP+s20epth8xH9UM/q5RSv1aYYKI/Bbw97VeVESOA1O4k++WUupqEVkN/DuwBTgO/IpSquapg4NDMb6w9wQ/eW6MsZkMazsjns+P20gFDSHruL20iAkZR2gLGpiGkLbmD14QMIUXbl7NU2cmmcnYpLKKqDcVPzGTJes4c8zQigcaH9xzKUBVg49mmpr4eIVsXnxqwlN3PTaS4vJzUX87I1MpuqOhkivZt9/3LPFklqBpEDJNbKWIJ7Pcft+z+cHf0GSKieks0ZBJKGBgO4qJ6SxDk+U7tf2dEYYmUygBEHJxs4KGm6+05XBqfIas7bhBUhwjP4vq4Eb4NUXoDgmxpFXWJDW3/2epxRPXXEMxmc4wOZMpm9ezsRRO0aygo9z0HBu6IzyRyGDgTmLlYst4noi4azyKItOnRdMWEh4+Pk7INGkLGsykbR4+Ps7uixZnhh4whIQCyTd+rldz+zz+ZC2CbzT59t2bOXI+Ma8ZZjkKAw5MzmR5+Pg4YVMQz3qmOBK9iEHAUFy8ppNKjE1naAuZXph6RdAUQqbJ2HR5ndRC4T6Vz40kSFuK9rBJezhQlTZXCqGAQSrrzBl8CKUtlloQ3+gRZtvIoyMJwt6qX7ErUk0oGEtkEYGQIWXr6mram0q0Ut39kyNjmIa4E6KO2583DeEnR8Zayn1gofqanHHrpXDQrLofMR/VDP7+UETSSqnvAYjIB4FfZPFC+kWl1GjB+w8BDyilbhORD3nvf7+WE+f2xnvmXJys5aBsxdHRxJwN3S3UbMfJcbtLWcchlXUDwxjeLEipTpwBbFwVZWt/B0dGpgmaBm0h1/TLsh2G42kmZiw+v/cEb/dWBcoNNFp98OHjFbLlSqP02BBKbQr+zpdtYSajSq5kn5pIEjDcsMcAARGUEk6Oz+S3YDg1MUPGtkhOW/k9xwKGkEhny+bj+u39fPfgMDNpG8txVxsNgVVtoXyI7bTtIAhb+lxH90dPjOdn5MT7YyvBcRSffPMVJa8z2B3h6OjMBekGrulGJGjQ2x7k+Fh5s+m0V1Ep5s78pgsqMFtBJOD6KhWutijcrWYChjDQGXYnuOrIA8+M0hY0iCUt4ilvQBw1eeCZUd798ktqPm9hIK1S6S2ObzS5Y7Cbm1+yuebBXyGWA+2G6x8/0BlmJOH6tsNsJ3JVe4jtazrmXRl2HIVhgGW7QS+UAtN0tVZPDg7F+OpjZ0ln3emfoOHubziTsWkPB+bV5kphW38HR0cSeR9n04CAabCtxcznyuAbPcJsH+t/feEx4il3W7K2UIBMsvrtyHLblhTiAIZnipl1FAFblayrq2lvKrEUdXe1EecfPxWjtz1ENDQ7tElmrCWNjl8NC9XX8bEk63oiTGfcbaaq6UfMRzWDv9cB3xSRDwB7gOd5afXm9cD13uu7gAepcfB3775hTo3PMJO2CQUMwkGj5OaYDt6GtUqxuj3A2HShX1D5JXcbOB9P8f5XbPccdp/EDLqhr89OplDAQGeI/WfjLRlmdqH4dIVsubJUeqwLpTYFf+bc9II04ShF1oYHD50nYzlMpywsz2wbXLPHjK3IVmis3rZ7M+fiaUYTadKWzfHRGdf3T+C5kQShgIHjqDmRO3PO2JALbQ/ZjEPQLG9eGiwT9TJkko/MlcpYZCp0astN+Bamx9MWF/W3M5l0TXompzOuuam4prW2o5hK2Wzqra/Z3NGRBLGkRcA0CIuBrRSxpMXRKk2EypHKlv7tyqW3GL7RZE6P9SKWctzQ9CmbVW0hbMdhKm3jOA7d0SCv3LmWWDJ7QbTeYvo7wjx7Po3tCI4X8dB2HDatqi7iYLUU7ptriKAMUAgh02DDqrZ5tblS+F/Xb+OPv3EAy5ntCwUMN90H+EaPhYSDJv1Bk65IgGeG4gsy+SxXS1rKjTIdNMrX1dW0N5VodN19cCjGJ+49xPh0hozl8OzwFE+dnuSDey69oA+hvHBuhSxldPxqWai+lBcwclX7bHu+2Lpq3sGfUmpURF4H3A88CrxJLd7wWwHfFREF/INS6g5gQCk15F1zSETWlPqgiNwC3AKwadOmkic/M5lkbDpNKCAETNdMq1IxdIDR6bmmnorSQWByJDyv+EKH3aOj04QCBmu6wkSDJom0nQ8zqwdPmnrQID02jIVGi93YE+H4eBKRWR+irO1WkEOxJLajKNw+Lxoy3cGfZV/g/Fw8W/jGF6zLb+pu2YqjI9Mkp+aaTZiG4tho4oIVtcLJoMmkxcv/4vsMdEW4efcmTk/McNfek8SS2bIO2ykbjpyfImAIQdNctF/RQFeEkalZsxzDANvO7UOq3Pyj2LSqvk5/qayNUmDbiqxnPaGUm74Yyo3b67xHfUPwkyZzeqw3DopEKkvGdrCUWyZsbwBYjaVIVySQ3zopJAaWUmQdN72eFO6b2xE2iSUtbMdhNJFBJDGvNpfjnrelyJnIFVps3Lx7U0uZzpXDT3rMce++YS4d6ODQcIK05dTVYkM5kHKcutXVxTS67v783hM8O5wgY9vY3gTtWCLD5/ee4M/eePmcY3N7DmbiqfyxoTq0t/VmofrK76UYT2E5qi79iLI1q4hMMRvFWwEhYBvwJhFRSqnadxeElyqlznoDvPtE5JlqP+gNFO8AuPrqq0sqZH1PlIzlkLBtbEewahRSpZmPwn/lHHZHEmnSWYehmBv9c01nZFlExtQ0nwbrsWGUivaZtizuOzBesgP1/ldu5w//ax/JrEPWditvhWviKLiBlYRsPjqW7ShE3EFgwJy1Mym1HcT9B0fyK46v/NT3S04IpSyFeJE+Cyk0iVHAmo4Q8WSW//O1fUyl3I3qiyPeF1sPJNI2hkA04Cx6D6QbntfHXz9whJBpEg26nn4K9/sanc4QDhhcsb6Ltkh9O/q5CbHc/qM25INnLYZyJkbVmh41Az9qMqfHQIGf6GIRYLArxLMjs+1cW1BI21wQqbcc48ks67ojrr+8rQiaBms6g4wny5ty10LhykBXJMhYIovj3UM8ZVXUpl82kK4XN12+3heDvRx+1GOOM5NJ2sImQUM4M5kk5W01Vg+J2qq+dXUxja679x4dI5G2CAcMwp6PfyJtsbfEtggvvbiXe/cNuX73jsIwhGhw8e1tI1iIvl56cS/3Pj1E0nLyri6L7UeUtcpVSnUqpboKniNKqY7c+5qv6J77rPd8Hvga8CJgWEQGAbzn87Wef/tAO1nbIWOBWgITjj27Bjg1PsPEdJZU1u3gZWx3JvTE6LTvI2Nqmk8j9dhI1vdEmUrNrqqPJlL87OgEQVPmdKBym7TfdPl63v3ybaxqDxEMGKxqDxEJuHsIzWQsJmYycyJktXv7bPa2h9m4ui1/nVKbvU5Mp3nXXY/w8r/4PofPu355hsw+cojMbXRzG0AbBe8Nw6A7GmQq6fodOs6FnenimqcjbNIZCdAWDvLjI+X3yyrXNhemz2QU12xeRVvYZCbrDvqiQWFVW4irNvZwUX8HQ/FMPoBAvWiPBImGjPyg3DSEaMigfZGDzHK1dCtP1/tRkzk91jNwRyhgcHIiTTgg7qqaF5Aga9l8/FvP5LVdCcHdP7A7GqQz4vrPRwLGBSZci+WqjT0k0japrE0smcU0BAPXXHs+bfplA+mVih/1mCNsCj87OoFhCNv62gmZUre6L9eelaurq2lvKtHounsqZeE4Tr79n8m47wv7FTl+cmSMgGnk71nE9aX7SYX21g/8+MgYbWG3bqy2HzEf87YAIvLLItJd8L5HRN5Q6wVFpF1EOnOvgVcC+4C7gZu9w24Gvl7rNQ4PT7OqPQQ0bmfPVdHZRdMdg90MdIUZ6Ap7syzC+u4IkVCAw8OJef0dNJpqqbceG82eXQPEklliySyOUuw7EydjuVs03H9wmINDcSam03zk7gPc+pUn+T9ffYqHj03yyp1reedLt/LKnWsRMZhK2ySzNll71nrfFNja20ZXJIjlKG7ePWsGfmYySWeBydizw3EePTHBdNpiTUcon67UhVsldIaD9HWECXm1o61yq10uXQVmc7Nzm4pKzbUpcPGaTrb2ddDbHuTxU5Nlj+0Ml66WC9PPTCa5fOMq3vzCjbzjJVvY1t9BOBCYs4dbvWaOC9m0ug1ThM5IkIGuMJ2RIKYImwoG3isNP2kyN1GZLvLHWcwQqyMcwHZcE2DLdve5dVfl3YighZM75diyOspQ3LWcCRriWtDE02xZXd+J07fv3symXresTqUtTAM6owEuXTu/NovrFFgee94uN/ykR3BXlJ84HeP8VIpzsSRnJ2fqutekIcLq9mDZurqa9qaZhAMGyayN5bgBxixHkczac7bEyLH36BjprJNvwzvDQdJZp+QqoZ94/NQkve1BtvZ1VN2PmI9qft2PKKXyNbdSahL4SM1XhAHgRyLyJPAwcI9S6l7gNuAVIvIs8ArvfU0cGIoxlbQwZHGNminuo/AcBtAVNnnN8wfnHJuxFa+8bC2vvXyQLX3tOLj+Cht7o8vSJETTNOqtR8DdfkVEnhaRJ0TkES9ttYjcJyLPes8L3swtF8msOxpkKJYinspiGu4sZGc4wORMhkdPTDDkmaPtPxvn2Og0WdvOz64Hc8tyyo0KmNOkYcD5RIauaJAPvfrSOSYUxSuOT5yOYRoGHeEAhjF3HyXXT242zwFTEIGe9tlBouW4pjMmkM7aPHFqkgNnZzu0IlJxWwVHuYFlTk3MMJOxK65ovPaK9XQGJV85G0BnUHjtFXPv78ToNHuPjnHfgWGG4yk6wyZtIdfXOBw0uWbrqrpvWH3t1l62D3SQtmxGEhnSls32gQ6u3dp6ZjVLSN012Ug9pjKWt+XJLLWWkoABvZ1hVrUFyViKlDU7OePg+p86jjPv6tiq9hA90SCmIWRsB9MQeqLB/CRuvdgx2M2bXriecNB0AzophSHCUCw1rzaL6xRYHnveLkN8o8ecKXE667BpVZSsrTgbS9dv1Q+3bRubzpatq6tpb5pJT1uIUNDEEDeooiEQCpr0tF1YN8RTFgFT8m147nW8xCqhnxCEmYzNqYmZqvsR81GNN3WpAWLNXthKqaPAFSXSx4Abaj1vIbGkRdZ2UJ5tbK39H1OEaMjMO1gGTGHDqjb6OsK8zduXLEduM+u+jgh9HREvH9mGONdrVjR11WMRDdl+pTBa7K/8w15Oj0/z3EjCXcVTyt0I2uuEZW1FR9jkyPnpvI4MQzAFr8PmHmcAfV1hvn/rL5a85p5dA9z65Sc5PjbtRgK13ZWJqWT2gk2uiz0TJmcy2E6hlx9k7cLXDiFTSBfYeVYzyAqZ7opGfCZb0VH77bs3MxRL5aObhQIGq9tD+b0Q4cLNbJNZh+k0/OKl/Vwy4Fo4NaL+2T7Qzt8/GM/vQZW1bfadifPOl22t63V8RqM02RA9HjqfIGBcuCdfLVgObFndBo7tbfUwl1TW4enTkwQDlTd8TtuK3o4gB84msJQiIMLOdR2L3+usiINDMT7z/ec4Njad13Q2maW3PTivNovrlJApbOlt55O/ckF3RtNcfKPHnCnx6o4Qw7EkU2mLenoqKcgHj0mkS9fV1bQ3zWRdT4REKksq62Ard/UvEjRY1xO54NiOsMlYIkMqOxscxhCht6O+k0hLzZbeKA8dHvX2+auuHzEf1az8PSIinxKRi0Rkm4jcjhtBqWXpirhmKLmgEAshIO7sviFgBoQNq6Jcs2UVgz1Rrtq0iusvXcOtr9p+wWpesXlb7rU2+dTUmaXU4+txt13Be37DYk84k8pyLp4mkXb3q8nYipmsYjyR4r4Dw0wmMyQzFvHUbKAHEaErGqCnLej5+AUZ7IkQDZZvzx86fJ4jo9OuqYiX5uCagZeq9IyC9JmMQ8pSlJsstBywlBAKGAQr1KCFc3IKdyPrVNaiLVR61jJH4erETNZdxXvTC9fPqXNym9m6jZtB1DOBee78dEPrn0/c+8wFHfK0rfjEvVXH7CpJW7D0DGa59BZjqTRZFz1Op626DPxyPHFqgvMJq2xn4sR4kplU5cAt5yZn2HdmCsOAtqCBYcC+M1Ocm7xwz8zF8PFvHuDguak5Zq+OgtFEdl5tFtcplqM4MjrNQ4drDk+gaQy+0WPOlDgocHoiOWeSsRGUqquraW8q0ei6e+dgN1du7GFLXzv9nWG29LVz5cYedpbI3861XSSzdr4Nn8k4JLM2O9e2tMvnvPS0hWgLmaSyVtX9iPmoZvD3XiAD/DvwFSAFvKfmKy4Bl63rJhoycWPgzW/62R4yuWRNO1tWR7lsfTdruiNs7W1jbVcEhbC+J8rtb7mCz958De9/xYUDP7jQvK07Gly2UcA0TaVRelS426886m2nAkXbrwBlt18RkUdE5JGRkcp7iJ2ZTOKoC3WZttxZu45QgKF4Gst28oOYnmiQVNZmaDLFaCLD0GSK0xMzmAK3fuVJbr/v8AU+RXftPUk0YNLXEaa3MzznWoXtqylw7dbVXLN1NRGvsRKpvEGtAq7c2MNl67ov8BcsPq6QjnCA9nCAtnCA81Ppsp8r3Ig6GjRIZ22++tjZOfeY28x2S187F63p4JK1XWzoiTA2k2lo/XNiPLWg9GqxynR6yqW3GI3QZMP0WO+g90NxN7psNDQrmkK9mYZwcqKyX9yhYXfvsaylmM44ZL1V9Vx6vfj5icm8RVAhCubVZnGd0tcRJhowuWvvybrmUbNofKPHnCnxofNTdQ5tVJ7iurqa9qYSja679+wawDAMdgx2ceOOAXYMdmEYRsmJzXgqi+3MtuEiru9xfJ7Jp1bn/FSaNq//UG0/Yj6q2edvGnc52zfs2TXA3U+cIZmZIVBknlWKroiJILSFg+xa18XZWIrNve10RgJMpSxiVYab1puhaxpNA/XY0O1XciTSNgIEPIdcywvgooCjI9OYhhA0hNhMlrufPMtAV4TVbQGOjc2e1gFmsoqpVLpsyPVYMkskIMSS2bwVQClsldt/zyCZdU1DAyJeoKj5G69c1WIASop8B43ZvY4EN+BLLm+VfBAKN6LuigRJWw7HRqf5wt4TfNzb16jUZrZtoQCBgMkn3+w/M7RyVXS9tiNoJA3SZMP0mGrA9hkbVrcRnjI4MTqTj7SX08KGVRGm0pV9bmLJ7JxJGQdAUXXbWy1ZLyBSqX7p1r6OitosrlNMQwh77zWtg5/0uGfXAHc8dIz4jEUoINjZpd+OvJr2phKNrrt3DHZz447+C/bEK9XXfmY4QTQgWI5r5RMQCJhuup+JpywiQZOBrllT1/n6EfNRdn5bRP7We/6GiNxd/Kj5ikvAjsFubn3VdjoirhP6fGUwmXUwRPjLX7mcvs4Im3vbdThnTUvRaD02evuVHIYhrqmkuMEWComnXFPFpGd68ror1rFzsIvHT8fdz+LO5OU4PZkuq9G2oEk8aaGUu/JQSEfYJFCQlEhbJNJWfhAaDAjRQOV5WMdx5nT6AqbMBqYpoHBbCqWUt0m6ojtaft6tcCNqEclvSP34qdmZ2MKQ9bnzJtI2V23sqZjvVqVcrJwKMXSaTiM1uVR6rBc3796EZSuCpriDPm91bX1PmFAgMKfTUgrHqwsMvK1XitLrRUDcmLyl/Krm02ZxnaIUxJMWbcHK/oyapcGPesxZjJkBY04k66WkmvamEo2uuw8Oxbj/4Ag7B7vyfYL7D46UXJlMZixsZtvwYMCdyE1m/B3wpTsamNN/qKYfMR+VPvnrwG8Dn6z57E0kF/nvw191N2GuJKqZjE1Pe5Adg93804+OX7AptQ7nrGkBGqZHb8sVQyk1VbD9yh8zu/3KbSxy+5UcG1dFOT42TdAQTDFIeM5HBtDXESaWzJKxHG+/THdgl+uoBbw963KNZOECRrFGL13Twd7j41iOQ6CoFXIcNWfFbnVbiKytmM7Ys/XEPC3X+USGga4IIQMyTpmAL2p27TBouqHluyJBtvS2saWvo+y5S63qiZeeo9BJP7dv26betpZx0l8w5RajWnePd2iQJpdSj/Ui197eft+zHBubIWQKazvDhEMBptMW7/2liyp+3jTcEO4OIAW6KZ64WSztYYNM8kKHR0MgEjQrarO4TrGUm99L15TXsmZJ8aUedwx284vb+3jo8CjZejrjVkk17U1FGlx3F+6vCeSf7903fMHqX1vIjSDuhvp3TXEcR9G2yH1om83OwW7agibn4mniqWxV/Yj5qDT4ew5AKfWDms/eZG66fD0/PjLGfz1xhmTWKenrEDLdPatyHcxc1M7CKHk6nLOmBWikHgeAr3lbFQSALyql7hWRnwNfFpF3ASeBNy/2Qu9/xSX84df3k8zYZOzZhs40YHw67UblFHcV8LsHztFVotL26vQ5zVWxRteuauNaFE+fiZOy3L3DgoYi4wgZb9uGoAnhgEnWUYSDBuEAZCxvVaDCioMB/OADbpTRN3z6hzxxJl7yOAfP7wDoaQtz446BvBl5pUAsV23scTsC8VQ+0nDQNOdE9tox2M0H91zKvfuGOTOZZH1PlD27Bhpudr5xVYRTExf6921cVXllZ17KbUrYwit/NE6TDdWjIaVXvmol99vfdPl6tvV38Df3P8vPT0wwnrTYFLlwG5ZSdEaCGKkMaZu8T17Y5IINqReLwo0UXNwvDRiwY7CrojaL65RIwOCFm7pYu2rl7nHZYvhSjweHYvS0hQgHzfxkaC0YAFVou7iurqa9qUiD6+4z3jZQhZRbkLloTQdPnZqY04YHTeEin0/QuObBM+wY7JrjjraYgG6VBn/9IvJ75f6plPpUzVddQt6+ezNHzid4/OQkCjXHDtnEjSTYGTbp8jZvzdlgA3O+5Ldcs6EJuddo8jRMj0ux/UqOXCcwZ79/LpZEOYpgwMBRAthkHQgJdIYDpLI2AcDC9Q80CvzqVkXdrR9KaXR9T5SOcIBrtroN2GgixYOHRrBsxer2EMdGpwkYsKWvnbaQq/2s5TCdseluCzKdtkhmS09d5lYgwfUdigTAdgRHqbwvUSQgXL6hh7TlmocKMBRLsb4nyluu2VBxkPbSi3t54OAwluPu7+OucNq89OK5+zM1xce4XMdikYMJ0xDsEqun9V75qTMN0WSj9XhxXxuHR+oYRdP72XJ7lg10R/nVF3Xmdbmtf/6O1zWbV/G9Z4aR3L66Xif2ms0L3jptnqwK3dEAWUe527mo2ajg3dFgRW0W1ymgt3NqMXynx5xmuqNBXrFzDf/1+NkF++TmasigKWzpa2co5kYNLdd+FdfV1bY35Wh03b2QBZlrt/YSCRgcPp9gOm3RHg6wfU0HV2ysbz2y1OTMgwsne+frR8xHpcGfCXTQ6nOvZTg4FMt/URev6WByJs2RggbPxO3Ere+JsGtdN1u9BqoRX7JGUwd8rcdCbrp8fX4QeNPf/JBT4zNEgwamIYxPOziWwpDZxmRtT5TxRJKs4zqRBwzo7wjxi88bKDugKp7ESaQsUlkHx3E4MzkDKLIOZCyHaFCR9vY3agubXH/pAJ2RAP/8o6MkMm4DmvvSFTDQFc5fJ562uKi/g8mkRdpySGdtBEXaViTSNh2RAJevbmNrfwfvf8X2qr6fw8PTXLu1l3NTaRIpi45IgLWdYQ4PT3NT7V97XRieSrnb4BSUQlu56YshHDDmrAQXprcwvtTk1Vt7GZpMkigKLtERMkhbKr8vWLXkfvuFmGcVc+Wmbu4/MDwbiMVb/btyU33b3U2rohwfm6E9FHA7rY5iJmNzSW/bvPrUE8Mtj+/0WKiZ7miQi9Z0cPjcVFUazN1kT1uQgAEJz/w/a88GNsphyuye18V19WLbm0bX3QvR3Z5dA5wcn+GVOzvqtkLWKtR7srfS4G9IKfXHdbvSElI4mzLYHeHE6DTJrOK6S/oYnUpzfGyGQMDg2i2rGOxpu6Bw6KidmhbEt3qsxGB3hOlUlmTW8fzmhLYgBAJmfvD0skt6GZvOsHOwu2oTx+JJnKMj00QCBn2dUcIBg4mZDKcnkoxOpRFxzT8vXdvFG1+wjsPD05yZTLKmK0JmIonjuCt6poBpCrvWzV53oCtCPJllg2f6NZ22ODk+QwWQB+YAAHp+SURBVHfU4IYda2pqfM5MJtnc156fkAI38EUr+B0rhIC4v5MDXnRU12tkMYRNYapMegvjS01mbMVNV67n6OgMI/EUY9MZAoZgK0XUgOwCIsgFIP/bL8Q8q5hvPHmOUNAkhMLJb8UgfOPJc7z75Zcs4O4q81vXb+NPvnkQy1ZkbRtDDNrDJr91/bZ5P6snhlse3+mxWDNXbOjm2EgC2/N/LaYtKKQsNyp1NGQSChhEgiZBQ3CUkMk6hEyhPRRidDqT/5yjwBQpWVcvtr1pdN29EN1pjVZPpcFfS7e6lSiegTw3laY9HCCZdbhh51pGEyn2nYlzciLJ8wa7deHQ+AHf6rESl63zHJm9WcdQIEPIEAa6o7x4m2t2Ektm2TkYrXrlLEfhJM5r/vqH9HaEiHiR+Va3h0EpJpIWu9b3zBlQ5mY7b/3Kk1yyJsPTZ+NMp23awybPX9c1xw/p5t2buO3bhwDoDJuuz4RAVySY36qiXFjqctTqd1xo7dAoH8CeaJDJmQyhgJH3vcxYNj2LNX0zDNqDQtYGWylMEYKmm97C+FKTufK129PXyFSK/WfjZG1FRyTAEyfHUcrdHysXAbcUAojhlomDQzFOjs/wxMlJVneEuLi/nf7OSNX+8qcmZmgPGQQDs5Ezs5bNqYn6bvJebHae0+d8Pok59MRwS+M7PRbX9f2dEdavihJPWpjiWpbYtoNhCI6CXeu7CRrC02fjhEzDDSSWcjf83tAT4emzcQQIBy/cczMYMErW1YuOc7EEdfdCdKc1Wh2VBn919fVZSs5MJgkYcGAoTiJlcX4qxZrOUH6jx76OCNdtDzMUSy24Q6nRNAnf6rESOUfmnZ4j84nRaR4/NcnarnBZf75aqGVfvPU9UWLhAM8raEiKG8nizmRHOMDFA53sXNedNzu5/+AI2/o7qm6QajEvK7Z2KLX3YT34jV/YwqfuP4LlOG5URgHDNPiNX9iyqPN2RQJYlkNHxMyb46Wzdt4Xu0XxpSaLy1coYLKtv4NbrtsKwJv/fi+ZrE0k6EYrsh2wbeeCfbtE3N//v12xljseOsZgV5jYTIZ4MstjJybZPtCBaRpVaTdoGthKUdgttZWbXm8Kzc41ywrf6bFUXb9hVRvGamHj6rY59X80aBAKmHRHg3RFgzx5JsZU0iIaNFjdFiSRtgmabitnO4qwKaQLto+wHKdkXb1Yc2af1t0rnrI1q1JqfCkzUk9CpvDzYxOkszYdYRNThNPjKcyC8O06gqfGT/hZj5XImWl0R4MMxVJs7e/gbS/eyFA8zd1PnuXAUJwbd/QvegBz1cYexhIZjo9O89xIguOj04wlMhX3xduza4BY0t170FEq/7rYhPOmy9fz5Xfv5gcf+EVu3DHAznXdi9ontPg76Y4G5x3EFVo7NHJ/0ne//BJ+7UUbCJoGltc5/7UXbVi0ad7ubb20e52FjBfwoD0SyK9OtSJ+1WS58gVuOXI7ba4ZqFLQHjSIhkwuXdPBlRu78h1MQ2DXui46I2G6o0G29HVw9ZZVBAzhXDzFT46O0RasbvD2os2rPJ9ZB8dRpLMOacvhRXUO+KJZvvhRj8VazFg267ojGAb8/Pg433zqLA8fG6ctaPDSi3vzbdDFA528cudabtw5wI07BwgGTDq8TdoVgiGCaQoRb79aN7p16bq6lvamED/W3ZrKK3++JRd5diZjMTJlM5Nxgz1MpbJ1XU3QaDSLp9BMI7eCtXOwi2u3rq5p5awUL724lweeOY/tKJRS2AIIFSOaVes/UGhueeBsnCs2dkHBGkYt+4Qu1HRlMf5WC+HgUIyJGZs3vXBjfpZ4YibLwaHYon6ft+3ezLl4mtFEmrRlEw6Y9HWEeZtf9y1scYrLV+HK8XXb+/nRs2Mk0har2gJ0RUOcmUxiOQ5HR1KsbgvR1xnCFGF82mL/2Rg7BrsA1wzYchSbV0dJ2w7BgFnVCvR7b7yE0ekMJ8ZmmMnaRAImOwe7eO+N9fP302hakZwWCzXY2x7i6PlpBOGKjV0EAyb3Hxzhxh39HB6eZv/ZGPGURXc0wDPnkqSyNv0dYQa6ImSsGSzHnUgxDDeo4XXb+wgHAmXr6sWYSuq6258sy8Ff2lZsH2jn58cncZSiMxJgVZswMZPlmXNxdmo/P42mJVlMxMBKHB6e5sVbV8/ZJHVt1/wRzeZrFIvNLZ8dnuJnRyfYfZHQ1+EOxpbCymCp9idt1O+zY7CbW1+1fcn3LdS4FEcdvG57X94PcNe6LmLJDLGk5ZqCAudiaXrbQ6xqCxJPWUylLLqjQY6MTOej/HVHQ1WXjx2D3Xzs9Zfp31+zYinU4IGhOB3eatrRkZm8//vh4el8RMsNq1yz0PPxNEOTKYKGwar2EBtXtzEylcZyMvREQ1x/aX++Lcpdp5660nW3P1mWg7/1PVEePDTFhlXRfICHVNZmVXuYnYPd2s9Po2lRGrWCdWYyyabedrb01TeCZvFg6LJ1Xfzs6Dj7zsS5bnt4yawMlioMfSNXGLWjfvMo/l37O2f94vs6I1y+vocHnx0hYhiYhusHODad4RWb1zA2nSGWdP3pp5JZgqaQsRW71rurgdWWD/37a1YyhRpMpCw6wm7fNRerIqej4jZn1/ouRqfSnE+kiQYNDIH2cAAx4Prtcwd+jbAGAa1dP9LSodRqZc+uASZmsijlmnilsjZpy2Hnus6WCJeu0WhKs74nylRRqPl6rGA16rxnJpN0Fji293dGuGbrKjK2U5P/RK0s1m+jWhr1PWqaS6XfNRcKftOqNgR3YBcKGHRFAkSCAXYWlD0ERIQXbu5Z0pVvjcbvFGqwIxJwfWAthy4vunShHgvbnL6OCNdd2seqaJCMo7Ac2L1tNb906RoiwbnrO1qLmhzLcuVvx2A3v3BxL/vOxplKW3RFguxa30XQNFnTuciQ5BqNpmE0agWrUectZW4ZCQZ45c61S25hsBSzr3qj6+VJpd/13n3DxJJZrtjYzaMnJl2zTqVAJH9MruzlzhM0Te1fr9EsgEINbutr4+fHJlDAznWd+UAvhXosbHPCgQCvu3L9nDYn55IAuq7WXMiyXPkD1wl1W38H127t5UVbVxM0zQVvtqzRaJaWRq1gNeq81UYEXS4s1QqjZmmp9LvmynjQNLlqk/s7TyQtLlvXdcFvr8uHRlMbhdqxHLh222p2b1tN1qakHudrc7QWNZUQpcpt4dr6XH311eqRRx4p+/+l2PRYs7wRkUeVUlc3Ox9+YT5NLkd0PbN0aD0ujHrpUZdxTSm0HheG1qOmkSxEj74e/InICHCizL/7gNElzM5i8Ete/ZJPqF9eNyul+utwnhVBgSZXYllZKvyU33rnVetxAVRoI/1UhhaDvs/GovW4AHzeZ231/EHr57HR+ataj74e/FVCRB7xy4yUX/Lql3yCv/K6HPHT9++nvIK/8uunvK4kVsrvou9T4xda/Tds9fxB6+exlfK3bH3+NBqNRqPRaDQajUYzix78aTQajUaj0Wg0Gs0KYDkP/u5odgYWgF/y6pd8gr/yuhzx0/fvp7yCv/Lrp7yuJFbK76LvU+MXWv03bPX8QevnsWXyt2x9/jQajUaj0Wg0Go1GM8tyXvnTaDQajUaj0Wg0Go2HHvxpNBqNRqPRaDQazQpg2Q3+RGSPiBwSkSMi8qEWyM9GEfm+iBwUkf0i8jte+moRuU9EnvWeVxV85sNe/g+JyKuWOL+miDwuIt9s8Xz2iMh/iMgz3ne7u1XzutJoNQ0WIiKfE5HzIrKvIK1suWkmtdQdTcxrREQeFpEnvbx+rFXzupJpZW3Wk1I6X26Uqx80/qJVNSkix0XkaRF5QkQe8dKaVp8vtO1uRp+vTB4/KiJnvO/xCRF5TTPzmGNZDf5ExAT+H/BqYCfwqyKys7m5wgL+t1JqB/Bi4D1enj4EPKCUugR4wHuP97+3ApcBe4DPePe1VPwOcLDgfavm86+Be5VSzwOu8PLcqnldMbSoBgu5E7cMFFKy3LQAC6o7mkwa+CWl1BXAlcAeEXkxrZnXFYkPtFlP7uRCnS83ytUPGp/gA03+olLqyoK96ZpZn99JlW13E/t8pfIIcLv3PV6plPpWk/MILLPBH/Ai4IhS6qhSKgN8CXh9MzOklBpSSj3mvZ7CHaSs9/J1l3fYXcAbvNevB76klEorpY4BR3Dvq+GIyAbgJuCzBcmtmM8u4DrgnwCUUhml1GQr5nUF0nIaLEQp9RAwXpRcrtw0lRrqjqahXBLe26D3ULRgXlcwLa3NelJG58uKCvWDxj/4TZNNq88X2HY3pc+3wHqnqf3S5Tb4Ww+cKnh/mhaqDEVkC3AV8DNgQCk1BG4lDqzxDmvmPfwV8EHAKUhrxXxuA0aAfxbXRPWzItLeonldafjxuy5XblqGKuuOpiKuyfgTwHngPqVUy+Z1heJHbWqqoKh+0PiHVtakAr4rIo+KyC1eWqvV537p8/22iDzlmYXmTFObmsflNviTEmktsZeFiHQA/wn8rlIqXunQEmkNvwcReS1wXin1aLUfKZG2VN91AHgB8HdKqauAaSqbH7RsuViG6O+6ziyg7mgqSilbKXUlsAF4kYjsanKWNHPR2lyG+KV+0JSklTX5UqXUC3BNUt8jItc1O0MLoJW+178DLsJ1hxgC/tJLb2oel9vg7zSwseD9BuBsk/KSR0SCuJXzvyqlvuolD4vIoPf/QdzZcmjePbwUeJ2IHMc1PfglEflCC+Yzd+3T3soCwH/gDgZbMa8rDT9+1+XKTdNZYN3REngm2A/i+jG0dF5XGH7UpqYCZeoHjX9oWU0qpc56z+eBr+GaJLZafd7yfT6l1LA3MeoA/8isaWdT87jcBn8/By4Rka0iEsJ1pry7mRkSEcH1TTuolPpUwb/uBm72Xt8MfL0g/a0iEhaRrcAlwMONzqdS6sNKqQ1KqS2439v3lFJva7V8enk9B5wSkUu9pBuAA62Y1xVIy2mwCsqVm6ZSQ93RNESkX0R6vNdR4EbgGVowrysYP2pTU4YK9YPGP7SkJkWkXUQ6c6+BVwL7aL36vOX7fLnBqccv436P0Ow8KqWW1QN4DXAYeA74gxbIz8twl3KfAp7wHq8BenGjEz3rPa8u+MwfePk/BLy6CXm+Hvim97ol84m7hP6I973+F7CqVfO60h6tpsGivP0brulFFnfm7V2Vyk2T87rguqOJeb0ceNzL6z7gj7z0lsvrSn60sjbrfJ8X6LzZeWrAPZasH5qdL/1Y8O/YcprEjavwpPfYn8tXM+vzhbbdzejzlcnj54GnPZ3eDQw2M4+5h3gZ0Gg0Go1Go9FoNBrNMma5mX1qNBqNRqPRaDQajaYEevCn0Wg0Go1Go9FoNCsAPfjTaDQajUaj0Wg0mhWAHvxpNBqNRqPRaDQazQpAD/40Go1mgYjIO0RkXbPzUQkR+V0RaavXcRqNRqPRaPyPHvw1EBFRIvKXBe9vFZGPeq9/S0R+fZ7Pv0NE/rbM//5P0fs/EJH9IvKUiDwhItd66cdFpK/E53/iPa8Tkf9Y8M1pND5AXOpaz4mICbwDWNLBn3fdhfC7QDWDumqP02gaSqtNqojI50TkvIjsK0pfLSL3iciz3vOqgv99WESOiMghEXlVQXqigfm8WkT+xnt9vYi8pFHX0ixftP4ah4h8q2Av3KbmBfTgr9GkgTeWGnwppf5eKfUvizh3fvAnIruB1wIvUEpdjrvB8qlKH1ZKvcR7PquUetMi8qHRtBQiskVEDorIZ4DHgD8UkZ97EyMf845pF5F7RORJEdknIm/x0m8QkcdF5Gmv4Ql76cdF5I9E5EfArwJXA//qTbREReQ2ETngXeOTFfJ2p4j8vYj8UEQOi8hrvXRTRP6iIJ/v9tKvF5Hvi8gXcfcKKnXOC+5FRN6HOzj9voh83zvu70TkEW+SKPc9lDrulSKyV0QeE5GviEjHYn8TzfJiBU2q3AnsKZH+IeABpdQluPuLfcg7107cjbov8z73mRombRaMUuoRpdT7vLfXA3rwt4zR+mst/VWDUuo1SqnJZucjT7M3k1zODyABfBj4uPf+VuCj3uuPArd6r6/B3QByL/AXwD4v/R3AV4F7cTex/ISXfhtg427q+q/AG4FvlMnDcaAPiHrn+c1c3rznLfNdz/vfu3A3In0Q+Efgbyvc938Dfoa76fP9wICX3gH8M7MbXv73Zv9G+rH8Hl6ZdoAXA68E7gAEd7Lrm8B1wH8H/rHgM91ABHfSZLuX9i/A73qvjwMfLDj+QeBq7/Vq3E1ac/um9lTI252evgzgEtyNYCPALcD/5x0TBh4BtuJ25KaBrRXOecG9FOS5ryB9tfdsevm/vPg4r654CGj33v8+3obt+rGyH56uDgKf8er2jwA/9+ryj3nHtAP34G4OvQ94i5d+g/eZp4HPAWEv/TjwR8CPgLfhtpmHcNu2KG5bd8C7xicr5O1O4O+BH+K2U6/10k3cNjWXz3d76dcD3we+CByo4r73FaUdwtusGRgEDnmvPwx8uOC47wC7vde5NrcPt62/yXv/Qe97eRK4zUv7TS/PTwL/CbTNc5/X49ZtW4BzwBnvO/wFyrTH+uGvh9Zf/fXnffYh7373Ab/gHfM/vPv4AfP3d+8E/s67n6PAy73v+CBwZ8Fxx5ltZxMF6R8o/h2XpDw1u0Av54cnpC7vR++m/OBvH/AS7/VtzB2MHWW2Y3oC2Fii8HR4hfcwbsXw8qICtwW30v/1wrx5z1vmux7uTNBx3E5uEFfglcSwitmO8G8Af+m9/nPgrwqPa/ZvpB/L7+GV6WPe6096ZfcJ73EEdyJjO3DMK5O5Cv8K4KGC89wAfNV7fRzYXPC/B5kd/AVwG9t/wp2ICVXI253AOwvePwRcCfyHp99cPo/hDlyvB74/z/1ecC8FeS4c/P0W7kroU8AI8Nbi43AtCEYL8nEA+Kdm/6b60fwHK2xSpei+izufk0XvJ7znvwXeVpD+T8CbvNcJYAB3IPYKL+3VwE+YHdzlJmh6C87xp8B757nP64Fvesd8FK9v4b0v2R7rh78eWn9z0iaL3k94zwvV3/8G/sB7bQKduAPCk0A/EAJ+zPyDvy95v8XrgTjwfO+7eBS4suC7njP4K/c7LkV50mafDUYpFccV2/tK/d+zAe5USv3ES/pi0SEPKKViSqkUbkdsc4lrJIAX4gptBPh3EXlHwSFfB/5ZVWdmWup6LwJ+oJQaV0plga/Mc44NwHdE5GncWY3LvPQbgf9XkO+JKvKj0dTCtPcswP9VSl3pPS5WSv2TUuowrmaeBv6viPyRd2w155yDUsrC1ch/Am/AbQQroUq8F9wOXi6fW5VS36103YLrl7qXOYjIVtzJpxuUaxp+D27jfMGhwH0F+diplHrXPPejWTmcUEr9FLfT8krc1YTHgOfhdvqeBm4UkT8XkV9QSsWAS3EnYw5757gLt6Oa49/LXCsOpIDPisgbgZl58vZlpZSjlHoWdxLzeV4ef11EnsDt9PV6+QR4WCl1rMr7rpZSdUhO70FcE7UPKqXu89JuxG2bZwCUUuNe+i7PNPxp4NeYbUOh9H1Wolx7rPEfWn+VWaj+fg78D3FjcTxfKTUFXAs8qJQaUUplKP/9FPIN5Y7mngaGlVJPK6UcYD/u4LUc5X7HhqMHf0vDX+GuNrSX+N98Hc50wWsbd5XhApRStlLqQaXUR4Dfxp0ByvFj4NUiMt+1yl2vms8V8mncmZLnA+9mtpMpXNjx1WgayXeAd+b81kRkvYis8ZzaZ5RSX8BdHXwB8AywRUQu9j77dlyzj1JM4c4S4p27Wyn1LdzgKVfOk6c3i4ghIhcB23BnV78D/E8RCXrn3C4ipeqLCyhzL3PyiGuBMA3ERGQAd8XhgnsBfgq8NPcdiEibiGyvJh+aFcGKmVSZh2ERGQTwns976adxrWVybADOeq8t3JWAVxX8v1ybeCfw214b+jHmTtSUus9KlGuPNf5D68+lLvpTSj2EOxA+A3xeZoMwLrSfmus3O8ztQzuU6bN7lPwdF3jtmtCDvyXAm837Mu4AsPh/E8CUiLzYS3prlafNFnQULxWRwtmCK3FNNnP8ETCGaxJaCw8DLxeRVSISYO7AshTduGICuLkg/bu4A1O8fK9Co2kgXkPzRWCvN/P9H7gDnecDD3szkn8A/Km32v0/gK94xzq4fgyluBP4e+/zncA3ReQp3MHi++fJ1iHvuG8Dv+Vd97O4K+2PiRvZ7B+o3GgUcsG9eOl3AN8Wke8rpZ7EnV3cj+uP8OOCzxceN4Jr/v1v3v38lPlXFjQrj2U/qTIPdzPbtt2Ma12TS3+riIS91fZLcNtPcDuU7wSeJyIf8tK+i/s9tnn5W+2ldwJDXr5/rYr7LKRwMgfKt8ca/6L1Vwf9ichm4LxS6h9xTURfgLtCeb2I9Hr5fnMd8luOkr9jA6+Xp9rOhWbx/CUFA58i3gX8o4hM49pcx6o43x3AUyLyGPAp4NOeCamF69d0S9Hxvwt8TkQ+oZT64EIyrpQ6IyJ/hiuKs7id1Ep5/ChuB/oMbudxq5f+p8D/8zq3Nu6M5lcXkheNZj6UUseBXQXv/xr466LDnsOteIs/+wBwVYn0LUXv/xN3RjTHixaQxR8rpeYMED0Tkf9DQRRfjwe9R1mUUt+h9L18GnfWP/f+HWU+X3zc93CDUGk0JVFKfVdEduBOqoDrT/M24GLgL0TEAbLA/1RKpUQkN6kSwDW1mm9SJYm7Ov11EYngzpBXO6kygDepIiKfxTW7esyzfBnBXcWoChH5N1z/pD4ROQ18xJuZvw34soi8C9c/6M3e97JfRL6M20ZawHuUUnbufEopW0TeCnxDROJKqc+IyJXAIyKSAb6FWwf8IW57ewJ3FadwMFfqPguz/Q3gP0Tk9cB7Kd8ea3yK1l999Ie7+vgBEcnifoe/rpQaEtcMdC8whGuO2ZCIoRV+x/MVP1gHco6cmiYiIh3K9dvDm5EYVEr9TpOzNYdcHr3K42vA55RSX2t2vjQaPyEid+IGZtB7a2o0dWKl6Gql3KfGXyzncilu/IyrlVLlFm98iV75aw1uEpEP4/4eJ3DNrlqNj4rIjbj+At8F/qu52dFoWhcR+QMuNBf5SrnVtyrP2YvrsF7MDUqpsVrPq9FoNBqNZuWgV/40NVOhg/vxZuRHo9FoNMuXRrQ5elJFo6mOlay/5dbf1YM/jUaj0Wg0Go1Go1kB6GifGo1Go9FoNBqNRrMC0IM/jUaj0Wg0Go1Go1kB6MGfRqPRaDQajUaj0awA9OBPo9FoNBqNRqPRaFYAevCn0Wg0Go1Go9FoNCsAPfjTaDQajUaj0Wg0mhWAHvxpNBqNRqPRaDQazQpAD/40Go1Go9FoNBqNZgWgB38ajUaj0Wg0Go1GswLQgz+NRqPRaDQajUajWQHowZ9Go9FoNBqNRqPRrAD04E+j0Wg0Go1Go9FoVgCBZmdgMfT19aktW7Y05NyprE0smSVrK4Km0B0NEgmaDbmWpnV59NFHR5VS/c3Oh1+oVpNaX5pa0HpcGI1qI7V+NaD1uFBK6VFrSVMvFqJHXw/+tmzZwiOPPFL38x4cinHHQ8fojgbpjASYSlnEklluuW4rOwa76349TesiIieanQc/UY0mtb40taL1uDAa0UZq/WpyaD0ujGI9ai1p6slC9KjNPktw775huqNBuqNBDJH863v3DTc7axqN79H60mj8i9avRlMftJY0zUIP/kpwZjJJZ2TuomhnJMCZyWSTcqTRLB+0vjQa/6L1q9HUB60lTbPQg78SrO+JMpWy5qRNpSzW90SblCONZvmg9aXR+BetX42mPmgtaZrFihz8HRyKcft9h7n1K09y+32HOTgUm/P/PbsGiCWzxJJZHKXyr/fsGmhSjjWa5YPWl0bjX7R+NZr6oLWkaRYrbvCXc7CNJbMMdkeIJbPc8dCxOQPAHYPd3HLdVrqjQYZiKbqjQe2Aq9HUCa0vjca/aP1qNPVBa0nTLHwd7bMWCh1sgfzzvfuG5whux2C3FqBG0yC0vjQa/6L1q9HUB60lTTNYcSt/2sFWo9FoNBqNRqPRrERW3Mrf+p4osWQ2v+IH5R1sDw7FuHffMGcmk6zvibJn14CeodFoGojWnEaj0Wg0Gk3jWHGDv+0D7Xz6e8+RtR1620MMdkcwDIO3XLNhznGFm28W+gZqe2yNpj4UD/S2D7Rz/8ERrTmNpskcHIrxhb0nePxUDIXiqo09vH33Zq1DjUajWQasKLPPg0Mx7j84wvY1HfS2hxifznLoXIIbd/Rf0KjpzTc1msZRKvDSp7/3HLbtaM1pNE3k4FCMT37nMHuPjhMwIGQIPzs6zifuPXRBZGyNRqPR+I95B38isl1EHhCRfd77y0Xk/2t81upPbkC3tb+D3Rf1cdPlg7z4ol4OD09fcKz2DdS0IstFj6UmV7K2w7l4as5xWnOaVme5aDLHvfuGGU2k6YwEiIYCREIBOiIBxqczeiJG0/IsNz1qNI2gmpW/fwQ+DGQBlFJPAW+d70Mi8jkROZ8ToJf2URE5IyJPeI/XFPzvwyJyREQOicirFn4r87OQAZ3efFPTotSkR2gtTZbSYm41vhCtOY0PWDZtJLjaTFs24cBs9yAcMMhYjp6I0fiBmttITe3Mt3+2prWoZvDXppR6uCjNKnnkXO4E9pRIv10pdaX3+BaAiOzEFedl3mc+IyJmFddYEAsZ0OnNNzUtSq16hBbSZCktDnZHCBiiNafxG8umjQRXm+GASdpy8mlpyyEUMPREjMYPLKaN1NRANftna1qLagZ/oyJyEaAARORNwNB8H1JKPQSMV5mP1wNfUkqllVLHgCPAi6r8bNUsZECnN9/UtCg16RFaS5OltGgYBu+94SKtOY3fWDZtJLja7OsIM5WySGYsUhmLRMpidXtIT8Ro/EDNbaSmNnSMDP9RTbTP9wB3AM8TkTPAMeBti7jmb4vIrwOPAP9bKTUBrAd+WnDMaS/tAkTkFuAWgE2bNi3owrkBXWGEwbdcs6Fs51JvvqlpQeqtR2iCJitp8abF3IlGs/S0VBu5WHYMdnPrq7bPifZ57bbVOtqnxi/UpEcR+RzwWuC8UmqXl7Ya+HdgC3Ac+BVPj4jIh4F3ATbwPqXUd+p+Jz7hzGSSwe7InDTtr9/azDv4U0odBW4UkXbAUEpNLeJ6fwf8Ce6MzJ8Afwm8E5BSly6Tnztwhc3VV19d8phK6AGdxs/UWY/QRE1qLWqWA63WRi5mgjTHjsFuPv7Gy2v6rEbTTBahxzuBvwX+pSDtQ8ADSqnbRORD3vvfLzLDXgfcLyLblVJ2ve6jWlphb9yF7J+taQ2qifb5ZyLSo5SaVkpNicgqEfnTWi6mlBpWStlKKQfXKTdntnIa2Fhw6AbgbC3XKId2RtUsB+qpR2ieJrUeNcuFVmsjlVJ3KKWuVkpd3d/fX0s2NBrfUqsey5hhvx64y3t9F/CGgvQlMcPOUarNbBVfOx0jw39U4/P3aqXUZO6Nt+T9mvKHl0dEBgve/jKQi3J2N/BWEQmLyFbgEqDYYbdmWkUgrY7ukPuCuukRmqNJv+pR60NTBl+3kbpca5YZ9WwjB5RSQ955hoA1Xvp64FTBcQ0zw4bybeYX9p5oCV87HSPDf1Tj82eKSFgplQYQkSgQnu9DIvJvwPVAn4icBj4CXC8iV+KaqxwH3g2glNovIl8GDuBGZXpPPZfPC51RgfzzvfuGdeH0yFUu3dHgnMpFC7jlqEmP3rEtoUk/6lHrQ1MB37aRulzPTyuY1WkWRM1t5AKouxl2pXJWrs18+Ng4N+xYM+c89fC1q6XMazcOf1HN4O8LwAMi8s+4hfudzC6Dl0Up9aslkv+pwvEfBz5eRX4WjHZGnR8/dshXKDXpEVpHk37Uo9aHpgK+bSN1ua6MHhz7kprbyBIMi8igUmrIW5U/76UvyAybeXzi5ytn5dpMhWIqZdXV106X+ZVBNQFfPiEiTwM34M52/InfohppZ9T58WOHfCWi9dgctD405fCzJnW5roweHPuPOuvxbuBm4Dbv+esF6V8UkU/hBnxZlBn2fOWsXJt51cYeYsks4Op2KmVxYmyadd0RfvNffk4sadEVCXDZum62D7RzeHh63tU8XeZXBtWs/KGU+jbw7QbnpWHs2TXAHQ8dA2YFEktmecs1G5qcs9bBjx3ylYrW49Kj9aGphF81qct1ZfTg2J/UoscyZti3AV8WkXcBJ4E3e+evqxn2fOWsXJt5y3VbAfImmiFTMERIpC1Ojs0gIsRnsmQtm68+dpoXbOphU297xdU8XeZXBmUHfyLyI6XUy0Rkirm2zAIopVRXw3NXJ4r3FAubQjRo8JffPUw8ZdEdDbBzsHtF2/L7sUO+kliuejwwFMvPTuac1Is12Ao+N1ofmmKWgyZ1ua6MHhz7h8XqsYwZNrgriKWOr4sZ9sGhGCfHZ3j85AR9HWEuXtNOX0dkTjmbb4/q3PPt9x0mFDA5OBQnEjSJBE1SWZtnR6bpigQ5F0+zpa+j4mreUpf5VmjfVyJlB39KqZd5z51Ll53GkXNGzdkz27bD6fEkCMRmMrQFTe54aGbF2jXPV7lomsty1CPAyfEZ1ve00RkJlJyNbBX/A60PTTHLQZNHRxI8OzzFqYkZgqbBizav4r03XqLLtYceHPsHP+ox176t7QwTn3G3R3jk+ATPW9uJYRhzytl8AVUODsW478AwjnIYTWQY6AoDJuGAwXTaZn13hHgqmz++3GreUpb5e546w6cfeA7LUaxuD5LJ2iu6H76UVDT7FBEDeEoptWuJ8tMwcrML9x0YJmgKlqOwlcNM2mYmY5NIW7xw06qa7JqXy8yFjtbU2iwnPUJp34LxRJqP3H2ATavbmElnefj4OOmsojMa4Ir13Wxf25X/7FKXVa0PTTF+1uQ9T53htm8foj0cYPuaDqbSNk+fjXN0JKHLuYee9PEXftNjYRvYEQlwZGSa8USGoXiaj71uZ9VWMLlBZNAUUAamCGcnUqxfJZiG0B42mUrbVa3mVSrz9ezrHhyK8envPQcCq9uDpC2Hw+cTbF/TsWL9C5dyLFFx8KeUckTkSRHZpJQ62ZAcLAGFqweOckAZHB+dJmAKkYBBJGAwk7E5PJxgJrsws+1WWZnQLH+Wix5zFPsWjEylODycIOs49LYF+OGzY6Qth66ISSbr8OPnxgC4eKBT+x9oWgI/a/KuvSdpDwcKJl+MfPpNlzdsyzLfoSd9/IPf9FjYBvZ3RujvjOAoxVAsVXLgV66v+YW9Jzg6kiCWzDCVsukIu+ae52Ip+jrCXNLfztHRGS4d6MBRas5qXrkBx0KuX4s+7t03TNZ26G0PISJEgiYA5+IpQt7rlcRSjyWqCfgyCOwXkYeB6VyiUup1dc9NgyicXemOhkhlbRSKjKUImQaJtIXlOBwfT3AunuT2+w5XPeLWkZE0S4zv9Zij2LfgyMg0CESDJj84PErKcnAUTCYtejtChDB48kyMge6o9rnRtBK+1ORwPMWajtCctM6wyXA8VXGFYTlYuWiWNb7R40L868r1Nb+w9wQ/PDJGTzTAms4IQTPD+HSWjkiAtOWwYXWUy9Z18yvXbJwT7TNnxlntgKPefd0zk0l620OkLSc/8AsHDMans+y+aOW170s9lqhm8Pexul91iSmcXbl4TTuPnpgkIAYzljv7oZRCRHAcRVYUx0cTVdsd68hImiXG93rMUexbMJ7IkLVtsrYimXUwvW10bQWTM1m6IiZTSUf73GhaDV9qcqArQjyZza/4AUylbTrCgZIdwht39HP/wRFt5aJpdXyjx4X415Xraz5wcJxVbe5AQURY3R6mLeR27a+/dA17dg1w775hvn9olPU9Ud71si1zAsR0R4NkLJufHYuTSFkETeHze0/wZ2+8vKrr19rXXd8TJWvZHBpOAO7AL56yCBjCnl0DNZ2zVahlkmypxxLV7PP3AxFZC7wIN4LSz5VS5xqSmwZROLvS1xHhhZt7mJjOkLIsgqaB7ShMQwgHDIKmwbl4mh2DXVWNuMvN3IRN4fb7DusZUk1dWQ56zFHsW7C6I0RsOkMqmyVguDdnCogCpSCesumJBokGDf7pR8e1rjQtgV81efPuTdz27UOAu+I3lbaZTls8f31XyRnou/aeZOdgV8mVh77OiG7rNC2Bn/S4EJ/Scn1NhWLHYBdPnIoB7iAKpZhIWmwfaJ938/iAAU+cihEOGHSETdJZmx8dGeOep87MWSkMm1LXDeXdga9rijoUSzE2nSFoGrz3hot8XX8s1HwzN1A8cDbOs8NTXLaui/5OdxBY+P3e89QZ7tp7kuF4ioGuCDfv3rQo83xjvgNE5DdwN698I/Am4Kci8s6ar9gE9uwaIJZ0Iyk5ShE0TXau62J1e5iL+9tpD5u0h01EhL6OEPFUtuoRd/G5Y8ksp8ZnOBtLEUtm5/z4B4diS3C3muXMctBjITsGu3n/K7bzyTdfwcdet5Ok5ZC2bNpCJrbjrvoFDRABwxA29bYRCphaV5qWwa+avOny9Xzo1ZfSFQ1yPpGhKxrkQ6++lLZwkM7I3HnhzkiA4XjqgvS0ZfHDI2O6rdO0DH7TY2Eb+P5XbM+bV99+32Fu/cqT3H7fYe556gyjUym+98x5Hjx0nuF4Mt/vvGpjD5FggBds6iEcNEmkbRDhZRf3cnh4Oj+RY4jkX+e2VVrfE+Xg0BThgEEk6PaBESEaMPj0A8/N0fXZWIpT4zNz+rqxZLbmVbrcwHdLXwebett57eXruP0tV/je37jQfLPUd15IbqAYS2a5YmMXUymLnx0dn/P77tk1wD1PneFPvnmQo+cTTCUzHD2f4E++eZB7njpTcz6rMfv8AHCVUmoMQER6gZ8An6v5qktMqdmVD+65lM/vPcH+s3FEBEEY7A5jGq7jabUzGqXOnekKEwqYc2ZIJ6Znoxjq2VHNIvC9HsuxY7Cbl13cywMHz5OxHbqjQjpruwNAUxjoirBrfU9Zm3jtj6RpEr7V5E2Xr893tnL62X82xrPDU+xa30Vfx+wM9EBX5IKZ/wNnp1jVpn3eNS2Fb/UIc1eOAgZ86+mz/P0PZugIBYiETM7FUpyLp7jheWvym7znjr926+q86ejbd2/mn350fN7N47/2+Bl6ogGUUqQth7TlEDCFtKXm6HpzbzsZy40YWq/It8sxmNJCzDfn+vkF2X2RsO9MnCdPx3jlzrX57/eDX3mKqVQWEBylMET9/+29e5wcV3nn/X2qqu89F81Fo7Fs3S1bsmODMRiBYQ0YcHAWkiyQ5I0JecMusEmchSwh2c0mQLJ5lxAWsiHZBC9JcHACgU0AB4KMDRhzkY0v+CJbtixLlmRpNBrNaLqn711V5/2jqls9Pd093T3dM93S+X4+85nu6rqcqj6/Puc8z3OeA0XFX917uO3BcjODvxeAhYr3C8Dxtq62htSqZO/Ys5nb7jvC5pEoB6dT2K6i6LhsGY22NK+o+twf+NJjjMbPPdozqRxPn1rAceG6rSN6roRmJZwXeqzHO/ZsZjqZ58iZNPGQiQCpvMOm0SimITU9EifmszrrrmYt6XtNVurn6ouHePDIWfY9N8d129YRsrw1ON+5ZxP3HJgBzs1POpsp8ortI4vOpee8a9aYvtZjaUBQsB0ePZ5gdiGPUpApOihgfCCE7Xhr2Jfatnqho8sllNk1OcSrdoyy/2SShbzNYDjAlRsHuf/wHKOxIAdPJXnsRIJ03iEWNLlkXWTJXEDNYlpJ4lM9UByLh3n1zhBTiRzvf/3O8vYjs2mKjiJggmkISimKjuLIbHrJOZulmcHfCeABEfkqXvz0W4AfichvAiilPlHrIBH5G+CngNOlNVdEZAT4R2AL8DzwdqXUWf+z/wK8C3CA31BK3dX2XTVJpdcuU3RI5myGIhZbxuIr8hosyWJ4Ou1NxI2fcwODto5q2qItPUL/aPIDb9zJHfuO8uPjCRSK67aN8I49m9m7f7ruj6rOuqtZQ9rWZK+wOCN2gOu2CU+eTPLY8SSv3z1R7kxuG48v6mRev2OUoLU4LftK5gFp772mA/S1HksDggeOJAlZBlnbRfA6+0rByfksGwZD/Pj4fPmYeh60ZhLK3OI7QYYigfI+AdPAcRx+8NwsQdMgGvCWQztwaoGvP36i70Mzu0krSXyaHSg6rvKmvoiXBU9EEFE4rmq7nM0M/p7z/0p81f8/sMxxnwX+HPi7im2/A3xLKfVREfkd//1vi8hu4OeBK4CLgHtEZKdSqrVF99qgJJrKRqdErYYIWLZxqv7yz6TyBAyDHeOx8j4DYYsnTyYaJoUpTwSdSpDI2gyGLa64aEg3iBc27eoRekiTjTp5uyaHuGXPZsYGvM9Lk58rdZUr2hyYWuBspsirdozy3EwKV1G2Xu5YH2MkFirrWXcqNV1kJZrsCaot0OMDtS3Q1Z3MkscQlu/oLIf23ms6RF/rsTQgSOVs4iETVymKLn72a5d0AY7OZYkGTQ5MJRpqY9fkEDfuGl+SKKTymJIT5HP7jnLPgVkEYdtYlB8cmsUQIWidS4q4LhJoaR3QC7HdbSWJT7MDxZFogNMLBWxRGAKuAteFsYHAknM2iyjV/shx2ZOLbAG+VuFleAa4QSk1JSKTwL1Kqct8DwNKqf/h73cX8GGl1L5G57/22mvVQw891HR5Gq1dVG35ODqbxhDhkpFow22JbLFm41R5rWNzGTYMhNg6Hi9/fmQmxcHTKV6+bbTmuUplcl2Xp08teBNxFeyciGOahm4QVwkReVgpde1al6NT9IImS3XbcVxOJXPMpYtYhnDr67Zz81Uba+qxpA2Az+07yvcPzbIuGmD3RQNk8g7feXqGkViA9YPh8ryFyybiZS9+vfNpDfUX55MeV8MT32wb+cm7Dy6xQJfeVw7+atGpDt5KyqBZG84nPa4GrbSPh2dSoBTPTKfI2y4BExwXBC8BWiRocdFwhIvXRRY5BSr1GDKFk4kcm0djDdu+Wm3uPz54jKApFBxvKbR4yGQsFiRddPnub71m2Xtt1I7rdvcczfx+/u4/P843nzpFpuBgu2AZEA2avGH3Bv6oIgy3FT024/nrJBNKqSkAv7O53t++Ebi/Yr8X/G0d48BUgo/tfYa5dIGC7fLs9AKPvzDPB2+6rGbI2AtnMySzNlOJHPGwxY7xGHPpAgBXbhwq7we1Q8sqLaSVGX1KIjg4neKyDfG6YWqlMh2YShIOmIQDJrmiw6mFPLubXIZCo2mCVdfk3v3TOI7L4y/Mky26OMoLZ/mTvc+Uw8pKepxZyHFoJs1cqsCH7nyKj7x5N+MDYV57+fqyZu6fmWU0HvTCtm2XkGWQt12emU7x3hu265BQTa/yWXrEEx8NCnfcf5Js0cEQRTRoMhILc+trty97bLNJGw5MJRaFc7/4kmHesWdz+dhGiRIuRA+C5sLiwFSCz+07yo+Pz5MvOhRsl7OZAkU/tK/gKz1kSnmJMoCknxXytvuOcPmGGJ9/4DjzWRvLFJSriAS87NiGBOq2fdVtZNFxcJVLMgemAYZAKq9I5x22jMVoBt3uNkczv5+37NnMqWSeM6k8edshZJmMxUPcsmdz29dd7cFfPaTGtpouSRF5N/BugE2bNjU8aWWD8fRUkvl0gdGBEAXb4ehcmlzR5f7nzhALB9g2FmPH+jjjA2EOnkpydDYDeJMri47DI9kiuYJNOOjNbyh1SheyRRAaNka13MCXjEbYNLpYRJUT5UsNYTJXZCDkfU0hyyCVs/WEes1q0BVNgle3n5tJMZ+zMYC87VC0XebS8La//CEKiAYtgpZBrugyEguwLhpgNpXntvuOsJArsmtysHy+ZK7IWDyICF6q65wXIj0YCbBrcqhhxjPdqdSsFUqp+3xPfCVvAW7wX98O3Av8tr/9C0qpPHBERA7hrWPW0BPfDF9//AR33H+ckCWk8y4FR5EpuNiO4lPf8qLnVjrH58BUgo/fdbAikZPwwOE5phI5PnjTZQ2TUwRN0eGgmvOaknPi2GyGeMjEFpjPFglZJkWniIi37JGBt+RRKSv9YNgilXfKGeX/4juHAQgHvIVyz+aKFByXx15IcOMurw2s1X+sNLycSeV4+Og8lmGQx8X119kFheO6rIs2N2xY7UXLz2dKuRA62VdZ9lsUkVcqpX6w3LYmmRaRyYoQs9P+9heASyr2uxg4WesESqnbgNvAc6HXu1CpsTmTypPMFjg2l0UpOJXMYVcclbUV+VSBXMHmmekUo7EAs2lPbKYIjusyl/Y6oNmiy1A0yMxCjkeOzfuLwgsismxjVD26rxXiUjnRs9QQDoYD5IoO4YDJ2UyBdMHhG0+cYiQeXDbeu/QcdOf2/KHDeoRV1GSJjcMRvvHESbIFF7fqs1TB25IueF72aECY8z8bi4fKaaYrU84PhgMkskXGBsLs2TYKeGHVpxbyfOBLj3FsLkOh6CwKu+6VTqXWZ//TYU2u2BPfqjHm9n3HiIUsFnJFokGLbNHBVYps0WEmlee/fnk/Pzw0yy0VXrpW2bt/mjOpPKYBs+kCedvFFOGFs5myJ6De/JdowNAeBE3TdKGN7Dp7908zly4QD1uEAyYnEzkcV5EoFAmYQjRskrddbMel6Lhkiy4Fx+XYXBrTMPjqoy9wJpUnnXeJBA2UEoKWSdAyydsOh2dS3Jm3yTue7iaHI4v6jxuHIzx/JsWpZJ7nZlKYItiu8tfY9V4rYONwmLm03dQ9tZL1UrM8nV4WY9lF3oFPNbmtGe4E3um/fifnJuLeCfy8iIREZCtwKd4inW1zx76jHDmTJudn8XQVuLBo4FfCxet0KuUyncyRyXtzkIKWAXhpVU+czZLIFUlmizx89Cwhb/YtBUdx5cbBuos4VlK5cOeZhRxHZ9N1F8wsLR6/YTBErugwncgyncgTMg1MAyYHQw0X0z0wleB3//lx3vO5R7j3mdNYBnoB3vODTuoRVlGTJaJBIVNj4FeLTFFRKDrMpYvsWO/NWxiKWGW9uEqxYTBEOm+zYSCEqxRHZlL8+Pg8k4MhJofCTPqZ0Y7MpBZpTaDpxVhhsX4/effBFeuoMhxcL5Dd13Rak7Vo2hOvlLpNKXWtUura8fHxmierrMvPnEpiiLfGV8FxMcS7WN5W5Io2iazN3//oODf/2fe57v+7m39/+4Mt1/8T81kSmQJz6SK24xI0BYViOpnnyZPeeUoRMkORAFOJHEORAO9+9Vbyjqq7xItGU4PV0GNHOTGfpeBPWZhN5ZlLF8gXPa+b7SoyBYdc0aXogu03nLmiy6lkgWy+yELOIV90UYDtuKTyDgXbIWAKBQeKjksyVySTd5jPFIgGjEVtzc6JGI8cmyeRLaJche26FB0vZHR8IMSGwTBDkQDrokFU7Z+dJdx05QTH5zLc+8xp7npyinufOc3xuUzbi8JrOktdz5+I7AFeAYyXUuT6DAJm7aMWHf95vPCVMRF5AfgQ8FHgiyLyLuAY8DYApdSTIvJF4CnABn5tJXMZDkwl+NcnTpEp2DhKgarTSlZRdLx1/oKmQdgyuWhdhFOJHAu5IoZhcOn6GNvG4nz3YCm5RKS8EK6r1JLGqNKqHzSF6WSeS0aiTA55i+UaIhRsh6mEvSQjUPUyFE+eTDIYtVg/GGbH+hhjca+zWMv6WTlheDjifcWPHk9wzabhcue22xZT7dHoLCvVo3+ONdNkJXc+dgpTahtiapEuOIwPhsp1frfvJSjVry1jcd5wxQQHp9OcmM9yaiHPNZuG2TLmefpK/6eSeYIBs6y1v/7+84zEm+tUNpuJsJV6r+dE9Ded0GQNVuyJX47KZGJTiRzZvMPTUykMw0soUSnLdOGcicZVMJ0ssJA9w9NTSe568hS3vnZ7UyGhG4cjfK/oIoBlejZnAYKmQTJ3zpNQy7rdzx4E3Q6uHl3S46qwcTjC48fnvekQmSJOhQhtF4yqIVcp4yNAMu8QCwoKT1MFB4K4ZIuC43vvLNPAVRALmcRDIbJFly0VfcGD02lefMkwh8+kydguylWYAjnbJeK4KOVlG03lHa7btnhdz0a4fkJJ8W1XbhcTTGpao1HYZxCI+/tUpshNAm9d7sRKqV+o89Hr6uz/R8AfLXfe5SiFe6byNqYBjtPcwA+8hsg0hMmhMNPJPIZ4E2tjoQCmIVx18TDjA2GOznnzAV/uh5jB0saourN438EZFnI2G4ZC5ybejkQbZjKrbAg/8KXH/Em75wzA9Tqq5UVCHZeBkOVlCgUOzaS5butI1y2mOmV3V1iRHmHtNFnJgamEl8WsBVy8xq7ksSsZSarr0s3+/5JWKtk0GiNgmXz8bVeXt7XSqWxmoNZqvddzIvqeFWuyBiVP/EdZ6on/BxH5BF7Cl7Y98Xv3T+O6XkIkx3UJWEKxoMoeheXIFF2G/Ub1T+56hh8emiXvqIaDm5uunOCLDx0nV3QwDL+TaisGI54nvxGtrJvVDdodwOl2cNXphh5XhZ0TMb7wowIpP0qtmkppmuLlf3CUwnY83eZth5gfsl10FLYDrnIw8BaFDwe8BCEiXiRbMldckmMiGjKxXcXFw2HfQ+94HkXb80BODoW5aDjCO5pMMrJ3/zSbR2NcdfFweVs9h4Vm9an7q6uU+i7wXRH5rFLqqIjElFLtLye/SpTmFkQsIe27wZuhlHhiNBbEdWFdNMDJsxlm0kUAwhY8/kKCqy+ByaEQ+w6f5WuPn2Q0FvQGZYaxqDFamj1JEQ+ZHDqdZixef+JtPVrpqJY6lZXzBUvJYlbDYroaHo0LzaLar3qsZu/+aW+xUsOfwd4kh2YynJg/xrpIgGjAWDT/qLouhExZNCcQamullU5lMwO1Vut9paYrs5o2O59Xs7asVJNr5Yk/MZ9lKpEjZBmcSRUJB8xFHr5myBQcPwlTkR89P8e6aJBHj81z1/5T5SVbKtk1OcRrLxvnoefPMpvx5vNuXBdh+3is7JmvRyvrZrVDo7ZkJQM47dlfXfq5jTw4nebl20a568mppvqstj9CLA0UwwGTmJ8Y0FU2ji/nTaMxNg6HeXYmzbOnUwRMwXYUhiHcd3CGjcNhPnn3QZ46meRUIgtKYZgGhihMwyAWgmjI4oqLBssRN83WXW3c7Cyd7vM2k7bnIhH5Bp5FZZOIXA28Ryn1q21ftYucmM9yOpkla6tW+pZ+rLQiW3TJFvMUHZd8RVxawYHnTi8wly4gAusHgqyLBplLF0lmbW593fZFX0R1xY+HLfIFm2SuWN7WykCslY5qqVO5Y32Mh4/OA5Ap2CSzNt9++jSv2jHa1c5lt0XfKYtqnw4g+0qP1ZyYzzIcDnAymW/5WMd1Wcjb3PvMDKeSeT7wRs9jXl0XTiZynoe8aj3Oaq200qlsxviyXL2vrm87J2Lcc2CGuVSeg9MpEBbN573QPAR9qkdoU5Nr5Yk/lcjw8NGzKLwsfqVYEqH5KBnbdZlJ5QkYML2QJxq0GIkFSOZsPvXt59g2Hl/y3d2yZzOZortk3a9m5gB1OtlBieXakpUM4HTnd83ouzbyxHyWvO3guMur0FHgVHVuk1mbVM7GURAwwDCFkGUQNIVnplOELYO0cjmbdlDARUNhZlMFTiWyBEyDzSNhnjmVxDSEgRAgBrbr8sodo8TDwUURM83Sz+HavUY3ogiaSfjyp8AbgVkApdRjwKvbutoqEDKFM6lieW2UZrEMT1QF22UkFsQQo5ztyJRSLLXiTCpHuuDw0i0j7Nk+xs1XTfLy7aMcnF5sYNo4HGGhYi7DjvEYqbxD0DRqJniBxgkl6k2Grxdik8gWCZgmL940RLbgcGI+x2DE4pU7RghYZlcTS1TfO3RW9JUNcjOJOmrRx8k2/pQ+0mM1G4cj5Tk/rVJ0IFt0yBYdzqTy7N0/XbMubB6NMTEYomg7fOvAaR44MkskUPuauyaHeP/rd/Lxt13N+1+/s+4PaUlT9RI0le6tXr2vVd/uOTDDjbvGObWQp+h6neJrt6xjy1i85frc7/SxHqGPNPnp7z7Lg8/P4fjp2xXnQspaaTFzRcdbcNhR2I7L0dk0T00lmUpkmU7muGPf0SXHtNKGrRbLtSUn5rNtJ5tppx3sdFKpC5Q/pU/0WGLjcIQfH0tgtNg0eikJPUrjQVtB2DKIBi1OJvKELIOJoQjgJTGMBi1sBUPRAOtiIU4l88xlbIYj3vSmTNElFDCYHAozlci33W9rps3UNEcn+rzVNLVgh1LquFTMNQM6kvihGygoL37ZLKUItInBIBODES/zkj/zXfkDP8dvKJUDw2GL8YFzFr1ajUG1py5omWwajXLRUJipRG6Jl6GZkX2z1s/FHg2b4ViQyzcMLEp1D90LP+n2HI1OWFT7OSSnn/RYzU1XTnD7D4+0dazCm/w+ny0iZzM8eTLBcDRYsy4cmMowEA7wsq0j5Tq4EktZM17CRvW+Xn07OJ1m00iU67aONDWf93yln/UI/aPJ2/cdw0AwUE1l262F4A0cc3kHBxgImWQLDo5SuC4ETOFbT5/mlhrRJe168LrlFV6uLVmJ96LVdrDX5gj2sSe+b/RY4qYrJ/jM9w5jtxKuhj8fHkAoJ2WxTCFvu4QCLpmCTa5oc/2lY4vWjE7lHZTytFuKRpscDnNyPucv6RAhV3Q4m2l/sNbtcO1u0mt1vxtRBM3YGY6LyCsAJSJBEfkAcKDtK3aZgqMIWLWyYtcnYIBlCPOZIjMLeWw/uxF4nU3xw7EET2xzmSL7Ds8ys5ADajcGtaycH7zpMv7oZ6+q6WXo9Mi+0qOxaSTK5rH6C8p3mm5beDvhWVyJRXeN6Ss9VrNrcqglD0OJSkW7ysse9sJZL4turbqQ9Of8dUJPJWv8X3//eQDedf2Wml7CRvW+UX3rtqe8H+hjPUIfafJsukDBUeXlHFrhkuEQgyGToCXEQiaGnz8xU/CSTDiu1z4WHUU67/C5Gt6/duimV3g57a3Ee9FqO9gN63679Lknvm/0WGLX5BAj0UBLU5VKuJTaRA8v4YvCEAPLEFwFDx+dxxRvUJi3XeJhi3jYYiHvMBgOMBgOYBoG4wMhokGThbyNiPCqHaMr6rc1G1nTS/Ri3e9GH6EZz997gf+Ft6DsC8A3gZ6Nnd44HMEyDPItGHryDpSCXk4mvAGdIefCYYpVJtJMwebpqSTPnU5x5UUDjMTDNa15pYpesiCUfsRXO/PfWsRed2uOBnTGs9jH8eh9pcdqDkwlyOSbWyS2kuo2MWc7KKWYTxfIO4ofp/IkMgWyRRfDECIBg/x4FDj3/VbPv7tj31F+fDyBQvHiS4Z5R41FrL/++Ak+9e3nKDouo7EgRdvhtvsydTtx9ep9o/q21tkMe4E+1iP0kSZNw0sJ3+zyR5Ukcw628tb+ioYsBMEyHDLFxWdygVTe5l+fmKqpqVbppld4Oe2t1HvRSjvYS3ME+9wT3zd6rCRoGZgt5EGr3Lfk8QMvd4X4bh1DhEjQs9JkCzaz6SKO67JpJMpYPMhU3uayiTjRkMkDh88iwKsuHSMc8NbSvaXJzJ69xEq9dr1Y97vRR2jG8/dSpdQvKqUmlFLrlVK3AG9v+4pdZudEDMdtN6DlHPUiR319EbIMio7L/pML3LhrvGalaMWC0E3r//kWe90Jz2IfP5O+0mM1f3bPs0uMKa1iiTenYTqZ475DZ5iaz5Ap2MxlijiuImh6S7Q8cPgsZ1K58nGV8+8+ftdB9h2ewzIgaAgPHJ7jY3ufWaTNA1MJPvWt5wAYjQXJ2156fNd1W7bGN6pvvTgXarXpYz1CH2ly61gMV7UeAyd4bWI8aBENWjiOIme7hCxzUcKY8v4C6bxdbu9WMpetm17hZrS3Wt6LXooA6HNPfMf1KCLPi8gTIvKoiDzkbxsRkbtF5Fn//7p2z39gKsH0Qr5pi0zA8DNm+0SDJuGA6eeUwDfuKMYGQrxi2wimAaeSeSYGQ2waiZKzXY7OZtg8GuHZ02kePZ7g8ok4120bwXbp2zaoE167Xqz73egjNOP5+z0RySulvg0gIh8EXgP8VdtX7SIHp9OsHwhz7OzKv6iA4YV9VurR8YWVzBUZjQUxDYOD0+nyGmOV1LMg3LHvKGMD4UWWiW5a//s59roeK/Us9vEz6Ss9VnJgKsF9h86s+DyGIZiGgWko8jmbk4k8F6+LsHUshuMqZhby3rxAER46cpY3XLlhyfy7M6k8A2GLcMCPXRNhLl1YZN3bu38a21WMxAKISHnfqUSOgNXamsHL1bduesr7gV2TQ9y4a5zb9x1jOpljYjDMO/ds6pdn0jeafO3lE5w8m2E205r3XQELeZsFP0mvAAFDsF2FVCQoFM4tQG2YXuji5/YdZTqZ50wqT952eHZ6gf0nEnzgjc0NpLrtFe4V7fVSBECfe+K7pcfXKKUqG7DfAb6llPqoiPyO//63Wz3pgakEH9v7DLmCs6xRpqQvhee5MQXCAYNI0MRVMBizKDo5XKWwTIONQ2FmM0VOns0RC5lcu2UdY/EwMws5Hjg8x0LO4XW71pfr2ko89b0wT64TXrterfud/p1qZvD3ZuBrIvJbwE3A5f62nuTEfBZDlt+vGaJBk2SuthzztmIha1N0FV986DjAkspeK4wjb9v84NAcr718/ZJJ3d0cjPRKA9dL9Okz6Ss9VnLHvqMU7ZXPuy84ilzRwTINAqYgAqeSOSYGvMxllj+HdyQaYCqZ48Hn57yGMWyxd/80T00lyNveXIcSIctgIWcvsu6dmM8yEguQt93ywC9kGcymC+zZPtZyufu0vq0KB6YS3HNght2Tg1y3dYSFnM09B2ZqLhnQg/SNJm+6coJ/fPAY3lKB7aOAgqsIAdGASbbolOcdiXje+UjAYiBs8bXHTyMIA2GLwbCnpyNn0tyx7yh/9LNXNVXmXhkUdZNeMkj2+TNfLT2+BW+dToDbgXtpY/C3d/80h2dSVKwsVhfFOQdEwFCMxIIETYNwwGTH+pi/jnQQ0xAMEZ44kWQkFsBRivFIkIePzvOSzcMcmkkTD5kUHLc8v7RUlnYTMvVCsqJafe5c0eaBI7NND0r7vO43zbKDP6XUGRF5M3AP8DDwVqVUE9V0bdg4HOHb2eLyOzZBos7Ar0S66BANeGEvpcp+465xDk6nOTGf5dhchkLRWZRl86mTC6yL1rZM9MuEWM3a0W96hHMWwa89ccrPaLny4iZyNiFLcByFwlu7aC5dIGhCLBQgHDCJhgJMGgbz6SIv3z7KQNibx3B8NotSLBrU5W2XoGUssu5tHI5QKDocPJ0CvIFfMmcTMI1+CUfsG3pxnkWz9JsmW82G3Yh03uEXXnYJ9x6cYTaVp+govHRMMBoLsJCzWcjZXDQULmstHDBRSvHj482FYvXSoKjb9IqBqJ898V3SowK+KSIK+LRS6jZgQik15V9zSkTW1zpQRN4NvBtg06ZNSz4/MZ9lKtFapFrQFESEoClcfckQR+ey3H9kjpBlsHN9nETO5tBMGsdxSReEzaPRcjbpQ6fTpHI2lsEiA+hKQhtr/X4/fybFu25/iIBplOvPzVdtbOv8zVLttZtZyPHgkbPEw1bTg9IL5fem7uBPRBbwKnyptxYEtgFvFRGllBpcnSK2xk1XTvBX3z20KtcSBaGAScgyGIoEmEvl+dS3n+Pl20aZHApTtB0eOTYPwOaxGAs5m7OZIq/YPrLoPN2IJ+4FF7ymc/SrHistgpYBjtGZwR943vel26BoF7l4xCJvu1iGkLfVokZp50Scx08kKOYUSikEL/X1ptHookGdZwHMsHN9nFPJHHPpIpYh3Pq67T2hpfNJ472U7KJZ+lGTd+w7SirXGeMoeMldbtmzmWdPp1jIFnFcB9OAgGmQtxVHZ9MMhK0lmUW9B9az4+MLnn70xHdZj69USp30B3h3i8jTzR7oDxRvA7j22muXVPqgKRRaDIiJBL1+ZyJnc3gmw86JOK6rsB2Hx08kmRwKEw0YmCGTvK24eDjCkdkMIVOYTmbJFlzSeZstYzHOpHKMxcNthTaW2qCvPHqCiYEQO9bHGR8I8+x0koePnsUwhJ3r4ySzRT76jWcAujoArPbaPXkyiQKu3DjYkoezV4ww3aTu4E8pNbCaBekUuyaHcFae76UpDEMYiXkLZQIcPpNiOpnjgSOzDIYD7Fgf45pNw0wl8wQDJhuHI1y/Y5Rg1XyhTscT94oLvrI850snda3oVz1WWgQnhyI863vR2sUSaobHlOYZCWCa3lykazYN871nZ3Bc+OZTp8qa3DwWI1N0mBgIlbN9XrdtZMl8h0oLYDBgsmf74rq7lvW61zS+Unp1nkUj+lGTXn3vnAEGPJ1cuj5O3nZZyBX9RDAGQcNgZiGPUoqjZ7NMDIQYinhhn6m8w3XbRpY/OedfXe8H+tET3009KqVO+v9Pi8iXgZcB0yIy6Xv9JoHT7Zx7Pl1o+ZiC7Xpzbh0XBJ44kSCVL5LI2DhK8fxsmoBpgPLW83zw6FkmBsPMZ4vMZ4usHwgRCZrYruKh589y+YYBDMNoKbSxUpcTAyGSOZtHjs1zzaZhHn0hgWkY3pIwhsFQxMstefu+Y10d/FV77YqO4rpt3jzHEr1uVFwtlg37FJGfAb6tlEr474eBG5RSX+lu0drjwFQCu4NhLctxeiFPyDJ5djrJ87NZogGDgZBFrujw8NF5XrxpiE0jUT7+tqs5MJXgc/uO8u2nT7MuGmD3RQOELKvj8cSd/OFeaQdXN9ydpd/0WOnRufqSIZ6bWdngr5Ta2sDrviq8Se+RoEnBdjEEgqZBrujwvWfPMJ3IMxoPLNLkZRNxrrjIy+C3HPUsgJ2s1+1orB87Z43o53kW/aRJhaLYYevov/mT75DO2+xcHyMcCJPMFbFEOJPKk7NdhsIWtuNycj5LwXEZDAfYNBrlHU2mkd+7fxrHcXlqKkkqZxMPW2wYCPVtXe8H+tETX6LTehSRGGAopRb8128A/gC4E3gn8FH//1fbOf+B6YWWjwmaBo7rhVBbBpzKFFFKYSuFUlC0FQYuOVsRCxooV+G4irOZItdsGubqS9Yxs5Dj0EyauVSBqWSej7x5d9tLIlw6Eefho/MAHPKjAIKWwbposLz/QMhkOpmrc7bOUdlmf/LugySqpoH1ulFxtWhmqYcPlUQEoJSaBz60kot2M21uJxdENYUlyWNKDyxggmHA+ngIU+CHh+cQFMPRYDkzYMgyeOrkQjm9/G33HSFomeWwzx8cmqNoOx0fCHUqVW0n0ub20sK15wkd1yN0T5PV6ctXmotJ8JZmUEDIEixfo0opgpaBIULeUbgKbNdlbCBIuuByNlMgZHnqfWY6teI5e52q1+1qrBfTUa+EPl/uoiua7AZBQ9paSLoR6+NBbNvlgefPcnI+w0DI4uR8lplUHgHWD4aZHApjGgYC3HDZej5402VNf7dPnkxwcDpFvugQD5nkiw4Hp1M8ebIvFhzvS3pp2Yk26LQeJ4Dvi8hjwI+Aryul9uIN+l4vIs8Cr/fft8yZUgrdFsgVHVylGIuHmFkoEDSFor/MkSle0iXbhXjQxAXEONdGZfwY0/GBMHu2jfKTP7GBTSNRgJaWY6lugyxDmFnI8cx0inDAZCBkEQud+3wh7zAxGK51qq7R50sIdZVmsn3WGiA2c9xydCVt7rcPnOpA0TwUXiiZibcukiEQCRiYIrgKNgyFUcCJRI5Mvkg0aFFwXHJFx+toKsXZrM1NV04s6iwORQJMDJ4Lc+p0B6c6hOrZ6SQPHT1L3nZ5+6czTU+87YR3oZ8tiD1Kt/QIXdBkyaNzNp3n6VMLuCucd+8CRdebLWTbCiXguFAseF4/FMRCJnu2jXBk1uuIzmeKpAo2AdNhMGwx2AHNdapet6uxfgyTPI/ppiY7yrG5zv/unkzkEEMw8JIuTQ5FSBVsDBFMA0SEkViISMDEdmnK415JMmeDsChhTN52ve0VtBuloqclLKWfPfF0WI9KqcPA1TW2zwKva/e8AF9//ATpYmsT/iyBWMhifCDkhVAXbCKWgVKKSMAkrRziIYt0wSYSNMjZijdeMcFYPMy+584wWxVmupCzCZnSciRLqQ0qOl5ETcgyuHg4AiKELIOjcxkS2SIDIZOFvEM6b3Pra7e3/aza4UJJ3tIOzQjiIRH5BPAXeOOhW/EyKHWajqTNfW4m3XYB4kEDRylsF4q+98AQz6JhoQhZJkVXYRrCppEwjuut+bVhMEzAEDJFB5TnXk/lHQKmcP2OUXZNDvHX339+RZ3FA1MJ7th3tDxH6cWXDNddk6Xyh3s6keF7z85iGMLFw2GS2SJ/8C9P8fXHp4iGAg0bu050cHUnteOslh6hA5os/fh+6M6nyBScFc83Chhe6Kfgzf2z/LTytgtKea3+uliAw2cyfrIXl+FoAMs0eP3uiSV1sVVKHcWnTiZ5dnqBKy4aZHzA00ijel2vg9muxvq8c7aEPg8PX01NroiF/MqWeKhFruh17KJBk5zttX2GCOGA+Hr3qEzy8vXHTyzJJFnPIDkUsUhkCmWjat52UUoxFDnXfWm3/pTWWJtLFyjYLs9OL/D4C/MteSbPR/q809w3erx93zEipkHGdZdtFcfjAYb9MMq5dLEcXZbMFrEVBC2DoGUyEguWNegqYdNIpDznbcNgmKTfVlS2G5GA0bIRstQGHZ5JETQ9necdxTWbhghaJmOxIGcyxbLGb33t9q5n+6zFhZC8pR2aCfu8FSgA/wh8CcgBv7bC65bS5j7sp8GFqrS5QN20uSLykIg8NDMzs+TzXLG9+QyWeAM+24ENgyGuuGiAWNDAwBPCW6+9hF0XDTExEMJViqlEnpPzWVzX5WQiSypvU7C9a0eDJi/bOsK28Xh5XkMzYRQHphI13e4HphJ8/K6D7Ds8h2V4oTsPHJ7jY3ufqemarwyhevDoPKGAyaaRKAORIJYhZIsuDx09u2yYWSdCP7TbveN0Q4/QRU3umvTmvU4OhTFXmGgiHDCJBAxClkHYMhiJBRmKBhkIW0QCBi5wfC7H87MpDs+kOHQ6xeGZNCIrr3uVIZpXXzLIQs7mgcNzTCezDc/dKLSzXY31eZjkEvo8PLzjmuze1IjOz4dPZG2UgnTBYTQe5PW7J9g+HsdxBVMEpbx1OVN5hxdfMszXHz/BR7/xDMlskfXxYDkT4NcfP1Hz/Lsnh7h8wwDhgMlC3iYcMLl8wwC7K+p6u/Xnc/uOcmw2A1AOYTs2m+Fz+4526On0L7smvXnRH3/b1f22DFW32siOM53MEQmamMvMhwgYoPA8auuiQQbDFqGASdFRDEUDvPiSYW7YOc5wNOBPeVAMhCwKtstYPFjue5mmwa2v3b6k3Sg4quVpBKU2qOC4FB1FKGByzaZhxgfCDIQtouEAX3zPHr77W6/hi+/ZsyYDP019mlnnL40X7tVJupY2t92p7LYC21EY4glyKBIkaJm4riKRK3LodJoX5tLkbBcBDBFyRQfbxVsvJRJkxHdv5+Yy7Nk+xku3DLN3/zR//f3nCZnCyUSOzaOxmpb6RpbLvfunOZPKMxC2yqEviDCXLtS1zJSsHV959ATr40EMwxvnn80UCAc86+lyqW874V3ocwtiz9ElPUIXNQmeIeHRY/PkVjjhyHZcRISi7WIYngaVErIFG9Pw1hdzgVxRYRleGEzedjiTKlBYwfzaA1MJPnTnU8ym8ozFQ+xYH2PP9hH2n0jy2AsJ3rB7Q9163Si0cyUaO58smifmswRMuP9wkmSuyGA4wLbxKCfmO++p6jRd1GTHw7AjAa+N6iS2qwj4WXgnB7yO5vbxGDOpPIN+nU7liyRzNvc+M8Odj51kMGxV6KFxJsDSkiu7JgcXaaTS0NKuB/3Hx+eJh8xFIaUoxY+Pz6/kkZwX9Gs4bBf12HEmBsM8tZBDRLzQlTrYLriOywtnc0wMhhgf9ObrlSJZSlOLphfyPDudIhIwuGg4QjRgcCqRJ2Al2T05VG6jbq46f7sRWrsmh3jD7g06uqsPabTO358rpX5dRP6FGuZCpdSb271oN9PmrhjlCe3E2Qw528Xl3EBvLuOt8zUQCTASDbKQLeKt+SlMDoWJhbzMnYO+GCsHcws5bw5EwXaYSthLBkHVHcSi43B4JsVvfvExBCFTKLJ+4FzjFrIMFnL2so3bxKAX6llqYPO2i+uqRRNx6zWSnRq4nU+d1LWim3r0j++qJm+6coK79p9ipYl4i67CMgTDANPwEiudTRe9JBZKYRigXO8BOS5EgxZjAyFeumWk7fm1JcPMXKrASDRQzhr6ks3DvHrnOFOJXMN5TI06pto44hEyhX2H5xgIW+XMrA8cPsueJpcDWAu6rckarDgMuxuDP/AGfmOxAKZlMZXIsWUszhuumODgdJr7nzvDifkso/EgY7EgMy/kmVnIEw1ajMa9ZZIaZQJsRiMbhyMcmUlxaiG/KCPo1vF4w3J7bavDjB/2GbQMYgGTQNVyTO3SrwOofgzDXgM9rph37tnE+//xLE4TDaNpGthFl+mFPC/eNFyONik5GU7MZ3EVvHL76KJ6v8UfmDVqo1ZihDzfpiBcKDTy/P0S8OvAxzt5wW6nzW13RlHpOBcvwctC3iYWtMgUHWL+gpqm72mYHIoQDZqEgybZgk0kaHrzHYpOeS5CTWv/SLSuCCs7iGdSOR4+Ou/FUSsIWMJ8xiZoFlkX82K+835DtZx15Z17NpUX1xwImSjlrRHz8opOVSMrjR649Qxd0SN0X5Pg1aNbX7edX/uHR9sup5d9V1AoAqbBYNgiHLCYSxXK2c1K4TOljGebR6Ok8s6KkgyVtDwSD5IvOmUvwaHTaXZNmstqcDmrqtbYuZWZK+nsanRdoWua5FwYtgI+7XvXF4Vh+176Jfhh2+8G2LRp06LPCl1YBLe0xuZCzi5n4HzNZWPcfNVGbgbefniWi4Yj5fof9uftnUrmyoO/lWYC3DkR458feYFYyGIgZJLMFpmaz/LGZUK8t4xGuO/gGUIBk5Al5IsuyUyRV+8ca7ssJfpxAFWiT5eS6aYeu8LNV23kL7/zHE+dWmj4Y2caUHAUl4xGSOdtbNf7Tl66ZZh7DsyU69iPj50lmSkSD1vluejNtH0rMUJqA2Z/0mjw9xyAUuq7Hb7mBPBlESld/x+UUntF5EHgiyLyLuAY8LZ2Tt5uZ6G0pIOrvI6jrSAcMLAMbzH3Z6a99ckGwgHWxYIkc96E2XjIBBEW8jaD4QBbRqNsGYu3HIZS2UE8dDpdTks/ELHYMR5jNlXg9EKecMBLl53KO2wajS47f6kURlOaXL9hKEwsaLJ+MIKrlLbS9A/d0iN0WZMlbr5qI//p84/WXKS9EabARUPeArW264VmbxmN8aJNwygFM6m8b3jxvIGmAhdVzgoY962RIVP45N0HW7bCl7S8YzzGI8fmAQia3jpm1dqpZenXltHlKTiKl25dx+EzmbLnZtfkAIVOr0vQWbqpya6EYXdlDVz/lAVHMRq3ynP4XjibIVNQPHkywWDIImAK0aDFxGCIY3NZ8kUH13WXzQTYzCDq4HSaazYNcyqZJ5nz2tHLJuIcnE4vCXGrZDgaZDgapOg45G0XyxAi/raV0qcDKKBvs3R3U49d43W7N5B3XI6cSWPXsM0IMBoLsXksxu7JwUUOhE/efXBRHRuLh0hkixyaSTeViKySlRghtQGz/2g0+BsXkd+s96FS6hPtXLCbaXNbRThnbVZ4HbqQZXrx1yiGIkEKtsNQNEjIMjidzDGXKbJhMMTLto5w9EyaHx+f55pNw2wajS2ai7B3/3RLcdCVHcREtkDINMg7qpxN8PpLR3ngyJyX1RDFddtG6mb7rObmqzYumktR3UHVVpq+oCt69I9dNU2uiwWZSRWW3xEvG9WGoRAjsaC3RphhcP2OUQQIWGZZW6/aMcb3Dp3BFMEyhYLtkil4yzrkiy6bR6Icn8vgKkXAMlu2wpcMM+MDYa7ZNFxeGHc0Hlp0fKNOqraMNqb0jPdsGy1vW2lm1lWgm5rsShh2cLnMEm1Q2V9NFxxEvAWn//e9h9kyGsN1FXOZApmiw6aRKKPxMJmCQzJnczpVWDYTYDODqBPzWaKhxaGa0ZC57GCl4Ciuv3R0kdFh21i0I0aHPh1AAX2bpbtreuwmN105wf4TCU4lcmQLDq5arCnL8JYY2zAQWmI0rK5jO9bHeOj5s8ylCtq4r2lIo8GfCcRZ+brMPUk4IBRtxWDYxMVLFOG4ig2DYS4eifKz11zEp771HOGgVU4vHQ5aXDMaZSqZJ2CZbB2P88YrvXkNtTp1rVj7K13nhhggwjWbhsrWm3DA4s1Xb2x5jaR619Idz77jvNCjlwiiucHfuliAkGUykyqwYTDMK7aPELRMjs6mMURgJMpA2GJiKMLlGwbIF11mUnlCAZMtYzEiQYvBsMXW8TgzCzmCFQPGVqzwlYaZ0XiIoGWSyBaXDBwbdVL7LFveqtOn3tGuaLKbYdiTw1HmMslOFreMZUAsaGE7irl0Htd/LJODIY7P58jkbabms4wNeAu+//G/+4mmMgA2M4hqd85oN40OfTqAArQeV5Ndk0N84I07+dQ9z3LvwRkyFRnrDYH1AyF2TAywdTy+JFqluo6NxcNcvmGAqWSeqUROGxo1dWk0+JtSSv3BqpVkFbEMuHR8gJ+6ekM5LCWZsxmKWOyeHCoL7CuPniSRKZZDOq/cOMhILMRUIsfH33bOUVIrrKSdOOjSoKz0wxu0TG290ZQ4L/R43bYxHjpyluVyOEYCBiDs2jDA+qHIog7U5tGY55GPBMra+sOfvrKhtj7wpccYjbeWyrpEs1ruZ0v/WtOn80a6pcmuhWFvHonw5MnODf4MPC+FAQRMg7OZApYh3vxbwwu9DgciiAinkjkSOZtt6wP8zIsnOTid5jtfemzZEOxmBlHtzhnt5iCnTwdQgNbjarNrcohbb7yU06k8h2bSiIKAKQQsg8s3DPKf31DbeFirjhmGwUfevLvXvyvNGtNo8NdX1pMSYcsgVytw2keAf7n1+qaEsXtyaEmjk8gWm7bcteth69MfXk136Us9VhMNCm6DXpngmW83j8bYuT7OoZk02ycGFu0zELaYStgtecFXaoVvRsv9bOnvBfowIqErmuxmGHbRVYxGLWYzjc0vyw2cLMFLdBayyBdtFnIOjlJYIhQcb8HqykWExwa8bNi2Cx958+6WEqE0M4hqd85oN9vafm/HtR5Xl737pyk6is0j0XJSsVzR4Uwq33BJr36uY5q1o9Hgb1Xn33WCA1MJYqHGg7+rNg42LYy1tNz14Q+vprv0nR6r+frjJ7jj/uOELINc0V3SuTQAyxSGIhbXbBpmNB7i2ZkUCzl7xQOq1dByP1v6NW3Rd5pMZG0GI0HEEM6kinX3Gx8IksgUy4MnAxBDCBhC0XUZjgZ5w+4J3rFnMx+68ymOz6ZI5R0KjiJoGhg4uHjZsUvTJlJ5hz3bRlpOhNLsUg/thm92s63V7fiq0nd6hHM5GL7y6AnSeZuJgRD4g7+QZZDMFZddbF3XMU2r1B38KaXmVrMgnWDv/mmuvGiI7x2arbmemAlsXNe401idDOXGXeN15/RpNKtFP+qxmtv3HSMWsnCUIldwyBRscn7qT1PAMrz1Ml956Rhjcc8j8OJLvPWMAHJFmwNTC5zNFHnVjlEOTCWa1uJqWEi1FfbCoh81KUoxmyoQtIzan3NujcyAaRAwFYh4Sx2JEA8H2DoW4wNvPBeG5i3YHmL9oFEe6CUyBVL+eoLJXJGQZbJ1LMYtezbz199/vuXw6OU6uNrwoulHPVYmCZsYCPFczubEfI6L1wmxkEXedglZyy8npNG0SiPPX9/x5MkE08kC4/EA0wuLrZohS5gYCLH/5ELdTmOtbH33HJjpi3V5NJpeZzqZY308iGUIx/MZFELIVBRdz+PnOIps0eHZ6RQLWRvTNHj3q7cC8Ll9R/nhc3OsiwZ45Y4RApbZ8ppZq2Eh1VZYTS+jRIiHTRZy9pLQTsvwB32Gtybs9TtGiQRNHj56lulknqF4gD3bRrilKsv0FRcNEQ2YixZYv+ri4fJaY9VLq3QjPFobXjT9SKUXfCwe5OlTC2QLDofPpNg4FMFRsHUstuySXhpNq5xXg79kziZXtLFdIWwJeVuVJ4Jfsi5KLOTdbr3wkn5el0ej6XUmBsMk/U5f0DSwHUXRkbJhRgxvkeXZdIFkzlv3q6S78YEwr718/ZIwLq1NjaZ5DPEGWkHLZMgQElm73EaahhA0hZdtHcE0DGIhi4KjeNNPXNQwIYvndcuwe3Jwkdet3lJE3fLSacOLpt8oJQmbWchx+EyGyaEwZxZyLOQcTqfyvHL7KLe+7lJdrzUd57wa/A1FLJ47bSMI8ZBFwSkiCkwDFnJFLNPgRZcM1Q0v0dn6NJru8c49m/joN54BwHUV4YCBaQjr40Fi4QAhyyCVd3j97gkS2eKiBZq1NjWaleMqbyHovONSsGE4GvDCqpW3jMmLLh7i0onBsmeumaRKrXrdtJdOo/EoecEPzaQJWYafHdf72+Uv6K51oekG59Xgb/fkEE9PLeC4LgXHW/vHBQwxcBRcs2l40Vpf1ehsfRpN9yit6XX7vmNMJbKETZPrtg5zZDZTnisUD3s/SdUDO61NjWblDIYtkhmTwUigrLnnz6RZFwvwlhed87y1alhp1eumvXQazTkv+FyqwLqotz5l3na5cuOgNm5qukrtWd99yk1XThALWgxGgmwbi3HxSJSQZbJhKMS2sVh5ceZ68dM3Xel5HBLZIq5S5dc63lqj6Qw3X7WRL75nD19498t5xY4x1g9GGAhZJHM2edtlx3gMWDqw09rUaFbOFRcNsXMiTihgkso7hAImE4NhhiLBRftpw4pG031KXvCReJC5TJFwwOQlm4cZi4e1BjVd5bwa/O2aHOLW120HYDZdYF00yDWXDBEyTYai3ly+RgkiSkIcigSYSuSW3V+j0bRHpdaGogFQsHN9nNF4qObATmtTo1k5N105gWka7J4c5HW71rN7cpCN6yKM+brThhWNZnXZNTnER968m6suHmbX5CAjsdptoEbTSc6rsE/wPAvbxuOL5hP8doPJ6tXocBSNZnWo1Fr1Eiu15gBpbWo0K6PWfLsP3nQZgJ6Dp9GsEXoerGa1EaVqLIjXJ4jIDHC0zsdjwJlVLE4jeqUsvVIO6J+ybFZKja9mYfqZBprsl+97temVsvRKOUDrsWPU0WO/fNerjS5LbbQeO0Sf9Fl7pRygy1KLjuixrwd/jRCRh5RS1651OaB3ytIr5QBdlguNXnrGuiy9Ww7orbKcj/TS89VlqY0uy4VHrzznXikH6LJ0sxzn1Zw/jUaj0Wg0Go1Go9HURg/+NBqNRqPRaDQajeYC4Hwe/N221gWooFfK0ivlAF2WC41eesa6LEvplXJAb5XlfKSXnq8uS210WS48euU590o5QJelFh0px3k750+j0Wg0Go1Go9FoNOc4nz1/Go1Go9FoNBqNRqPx0YM/jUaj0Wg0Go1Go7kA6MvBn4jcJCLPiMghEfmdGp+LiPyZ//njInJNs8d2uBy/6F//cRH5oYhcXfHZ8yLyhIg8KiIPraQcTZblBhFJ+Nd7VER+v9ljO1yO36oow34RcURkxP+s08/kb0TktIjsr/P5qtST8x2tx7bKsip6bLIsq6JJrcfu0is6bKE8Wo9aj+c9vaTLXtGk1mPNcqyuHpVSffUHmMBzwDYgCDwG7K7a503ANwABXg480OyxHS7HK4B1/uufLJXDf/88MLaKz+QG4GvtHNvJclTt/2+Bb3fjmfjnezVwDbC/zuddryfn+5/WY9tl6boe2zlfNzWp9di9v17RYYvl0XrUejyv/3pJl72iSa3HuudeVT32o+fvZcAhpdRhpVQB+ALwlqp93gL8nfK4HxgWkckmj+1YOZRSP1RKnfXf3g9c3Oa1VlyWLh270nP9AvD5Nq+1LEqp+4C5BrusRj0539F6bKMsXTq2E+frmia1HrtKr+iw6fJoPWo9XgD0ki57RZNajzVYbT324+BvI3C84v0L/rZm9mnm2E6Wo5J34Y3aSyjgmyLysIi8u80ytFqWPSLymIh8Q0SuaPHYTpYDEYkCNwH/VLG5k8+kGVajnpzvaD22X5Zu67Gl8/WAJrUe26dXdNhKeSrReqxC6/G8oJd02Sua1Hpsj47WE6ujRVsdpMa26vUq6u3TzLGdLIe3o8hr8IR0fcXmVyqlTorIeuBuEXnaH/l3qyyPAJuVUikReRPwFeDSJo/tZDlK/FvgB0qpSktHJ59JM6xGPTnf0Xpsryyrocdmy1JirTWp9dg+vaLDVsrj7aj1qPV4/tJLuuwVTWo9tkdH60k/ev5eAC6peH8xcLLJfZo5tpPlQESuAj4DvEUpNVvarpQ66f8/DXwZz3XbLsuWRSmVVEql/Nf/CgREZKzZ++hUOSr4earc5x1+Js2wGvXkfEfrsY2yrJIemypLBWutSa3H9ukVHbZSHq1HrcfznV7SZa9oUuuxPTpbT9QqT4Bd6R+et/IwsJVzkxuvqNrnZhZPjPxRs8d2uBybgEPAK6q2x4CBitc/BG7q8jPZAIj/+mXAMf/5rOoz8fcbwottjnXrmVScdwv1J9B2vZ6c739aj22Xpet6bOUZr5YmtR6789crOmyxPFqPWo/n9V8v6bJXNKn12LA8q6bHNRdHmw/oTcBBvAw3v+tvey/wXv+1AH/hf/4EcG2jY7tYjs8AZ4FH/b+H/O3b/C/oMeDJlZajybL8un+tx/Am8r6i0bHdKof//peBL1Qd141n8nlgCijiWUfetRb15Hz/03psqyyrosdmyuK/77omtR67+9crOmyhPFqPWo/n/V8v6bJXNKn1WLMcq6rH0shao9FoNBqNRqPRaDTnMf0450+j0Wg0Go1Go9FoNC2iB38ajUaj0Wg0Go1GcwGgB38ajUaj0Wg0Go1GcwGgB38ajUaj0Wg0Go1GcwGgB38ajUaj0Wg0Go1GcwGgB38ajUaj0Wg0Go1GcwFwQQ/+ROSXReSiNo77rIi8tcb2z4jI7mWOfV5Exmps/7CIfKDVspwPiMgNIvKKTu23wrJsEZH/p+L9tSLyZ928pmZltKpjvx59rZtl6iWq6/RK9+tAef5r1fsfdvuamu7RjP5E5H0iEu1iGd4rIr/UrfMvc+2abXoLxzf1bLr9DP1r/HRlH0ZE/kBEbuzmNTWdp92+rX/sm0Xkd5bZp24b2m49FZF7ReTaGtv/VUSG/dddbysulPayLwZ/4tHRsoqIibdwY1sCqYVS6t8rpZ7q1Pk6hYhYa12GZbgBaGZQ1+x+DVnmeWwByoJWSj2klPqNlV5T0z86Pg/ZQkWd7sB+DfG/k0YsasyUUl016Gg81lh/7wNa6hBW16NG9Uop9VdKqb9r5fydoIm63gzvo7ln0+x+DVmmzD8NlAd/SqnfV0rds9JramrTi22iUupOpdRHV1CE99GBelpCKfUmpdS8/3o12ootXAjt5UpWpO/mH96DPQD8b+DHwIeAB4HHgY/4+8SArwOPAfuBn/O3v84/5gngb4CQv/154PeB7wO3ACngGeBRIFKnHB8FnvKv+3F/22eBt/qv/9B/bwD3Atf62/8SeAh4slTeijL8MfAj/2+Hv/3DwAf819uBvcDDwPeAyxs8p38LPODf7z3ARMX5bgO+CfwDMA78k/8MHwRe6e/3MuCH/vE/BC5b5jv5HvCI//eKis8+6D/vx4CPNjjHb1Q8zy/45zwFnPC/h1fVuqc6+9W8pzrXrX4eNe8FuB9I+Nd4P96A82v+ZyPAV/yy3w9ctdY66fU/ekfHNwFP+8f8WcV3WrP++3XjRRXH/wC4Cvg3/nUe9Y8ZqHM9Af7Ev58nKu7pBuA+4Mu+Dv4KMPzP3gDs8+vjl4B4xf1+xN/+BI1/D5aUr0adbrbum/49lL6v9zS47g3Ad/C09ZS/7St4v2FPAu/2t30UcPxr/L2/LdXomem//tYf3m9+wT/Pd5qo66Vz/3yN9//BL/9jeL/9Uf+4D3Ou/byXc23sQeBVDZ7PLwNfxWtvnwE+VPHZkvpbqq/AH+C1Udf7ZRwDIv55/kOday15znWezZK+QyvPsM61l32OeIbVOeCI/11uZ3Ffp2Z90H/9p8mKY5a0K74m/tx/vR2vXXjQr/Ol3+ob8HT2f/Ha1b/H+/1eUk9rXNf061Xpd/79Fbq9Fq8vfTvw3yvKOVbSXqPr+5+9iRptfZ2yXLDt5ZoLYRmBuMDL8X7kbvNv1gC+Brwa+HfA/6k4ZggIA8eBnf62vwPeV1GJPlix/734g7U6ZRjBE1CpUg37/z8LvBX4GPDpis/L5wNGKir6vfgDBb8Mv+u//iXOdUI/zLnG61vApf7r64BvNyjjuorr/3vgf1ac72F84fuV7Hr/9SbggP96ELD81zcC/9TgWlEg7L++FHjIf/2TeB3naOW91znHSc79YA1X33sT91S5X817qnPd6udR715uoOLHgsWDv0/hdw6A1wKPrrVOev2P3tBx6VyX+tf+YsV3WrP+A+8E/tR/vbOifvwL5wwn8dKxNa7574C78fQ/ARwDJv36lAO2+Z/djfdbMoY3KIz5x/828PsV93ur//pXgc80uNcl5atRp5ut++8G/pv/OoTXId1a57o3AOnKzzn3GxjBa6BG/fepqmNTjZ7ZWtfhfv6jB/RXcUypA7dcXf9g1XGV70crXv/3Cl18mMWDv1Kb8Sbgngbl+mVgChitqKfVbXh1/VXA26vKuAXPUPlLDa615DlXP5uq69bqOyz7DBs8/2ae42fxB3uV7xvVB/3X15pc0q6wePD3NeAX/NfvZfHgKwFc7Jd7H+f6Yovqc43rvgS4u+L9cEWZXw58Hr+PXKPeN7x+xTPa6u/3eRoP/i7Y9rLXwz6PKqXuxxPIG/BG5o8Al+N9CU8AN4rIH4vIq5RSCeAy4IhS6qB/jtvxxFTiH1u4fhKvo/YZEflZIFPx2e/hVdr3KP+bqOLtIvKIX+YrqAilwKuQpf97Kg8SkTieBe5LIvIo3uByskEZLwbuEpEngN/yr1XiTqVU1n99I/Dn/jnvBAZFZADvR+VLIrIf+GTV8dUEgP/jX+tLFfd0I/C3SqkMgFJqrsE5Hgf+XkRuAew27qmSevdUj8rnUe9eGnE98DkApdS3gVERGWriuAudtdbx5f65nvW1ekfFZ/Xq/5eAnxKRAPAreJ0g8DyAnxCR38DTf706fD3weaWUo5SaBr4LvNT/7EdKqcNKKQfvN+B6vEZvN/ADvz6/E9hccb5/9v8/jNd5qEcz5Wu27r8B+CW/PA/gdZAvbXDtHymljlS8/w0ReQzPQnrJMsdC42emaZ+11l81y9X16nNXvr9SRL7n191fpH7b0KxewOuIzvptwz/j1UOoX38dPG9ZJV/FawMbhZ7Wes61aNR3KLHcM6xFO8+xxHL1QdMavaLJ5XSyB6+NAM/YXsmPlFIvKKVcPM9UreNrcRjYJiKfEpGb8PrZJT4N7FdK/VET56l1/cuBwxXt0OfrHFvigm0ve30uWNr/L8D/UEp9unoHEXkJnnXvf4jIN/EGAc2cc1mUUraIvAzP1f7zwK/jeXzAc+2+RERGqgc7IrIV+ADwUqXUWRH5LJ5FonzqOq/Bs2LMK6Ve1GQxPwV8Qil1p4jcgGcBLVF5rwawp2LwUyrrp/Dc8z8jIlvwrC/1eD8wDVztny9XOk2N+6jHzXg/WG8Gfk9EajU6je6pkpr31IDK51HvXhohNbY1e98XMmuqY59639MfUqP+K6UyInI38Bbg7XjhKCilPioiX/fLer+I3KiUerrGeWvVlXplUf7+dyulfqHOMXn/v0OD3+1a5auxW7N1X/Asw3fVu14V5e/E1+2NePrMiMi9LP4NrHc9TefpBf0tuhyN63r1uSvffxb4aaXUYyLyy3gW9Fo0pRefJXpcpv7mfMNNJT8AflJE/qGOMRil1MHq56yU+oPKfZroO5R3pfEzrEU7z7HyeprO0SuabEUn9Y5t6Xi/Xl8NvBH4Nbz29Vf8j38IvEZE/qdSark+Wa3rt1RPL+T2stc9fyXuAn7F94ohIhtFZL142YwySqk7gI8D1+DF+m4RkR3+se/AGxHXYgEvxrcm/vWGlFL/ijeJ9UUVH+/Fi8f9eg1v0yDeF5sQkQm8sMhKfq7i/77KD5RSSeCIiLzNL4P4QqnHEN48OPCsf/X4Jt7gtXRvpXupPP6XGxxf2nfKt7S8A8/dXDr3r4if4UlERmod7E9svkQp9R28OYLDeK726u+h3j1V71fvnpqh3r00qhP34VlJS2I9439fmuZYEx3759oqItv995Udpkb1/zN4cwYeLBl4RGS7UuoJpdQf44V1XF7nmvcBPycipoiM4xk8fuR/9jIR2err4efw5ibcD7yydL8iEhWRnQ3uqSZ1yldLX83U/buA/+h7PxGRnSISa7IoQ8BZvyG7HM9TUaJYOmcVjZ6ZZuWslf6q91lJXR8Apvz684tNHrMcrxeRERGJ4CU8+QGN628tfh+YxZvHVZM6zxkWP5tGfYdOPUOo/xzrfZet1AdN86ylJpvhfrzwQvAcIM2wXL96DG+e+z/hRdBdU/HxXwP/iheN045z6mk8r+IW//3PNdj3gm4ve93zB4BS6psisgvYJyLgTWa9BdgB/ImIuEAR+I9KqZyI/L+cqzwP4iVVqMVngb8SkSy1PUgDwFdFJIw3yn5/Vbm+5A/87hSRN1Vsf0xEfow3cfMwXmNSSUhEHsAbfNey3P0i8Jci8t/wXM5fwJv4W4sP+/d6Ak+oW+vs9xvAX4jI43jf+314MdwfA24Xkd8Evl3n2BL/G/gnf2D6HXzLhVJqrz/wekhECnji/a81jjeBO8QLlRTgk0qpeRH5F+D/ishbgFsb3FP1fvXuqRlq3gteWKotnvv9s3jhGCU+DPytf70MjQfbmirWSsf+ud6NZ6g5gzfYutL/uG79V0o9LCJJ4G8rNr9PRF6DZ2l8CvhGnTJ9GS9k5jE8z8IHlVKn/B/2fXiGo5/AT/6ilHLFs8B/XkRC/jn+G17CilaoVT6XxXW62br/v/BCaR4R7wubwescN8Ne4L2+Vp7B03GJ24DHReQRpVRlx7PmM2v6zjUNWcN2FLzv/BsiMqWUes0K6vrv4YVUHcULjetEB/f7eOH8O4B/UEo9JF6IV736W4/3AX8jIh9TSn2wxuc/QdVz9rdXP5t6fYdOPUOo/xy/gBfi9ht4c/2A8m9os/VB0yRrrMlmeB9en+0/4yWgqReqXMmielrj8414/aiS8+m/VH6olPqE30f8nIi0ZOBRSmVF5FeBvX5bv9xg6IJtL0tJNTQajUZTgW99vRcvC5rboXPegJeY4qc6cT6NRtM+/gDqWqXUry+3r0ZzoSFeNFdWKaVE5Ofxkr+8Za3L1QgRiSulUv4A7C+AZ5VSn1zrcvUa/RL2qdFoNKuGeAtGP4CXdawjAz+NRqPRaPqIlwCP+h6pXwX+8xqXpxn+g3hJV57EC6dcMp9Soz1/ZUTkyywNmfztFiZvdhUR+V3gbVWbv9RkVqRWr/VGvHWSKjmilPqZFs7xF8Arqzb/L6XU39bav1P4YRH/qWrzD5RSv9bN62p6g9XWsYj8BH4G2ArySqnrunG9iuuuST1fq/vV9Ae92o52ok1r4VqjeMs1VfM6pdRsp69Xde2efP6atWMt64Q/vSlUtfkdSqknun3tqnLo9rIKPfjTaDQajUaj0Wg0mgsAHfap0Wg0Go1Go9FoNBcAevCn0Wg0Go1Go9FoNBcAevCn0Wg0Go1Go9FoNBcAevCn0Wg0Go1Go9FoNBcA/z+EIKm5EH21sgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -3403,7 +3881,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 96, "metadata": {}, "outputs": [], "source": [ @@ -3415,12 +3893,12 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 97, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHhCAYAAADDFvtLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXBd53nn+e9zlrsvWAmC4CJSMmVKHC2OHIeZRO2x4zY77nEqriR2qu32TNKjpCfJ1DilpCed6XHSPUllPO5oapzuSTM1LrvtjOMosRN3O6Yj27EVt2nJkrUYIkSKOwmCF/u9uPtZ3vnj3HsJkAAIEgABgs+nCoV7z91eQCr8+J7zvs8jxhiUUkoppZRSSikAa6MHoJRSSimllFJq89BJolJKKaWUUkqpDp0kKqWUUkoppZTq0EmiUkoppZRSSqkOnSQqpZRSSimllOrQSaJSSimllFJKqQ5nowewGn19feaee+7Z6GEopdQd5cUXX5w0xvRv9DiUWoxmu1JK3Zz1yPU7epJ4zz338MILL2z0MJRS6o4iIuc3egxKLUWzXSmlbs565LouN1VKKaWUUkop1aGTRKWUUkoppZRSHTpJVEoppZRSSinVcUfvSdysRsaKHB0uMDpbY6gryeGDAxwYzG/0sJRSSqm7guawUkqtjl5JXGMjY0WOPHuWYs1jMJ+gWPM48uxZRsaKGz00pZRSasvTHFZKqdXTSeIaOzpcIJ90ySddLJHO7aPDhY0emlJKKbXlaQ4rpdTqrdskUUQ+KSLjIjI879jnReTl1tc5EXm5dfweEanNe+yP12tc6210tkY2sXAVbzbhMDpb26ARKaWUUmvjTsh2zWGllFq99dyT+Cngj4D/2D5gjHl/+7aI/Ftg/tqP08aYR9ZxPLfFUFeSYs0jn3Q7x+bqPkNdyQ0clVJKKbUmPsUmz3bNYaWUWr11u5JojHkWmF7sMRER4OeAz63X52+UwwcHKNY8ijWP0JjO7cMHBzZ6aEoppdSq3AnZrjmslFKrt1F7En8cKBhj3ph3bK+IvCQi3xKRH1/qhSLyhIi8ICIvTExMrP9Ib9KBwTxPPL6XfNJlrFgnn3R54vG9WlVNKaXUVrcpsl1zWCmlVm+jWmD8PAvPNI4Bu40xUyLyQ8BficiDxpjStS80xhwBjgA89thj5raM9iYdGMxrGCmllLrbbJps1xxWSqnVue1XEkXEAd4HfL59zBjTMMZMtW6/CJwG9t/usSmllFLq5mm2K6XU1rIRVxJ/AnjdGHOpfUBE+oFpY0wgIvuANwFnNmBsm4o2A1ZKKXWH2JTZrjmqlFK3Zj1bYHwOOAbcLyKXROQXWw99gOs3tT8OvCoirwB/AfyyMWbRjfF3C20GrJRSarO5k7Jdc1QppW7dul1JNMb8/BLH/7tFjv0l8JfrNZY70fxmwEDn+9Hhgp4FVUoptSHupGzXHFVKqVu3UdVN1Q1oM2CllFLq1mmOKqXUrdNJ4iY11JVkru4vOKbNgJVSSqmV0RxVSqlbp5PETUqbASullFK3TnNUKaVunU4SNyltBqyUUkrdOs1RpZS6dRvRAkOtkDYDVkoppW6d5qhSSt0avZKolFJKKaWUUqpDryRuIG3yq5RSSq09zVellFodnSRukC+/Osonvn4aPzT0pF2aXsCRZ6u6X0IppZRahZGxIkeePUs+6eJY8M0T43zxpVF+/L5ePnhoj2asUkqtgC433QAjY0U+8Y3TINCTdmn4ISfHywRByNHhwkYPTymllLpjHR0ukE+6NP2Aly8WAehKOgxfLnHk2bOMjBU3eIRKKbX56SRxAxwdLuAFIbmEg4iQcG3ijsWVUl2b/CqllFKrMDpbI5twODVRIe5YJFybhGvTDELySVdPxiql1AroJHEDjM7W6E3HaPhh51jcsZiueNrkVymllFqFoa4kc3Wfct0n7kT/zGn4IbmESzbh6MlYpZRaAZ0kboChriSD+QQNP6TuBRhjKNV9HEu0ya9SSim1CocPDlCsebi20PAC6l5Aww+5b1uaubqvJ2OVUmoFdJK4AQ4fHMCyLO4fyBB3LKYqTQB+7Z336oZ6pZRSahUODOZ54vG9PLgjx0zNB+DR3Xlc26ZY8/RkrFJKrYBWN90A7QA7OlzAdWwO3dun5bmVUkqpNXJgMM/vv++hBa0wtmVd3v/WnZq1Sim1Aus2SRSRTwL/GBg3xhxsHfsd4H8AJlpP+5fGmL9pPfZbwC8CAfA/GWO+ul5j2wwODOY1qJRSSt1R7rRs16xVSqlbs57LTT8FHF7k+FPGmEdaX+0QeQD4APBg6zX/XkTsdRybUkoppW7ep9BsV0qpLW/dJonGmGeB6RU+/aeAPzPGNIwxZ4FTwA+v19iUUkopdfM025VS6u6wEYVrflVEXhWRT4pId+vYEHBx3nMutY4ppZRSavPTbFdKqS3kdk8S/x/gXuARYAz4t63jsshzzWJvICJPiMgLIvLCxMTEYk9RSiml1O2j2a6UUlvMbZ0kGmMKxpjAGBMCf8LVZSeXgF3znroTuLzEexwxxjxmjHmsv79/fQeslFJKqWVptiul1NZzWyeJIjI47+5PA8Ot218CPiAicRHZC7wJeP52jk0ppZRSN0+zXSmltp71bIHxOeDtQJ+IXAI+CrxdRB4hWm5yDvglAGPMayLy58BxwAd+xRgTrNfYlFJKKXXzNNuVUuruIMYsuj3gjvDYY4+ZF154YaOHoZRSdxQRedEY89hGj0OpxWi2K6XUzVmPXN+I6qZKKaWUUkoppTYpnSQqpZRSSimllOpYtz2Jd7ORsSJHhwuMztYY6kpy+OAABwbzGz0spZRS6q6hWayUUrdOrySusZGxIkeePUux5jGYT1CseRx59iwjY8WNHppSSil1V9AsVkqp1dFJ4ho7Olwgn3TJJ10skc7to8OFjR6aUkopdVfQLFZKqdXRSeIaG52tkU0sXMWbTTiMztY2aERKKaXU3UWzWCmlVkf3JK6xoa4kxZpH0w84NVGhXPdxbeHBHbmNHppSSil1V4jZwrMnJ/ACQybhcF9/mphjM9SV3OihKaXUHUGvJK6xwwcHOD9V4bkz0zSaPo4Fc3WfQqmheyGUUkqpdTYyVqRQajBXjzK40fR57sw056cqHD44sNHDU0qpO4JOEtfYgcE8O/IJMgmHZmhIxhwO3dvDrp6U7oVQSiml1tnR4QK7elIcureHZCzK4kzCYUc+odVNlVJqhXS56TpoBIbH9/djiXSOhcboXgillFJqnY3O1hjMJ7DEpS+TAKIMHivWN3hkSil159ArietgqCvJXN1fcGyu7uteCKWUUmqdaQYrpdTq6SRxHRw+OECx5lGseYTGdG7rXgillFJqfWkGK6XU6ukkcR0cGMzzxON7ySddxop18kmXJx7fq3shlFJKqXWmGayUUqunexLXyYHBvAaSUkoptQE0g5VSanXW7UqiiHxSRMZFZHjesf9TRF4XkVdF5Isi0tU6fo+I1ETk5dbXH6/XuJRSSil1azTblVLq7rCeVxI/BfwR8B/nHXsG+C1jjC8i/wfwW8C/aD122hjzyDqOZ02NjBU5OlxgdLbGUFeSwwcHODCYX/K4UkoptQV8ik2e7SNjRT577DwvXSxiMDy6q4sPHdqjWayUUjdh3a4kGmOeBaavOfa3xph2ybHvAjvX6/PX08hYkSPPnqVY8xjMJyjWPI48e5Yvvzq66PGRseJGD1kppZRatc2e7SNjRT7+1ZMcOzONY0HMEp47M83Hjp7QLFZKqZtww0miiOwXka+3l5aIyEMi8r+uwWf/AvCVeff3ishLIvItEfnxNXj/dXN0uEA+6ZJPulgindufPnZh0eNHhwsbPWSllFIKWNdchw3O9qPDBSbLDbIJh2TMIRFzyCQcpitNzWKllLoJK7mS+CdES0c8AGPMq8AHVvOhIvLbgA/8aevQGLDbGPMo8OvA/yciuSVe+4SIvCAiL0xMTKxmGLdsdLZGNrFwpW424VAo1Rc9Pjpbu53DU0oppZaz5rkOmyPbR2drNPyAuHP1nzdxx6Lph5rFSil1E1YySUwZY56/5pi/6DNXQEQ+DPxj4J8YYwyAMaZhjJlq3X4ROA3sX+z1xpgjxpjHjDGP9ff33+owVmWpRr0DuYQ28FVKKbXZrWmuw+bJ9qGuJHHHpuGHnWMNPyTmWJrFSil1E1YySZwUkXsBAyAiP0N0dvCmichhos3s7zXGVOcd7xcRu3V7H/Am4MytfMbtsFSj3g8f2q0NfJVSSm12a5brrddvmmw/fHCAvkycubpPrelTb/qU6z496ZhmsVJK3YSVVDf9FeAI8GYRGQXOAh+80YtE5HPA24E+EbkEfJRoeUsceEZEAL5rjPll4HHgX4uIDwTALxtjphd9402g3ah3fhXT9791Z6dy2qePXaBQqjOQS/DhQ7s7VU8/c+w8L12cRRAe3ZXng1ptTSml1O13S7kOmz/bDwzmefLd+/nE197g+fMzeEHIru4UP/NDQwA89czJJauPa3VypZS6SlqrQm78RJE0YBlj5tZ3SCv32GOPmRdeeGGjh9HRrnqaT7pkEw5zdZ9izeMnDvTzFy+OcmGqSiZuY4ByI2BvX5on371fQ0gpdVuJyIvGmMc2ehxqY23GXIfVZ/tiWXx+qoIlwq6e1IJ8fuLxvZ0TuYvld/txpZTazNYj11dS3fT3RaTLGFMxxsyJSLeI/O9rOYitYrmqp9OVJplEVGktGXPIJhwmyw2ttqaUUuq22uq5vlgWT1eaTJYbS1YfXyq/NaOVUnerlexJ/EfGmNn2HWPMDPCT6zekzWNkrMhTz5zkyadf4alnTt6wx9JyVU+bfnhdtbWGH2i1NaWUUrfblsz1dmb/1cujHL9cZLJc7zzW9EMafrDg+fOrjy+V35rRSqm71UomibaIxNt3RCRJtPdgS2svPSnWPAbzCYo1jyPPnl1yojgyVuTCdJW/+cEY3z0z1QmndtXTmGNdV20t7thabU0ppdTttuVyvZ3ZZyfKeH7I61fmODpc4I1CCYCYYxF37AWvmV99fKmq5ZrRSqm71UomiZ8Fvi4ivygivwA8A3x6fYe18W5m6Uk7nLZn47iWRbHm8cK5Gc5NljtVT3vSMcr1qNJarekzV/fpy8S12ppSSqnbbcvl+tHhAkEQcnK8TDpu49oWQWj47plpzk2W6UnH6MvEl6w+vlTVcs1opdTd6obVTY0xHxORHwDvBAT4N8aYr677yDbY6GyNwXxiwbGllp7Mn1BmEg6nJipMl5uMlRr87nsf4MBgnn39mQXVTQ/t69HqpkoppW67rZjro7M1rpTqxB2LhOsSd2ymK03m6n4ni4Elq5LfqGq5UkrdbVbSAgNjzFeAr6zzWDaVoa4kxZpHPul2ji219GT+hLI/m6A/myA0hrFifUEA/f77Hro9g1dKKaWWsdVyfagrycsXZulJR5mdjjvYlrCzO8nuntSCLF7KgcG8TgqVUqplyeWmIvLt1vc5ESnN+5oTkdLtG+LGuJmlJ0vtZYjbclOFb5RSSqn1spVz/fDBARxLKNV9jDHUvYCGH5KK2VyYrmoOK6XUTVpykmiM+bHW96wxJjfvK2uMyd2+IW6M9tKTfNJlrFgnn3SX7Je02ITy4nSVy8X6igvfKKWUUutpK+f6gcE8v/bOewGYqjSJOxbbc3FOT1TYno1rDiul1E1adrmpiFjAq8aYg7dpPJvKSpeeLLaXoZmLE3PsznLV9vejwwVdzqKUUmpDbOVcf89DQ+zrz3Sy+MJ0lUd3dbG3PwNoDiul1M1YdpJojAlF5BUR2W2MuXC7BnUnunZC+eTTr9Cb0Z5LSimlNo+tnuvzs/jJp19ZcQE6pZRSC62kcM0g8JqIPA9U2geNMe9dt1FtATdT+EYppZS6je6KXNccVkqpW7eSSeLvrvsotpCRsSJHhwu8drnIpZka9w9k2N2bZq7uU6x5vP+tOzd6iEoppe5ud0WuHz44wJFnzwLRFcS5us/F6SrNXJwnn36Foa4khw8O6NJTpZRaxJKFa9qMMd8CTgB5IAecaB1T1xgZK3Lk2bMUax4HBnPs35bhxJUyr18pLVv4RimllLpd7pZcv7YAnecHhMYQc2wtZKOUUjdwwyuJIvLPgP8N+AZR091PiMi/NsZ8cr0Hd6c5Olwgn3Q7S1v29mfoycTJJ10+8q79Gzw6pZRS6u7K9fl7FJ965iSuFpRTSqkVWcly098AHjXGTAGISC/wHWDLhclqjc7WdJO8Ukqpze6uzHXNaKWUWrkbLjcFLgFz8+7PARdv9CIR+aSIjIvI8LxjPSLyjIi80frePe+x3xKRUyJyQkTefTM/xGYx1JVkru4vOKab5JVSSm0yt5TrcGdnu2a0Ukqt3EomiaPAcyLyOyLyUeC7wCkR+XUR+fVlXvcp4PA1x/4X4OvGmDcBX2/dR0QeAD4APNh6zb8XEfumfpJN4PDBAYo1j2LNIzSmc/vwwYGNHppSSinVdqu5DndwtmtGK6XUyq1kuenp1lfbX7e+Z5d7kTHmWRG555rDPwW8vXX708A3gX/ROv5nxpgGcFZETgE/DBxbwfhuu3YF09HZ2nXV0VKuxfNnpzEYHt3V1SlWs9xrlnvsZj9fKaWUuoFbynXY3Nk+MlbkM8fO89LFWQTh0V15dvcm+frrkxRKdQZyCd755j6qTcNrl4uU6j75pMPR4QKA5qhSSs1zw0miMWYtS2UPGGPGWu87JiLbWseHiM5ktl1qHdt02hVM80l3QXW0nzjQz9dGJsgnXd55YFun5cVyr3ni8b0AncdcG755YpwvvjTKj93Xy4cO7bkutJZ7Lw04pZRSN7LGuQ6bINtHxop87OgJLkxVycRtDPDMSIFizWMwl2BbNk6p5vHZ717kgz+yi2zCZWd3iobv3zB3lVLqbrSS5aa3gyxyzCz6RJEnROQFEXlhYmJinYd1vfkVTC2Rzu1PH7uw6PGjw4UlXzP/MS8IeOlCVIa7O+nw2uXSoqW5l3svpZRSahO5bdl+dLjAdKVJJuGQiDkkYw7lRrT/0AsNlmWRT7qk404nr1eau0opdTdayXLTtVQQkcHWmcZBYLx1/BKwa97zdgKXF3sDY8wR4AjAY489tmjYrKelqqMVSnXetrfnuuPtqmmOBcfHSpTrPpmEw76+VCfABvMJnj9bIu5YJFwbYwzlRtCZ/M1flvq3x6+AgWzSpTflMlX1mKt5IOiyU6WUUhthw7N9dLZG0w/JJq7+s8YPDJZAww+pNHxmqk0aXkix5lH3fM5OVm+Yu/N9+dVRPn3sQmfp6ocP7eY9D23KRU9KKbVqN7ySKCL/9UqOrdCXgA+3bn+Yq/sgvgR8QETiIrIXeBPw/C1+xrpaqjraQC6xZNW0mC187+wMDS8gE7dpeAHfOztDzJbO+5XqHnEn+s/R8EMyCWfBJLO9zDRmW7i2MFNp8F9OTzFbaeLaQsy29AyoUkqpG1rjXIdNkO1DXUlijkXDDzvHHFswgGAYK9bxg5DQGFwnyuRCqbZs7s735VdH+YOvnKBU89iWiVGqefzBV07w5VdH1+PHUUqpDbeS5aafWOGxBUTkc0Sb0+8XkUsi8ovAHwDvEpE3gHe17mOMeQ34c+A4cBT4FWNMsLIf4fZaqjrahw/tXrJqmnB1fU2l6XOlWKdQqvODS0X2D6Qp1jyCwHBussLJwhyXZmr0ptwFpbnby0wPDuVoBoZSzSdmC8WaRzMwHBzK6bJTpZRSK3FLuQ6bN9sPHxygJx2jXPepN31qTZ9MPLqq2PQNtgV+CH5oeMvuLgxQa4bUvYC6F9DwQ+7rTy/ZEuPTxy7g2MJ0ucHw5RLnpyqUah5//M0z6/HjKKXUhltyuamIHAJ+FOi/piR2DrhhCWtjzM8v8dA7l3j+7wG/d6P33WgHBvM88fjeTnXRmC00PJ9/93dnKNaaNPwAx7LY3Zvmw4d2c2AwTyMwvG1fNz+4VOLidI2ka7OnN0nNC/nayARv3p7m5QszVL2QVMwin3A4WShT90N+8/D9wNVlrpa4/NCeLr76WoHQGDCGH9rTRV8mQWiMNgVWSim1qNXmOmzebD8wmOc3D9+/oLrpuw4MsLs3yZ/8/TnqXkAm4fK2vd28aSDHrp4az52ZZrbm051y2dOT5LXLJWaqHgcHs/z2F16lEZhOBfEz43OUaj6+iZawOlY0yTw1UWZkrKhbPZRSW85yexJjQKb1nPllsUvAz6znoDa7A4P5TluLj3/1JGcnKzgWVBo+oYFMymJ7Ns7XRibY159hqCtJseaRjjvs7UuTcG3qXkA6YZNPunz99Un+wf3b8IKAU+MVCqUatWbA+alK58pg+z3ySZe+TIJ9/RlK8+6DNgVWSim1rC2d6wcG8/z++x667ni1aTr52RZ3HP7bh4c4fHCAzxw7z7dPTdGdcnlgMMOJQhkDvG1fN8Wax8e/epJS3cMPwZKoGk97Vasr8Jlj5+nPJrQtlVJqS1lykmiM+RbwLRH5lDHmvIikjTGV2zi2TWG5noRHhwtMlhtkEw6T5QZxxwYMNS/kylyDBwZzHB0ucPjgAEeePctkuUFPyu0sbXlwR25B0RtLXIwhCrOE0AjC61psQFQQZ3s2zthsjfsHMoTGdFpuvP+tOzfwt6WUUmqz2uq5vlRetzMYovycn5cHBvP0ZxO8483byCddjp2ZItMqfnNmosqP7OvlpXID17bwgxDTmiQaE20jSTgW3z41xTvevE3bUimltpSVVDfdISJfITr7uFtEHgZ+yRjzP67v0DbejXoSjs7WaPgBuYRLpeHT9EPqXkgITJQbnLhSIhOzmZyrM1ePqpBOzDWIORbbcwlEFha9ySddTk1UCEPDlUqTwBhGxkpsz8U5WagsWOa6tz/Duw8OcLJQ6QRiO/CUUkqpZWy5XL82r89Nlvnnnx2l6Qc0A0PMFnrScQa7EjwwmO+cUP2XX3iVL/9gDNe26Eq6TJab2BbEHZuE2y5qE+DaFp4V4oUQEl1RTLg2jm3TnXI7Vynb35eqkKqUUneKlUwS/y/g3URVyjDGvCIij6/rqDaJo8MFwjBkZKxEqe6RS7hsz8U7f/yHupK8UZijWPOoeQFN33QK1IQGSjWfUs3nC98fZag7gTGG0Bi6Uy6WwLHT0+zti/Yutq8STszVmSk3QYSd3QnqXsDrV+aoegEfedf+60LnPbf5d6KUUuqOt+Vy/bPHznNmokwzCHFEmKw0oj2EYUg65lANDJZ49GfjHD44AMDHjp7gwlTUBqPhBZyfaiIIcdei2gwIQ8M3RgrUmgFBaIi7NuKHWJYQhAZbQAQe2JFdMJalKqQqpdSdZEV9Eo0xF0UW9MTdlJVH19rxsSIXpqokXJts3FkwYYOomtrwaJEXz89gQnNdh+Co9HYUIpeLdWJOdMax0gxwbZtswmEgF+c9Dw2xrz/D0eECc3Ufx7YY7EqQikX/eRp+SLF2tb3GcktgN4PNPj6llLrbbaVcHxkr8venpuhKOmTjDuenqszWPDAhIhbJmI0fGJpBwHSl2dnrP11pkkk4pOI2p8bLWJZFEIZUmgGOJaRjNmPFOjXPJx1z6E7HmC43KLV6HG/Lxrl/e5bjl+d4OShiiyASFbTpycS0oI1S6o62khYYF0XkRwEjIjEReRIYWedxbQrFmo+IkHDtBd/bE7YDg3mefPd+utMuYglWK28trv5iLQFDdNYxZgtBCF3JGO96YIDH9/fTDEznvT7yrv08squLvkwcSwRjDHUvAAO51h6J9pKaYs1bsAR2s/RH3OzjU0optbVy/ehwge6Ui4ggIgTGdIrLOHYUzHbr6l/TDxmdrTE6W6Pph8Qdi1TMIe5YuJYQhmBLtGzUti0Q6E7F6c/Gyadi9OeSPLyrm/e9ZYi9/RlqXki57uP7AZdmapybrOIHAYO5uGafUuqOtpJJ4i8DvwIMAZeAR4A7dt/CzcglHDBQ9wIqDY9zk2Uuz1aZKNUX/OHvz0ZX/WK2dJafzL+qaInBtS0wUPOCzqb4xaqRDmTjBCYKsTOTFUJj2D+Q4cEdV4vl5JPR/gdLpHN7s/RH3OzjU0optbVyfXS2xoHBLA0/ZLbapNb0qfshgYFyI2C81KBc97AtIeZYDHUlGepKEnMsGq0ypem4Q9y1cR2hP5voVCa/tz/Djq4EpbrX6nkcTUBrzYBS3WdPb5q37euh4oWIQCpmk0m43NOX0exTSt3RVrLc9K3GmH8y/4CI/DLwx+szpM3jwR15Uq7N2akKF2dqJBybgWycVNxdUHF0ezbOxakKs9Xrl5wGBirNENeChheQcB329aUo1rzrqpGOjBW5XKwThjCUT2CIAq7SDDp7KNr9EifLdU6NVyjVPbJxh3zKZTNoj28+3Z+hlFKbypbK9XaLqH19KZ47O0N4TRB7ocFrBNS8gFTMZv9AGoC/fqnJeLkRPckYvMAQcyzSMatThfzgUI7R6SrFqk867pGN2xRrHpdna3SlXI5fLjLXKlw31NomMtdajqrZp5S6k63kSuK/EpF3tO+IyG8CP7V+Q9o8Dh8cwLYtLBH29KTYnk9g2zYP7siRT7p8+tgF8kmXvf0Z0nEH127tQWx9tcXtaAmMAWI2TJab5JPudSWyjw4XOmcl4zEHP6Szb7H9vKGuJBemKrx4fpa6F2AJnJmo8NyZaX77C69u+NKWoa4kc3V/wTHt36iUUpvKlsr1wwcHKNY8RmfrDHVFlcNdS3Cu+ReOJcLDO7v4ixdH+cL3L7OnN4VjWQShITDQl4mTSzjMNaLtmY/uzuPaNlfmmjy6O08u6VJphuSSLvf2pbg8W6dU98nGHWwRLs3UKdaiIneg2aeUurOt5Erie4H/LCK/ARwG3tw6tuUdGMzzxON7+fU/fwUMZJMOD+7I0Z9NEBrT6W8IMFvz6ErGcGyLZhDtc5go1QmBbNJt7XuwScUcHtwR7T+8VvsqnCUu/dnoalxoDGPFeuc5hw8O8JHPXwHAD0JGZ+sgMJCNMXy5tOH9mZbrR6WUUmpT2FK5fm1WByGkYhbNwCCEhAZijuCHkEk4nJuqAhB3bfb2pUm4NnUvIOHaHBjM0fQD+rMJRtybeYQAACAASURBVGdrbMu67OxOcmAwhzWv0M+x05MkXRuIisv1ZWJcnKlRKDV4y56uRVcLKaXUneSGk0RjzKSIvBf4GvAi8DPGmGtXVW5ZBwbz/MMHtkcN7pNXl3TO72/Y9AMqDZ/QGBzLwrWFSsPHb/2WBEPDDzEGvNam+cW0l8zkk25nOelkuUFvJt6pknZgMM/O7iSlmseZyQpxx6I/GycVs5lr+J09EBs1SWyH9fzqptq/USmlNo+tmOvtrD47UebcVIViPWjtIQRHAISYDafGKzT9EEO0vDQTjyZ6fhByerZGqeaBwB/+3MOd3HrqmZPX/RtgqtJkR1eC+7ZlODVRwQsMfRmXqYrHd05PM5BL8OFDuzX7lFJ3rCUniSIyx9UuDgaIAfuAnxERY4zJ3Z4hbrzFro4Nj84yW/X4/PcuRPsfwqjJbmORKuLRchSbpg9VL6pyutznzFQavH5lDhHBtSy2Z+N87OgJduQTNAJDqe6zPZeg3AjIxKOKq3UvIJdw12wPxGraWLSf1359e+O+hqVSSm2crZzrI2NF3rhS4usnxvFaZ2jbs17fgO+FOAKvXymxLRsHoNRsMlYMcCyoeyGpmI3b2h7y8a+eZCAXpxkYqg2P45dLOLZNT9pley6Ba1tsz13df19r+szUfAayCd59cDvnJyt84uun+auXL/PAYL6TodoiSil1p1hykmiMyS712N3m2qtjlbrHpZkaXakY6ZjNbM2jVSBtUb5vqFohMVuiSd0iz2kHx+WZKq+NlQgNdKVcHh7Kk0k4fP/8DMcvl+hJxwiN4fxkmVzSpeEBIp0N9muxB6LdxiKfdBe0sVjpMtbVvl4ppdTa26q53s6c0WKdhGPh+Yu3fPRN1Nqq1vRJxhx6UjHqBJTqAWEY0pOO0QwM+/qSvH6lzGS5wQM7srx+pYwfQjouTFWajJfq7OxJ8vy5aepeSH/GpdL0CQKDF4ScHp/jzGQVBIpVr5OB7WJ3tysbdUKqlFqNGy43FZGfBr5hjCm27ncBbzfG/NV6D24zaS/1BPi5/3CMrlQsWlbavHH/4YBoj8SuviQHd+ZoBAtX9bQDLghCijUfS6JlMdm4w9mpKicLc5SbASLRlcyGH+LaNmFomKn5dKfczgb7tdgDMb+NBdD5vtJlrKt9vQabUkqtn62W6+3M8QJDMzAkXIu6H15X5bTDCGFoyMQdEKj5ITHbwgsNP7ani1PjFTJxGy8wnJmokm21rYq7Ng/3p3nuzDRz9YC+dIwrpQaFchMB9vQmsS2LVy4V6cvEiTtWZxsIwKePXeCBwdyi2dj+vla5pydrlVKrtZLqph9tBwmAMWYW+OitfqCI3C8iL8/7KonI/ywivyMio/OO/+StfsZ6K5Tq2GK4PFuPmt7f4PkCPLyri3ccGCDuONdd6fvMsfOcmSjznTNTzFSbxBxBxKLc8Ik7FpeLdWwr6r8kIiRcm960S8y1+Q8fegtvv38bXsCiFVNvxehsrROKbTezjHU1r28HW7HmLQi2ja7aqpRSW8ia5jpsbLa3MyeTcDCtxbRL5bIAfmv7ZSru8N6Hh/ivhvLsa/U17Mtc7YmYSTiU6h5+EDIx1+DElTm+eXICy4JmEBIA+/rT7O1Nk4472JZF3Lma3Q0/7FQ6zSYcCqX6otn42uW1zz3tWayUWq2VVDddbCK5ktctyhhzgqhxLyJiA6PAF4H/HnjKGPPxW33v22Ugl+DMeBnHEtJxm8YSS1vmmyrX+ZsfXO6Uy/5Pr4wSd23u6Unx0sVZBrJxjDEYAS8AY0JCE+1fDEKDHxh6umKd94tyUBZc4Vwr8wvotLWXsa7kKt9yr7+R1V6FVEopdUNrmuuwsdnezpz7+tO8Plai4QUsVYbHAMZAzQsYn4sqh/elXb5TmEOArx2/wnixTjMw7OlN0fQCpqoejgipmEWtGVCt++zsSZGOO9S9gLhjkWhNCht+SDrmMF6qM9cIyCcdvjZSwPNDKg2fZ09OdKqkQ5SNpbrPzu7Umuae9ixWSq3WSq4kviAifygi94rIPhF5iqga2lp4J3DaGHN+jd7vtvjwod1UvYAgDLFFSFzbjOkaMRsuz9a5UqwTBAGFUoPpchM/CDl2dppy3afmhcRdG0FIRKXY8IKQ16+UsS0h7kb9Go0x1L2AciPg0V3rM2lq95wq1jxCYzq39w+kV3S2c6nXHz44cMPPXu1VTKWUUje0nrkOtznb25kTc2x+9N4eXDvK5MVLxEWCECZLDU5eKfL6lTIZ16Y75XB2qsJcw8MLAq4U6xTm6jSaAUFo6EnHiNkWgYne+75taRp+SKnu05eJs39bBgz0pl2mqx65pEPCsbg4XeXybI37B9LM1X2eOzNNoVTrZGM+6ax57mnPYqXUaq1kkvhrQBP4PPA0UAd+ZY0+/wPA5+bd/1UReVVEPiki3Wv0GWvuPQ8N8Q/e1IdtWVS9kFwqxiM7c2TjNtcWLk04gm1brdYYFrVWBbW4a1NpRiW6Y47FVKVJJubgh4ZaM6DWDOjPxtnRleBt93RjiVBrBpTqHgB7+9J88NCedfn52oV68kmXsWK9s4z1ZKFy3fKVIAj56JeO8+TTr/DUMyc7rToWe/1KzohqsCml1Lpbz1yH25zt8zMnk4jxU4/s4CcfHGBbLh5l8LxctgDXAtsCRDh2ZoZswuHx+/tJxVxitk02ESPp2lQ9n3IjJMTQk3YJDfRn4/RmYlS9gJ50nPsHMgDkki57+zM89YGHeceB7fw39/ezLZtgvNwk6VoMdSfxQ+HQvT1kEg6vXCp2srE/E+fZkxM8c7zAsTNTTMzVV517qzlZq5RSALJRrZFEJAZcBh40xhREZACYJFoN8m+AQWPMLyzyuieAJwB27979Q+fPb8xFyC+/OsonvnEaLwjpTccYzEctKQZycY6dmWJ0pkYmbpNwHaYrzdYSlxARoTcdxwtCyg0f09pA0ZuJsbM7xfhcnUKpjmNFS0nv25amL5Pg7ESZK3MNdvek1qWYy0qWkT759CsM5hOdhsJvFEo8d3aGph9wYDAXPWZZq9oXOX+zfbvdSLHm6WZ7pdaQiLxojHlso8ehtp7Nku0jY0U+e+w83zk9xVS1Sa3hY1mCIIhEJyTTMZtz01X+6aF7sET40+fOY7UGWqx5dKdilOpNQiPs7Uvzlt1d9GejPD47WSEwYDA8uquLDx3a08mo+Vn5zPFCpxfjXMPnHz6wndAYxop1Pv6zDzMyVuTjXz3J2clKp/p5uRGwuzfFbx6+/7rcm5/VMVsQoBGYRXNbi8ApdfdYj1xfrk/iHxljflVE/hOL7AE3xrx3lZ/9j4DvG2MKrffr7KYWkT8B/vNiLzLGHAGOADz22GMbMsMdGSvytZEJ9m/LcKVUZ7riUar5/No77+U9Dw3xjo//HY4llBs+c42AsFVizRhIxqKehpVmgG1B0nUoN3wqjYB9/SkODOb4xuvj/Oi9PQzkrp5F3NOXJubafPxnH17VuBcLjGuroJ2bLPORz19hZ3eSB3dc7e80f6/hZLnOc2dnCEJDNuHS8ENOFMrcP5BZ1T6Ka9uNDHUlef9bd2qwKaXUKt2GXIcNzvaRsSL/99fe4L+cnsK2hKGuBLt78nz37AwxW8gmXXpSMdJxh1rTx7Ut5upXK5AiUG0EuLaFYwtJ16HSjFa3nBovE3OiVUB92Th7etOdk5nzK4fOz8pMwqHhBVSbPtVmwDPHCwRhiGNbPPn0K1yYrjKYi3Po3h5OjVco1T0yCYcd+cSiE8R2VjsWPHdmGgO8bV/3otVL16NmgVLq7rHcRvV/CvwqsF6bzX+eectRRGTQGDPWuvvTwPA6fe6qzS+usrc/WmpSrHmcLFTYN1akUKrT9EOifr4Ls84LQmpeiBhIp1xCov0LuWSMVy6WeNcDA/zYfb3EHHvB625l6cn8SWHcFi4X6+zpTV9XDnv+zzNZrnOiUAagVPMWPO/wwQGOPHsWgDcKZfzWnsyedIyEG413rFjHbY39Vs9iarAppdS6WO9chw3M9pGxIv/qr4b5wWgJYwyC4eQVn5gbFZZp+gFBYLhSrGNbgmMLP3xPNMECGMjGuThTo+kH5JMufhASAru6k+QSDoW5BoeSLs1cnJhjL1loZn5W7utL8e2Tk8zWPXbkE/hBwOXZOl2pGI4F0+UmxWqTx+7p5kf29QJ0rjRe6+hwgSAIOT5W4sxEuXMC+pnj49zbn2F7Lq5F3pRSa2a5SeJpAGPMt9b6Q0UkBbwL+KV5hz8mIo8QzarOXfPYprJc1bDPHDuPIARLnAd1LQtjotLZpbpHV8rl0d3d5JIur1wqMjpbo9rwePnCLDU/xBLoScfY3ZPmrW/ZwVPPnFxy0rXcpPDZkxOU635rCYy7INTm/zynxivEnaiM92S5wchYiclyg49+6Ti/+94HOpPKwlyDdMwhE3dIx1s9pFp7Kw/d26c9mpRSavNZt1yHjc/2zxw7z6nxCkEQAnSWgzYbAbZE9626R9y1ILQQgfc8NMi+/mgFzGBXkkrDZ86KMtxG6ErY7B/Icnq8QrHa5E+fO0+t6XNPb5pHdncBUW4WijXKzYDjY0UeGMzzEwf6OVmoUG74dKWjK5eWLRRrHju6kiRjNmcmq/RkYpRqHqfGK/RlrlY8Xeyk8GuXi1yarhF3LfwgpNoMorZYjkXdC3j9yhxV78bV1pVSaiWWmyT2i8ivL/WgMeYPb/VDjTFVoPeaYx+61fe73Ya6kp09guW6TybhsD0bZ29/hr89foXBfJw3JqrXvS4Xt7EsIRFzCEJDKmbTn43z0oUZKo0A27awgfFyg7m6T8KxCI0wUW4Ssy3+4sXRRa8ELrZk9NpJYTMIycRtTk1UOqW32xPb+UtjSnWPbNxpbXL3ySYCelIu0+Vm5/M+8q79AJydKHNyvNwpAV6qR0t3Dh8cWFErC90vsfb0d6qUWsa65Xrr9Rua7S9dnKXh+a3J4UKhgZgFIdCVitGXTbA9G+dkocJ7HhpakEufPXaeb5yYIAwNDT/g79+YpBmEiDGIFbW6OHFljiulGrlEDMcWZms+jiVcmKqScm1evTTLjtbJ19DAW+7pYls2yd8ev0K2dWK1XPd5ZFee75+fZbLcIDSGubrPxekqzVycJ59+ZcHf8VLdB4GEa+OHBtuS1vsbEq5Nww8p1nzU5qUZre4ky1U3tYEMkF3i6661fyDNSxdnKdU80jGLiVKdb56Y4BsjVzg3WaFQanSeO7/YacOPlpr2pmNYEvVp8oOQqYpH3Q8Z6kowUW5SrPnEbItU3GH/9ix7elJMlptMV5pLNsa9tnHu/EkhQC7hYohCqa19tnJ+FbRs3KFU95ksN+lJuyRcm2Zg6MnEFnze4YMD2LbF/m0Z4o7FdMUDA7/2jns5MJi/YSuL9qR2LZsH3+30d6qUuoEtnev1ZkDdN9dvtmzJJaNM688mOLSvlz196evaTBwYzPPBQ3t48/Ys2/MJal5IzQto+IZmCMYYXEsIDcxUfWarTUqtidn2fIKEa3N6osKFqSrDl0sM5hO4tvDcmRkmy3VyrT38DT8kk3DozybYP5ChNxNnrFjH84OoR7JjX/d3PJ90Om2wbBFCYwhCgyVQ9wIwkEusqt2lWkea0epOs9xfkzFjzL++bSO5g5wsVHjL7i6ulBqMz9Up1X0yCZvLxQZx26Lc9BHaDe8jVue+oSsVXVUrN30Kcw0sEeKOkI67XCk1AIMfRiEC0TLOuh/QbN1vmz/punYJbC7hUmv6nUnhfdvSHDs9TTbhdM5WFmtepyhMZ29iyqVU80m6Fl1Jl7oX0PBDHtyRW/B5818Tc20O3bvwjFj76mTTDzg1UaFc93Ft4cEdOYAVXWlUN0d/p0qpG9jSuX5tC6r5XFsAIelanVZSSy3rPDpc6KzaOTdVwRbBxxAa8EODa1u4Ap5vqHrRKqChrgTpeDSJOzNZYSifoBmEWBLl3nNnphkeLfHAjizPnZlBgO25ON88Mc5M1ePH7+vlg4f2cHS4gLvEfscHBvOkXJsrpQauY2ELiCWICHHXZk9PqlMnQW0+mtHqTrPcJHG5PrRb3nJLAkZna+zuTXNPX4bvnpkilwgYn6sTGsOu3hTnJitUGtG+gPZE0baFuGNhCZTqUSnut+/v5+WLRSypd37ZcceiKoIXGLqc6EJvww9JODax1v2JuTqnJipMl5v0ZGKMjBU7kzIvCDg1XmFiLqq6ui0bJzQG17bZ25dmIBedrWxXDQUW7HP89dZS0o9+6Xjn/R/ckaM/G531mh+o7d/H0eECx8eKHDszRS7h8OCOPPsH0vzFi6O8USjTDAKqjYBmEPBGYY7vnJ4E4Ef29V6tKMfVSe9qlmPczUs5ltsrq5RSbPFcD4j6H15zPhUBMnGns8Lm6pYKr5OD87X/lv7d69N4QYgfmgXv5QchtiVYVlS1POZYNFv7INsndw1gi/DdM1OU6h6J1uTUC+DQvh6mK01eujRL2Np68r1zM3zn9BQ1L2B3T4r7tmU6W0Pqns9zZ6fY2Z3k4lSN7bkY27Nxzk1VcUR4254uBrtSq+6DuFx+3s3ZulY0o9WdZrlJ4jtv2yg2mRsVXVlsD1+57mOIKpK19wYYE515TMVsMIaGF4LAWLHGIzvz9GbiuLbgWhax1sbz7pTLbLWJMZByLepNn3IjYE9vinTcifYBFsogURgO5uIcefYsb96e5ksvjzNRbpKKWeQTUVGZph8wMlbiwR153v/u/dcVulnq5/zd9z6woF9h+3N39SZ56pmTnSA68uxZwjDkwlQVEWG8VOf8VIUvvmQwYdipGueFIcZE4Vqq+YTAt09O8vj9/Z0gnKv7xGy55YI3d3uxnPn/X7attiGzUmpL2dK5LoC1xDR4MJ+gLxOjUGqST0VXc5Zqr9SuO3Bxpop9zWNBGO1rNBgcW4jbFnHbolBs4PkhcdemNx1jqhLVErAt6WzjMKEhbguNwHBppoYtwkA+QbnucX66ShCEuI7FRLlBqe7zllZhnG+/MUUzCDDGUPMCvne+Sncqxj19KRp+yMiVMr2Z+Jr1KL42P4F1z9a7YRKqGa3uNEtOEo0x07dzIJvJjZYE7B9I84lvnKbS8JiuNAmMoekbUq5FzLaoNn2MMcScKDyagaHuG5KOxWBXgmoz4Px0DdexeXBHjkKpQTpmt3ouBmzLJhjKJ5iu+TRDw9v29fChQ3uA6AqfF4b0ZeLcty1NXyZq7PvFl8ZwbYuUa+EFhumqzw/f081APkk+6XaKzbSNjBUXXC3sTblMVT2my83rKpm+drnIpZka92/PsLs33QmIlGuRT7qMjJVIuDahMVwpesQdi+25OCcK5ahSqmsRNgxYVhRyfsju7iSFUoPXLpd4fH+8s/y1/Z63shzjbl/KMb/sert311JnypVSd5+tnuvRfvxFjgODXQv7/i7n8MEBPvJnV8BAMzTYFgSt9w2JJqPpmENPOsaBwSxTFQ8vDGmGhjf1pujPxDl2eoq4axN3okI39aaPH8Lw5WjJ6RvjZYIwpNLwqXkBlgiWIwShYarcpDcT49R4mWLNY7baZEdXklzCZabiYYnQnXZ5x5ujk7Xticdqcm65/GzfX69s3YgTvBsxKdWMVnca3eG8iOWWBIyMFfnayATbszF+MFdHRGh6IY5AMzBUmz51LyDh2Fi2hWWD74W4tpCI2XSn4yRjUdo8uCPPR961v/PHarG9fdfa3ZPibXt7sOTq6dIrpTpeEBJzLO7pSyMi1L2AqarHfQPZ65YytP8gT5Ub9KRcZioNXh8rsT2XoDvlMFVuLKhk+tQzJ9nZnbouIJ4/O807D2zrXE0dna0Rs4XAGOKujQEcW5hr7Yu0rVbFOWPIJ6OKq15gFix//X+/fY6ezNIFb271v9vdYP4+0XbwLXWmXCmltpqZSmPR47Z1NW9X4sBgnl29SSbLdWoeuLZFPmnjB4ZyIyDuWty/PcubBjL0ZRK8CQhND2PFOh//2YcB+Gef/h6lmke5EZBJOGQSLrbAXN3jpQtRoRLbFiqNqBpr3In2FtoWbM8lmGt4FOYaVBpRlfLudAyAwBgSrizoo7gWOXej/FzPbL3dJ3g3atWRZrS60+gkcRHLLQlo/zG7PFtjZ3eKhGtz/HKxs/cwCE1UtEYMTT+g6YMfhlEj3+BqIZpS3Vv2D+xSZ7kWG9t0xSPhWIzPNThVKGMw2CIkY1dbc8zX/hn6MnHqXkC1GRBrFdxJxmz6MvFOJdN2pdLFAsIQFcDJJa4WuLEE4nZ05jSbsPGDqDy3LdEynSCMbr8xXiZmW/zovl5+730PLfjdv3JxhpPjZSoNn3TcYf+2DA/v6l7Vf7e7xYHBvAaOUuquVPWijLWIrvi1NUP4d3/3Bp/+zjm60y6H9vXyoUN7lv1b+cBgnrMTVQZyCWZrHg0/OhG7vytJCDywI79s1jy4I78gj545XsCS6HmWBIQmJAii9hiWQMMLkdY2knLDx7aEH7u3l68eLzBRblD1AnrSsWj/oxeAwGS5zqnxCpPlBr2ZOCNjxVv++z8/P6993zf1p5mr++uWrbf7BO9GrjrSjFZ3kuVaYNy15reECI3p3D58cKDT2qFUj5ZVVhrRXsSmH5JNuAgGLzSUG1G7i7oX4odQbkb9i753bpqXLswwXmoQsyVa9vnXr/G558/zt6+N8bnnz/MbT7/Cx46eoFjzcCz45olxfukz3+e3v/Aq+wfS143NDwMmytEZxyCM9kE2A0Ol4fPcuWn2D6QX/Hztn6E37XJppsbEXIOa5zNX82n4IfdtSy/4Az3UlexcDWybq/s8uquLYs1jey7eKb/d9KNN+A0/5K17esjEbNIxB8uKmv/6QbQM1xhwLeFysb6g/HMqJjx/bppqIyDlWlQbAcfOTPHiuSmefPoVnnrm5JLlopf776aUUmpr6/QNXOQxP4TZmsf5ySp/+eIl/vlnXuTLr44u+V6HDw7ghwGFUtQPuVhtMlFucHK8zNhsjeOXiwuy5uJ0lYm5eienrs1q1xamKk2qzQAw5JOxThX09piFqDJ5tRkwU/E4UZijO+UCQsMLGZ2p4VpC3Q9JuzbffmOS0+NlJuYazFQafOzoiVtup9DOz3OTZV44N0Ox5uFaFtuzcS4X61ycrq5bti71b4z1OsF7oxZdSqmIXklcxHJLAtpn23IJl+lKg+mKhy0WlgTMVhtUPbNgo/tiDX2NgVLd45nXxvjiS6PUvZCYI2TjNkEIJ67MMVVuMDHX4MJMlaQT7dMbvlyi6oX8xIF+ThYqnbE9sD3Hd85OY4jKfAfGEAKWZehKuFGz4HljaG/KPzNZpS8To+H7NLwQx4Z9fSn6MgnOTZYZKzV48ulXiNkS9X7sSS1YR9/e0H50uEDVi65GjpcbpGIOBwazJFyHuh+yI5+gMNfglYuzNPxoY/5ALsHDO/PEHHvB2buvvz7JtkwcLzTRc22h6Qsnx8s8uqdn2WUha7GU427YPK+UUlvR9mycM80q4VKNEokmY15gmKl6fOIbp9nXn1nyb3w65nBppragWqptDF5gODU+R18mRrnhErel09uwNxNVTv3ayMSCrH5wR45jp6dIujamdfUwk3AJw5ByI8C1oSsZww8NtiXkEzG8wPDWe3r4zqlJal5IEBjqXsibt2eZrXoUSg1SMZtduSSObXHh/2fvzqPjvO/73r+/sw8wwIAASRCkuIqiTImRLYteaMeq4yWR46Z2UjduGjtu2sZdTt0bt47jm5xrZ7nNddL0+jbOSRMlzvWWmyZuNjWOaUtOHHmhJGsXTUoURYqUSBDEQgwwwGzPPL/7xzPzcABiGZAAZgB8XufgYDDr75nB/L7P97eOTvOFY+f4tYbROfOZK9Z98O69fOK+E1R96M3E2b+lM1zZvOxVyabjKzJMcrnm6jUbvzXqSKQ5ShLnMd+QgHpltq07yenLk1R9iEUj9HTEw1ao+rLYzl2bJEKQyPm+Y6JYpVR1tSW1HZOlKt0pwzkYmiwzUfSCIZrVYDPf+jDQU0NTM+ZWfORLT9GTijFUqRKJGIlIhGQsEgyBjXBN61g4Kd+CYRa+CxaR6cskGMmXiUfzPH5+nDt39jCQTTFZ9PCdo+JVGcx51wSI2Sum1ivpbDrOR++5Nbz9I196ioFsasZ8St+5GeUbmiiytStJJBJ0cr98ZRqzWG0oqy06LORGhnJs9NVRRUTWsgPburiQK1KozNWXeJUPFD2fStWfN5Z88dg5ChU/WCxmunJ1O6uIkUnGqPqOkakKf/q+w3zq/lPX7G04li/xuWPn2dXbESYslydLXMoVeOlKgVQsyo6eJNGI8fzlPDdv7qRK0JO4f2snj527Qtnz2dKV4g37N3N6eIrJQgUMfvXdh/iPf/oU+zZ3kEo0nMY5xxMvjS/6Pi0U6+Za96ArFWMw5zU9p3OplquBt9n4rQVkRJqjJHGJGiuz7754BYcjYkbFD0JIzByRiOF8B7V5eFeDS/AciahRcC7csSoaASNIHIsVH98FQczzHbGIUfV9ChUoecEQl+6G1i8IWsWe70jUAqMjFo3gVYP0NBmLXtM6Vp+Un5uuMFny6O1McsvWDCP5MkOTJTDjzp094VzGbDrO7r7OOVdJnev9ma9ib6b1rr87xUShQjZ9dY9I33d0Jq/+q67UsJCNvjqqiMha1pGM8+YDm/nK9y4vel+v6tPXmZg3ljzxUo5MMspE0YjY1UbfkueYKntECBo14do5dcOTRU4N5an4Pq/be3UETH9Xkps2dfDKncF+xhPFCjEz9m/JcNee3hmxMRm7OiZpS1cq7NGrr2Jq2DWN0MG5xuJbYS4U61rVy3ajc/WWEr+1gIxIc5QkXofGyuzFkXy41cNEoUKxXKVSdcQiUJumBwS/fR9S8UiQUNaGm8RqwQdzVH0oVKrhfIqIGZ7v4wVTGHDOMTxZ4oXhKf7V574b23d6tAAAIABJREFULud9z6F+nn55nNHJErmiR6Vawas60olg+e3Z8wZODubIFTzGpir0ZhLcXBtSsrW7wpHacJKlTiJvZphHM613Hziyi09+5bngPslgWE7Z83n9vt7wPisVsOY67pLncf+JMQ0/FRFpc0GCEyMZM0re/GNODTALVuzc0ZOeM345HIYFo3JqCWL9Gat+sPZAptZ4OTuxOj08RbHiUfEdX376IpPFYNXzSMTo7Uhwx01ZXru3N4yBbzu4hf/52AXGpsqUawvkJGMROpOxYOpHrsjoVJl4NMKH3nIzAHfuzHLszBhmFm6zkS9VOdIQK+ezUIz/l9+/Z831sp0czHH/iSF855NNJ8LtwRY6b9ECMiKL08I1N+CeQ/08N5QHghVL+zoTQYUdtTlb+XwgWpupbg5ikQgD2RRmQQLpIJxLkYrWAlFtb6ZEzIBg4nt3OsZEbeJ4vTL/6D23csdNWaq1Hs1MKsZANj2jBw6uDskY6E4SjcBEocLj58Z58vwYD70wyonBHOfHpjk3MsXwZJFjZ0a5/8QQD54aJhGdu4Wy/py5QmXGMI/ZE+jrrXfZdJzBXJFsOn7NUJB33rGDj73jVrrTcS7ny2zLprhtezdbu9MrvhjN7MnzI/kiD5+5QjxqCx6XiIi0Xn3xlf6uFJFFOtR29KSJRCIc6O+cM37t6e0gX6rSkYhe3b4Jait1ByOGdvemZ7xufWGXi1cKjE2ViUWMkXypNqcvGBVT9nyefjnHd18c48TgBJPFCt85PcpUKYg9rvZKXak4r9+3iecu5cMVzH3f8etHT/GLf/40b9jfx97NwaJ0E8UKAHs3d/K+2p7Kix37fAvFNBOn20n9/CMeNZLRCMVKlcfOjTOSL2qeocgNUk/iDTg4kOWmTelwL6T+bJpNHfGgFbFUJRWLsDmTIBY1pkrBVhOec2zOJIJtISJRejvjmMGF8SJRYFNnnFQsSr5UJRqxYClsCyba15OVbDpOvlSdMZziw28/wC3butmaTc8YJpIrVGYMt2gckpFJxTh9eYoLV6YZvlji+/f3sauvk/OjUzx0doy4GX2ZBLFIEECGJkpzLrG91GEeiwWbd96xg3fesSP8e3Yr70oNC5nd03n8wgQG3L69u6n5kCIi0jr1BOeL8Qh//cwgucLMRKgjEbSL+77jjfs38/4ju+eNXx3xCLv6OhibKgdDP70qVR8ikSAWHN7dQ0cyPuN163HKx9HXlaTs+VT9YJ9F3wVjhDZ3JZkue4xPV3j9vj66UjEePDVMvujxun29bOkKevhyhQpff3aE19/cR9mr8vj5cdKJKKl4JFzE7sdevX3GInbNjnRZbFTPWuplq39+t2/v5vHz4yRjRiJqHL8wwb4tmbbuARVpd0oSb1DjXkgj+SKPnRvnpk0djORLbM+mKFcdd+3uYXMmhe9cuNnuycEcXzh2jideGieTSrCrL8Lr9vbS351meLLId14YZbrs4ZyjIxknEYswXfYYzZe5Ml1may2QNA6naGaYaON9NmdSbM6kOPaCY3SqzJ7NwRzEPZszPDs4yXihQtl3dKfifN9NWeLR6JwJ0o3ucbTYUNV6wKrf7zPfenFFhn7ODvTlqs9r9m4Kg/ZSj0tERFbXwYEs7zuym4u5IicuTlCu+phzVB30ZRJ0pYKEor4C6H/92qkZm97v39JJXybJYM7jo/fcytHjQ5SrPolohEM7utmcuZrENTbINiZWP/P573J+dJrx6Qq+77DaYnbR2qJyL18p09ORCB9frvpkklFOD0+F8aYrFWNoosjr9vby8NkJkrEIqXgU5xyTJW/ORezqGs8vDOPOncF70rjY3HqZk1c//4hYnFfv6mlY4Me1dQ+oyFrQkiTRzF4EJoEq4DnnDptZL/AnwB7gReDHnXNXWlG+pWhskXu+NvQUYFt3qjZXwDh9eYrNmdSMoQ8HB7Izlqn+1P2nyBWCISNbulK84eY+vndxgs5EDEcwyT4RjVB1jnIV8sUKw5NFEg0L0zQz4Xyu+4xNVejrTMw4LotAb2eCH7xtW3jd7JVIF3rOZod5NLsi2WqtPNoY6Bs/k6Uel4jIRtMusf3o8SF293UykE3VepciOOcwM/ZtyfD+2pDMk4M5Xr4SxLTuVIxSJeixO7A1w97a1hgHB7JhnI9Ho/jOLTpP77aBLB3xKJMlj0K5SgSjIxElXdtD2HfMiLndqTiFske+YQjoZNGjvzs4b8gXPTLJYCGbkhesuDpfg+XJwRy/cfQ5zo9Ok0lGccCxM2NcmijxkR86MCNRXA8JVOP5x1wL/IjI9WvlnMQfcM69yjl3uPb3x4CvO+duAb5e+7vt1Vvkyl6V713McW50mku5AtPlIIjgHLlCmafOj/G/nrrInz76Ej/+e8dmbOJ7cjDHyGSRv332Mt947jJDEwUSsSj7tmT4nfe9mjfc3EdfJlnrTaxSrfpMV6o8du7KjPl5zWwmP9d9YpEggD10ZpSvnbjEQ2dGcT4kYjP/PeZLkG5kE/vGoT71IZ3ZdJyjx4eu637L6UaOS0Rkg2ppbD85mONrJy7x8JlRTg9P0dcRZzhf4tzYNBfGC7zt4JZwZMon7jtBvlRheLLE0ESRC1emOTOc56snhnh+aIKTg7lwBMtkscKJwQmevTSx6Dy9ew71E4lEeM3uTfR3J4ma4btgCOtk0aOn1thZt39rZ22vRJsRaz5wZFewqX3UKFWqFCtVSp7P/q2d88bjo8eHGJsqk0nFSCVipBMxulIxRvKlFY2XrbLR4/TJwRyfuv8UH/nSU3zq/lNaM0GWVTsNN30X8Oba5c8B3wB+vlWFWUjj8Mhk1BibKvPES+NUqg6cT8EZF8YLZBLB0JDRfJkXLk+RikXwqlWePH+Fx89d4ZN/8yzbe9Lkih639md44/5eTlyc5DsvjHH7QBe9nQk+860XOXFxgk0dUV6+4hOLRHA4CuUqpUqR//DW/fMOIUlEjY54JByeeaC/k1NDU+RLFS6MF+hOxbh9e5YfffUAX3zoJTqTMbqSUXKFCuPFCrs74uQKlUVXOKu/7heOneOBk6Ph8JZmNDtU9UaHtF6PZobkNLt5r4jIBrVqsf3kYI7f/OopLo0XmCpVqfjBMjAxC+JFb0eCB04OA/DAyWHG8mUGulOcHclzbqwcPk8qBs9eyvNzX3qKfNGj6ly4yf1EIc67X7U9rOfniwH12DFdqTI4XmQ0X+RKwaM7FePgQBcTtZjalYoRj0bZnEkwVa5y31MX6e9O8YEju3jnHTvYtyXDF46d41unR9nUEefOXcHUj/ni8YXxAmXPpyt19fQuGYswUays+akSi73X1zN0di3HcO3tLCutVUmiA75mZg74PefcvUC/c24QwDk3aGZbW1S2GRorkETUGJ8qc3xwkk0dcbZnkzw+NMXYdBm/6uNcsC9iImKYOXIFj6Lnk4pFiUaMqbKH7yAWCe53YbzIRMljUzrOc0N57trdw5tv3Rpsq3EpT382TW8mxjMvj/PI2Qk6ai2CVd9R8ny2diU5NTTFOxvK2zh/7zeOPseFKwXGpsuUKj7Vqs9r9/XyfTf1hEnfPYf6OXp8iDt39nBpskS+6NGdjnNga4ZMKka2tiXGfBVv/f353sVg2M6t/Rl29QWtnM1UVs0OVb3RvZuuNxAsNCRHFbSIyAwtje1fPHaOp1++Qr6WINZ5DiYKHumEh+/7fO7YeW4b6CYZj3BqKE+uYZhn1KBcdRQqHhfGy6TjQfwONs5wxCNVPv31FwD49unRMHm7bXvXNTGgMZGsx4p6o+tLY9OUvSqDOY9k1OhMxrhteza8/YGTw+yrDXn9tR+7Y0YM29oVDxPET91/akZc29GT5vmhSUqeTyp+dYhqMhYlGbVr7r8csWo1Eq3F4u31vN5aj+Ha21lWWquSxDc65y7WgsX9ZvZssw80sw8CHwTYtWvXSpUPuNoqOZIvkZsuM170qFb9sEfrkRfHg20vgKlylWQsAjiKnh8+R7XsU/Iczjlq2yNSrgaByAHFSpVyIkY2FgnnLg7mini+C7/w8WgEMCq+T7hbk0E8avO2DH7h2DmeH8qTK5Sp+rUyAI++OMaOTUFidWY4z3/806cAeOVNWY5s6Qsf7zvHycGJGYu2zH5vvnjsHN+sBUivGhzzc0N5MqlYOLl/scpqrlXWTlzMMV2u8pdPXghbVO851M9vfvUUT+RLlLwqyViUzZkk7/2hA2F55gtSKxUIVEGLiMzQ0tj+96eGGclXrtl+CmrxtuwxmCsyNFli3+YOpkoe+dLMFVB9F+yheClXql1TpScdrFLuVR1FL9gL+dN/+wLJWIRN6eA06onzOe7a3YPv+3zivhPs6u0IY9GcsaK3g2w6zofffoBP3X+KeCy6YCyZnQjVG4Lreys+PzTJ0y+P8/p9m8hNlxmdKpNORMmm4kyXqzjg689epr87xcGBaxPauTST/C0UX+vHMF9crjcwTxQ9sukYt9Xmf85VnpWIt2s9hrdihJVsLC1JEp1zF2u/L5vZXwCvBYbMbKDW0jgAXJ7nsfcC9wIcPnx4/t1yl8EXj53j7MgUXakYU+VqMCfA83lpbJr9/V34zpEveaTiEXIF8HxHxZ/5HI7g+tmqtR5FgzBITZWD34O5AgPZqz1kU2WPaMRRrDjG8ehMRNmRTVHy3LwbAT/x0jjTZY9y1RGLRDDzwTmmyz4PnxkjFo0E+x66YO7hd89e4XX7LEwKn3npCs9cnOTsyBR9nQkqXpV7H5wOK/57HzzLmeE8qZhxKVdgbKpCNh2lL5MKk91mKqvZQ0WmixVOD+eJYDjnmCp6/Mpfn+RfvHE3vnMUK1VGp8p4VUduusyZ4XxYnvmSwPkCwReOnWNLV2pJrZ+N7/WJixO8cmc3cLV3UxW0iGxUrYztJwdzXJoozpkgQrBP8XjR4+J4ge2bOjg5OBmMlLFgHmD9cY5gH+P63yXPMV2qgBme7/BdsOI3JcdI3sc5RyoeJZOM8fRLOcrVYNuL1+3tDWNRvlRhcybBQ2cmmChW6E7F2belgwvjQcyf62S/WPF4+OzovPHpC8fOBYvTpIIRRiXP5/mhPGeH87xyZw+nL+e5MF7kYq5ATzpOJhknFQ/WGXj4zBidyRiFSpVP3HeCDxzZxbdPj85YDfUN+/t44OTwoo2rjfF1JF/k9OUpRvIlfu5LT9PfnWJnbwcD2RQvjuT58J9c4qZNabZ2JRmaKNGZiPLyWAEMctNlOuLR8DxjuVdRn8taT7JudISVyGJWPUk0s04g4pybrF3+QeBXgPuADwCfrP3+q9Uu22xPvJQjk4xS9R0TRY+oOaIWBI2L40ViEaNQqbIlk2QsWqHk+Ys/6SyJ2uavETM64sE8g9y0x82bg8p8JF9kouARj0YBR0c8iu9gquSRisfCjYBnV+SlSpWpkkc0YkQMIhYkpsGejAUO9HcB0JWOccvWTo69MMb3Lk5w94Ek50en+O65K+DgYtnjwpUCzw1NcudN2XDiezYdZ7JYqS18EyEeM6bKPi5folLrVWy2smpsIf2Hv/VNPM+RTkSIRiJUfUehVOUPvvkib7i5j0EzdvSka3MsPD799Re4a3fPgq2BF8YLxCJwYnAiWCUuFWNTOsbJS3ne8oqtTfcu1ltMq1WfSxNFBnMFLo4XeMPNvdzS372kY5brs5bnjywXvQfSjlod248eH8IWuY/vYLLk8YEju/j1o6foSceCHsJZDbn1SB6PQMWHybJPMgpWG3Y6UayQ8iKk4jGcgVd1jORLVH3Htmya3kx8xt66zw9N8sLloMG5KxmjWKny8JkrHNnXC8w82R+eLPL0y8EieB2JKLEIc8anJ14aJ5OMhkNKU/Eo5WqVqZJjz+ZMuKXVN54LcvJyNRh+WqhUuTJdYbpcZVdvmotXCvzK/zpBPBqlrzMerob67RdGuWNHdtFetnqiVd8CLBmL0FvbL3q6XGVbNsnYVJXnaqu/TxSChYImix6dySjJeLC1R7FS5dJEif6u5DU9sQcHsuzoSfPUS1c4dTnPVMmjMxnjwNYMr9y5acn/K3ULJVlroZ5dbL/L+ayFY5P20IrVTfuBb5nZU8AjwJedc0cJAsjbzex54O21v1vK4TDgynQ56PUzIxaM/KTq+8HeSsUKl/Mlbu3vXDRAzVb1g6DT1xknGjHSiSjd6WBi+qXJMrlCheeH8nSnY5gZ/d3BCqeVqs9kqcqH3nozp4am5lz1syMRC1tHHUGSGMyHNKp+0KtY8nz2b+lkcybF6/ZtolIN9nE8PTyF5wcT9a2WYBbKVZ54Ocf3Lua4MF6gKxWrDas1YlELk9eqD4VKdd4VxhZbieulK9Ok4sFzmkEsaqTixnihwmCuGO4VZWZ0p2J4vuOJl3IzJunDzNbARNT47tkrlCpVMskopUqVh89eIRWLLGm11KPHh6hWfU5dzlPyfLZnU/i+4ztnxhiaKGy4VdVWWz1JzxUqMxL7jbSam94DaWMtje0XxgthwrSQrmSMd96xgzft76vFdMMIEsLZzIJFbwA8Hwxja1eCYAyQsaUrSdAm6nAuiH042L+l8+rrpWLkS5Xw/GCq5DGYKzA8WeTJl4PVU+srdJ4dzvP4uXEu5YpEDHo64jz5Uo6yV70mPhl2Ta9p2fOJRu2a60pele5UnJLnMzZVJhG12nZaDh+H50OlWp2xGmquUOHSRHHmezdHL9uOnjSTRY/Tl6fC+FyuBov8ZJJRTl+eCm/rTsWC+aJVRyYZDWM6BIvrDE0UODWUZzRfuqZ+60gYj7w4xnSpSkc8wnSpyiMvjtGRWOqZ11XzrYxab3xv93q2PhIrm44zmCsuuuourF4M0aqr68Oq9yQ6584Ar5zj+lHgratdnoXcubOHh8+MMV2uEjXIl4P2xYgFFb3D2N3bQSRijBeqZNMxpkseFZ85h7xE6715BMGnft3O3k72b82EQz3r8wGz6ThDk0HL2sFtXYxOVZgoVrhpU5psR5x33rGDv/vSU3MOl9iWTTE2VWIkX8b3HdGokU4YEYxYNAJmvHpXNnzNZCzG22/r58NvP8A7/tuDxCLBEJyoGVhQ3kK5ykTR4/btWXKFCslYhFLFx6s6IhGjMxGlWttD6uGzo9y5sycsU31z34Um+UMw/7LqXMMAzvrQXGN0qjxjb6mS59PbGWey5DFZ9OYdchEsNzCT57tguG3NSL7I80N5hiaDeShztaxdGC9waeJqoko8ys4+uDhe5KmXc/zgbdvW7IbEa8Fanz+yHPQeSLtqdWyv1+f1ODtbPRGM1RZvuZwvUar4ZNNxtnYlGJwo4ZV9HJCIBhvfp+NRrkxXgsfFomzrSrKlO0XVD6aaRCPGtu4kI/lg7n86HuVAf2bGXP7JokdHIs4dN3Vz/MIEL48XSMWi7NyUpliphjHwg3fv5RP3nQjWHjDY2ZumMxmnWKlyeniK1+3tnZGg3bkzy9+fGqYyUcLzg5XPq74jm45y7MxoOGqmWuslnS55nBubpuT5dMQjJGLBno2pWIRyxZ/Rm5qMRYhYsIdyo7lGytR7s0byJXo74uE2Hf3dKQyYKAbP0ZUMhsRmag26pdr0mvoCOyXPp1J1pOKwOZOc0RN79PgQx86MsjWTpFJbuK8zGaUnEuPrz47wr//BLUv/h2H+FczXUj271EV7VuPY1vqCQHJVO22B0Xbef2Q3g7kiV6ZKFCuOq9sGBsFo56Y0//CVO4BgOMjlXIG/OzVM2b922KkB0YhhviMei5CMRdnSlSAaibCtO3VNULl9e5YPv/1A+NzZdJx6Ndg4PGK+4RK3b8/yo3du57989TlyBY+oGZs649y0qYP33LWDB04Ok4jNvTGwYUTNqNbmX1htjyeAbDoWBoXuVJyYGblihZLn2JKJUyj7bO5KcveBLeEKp287uIUHTg5zZjh/zST/eutoveJ47e5NPHh6BMOIR41KNQgId+3sYWS6wkQxWEK85PmUPJ/dvR3sr7V6wtxDLkpVx+v2beLM8HQ4H2RPX5pCbQJpfZgMQH9Xct4KbUdPmifPj9PbefW9jkUi3LI1WNG1/nnJyljr80eWg94DkbkZkIpFmK715s2+DYJhpBXPJ1eo8Ipt3XTEo3zr9CgQ5dCOHkYni7w8XgSCqSXxqJGIRUjFItw60M2RfcHibt+oVOlMeiTjUSpVx+7NnWzrStKVijFd8a/ZOurOnVnisSgdyRh7+jrD4ZVd6WgYAz/89gPs6u3gdXt7eeTsGMVKFQgStnzRuyZBe8P+Ph549nKQBDqo+o6IwWSxEvQGJqNMFCqM5IuYRdjSlWTnphQvjEwxWfLY1Zng1bt6OD08Ra6QJxa52mha8nw2dyYxs0W3waonWp+47wRj+TK9mQS3bw+mXzx8ZoxMKhZODwFm3LapI06pEsRy5xwRC9Yi2L91Zk/shfECQxNFtnYliUSudvn6vs/QrN7OpZoryfrMt15ct/XsasSQtZRky8KUJC7g4ECWj95zKz/3pad5cWSKzmSMLV0JLowXcQ46ElffvmBISZzejjijU2UqVUfVBeN5I5FgqIpX60Z0DtJx47V7e8kXPZ67lKc3k6RY8Tg5OMmV6Qpv2t8XDkNZaMz5QrcfHMiyb0tmzrHns69v7AG7c2eWi+MFkhYMSSlVfCq+IwJ87+IEZ4bzfPDuveHqpgPZNAcHujg5OIlzHrdv757RClhfbrw+xMRq3ainL0/x2lmtox962y2MTJU5NzrNdKVKKhbltoFufvFHbuPMcJ5Pf/0FxqYq9HbG2d3bQTQa4f1HdgPMezz1RPr1+66u3np2OM+py/lwSG/d/q2ZeSu0ew7189Xjl65JVPf0dWy4eYitmNOgSfp6D0TmU6o6utMxJkseOHdNb2J3KpiC0Zm8evJan7f33KU8tw1081ChzNauBEMTJSKRYF781q4Eo1MVtnUlw0bV3s4EmzNJdvZ2zIi775snFgH8xtHneH5okggQi0ZIJ6Ic2tE94wS9/v3ev7WTx86NU6xUuTJdpuw5HjozyofecnN4PKeGpnjdnt5w66pMKsaVqRJGEHsnihXitTmUpUqVyWIw+ueWrV2M5ct0peL0ZZLkix7nRvLEo1GKZQ8H5EtV9m7u5MdevZ1TQ1OL7j94cCDLL/+j267Z5mNXXwfbsyku50tMFDwO9GfoyyRn3DY0WQpXN80VPAa6k+Hq6HC1fjvfnWKiUCGbvpokTpaq9HfPvQL7jVjP9exqHNtGaMzcKPM6lSQu4uBAllcMdPN9N3Vz/OUJBieKFCvVoMWy7DE8Gczhq7egxWMRbu3vIlVLIKdKHhevTJMrecQiRrIWHFLxGM7Brr5OpitVyl6Vb5waxvcdHYkoj7w4xndeGGV/f4atmWS4n9Lsivp6N5JdaIjC+47s5vnLQRLle8EwlJhBZzJKImJ88ivP8bF33Mp/nrV3U7nq85q9m2b0inalYgxNFHnd3l4yqRilSpVUPBpu7ju7cjo4kOWX33X7nF++hZLe+mPnMlciHY1G+NBbgjmd9SG9jUN+56rQDg5k+dBbb+bTf/tCOPR1T18HkUhkQ81DbNVQkuudpL+e6D0QmVsialyeLNOdjofTEzzPBYvQGFSdIx2PEpk197Aeg4P56RF6O5Mc2p5ldLpCvugRjxqHtmfxqj5//Mh5KlWfnZs6+JFXbmO67OaMu3NtExExIxGNUPKqxLjau9kYA+vf72w6zt6+NMfOXKHq++zq7eDmLZkZeydeGC+we3Mne7dkwtf52vcu4XC8fl9fOELGr62+ujmTpOT53HFTFt85nnppgsFckb1bMvzQof4Zq5se2dfL+47s5uBAdsY+zAuZ61zko/fces2WF3Pd1vg+1efLza7fDvR38smvPAdAVzLKZClYnK8xcV4OJwdzDE8WZ0yNScZi66aeXY0Ysp6TbNhYw2nNuRXdRWJFHT582D366KMr/jqfuv9UsMH9UJ5kLELV9zk3GiQQfZ1xUokYzjlesa2Lp17O4Xk+fV3JYM6e53NudJqtXUk2dSaCBLM21CQZD3rJsuk4I5NFjp0ZoysVw6v6nBubplzx6UhG2d3XSW9nYs5KdSGzN/A9PzrFc0N5btqU5vbt8+9HVH/sF46d4y+euIDvglbY/u4UncmgsuxOx/nTf33kmvdpdsWQK1Q4MTjBbQPdlL0qj58PVj9ztWGs+7ZkVuWLtVCrz3zlru9htZTn2giW+n4tp43+3sPyvAdm9phz7vAKFVHkhlxPbP/FP3+aLz9ziWjESMYijEwWKfvBaJ50IkI6HsSu7T0p3n3n1RPixrprrk3vg6GpnXzxoZfoTMZmJCgfe8etvPOOHYuWrV5nNhMD69/v+08MEY8at2/vDhsvG8s6Vz1cX8n0zbdu5aEzoxQrVQZzBQxjz+ZOxqZKTJerpOMxejMJfvkf3XbN3outrl8XKsOXn77A546dZ2iiGO6h3Mz7v5TXrn/+s0d21ZPm9WClP+f5vkfrJYlq5TnQQlYirqsnsQn3HOrnw39yCaCW+MHmTILx6TLjBY9bs2n2b+0Mh0g89XIwv22y6AXzGeIR7trTQ8QsnPuWiBpj+XLYgvOf/vTpcDnrM+PTVKo+kSgUK1WKlSpPvDTOv/3iY7zrVTc1/YWevX9R4xLUi7V8HBzI8ms/dgfffmGUrZnEjHkAXcnonPMA5muh+sCRXeF+S6/ameXk4CTjBY837e/jDfv7OHp8iM9868UVDUoL9ZwutWVtqRPF15tWDiXZ6O896D0QmUup6jiybxOPvDhOoVINt7EwC6aGRGormeYK3rzz7OYbmfOJ+07QmYw1zLEK4uHnjp1vKkmp15kRi4fzACcLFYqeRzoeuSb+1XsKg8dcnSvYWM/ec6if3zj6HGNTZcqeTyIWIR41sulEbZXOMsloJJgW4xxjUyXGalNhMskYA93JGecA7dI7slD99s47diwJPNZrAAAgAElEQVRrUjhb4zlTNh2nv/tqj9h6qnNXOoZc7wi3tWIjDKetU5LYhIMDWW7alA62vChVyaRiHNnezePnr2DYjLlu9aErt9Uq+R09aUYmi8RjwQT1u3b3hJvN9mWSYQUcbLcRBIN8qRoscgN4zjGSLwerqxarS6q4G/+R60tQJ2MR8qVq0xOJ+5cwD2ChiqE+TDRf8njzrVvD4ZnLHZSup4VsvVdoy229DyURkbUnqJdi3HMoyenLUzx+/grJGMFiKASrmu7b0sHoVFB3zVfXz3UCPTRRZGsmMeO6+RpL5y9b8LpbuoKF6urz4hOxKH2Z2DXxr5l6tp5AutpKPdl0IpxHGLFgFfM33FxbbOfUcJAgpmIc3rOJzZkg5tbPATbSYiPznSdspJP/lbaeGzM30jmQksQm1bd9aPynSMau3ZNpsuhx20B2RpdzvYUOoLczycGB6DVd7/XtNoK9MQzfD/YgjNZaP50LVmZbSsXd+I88UaxcswR1M5XfB47sWnAewFyVbX3Yzuwewtnd8J+6/9ScQenTDzzPyHRlyUNKbqQldD1XaMtN8+JEpN00zud77d5ezo7kKVaC+XydySDm5QqV61qJeimNpQuVDa7WmaeG8mzLJjk5OBGuur2tOxnG9gP9nXz6b1+gUvXp60wEvYqRSFjPHj0+xM7eDg7tuBq3coUKp4am+PDbD4SvmYhF6UrF6IjH6EpeTRDrZamfAywlQWqHYanzWaxsC50nbKSTf7l+G+kcaI7tY2Uuc226ujmTpLczcc1GrLMXMWlmw9P3H9nNrr4OIBiK6rury29DsOnttlpAKnke958YWnST0sYydyVjTBQ9Sp4fbvTbWPnNt/HpO+/YwcfecSvd6TiX88GiAPV5GPNtyvrlpy80tVnrhfECXamZ7RSXctN84/kRJgoVtmYSTBQqfPIrz/Hlpy8s+hk1toTWV1edvQGx3Ljr2cBXRGQlza6XDu/eRDoewfMdvh9sSzFV8vjAkV1Lfu4PHNnFVCk4Ebye55qrzuzpDC4XK1W6kjGKlSrPXprkxGCOk4M5Hjg5zIGtGdLxCM9fzvN3zw1TrO0tCEH8LHkeD50Z5WsnLvHQmVFKnhcmdbNfszeT4BXbuuZcORSCRuXJojej3HMlSKu1Gfv1aKZsC50nzHWeN9c5nWxsG+kcSD2JTZpzSOIPBa2RzQxTXKynqr7dxtHjQ3yvK8eJizlKFZ/JUpDYbeqIc8dNWUbyRR4+c4WuVGzR3rLGMmc74jOWoK5Xfu99zU2L9sDNNw9gvuEp9S0vFhu2Mler3RPnc3TEo9c190NDRVaPel5FpN3MrpdmL3TyobfcfF1z2uqPmeu5mu1Vm122H/+9Y5gZqXgwIqm+oXyu4IWxtVKt4vmwq7cDnONirhjG5mTUwsXu6knmw2eucGRf75yvudDKodB870g7D0ttpmwLnSdo6ok0a6OcAylJXIL5/imWuuLoQls41CeQ1yekTxQrXJmqEMHwnePkxUkMrtmLcHYFPft1/uPb509o5xv2uVilP19lW9/yYvb1s5O1uYJSvuSxtSvBy1emKXk+yViEbO05F6OhIiIiUvfOO3bM2Dbp1NAU+wZz13VyV28srcfWv3tuhG+fHmVoosTO3o4lT3HoTsWYmK4EK53XVkKntpJ4PbY+cnaCZCxCKh7FOReuJ3D0+BCOq9to1Bkw33r1iyVAzSZI7dwY20zZFjtPmO88r52H2IqsFCWJs6xkRdDsnLmjx4fY3dfJHTf1ADCSL/Lds1d44ORlKlWfmzbNTHpmV4ILvc5cczGut9Kfr7Lt704xWfQWTdbmCkrbupMM58uk4xESUcOr+rw8XmRnb8eCZYGNNU5cREQWttwrds5+vgdPDTNZ9NiWTRKxeNMNrCcHc0wUPabKHhMlRzIaYUt3it29HeG+h7lCJVxLAAjXE2iMza/Zu4kzI9Pkix6ZVIyDA12Uq/Nva9bMiKalrHVQ1y6Nsc2U7XrOE9pl5VeR1aY5iQ1Weqx9s3Pm5pqrZwY96QS39ndR9eHx8+MMTwa9a7MrwaXOzWt2LsJs843f/8CRXU2P6z9YW+TnN//JK/nw2w9w67YufN/h1dYv93zwfcfu3sUD0EYaJy4iIgtb7nnqs58v2E4iyunLU+F9FmtgrZ9nDHQn6UhE6U7FScaibOtKEo1GuOdQfxhbE9FIuA1WfT2Bemze0ZMmFY9xZF8fb7+tnyP7+kjFYyuerLXzvL1mynY95wla70A2KvUkNljpsfbN9tjNbg07fXkKM6M3E+eWrZ3hXouna8tnz24FW2rP4PX2wDWz5cVSx/V3JOO86ZY+nrowwVTJozMZ47V7euhIxhd9bL1MSgpFRGS5h0bOfr5MKkap7DFRrITXLdbA2niekUnFwi2xLk2WZmxu/8G79/LFY+f45ulRNnUEewzPjvetGDnTzvP2mi3bUs8T2nmIrchKUpLYYKUrgmaHacxO2kbyJeKRCPu3dLI5k+Ku3T08P5RnaLLEkXT8mkpwqcNBbqTSX2ie5vUEjfpeV/9k28xlvRuPRUREZDHLPTRy9vPt39LJw2fGyKRi+M41lag1nmdszqTYnEnhO8dgrnjNfo3/+cfumDEFJjsr3rcqWWvnxtiVKFs7D7EVWUmrniSa2U7g88A2gq3/7nXO/Tcz+yXgZ4Dh2l1/wTn3N6tZtpWuCJrtsZudtPVlkmzrSrKl62pgiUejHEnH55xjeD09g+1S6WteoYjI2tOOsX2548ns50vEouzq62B7NsVgrthUonY9jbjzPV+7xO31TuclslGZc/NPcl6RFzQbAAacc4+bWRfwGPBu4MeBvHPuN5t9rsOHD7tHH3102crWODm5sSJYznlt17Mwzlzlemlsmv7uJOWqm3fD2FasxLUcr6tVxERWlpk95pw73OpyyPrRrrF9uePJjT7ffOcZbzu4hVNDU6sW9xRnl0bvl7S7lYjrq54kXlMAs78Cfht4Iy1OEqF9K4LGciWjxsVckd19nSuWzF5vGVc6yRaRG6ckUVZau8X2djL7PONAfycPnBxetdipWC2y/qxEXG/pnEQz2wPcCTxMEEj+vZn9FPAo8J+cc1dWu0ztOnyjsVyfuv8U8Vh0xRbYuV7tvMmuiIisjnaM7e1k9nnG9e5VfL0Uq0WkGS3bAsPMMsCfAT/rnJsA/jtwM/AqYBD4r/M87oNm9qiZPTo8PDzXXda9ubbIaIeVttq1XCIisjoU25dutWOnYrWINKMlSaKZxQmCyB855/4cwDk35JyrOud84PeB1871WOfcvc65w865w1u2bFm9QreR693XcKW1a7lERGTlKbZfn9WOnYrVItKMVqxuasBngJPOuf+74foB59xg7c8fBY6vVBnadd5ho4XK2K4rbbVrudaLtfB/KyIbU6tje7stULMUqx07FatF2ku7nt+1YnXT7we+CTxDsEw2wC8AP0EwHMUBLwL/uiGwzOl6JrevhQnbzZSxXf+h2rVca91a+L+VtUML18hya2VsX+76sRX17WrHTsVqkfawXPXNuli4xjn3LcDmuGlV9k1aCxO2mynjWlhgR5bPWvi/FZGNq5Wxfbnrx1bUt6sdOxWrRdpDO5/ftXR101a4MF5gIJuacV27TdheC2WU1dVu/xNqhRaRdrHc9WO71bcSUNyR9aid65uWrW7aKmthwvZaKKOsrnb6n6gPjcgVKgxkU+QKFe598CwnB3OrXhYRkeWuH9upvpWA4o6sV+1c32y4JPGeQ/3kChVyhQq+c+Hlew71t7poobVQRlld7fQ/0Tg0ImIWXj56fGjVyyIistz1YzvVtxJQ3JH1qp3rmw2XJB4cyPLBu/eSTccZzBXJpuNtt/jHWiijrK52+p/QHlsi0k6Wu35sp/pWAoo7sl61c32z4eYkwtqYsL0Wyiirq13+J3b0pMkVKuHkamifoREisjEtd/3YLvWtBBR3ZD1r1/pmw/UkisiNaeehESIisv4o7oisPiWJIrIk7Tw0QkRE1h/FHZHVtyGHm4rIjWnXoREiIrI+Ke6IrC71JIqIiIiIiEhISaKIiIiIiIiEzDnX6jJcNzMbBs7dwFNsBkaWqTgrZS2UEVTO5aZyLq+1UM7VLONu59yWVXotkSW5wdi+Fr7ry22jHfNGO17QMW8UN3LMyx7X13SSeKPM7FHn3OFWl2Mha6GMoHIuN5Vzea2Fcq6FMoq0u434Pdpox7zRjhd0zBtFux2zhpuKiIiIiIhISEmiiIiIiIiIhDZ6knhvqwvQhLVQRlA5l5vKubzWQjnXQhlF2t1G/B5ttGPeaMcLOuaNoq2OeUPPSRQREREREZGZNnpPooiIiIiIiDRY90mimd1jZs+Z2Wkz+9gct5uZ/Vbt9qfN7NVtWs6frJXvaTP7jpm9sh3L2XC/15hZ1czes5rla3j9RctpZm82syfN7Htm9verXcZaGRb73LNm9r/M7KlaOX+6BWX8QzO7bGbH57m9Xb5Di5WzXb5DC5az4X4t/Q6JtKu1EteXUxPH/AozO2ZmJTP7SCvKuNzWynnRcmrimN9VO94nzexRM/v+VpRzOa2V88rl1MTn/GYzy9U+5yfN7OOtKCfOuXX7A0SBF4B9QAJ4Crht1n1+GPgKYMDrgYfbtJxvADbVLr+jXcvZcL+/Bf4GeE87lhPoAU4Au2p/b23Tcv4C8Ou1y1uAMSCxyuW8G3g1cHye21v+HWqynC3/DjVTzob/jZZ9h/Sjn3b9WStxvQXHvBV4DfCfgY+0usyrdMxtUaev8jFnuDpV7A7g2VaXe6WPueF+6yImNvk5vxn461aXdb33JL4WOO2cO+OcKwP/A3jXrPu8C/i8CzwE9JjZQLuV0zn3HefcldqfDwE3rXIZobn3E+BDwJ8Bl1ezcA2aKec/A/7cOXcewDnXirI2U04HdJmZEQSHMcBbzUI65x6sve582uE7tGg52+Q71Mz7Ca3/Dom0q7US15dTM+cIl51z3wUqrSjgClgr50XLqZljzrtaFgF0EpwjrGVr5bxyOTV7zC233pPEHcBLDX+/XLtuqfdZaUstw78kaCVdbYuW08x2AD8K/O4qlmu2Zt7PA8AmM/uGmT1mZj+1aqW7qply/jZwELgIPAP8b845f3WK17R2+A4tVau+Q4tqk++QSLtaK3F9Oa2342nGWjkvWk5NHbOZ/aiZPQt8GfgXq1S2lbJWziuXU7P/20dqU42+Yma3r07RZoq14kVXkc1x3exWl2bus9KaLoOZ/QBBZdiKcejNlPP/AX7eOVcNOr9aoplyxoC7gLcCaeCYmT3knDu10oVr0Ew5fwh4EngLcDNwv5l90zk3sdKFW4J2+A41rcXfoWa0w3dIpF2tlbi+nNbb8TRjrZwXLaemjtk59xfAX5jZ3cCvAm9b6YKtoLVyXrmcmjnmx4Hdzrm8mf0w8JfALSteslnWe5L4MrCz4e+bCHpklnqfldZUGczsDuAPgHc450ZXqWyNminnYeB/1L7Im4EfNjPPOfeXq1NEoPnPfcQ5NwVMmdmDwCuB1UwSmynnTwOfrA0vOW1mZ4FXAI+sThGb0g7foaa0wXeoGe3wHRJpV2slri+n9XY8zVgr50XLaUmfs3PuQTO72cw2O+dGVrx0K2OtnFcup0WPubEjwDn3N2b2O634nNf7cNPvAreY2V4zSwD/FLhv1n3uA36qthra64Gcc26w3cppZruAPwfev8q9XY0WLadzbq9zbo9zbg/wP4F/14IvcjOf+18BbzKzmJl1AK8DTrZhOc8T9HZiZv3ArcCZVS3l4trhO7SoNvkOLapNvkMi7WqtxPXl1Mwxrzdr5bxoOTVzzPtraxRgwaq9CWAtJ8dr5bxyOTXzOW9r+JxfS5CvrfrnvK57Ep1znpn9e+CrBKsJ/aFz7ntm9m9qt/8uwUpJPwycBqYJem7asZwfB/qA36n933jOucNtWM6Wa6aczrmTZnYUeBrwgT9wzi24JUErykkwlOSzZvYMwRCFn1/tliQz+2OClbY2m9nLwCeAeEMZW/4darKcLf8ONVlOEZnHWonry6mZYzazbcCjQDfgm9nPEqyY2E5TE5q2Vs6LllOTx/yPCRpAKkABeG/DQjZrzlo5r1xOTR7ze4B/a2Yewef8T1vxOdsa/t8SERERERGRZbbeh5uKiIiIiIjIEihJFBERERERkZCSRBEREREREQkpSRQREREREZGQkkQREREREREJKUkUERERERGRkJJEaQkz6zGzf7fIffaY2T9r4rn2mNmS9zg0sxfNbPMS7n/YzH5rqa+zFpjZPzez7Q1//4GZ3dbKMomISPtR/G6uLGb2nUUeN++xm9k3zGzF9nw0s3c3xngz+xUze9tKvZ6sTUoSpVV6gAWDDLAHWDTIrBbn3KPOuf8w+3ozi13P81lg1b6DZhZd4OZ/DoRJonPuXznnTqx4oUREZK3Z8PG7ydd8w0o9dzMWifnvBsIk0Tn3cefcAytfKllLlCRKq3wSuNnMnjSz/1L7OW5mz5jZexvu86bafT5ca3X7ppk9XvtpqgI2s6iZ/WbtuZ82sw813Pyh2nM9Y2avqN3/tWb2HTN7ovb71tr1bzazv65d/iUzu9fMvgZ83sxuN7NHamV92sxumacse8zspJn9DvA4sNPM8g23v8fMPlu7/Fkz+61aGc6Y2Xtq1w+Y2YO11zpuZm9a4NjztRbCh4EjZvZxM/tu7XH31hLV9wCHgT+qPWe6sRXTzH6i9v4cN7Nfb+Y9FxGRdWujxu9OM/uymT1VO973zro9bWZHzexnan/na78zZvb1hrK+q+FhMTP7XO11/6eZdczxuj9oZsdqj/+SmWUWeL9erMX5bwH/xMx+phbznzKzPzOzjtp7/4+A/1I75ptr5xv1c4y31t6/Z8zsD80sudjnJOuUc04/+ln1H4JWxuO1y/8YuB+IAv3AeWAAeDPw1w2P6QBStcu3AI/Ofq55XuvfAn8GxGp/99Z+vwh8qHb53wF/ULvc3XDftwF/Vrsclgf4JeAxIF37+9PAT9YuJ+rXz3PcPvD6huvyDZffA3y2dvmzwJcIGnNuA07Xrv9PwC/WLkeBrgWO3QE/3vB3b8PlLwA/Urv8DeBww23fIEgct9c+jy1ADPhb4N2t/v/Rj370ox/9tOZnA8fvfwz8fsPf2Yay7AEeAH6q4fZ87XcM6K5d3gycBqz2GAe8sXbbHwIfqV2ux+DNwINAZ+36nwc+vsD79SLw0Ya/+xou/58N79lngfc03PZZgvOPFPAScKB2/eeBn231/5x+WvOjnkRpB98P/LFzruqcGwL+HnjNHPeLA79vZs8QJE/Nzpl7G/C7zjkPwDk31nDbn9d+P0ZQYQNkgS9ZMFfgU8Dt8zzvfc65Qu3yMeAXzOzngd0N18/lnHPuoSbL/pfOOd8FQz/7a9d9F/hpM/sl4Pucc5MLPL5KEGDrfsDMHq69h29h/mOrew3wDefccO39+yPg7ibLLiIi69tGit/PAG8zs183szc553INt/0V8P865z4/x+MM+DUze5ogkdzB1Xj+knPu27XLXyR4Pxu9nuC9+raZPQl8ANg9T/nq/qTh8qFaD+4zwE+yeMy/FTjrnDtV+/tzKOZvWEoSpR1Yk/f7MDAEvJKghS2xhOd389xWqv2uErT2Afwq8HfOuUPAjxC0rM1lqn7BOff/EQzfKABfNbO3LFCeqVl/N5Zt9muVGi5b7bUeJKi0LwBfMLOfWuC1is65KoCZpYDfIWg9/D7g9+d4vdma/WxERGTj2TDxu5Y43UWQLP5fZvbxhpu/DbzDzOZ6P36SYDTOXc65VxG8D/VyzT622X8bcL9z7lW1n9ucc/9ynmO65tgIegj/fS3m/zKK+bIEShKlVSaBrtrlB4H31uYebCFIgB6ZdR8IWggHnXM+8H6C4S3N+Brwb6w2Qd3Mehe5f5YgAYNgQZdFmdk+4Ixz7reA+4A7miwbwJCZHbRgEZsfbeK1dgOXnXO/D3wGeHWTr1MPDiO1OQ3vabht9ntd9zDwD8xsswWT4H+CoKVYREQ2pg0Zvy1YAXzaOfdF4DeZGXs/DowSNMTOVabLzrmKmf0AM3sCd5nZkdrlnwC+NeuxDwFvNLP9tTJ0mNmBZo6rpgsYNLM4QbJaN1/MfxbYU389gs9KMX+DUpIoLeGcGyUYPnEcOAI8DTxFMOfto865S7XrvNqE6w8TVL4fMLOHgANc2yM3nz8gmCfxtJk9xeIrrv0GQSvht2k+kL0XOF4bDvIKgnH8zfoY8NcExz7YxP3fDDxpZk8QzJH4b828iHNunKD38BngLwmGrdZ9Fvjd2iT2dMNjBoH/Hfg7gs/ncefcXzXzeiIisv5s4Pj9fcAjtfv9IsEcv0Y/C6TM7DdmXf9HwGEze5QgUXu24baTBO/L00Av8N8bH+icGyZIdv+4dp+HamVs1v9B0Nh7/6zX/R/Az9UWqLm54fWKwE8TDNl9hmANhd9dwuvJOmLOzdeLLyIiIiIiIhuNehJFREREREQktGKbiIqsNjP7IWD2Pn5nnXOLzvNbgbL0AV+f46a31obqLPfrPQzM3svo/c65Z5b7tURERJbTRo7f18PM/gLYO+vqn3fOfbUV5ZH1ScNNRUREREREJKThpiIiIiIiIhJSkigiIiIiIiIhJYkiIiIiIiISUpIoIiIiIiIiISWJIiIiIiIiElKSKCIiIiIiIiEliSIiIiIiIhJSkigiIiIiIiIhJYkiIiIiIiISUpIoIiIiIiIiISWJIiIiIiIiElKSKCIiIiIiIiEliSIiIiIiIhJSkigiIiIiIiIhJYkiIiIiIiISUpIoIiIiIiIiISWJIiIiIiIiElKSKCIiIiIiIiEliSIiIiIiIhJSkigiIiIiIiIhJYkiIiIiIiISUpIoIiIiIiIiISWJIiIiIiIiElKSKCIiIiIiIiEliSIiIiIiIhJSkigiIiIiIiIhJYkiIiIiIiISUpIoIiIiIiIiISWJIiIiIiIiElKSKCIiIiIiIiEliSIiIiIiIhJSkigiIiIiIiIhJYkiIiIiIiISUpIoIiIiIiIiISWJIiIiIiIiElKSKCIiIiIiIiEliSIiIiIiIhJSkigiIiIiIiIhJYkiIiIiIiISUpIoIiIiIiIiISWJIiIiIiIiElKSKCIiIiIiIiEliSIiIiIiIhJSkigiIiIiIiIhJYkiIiIiIiISUpIoIiIiIiIiISWJIiIiIiIiElKSKCIiIiIiIiEliSIiIiIiIhJSkigiIiIiIiIhJYkiIiIiIiISUpIoIiIiIiIiISWJIiIiIiIiElKSKCIiIiIiIiEliSIiIiIiIhJSkigiIiIiIiIhJYkiIiIiIiISUpIoIiIiIiIiISWJIiIiIiIiElKSKCIiIiIiIiEliSIiIiIiIhJSkigiIiIiIiIhJYkiIiIiIiISUpIoIiIiIiIiISWJIiIiIiIiElKSKCIiIiIiIiEliSIiIiIiIhKKtboAN2Lz5s1uz549rS6GiMia8thjj40457a0uhwic1FsFxFZmpWI62s6SdyzZw+PPvpoq4shIrKmmNm5VpdBZD6K7SIiS7MScV3DTUVERERERCSkJFFERERERERCa3q4qaw9JwdzHD0+xIXxAjt60txzqJ+DA9lWF0tERGRBil8ispGoJ1FWzcnBHPc+eJZcocJANkWuUOHeB89ycjDX6qKJiIjMS/FLRDYaJYmyao4eHyKbjpNNx4mYhZePHh9qddFERETmpfglIhvNiiWJZvaHZnbZzI43XPcnZvZk7edFM3uydv0eMys03Pa7K1UuaZ0L4wW6UjNHOHelYlwYL7SoRCIishQbNbYrfonIRrOScxI/C/w28Pn6Fc6599Yvm9l/BRrHabzgnHvVCpZHWmxHT5pcoUI2HQ+vmyx67OhJt7BUIiKyBJ9lA8Z2xS8R2WhWrCfROfcgMDbXbWZmwI8Df7xSry/t555D/eQKFXKFCr5z4eV7DvW3umgiItKEjRrbFb9EZKNp1ZzENwFDzrnnG67ba2ZPmNnfm9mbWlQuWUEHB7J88O69ZNNxBnNFsuk4H7x7r1aHExFZH9ZtbFf8EpGNplVbYPwEM1saB4FdzrlRM7sL+Eszu905NzH7gWb2QeCDALt27VqVwsryOTiQVVAVEVmf1nVsV/wSkY1k1XsSzSwG/BjwJ/XrnHMl59xo7fJjwAvAgbke75y71zl32Dl3eMuWLatRZBEREVmAYruIyPrSiuGmbwOedc69XL/CzLaYWbR2eR9wC3CmBWUTERGRpVNsFxFZR1ZsuKmZ/THwZmCzmb0MfMI59xngn3LtpPa7gV8xMw+oAv/GOTfnxHgRkdV0cjDH0eNDXBgvsKMnzT2H+jXkTDYsxfbWUn0kIqvFnHOtLsN1O3z4sHv00UdbXQwRWadODua498GzZNNxulIxJoseuUJlzS9YYWaPOecOt7ocInNRbJ/beq2PROTGrURcb9XqpiIibe/o8SGy6TjZdJyIWXj56PGhVhdNRDYY1UcispqUJIqIzOPCeIGu1MxR+V2pGBfGCy0qkYhsVKqPRGQ1KUkUEZnHjp40k0VvxnWTRY8dPekWlUhENirVRyKympQkiojM455D/eQKFXKFCr5z4eV7DvW3umgissGoPhKR1aQkUURkHgcHsnzw7r1k03EGc0Wy6bgWiRCRllB9JCKracW2wBARWQ8ODmR1EiYibUH1kYisFvUkioiIiIiISEg9ibLuafNhERG5XoohIrIRKUlchxTQrmrcfHggmyJXqHDvg2c1j0NERBaNl4ohIrJRabjpOlMPaLlCZUZAOzmYa3XRWkKbD4uIyFyaiZeKISKyUSlJXGcU0GbS5sMiIjKXZuKlYoiIbFRKEtcZBbSZtPmwiIjMpZl4qRgiIhuVksR1RgFtpv+/vTuPk+yu6/3/+tTS1URhb7AAACAASURBVHvP1tPpTDKZmSQTZjKGJEwIEYiRAEbwsqgIXq+Gn/iLXFkEjRr03hvQhxoByf0pP9EoXKIiCgoaQQJhkQiGZQJJmGTIkGSSyUx6enqWXqerupbP/aNOdap7qqqru/aq9/PxqEdXnTrLp05Xnc/5nvNdNPiwiIgUUk6+VA4RkU6lQmKbUUJbSoMPi4hIIeXkS+UQEelU6t20zeQSWn5vba+/6ryOTmgafFhERJYrN18qh4hIJ6pZIdHMPgL8BHDc3fcE094N/L/ARDDbb7v7vwXvvQt4E5AG3u7un69VbO1OCU1ERGqh3XK78qWISGG1rG76UeCGAtNvd/fLg0cuiewG3gBcGizzZ2YWrmFsIiIisnofRbldRKTt1ayQ6O73AqfKnP3VwN+7e8LdDwGPAc+vVWwiIiKyesrtIiKdoREd17zVzB4ys4+Y2fpg2hbg6bx5jgTTzmJmN5nZPjPbNzExUWgWERERqS/ldhGRNlLvQuKHgAuBy4Ex4I+D6VZgXi+0Ane/w933uvve4eHh2kQpIiIi5VJuFxFpM3UtJLr7uLun3T0D/CXPVjs5ApyfN+t5wDP1jE1ERERWT7ldRKT91LWQaGajeS9fC+wPnt8FvMHMYma2HbgY+FY9YxMREZHVU24XEWk/tRwC4+PAdcAmMzsC3ApcZ2aXk61u8iTwywDu/rCZfQJ4BEgBb3H3dK1iExERkdVTbhcR6QzmXrB5QEvYu3ev79u3r9FhiIi0FDO73933NjoOkUKU20VEVqcWeb0RvZuKiIiIiIhIk1IhUURERERERBbVrE2idJ4DY1PcvX+co5PzbFnXww17Rtg1OtTosERERKpGuU5EOoHuJEpVHBib4o57DzE1n2R0qJup+SR33HuIA2NTjQ5NRESkKpTrRKRTqJAoVXH3/nGGeqIM9UQJmS0+v3v/eKNDExERqQrlOhHpFCokSlUcnZxnoHtp7eWB7ghHJ+cbFJGIiEh1KdeJSKfoyDaJak9QfVvW9TA1n2SoJ7o4bSaeYsu6ngZGJSIinaBeeV25TkQ6RcfdSVR7gtq4Yc8IU/NJpuaTZNwXn9+wZ6TRoYmISBurZ15XrhORTtFxhUS1J6iNXaND3HTtdoZ6ooxNxRnqiXLTtdt1h1ZERGqqnnlduU5EOkXHVTc9OjnP6FD3kmlqT1Adu0aHlChFRKSu6p3XletEpBN03J3ELet6mImnlkxTewIREZHWpLwuIlJ9HVdIVHsCERGR9qG8LiJSfR1XSFR7AhERkfahvC4iUn0d1yYR1J5ARESknSivi4hUV83uJJrZR8zsuJntz5v2PjP7vpk9ZGafNrN1wfRtZjZvZg8Ejz+vVVwiIiKyNsrtIiKdoZZ3Ej8KfBD467xp9wDvcveUmf0R8C7gt4L3Hnf3y2sYj6xBvQYortd2RESkIh+lg3J7odwEKF+JSNtb8U6ime00sy/lrhqa2WVm9j9WWs7d7wVOLZv2BXfPdUH2DeC8NcQsdVKvAYrrORCyiEinW2teh87K7YVy0/s/f5D33v2o8pWItL1yqpv+JdmrgkkAd38IeEMVtv2LwOfyXm83s++a2VfN7MVVWL9UqF4DFNdzIGQREalZXoc2yu2FctOJ2QSn5haUr0Sk7ZVT3bTX3b9lZvnTUsVmLoeZ/U6wjo8Fk8aAre5+0syeB/yzmV3q7tMFlr0JuAlg69atlYQhK6jXAMX1HghZRKTDVT2vQ/vl9kK5KZFKYyzZb8pXItKWyrmTeMLMLgQcwMx+muyBf03M7EbgJ4Cfc3cHcPeEu58Mnt8PPA7sLLS8u9/h7nvdfe/w8PBaw5Ay1GuAYg2ELCJSV1XN68E62i63F8pNsUiYrsjSUyflKxFpR+UUEt8C/AXwHDM7CrwD+O9r2ZiZ3UC2Mfur3P1M3vRhMwsHz3cAFwNPrGUbUj31GqBYAyGLiNRV1fI6tG9uL5SbNvXH2NDXpXwlIm3Pggt+K89o1geE3H2mzPk/DlwHbALGgVvJtoGIASeD2b7h7m82s58CfpdsNZU0cKu7/+tK29i7d6/v27evrPiluFI9i9ai19Fye4srNE09yIlUzszud/e9jY5DGmu1eT1YpqNy+0r5ai6e5MjpeaYTKUYGu7nxmq288rItDY66fOpZXKQ91CKvr1hINLM/AN7r7pPB6/XAr7t7WT2h1VIzJZJWleu9bagnykB3hJl4iqn5JDddu71mQ12Us716xyXSSVRI7GzNnNehdXL7Zx86ym2fe5S+WISBWJiZRJq5RIpbfvySligoKs+KtI9a5PVyqpv+eC6RALj7aeAV1QxCqufA2BS333OQmz/5ILffc3DFbrnr3bNoudtTj6ciIjXTsXl9tTmylDvvO0xfLJLNU6EQQz1R+mIR7rzvcBUjrh3lWREppZzeTcNmFnP3BICZ9ZCtViI1UEnVj/yrgvnjN5W6KljvnkXL3Z56PBURqZmOyev5OTUWNp6ZinPBxr6yc2Qp49NxNvd3LZk2EAszPh2vVvg1pTwrIqWUcyfxb4EvmdmbzOwXgXuAO2sbVmeqdFD5tVwVrHfPouVuTz2eiojUTEfk9eU5df8z0xw+eYaFVLoqd85GBruZSaSXTJtJpBkZ7C6yRHNRnhWRUlYsJLr7e4HfB3YBlwK/F0yTKqu06sfRyXkGupfeHF7pqmC9exYtd3vq8VREpDY6Ja8vz6kL6Qz9sTCPTcwtzlPJnbMbr9nKXCLbji+TyTA1n2QukeLGa5pjnMeVKM+KSCnlVDfF3T8HfK7GsXS8Sqt+bFnXw9R8kqGe6OK0la4K7hod4qZrty+p4vr6q86rWaP1crdX77hERDpJJ+T15Tl1sDvK/EKK2by7Z5XcOct1TnPnfYcZn44zMtjN215yYUt0WgPKsyJSWtFCopl9zd1fZGYzBAPu5t4C3N0Hax5dh1lLIS/fDXtGuOPeQwBLeip7/VXnlVxu1+hQXZNCudurd1wiIu2s0/L68px60eY+7nv8FAPdETLuZefIUl552ZaWKRQWojwrIsUULSS6+4uCvwP1C6f1VHOMobUW8nJ0VVBERIrptLyey6mn5xKMTcU5ObdAxp0tQ92MTcWVI0VESihZ3dTMQsBD7r6nTvG0lLX0JlpKNQp5uiooIiLFdFJe3zU6xEt3DfOnX3qcVMbZ2NfFOYPdhMMh3vSibcqVIiIllCwkunvGzB40s63u3hoD/9RRfqN4YPHv3fvH15x8VMgTEZFa6bS8fnB8jhdcuHFJM46p+WRFeVpEpBOU03HNKPCwmX0LWOwSzN1fVbOoWoTGGBIRkRbUMXldeVpEZG3KKSS+p+ZRtKhKO5oRERFpgI7J68rTIiJrs2Ih0d2/ambnAM8n2xvat939WM0jawGVdjTTCNXsaEdERFpPJ+X1ZsvTysEi0ipCK81gZr8EfAv4SeCngW+Y2S/WOrBWkOtoZqgnythUnKGe6Jo7ramHXEc7U/PJJR3tHBibanRoIiJSJ52U15spTysHi0grKae66W8AV7j7SQAz2wj8J/CRWgbWKlqpo5ladLQjIiItp6PyerPkaeVgEWklK95JBI4AM3mvZ4CnaxOO1NLRyXkGupdeF1ADfhGRjqO83gDKwSLSSsopJB4Fvmlm7zazW4FvAI+Z2a+Z2a8VW8jMPmJmx81sf960DWZ2j5n9IPi7Pu+9d5nZY2b2qJn9WCUfSgrbsq6HmXhqyTQ14BcR6Thryuug3F4J5WARaSXlVDd9PHjk/Evwd2CF5T4KfBD467xptwBfcvfbzOyW4PVvmdlu4A3ApcC5wBfNbKe7p8uIr2k1WwP1chrw58fcFTYMSKS9KeKvh2b4nzVDDCLS1taa16EFc3upY+pnHzrKnfcdZnw6Tn8swgUbeuiNRWty7G22TnRA+UZEijN3r93KzbYBn3H3PcHrR4Hr3H3MzEaBf3f3S8zsXQDu/ofBfJ8H3u3u95Va/969e33fvn01i78SuQbqQz3RJcmgVIP5ehysS20jP+Z4MsW3D53Ggat3rCcWiawYf6tby/+sHWOQ9mdm97v73kbHIa2plXJ7qWPqExOz3Pa5R+mLRQjhHJmMk8k4L754IyNDvTx96gwjgzEWqnihtJkKZco3Iu2jFnm9nDuJ1TTi7mMAQTLZHEzfQra6S86RYNpZzOwm4CaArVu31jDUyqy2gXr+wTq/17NqH6xLNeDPj/mRsWn6g7YTT0yc4QU7NpaMvx00Q6cCzRCDiMgqNW1uL3VMve+Jk/TFIgz1RDly+gw90RCpDDx4dJof7Y9x6MQcJ2YTXLtzuGo5uVk60QHlGxEprd6FxGKswLSCtzjd/Q7gDshebaxlUGt1YGyKLzxyDBwGeqJcNNzH8EB3yQbqzXCwPjo5z+hQNwCz8RT9sTAA0/Ek0P4N7PM/f069P3MzxCAiUiUNz+2ljqnj03E293cBkEhl6Aob4RDMJVI8dnyO/liYZNoJmZXMyc10d3A1lG9EpJRyxkl8YTnTyjQeVEUh+Hs8mH4EOD9vvvOAZ9a4jYbK3RHsCoeIho1EMs13Dk8yMRMv2UC92r2eHRib4vZ7DnLzJx/k9nsOljUOU36j+v7uCIlUhkQqw2B3NjkePjnH4VNnVrXOVtIMnQo0Qwwi0t6qnNehiXN7qWNqfyzCEyfO8PjELIlkmvhCmkTK6YtFmI4nMVisUQOFc3KzjH1Yac7PUb4RkZxyejf90zKnleMu4Mbg+Y0821j+LuANZhYzs+3AxWQH+m05uTuCe7YMspDOXgyNhY2Hn5lmaj7JDXtGCi5XzYP1WpPWDXtGmJpPMjWfZMemXmbjKWbiKXYM9/LkiVm+c3iScwZibTsIcP7nz7gvPi/2P2vXGESk7VUzr0MT5/Zix9SdI330dYVJJNNkMk4kZMwk0pxJJHnulkG6wiFmE2kuGu5bXFehnJxfCyh3x3GoJ8rd+8fr9hmrkfOVb0RkuaLVTc3sGuCHgeFlXWIPAuGVVmxmHweuAzaZ2RHgVuA24BNm9ibgMPA6AHd/2Mw+ATwCpIC3tGrPprnqGyGL8rwL1vHY8Tmm5hcIWahkW4Zq9nq2UtXV5VVjdo70cXB8jqOT8/RGQyyk0qQycPWODYu9m45NJ7ji/HVsH+4vuM52sGt0iJuu3b5k37z+qvPq+vmaIQYRaU+V5vVgHS2V24sdU+/eP87uc4fY1N/FA0emmEukGOiOsKGvi77uLvb0xXhmKk5XJEzGvWhOboYqm8Vy/t/e9xSbBrqLVoPdNTrES3cNL/buOjLYzY3XbFW+ERGgdJvELqA/mCe/W+xp4KdXWrG7/2yRt64vMv/vA7+/0nqroZbtB7as62FqPslQT5RN/d1s6u9efF1qG9U8WD/8zBTT80lmE2n6uyNcNNzHxv4YRyfnz+og59DELJ/6zhGu3LqOrRv7ivZudvMnH2x4IqyHZuhUoBliEJG2VFFeh+bN7aXyeqFj6oe/9iSjQ90M9Qxy8cggABl3xqbivP91zy24zkIX7PJzfk6hO461PO8oVFBNpFJ8/bFTvOQ5m4t2hndgbIovHphg9+ggV2/fwEw8xRcPTAAsXjhupTaWIlJdRQuJ7v5V4Ktm9lF3f8rM+tx9ro6x1UStexFd6x3BYgfrHcP9Be/+FTtoHxib4sjpbMFtsDuy2CZy5+Z+tg/3n3XF8dhMgr5YhGPTCbZt6i96h7DcRCgiIs1Jef1Z5eS0ci7YlTv+8GriW22BstBneeSZGdb3lu4Mr9AdyFOzCf70y4/zgh0ba9rTuog0v3LaJJ5rZo8ABwDM7Llm9me1Dat2at1+IFe1ZagnythUnKGeaFkH11Jxffaho7zz7x/ksw+NcfjkHIcmZou2N7h7/ziXjGSrhCZSGWKR7L/44PgsN+wZOauDnNl4ioFYeLEHUyh8h1BtF0RE2kZH5fVCnbpUK6eVk/NXc96xlvaFhT7L6TNJdo0OLJlveW4v1GHesek4yXSmoW0sRaQ5lDMExv8GfoxsA3Tc/UEzu7amUdXQ0cl55uILfOGRaeYSKfpiEZ67ZZDZRFfVtpF/9TF3RfDDX3vyrPZ/+VcIi1UXueuB4xyfTZDOZIiFQ8zEF5iYSfBDW4YKtgc8OjnP1o199HdHeOz4HNPxJIPdEYZ6gx5KT53hu4dPs6k/xkWbs/NNl3GHUG3lRETaRsfk9UJ38d7/+YOMDMaYiSc5OjnPUE+E3aNDRXNaoTt7QNl3+45OzhMJwSNj09nhpboj2c7hEqmz5l1tnwK57S7Pzy+6aCNdkaXNTJfn9kJ3IE/NJdnYt/R8qB2blojIysoaJ9HdnzZbMtxRS3YqA3AmkeQ/fnCSWDQc9GyW4T9+cJJrd24qusxa2xIsT05Pnsi2/7vi/HVcsKlvSTWOLet6ODQxy7GZBLPxFOEQnJpdYD6ZJplMEwqFWEg7kbBz+kySJ07M0hU9u5+B3EE/1x4SYGo+STKV5o57D3HOQIzpM9krjvuePM3oYIyxRIpLRvpLNs4HtZUTEWkX7ZjXwyEj7c7J2QRfPHCcq3dsOKvQlUynOXRijhOzCa7dObyY80o14ShUyMy4c8HGvrKqZHaFjW8+cYpQCOYSacam5jl4bIZrdmw4a95SHeGsVG01f9u5eXPLF8rtharKRkJ21vbVtESkM5VT3fRpM/thwM2sy8xuJqii0oqeOjWP48STKU7NLRBPpnCcp04VvkpWyRhIy6uYHJsO2v/NJM6qxrFzpI/vPj3J9HySvq4QY5NxpuJJkukMkXCIcAhCZiwEA/4enYwXPGgXq0LjZK9Ibh/u58oL1jHYEyWdgTMp55Yfv4Rtm/pXVT22HtYy7pOIiKyo7fJ62jPMJlKcSaRJpx13eOjINI+MTS2pUvnY8Tn6Y2GSaS+rOmWhqqInZhOcmlsou0qmAfFkmonZBVKZDNGQkc443z82c1ZeKzUc1mqqrZZTDbbQPG+7/kJCoVDNmpYor4u0jnLuJL4Z+P+ALWQHxv0C8Cu1DKqWTs4mwJ2FtJNxSGecrrBlpxeQf1A+MRvnsePZK5C33vUI73nV7pKFqeVXBKfjSQZiYWbzEkB+NY4rt67j2HQi2z7QYHSomyOn5+mJhplPpjFzUplsD2zpjBc8aBfrJfUrj55gY3/23z080M3wQPdiT26vvGwLr1zT3lybcu7M1rqDIRGRDtZ2eT2ZyuZ0gIxDyCCZznBsMs7x6QQL6QyD3VEmZuJEQsbcQpovPHKMwe4oO4Z7OTp5dtVPODuPn5iNc+T0GVIZ574nTnLRcB/DA90lq2Qm0s76viipmQxph1gkxObBGPPJzFnNRkp1hJPrkTVfqe2WU/un0Dw7gk7uqt20RHldpLWUU0i8yt1/Ln+Cmb0Z+PPahFRb6YwTTzkhg1xNm3jK6c1ll2VyCeLEbJz7n5okFgmxoTfKqdmFVfeeNtgdZWo+yWCB9n+PjE0xdSbJTCLFYHeUsBkhg65IiAzQEw0TT6bJuJNyeOGFG4tWjSnUS2pvNMRMPFVW76S17Kq73CRx9/5xMpkMB8amg3aVUc4ZjLXVuIwiIg3Sdnk9vSyFpx1CmQzHZxP0d0Xoj4WZX0gxMZMglXHOW9/DQCxCPJnmm0+cLlj1E5bm8dx5gGHEIrbYe/iVW9fRFQkvyaf5efTwqTNMzae4YGMfuSq+8WSangjc88jK7QtzhbRiPbLGwsbt9xysWs6uVdOSldpbikhzKae66f80s5fkXpjZbwKvrl1ItWWWTR6pDKQzwV9/tsC4XK7qx2PH54hFQnRHwyyknQ39XSv2+LW86uc5gzHmEinOGYgtqcaxc6SPp0/OMx1PLSatuUSKk3MLjAx0s647gpkRCYfYtrGPK85fx9tfenHBbRarjuJQVk9ulVSvLUe51WUeGZvi+8dmiCfTi/vk+8dmeERVU0REKtV2ed159pEJ/qYzcM5gN1fv2ECsK0IqA9FwiHDI6O169hq5BfMXkp/HfzA+C2Tv3vUGfQLEwsbDz0wvyafL8+g5AzGm5pNMzCZwd+LJNNPzSU7PJ4mG7axcu2t0iHe+bCfvf91zeefLdi4WoAo1J3n61BmemYrXLGdXU6HeVNUpjkjzKqeQ+CrgD8zsxWb2+8DVwbSWtJDKELZsUoDs37BlpxeSOyifmE3QFTbiyTSJVIaLhvtWPLgtr++/bVM/t/z4JWwfXtr+7+D4HDuXDVsRi4bpCofYu209F40McOHmfq7esYEb9ozymzdcUrIXtUIH4YW0lzU0R62HCCk3SUzNpzAzuqPhJX+n5gtXCRIRkbK1XV4vdJ0347BrdIDhgW6u2bGRl+0eYfNgjE19XcSiYWYTaWLRMFdtX8/C8luRgfw8Pj6TYLA7wjUXbuSFF2+iOxomkc6QDPJrofEHQ2ZsH+7nivOHmJ7PXvyNRUJEwyG6I2EuPXew7FxbqA3hyGCMCzb2tcSQFaXaW4pI81mxuqm7nzCzVwFfBO4Hftrdi110a3pOtq2CG3hwB7HUVcTcQfnWux7h1OwCG/q7uPTcQYYHslfsVjq4Faq2sbz934e/9iQXbAqGrZiYYzaeYrA7wuD6Hv7gJy9bnG/5cBqFqpQUqo7y1Ik5js0kFpd704u2VaWr7rUoZwBjgMHuCNNnksSTaWKREIlUBjw7XURE1q4d83oklL1zmPsQBoRCcCaR5r4nTjIbT2EGx6cTOLB5CC4/f2gxl+fnpOXy83j+vJv6n102P6cW6qH0svPXE42EufTc7JBXM4kprrxgHcMDz85Xzl215ecUN3/ywcX+Bgqtp5bNR1arVHtLEWk+Re8kmtmMmU2b2QzwGLATeB0wbWbT9Qqw2vq7IiTzqpmmMpDMZKcXs2t0iPe8ajc/dN4Qu0cH2dgfq2qPX7mra/lXO3efO8Sl557dnfVKVUqWV0c5NDHLd5+eZHQwVlZVlK6w8e1Dp0kk0/THwiSSab596DRd4SL1ccuQ35vZxEycp0+dWbHa66XnDrFzpH/J1d6dI/1L9omIiJSv3fN6rppprsppfyyy2Gs4nuHpU2eYT6aJRYzp+STfeWqSQxOzZefyYr2HL1+22B2zS899thrpy3efQ3c0ctY8q72rVuruXK2bj6zW8juhyVSanmiID3/tSfV0KtKEihYS3X3A3Qfz/na7e3/udT2DrK5iF0tLX0Qtpzvpzz50lJ/5i/v4kfd9hZ/5i/v47ENHy4qonMRTbjXQ5XEem0lw5dZ1bNvUX3ZX3cv3hEPBqjzlWJ6kuiJhMu4kU+mS1V5v2DNCOBxi9+gg1+/azO7RQcLhUNW64RYR6TSdltcTyRS90TAnZhMcOnmGSMjYuqGX4f5uhnqiJDMZjs0kyu5ds9R5wGovhpZb4FxJqfXUuvnIWuTaW77pRds4k8zQFQk3RQFWRM62Yt09M3st8GV3nwperwOuc/d/rnVwtXBsqvBQF8Wm5yvV49dnHzrKbZ97lL5YhM39XUzPJ7ntc48C8MrLtiyZt1D1j2K9meWUGmC3VJw3f/LBVXWZnUg7V+9YzxMTZxZ7Fd197gCJIu01VlKoN7Nc+4l3vmxn0eWKDeWhHtBERCrTbnl9rEj+nk9BLBpix6Y+fnA82+lMNGzMLaTojUWIhm3JkFTlKHQesLzX7pl4Ku9iaKpgTi/Vi+lq4ym2ntUOmbEWa63Oqp5ORZpfOQ28bnX3T+deuPukmd0KtGQySa9yernuvO8wfbFI3gEvtDg9v5BYagiIUoWmUm35Sh2ky20DuHw7L9ixcXHa1HySzQPF22uUsprCbb5iQ3nsGO5XAhERqUxb5fXC3c5lmRlmRm9XmEQyw9hkHMwY6E4TC4fArOKx+u7eP046nVnSlv+cgRibBrpXvBhajXxWbD2rzf+rVcm4h2s9NxCR+imnd9NC86y59xAzu8TMHsh7TJvZO8zs3WZ2NG/6K9a6jUYYn44zEAsvmTYQCzM+HV8yba3VP4pVKdk50leyzcFqq7RUqwpMzlp7M6t2NZn8qkBq+yAiHa6qeR2aN7cnUhniyTTreqKkMs5MIsWG3myhKZF2Lj13sOIqmA8/M8XB8dklbfkPjs/y8DONzTPVzufLVZKni50bdAVjPipXizReOYXEfWb2ATO70Mx2mNntZHtDWxN3f9TdL3f3y4HnAWeA3BXN23Pvufu/rXUbjTAy2M1MYun9yJlEmpHBpVfKyhkColCBplhbiIPjcyUP0uW0pcy32vlXstYkVc3xlJqt8b6ISINVNa9D8+b2K7euIxYN4xjDA130dIWJhLPDTF25Ndu7aKV3sKbjKTCWDNmEBdMbIHcO8eGvPUlPNLRiHwBrVUmeLnRu8NTJOcanE8rVIk2inCuHbwP+J/APZPsv+QLwlipt/3rgcXd/yoqNZt8ibrxm62IbxIFYmJlEmrlEire95MIl861U/WOl6hvLD+7ltDlYbZWWalWBya1rLe0uqllNRm0fRESWqGVehybK7V2R8GKThan5JD3REF2RcFWrYA71RJg6s7BkyCZ3Z6in/kM2FWofOTWfrGrhMKeSPF3o3ODcoW6ief8b5WqRxipnnMQ54JYabf8NwMfzXr/VzH4B2Af8urufrvYGi42JWGkay7U7zO9o5W0vufCsTmtWGidotQWaWrc5KFepdpFrKXRWczwltX0QEXlWjfM61Dm3lxrreKgnuuQCJVD1sfp2jw7RGw1zbDqx2OHbto29bNvUv+Z1rlU9L4qWk6dXc25w8ycfZEOJMR9FpL6KFhLN7IPu/lYz+1cKHH/d/VWVbNjMuoBXAe8KJn0I+L1gW78H/DHwiwWWuwm4CWDr1q2r3u7aBsAozysv23JWoXC5le6s5RdoTszGeez4HFPzC4QsVLDXsNxB+vRcgrGpOCfnFoiGQ2fdwaylShqvF1Otnt+geQrSIiKNVOu8Hmyj7rm9VP4u1HFMsdyy1p46s3n4g4dOmQAAHj1JREFUDLtGB5cUlipp+7fWWOp5UXSlPL3acwPlapHmYu6FD69mNu3ug2b2I4Xed/evVrRhs1cDb3H3lxd4bxvwGXffU2ode/fu9X379q1qu9tu+WzR95687ZWrWlct3H7PQabmkyTTae5/apJYJATuYMaO4f4lB9dcEvnG4yd4bGKO3q7seEPnDHYTDodqUr2kVMy5A/uJ2Tj7j06zkM7w8t3nsHOkj4Pjc6tOdtWSn6jyE3i99o9UZq0nS1Kcmd3v7nsbHYfUV63zerCNuuf2Unn9V6+/uKxjRy5PpNMZjk3HOTWXJBIy3nb92TWCii1freNUJTlreT4GFl/nF5jrcVwtN5b8mJSrBZT316IWeb1UddPHoTpJo4ifJa86ipmNuvtY8PK1wP4abbep5e4MPnJ0itNnFkhmnJAZV29fv9ghTe6KZ+5g6sDwQAyAi0f62dSfvWJXr3r8RyfniYbhG09MMzETZ2o+23tcJBzi0MQsn/rOEa7cuo6erjD//uhxPv3do7z4oo38t2suqDi+cg4k1bwrKfVVi7vUIh2s1nkdmiy3f/ahMTb0RVlIprnj3jMFL7QenZzn8Kkz9ESM8ZkFYpEQG/qiTMdT/OmXHy9r6KVqtuWvpMpouVVAKzmulnsCX85dzeXreumu4SUXlZWrO4/yfvMoVUgcNrNfK/amu39grRs1s17gZcAv501+r5ldTrbmyJPL3usYuUHkv3RgnHDI6ImG6YuFeeLEGYZ6oxydzPaWlp9EZhNpBrsjJFIZHjs+x6b+yntrW41Y2LjviVMMdEeIJ7MjVk3MLnDe+h6OzSToi0V4fGKOVMaJRUKs64mw/5npin/0qzmQVDOBS/2o0yGRqqpZXofmzO0b+qIkUhkOHp9l5+b+ghdaR4e6+e7h00yeSbKhL0p3NHucGeyOcHJuoe7Hm0qqjJZzUbSS4+pq8u5aOur74oEJFQY6nPJ+8yhVSAwD/VTep8tZ3P0MsHHZtJ+v9nZa1cHxObZv6gOyXWoDxJNpHnlmhusu2QwsTSL93RESQa9q0/EkcPaBuJa37Z1nvySJVJpwyEh7dvpsPMVALMyhk2fYsq6H7mgY9+xYVfl3RtdCB5L2p06HRKqqZnkdmjO3Lw5JARybjtMVDXNgbIpb73qEk7MJNvXHuGhzH5v6Y0zMJJhLpNmQTb8kUhk29nXV/XhTadu8lS6KVnJcXU3erXZHfdIZlPebR6lC4pi7/27dIpFFRyfn2TU6wANPZ8cGyrVLPD2fWmwIn59ELhru4zuHJ0mkMgx2RxbHHnr9VefV5bb9Qtq5avt6njhxBjPDMLYMxXDPFmCn55PPfg4I4oxW/KPXgaT9qSMDkarq2Lwei4Q4NZfkos3GHfce4tTsAht6o8ST2fb/Ozb1EgkZcwsp3J1EKkMilWHbxt66H2+q2bt3IZUcV1eTd1fTUd9K65LOobzfPEoVElt74MIWlvuBXLl1HY9NzDEbTxENGy+6aOPiwTU/iWzsj7Fzcz8PHZkkkUrzrUOnuOL87Hz1uFKXi/eaHRu5eHMf9z81SdphsDvMOQMxnjo5h2ecg+MzxCJhervC7NkyWPGPXgeS9lfrk6VWpAb9UoGOy+vxxVo2KSIhw8jmwQ39XSSS6cW7jCfnklx23hDfOzrNybkFNvZ1sW1jL6FQqKJeStdieeGqK2z0RkN8+GtPVvSbzx07Hn5miiOn57lkpJ+tG/tWdVxdbd4tdVdTOVwK6cS836x5vVQh8fq6RdHhln85do708cUDEwz1RJcMAvzz11ywuMzyJNLfHeHCzQOcv6F38Ud1x72HmIkn2TU6uGR7xa7UVdb9d/YHvaEvxiUj/Tw6PosBT5yYI51xHFhIZYiEQmTcmY2nCIUyFf3oO/FA0mnU6dBSatAvFeq4vB6LhJ4dGur6C/nnB55h6kyS4zNxZuJpNvV3Mdgd4cRsgsvOW8fvvnp3Q3vjzskVrvJ/8xv6I2v+zeevZ9foIL3RMI8em+VMMs3u0aGyjqsHxqaYmInztcdOsr43yu5zB4hFImXl3ULnF8rhUkin5f1mzutFC4nufqqegXSqYg23y+nhK/8K3e33HKQrEj7rjuHRyXlm4qkVr9RV8iVd/oPetqmfl186whcPTPDExCznDnVjZkzNJ+mLRUgkM4xNJ3jPq3ZX9APotANJp1KnQ89SGx6pRCfm9a0b+7jmwk2LdwOfPjkPBpsHuomGFzgxu8CZhTSj63oW813jB8N6VrV+88vXs324nw39saLDUSyXf47wwxdu4MDYDF9/7BQvvmjjiucJpc4vlMOlkE7K+82c10vdSZQ6KPblODg+V9aBO6dY3f6hnuxVvtzrYlfqKv2SLv9B337PQYZ6oiykMwzEIphlaznFomFe8pwNjE3Fq/Ll76QDiYja8Iiszvtf99zF57ffc5CdI/0cPD5LIpVhfW8X4VC2rXylFy1rpVq/+UrXk3+OMNQTZWTw2aqiK+23UucX73zZzqbc7yL10sx5PdToADrd0cl5BrqXltXX8uXYsq6HmXhqybSZeIrdwd22oZ4oY1NxhnqiBa/6VSuO5esb7M52Pw7Zaj+z8ZTaHIisUbHfuX5PIis7OjnPBZv6uHLrOmLR8OLwUeet72nagkq1fvOVrqeSc4Rqn1+ItJNmzusqJDZYtb4cN+wZWezVNOO++DzXnuKdL9vJ+1/33KJX7ar9Jc2t76LNfSRSGeLJNIlkmmjYFuMSkdUp9TsXkdJyeWl4oJtrdmzkZbtH2H3uEJee25wFRKjeb77S9VRyjtDMJ8EijdbMeV2FxDo6MDbF7fcc5OZPPsjt9xzkwNhU1b4cu8q8Y1hMtb+kufVFw2Gu2JqN4fR8ikvPHeSlu4a5e//4kv0gIiur9Hcu0skK5bmnTs5xYibedPkod77w4a89SU80RDKVrug338hzhGY+CRZptGbO6+bujY5hzfbu3ev79u1b1TLbbvls0feevK12zdXzG27ntw286drtADXt+rbcXkur3QVvofUBRfdDM/wgZG2atftmKczM7nf3vY2OQ6SQ1eb21eT1/GNVV9gYn04s6RW8nvmo2HGz1PlCflz1Pu5Wsj3lCJHaqkVeV8c1ddKohtur6bW02p3AFFpfrkObZuzFSdammbtvFhHJV06v4PXIR6WOm+V0JNeI424l5wjqZE6k9ai6aZ00quF2frIJmS0+v3v/eE23W4wasLefZvuOiYiUo5H5qNRxs5y4dNwVkVpTIbFOGtVwu9kKZWrA3n6a7TsmIlKORuajUsfNcuLScVdEak2FxDppVMPtZiuUqQF7+2m275iISDkamY9KHTfLiUvHXRGpNRUS66RRvRc1W6GsmXtxkrVptu+YiEg5GpmPVhq2aqW4dNwVkVpTxzV11IiG27lkk9+r2OuvOq+hhTI1YG8vzfgdExEpR6Py0UrHzZXi0nFXRGqtIYVEM3sSmAHSQMrd95rZBuAfgG3Ak8DPuPvpRsTXblQok1rTd0xElNtXp9Ljpo67IlJLjaxu+qPufnnemB63AF9y94uBLwWvRUREpHUot4uItIFmapP4auDO4PmdwGsaGIuIiIhUTrldRKQFNaqQ6MAXzOx+M7spmDbi7mMAwd/NhRY0s5vMbJ+Z7ZuYmKhTuCIiIrIC5XYRkTbRqI5rXujuz5jZZuAeM/t+uQu6+x3AHQB79+71WgUoIiIiq6LcLiLSJhpSSHT3Z4K/x83s08DzgXEzG3X3MTMbBY43IjZpfgfGppb06JbrMrxdtysi0gqU2ztDO+TCdvgMIrVW9+qmZtZnZgO558DLgf3AXcCNwWw3Av9S79ik+R0Ym+KOew8xNZ9kdKibqfkkd9x7iANjU225XRGRVqDc3hnaIRe2w2cQqYdG3EkcAT5tZrnt/527321m3wY+YWZvAg4Dr2tAbNLk7t4/zlBPlKGeKMDi37v3j9f0KmCjtisi0iKU2ztAO+TCdvgMIvVQ90Kiuz8BPLfA9JPA9fWOR1rL0cl5Roe6l0wb6I5wdHK+LbcrItIKlNs7Qzvkwnb4DCL10ExDYIisaMu6HmbiqSXTZuIptqzracvtioiINIt2yIXt8BlE6kGFRGkpN+wZYWo+ydR8koz74vMb9oy05XZFRESaRTvkwnb4DCL1oEKitJRdo0PcdO12hnqijE3FGeqJctO122vejqBR2xUREWkW7ZAL2+EziNRDo8ZJFFmzXaNDDTmYN2q7IiIizaIdcmE7fAaRWtOdRBEREREREVmkQqKIiIiIiIgsUiFRREREREREFqmQKCIiIiIiIotUSBQREREREZFFKiSKiIiIiIjIIhUSRUREREREZFHHFRJtldNFRESkeSmvi4hUX8cVEot94I7bESIiIm2gO1K4OFhsuoiIrKzjykaDPREge4Ux98ifLiIiIq3jopEBDAgZRELZvxZMFxGRtal7IdHMzjezr5jZATN72Mx+NZj+bjM7amYPBI9X1GL7F58zyHB/lGjYMINo2Bjuj3LxOYO12JyIiEjba2Ruf8lzRnjeBUP0doUxM3q7wjzvgiFe8pyRam9KRKRjNOJOYgr4dXffBbwAeIuZ7Q7eu93dLw8e/1aLjd94zVbSGSccMiIhIxwy0hnnxmu21mJzIiIinaBhuf2GPSOELERfV4TerjB9XRFCFuKGPSokioisVd0Lie4+5u7fCZ7PAAeALXUNwnKVTH3ZaxEREVmtRub2JyZmeerUGdIZJ2LZC79PnTrDExOz9di8iEhbamibRDPbBlwBfDOY9FYze8jMPmJm62uxzTvvO8zmgW4uO28dV2zdwGXnrWPzQDd33ne4FpsTERHpKPXO7Xfed5j1vV1cuLmfi0YGuHBzP+t7u5TXRUQq0LBCopn1A/8EvMPdp4EPARcClwNjwB8XWe4mM9tnZvsmJiZWvd3x6TgDsfCSaQOxMOPT8VWvS0RERJ7ViNyuvC4iUn0N6dLTzKJkk8jH3P1TAO4+nvf+XwKfKbSsu98B3AGwd+9eX+22Rwa7OTQxw+R8arFt4rqeCNuH1QuaiIjIWjUqtyuvi4hUXyN6NzXgw8ABd/9A3vTRvNleC+yvxfZHB6NMzCZJpZ0QkEo7E7NJRgejtdiciIhI22tkbldeFxGpvkbcSXwh8PPA98zsgWDabwM/a2aXk+1N5kngl2ux8W8/NUVPxEhnIO1ONGSEQ9npIiIisiYNy+3K6yIi1Vf3QqK7f41nx7DPV5MhL5abmk/SGwuTSPlitZRYxJiaT9Zj8yIiIm2nkbldeV1EpPoa2rtpI/RGw0zPp3CHcMhwh+n5FL3R8MoLi4iISFNRXhcRqb6OKyResrmfDJDKZPCMk8pkyATTRUREpLUor4uIVF/HFRLPWd/L1dvW0xUOsZBxusIhrt62nnPW9zY6NBEREVkl5XURkepryBAYjbRlXQ/9sQhXbd+0OG1qPslQj3pBExERaTXK6yIi1ddxdxJv2DPC1HySqfkkGffF5zfsGWl0aCIiIrJKyusiItXXcYXEXaND3HTtdoZ6ooxNxRnqiXLTtdvZNTrU6NBERERklZTXRUSqr+Oqm0I2oSh5iIiItAfldRGR6uq4O4kiIiIiIiJSnAqJIiIiIiIiskiFRBEREREREVlk7t7oGNbMzCaApypYxSbgRJXCqaVWiRNaJ9ZWiRMUay20SpxQm1gvcPfhKq9TpCoqzO2t9NvOacWYQXHXUyvGDIq7ni5x94FqrrClO66p9CTHzPa5+95qxVMrrRIntE6srRInKNZaaJU4obViFamGSnJ7K/5eWjFmUNz11Ioxg+KuJzPbV+11qrqpiIiIiIiILFIhUURERERERBZ1eiHxjkYHUKZWiRNaJ9ZWiRMUay20SpzQWrGKNFor/l5aMWZQ3PXUijGD4q6nqsfc0h3XiIiIiIiISHV1+p1EERERERERydOWhUQzu8HMHjWzx8zslgLvm5n9SfD+Q2Z2ZbnLNkusZna+mX3FzA6Y2cNm9qvNGGfe+2Ez+66ZfaaWcVYaq5mtM7N/NLPvB/v2miaN853B/32/mX3czLprFWeZsT7HzO4zs4SZ3byaZZsl1ib8TRXdp8H7dftNiTRCLXK5mW0ws3vM7AfB3/UtEve7zeyomT0QPF7RRDF/xMyOm9n+Zcs0+74uFndN93UlcZfKU7Xe3zWKuZn3dbeZfcvMHgzifk/eMk373V4h7tXtb3dvqwcQBh4HdgBdwIPA7mXzvAL4HGDAC4BvlrtsE8U6ClwZPB8ADtYq1krizHv/14C/Az7TrP//4L07gV8KnncB65otTmALcAjoCV5/Anhjg/fpZuAq4PeBm1ezbBPF2my/qYJx5r1fl9+UHno04lHhMbLossB7gVuC57cAf9Qicb+70HGg0TEH710LXAnsX7ZM0+7rFeKu2b6uwnekaJ6q5f6uYczNvK8N6A+eR4FvAi9o9u/2CnGvan+3453E5wOPufsT7r4A/D3w6mXzvBr4a8/6BrDOzEbLXLYpYnX3MXf/DoC7zwAHyBYemipOADM7D3gl8Fc1iq8qsZrZINmk8WEAd19w98lmizN4LwL0mFkE6AWeqVGcZcXq7sfd/dtAcrXLNkuszfabKrFP6/2bEmmEWuXyV5O9GEjw9zUtEnctVZSP3P1e4FSB9Tbzvi4Vd63V6tyvlvu7Vc5Xqxm3u/tsME80eHjeMk353V4h7lVpx0LiFuDpvNdHOPvLWGyecpatpkpiXWRm24AryF4tqIVK4/zfwG8CmRrFV24cK82zA5gA/o9lq/H9lZn1NVuc7n4UeD9wGBgDptz9CzWKs9xYa7HsWlRle03ymyqlnr8pkUaoVS4fcfcxyF4YInvHvppqeQ7y1qBa2UeqXL2tKuciBTTzvl5JrfZ1uTGt5dyvlvu7luerTbuvLdus4wHgOHCPu9djX9cybljF/m7HQqIVmLa8BF1snnKWraZKYs2+adYP/BPwDnefrmJsZcdQah4z+wnguLvfX/2wCqpkn0bIVj35kLtfAcyRrUZQC5Xs0/VkryBtB84F+szsv1U5vhXjqMOya1Hx9proN1V4wfr/pkQaoZVyeb5axf0h4ELgcrIXB/94rQEWUPG5SIPUKu5a7utyY2qGc7+y4ylnniIxN/W+dve0u18OnAc838z2VDm+YmoV96r2dzsWEo8A5+e9Po+zq+IVm6ecZaupklgxsyjZH9zH3P1TTRrnC4FXmdmTZG+Xv8TM/rZ2oVb8/z+Sd8XlH8kWGpstzpcCh9x9wt2TwKeAH65RnOXGWotl16Ki7TXZb6qYev+mRBqhVrl8PK8pxCjZK+3VVJO43X08OPHLAH9JtjpaM8RcSjPv66JqvK/LjWkt53613N81ibnZ93VenJPAvwM3BJNa4ru9PO7V7u92LCR+G7jYzLabWRfwBuCuZfPcBfxC0DPQC8hW1xsrc9mmiNXMjGzbuQPu/oEaxlhRnO7+Lnc/z923Bct92d1rederkliPAU+b2SXBfNcDjzRbnGSrmb7AzHqD78H1ZOv410olv4tm/E0V1IS/qYIa8JsSaYRa5fK7gBuD5zcC/9IKcduz7dEBXgvsp3oqibmUZt7XRdV4X0Ptzv1qub9rEnOT7+thM1sXxNlD9gL99/OWacrvdqm4V72/vUY9CjXyQbbHn4Nkewb6nWDam4E3+7M9//z/wfvfA/aWWrYZYwVeRPa28kPAA8HjFc0W57J1XEcdemKs8P9/ObAv2K//DKxv0jjfQ/ZHvx/4GyDW4H16DtmrWtPAZPB8sNiyzRhrE/6miu7TvHXU5Telhx6NeFR4jCx43AE2Al8CfhD83dAicf9NMO9DZE8OR5so5o+TrbqWDI5Tb2qRfV0s7pru60ripkSeqvX+rlHMzbyvLwO+G8S2H/hfeets2u/2CnGvan9bsJCIiIiIiIhIW1Y3FRERERERkTVSIVFEREREREQWqZAoIiIiIiIii1RIFBERERERkUUqJIqIiIiIiMgiFRJFRERERERkkQqJ0jTM7O1mdsDMPraKZdaZ2a8sm3apmX3ZzA6a2eNm9h4zq8p33czeaGYfrMa6Gs3MfnvZ6/9sVCwiItK6Oil/m9k2MztrEHIz22tmf7LWGMxsttLYVtj2O8ysN+/1v+UGXRcpRIVEaSa/QnaA1Z9bxTLrguUAMLMesgOE3ubuO4EfAp4P/Go1A10rM4vUcVvhFWZZUkh09x+uYTgiItK+2j5/r8Td97n72xu1fcsqdV7/DmCxkOjur3D3ydpHJq1KhURpCmb258AO4C4z+y0z+08z+27w95JgnkvN7Ftm9oCZPWRmFwO3ARcG094H/Ffg6+7+BQB3PwO8FfiNYB3vNrOb87a738y2Bc//2czuN7OHzeymvHn+n+Cq5leBF+ZNf12w/INmdm+Jz/ZGM/ukmf0r8AUzu87MPpP3/gfN7I3B8yeDK6ffMbPvmdlzguk/EnzGB4L9MlBkW9eZ2VfM7O+A7xX7XGZ2G9ATrO9jwbTZ4K+Z2fuCz/Y9M3v9Cv8+ERHpUG2evwvFnf/+juCzXpWf283s+YX2Q+B8M7vbzB41s1uLbPc3zOzbwTbfUyK+bZa9g/tnwHeCdX/IzPYF++I9wXxvB84FvmJmXwmmPWlmm4Lnvxbsj/1m9o5i25MO4+566NEUD+BJYBMwCESCaS8F/il4/qfAzwXPu4AeYBuwP28dHwB+tcC6T5O9avlu4Oa86fuBbcHzDcHfnmD6RmAUOAwMB9v8OvDBYL7vAVuC5+tKfK43Akfy1n8d8Jm89z8IvDFvH7wteP4rwF8Fz/8VeGHwvD+3fwps6zpgDtieN+2szxW8nl227Gzw96eAe4AwMBJ8/tFGfz/00EMPPfRozkcb5++icQOXAN8FLg/eX8ztJfbDG4GxIL5crHuD93I5+OXAHYCRvZnzGeDaIvFtAzLAC/Km5fZFGPh34LL8/1GB/9nzgv3RR/b84mHgikZ/p/Ro/KNuVd9EVmEIuDO4YudANJh+H/A7ZnYe8Cl3/4GZLV/WgmUKTV/J283stcHz84GLgXOAf3f3CQAz+wdgZzDP14GPmtkngE+tsO573P1UGTGQt677gZ/M29YHgrt+n3L3IyWW/5a7H8p7XehznSyx/IuAj7t7GhgPrsBeRbYakIiISDHtlr+LxT0M/AvwU+7+cIHliu0HyJ4PnAxi+hTZnLsv7/2XB4/vBq/7g89T7I7nU+7+jbzXPxPcTY2QLSjvBh4q8RlfBHza3efyYnpx3valQ6m6qTSj3wO+4u57gP8CdAO4+98BrwLmgc+b2UsKLPswsDd/gpntAE54tu59iqXf++5gnuvIXu27xt2fS/bg2B3MUyhp4e5vBv4H2YT0gJltLPGZ5vKeF4whTyL4myZ7kMfdbwN+ieyVx2/kqqGutK0VPlcx5SRkERGR5doqf5eIewp4mrwqrMsU3A9FYlr+2oA/dPfLg8dF7v7hItuBpTl/O3AzcL27XwZ8FuV8WSMVEqUZDQFHg+dvzE0MksUT7v4nZO9qXQbMAPnt8z4GvMjMXhos0wP8CZCr9/8kcGXw3pXA9rxtnnb3M0EB7AXB9G8C15nZRjOLAq/Li+dCd/+mu/8v4ATZZFOOp4DdZhYzsyHg+pUWCLb1PXf/I7JXHEsVEvMV+1wAyeAzLXcv8HozC5vZMHAt8K0ytyciIp2rrfJ3kbgBFoDXAL9gZv+13P0QeJmZbQg+32vI3tXM93ngF82sP4hhi5ltLhRfAYNkC41TZjYC/Hjee8v3d869wGvMrNfM+oDXAv9R5vakjamQKM3ovcAfmtnXydapz3k9sN/MHiBbSPrroMrG14PG1u9z93myV/1+x8wOkj34f93dc91y/xOwIVjHfwcOBtPvBiJm9hDZK4DfAHD3MbLtIO4Dvki2YXjO+yzbsct+sgfZB8v5cO7+NPAJstU/PkZ5VTrekWtkT/aK5ufK2RZFPlfgDuAhO7vL8k8HsT0IfBn4TXc/Vub2RESkc7Vb/j4r7twbQfXMnwDeaWavLnM/AHwN+BvgAbJtFfOrmuLZjnv+DrjPzL4H/COFC3dncfcHyZ5TPAx8hKUF0DuAz+U6rslb5jvAR8leDP4m2b4QVNVUMPeCd+JF2oKZvYZsY/gfdfenGh2PiIiIrEz5W6SxVEgUERERERGRRerdVKRKzOzHgD9aNvmQu7+20PwVbuuHyFZXyZdw96urvS0REZF2Vs/8vRZBxzpfKvDW9bmeUkWqTXcSRUREREREZJE6rhEREREREZFFKiSKiIiIiIjIIhUSRUREREREZJEKiSIiIiIiIrJIhUQRERERERFZ9H8B+qspegvvN1IAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHhCAYAAADDFvtLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAC+RElEQVR4nOz9eXxc933f+7++55zZgAEGxEIQpLhKokyJkSybXujEquulZuI2W904ubXjtmmVtI3vr851lja/GyfpbX6p69a9dW9uqjT52bFz3cRZ3TimLdlxFMeUZMlaTJEixX0DQSzEDGYwy1m+948zMwRALEMSO97PxwMPDM5s3xkA5zOfcz7fz9dYaxEREREREREBcFZ6ACIiIiIiIrJ6KEkUERERERGRJiWJIiIiIiIi0qQkUURERERERJqUJIqIiIiIiEiTkkQRERERERFp8lZ6AHeit7fX7tq1a6WHISKypjz33HMj1tq+lR6HyGwU20VEbs1SxPU1nSTu2rWLZ599dqWHISKyphhjzq/0GETmotguInJrliKuq9xUREREREREmpQkioiIiIiISJOSRBEREREREWla03MSV6vjg3kOHx3i8niZbV0ZDu3vZ99AbqWHJSIisiEoDouI3BmdSVxkxwfzPPbkWfJln4FcmnzZ57Enz3J8ML/SQxMREVn3FIdFRO6cksRFdvjoELlMglwmgWNM8/Lho0MrPTQREZF1T3FYROTOLVmSaIz5HWPMNWPM0Snbft8Y80L965wx5oX69l3GmPKU635zqca11C6Pl+lIT6/i7Uh7XB4vr9CIREREFsdaiO2KwyIid24p5yR+CvivwO82Nlhr39e4bIz5j8DU2o/T1trXLuF4lsW2rgz5sk8uk2hum6gEbOvKrOCoREREFsWnWOWxXXFYROTOLdmZRGvtk8DYbNcZYwzwI8Dnlur5V8qh/f3kyz75sk9kbfPyof39Kz00ERGRO7IWYrvisIjInVupOYlvBYasta9O2bbbGPO8MeavjDFvneuOxphHjTHPGmOeHR4eXvqR3qJ9AzkefWQ3uUyCwXyFXCbBo4/sVlc1ERFZ71ZFbFccFhG5cyu1BMaPMf1I4yCww1o7aox5PfCnxpgHrLWFmXe01j4GPAZw4MABuyyjvUX7BnIKRiIistGsmtiuOCwicmeW/UyiMcYDfhj4/cY2a23VWjtav/wccBrYu9xjExERkVun2C4isr6sxJnEdwKvWGsvNTYYY/qAMWttaIzZA9wLnFmBsa0qWgxYRETWiFUZ2xVHRURuz1IugfE54AhwnzHmkjHmJ+pX/Sg3T2p/BHjJGPMi8IfAT1lrZ50Yv1FoMWAREVlt1lJsVxwVEbl9S3Ym0Vr7Y3Ns/0ezbPsj4I+Waixr0dTFgIHm98NHh3QUVEREVsRaiu2KoyIit2+lupvKArQYsIiIyO1THBURuX1KElepbV0ZJirBtG1aDFhERKQ1iqMiIrdPSeIqpcWARUREbp/iqIjI7VOSuEppMWAREZHbpzgqInL7VmIJDGmRFgMWERG5fYqjIiK3R2cSRUREREREpElnEleQFvkVERFZfIqvIiJ3RkniCvniS5f55FdPE0SW7vYENT/ksScnNV9CRETkDhwfzPPYk2fJZRJ4Dnz9xDX+5PnLvPWeHt5/cKdirIhIC1RuugKOD+b55NdOg4Hu9gTVIOLktSJhGHH46NBKD09ERGTNOnx0iFwmQS0IeeFiHoCujMfRKwUee/IsxwfzKzxCEZHVT0niCjh8dAg/jOhMexhjSCdcUp7D1UJFi/yKiIjcgcvjZTrSHqeGS6Q8h3TCJZ1wqYURuUxCB2NFRFqgJHEFXB4v09OepBpEzW0pz2Gs5GuRXxERkTuwrSvDRCWgWAlIefHHnGoQ0ZlO0JH2dDBWRKQFShJXwLauDAO5NNUgouKHWGspVAI8x2iRXxERkTtwaH8/+bJPwjVU/ZCKH1INIu7Z3M5EJdDBWBGRFihJXAGH9vfjOA739WdJeQ6jpRoAH3rH3ZpQLyIicgf2DeR49JHdPLC1k+vlAICHd+RIuC75sq+DsSIiLVB30xXQCGCHjw6R8FwO3t2r9twiIiKLZN9Ajl/74QenLYWxuSPB+95wl2KtiEgLlixJNMb8DvB3gWvW2v31bb8M/DNguH6zf2Ot/Yv6df8a+AkgBP5Xa+2Xl2psq8G+gZwClYiIrClrLbYr1oqI3J6lLDf9FHBolu2fsNa+tv7VCCL3Az8KPFC/z28YY9wlHJuIiIjcuk+h2C4isu4tWZJorX0SGGvx5j8A/A9rbdVaexY4BbxxqcYmIiIit06xXURkY1iJxjU/bYx5yRjzO8aYTfVt24CLU25zqb5NREREVj/FdhGRdWS5k8T/G7gbeC0wCPzH+nYzy23tbA9gjHnUGPOsMebZ4eHh2W4iIiIiy0exXURknVnWJNFaO2StDa21EfBb3Cg7uQRsn3LTu4ArczzGY9baA9baA319fUs7YBEREZmXYruIyPqzrEmiMWZgyo8/BBytX/4C8KPGmJQxZjdwL/DMco5NREREbp1iu4jI+rOUS2B8Dngb0GuMuQR8FHibMea1xOUm54CfBLDWvmyM+QPgGBAA/9JaGy7V2EREROTWKbaLiGwMxtpZpwesCQcOHLDPPvvsSg9DRGRNMcY8Z609sNLjEJmNYruIyK1Ziri+Et1NRUREREREZJVSkigiIiIiIiJNSzYncSM7Ppjn8NEhLo+X2daV4dD+fvYN5FZ6WCIiIhuGYrGIyO3TmcRFdnwwz2NPniVf9hnIpcmXfR578izHB/MrPTQREZENQbFYROTOKElcZIePDpHLJMhlEjjGNC8fPjq00kMTERHZEBSLRUTujJLERXZ5vExHenoVb0fa4/J4eYVGJCIisrEoFouI3BnNSVxk27oy5Ms+tSDk1HCJYiUg4Roe2Nq50kMTERHZEJKu4cmTw/ihJZv2uKevnaTnsq0rs9JDExFZE3QmcZEd2t/P+dEST58Zo1oL8ByYqAQMFaqaCyEiIrLEjg/mGSpUmajEMbhaC3j6zBjnR0sc2t+/0sMTEVkTlCQusn0DObbm0mTTHrXIkkl6HLy7m+3dbZoLISIissQOHx1ie3cbB+/uJpOMY3E27bE1l1Z3UxGRFqncdAlUQ8sje/twjGlui6zVXAgREZEldnm8zEAujWMS9GbTQByDB/OVFR6ZiMjaoTOJS2BbV4aJSjBt20Ql0FwIERGRJaYYLCJy55QkLoFD+/vJl33yZZ/I2uZlzYUQERFZWorBIiJ3TkniEtg3kOPRR3aTyyQYzFfIZRI8+shuzYUQERFZYorBIiJ3TnMSl8i+gZwCkoiIyApQDBYRuTNLdibRGPM7xphrxpijU7b9B2PMK8aYl4wxf2KM6apv32WMKRtjXqh//eZSjUtERERuj2K7iMjGsJRnEj8F/Ffgd6dsexz419bawBjz74F/Dfx8/brT1trXLuF4FtXxwTyHjw5xebzMtq4Mh/b3s28gN+d2ERGRdeBTrPLYfnwwz2ePnOf5i3ksloe3d/GBgzsVi0VEbsGSnUm01j4JjM3Y9hVrbaPl2FPAXUv1/Evp+GCex548S77sM5BLky/7PPbkWb740uVZtx8fzK/0kEVERO7Yao/txwfzfPzLJzlyZgzPgaRjePrMGB87fEKxWETkFiyYJBpj9hpjvtooLTHGPGiM+f8uwnP/E+BLU37ebYx53hjzV8aYty7C4y+Zw0eHyGUS5DIJHGOalz995MKs2w8fHVrpIYuIiABLGtdhhWP74aNDjBSrdKQ9MkmPdNIjm/YYK9UUi0VEbkErZxJ/i7h0xAew1r4E/OidPKkx5heBAPi9+qZBYIe19mHgZ4D/xxjTOcd9HzXGPGuMeXZ4ePhOhnHbLo+X6UhPr9TtSHsMFSqzbr88Xl7O4YmIiMxn0eM6rI7Yfnm8TDUISXk3Pt6kPIdaECkWi4jcglaSxDZr7TMztgWz3rIFxpgPAn8X+IfWWgtgra1aa0frl58DTgN7Z7u/tfYxa+0Ba+2Bvr6+2x3GHZlrod7+zrQW8BURkdVuUeM6rJ7Yvq0rQ8pzqQZRc1s1iEh6jmKxiMgtaCVJHDHG3A1YAGPMe4mPDt4yY8wh4sns32+tnZyyvc8Y49Yv7wHuBc7cznMsh7kW6v3gwR1awFdERFa7RYvr9fuvmth+aH8/vdkUE5WAci2gUgsoVgK625OKxSIit6CV7qb/EngMeI0x5jJwFnj/QncyxnwOeBvQa4y5BHyUuLwlBTxujAF4ylr7U8AjwK8aYwIgBH7KWjs26wOvAo2Feqd2MX3fG+5qdk779JELDBUq9Hem+eDBHc2up585cp7nL45jMDy8Pcf71W1NRESW323FdVj9sX3fQI6PvHsvn3ziVZ45fx0/jNi+qY33vn4bAJ94/OSc3cfVnVxE5AZTrwpZ+IbGtAOOtXZiaYfUugMHDthnn312pYfR1Oh6mssk6Eh7TFQC8mWfd+7r4w+fu8yF0UmyKRcLFKshu3vb+ci79yoIiciyMsY8Z609sNLjkJW1GuM63Hlsny0Wnx8t4RjD9u62afH50Ud2Nw/kzha/G9eLiKxmSxHXW+lu+mvGmC5rbclaO2GM2WSM+T8WcxDrxXxdT8dKNbLpuNNaJunRkfYYKVbVbU1ERJbVeo/rs8XisVKNkWJ1zu7jc8VvxWgR2ahamZP4vdba8cYP1trrwPct2YhWkeODeT7x+Ek+8vkX+cTjJxdcY2m+rqe1ILqp21o1CNVtTUREltu6jOuNmP2nL1zm2JU8I8VK87paEFENwmm3n9p9fK74rRgtIhtVK0mia4xJNX4wxmSI5x6sa43Sk3zZZyCXJl/2eezJs3MmiscH81wYm+QvvjPIU2dGm8Gp0fU06Tk3dVtLea66rYmIyHJbd3G9EbPPDhfxg4hXrk5w+OgQrw4VAEh6DinPnXafqd3H5+parhgtIhtVK0niZ4GvGmN+whjzT4DHgU8v7bBW3q2UnjSC05aOFAnHIV/2efbcdc6NFJtdT7vbkxQrcae1ci1gohLQm02p25qIiCy3dRfXDx8dIgwjTl4r0p5ySbgOYWR56swY50aKdLcn6c2m5uw+PlfXcsVoEdmoFuxuaq39mDHmO8A7AAP8W2vtl5d8ZCvs8niZgVx62ra5Sk+mJpTZtMep4RJjxRqDhSq/8v33s28gx56+7LTupgf3dKu7qYiILLv1GNcvj5e5WqiQ8hzSiQQpz2WsVGOiEjRjMTBnV/KFupaLiGw0rSyBgbX2S8CXlngsq8q2rgz5sk8uk2hum6v0ZGpC2deRpq8jTWQtg/nKtAD0az/84PIMXkREZB7rLa5v68rwwoVxutvjmN2e8nAdw12bMuzobpsWi+eybyCnpFBEpG7OclNjzDfq3yeMMYUpXxPGmMLyDXFl3ErpyVxzGVKuuaXGNyIiIktlPcf1Q/v78RxDoRJgraXih1SDiLaky4WxScVhEZFbNGeSaK39nvr3Dmtt55SvDmtt5/INcWU0Sk9ymQSD+Qq5TGLO9ZJmSygvjk1yJV9pufGNiIjIUlrPcX3fQI4PveNuAEZLNVKew5bOFKeHS2zpSCkOi4jconnLTY0xDvCStXb/Mo1nVWm19GS2uQy1zhRJz22Wqza+Hz46pHIWERFZEes5rr/nwW3s6cs2Y/GFsUke3t7F7r4soDgsInIr5k0SrbWRMeZFY8wOa+2F5RrUWjQzofzI51+kJ6s1l0REZPVY73F9aiz+yOdfbLkBnYiITNdK45oB4GVjzDNAqbHRWvv9SzaqdeBWGt+IiIgsow0R1xWHRURuXytJ4q8s+SjWkeODeQ4fHeLlK3kuXS9zX3+WHT3tTFQC8mWf973hrpUeooiIbGwbIq4f2t/PY0+eBeIziBOVgItjk9Q6U3zk8y+yrSvDof39Kj0VEZnFnI1rGqy1fwWcAHJAJ3Civk1mOD6Y57Enz5Iv++wb6GTv5iwnrhZ55Wph3sY3IiIiy2WjxPWZDej8ICSylqTnqpGNiMgCFjyTaIz5p8AvAV8jXnT3k8aYX7XW/s5SD26tOXx0iFwm0Sxt2d2XpTubIpdJ8OF37V3h0YmIiGysuD51juInHj9JQg3lRERa0kq56c8CD1trRwGMMT3AN4F1F0zu1OXxsibJi4jIarch47pitIhI6xYsNwUuARNTfp4ALi50J2PM7xhjrhljjk7Z1m2MedwY82r9+6Yp1/1rY8wpY8wJY8y7b+VFrBbbujJMVIJp2zRJXkREVpnbiuuwtmO7YrSISOtaSRIvA08bY37ZGPNR4CnglDHmZ4wxPzPP/T4FHJqx7ReAr1pr7wW+Wv8ZY8z9wI8CD9Tv8xvGGPeWXskqcGh/P/myT77sE1nbvHxof/9KD01ERKThduM6rOHYrhgtItK6VspNT9e/Gv6s/r1jvjtZa580xuyasfkHgLfVL38a+Drw8/Xt/8NaWwXOGmNOAW8EjrQwvmXX6GB6ebx8U3e0toTDM2fHsFge3t7VbFYz333mu+5Wn19ERGQBtxXXYXXH9uODeT5z5DzPXxzHYHh4e44dPRm++soIQ4UK/Z1p3vGaXiZrlpev5ClUAnIZj8NHhwAUR0VEplgwSbTWLmar7H5r7WD9cQeNMZvr27cRH8lsuFTftuo0OpjmMolp3dHeua+PJ44Pk8skeMe+zc0lL+a7z6OP7AZoXpdw4esnrvEnz1/me+7p4QMHd94UtOZ7LAU4ERFZyCLHdVgFsf34YJ6PHT7BhdFJsikXCzx+fIh82WegM83mjhSFss9nn7rI+9+8nY50grs2tVENggXjrojIRtRKuelyMLNss7Pe0JhHjTHPGmOeHR4eXuJh3WxqB1PHmOblTx+5MOv2w0eH5rzP1Ov8MOT5C3Eb7k0Zj5evFGZtzT3fY4mIiKwiyxbbDx8dYqxUI5v2SCc9MkmPYjWef+hHFsdxyGUStKe8ZrxuNe6KiGxErZSbLqYhY8xA/UjjAHCtvv0SsH3K7e4Crsz2ANbax4DHAA4cODBrsFlKc3VHGypUeNPu7pu2N7qmeQ4cGyxQrARk0x57etuaAWwgl+aZswVSnkM64WKtpVgNm8nf1LLUrxy7ChY6Mgl62hKMTvpMlH0wqOxURERWworH9svjZWpBREf6xseaILQ4BqpBRKkacH2yRtWPyJd9Kn7A2ZHJBePuVF986TKfPnKhWbr6wYM7eM+Dq7LoSUTkji14JtEY892tbGvRF4AP1i9/kBvzIL4A/KgxJmWM2Q3cCzxzm8+xpObqjtbfmZ6za1rSNXzr7HWqfkg25VL1Q7519jpJ1zQfr1DxSXnxr6MaRGTT3rQks1FmmnQdEq7heqnK35weZbxUI+Eakq6jI6AiIrKgRY7rsApi+7auDEnPoRpEzW2ea7CAwTKYrxCEEZG1JLw4Jg8VyvPG3am++NJlfv1LJyiUfTZnkxTKPr/+pRN88aXLS/FyRERWXCvlpp9scds0xpjPEU9Ov88Yc8kY8xPArwPvMsa8Cryr/jPW2peBPwCOAYeBf2mtDVt7Cctrru5oHzy4Y86uaYYb9TWlWsDVfIWhQoXvXMqzt7+dfNknDC3nRkqcHJrg0vUyPW2Jaa25G2Wm+7d1UgsthXJA0jXkyz610LJ/W6fKTkVEpBW3Fddh9cb2Q/v76W5PUqwEVGoB5VpANhWfVawFFteBIIIgsrxuRxcWKNciKn5IxQ+pBhH39LXPuSTGp49cwHMNY8UqR68UOD9aolD2+c2vn1mKlyMisuLmLDc1xhwE3gL0zWiJ3Qks2MLaWvtjc1z1jjlu/++Af7fQ4660fQM5Hn1kd7O7aNI1VP2A/+svz5Av16gGIZ7jsKOnnQ8e3MG+gRzV0PKmPZv4zqUCF8fKZBIuO3sylP2IJ44P85ot7bxw4TqTfkRb0iGX9jg5VKQSRPzcofuAG2Wujknw+p1dfPnlISJrwVpev7OL3myayFotCiwiIrO607gOqze27xvI8XOH7pvW3fRd+/rZ0ZPht/76HBU/JJtO8Kbdm7i3v5Pt3WWePjPGeDlgU1uCnd0ZXr5S4Pqkz/6BDn7xj1+iGtpmB/Ez1yYolAMCG5ewek6cZJ4aLnJ8MK+pHiKy7sw3JzEJZOu3mdoWuwC8dykHtdrtG8g1l7X4+JdPcnakhOdAqRoQWci2OWzpSPHE8WH29GXZ1pUhX/ZpT3ns7m0nnXCp+CHtaZdcJsFXXxnhb923GT8MOXWtxFChTLkWcn601Dwz2HiMXCZBbzbNnr4shSk/gxYFFhGRea3ruL5vIMev/fCDN22frNlm/GxIeR5/76FtHNrfz2eOnOcbp0bZ1Jbg/oEsJ4aKWOBNezaRL/t8/MsnKVR8gggcE3fjaVS1Jgx85sh5+jrSWpZKRNaVOZNEa+1fAX9ljPmUtfa8MabdWltaxrGtCvOtSXj46BAjxSodaY+RYpWU5wKWsh9xdaLK/QOdHD46xKH9/Tz25FlGilW62xLN0pYHtnZOa3rjmATWEgeztKEaRjctsQFxQ5wtHSkGx8vc158lsra55Mb73nDXCr5bIiKyWq33uD5XvG7EYIjj59R4uW8gR19Hmre/ZjO5TIIjZ0bJ1pvfnBme5M17eni+WCXhOgRhhK0nidbG00jSnsM3To3y9tds1rJUIrKutNLddKsx5kvERx93GGMeAn7SWvsvlnZoK2+hNQkvj5epBiGd6QSlakAtiKj4EREwXKxy4mqBbNJlZKLCRCXuQjo8USXpOWzpTGPM9KY3uUyCU8MloshytVQjtJbjgwW2dKY4OVSaVua6uy/Lu/f3c3Ko1AyIjYAnIiIyj3UX12fG63MjRf75Zy9TC0JqoSXpGrrbUwx0pbl/INc8oPpv/vglvvidQRKuQ1cmwUixhutAynNJJxpNbUISroPvRPgRRMRnFNMJF8912dSWaJ6lbHyfq0OqiMha0UqS+J+BdxN3KcNa+6Ix5pGlHNRqcfjoEFEUcXywQKHi05lOsKUz1dz5b+vK8OrQBPmyT9kPqQW22aAmslAoBxTKAX/87cts25TGWktkLZvaEjgGjpweY3dvPHexcZZweKLC9WINjOGuTWkqfsgrVyeY9EM+/K69NwWd9yzzeyIiImvef2adxfXPHjnPmeEitTDCM4aRUjWeQxhFtCc9JkOLY3z6OlIc2t8PwMcOn+DCaLwMRtUPOT9aw2BIJRwmayFRZPna8SHKtZAwsqQSLiaIcBxDGFlcA8bA/Vs7po1lrg6pIiJrSUvrJFprLxozbU3cVdl5dLEdG8xzYXSSdMKlI+VNS9gg7qZ29HKe585fx0b2phWC49bbcRC5kq+Q9OIjjqVaSMJ16Uh79HemeM+D29jTl+Xw0SEmKgGe6zDQlaYtGf96qkFEvnxjeY35SmBXg9U+PhGRjW49xfXjg3n++tQoXRmPjpTH+dFJxss+2AhjHDJJlyC01MKQsVKtOdd/rFQjm/ZoS7mculbEcRzCKKJUC/EcQ3vSZTBfoewHtCc9NrUnGStWKdTXON7ckeK+LR0cuzLBC2Ee1xiMiRvadGeTamgjImtaK0tgXDTGvAWwxpikMeYjwPElHteqkC8HGGNIJ9xp3xsJ276BHB959142tScwjsGpx1uHG2+sY8ASH3VMuoYwgq5Mknfd388je/uohbb5WB9+115eu72L3mwKxxistVT8ECx01udINEpq8mV/WgnsalkfcbWPT0RE1ldcP3x0iE1tCYwxGGMIrW02l/HcODC79bN/tSDi8niZy+NlakFEynNoS3qkPIeEY4gicE1cNuq6DhjY1JairyNFri1JX2eGh7Zv4odft43dfVnKfkSxEhAEIZeulzk3MkkQhgx0phT7RGRNayVJ/CngXwLbgEvAa4E1O2/hVnSmPbBQ8UNKVZ9zI0WujE8yXKhM2/H3dcRn/ZKuaZafTD2r6BhLwnXAQtkPm5PiZ+tG2t+RIrRxEDszUiKylr39WR7YeqNZTi4Tz39wjGleXi3rI6728YmIyPqK65fHy+wb6KAaRIxP1ijXAipBRGihWA25VqhSrPi4jiHpOWzryrCtK0PSc6jW25S2pzxSCZeEZ+jrSDc7k9/dl2VrV5pCxa+veRwnoOVaSKESsLOnnTft6abkRxgDbUmXbDrBrt6sYp+IrGmtlJu+wVr7D6duMMb8FPCbSzOk1eOBrTnaEi5nR0tcvF4m7bn0d6RoSyWmdRzd0pHi4miJ8cmbS05DC6VaRMKBqh+STnjs6W0jX/Zv6kZ6fDDPlXyFKIJtuTSWOMCVamFzDkVjvcSRYoVT10oUKj4dKY9cW4LVoDG+qTQ/Q0RkVVlXcb2xRNSe3jaePnudaEYg9iOLXw0p+yFtSZe9/e0A/NnzNa4Vq/GNrMUPLUnPoT3pNLuQ79/WyeWxSfKTAe0pn46US77sc2W8TFdbgmNX8kzUG9dtq08TmaiXoyr2icha1sqZxP/dGPP2xg/GmJ8DfmDphrR6HNrfj+s6OMaws7uNLbk0ruvywNZOcpkEnz5ygVwmwe6+LO0pj4Rbn4NY/2pIuXEJjAWSLowUa+QyiZtaZB8+OtQ8KplKegQRzXmLjdtt68pwYbTEc+fHqfghjoEzwyWePjPGL/7xSyte2rKtK8NEJZi2Tes3ioisKusqrh/a30++7HN5vMK2rrhzeMIxeDM+4TjG8NBdXfzhc5f5429fYWdPG57jEEaW0EJvNkVn2mOiGk/PfHhHjoTrcnWixsM7cnRmEpRqEZ2ZBHf3tnFlvEKhEtCR8nCN4dL1Cvly3OQOFPtEZG1r5Uzi9wN/boz5WeAQ8Jr6tnVv30CORx/Zzc/8wYtgoSPj8cDWTvo60kTWNtc3BBgv+3RlkniuQy2M5zkMFypEQEcmUZ/34NKW9Hhgazz/cKbGWTjHJOjriM/GRdYymK80b3Nofz8f/v2rAARhxOXxChjo70hy9Ephxddnmm89KhERWRXWVVyfGavDCNqSDrXQYoiILCQ9QxBBNu1xbnQSgFTCZXdvO+mES8UPSSdc9g10UgtC+jrSXB4vs7kjwV2bMuwb6MSZ0ujnyOkRMgkXiJvL9WaTXLxeZqhQ5XU7u2atFhIRWUsWTBKttSPGmO8HngCeA95rrZ1ZVblu7RvI8Xfu3xIvcJ+5UdI5dX3DWhBSqgZE1uI5DgnXUKoGBPV3yWCpBhHWgl+fND+bRslMLpNolpOOFKv0ZFPNLmn7BnLctSlDoexzZqREynPo60jRlnSZqAbNORArlSQ2gvXU7qZav1FEZPVYj3G9EavPDhc5N1oiXwnrcwjBMwCGpAunrpWoBRGWuLw0m4oTvSCMOD1eplD2wcB/+pGHmnHrE4+fvOkzwGipxtauNPdsznJquIQfWnqzCUZLPt88PUZ/Z5oPHtyh2Ccia9acSaIxZoIbqzhYIAnsAd5rjLHW2s7lGeLKm+3s2NHL44xP+vz+ty7E8x+ieJHd6ixdxONyFJdaAJN+3OV0vue5XqryytUJjDEkHIctHSk+dvgEW3NpqqGlUAnY0pmmWA3JpuKOqxU/pDOdWLQ5EHeyjEXjdo37NybuK1iKiKyc9RzXjw/mefVqga+euIZfP0LbyHoDC4Ef4Rl45WqBzR0pAAq1GoP5EM+Bih/RlnRJ1KeHfPzLJ+nvTFELLZNVn2NXCniuS3d7gi2daRKuw5bOG/Pvy7WA6+WA/o40796/hfMjJT751dP86QtXuH8g14yhWiJKRNaKOZNEa23HXNdtNDPPjpUqPpeul+lqS9KedBkv+9QbpM0qCCyTTkTSNXFSN8ttGoHjyvVJXh4sEFnoakvw0LYc2bTHt89f59iVAt3tSSJrOT9SpDOToOoDxjQn2C/GHIjGMha5TGLaMhatlrHe6f1FRGTxrde43og5l/MV0p6DH8y+5GNg46WtyrWATNKjuy1JhZBCJSSKIrrbk9RCy57eDK9cLTJSrHL/1g5euVokiKA9ZRgt1bhWqHBXd4Znzo1R8SP6sglKtYAwtPhhxOlrE5wZmQQD+Um/GQMbze6WKzYqIRWRO7Fguakx5oeAr1lr8/Wfu4C3WWv/dGmHtro0Sj0BfuS/HaGrLRmXldYWXn84JJ4jsb03w/67OqmG06t6GgEuDCPy5QDHxGUxHSmPs6OTnByaoFgLMSY+k1kNIhKuSxRZrpcDNrUlmhPsF2MOxNRlLIDm91bLWO/0/gpsIiJLZ73F9UbM8UNLLbSkEw6VILqpy2mTNUSRJZvywEA5iEi6Dn5k+Z6dXZy6ViKbcvFDy5nhSTrqy1alEi4P9bXz9JkxJiohve1JrhaqDBVrGGBnTwbXcXjxUp7ebIqU5zSngQB8+sgF7h/onDU2Nr4vVtzTwVoRuVOtdDf9aCOQAFhrx4GP3u4TGmPuM8a8MOWrYIz5V8aYXzbGXJ6y/ftu9zmW2lChgmssV8Yr8aL3C9zeAA9t7+Lt+/pJed5NZ/o+c+Q8Z4aLfPPMKNcnayQ9gzEOxWpAynO4kq/gOvH6S8YY0gmXnvYEyYTLf/vA63jbfZvxQ2btmHo7Lo+Xm0Gx4VbKWO/k/o3Ali/70wLbSndtFRFZRxY1rsPKxvZGzMmmPWy9mHauuGyAoD79si3l8f0PbeO7tuXYU1/XsDd7Y03EbNqjUPEJwojhiSonrk7w9ZPDOA7UwogQ2NPXzu6edtpTHq7jkPJuxO5qEDU7nXakPYYKlVlj48tXFj/uac1iEblTrXQ3nS2RbOV+s7LWniBeuBdjjAtcBv4E+MfAJ6y1H7/dx14u/Z1pzlwr4jmG9pRLdY7SlqlGixX+4jtXmu2y/+eLl0klXHZ1t/H8xXH6O1JYa7EG/BCsjYhsPH8xjCxBaOnuSjYfL46DZtoZzsUytYFOQ6OMtZWzfPPdfyF3ehZSREQWtKhxHVY2tjdizj197bwyWKDqh8zVhscC1kLZD7k2EXcO721P8M2hCQzwxLGrXMtXqIWWnT1t1PyQ0Ukfzxjakg7lWshkJeCu7jbaUx4VPyTlOaTrSWE1iGhPelwrVJiohuQyHk8cH8IPIkrVgCdPDje7pEMcGwuVgLs2tS1q3NOaxSJyp1o5k/isMeY/GWPuNsbsMcZ8grgb2mJ4B3DaWnt+kR5vWXzw4A4m/ZAwinCNIT1zMaYZki5cGa9wNV8hDEOGClXGijWCMOLI2TGKlYCyH5FKuBgM6bgVG34Y8crVIq5jSCXi9RqttVT8kGI15OHtS5M0Ndacypd9Imubl/f2t7d0tHOu+x/a37/gc9/pWUwREVnQUsZ1WObY3og5Sc/lLXd3k3DjmDx7i7hYGMFIocrJq3leuVokm3DZ1OZxdrTERNXHD0Ou5isMTVSo1kLCyNLdniTpOoQ2fux7NrdTDSIKlYDebIq9m7Ngoac9wdikT2fGI+05XByb5Mp4mfv625moBDx9ZoyhQrkZG3MZb9HjntYsFpE71UqS+CGgBvw+8HmgAvzLRXr+HwU+N+XnnzbGvGSM+R1jzKZFeo5F954Ht/G37u3FdRwm/YjOtiSvvauTjpTLzMalac/guk59aQyHcr2DWirhUqrFLbqTnsNoqUY26RFElnItpFwL6etIsbUrzZt2bcIxhnItpFDxAdjd2877D+5cktfXaNSTyyQYzFeaZawnh0o3la+EYcRHv3CMj3z+RT7x+MnmUh2z3b+VI6IKbCIiS24p4zosc2yfGnOy6SQ/8NqtfN8D/WzuTMUxeEpcdoCEA64DGMORM9fpSHs8cl8fbckESdelI50kk3CZ9AOK1YgIS3d7gshCX0eKnmySST+kuz3Fff1ZADozCXb3ZfnEjz7E2/dt4W/f18fmjjTXijUyCYdtmzIEkeHg3d1k0x4vXso3Y2NfNsWTJ4d5/NgQR86MMjxRueO4dycHa0VEAMxKLY1kjEkCV4AHrLVDxph+YIS4GuTfAgPW2n8yy/0eBR4F2LFjx+vPn1+Zk5BffOkyn/zaafwwoqc9yUAuXpKivzPFkTOjXL5eJptySSc8xkq1eolLhDGGnvYUfhhRrAbY+gSKnmySuza1cW2iwlChgufEpaT3bG6nN5vm7HCRqxNVdnS3LUkzl1bKSD/y+RcZyKWbCwq/OlTg6bPXqQUh+wY64+sc547mRU6dbN9YbiRf9jXZXmQRGWOes9YeWOlxyPqzWmL78cE8nz1ynm+eHmV0ska5GuA4BoPBmPiAZHvS5dzYJD9+cBeOMfze0+dx6gPNl302tSUpVGpE1rC7t53X7eiiryOOx2dHSoQWLJaHt3fxgYM7mzFqaqx8/NhQcy3GiWrA37l/C5G1DOYrfPwfPMTxwTwf//JJzo6Umt3Pi9WQHT1t/Nyh+26Ke1NjddI1GKAa2lnjtprAiWwcSxHX51sn8b9aa3/aGPM/mWUOuLX2++/wub8X+La1dqj+eM3Z1MaY3wL+fLY7WWsfAx4DOHDgwIpkuMcH8zxxfJi9m7NcLVQYK/kUygEfesfdvOfBbbz943+J5xiK1YCJakhUb7FmLWSS8ZqGpVqI60Am4VGsBpSqIXv62tg30MnXXrnGW+7upr/zxlHEnb3tJBMuH/8HD93RuGcLGDO7oJ0bKfLh37/KXZsyPLD1xvpOU+cajhQrPH32OmFk6UgnqAYRJ4aK3NefvaN5FDOXG9nWleF9b7hLgU1E5A4tQ1yHFY7txwfz/JcnXuVvTo/iOoZtXWl2dOd46ux1kq6hI5Oguy1Je8qjXAtIuA4TlRsdSDEwWQ1JuA6ea8gkPEq1uLrl1LUiSS+uAurtSLGzp715MHNq59CpsTKb9qj6IZO1gMlayOPHhgijCM91+MjnX+TC2CQDnSkO3t3NqWslChWfbNpjay49a4LYiNWeA0+fGcMCb9qzadbupUvRs0BENo75Jqr/OPDTwFJNNv8xppSjGGMGrLWD9R9/CDi6RM97x6Y2V9ndF5ea5Ms+J4dK7BnMM1SoUAsi4vV8p8c6P4wo+xHGQntbgoh4/kJnJsmLFwu86/5+vueeHpKeO+1+t1N6MjUpTLmGK/kKO3vab2qHPfX1jBQrnBgqAlAo+9Nud2h/P489eRaAV4eKBPU5md3tSdKJeLyD+QqJ+thv9yimApuIyJJY6rgOKxjbjw/m+d//9CjfuVzAWovBcvJqQDIRN5apBSFhaLmar+A6Bs81vHFXnGAB9HekuHi9TC0IyWUSBGFEBGzflKEz7TE0UeVgJkGtM0XSc+dsNDM1Vu7pbeMbJ0cYr/hszaUJwpAr4xW62pJ4DowVa+QnaxzYtYk37+kBaJ5pnOnw0SHCMOLYYIEzw8XmAejHj13j7r4sWzpTavImIotmviTxNIC19q8W+0mNMW3Au4CfnLL5Y8aY1xJnVedmXLeqzNc17DNHzmMwhHMcB004DtbGrbMLFZ+utgQP79hEZybBi5fyXB4vM1n1eeHCOOUgwjHQ3Z5kR3c7b3jdVj7x+Mk5k675ksInTw5TrAT1EpjEtKA29fWculYi5cVtvEeKVY4PFhgpVvnoF47xK99/fzOpHJqo0p70yKY82lP1NaTqcysP3t2rNZpERFafJYvrsPKx/TNHznPqWokwjACa5aC1aohr4p+dik8q4UDkYAy858EB9vTFFTADXRlK1YAJJ47hLoautMve/g5OXyuRn6zxe0+fp1wL2NXTzmt3dAFx3BzKlynWQo4N5rl/IMc79/VxcqhEsRrQ1R6fuXRcQ77ss7UrQybpcmZkku5skkLZ59S1Er3ZGx1PZzso/PKVPJfGyqQSDkEYMVkL42WxPIeKH/LK1Qkm/YW7rYuItGK+JLHPGPMzc11prf1Pt/uk1tpJoGfGtg/c7uMtt21dmeYcwWIlIJv22NKRYndflq8cu8pALsWrw5M33a8z5eI4hnTSI4wsbUmXvo4Uz1+4Tqka4roOLnCtWGWiEpD2HCJrGC7WSLoOf/jc5VnPBM5WMjozKayFEdmUy6nhUrP1diOxnVoaU6j4dKS8+iT3gI50SHdbgrFirfl8H37XXgDODhc5ea3YbAFeqMSlO4f297e0lIXmSyw+vaciMo8li+v1+69obH/+4jhVP6gnh9NFFpIOREBXW5LejjRbOlKcHCrxnge3TYtLnz1ynq+dGCaKLNUg5K9fHaEWRhhrMU681MWJqxNcLZTpTCfxXMN4OcBzDBdGJ2lLuLx0aZyt9YOvkYXX7epic0eGrxy7Skf9wGqxEvDa7Tm+fX6ckWKVyFomKgEXxyapdab4yOdfnLYfL1QCMJBOuASRxXVM/fEt6YRLNYjIlwNk9VKMlrVkvu6mLpAFOub42rD29rfz/MVxCmWf9qTDcKHC108M87XjVzk3UmKoUG3edmqz02oQl5r2tCdxTLxOUxBGjJZ8KkHEtq40w8Ua+XJA0nVoS3ns3dLBzu42Roo1xkq1ORfGnblw7tSkEKAzncASB6WGxtHKqV3QOlIehUrASLFGd3uCdMKlFlq6s8lpz3dofz+u67B3c5aU5zBW8sHCh95+N/sGcgsuZdFIahdz8eCNTu+piCxgXcf1Si2kEtibJ1vWdWbimNbXkebgnh529rbftMzEvoEc7z+4k9ds6WBLLk3Zjyj7IdXAUovAWkvCMUQWrk8GjE/WKNQTsy25NOmEy+nhEhdGJzl6pcBALk3CNTx95jojxQqd9Tn81SAim/bo60iztz9LTzbFYL6CH4TxGsmee9N+PJfxmstgucYQWUsYWRwDFT8EC53pO1ruUpaQYrSsNfPtTQattb+6bCNZQ04OlXjdji6uFqpcm6hQqARk0y5X8lVSrkOxFmBoLHgfc5o/W7ra4rNqxVrA0EQVxxhSnqE9leBqoQpYgigOIhCXcVaCkFr954apSdfMEtjOdIJyLWgmhfdsbufI6TE60l7zaGW+7DebwjTnJrYlKJQDMgmHrkyCih9SDSIe2No57fmm3ieZcDl49/QjYo2zk7Ug5NRwiWIlIOEaHtjaCdDSmUa5NXpPRWQB6zquz1yCaqqEawBDJuE0l5Kaq6zz8NGhZtXOudESrjEEWCILQWRJuA4JA35gmfTjKqBtXWnaU3ESd2akxLZcmloY4Zg47j19Zoyjlwvcv7WDp89cxwBbOlN8/cQ1rk/6vPWeHt5/cCeHjw6RmGO+4/0DOdoSLlcLVRKeg2vAOAZjDKmEy87utmafBFl9FKNlrZkvSZxvHdp1b76SgMvjZXb0tLOrN8tTZ0bpTIdcm6gQWcv2njbOjZQoVeN5AY1E0XUNKc/BMVCoxK2437a3jxcu5nFMpflmpzyHSWPwQ0uXF5/orQYRac8lWf95eKLCqeESY8Ua3dkkxwfzzaTMD0NOXSsxPBF3Xd3ckSKyloTrsru3nf7O+Ghlo2soMG2e48/US0k/+oVjzcd/YGsnfR3xUa+pAbXxfhw+OsSxwTxHzozSmfZ4YGuOvf3t/OFzl3l1qEgtDJmshtTCkFeHJvjm6REA3ryn50ZHOW4kvXdSjrGRSznmmysrIsI6j+sh8fqHM46nYoBsymtW2NyYUuE34+BUjX3pX74yhh9GBJGd9lhBGOE6BseJu5YnPYdafR5k4+CuBVxjeOrMKIWKT7qenPohHNzTzVipxvOXxonqU0++de463zw9StkP2dHdxj2bs82pIRU/4Omzo9y1KcPF0TJbOpNs6UhxbnQSzxjetLOLga62O14Hcb74uZFj62JRjJa1Zr4k8R3LNopVZqGmK7PN4StWAixxR7LG3ABr4yOPbUkXrKXqR2BgMF/mtXfl6MmmSLiGhOOQrE8839SWYHyyhrXQlnCo1AKK1ZCdPW20p7x4HuBQEUwcDAc6Uzz25Fles6WdL7xwjeFijbakQy4dN5WpBSHHBws8sDXH+96996ZGN3O9zl/5/vunrVfYeN7tPRk+8fjJZiB67MmzRFHEhdFJjDFcK1Q4P1riT5632Chqdo3zowhr4+BaKAdEwDdOjvDIfX3NQDhRCUi65rYb3mz0ZjlT/y4b7nRBZhFZV9Z1XDeAM0caPJBL05tNMlSokWuLz+bMtbxSo+/AxeuTuDOuC6N4XqPF4rmGlOuQch2G8lX8ICKVcOlpTzJainsJuI5pTuOwkSXlGqqh5dL1Mq4x9OfSFCs+58cmCcOIhOcwXKxSqAS8rt4Y5xuvjlILQ6y1lP2Qb52fZFNbkl29bVSDiONXi/RkU4u2RvHM+AkseWzdCEmoYrSsNXMmidbaseUcyGqyUEnA3v52Pvm105SqPmOlGqG11AJLW8Ih6TpM1gKstSS9OHjUQkslsGQ8h4GuNJO1kPNjZRKeywNbOxkqVGlPuvU1F0M2d6TZlkszVg6oRZY37enmAwd3AvEZPj+K6M2muGdzO73ZeGHfP3l+kITr0JZw8EPL2GTAG3dtoj+XIZdJNJvNNBwfzE87W9jTlmB00mesWLupk+nLV/Jcul7mvi1ZdvS0NwNEW8Ihl0lwfLBAOuESWcvVvE/Kc9jSmeLEUDHulJpwiKoWHCcOckHEjk0ZhgpVXr5S4JG9qWb5a+Mxb6ccY6OXckxtu95Yu2uuI+UisvGs97gez8efZTsw0DV93d/5HNrfz4f/x1WwUIssrgNh/XEj4mS0PenR3Z5k30AHoyUfP4qoRZZ7e9roy6Y4cnqUVMIl5cWNbiq1gCCCo1fiktNXrxUJo4hSNaDshzjG4HiGMLKMFmv0ZJOculYkX/YZn6yxtStDZzrB9ZKPYwyb2hO8/TXxwdpG4nEncW6++Nn4eali60oc4F2JpFQxWtYazXCexXwlAccH8zxxfJgtHUm+M1HBGEPNj/AM1ELLZC2g4oekPRfHdXBcCPyIhGtIJ102tafIJONo88DWHB9+197mzmq2uX0z7ehu4027u3HMjcOlVwsV/DAi6Tns6m3HGEPFDxmd9Lmnv+OmUobGDnm0WKW7LcH1UpVXBgts6Uyzqc1jtFid1sn0E4+f5K5NbTcFiGfOjvGOfZubZ1Mvj5dJuobQWlIJFwt4rmGiPi/Sdeod56wll4k7rvqhnVb++tvfOEd3du6GN7f7e9sIps4TbQS+uY6Ui4isN9dL1Vm3u86NeNuKfQM5tvdkGClWKPuQcB1yGZcgtBSrIamEw31bOri3P0tvNs29QGS7GcxX+Pg/eAiAf/rpb1Eo+xSrIdm0RzadwDUwUfF5/kLcqMR1DaVq3I015cVzC10HtnSmmaj6DE1UKVXjLuWb2pMAhNaSTphp6yguRpxbKH4uZWxd7gO8K1V1pBgta42SxFnMVxLQ2JldGS9z16Y20gmXY1fyzbmHYWTjpjXGUgtCagEEURQv5BveaERTqPjz7mDnOso129jGSj5pz+HaRJVTQ0UsFtcYMskbS3NM1XgNvdkUFT9kshaSrDfcySRderOpZifTRqfS2QKEJW6A05m+0eDGMZBy4yOnHWmXIIzbc7smLtMJo/jyq9eKJF2Ht+zp4d/98IPT3vsXL17n5LUipWpAe8pj7+YsD23fdEe/t41i30BOAUdENqRJP46xDvEZv4ZaBP/XX77Kp795jk3tCQ7u6eEDB3fOu6+8fyDH2eFJ+jvTjJd9qkF8IHZvV4YIuH9rbt5Y88DW3LR49PixIRwT384xIZGNCMN4eQzHQNWPMPVpJMVqgOsYvufuHr58bIjhYpVJP6S7PRnPf/RDMDBSrHDqWomRYpWebIrjg/nb3v9PjZ8zH/fevnYmKsGSxdblPsC7klVHitGylsy3BMaGNXVJiMja5uVD+/ubSzsUKnFZZakaz0WsBREd6QQGix9ZitV4uYuKHxFEUKzF6xd969wYz1+4zrVClaRr4rLPP3uZzz1znq+8PMjnnjnPz37+RT52+AT5so/nwNdPXOMnP/NtfvGPX2Jvf/tNYwuikOFifMQxjOJ5kLXQUqoGPH1ujL397dNeX+M19LQnuHS9zPBElbIfMFEOqAYR92xun7aD3taVaZ4NbJioBDy8vYt82WdLZ6rZfrsWxJPwq0HEG3Z2k026tCc9HCde/DcI4zJcayHhGK7kK9PaP7clDc+cG2OyGtKWcJishhw5M8pz50b5yOdf5BOPn5yzXfR8vzcREVnfmusGznJdEMF42ef8yCR/9Nwl/vlnnuOLL12e87EO7e8niEKGCvF6yPnJGsPFKievFRkcL3PsSn5arLk4NsnwRKUZp2bG6oRrGC3VmKyFgCWXSTa7oDfGbIg7k0/WQq6XfE4MTbCpLQEYqn7E5etlEo6hEkS0J1y+8eoIp68VGZ6ocr1U5WOHT9z2cgqN+HlupMiz566TL/skHIctHSmu5CtcHJtcstg612eMpTrAu9ASXSIS05nEWcxXEtA42taZTjBWqjJW8nGNg2NCxierTPp22kT32Rb0tRYKFZ/HXx7kT56/TMWPSHqGjpRLGMGJqxOMFqsMT1S5cH2SjBfP0zt6pcCkH/HOfX2cHCo1x3b/lk6+eXYMS9zmO7SWCHAcS1c6ES8WPGUMjUn5Z0Ym6c0mqQYBVT/Cc2FPbxu92TTnRooMFqp85PMvknRNvPZjd9u0OvrGhPbDR4eY9OOzkdeKVdqSHvsGOkgnPCpBxNZcmqGJKi9eHKcaxBPz+zvTPHRXjqTnTjt699VXRticTeFHNr6ta6gFhpPXijy8s3vespDFKOXYCJPnRUTWoy0dKc7UJolmBt4pIsAPLdcnfT75tdPs6cvOuY9vT3pcul6e1i3VtRY/tJy6NkFvNkmxmiDlmubahj3ZuHPqE8eHp8XqB7Z2cuT0KJmEi62fPcymE0RRRLEaknChK5MkiCyuY8ilk/ih5Q27uvnmqRHKfkQYWip+xGu2dDA+6TNUqNKWdNnemcFzHS6MTvKZI+f5tSnVOXOZLdY9+shuPvqFY4QRdGcT3NPX3uxsXgtCcpnEkpRJLtZcvVbjt6qORFqjJHEOc5UENHZmWzpTnLo2QRiB5zp0tSWaR6EabbGtvTlJhDiRiyJLoRJSDW29pbZlohrSmTZYC0MTNQqVIC7RDOPFfBtloCeHStPmVnzk8y/SlfYY8kMcx5B0HFKeE5fAOtx0dKw5Kd/EZRaRjZvI9GSTjBRrJNwi374wzsPbuxjIpZmoBETW4gchg/ngpgAxs2NqYyedyyT4uUP3Na//yOdfZCCXnjafMrJ22viGChU2d6RwnPgk96Xrkxjj1UtZzYJlIXdSyrHRu6OKiKxle7d0cDlfoezPdi7xhgioBBF+GM0ZSz575DxlP4qbxUz6N5azcgzZlEcYWUZKPn/w/gN84vGTN61tOFas8ukjF9jR3dZMWK5NVLmaL3Pxepm057KtK4XrGF69VuTu3nZC4jOJ92xu57nz16kFEX0dad5yTy+nhktMlH0w8G9/cD8/8wcvsqe3jXRyysc4a3n+4viC79N8sW62vgcdaY/BfNDynM5btVgHeFuN32ogI9IaJYm3aOrO7FvnrmOxOMbgR3EI8YzFcQw2slCfh3cjuMSPkXQNZWubK1a5DhjixLHiR0Q2DmJBZPEcQxhFlH2oBnGJS+eUo18QHxV7tS1ZD4wWz3UIwjg9TXnuTUfHGpPy85M+E9WA7vYU927OMlKsMTRRBWN4eHtXcy5jLpNgZ0/7rF1SZ3t/5tqxt3L0rr8zTaHsk8vcWCMyiiztqRt/qktVFrLRu6OKiKxlbakEb9vby5devrbgbYMwoqc9OWcsef5inmzKpVAxOObGQd9qYCnVAhzig5pw85y64YkKJ4eK+FHEm3bfqIDp70hx16Y2Htoer2dcqPh4xnBPX5bX7+qeFhtT3o2apL6OdPOMXqOLqcHcdBA6/qyx8FKY88W6lTrLdqdz9W4lfquBjEhrlCTehqk7s3MjxeZSD4WyT6UW4ocWz4H6ND0g/h5FkE44cUJZLzfx6sEHYwkjKPthcz6FYwxBFBHEUxiw1jI8UeX0cIl/+ulvNdt5H9rfz0uXxhmdqJKvBPihTxBaMsm4/fbMeQPHB/PkywFjJZ/ubJK76yUlmzt9DtbLSW51EnkrZR6tHL374MEd/PqXTsS3ScVlObUg4s17upu3WaqANdvrrgYBjx8bU/mpiMgqFyc4HinPUA3mrjk1gDFxx85tXZlZ45fFYjBxVU49QWw8YhjFvQey9YOXMxOrU8MlKn6AH1m++NIVJipx13PHMXS3JXnwrhxv3N3djIHv3NfHHz53mbFSjVq9QU7Kc2hPefHUj3yF0VKNhOvwobffDcDD23McOTOGMaa5zEaxGnJwSqycy3wx/ie+Z9eaO8t2fDDP48eGiGxELpNsLg823+cWNZARWZga19yBQ/v7OTFUBOKOpT3tyXiH7ZpZj/JFgFufqW4seI7DQC6NMXECaaE5lyLt1gNRfW2mpGeAeOJ7Z8ajUJ843tiZ/9yh+3jwrhxh/YxmNu0xkMtMOwMHN0oyBjpTuA4Uyj7fPj/OCxfGeOr0KMcG81wYm+T8SInhiQpHzozy+LEhnjw5TNKd/Qhl4zHzZX9amcfMCfSNo3e5TILBfIVcJnFTKch7HtzGL3zvfXRmElwr1tiSS3P/1k42d2aWvBnNzMnzI8UKT5+5TsI1874uERFZeY3mK/0daZwFTqht68rgOA57+9tnjV+7utsoVkPaku6N5Zug3qk7rhja2Z2Z9ryNxi5XrpcZK9XwHMNIsVqf0xdXxdSCiJcu5fnWuTGODRaYqPh889QopWoce2z9mTrSCd68ZxMnrhabHcyjyPLvD5/kF//4Jd5yTw+7e+OmdIWKD8Du3nbeX19TeaHXPlejmFbi9GrS+PyRcA0p16Hihzx3fpyRYkXzDEXukM4k3oF9Aznu2pRproXUn8uwqS0RH0WshqQ9h95sEs81lKrxUhOBtfRmk/GyEI5Ld3sCY+DyeAUX2NSeIO25FKshrmPiVtgmnmjfSFZymQTFajitnOLD79rLvVs62ZzLTCsTyZf9aeUWU0sysmmPU9dKXL4+yfCVKt9zTw87etq5MFriqbNjJIyhJ5vEc+IAMlSoztpi+1bLPBYKNu95cBvveXBb8+eZR3mXqixk5pnOo5cLGOCBrZ0tzYcUEZGV00hwPptw+PPvDJIvT0+E2pLxcfEosnz3Pb184ODOOeNXW8JhR08bY6VaXPoZhIQROE4cCw7s7KItlZj2vI04FWHp6UhRCyLCKF5nMbJxjVBvR4rJWsD4pM+b9/TQkfZ48uQwxUrAm/Z009cRn+HLl32++soIb767h1oQ8u0L42SSLumE02xi98Ov2zqtiV2rlS4LVfWspbNsjd/fA1s7+faFcVKeIekajl4usKcvu6rPgIqsdkoS79DUtZBGihWeOz/OXZvaGClW2ZpLUwstr9/ZRW82TWRtc7Hd44N5PnPkPM9fHCebTrKjx+FNu7vp78wwPFHhm6dHmawFWGtpSyVIeg6TtYDRYo3rkzU21wPJ1HKKVspEp96mN5umN5vmyGnLaKnGrt54DuKu3iyvDE4wXvapRZbOdILvuitHwnVnTZDudI2jhUpVGwGrcbvf/sa5JSn9nBnoa2HEG3ZvagbtW31dIiKyvPYN5Hj/wZ1cyVc4dqVALYww1hJa6Mkm6UjHCUWjA+h//MrJaYve39PXTk82xWA+4OcO3cfho0PUwoik67B/Wye92RtJ3NQDslMTq3/2u9/iwugk45M+UWQx9WZ2br2p3KXrNbraks3718KIbMrl1HCpGW860h5DhQpv2t3N02cLpDyHdMLFWstENZi1iV3D1M8XBsPD2+P3ZGqzufUyJ6/x+cMxCV63o2tKgx+7qs+AiqwFK5IkGmPOARNACATW2gPGmG7g94FdwDngR6y111difLdi6hG5V+ulpwBbOtP1uQKGU9dK9GbT00of9g3kprWp/sTjJ8mX45KRvo40b7m7h5evFGhPeljiSfZJ1yG0lloIxYrP8ESF5JTGNK1MOJ/tNmMln5725LTXZRzobk/yd+7f0tw2sxPpfI/ZaplHqx3Jlqvz6NRAP/V3cquvS0Rko1ktsf3w0SF29rQzkEvXzy45WGsxxrCnL8sH6iWZxwfzXLoex7TOtEfVj8/Y7d2cZXd9aYx9A7lmnE+4LpG1C87Tu38gR1vCZaIaUK6FOBjaki6Z+hrCkWVazO1MJyjXAopTSkAnKgH9nfHnhmIlIJuKG9lUg7jj6lwHLI8P5vnY4RNcGJ0km3KxwJEzY1wtVPnIu/dOSxTXQwI19fPHbA1+ROT2reScxL9trX2ttfZA/edfAL5qrb0X+Gr951WvcUSuFoS8fCXP+dFJrubLTNbiIIK15Ms1Xrwwxv988Qp/8OxFfuS/HZm2iO/xwTwjExW+9so1vn7iGkOFMknPZU9flt94/+t4y9099GRT9bOJIWEYMemHPHf++rT5ea0sJj/bbTwnDmBPnRnlK8eu8tSZUWwESW/6n8dcCdKdLGI/tdSnUdKZyyQ4fHTotm63mO7kdYmIbFArGtuPD+b5yrGrPH1mlFPDJXraEgwXq5wfm+TyeJl37utrVqZ89AvHKFZ9hieqDBUqXL4+yZnhIl8+NsSrQwWOD+abFSwTFZ9jgwVeuVpYcJ7eof39OI7DG3Zuor8zhWsMkY1LWCcqAV31g50N92xur6+VaKbFmg8e3BEvau8aqn5IxQ+pBhH3bG6fMx4fPjrEWKlGNu2RTnpkkh4daY+RYnVJ4+VK2ehx+vhgnk88fpKPfP5FPvH4SfVMkEW1mspNfwB4W/3yp4GvAz+/UoOZz9TyyJRrGCvVeP7iOH5owUaUreHyeJlsMi4NGS3WOH2tRNpzCMKQFy5c59vnr/Prf/EKW7sy5CsB9/Vn+e57ujl2ZYJvnh7jgYEOutuT/PY3znHsSoFNbS6Xrkd4joPFUq6FVP0K/+s77pmzhCTpGtoSTrM8c29/OyeHShSrPpfHy3SmPR7YmuOHXjfAZ5+6SHvKoyPlki/7jFd8drYlyJf9BTucNZ73M0fO88Tx0WZ5SytaLVW905LW29FKSU6ri/eKiGxQyxbbjw/m+fiXT3J1vEypGuJHcRsYz8TxorstyRPHhwF44vgwY8UaA51pzo4UOT9Waz5O2oNXrhb52c+/SLESEFrbXOS+UE7wg6/d2tzPzxUDGrFj0g8ZHK8wWqxwvRzQmfbYN9BBoR5TO9IeCdelN5ukVAv5wotX6O9M88GDO3jPg9vY05flM0fO841To2xqS/Dwjnjqx1zx+PJ4mVoQ0ZG+8fEu5TkUKv6anyqx0Ht9O6WzazmGa21nWWorlSRa4CvGGAv8N2vtY0C/tXYQwFo7aIzZvEJjm2bqDiTpGsZLNY4OTrCpLcHWXIpvD5UYm6wRhRHWxusiJh2DMZZ8OaASRKQ9F9cxlGoBkQXPiW93ebxCoRqwKZPgxFCR1+/s4m33bY6X1bhapD+XoTvr8Z1L4zxztkBb/YhgGFmqQcTmjhQnh0q8Z8p4p87f+9jhE1y+XmZsskbVjwjDiDfu6ea77upqJn2H9vdz+OgQD2/v4upElWIloDOTYO/mLNm0R66+JMZcO97G+/Pylbhs577+LDt64qOcreysWi1VvdO1m243EMxXkqMdtIjINCsa2z975DwvXbpOsZ4gNgQWCuWATDIgiiI+feQC9w90kko4nBwqkp9S5ukaqIWWsh9webxGJhHH73jhDEvCCfnkV08D8DenRpvJ2/1bO26KAVMTyUasaBx0vTg2SS0IGcwHpFxDe8rj/q255vVPHB9mT73k9dd++MFpMWxzR6KZIH7i8ZPT4tq2rgyvDk1QDSLSiRslqinPJeWam26/GLFqORKtheLt7TzfWo/hWttZltpKJYnfba29Ug8WjxtjXmn1jsaYR4FHAXbs2LFU4wNuHJUcKVbJT9YYrwSEYdQ8o/XMufF42QugVAtJeQ5gqQRR8zHCWkQ1sFhrqS+PSC2MA5EFKn5ILemR85zm3MXBfIUgss1/+ITrAAY/imiu1mQg4Zo5jwx+5sh5Xh0qki/XCKP6GIBnz42xbVOcWJ0ZLvIzf/AiAA/dleNgX0/z/pG1HB8sTGvaMvO9+eyR8/x1PUAGYfyaTwwVyaa95uT+hXZWs3VZO3Ylz2Qt5E9fuNw8onpofz8f//JJni9WqQYhKc+lN5vife/e2xzPXEFqqQKBdtAiItOsaGz/q5PDjBT9m5afgnq8rQUM5isMTVTZ09tGqRpQrE7vgBrZeA3Fq/lqfUtIVybuUh6ElkoQr4X8ya+dJuU5bMrEH6Oev5Dn9Tu7iKKIj37hGDu625qxaNZY0d1GLpPgw+/ayyceP0nCc+eNJTMTocaB4Mbaiq8OTfDSpXHevGcT+ckao6UamaRLLp1gshZiga++co3+zjT7Bm5OaGfTSvI3X3xtvIa54nLjAHOhEpDLeNxfn/8523iWIt6u9Ri+EhVWsrGsSJJorb1S/37NGPMnwBuBIWPMQP1I4wBwbY77PgY8BnDgwIG5V8tdBJ89cp6zIyU60h6lWhjPCQgiLo5Nck9/B5G1FKsB6YRDvgxBZPGj6Y9hibfPFNbPKBpoBqlSLf4+mC8zkLtxhqxUC3AdS8W3jBPQnnTZlktTDeycCwE/f3GcyVpALbR4joMxEVjLZC3i6TNjeK4Tr3to47mH3zp7nTftMc2k8DsXr/OdKxOcHSnR057ED0Iee3KyueN/7MmznBkukvYMV/Nlxko+uYxLTzbdTHZb2VnNLBWZrPicGi7iYLDWUqoE/OqfH+effPdOImup+CGjpRpBaMlP1jgzXGyOZ64kcK5A8Jkj5+nrSN/S0c+p7/WxKwUe2t4J3Di7qR20iGxUKxnbjw/muVqozJogQrxO8Xgl4Mp4ma2b2jg+OBFXyph4HmDjfpZ4HePGz9XAMln1wRiCyBLZuOM3VctIMcJaSzrhkk15vHQxTy2Ml7140+7uZiwqVn16s0meOlOgUPHpTCfY09fG5fE45s/2Yb/iBzx9dnTO+PSZI+fj5jTpuMKoGkS8OlTk7HCRh7Z3cepakcvjFa7ky3RlEmRTCdKJuM/A02fGaE95lP2Qj37hGB88uIO/OTU6rRvqW+7p4YnjwwseXJ0aX0eKFU5dKzFSrPKzn3+J/s4027vbGMilOTdS5MO/f5W7NmXY3JFiqFClPelyaawMBvKTNdoSbvNzxmJ3UZ/NWk+y7rTCSmQhy54kGmPaAcdaO1G//HeAXwW+AHwQ+PX69z9b7rHN9PzFPNmUSxhZCpUA11hcEweNK+MVPMdQ9kP6sinGXJ9qEC38oDMk64u/OsbQlojnGeQnA+7ujXfmI8UKhXJAwnUBS1vCJbJQqgakE15zIeCZO/KqH1KqBriOwTHgmDgxjddkLLO3vwOAjozHvZvbOXJ6jJevFHhkb4oLoyW+df46WLhSC7h8vcyJoQkevivXnPieyySYqPj1xjcOCc9QqkXYYhW/flax1Z3V1COkf/e//DVBYMkkHVzHIYws5WrIf//rc7zl7h4GjWFbV6Y+xyLgk189zet3ds17NPDyeBnPgWODhbhLXNpjU8bj+NUib3/N5pbPLjaOmIZhxNVChcF8mSvjZd5ydzf39nfe0muW27OW548sFr0HshqtdGw/fHQIs8BtIgsT1YAPHtzBvz98kq6MF58hnHEgtxHJEw74EUzUIlIumHrZaaHikw4c0gkPayAILSPFKmFk2ZLL0J1NTFtb99WhCU5fiw84d6Q8Kn7I02euc3BPNzD9w/7wRIWXLsVN8NqSLp7DrPHp+YvjZFNus6Q0nXCphSGlqmVXb7a5pNXXT8Q5eS2My0/Lfsj1SZ/JWsiO7gxXrpf51f95jITr0tOeaHZD/ZvTozy4LbfgWbZGotVYAizlOXTX14uerIVsyaUYK4WcqHd/L5TjRkETlYD2lEsqES/tUfFDrhaq9HekbjoTu28gx7auDC9evM7Ja0VK1YD2lMfezVke2r7plv9WGuZLstbCfnah9S7nshZem6wOK9HdtB/4hjHmReAZ4IvW2sPEAeRdxphXgXfVf15RFosBrk/W4rN+xuDFlZ+EURSvrVTxuVascl9/+4IBaqYwioNOT3sC1zFkki6dmXhi+tWJGvmyz6tDRTozHsYY+jvjDqd+GDFRDfnQO+7m5FBp1q6fbUmveXTUEieJ8XxIQxjFZxWrQcQ9fe30ZtO8ac8m/DBex/HUcIkgiifqm3qCWa6FPH8pz8tX8lweL9OR9upltQbPNc3kNYyg7IdzdhhbqBPXxeuTpBPxYxoDnmtIJwzjZZ/BfKW5VpQxhs60RxBZnr+YnzZJH6YfDUy6hm+dvU7VD8mmXKp+yNNnr5P2nFvqlnr46BBhGHHyWpFqELE1lyaKLN88M8ZQobzhuqott0aSni/70xL7jdTNTe+BrGIrGtsvj5ebCdN8OlIe73lwG2+9p6ce0w2GOCGcyZi46Q1AEIHBsLkjSVwDZOjrSBEfE7VYG8c+LNzT137j+dIexarf/HxQqgYM5ssMT1R44VLcPbXRofPscJFvnx/nar6CY6CrLcELF/PUgvCm+GQwN501rQURrmtu2lYNQjrTCapBxFipRtI19eW0LBGWIAI/DKd1Q82Xfa4WKtPfu1nOsm3ryjBRCTh1rdSMz7UwbvKTTbmculZqXteZ9uL5oqElm3KbMR3i5jpDhTInh4qMFqs37d/akoZnzo0xWQ1pSzhMVkOeOTdGW/JWP3ndMFdn1MbB99W+n21UYuUyCQbzlQW77sLyxRB1XV0flv1MorX2DPDQLNtHgXcs93jm8/D2Lp4+M8ZkLcQ1UKzFxxcdE+/oLYad3W04jmG8HJLLeExWA/yIWUte3MbZPOLg09i2vbudezZnm6WejfmAuUyCoYn4yNq+LR2MlnwKFZ+7NmXItSV4z4Pb+MvPvzhrucSWXJqxUpWRYo0osriuIZM0OBg81wFjeN2OXPM5U57Hu+7v58Pv2sv3/p9P4jlxCY5rDJh4vOVaSKES8MDWHPmyT8pzqPoRQWhxHEN70iWsryH19NlRHt7e1RxTY3Hf+Sb5Qzz/MrR2SgFnozTXMFqqTVtbqhpEdLcnmKgGTFSCOUsu4nYD0wWRjctt60aKFV4dKjI0Ec9Dme3I2uXxMlcLNxJVEi7be+DKeIUXL+X5O/dvWbMLEq8Fa33+yGLQeyCr1UrH9sb+vBFnZ2okgl69ecu1YpWqH5HLJNjckWSwUCWoRVgg6cYL32cSLtcn/fh+nsuWjhR9nWnCKJ5q4jqGLZ0pRorx3P9MwmVvf3baXP6JSkBbMsGDd3Vy9HKBS+Nl0p7L9k0ZKn7YjIGPPrKbj37hWNx7wMD27gztqQQVP+TUcIk37e6elqA9vD3HX50cxi9UCaK483kYWXIZlyNnRptVM2H9LOlkNeD82CTVIKIt4ZD04jUb055DzY+mnU1NeQ6OiddQnmq2SpnG2ayRYpXutkRzmY7+zjQGKFTix+hIxSWx2foB3Wp9ek2jwU41iPBDSzoBvdnUtDOxh48OceTMKJuzKfx64772lEuX4/HVV0b4yb91763/wTB3B/O1tJ+91aY9y/Ha1npDILlhNS2Bsep84OBOBvMVrpeqVHzLjWUD42C0fVOGv/vQNiAuB7mWL/OXJ4epRTeXnRrAdQwmsiQ8h5Tn0teRxHUctnSmbwoqD2zN8eF37W0+di6ToLEbnFoeMVe5xANbc/zQw1v5D18+Qb4c4BrDpvYEd21q472v38YTx4dJerMvDGwwuMYQ1udfmPoaTwC5jNcMCp3pBJ4x5Cs+1cDSl01QrkX0dqR4ZG9fs8PpO/f18cTxYc4MF2+a5N84OtrYcbxx5yaePDWCwZBwDX4YB4TXb+9iZNKnUIlbiFeDiGoQsbO7jXvqRz1h9pKLamh5055NnBmebM4H2dWToVyfQNookwHo70jNuUPb1pXhhQvjdLffeK89x+HezXFH18bvS5bGWp8/shj0HojMzgBpz2GyfjZv5nUQl5H6QUS+7POaLZ20JVy+cWoUcNm/rYvRiQqXxitAPLUk4RqSnkPac7hvoJODe+Lmbl/3Q9pTAamEix9adva2s6UjRUfaY9KPblo66uHtORKeS1vKY1dPe7O8siPjNmPgh9+1lx3dbbxpdzfPnB2j4odAnLAVK8FNCdpb7unhiVeuxUmghTCyOAYmKn58NjDlUij7jBQrGOPQ15Fi+6Y0p0dKTFQDdrQned2OLk4Nl8iXi3jOjYOm1SCitz2FMWbBZbAaidZHv3CMsWKN7mySB7bG0y+ePjNGNu01p4cA067b1Jag6sex3FqLY+JeBPdsnn4m9vJ4maFChc0dKRznxinfKIoYmnG281bNlmT99jfOrdv97HLEkLWUZMv8lCTOY99Ajp87dB8/+/mXODdSoj3l0deR5PJ4BWuhLXnj7YtLShJ0tyUYLdXwQ0to43pex4lLVYL6aURrIZMwvHF3N8VKwImrRbqzKSp+wPHBCa5P+rz1np5mGcp8NefzXb9vIMeevuysteczt089A/bw9hxXxsukTFySUvUj/MjiAC9fKXBmuMijj+xudjcdyGXYN9DB8cEJrA14YGvntKOAjXbjjRITUz+NeupaiTfOODr6oXfey0ipxvnRSSb9kLTncv9AJ7/49+7nzHCRT371NGMln+72BDu723Bdhw8c3Akw5+tpJNJv3nOje+vZ4SInrxWbJb0N92zOzrlDO7S/ny8fvXpTorqrp23DzUNciTkNmqSv90BkLtXQ0pnxmKgGYO1NZxM70/EUjPbUjQ+vjXl7J64WuX+gk6fKNTZ3JBkqVHGceF785o4koyWfLR2p5kHV7vYkvdkU27vbpsXd988RiwA+dvgErw5N4ACe65BJuuzf1jntA3rj//ueze08d36cih9yfbJGLbA8dWaUD7397ubrOTlU4k27uptLV2XTHtdLVQxx7C1UfBL1OZRVP2SiElf/3Lu5g7FijY50gp5simIl4PxIkYTrUqkFWKBYDdnd284Pv24rJ4dKC64/uG8gx698//03LfOxo6eNrbk014pVCuWAvf1ZerKpadcNTVSb3U3z5YCBzlSzOzrc2L9d6ExTKPvkMjeSxIlqSH/n7B3Y78R63s8ux2vbCAczN8q8TiWJC9g3kOM1A518112dHL1UYLBQoeKH8RHLWsDwRDyHr3EELeE53NffQbqeQJaqAVeuT5KvBniOIVUPDumEh7Wwo6edST+kFoR8/eQwUWRpS7o8c26Mb54e5Z7+LJuzqeZ6SjN31Le7kOx8JQrvP7iTV6/FSVQUxGUonoH2lEvSMfz6l07wC997H/9uxtpNtTDiDbs3TTsr2pH2GCpUeNPubrJpj6ofkk64zcV9Z+6c9g3k+JUfeGDWf775kt7GfWczWyLtug4fens8p7NR0ju15He2Hdq+gRwfesfdfPJrp5ulr7t62nAcZ0PNQ1ypUpLbnaS/nug9EJld0jVcm6jRmUk0pycEgY2b0BgIrSWTcHFmzD1sxOB4frpDd3uK/VtzjE76FCsBCdewf2uOIIz43DMX8MOI7Zva+HsPbWGyZmeNu7MtE+EYQ9J1qAYhHjfObk6NgY3/71wmwe6eDEfOXCeMInZ0t3F3X3ba2omXx8vs7G1nd1+2+TxfefkqFsub9/Q0K2SievfV3myKahDx4F05Imt58WKBwXyF3X1Z3r2/f1p304N7unn/wZ3sG8hNW4d5PrN9Fvm5Q/fdtOTFbNdNfZ8a8+Vm7t/29rfz6186AUBHymWiGjfnm5o4L4bjg3mGJyrTpsakPG/d7GeXI4as5yQbNlY5rbF2SVeRWFIHDhywzz777JI/zycePxkvcD9UJOU5hFHE+dE4gehpT5BOelhrec2WDl68lCcIIno6UvGcvSDi/OgkmztSbGpPxglmvdQklYjPkuUyCUYmKhw5M0ZH2iMII86PTVLzI9pSLjt72uluT866U53PzAV8L4yWODFU5K5NGR7YOvd6RI37fubIef7k+ctENj4K29+Zpj0V7yw7Mwn+4CcP3vQ+zdwx5Ms+xwYL3D/QSS0I+faFuPuZrZex7unLLss/1nxHfeYad2MNq1t5rI3gVt+vxbTR33tYnPfAGPOctfbAEg1R5I7cTmz/xT9+iS9+5yquY0h5DiMTFWpRXM2TSTpkEnHs2tqV5gcfvvGBeOq+a7ZF7+PS1HY++9RF2lPetATlF773Pt7z4LYFx9bYZ7YSAxv/348fGyLhGh7Y2tk8eDl1rLPthxudTN9232aeOjNKxQ8ZzJcxGHb1tjNWqjJZC8kkPLqzSX7l+++/ae3Fld6/zjeGL750mU8fucBQodJcQ7mV9/9Wnrvx+59Z2dVImteDpf49z/V/tF6SqJX8DDSfpYjrOpPYgkP7+/nw718FqCd+0JtNMj5ZY7wccF8uwz2b25slEi9eGgfiIydJzyGdcHj9ri4cY5pz35KuYaxYax7B+d/+4KVmO+sz45P4YYTjQsUPqfghz18c559/9jl+4LV3tfwPPXP9oqktqBc68rFvIMev/fCD/M3pUTZnk9PmAXSk3FnnAcx1hOqDB3c011t67fYcxwcnGC8HvPWeHt5yTw+Hjw7x2984t6RBab4zp7d6ZO1WJ4qvNytZSrLR33vQeyAym2poObhnE8+cG6fsh81lLIyJp4Y49U6m+XIw5zy7uSpzPvqFY7SnvClzrOJ4+OkjF1pKUhr7TMckmvMAJ8o+lSAgk3Buin+NM4XxfW7MFZy6nz20v5+PHT7BWKlGLYhIeg4J15DLJOtdOmukXCeeFmMtY6UqY/WpMNmUx0BnatpngNVydmS+/dt7Hty2qEnhTFM/M+UyCfo7b5wRW0/73KWOIbdb4bZWbIRy2gYliS3YN5Djrk2ZeMmLakg27XFwayffvnAdg5k2161RunJ/fSe/rSvDyESFhBdPUH/9zq7mYrM92VRzBxwvtxEHg2I1jJvcAIG1jBRrcXfVSnhLO+6pf8iNFtQpz6FYDVueSNx/C/MA5tsxNMpEi9WAt923uVmeudhB6XaOkK33HdpiW++lJCKy9sT7JY9D+1Oculbi2xeuk/KIm6EQdzXd09fGaCned821r5/tA/RQocLmbHLatrkOls49tvh5+zriRnWNefFJz6Un690U/1rZzzYSSFvv1JPLJJvzCB0TdzF/y931Zjsnh+MEMe1xYNcmerNxzG18BthIzUbm+pywkT78L7X1fDBzI30GUpLYosayD1P/KFLezWsyTVQC7h/ITTvl3DhCB9DdnmLfgHvTqffGchvx2hiGKIrXIHTrRz+tjTuz3cqOe+ofcqHi39SCupWd3wcP7ph3HsBsO9tG2c7MM4QzT8N/4vGTswalTz7xKiOT/i2XlNzJkdD1vENbbJoXJyKrzdT5fG/c3c3ZkSIVP57P156KY16+7N9WJ+pbOVg639jgxj7z5FCRLbkUxwcLza7bWzpTzdi+t7+dT37tNH4Y0dOejM8qOk5zP3v46BDbu9vYv+1G3MqXfU4Olfjwu/Y2nzPpuXSkPdoSHh2pGwliYyyNzwC3kiCthrLUuSw0tvk+J2ykD/9y+zbSZ6BZlo+V2cy26GpvNkV3e/KmhVhnNjFpZcHTDxzcyY6eNiAuRY3sjfbbEC96u6UekKpBwOPHhhZcpHTqmDtSHoVKQDWImgv9Tt35zbXw6Xse3MYvfO99dGYSXCvGTQEa8zDmWpT1iy9dbmmx1svjZTrS049TXM1P8vVXRyiUfTZnkxTKPr/+pRN88aXLC/6Oph4JbXRXnbkAsdy521nAV0RkKc3cLx3YuYlMwiGILFEUL0tRqgZ88OCOW37sDx7cQakafxC8nceabZ/Z1R5frvghHSmPih/yytUJjg3mOT6Y54njw+zdnCWTcHj1WpG/PDFMpb62IMTxsxoEPHVmlK8cu8pTZ0apBkEzqZv5nN3ZJK/Z0jFr51CIDypPVIJp454tQVquxdhvRytjm+9zwmyf82b7TCcb20b6DKQziS2atSTx3fHRyFbKFBc6U9VYbuPw0SFe7shz7Eqeqh8xUY0Tu01tCR68K8dIscLTZ67TkfYWPFs2dcy5tsS0FtSNnd/73nDXgmfg5poHMFd5SmPJi4XKVmY7avf8hTxtCfe25n6oVGT56MyriKw2M/dLMxudfOjtd9/WnLbGfWZ7rFbPqs0c24/8tyMYY0gn4oqkxoLy+XLQjK1+GBJEsKO7DazlSr7SjM0p1zSb3TWSzKfPXOfgnu5Zn3O+zqHQ+tmR1VyW2srY5vucoKkn0qqN8hlISeItmOuP4lY7js63hENjAnljQnqh4nO95ONgiKzl+JUJDNy0FuHMHfTM5/mZd82d0M5V9rnQTn+unW1jyYuZ22cma7MFpWI1YHNHkkvXJ6kGESnPIVd/zIWoVERERBre8+C2acsmnRwqsWcwf1sf7hoHSxux9S9PjPA3p0YZKlTZ3t12y1McOtMehUk/7nRe74ROvZN4I7Y+c7ZAynNIJ1ystc1+AoePDmG5sYxGgwHm6le/UALUaoK0mg/GtjK2hT4nzPU5bzWX2IosFSWJMyzljqDVOXOHjw6xs6edB+/qAmCkWOFbZ6/zxPFr+GHEXZumJz0zd4LzPc9sczFud6c/1862vzPNRCVYMFmbLSht6UwxXKyRSTgkXUMQRlwar7C9u23escDGqhMXEZH5LXbHzpmP9+TJYSYqAVtyKRyTaPkA6/HBPIVKQKkWUKhaUq5DX2eand1tzXUP82W/2UsAaPYTmBqb37B7E2dGJilWArJpj30DHdTCuZc1a6Wi6VZ6HTSsloOxrYztdj4nrJbOryLLTXMSp1jqWvtW58zNNlfPGOjKJLmvv4Mwgm9fGGd4Ij67NnMneKtz81qdizDTXPX7Hzy4o+W6/n31Jj8f/wcP8eF37eW+LR1EkSWo9y8PIogiy87uhQPQRqoTFxGR+S32PPWZjxcvJ+Fy6lqpeZuFDrA2PmcMdKZoS7p0phOkPJctHSlc1+HQ/v5mbE26TnMZrEY/gUZs3taVIZ3wOLinh3fd38/BPT2kE96SJ2ured5eK2O7nc8J6ncgG5XOJE6x1LX2rZ6xm3k07NS1EsYYurMJ7t3c3lxr8VS9ffbMo2C3embwds/AtbLkxa3W9belErz13h5evFygVA1oT3m8cVcXbanEgvdtjElJoYiILHZp5MzHy6Y9qrWAQsVvblvoAOvUzxnZtNdcEuvqRHXa4vaPPrKbzx45z1+fGmVTW7zG8Mx4vxKVM6t53l6rY7vVzwmrucRWZCkpSZxiqXcErZZpzEzaRopVEo7DPX3t9GbTvH5nF68OFRmaqHIwk7hpJ3ir5SB3stOfb57m7QSNxlpX/2DL9LbeU1+LiIjIQha7NHLm493T187TZ8bIpj0ia1tK1KZ+zujNpunNpomsZTBfuWm9xn/3ww9OmwKTmxHvVypZW80HY5dibKu5xFZkKS17kmiM2Q78LrCFeOm/x6y1/6cx5peBfwYM12/6b6y1f7GcY1vqHUGrZ+xmJm092RRbOlL0ddwILAnX5WAmMescw9s5M7hadvqaVygisvasxti+2PFk5uMlPZcdPW1szaUZzFdaStRu5yDuXI+3WuL2eqfPJbJRGWvnnuS8JE9ozAAwYK39tjGmA3gO+EHgR4CitfbjrT7WgQMH7LPPPrtoY5s6OXnqjmAx57XdTmOc2cZ1cWyS/s4UtdDOuWDsSnTiWoznVRcxkaVljHnOWntgpcch68dqje2LHU/u9PHm+pzxzn19nBwqLVvcU5y9NXq/ZLVbiri+7EniTQMw5s+A/wp8NyucJMLq3RFMHVfKNVzJV9jZ075kyeztjnGpk2wRuXNKEmWprbbYvprM/Jyxt7+dJ44PL1vsVKwWWX+WIq6v6JxEY8wu4GHgaeJA8tPGmB8HngX+N2vt9eUe02ot35g6rk88fpKE5y5Zg53btZoX2RURkeWxGmP7ajLzc8btrlV8uxSrRaQVK7YEhjEmC/wR8K+stQXg/wbuBl4LDAL/cY77PWqMedYY8+zw8PBsN1n3ZlsiYzV02lqt4xIRkeWh2H7rljt2KlaLSCtWJEk0xiSIg8jvWWv/GMBaO2StDa21EfBbwBtnu6+19jFr7QFr7YG+vr7lG/QqcrvrGi611TouERFZeortt2e5Y6ditYi0YiW6mxrgt4Hj1tr/NGX7gLV2sP7jDwFHl2oMq3Xe4VTzjXG1dtpareNaL9bC362IbEwrHdtXW4OaW7HcsVOxWmR1Wa2f71aiu+n3AH8NfIe4TTbAvwF+jLgcxQLngJ+cElhmdTuT29fChO1Wxrha/6BW67jWurXwdytrhxrXyGJbydi+2PvHldjfLnfsVKwWWR0Wa3+zLhrXWGu/AZhZrlqWdZPWwoTtVsa4FhrsyOJZC3+3IrJxrWRsX+z940rsb5c7dipWi6wOq/nz3Yp2N10Jl8fLDOTS07attgnba2GMsrxW29+EjkKLyGqx2PvH1ba/lZjijqxHq3l/s2LdTVfKWpiwvRbGKMtrNf1NNEoj8mWfgVyafNnnsSfPcnwwv+xjERFZ7P3jatrfSkxxR9ar1by/2XBJ4qH9/eTLPvmyT2Rt8/Kh/f0rPbSmtTBGWV6r6W9iammEY0zz8uGjQ8s+FhGRxd4/rqb9rcQUd2S9Ws37mw2XJO4byPHoI7vJZRIM5ivkMolV1/xjLYxRltdq+pvQGlsispos9v5xNe1vJaa4I+vVat7fbLg5ibA2JmyvhTHK8lotfxPbujLky35zcjWsntIIEdmYFnv/uFr2txJT3JH1bLXubzbcmUQRuTOruTRCRETWH8UdkeWnJFFEbslqLo0QEZH1R3FHZPltyHJTEbkzq7U0QkRE1ifFHZHlpTOJIiIiIiIi0qQkUURERERERJqMtXalx3DbjDHDwPk7eIheYGSRhrNU1sIYQeNcbBrn4loL41zOMe601vYt03OJ3JI7jO1r4X99sW2017zRXi/oNW8Ud/KaFz2ur+kk8U4ZY5611h5Y6XHMZy2METTOxaZxLq61MM61MEaR1W4j/h9ttNe80V4v6DVvFKvtNavcVERERERERJqUJIqIiIiIiEjTRk8SH1vpAbRgLYwRNM7FpnEurrUwzrUwRpHVbiP+H22017zRXi/oNW8Uq+o1b+g5iSIiIiIiIjLdRj+TKCIiIiIiIlOs+yTRGHPIGHPCGHPKGPMLs1xvjDH/pX79S8aY163Scf7D+vheMsZ80xjz0Goc55TbvcEYExpj3ruc45vy/AuO0xjzNmPMC8aYl40xf7XcY6yPYaHfe84Y8z+NMS/Wx/mPV2CMv2OMuWaMOTrH9avlf2ihca6W/6F5xznldiv6PySyWq2VuL6YWnjNrzHGHDHGVI0xH1mJMS62tfK5aDG18Jp/oP56XzDGPGuM+Z6VGOdiWiufKxdTC7/ntxlj8vXf8wvGmF9aiXFirV23X4ALnAb2AEngReD+Gbf5PuBLgAHeDDy9Ssf5FmBT/fL3rtZxTrnd14C/AN67GscJdAHHgB31nzev0nH+G+Df1y/3AWNAcpnH+QjwOuDoHNev+P9Qi+Nc8f+hVsY55W9jxf6H9KWv1fq1VuL6CrzmzcAbgH8HfGSlx7xMr3lV7NOX+TVnuTFV7EHglZUe91K/5im3WxcxscXf89uAP1/psa73M4lvBE5Za89Ya2vA/wB+YMZtfgD4XRt7CugyxgystnFaa79prb1e//Ep4K5lHiO09n4CfAj4I+Dacg5uilbG+b8Af2ytvQBgrV2JsbYyTgt0GGMMcXAYA4LlHKS19sn6885lNfwPLTjOVfI/1Mr7CSv/PySyWq2VuL6YWvmMcM1a+y3AX4kBLoG18rloMbXymou2nkUA7cSfEdaytfK5cjG1+ppX3HpPErcBF6f8fKm+7VZvs9RudQw/QXyUdLktOE5jzDbgh4DfXMZxzdTK+7kX2GSM+box5jljzI8v2+huaGWc/xXYB1wBvgP8f6y10fIMr2Wr4X/oVq3U/9CCVsn/kMhqtVbi+mJab6+nFWvlc9Fiauk1G2N+yBjzCvBF4J8s09iWylr5XLmYWv3bPlifavQlY8wDyzO06byVeNJlZGbZNvOoSyu3WWotj8EY87eJd4YrUYfeyjj/M/Dz1towPvm1IloZpwe8HngHkAGOGGOestaeXOrBTdHKON8NvAC8HbgbeNwY89fW2sISj+1WrIb/oZat8P9QK/4zK/8/JLJarZW4vpjW2+tpxVr5XLSYWnrN1to/Af7EGPMI8G+Bdy71wJbQWvlcuZhaec3fBnZaa4vGmO8D/hS4d6kHNtN6TxIvAdun/HwX8RmZW73NUmtpDMaYB4H/DnyvtXZ0mcY2VSvjPAD8j/o/ci/wfcaYwFr7p8sywlirv/cRa20JKBljngQeApYzSWxlnP8Y+PV6eckpY8xZ4DXAM8szxJashv+hlqyC/6FWrIb/IZHVaq3E9cW03l5PK9bK56LFdEu/Z2vtk8aYu40xvdbakSUf3dJYK58rF9OCr3nqiQBr7V8YY35jJX7P673c9FvAvcaY3caYJPCjwBdm3OYLwI/Xu6G9GchbawdX2ziNMTuAPwY+sMxnu6ZacJzW2t3W2l3W2l3AHwL/YgX+kVv5vf8Z8FZjjGeMaQPeBBxfheO8QHy2E2NMP3AfcGZZR7mw1fA/tKBV8j+0oFXyPySyWq2VuL6YWnnN681a+Vy0mFp5zffUexRg4q69SWAtJ8dr5XPlYmrl97xlyu/5jcT52rL/ntf1mURrbWCM+Wngy8TdhH7HWvuyMean6tf/JnGnpO8DTgGTxGduVuM4fwnoAX6j/ncTWGsPrMJxrrhWxmmtPW6MOQy8BETAf7fWzrskwUqMk7iU5FPGmO8Qlyj8/HIfSTLGfI6401avMeYS8FEgMWWMK/4/1OI4V/x/qMVxisgc1kpcX0ytvGZjzBbgWaATiIwx/4q4Y+JqmprQsrXyuWgxtfia/z7xARAfKAPvm9LIZs1ZK58rF1OLr/m9wD83xgTEv+cfXYnfs1nDf1siIiIiIiKyyNZ7uamIiIiIiIjcAiWJIiIiIiIi0qQkUURERERERJqUJIqIiIiIiEiTkkQRERERERFpUpIoIiIiIiIiTUoSZUUYY7qMMf9igdvsMsb8Ly081i5jzC2vcWiMOWeM6b2F2x8wxvyXW32etcAY84+MMVun/PzfjTH3r+SYRERk9VH8bm0sxphvLnC/OV+7MebrxpglW/PRGPODU2O8MeZXjTHvXKrnk7VJSaKslC5g3iAD7AIWDDLLxVr7rLX2f5253Rjj3c7jmdiy/Q8aY9x5rv5HQDNJtNb+U2vtsSUflIiIrDVdbPD43eJzvmWpHrsVC8T8HwSaSaK19pestU8s+aBkTVGSKCvl14G7jTEvGGP+Q/3rqDHmO8aY9025zVvrt/lw/ajbXxtjvl3/amkHbIxxjTEfrz/2S8aYD025+kP1x/qOMeY19du/0RjzTWPM8/Xv99W3v80Y8+f1y79sjHnMGPMV4HeNMQ8YY56pj/UlY8y9c4xllzHmuDHmN4BvA9uNMcUp17/XGPOp+uVPGWP+S30MZ4wx761vHzDGPFl/rqPGmLfO89qL9SOETwMHjTG/ZIz5Vv1+j9UT1fcCB4Dfqz9mZupRTGPMj9Xfn6PGmH/fynsuIiLr1kaN3+3GmC8aY16sv973zbg+Y4w5bIz5Z/Wfi/XvWWPMV6eM9Qem3M0zxny6/rx/aIxpm+V5/44x5kj9/p83xmTneb/O1eP8N4B/YIz5Z/WY/6Ix5o+MMW319/77gf9Qf8131z9vND5jvKP+/n3HGPM7xpjUQr8nWaestfrS17J/ER9lPFq//PeBxwEX6AcuAAPA24A/n3KfNiBdv3wv8OzMx5rjuf458EeAV/+5u/79HPCh+uV/Afz3+uXOKbd9J/BH9cvN8QC/DDwHZOo/fxL4h/XLycb2OV53BLx5yrbilMvvBT5Vv/wp4PPEB3PuB07Vt/9vwC/WL7tAxzyv3QI/MuXn7imXPwP8vfrlrwMHplz3deLEcWv999EHeMDXgB9c6b8ffelLX/rS18p8beD4/feB35ryc27KWHYBTwA/PuX6Yv27B3TWL/cCpwBTv48Fvrt+3e8AH6lfbsTgXuBJoL2+/eeBX5rn/ToH/NyUn3umXP4/prxnnwLeO+W6TxF//kgDF4G99e2/C/yrlf6b09fKfOlMoqwG3wN8zlobWmuHgL8C3jDL7RLAbxljvkOcPLU6Z+6dwG9aawMAa+3YlOv+uP79OeIdNkAO+LyJ5wp8Anhgjsf9grW2XL98BPg3xpifB3ZO2T6b89bap1oc+59aayMbl37217d9C/jHxphfBr7LWjsxz/1D4gDb8LeNMU/X38O3M/dra3gD8HVr7XD9/fs94JEWxy4iIuvbRorf3wHeaYz598aYt1pr81Ou+zPg/2+t/d1Z7meAXzPGvEScSG7jRjy/aK39m/rlzxK/n1O9mfi9+htjzAvAB4Gdc4yv4fenXN5fP4P7HeAfsnDMvw84a609Wf/50yjmb1hKEmU1MC3e7sPAEPAQ8RG25C08vp3jumr9e0h8tA/g3wJ/aa3dD/w94iNrsyk1Llhr/x/i8o0y8GVjzNvnGU9pxs9TxzbzuapTLpv6cz1JvNO+DHzGGPPj8zxXxVobAhhj0sBvEB89/C7gt2Z5vpla/d2IiMjGs2Hidz1xej1xsvj/M8b80pSr/wb4XmPMbO/HPySuxnm9tfa1xO9DY1wzX9vMnw3wuLX2tfWv+621PzHHa7rptRGfIfzpesz/FRTz5RYoSZSVMgF01C8/CbyvPvegjzgBembGbSA+QjhorY2ADxCXt7TiK8BPmfoEdWNM9wK3zxEnYBA3dFmQMWYPcMZa+1+ALwAPtjg2gCFjzD4TN7H5oRaeaydwzVr7W8BvA69r8XkawWGkPqfhvVOum/leNzwN/C1jTK+JJ8H/GPGRYhER2Zg2ZPw2cQfwSWvtZ4GPMz32/hIwSnwgdrYxXbPW+saYv830M4E7jDEH65d/DPjGjPs+BXy3Meae+hjajDF7W3lddR3AoDEmQZysNswV818BdjWej/h3pZi/QSlJlBVhrR0lLp84ChwEXgJeJJ7z9nPW2qv1bUF9wvWHiXe+HzTGPAXs5eYzcnP578TzJF4yxrzIwh3XPkZ8lPBvaD2QvQ84Wi8HeQ1xHX+rfgH4c+LXPtjC7d8GvGCMeZ54jsT/2cqTWGvHic8efgf4U+Ky1YZPAb9Zn8SemXKfQeBfA39J/Pv5trX2z1p5PhERWX82cPz+LuCZ+u1+kXiO31T/CkgbYz42Y/vvAQeMMc8SJ2qvTLnuOPH78hLQDfzfU+9orR0mTnY/V7/NU/Uxtup/Jz7Y+/iM5/0fwM/WG9TcPeX5KsA/Ji7Z/Q5xD4XfvIXnk3XEWDvXWXwRERERERHZaHQmUURERERERJqWbBFRkeVmjHk3MHMdv7PW2gXn+S3BWHqAr85y1TvqpTqL/XxPAzPXMvqAtfY7i/1cIiIii2kjx+/bYYz5E2D3jM0/b6398kqMR9YnlZuKiIiIiIhIk8pNRUREREREpElJooiIiIiIiDQpSRQREREREZEmJYkiIiIiIiLSpCRRREREREREmpQkioiIiIiISJOSRBEREREREWlSkigiIiIiIiJNShJFRERERESkSUmiiIiIiIiINClJFBERERERkSYliSIiIiIiItKkJFFERERERESalCSKiIiIiIhIk5JEERERERERaVKSKCIiIiIiIk1KEkVERERERKRJSaKIiIiIiIg0KUkUERERERGRJiWJIiIiIiIi0qQkUURERERERJqUJIqIiIiIiEiTkkQRERERERFpUpIoIiIiIiIiTUoSRUREREREpElJooiIiIiIiDQpSRQREREREZEmJYkiIiIiIiLSpCRRREREREREmpQkioiIiIiISJOSRBEREREREWlSkigiIiIiIiJNShJFRERERESkSUmiiIiIiIiINClJFBERERERkSYliSIiIiIiItKkJFFERERERESalCSKiIiIiIhIk5JEERERERERaVKSKCIiIiIiIk1KEkVERERERKRJSaKIiIiIiIg0KUkUERERERGRJiWJIiIiIiIi0qQkUURERERERJqUJIqIiIiIiEiTkkQRERERERFpUpIoIiIiIiIiTUoSRUREREREpElJooiIiIiIiDQpSRQREREREZEmJYkiIiIiIiLSpCRRREREREREmpQkioiIiIiISJOSRBEREREREWlSkigiIiIiIiJNShJFRERERESkSUmiiIiIiIiINClJFBERERERkSYliSIiIiIiItKkJFFERERERESalCSKiIiIiIhIk5JEERERERERaVKSKCIiIiIiIk1KEkVERERERKRJSaKIiIiIiIg0KUkUERERERGRJm+lB3Anent77a5du1Z6GCIia8pzzz03Yq3tW+lxiMxGsV1E5NYsRVxf00nirl27ePbZZ1d6GCIia4ox5vxKj0FkLortIiK3ZiniuspNRUREREREpElJooiIiIiIiDSt6XJTWXuOD+Y5fHSIy+NltnVlOLS/n30DuZUeloiIyLwUv0RkI9GZRFk2xwfzPPbkWfJln4FcmnzZ57Enz3J8ML/SQxMREZmT4peIbDRKEmXZHD46RC6TIJdJ4BjTvHz46NBKD01ERGROil8istEsWZJojPkdY8w1Y8zRKdt+3xjzQv3rnDHmhfr2XcaY8pTrfnOpxiUr5/J4mY709ArnjrTH5fHyCo1IRERuxUaN7YpfIrLRLOWcxE8B/xX43cYGa+37GpeNMf8RmFqncdpa+9olHI+ssG1dGfJln1wm0dw2UQnY1pVZwVGJiMgt+BQbMLYrfonIRrNkZxKttU8CY7NdZ4wxwI8An1uq55fV59D+fvJln3zZJ7K2efnQ/v6VHpqIiLRgo8Z2xS8R2WhWak7iW4Eha+2rU7btNsY8b4z5K2PMW1doXLKE9g3kePSR3eQyCQbzFXKZBI8+slvd4URE1od1G9sVv0Rko1mpJTB+jOlHGgeBHdbaUWPM64E/NcY8YK0tzLyjMeZR4FGAHTt2LMtgZfHsG8gpqIqIrE/rOrYrfonIRrLsZxKNMR7ww8DvN7ZZa6vW2tH65eeA08De2e5vrX3MWnvAWnugr69vOYYsIiIi81BsFxFZX1ai3PSdwCvW2kuNDcaYPmOMW7+8B7gXOLMCYxMREZFbp9guIrKOLFm5qTHmc8DbgF5jzCXgo9ba3wZ+lJsntT8C/KoxJgBC4KestbNOjBcRWU7HB/McPjrE5fEy27oyHNrfr5Iz2bAU21eW9kcislyMtXalx3DbDhw4YJ999tmVHoaIrFPHB/M89uRZcpkEHWmPiUpAvuyv+YYVxpjnrLUHVnocIrNRbJ/det0ficidW4q4vlLdTUVEVr3DR4fIZRLkMgkcY5qXDx8dWumhicgGo/2RiCwnJYkiInO4PF6mIz29Kr8j7XF5vLxCIxKRjUr7IxFZTkoSRUTmsK0rw0QlmLZtohKwrSuzQiMSkY1K+yMRWU5KEkVE5nBofz/5sk++7BNZ27x8aH//Sg9NRDYY7Y9EZDkpSRQRmcO+gRyPPrKbXCbBYL5CLpNQkwgRWRHaH4nIclqyJTBERNaDfQM5fQgTkVVB+yMRWS46kygiIiIiIiJNOpMo654WHxYRkdulGCIiG5GSxHVIAe2GqYsPD+TS5Ms+jz15VvM4RERkwXipGCIiG5XKTdeZRkDLl/1pAe34YH6lh7YitPiwiIjMppV4qRgiIhuVksR1RgFtOi0+LCIis2klXiqGiMhGpSRxnVFAm06LD4uIyP/b3p3HSXbX9f5/fWrp6r1n6+l0JpnMTJIJMxlDEiaECMRIACP4Y1ERvF4NP/EXubIIGjXovRfQBxoBiT/lJxqFH1ERBQWMIIGwSATDMoEkTDJkSDLJZCY9PT1Lr9NVXcvn/lGnOtU9VdXVXXvV+/l41KOrTp3lU6erzud8z/kuhZSTL5VDRKRTqZDYZpTQltLgwyIiUkg5+VI5REQ6lQqJbUYJbSkNPiwiIoWUky+VQ0SkU6l30zaTS2j5vbW99qrzOjqhafBhERFZrtx8qRwiIp2oZoVEM/sI8FPAcXffE0x7F/D/ABPBbL/r7v8evPcO4A1AGniru3+hVrG1OyU0ERGphXbL7cqXIiKF1bK66UeBGwpMv83dLw8euSSyG3gdcGmwzF+YWbiGsYmIiMjqfRTldhGRtlezQqK73wOcKnP2VwL/6O4Jdz8EPAo8t1axiYiIyOopt4uIdIZGdFzzZjN70Mw+Ymbrg2lbgKfy5jkSTDuLmd1kZvvMbN/ExEShWURERKS+lNtFRNpIvQuJHwIuBC4HxoA/CaZbgXm90Arc/XZ33+vue4eHh2sSpIiIiJRNuV1EpM3UtZDo7uPunnb3DPDXPFPt5Ahwft6s5wFP1zM2ERERWT3ldhGR9lPXQqKZjea9fDWwP3h+J/A6M4uZ2XbgYuDb9YxNREREVk+5XUSk/dRyCIyPA9cBm8zsCPBO4Dozu5xsdZMngF8FcPeHzOwTwMNACniTu6drFZuIiIisnnK7iEhnMPeCzQNawt69e33fvn2NDkNEpKWY2X3uvrfRcYgUotwuIrI6tcjrjejdVERERERERJqUCokiIiIiIiKyqGZtEqXzHBib4q794xydnGfLuh5u2DPCrtGhRoclIiJSNcp1ItIJdCdRquLA2BS333OIqfkko0PdTM0nuf2eQxwYm2p0aCIiIlWhXCcinUKFRKmKu/aPM9QTZagnSshs8fld+8cbHZqIiEhVKNeJSKdQIVGq4ujkPAPdS2svD3RHODo536CIREREqku5TkQ6RUe2SVR7gurbsq6HqfkkQz3RxWkz8RRb1vU0MCoREekE9crrynUi0ik67k6i2hPUxg17RpiaTzI1nyTjvvj8hj0jjQ5NRETaWD3zunKdiHSKjiskqj1BbewaHeKma7cz1BNlbCrOUE+Um67drju0IiJSU/XM68p1ItIpOq666dHJeUaHupdMU3uC6tg1OqREKSIidVXvvK5cJyKdoOPuJG5Z18NMPLVkmtoTiIiItCbldRGR6uu4QqLaE4iIiLQP5XURkerruEKi2hOIiIi0D+V1EZHq67g2iaD2BCIiIu1EeV1EpLpqdifRzD5iZsfNbH/etPeZ2Q/M7EEz+7SZrQumbzOzeTO7P3j8Za3iEhERkbVRbhcR6Qy1vJP4UeCDwN/mTbsbeIe7p8zsj4F3AL8TvPeYu19ew3hkDeo1QHG9tiMiIhX5KB2U2wvlJkD5SkTa3op3Es1sp5l9OXfV0MwuM7P/udJy7n4PcGrZtC+6e64Lsm8C560hZqmTeg1QXM+BkEVEOt1a8zp0Vm4vlJve/4WDvPeuR5SvRKTtlVPd9K/JXhVMArj7g8DrqrDtXwY+n/d6u5l9z8y+ZmYvrML6pUL1GqC4ngMhi4hIzfI6tFFuL5SbTswmODW3oHwlIm2vnOqmve7+bTPLn5YqNnM5zOz3gnV8LJg0Bmx195Nm9hzgM2Z2qbtPF1j2JuAmgK1bt1YShqygXgMU13sgZBGRDlf1vA7tl9sL5aZEKo2xZL8pX4lIWyrnTuIJM7sQcAAz+1myB/41MbMbgZ8CfsHdHcDdE+5+Mnh+H/AYsLPQ8u5+u7vvdfe9w8PDaw1DylCvAYo1ELKISF1VNa8H62i73F4oN8UiYboiS0+dlK9EpB2VU0h8E/BXwLPM7CjwNuB/rGVjZnYD2cbsr3D3M3nTh80sHDzfAVwMPL6WbUj11GuAYg2ELCJSV1XL69C+ub1QbtrUH2NDX5fylYi0PQsu+K08o1kfEHL3mTLn/zhwHbAJGAfeSbYNRAw4Gcz2TXd/o5n9DPD7ZKuppIF3uvu/rbSNvXv3+r59+8qKX4or1bNoLXodLbe3uELT1IOcSOXM7D5339voOKSxVpvXg2U6KrevlK/m4kmOnJ5nOpFiZLCbG6/Zyssv29LgqMunnsVF2kMt8vqKhUQz+0Pgve4+GbxeD/ymu5fVE1otNVMiaVW53tuGeqIMdEeYiaeYmk9y07XbazbURTnbq3dcIp1EhcTO1sx5HVont3/uwaPc+vlH6ItFGIiFmUmkmUukuOUnL2mJgqLyrEj7qEVeL6e66U/mEgmAu58GXlbNIKR6DoxNcdvdB7n5kw9w290HV+yWu949i5a7PfV4KiJSMx2b11ebI0u5497D9MUi2TwVCjHUE6UvFuGOew9XMeLaUZ4VkVLK6d00bGYxd08AmFkP2WolUgOVVP3IvyqYP35TqauC9e5ZtNztqcdTEZGa6Zi8np9TY2Hj6ak4F2zsKztHljI+HWdzf9eSaQOxMOPT8WqFX1PKsyJSSjl3Ev8e+LKZvcHMfhm4G7ijtmF1pkoHlV/LVcF69yxa7vbU46mISM10RF5fnlP3Pz3N4ZNnWEilq3LnbGSwm5lEesm0mUSakcHuIks0F+VZESllxUKiu78XeA+wC7gU+INgmlRZpVU/jk7OM9C99ObwSlcF692zaLnbU4+nIiK10Sl5fXlOXUhn6I+FeXRibnGeSu6c3XjNVuYS2XZ8mUyGqfkkc4kUN17THOM8rkR5VkRKKae6Ke7+eeDzNY6l41Va9WPLuh6m5pMM9UQXp610VXDX6BA3Xbt9SRXX1151Xs0arZe7vXrHJSLSSTohry/PqYPdUeYXUszm3T2r5M5ZrnOaO+49zPh0nJHBbt7yogtbotMaUJ4VkdKKFhLN7Ovu/gIzmyEYcDf3FuDuPljz6DrMWgp5+W7YM8Lt9xwCWNJT2WuvOq/kcrtGh+qaFMrdXr3jEhFpZ52W15fn1Is293HvY6cY6I6QcS87R5by8su2tEyhsBDlWREppmgh0d1fEPwdqF84raeaYwyttZCXo6uCIiJSTKfl9VxOPT2XYGwqzsm5BTLubBnqZmwqrhwpIlJCyeqmZhYCHnT3PXWKp6WspTfRUqpRyNNVQRERKaaT8vqu0SFevGuYP//yY6Qyzsa+Ls4Z7CYcDvGGF2xTrhQRKaFkIdHdM2b2gJltdffWGPinjvIbxQOLf+/aP77m5KNCnoiI1Eqn5fWD43M878KNS5pxTM0nK8rTIiKdoJyOa0aBh8zs28Bil2Du/oqaRdUiNMaQiIi0oI7J68rTIiJrU04h8d01j6JFVdrRjIiISAN0TF5XnhYRWZsVC4nu/jUzOwd4Ltne0L7j7sdqHlkLqLSjmUaoZkc7IiLSejoprzdbnlYOFpFWEVppBjP7FeDbwE8DPwt808x+udaBtYJcRzNDPVHGpuIM9UTX3GlNPeQ62pmaTy7paOfA2FSjQxMRkTrppLzeTHlaOVhEWkk51U1/C7jC3U8CmNlG4L+Aj9QysFbRSh3N1KKjHRERaTkdldebJU8rB4tIK1nxTiJwBJjJez0DPFWbcKSWjk7OM9C99LqAGvCLiHQc5fUGUA4WkVZSTiHxKPAtM3uXmb0T+CbwqJn9hpn9RrGFzOwjZnbczPbnTdtgZneb2Q+Dv+vz3nuHmT1qZo+Y2U9U8qGksC3repiJp5ZMUwN+EZGOs6a8DsrtlVAOFpFWUk5108eCR86/Bn8HVljuo8AHgb/Nm3YL8GV3v9XMbgle/46Z7QZeB1wKnAt8ycx2unu6jPiaVrM1UC+nAX9+zF1hw4BE2psi/npohv9ZM8QgIm1trXkdWjC3lzqmfu7Bo9xx72HGp+P0xyJcsKGH3li0JsfeZutEB5RvRKQ4c/fardxsG/BZd98TvH4EuM7dx8xsFPgPd7/EzN4B4O5/FMz3BeBd7n5vqfXv3bvX9+3bV7P4K5FroD7UE12SDEo1mK/HwbrUNvJjjidTfOfQaRy4esd6YpHIivG3urX8z9oxBml/Znafu+9tdBzSmlopt5c6pj4+Mcutn3+EvliEEM6RyTiZjPPCizcyMtTLU6fOMDIYY6GKF0qbqVCmfCPSPmqR18u5k1hNI+4+BhAkk83B9C1kq7vkHAmmncXMbgJuAti6dWsNQ63Mahuo5x+s83s9q/bBulQD/vyYHx6bpj9oO/H4xBmet2NjyfjbQTN0KtAMMYiIrFLT5vZSx9R7Hz9JXyzCUE+UI6fP0BMNkcrAA0en+fH+GIdOzHFiNsG1O4erlpObpRMdUL4RkdLqXUgsxgpMK3iL091vB26H7NXGWga1VgfGpvjiw8fAYaAnykXDfQwPdJdsoN4MB+ujk/OMDnUDMBtP0R8LAzAdTwLt38A+//Pn1PszN0MMIiJV0vDcXuqYOj4dZ3N/FwCJVIausBEOwVwixaPH5+iPhUmmnZBZyZzcTHcHV0P5RkRKKWecxOeXM61M40FVFIK/x4PpR4Dz8+Y7D3h6jdtoqNwdwa5wiGjYSCTTfPfwJBMz8ZIN1Kvd69mBsSluu/sgN3/yAW67+2BZ4zDlN6rv746QSGVIpDIMdmeT4+GTcxw+dWZV62wlzdCpQDPEICLtrcp5HZo4t5c6pvbHIjx+4gyPTcySSKaJL6RJpJy+WITpeBKDxRo1UDgnN8vYh5Xm/BzlGxHJKad30z8vc1o57gRuDJ7fyDON5e8EXmdmMTPbDlxMdqDflpO7I7hnyyAL6ezF0FjYeOjpaabmk9ywZ6TgctU8WK81ad2wZ4Sp+SRT80l2bOplNp5iJp5ix3AvT5yY5buHJzlnINa2gwDnf/6M++LzYv+zdo1BRNpeNfM6NHFuL3ZM3TnSR19XmEQyTSbjRELGTCLNmUSSZ28ZpCscYjaR5qLhvsV1FcrJ+bWAcncch3qi3LV/vG6fsRo5X/lGRJYrWt3UzK4BfhQYXtYl9iAQXmnFZvZx4Dpgk5kdAd4J3Ap8wszeABwGXgPg7g+Z2SeAh4EU8KZW7dk0V30jZFGec8E6Hj0+x9T8AiELlWzLUM1ez1aqurq8aszOkT4Ojs9xdHKe3miIhVSaVAau3rFhsXfTsekEV5y/ju3D/QXX2Q52jQ5x07Xbl+yb1151Xl0/XzPEICLtqdK8HqyjpXJ7sWPqXfvH2X3uEJv6u7j/yBRziRQD3RE29HXR193Fnr4YT0/F6YqEybgXzcnNUGWzWM7/+3ufZNNAd9FqsLtGh3jxruHF3l1HBru58ZqtyjciApRuk9gF9Afz5HeLPQ387EordvefL/LW9UXmfw/wnpXWWw21bD+wZV0PU/NJhnqibOrvZlN/9+LrUtuo5sH6oaenmJ5PMptI098d4aLhPjb2xzg6OX9WBzmHJmb51HePcOXWdWzd2Fe0d7ObP/lAwxNhPTRDpwLNEIOItKWK8jo0b24vldcLHVM//PUnGB3qZqhnkItHBgHIuDM2Fef9r3l2wXUWumCXn/NzCt1xrOV5R6GCaiKV4huPnuJFz9pctDO8A2NTfOnABLtHB7l6+wZm4im+dGACYPHCcSu1sRSR6ipaSHT3rwFfM7OPuvuTZtbn7nN1jK0mat2L6FrvCBY7WO8Y7i9496/YQfvA2BRHTmcLboPdkcU2kTs397N9uP+sK47HZhL0xSIcm06wbVN/0TuE5SZCERFpTsrrzygnp5Vzwa7c8YdXE99qC5SFPsvDT8+wvrd0Z3iF7kCemk3w5195jOft2FjTntZFpPmV0ybxXDN7GDgAYGbPNrO/qG1YtVPr9gO5qi1DPVHGpuIM9UTLOriWiutzDx7l7f/4AJ97cIzDJ+c4NDFbtL3BXfvHuWQkWyU0kcoQi2T/xQfHZ7lhz8hZHeTMxlMMxMKLPZhC4TuEarsgItI2OiqvF+rUpVo5rZycv5rzjrW0Lyz0WU6fSbJrdGDJfMtze6EO845Nx0mmMw1tYykizaGcITD+FPgJsg3QcfcHzOzaWgZVS0cn55mLL/DFh6eZS6Toi0V49pZBZhNdVdtG/tXH3BXBD3/9ibPa/+VfISxWXeTO+49zfDZBOpMhFg4xE19gYibBj2wZKtge8OjkPFs39tHfHeHR43NMx5MMdkcY6g16KD11hu8dPs2m/hgXbc7ON13GHUK1lRMRaRt/Sofk9UJ38d7/hYOMDMaYiSc5OjnPUE+E3aNDRXNaoTt7QNl3+45OzhMJwcNj09nhpboj2c7hEqmz5l1tnwK57S7Pzy+4aCNdkaXNTJfn9kJ3IE/NJdnYt/R8qB2blojIysoaJ9HdnzJbMtxRS3YqA3AmkeQ/f3iSWDQc9GyW4T9/eJJrd24qusxa2xIsT05PnMi2/7vi/HVcsKlvSTWOLet6ODQxy7GZBLPxFOEQnJpdYD6ZJplMEwqFWEg7kbBz+kySx0/M0hU9u5+B3EE/1x4SYGo+STKV5vZ7DnHOQIzpM9krjvueOM3oYIyxRIpLRvpLNs4HtZUTEWkX7ZjXwyEj7c7J2QRfOnCcq3dsOKvQlUynOXRijhOzCa7dObyY80o14ShUyMy4c8HGvrKqZHaFjW89fopQCOYSacam5jl4bIZrdmw4a95SHeGsVG01f9u5eXPLF8rtharKRkJ21vbVtESkM5VT3fQpM/tRwM2sy8xuJqii0oqePDWP48STKU7NLRBPpnCcJ08VvkpWyRhIy6uYHJsO2v/NJM6qxrFzpI/vPTXJ9HySvq4QY5NxpuJJkukMkXCIcAhCZiwEA/4enYwXPGgXq0LjZK9Ibh/u58oL1jHYEyWdgTMp55afvIRtm/pXVT22HtYy7pOIiKyo7fJ62jPMJlKcSaRJpx13ePDINA+PTS2pUvno8Tn6Y2GSaS+rOmWhqqInZhOcmlsou0qmAfFkmonZBVKZDNGQkc44Pzg2c1ZeKzUc1mqqrZZTDbbQPG+5/kJCoVDNmpYor4u0jnLuJL4R+H+BLWQHxv0i8Gu1DKqWTs4mwJ2FtJNxSGecrrBlpxeQf1A+MRvn0ePZK5DvvPNh3v2K3SULU8uvCE7HkwzEwszmJYD8ahxXbl3HselEtn2gwehQN0dOz9MTDTOfTGPmpDLZHtjSGS940C7WS+pXHznBxv7sv3t4oJvhge7FntxeftkWXr6mvbk25dyZrXUHQyIiHazt8noylc3pABmHkEEyneHYZJzj0wkW0hkGu6NMzMSJhIy5hTRffPgYg91Rdgz3cnTy7KqfcHYePzEb58jpM6Qyzr2Pn+Si4T6GB7pLVslMpJ31fVFSMxnSDrFIiM2DMeaTmbOajZTqCCfXI2u+Utstp/ZPoXl2BJ3cVbtpifK6SGspp5B4lbv/Qv4EM3sj8Je1Cam20hknnnJCBrmaNvGU05vLLsvkEsSJ2Tj3PTlJLBJiQ2+UU7MLq+49bbA7ytR8ksEC7f8eHpti6kySmUSKwe4oYTNCBl2REBmgJxomnkyTcSfl8PwLNxatGlOol9TeaIiZeKqs3klr2VV3uUnirv3jZDIZDoxNB+0qo5wzGGurcRlFRBqk7fJ6elkKTzuEMhmOzybo74rQHwszv5BiYiZBKuOct76HgViEeDLNtx4/XbDqJyzN47nzAMOIRWyx9/Art66jKxJekk/z8+jhU2eYmk9xwcY+clV848k0PRG4++GV2xfmCmnFemSNhY3b7j5YtZxdq6YlK7W3FJHmUk510/9lZi/KvTCz3wZeWbuQasssmzxSGUhngr/+TIFxuVzVj0ePzxGLhOiOhllIOxv6u1bs8Wt51c9zBmPMJVKcMxBbUo1j50gfT52cZzqeWkxac4kUJ+cWGBnoZl13BDMjEg6xbWMfV5y/jre++OKC2yxWHcWhrJ7cKqleW45yq8s8PDbFD47NEE+mF/fJD47N8LCqpoiIVKrt8rrzzCMT/E1n4JzBbq7esYFYV4RUBqLhEOGQ0dv1zDVyC+YvJD+P/3B8FsjevesN+gSIhY2Hnp5ekk+X59FzBmJMzSeZmE3g7sSTaabnk5yeTxIN21m5dtfoEG9/yU7e/5pn8/aX7FwsQBVqTvLUqTM8PRWvWc6upkK9qapTHJHmVU4h8RXAH5rZC83sPcDVwbSWtJDKELZsUoDs37BlpxeSOyifmE3QFTbiyTSJVIaLhvtWPLgtr++/bVM/t/zkJWwfXtr+7+D4HDuXDVsRi4bpCofYu209F40McOHmfq7esYEb9ozy2zdcUrIXtUIH4YW0lzU0R62HCCk3SUzNpzAzuqPhJX+n5gtXCRIRkbK1XV4vdJ0347BrdIDhgW6u2bGRl+weYfNgjE19XcSiYWYTaWLRMFdtX8/C8luRgfw8Pj6TYLA7wjUXbuT5F2+iOxomkc6QDPJrofEHQ2ZsH+7nivOHmJ7PXvyNRUJEwyG6I2EuPXew7FxbqA3hyGCMCzb2tcSQFaXaW4pI81mxuqm7nzCzVwBfAu4Dftbdi110a3pOtq2CG3hwB7HUVcTcQfmddz7MqdkFNvR3cem5gwwPZK/YrXRwK1RtY3n7vw9//Qku2BQMWzExx2w8xWB3hMH1PfzhT1+2ON/y4TQKVSkpVB3lyRNzHJtJLC73hhdsq0pX3WtRzgDGAIPdEabPJIkn08QiIRKpDHh2uoiIrF075vVIKHvnMPchDAiF4Ewizb2Pn2Q2nsIMjk8ncGDzEFx+/tBiLs/PScvl5/H8eTf1P7Nsfk4t1EPpZeevJxoJc+m52SGvZhJTXHnBOoYHnpmvnLtqy88pbv7kA4v9DRRaTy2bj6xWqfaWItJ8it5JNLMZM5s2sxngUWAn8Bpg2sym6xVgtfV3RUjmVTNNZSCZyU4vZtfoEO9+xW5+5Lwhdo8OsrE/VtUev3JX1/Kvdu4+d4hLzz27O+uVqpQsr45yaGKW7z01yehgrKyqKF1h4zuHTpNIpumPhUkk03zn0Gm6wkXq45YhvzeziZk4T506s2K110vPHWLnSP+Sq707R/qX7BMRESlfu+f1XDXTXJXT/lhksddwPMNTp84wn0wTixjT80m+++QkhyZmy87lxXoPX75ssTtml577TDXSl+4+h+5o5Kx5VntXrdTduVo3H1mt5XdCk6k0PdEQH/76E+rpVKQJFS0kuvuAuw/m/e129/7c63oGWV3FLpaWvohaTnfSn3vwKD/3V/fyY+/7Kj/3V/fyuQePlhVROYmn3Gqgy+M8NpPgyq3r2Lapv+yuupfvCYeCVXnKsTxJdUXCZNxJptIlq73esGeEcDjE7tFBrt+1md2jg4TDoap1wy0i0mk6La8nkil6o2FOzCY4dPIMkZCxdUMvw/3dDPVESWYyHJtJlN27ZqnzgNVeDC23wLmSUuupdfORtci1t3zDC7ZxJpmhKxJuigKsiJxtxbp7ZvZq4CvuPhW8Xgdc5+6fqW1otXFsqvBQF8Wm5yvV49fnHjzKrZ9/hL5YhM39XUzPJ7n1848A8PLLtiyZt1D1j2K9meWUGmC3VJw3f/KBVXWZnUg7V+9Yz+MTZxZ7Fd197gCJIu01VlKoN7Nc+4m3v2Rn0eWKDeWhHtBERCrTbnl9rEj+nk9BLBpix6Y+fng82+lMNGzMLaTojUWIhm3JkFTlKHQesLzX7pl4Ku9iaKpgTi/Vi+lq4ym2ntUOmbEWa63Oqp5ORZpfOQ283unun869cPdJM3sn8JmaRVVD6VVOL9cd9x6mLxbJO+CFFqfnFxJLDQFRqtBUqi1fqYN0uW0Al2/neTs2Lk6bmk+yeaB4e41SVlO4zVdsKI8dw/1KICIilWmrvF6427ksM8PM6O0Kk0hmGJuMgxkD3Wli4RCYVTxW3137x0mnM0va8p8zEGPTQPeKF0Orkc+KrWe1+X+1Khn3cK3nBiJSP+X0blponjX3HmJml5jZ/XmPaTN7m5m9y8yO5k1/2Vq30Qjj03EGYuEl0wZiYcan40umrbX6R7EqJTtH+kq2OVhtlZZqVYHJWWtvZtWuJpNfFUhtH0Skw1U1r0Pz5vZEKkM8mWZdT5RUxplJpNjQmy00JdLOpecOVlwF86Gnpzg4PrukLf/B8Vkeerqxeaba+Xy5SvJ0sXODrmDMR+VqkcYrp5C4z8w+YGYXmtkOM7uNbG9oa+Luj7j75e5+OfAc4AyQu6J5W+49d//3tW6jEUYGu5lJLL0fOZNIMzK49EpZOUNAFCrQFGsLcXB8ruRBupy2lPlWO/9K1pqkqjmeUrM13hcRabCq5nVo3tx+5dZ1xKJhHGN4oIuerjCRcHaYqSu3ZnsXrfQO1nQ8BcaSIZuwYHoD5M4hPvz1J+iJhlbsA2CtKsnThc4Nnjw5x/h0QrlapEmUc+XwLcD/Av6JbP8lXwTeVKXtXw885u5PWrHR7FvEjddsXWyDOBALM5NIM5dI8ZYXXbhkvpWqf6xUfWP5wb2cNgerrdJSrSowuXWtpd1FNavJqO2DiMgStczr0ES5vSsSXmyyMDWfpCcaoisSrmoVzKGeCFNnFpYM2eTuDPXUf8imQu0jp+aTVS0c5lSSpwudG5w71E0073+jXC3SWOWMkzgH3FKj7b8O+Hje6zeb2S8B+4DfdPfT1d5gsTERK01juXaH+R2tvOVFF57Vac1K4wSttkBT6zYH5SrVLnIthc5qjqektg8iIs+ocV6HOuf2UmMdD/VEl1ygBKo+Vt/u0SF6o2GOTScWO3zbtrGXbZv617zOtarnRdFy8vRqzg1u/uQDbCgx5qOI1FfRQqKZfdDd32xm/0aB46+7v6KSDZtZF/AK4B3BpA8BfxBs6w+APwF+ucByNwE3AWzdunXV213bABjlefllW84qFC630p21/ALNidk4jx6fY2p+gZCFCvYaljtIn55LMDYV5+TcAtFw6Kw7mLVUSeP1YqrV8xs0T0FaRKSRap3Xg23UPbeXyt+FOo4pllvW2lNnNg+fYdfo4JLCUiVt/9YaSz0viq6Up1d7bqBcLdJczL3w4dXMpt190Mx+rND77v61ijZs9krgTe7+0gLvbQM+6+57Sq1j7969vm/fvlVtd9stnyv63hO3vnxV66qF2+4+yNR8kmQ6zX1PThKLhMAdzNgx3L/k4JpLIt987ASPTszR25Udb+icwW7C4VBNqpeUijl3YD8xG2f/0WkW0hleuvscdo70cXB8btXJrlryE1V+Aq/X/pHKrPVkSYozs/vcfW+j45D6qnVeD7ZR99xeKq//+vUXl3XsyOWJdDrDsek4p+aSRELGW64/u0ZQseWrdZyqJGctz8fA4uv8AnM9jqvlxpIfk3K1gPL+WtQir5eqbvoYVCdpFPHz5FVHMbNRdx8LXr4a2F+j7Ta13J3Bh49OcfrMAsmMEzLj6u3rFzukyV3xzB1MHRgeiAFw8Ug/m/qzV+zqVY//6OQ80TB88/FpJmbiTM1ne4+LhEMcmpjlU989wpVb19HTFeY/HjnOp793lBdetJH/fs0FFcdXzoGkmnclpb5qcZdapIPVOq9Dk+X2zz04xoa+KAvJNLffc6bghdajk/McPnWGnogxPrNALBJiQ1+U6XiKP//KY2UNvVTNtvyVVBkttwpoJcfVck/gy7mruXxdL941vOSisnJ151Hebx6lConDZvYbxd509w+sdaNm1gu8BPjVvMnvNbPLydYceWLZex0jN4j8lw+MEw4ZPdEwfbEwj584w1BvlKOT2d7S8pPIbCLNYHeERCrDo8fn2NRfeW9tqxELG/c+foqB7gjxZHbEqonZBc5b38OxmQR9sQiPTcyRyjixSIh1PRH2Pz1d8Y9+NQeSaiZwqR91OiRSVTXL69CcuX1DX5REKsPB47Ps3Nxf8ELr6FA33zt8mskzSTb0RemOZo8zg90RTs4t1P14U0mV0XIuilZyXF1N3l1LR31fOjChwkCHU95vHqUKiWGgn8r7dDmLu58BNi6b9ovV3k6rOjg+x/ZNfUC2S22AeDLNw0/PcN0lm4GlSaS/O0Ii6FVtOp4Ezj4Q1/K2vfPMlySRShMOGWnPTp+NpxiIhTl08gxb1vXQHQ3jnh2rKv/O6FroQNL+1OmQSFXVLK9Dc+b2xSEpgGPTcbqiYQ6MTfHOOx/m5GyCTf0xLtrcx6b+GBMzCeYSaTZk0y+JVIaNfV11P95U2jZvpYuilRxXV5N3q91Rn3QG5f3mUaqQOObuv1+3SGTR0cl5do0OcP9T2bGBcu0ST8+nFhvC5yeRi4b7+O7hSRKpDIPdkcWxh1571Xl1uW2/kHau2r6ex0+cwcwwjC1DMdyzBdjp+eQznwOCOKMV/+h1IGl/6shApKo6Nq/HIiFOzSW5aLNx+z2HODW7wIbeKPFktv3/jk29RELG3EIKdyeRypBIZdi2sbfux5tq9u5dSCXH1dXk3dV01LfSuqRzKO83j1KFxNYeuLCF5X4gV25dx6MTc8zGU0TDxgsu2rh4cM1PIhv7Y+zc3M+DRyZJpNJ8+9Aprjg/O189rtTl4r1mx0Yu3tzHfU9OknYY7A5zzkCMJ0/O4Rnn4PgMsUiY3q4we7YMVvyj14Gk/dX6ZKkVqUG/VKDj8np8sZZNikjIMLJ5cEN/F4lkevEu48m5JJedN8T3j05zcm6BjX1dbNvYSygUqqiX0rVYXrjqChu90RAf/voTFf3mc8eOh56e4sjpeS4Z6Wfrxr5VHVdXm3dL3dVUDpdCOjHvN2teL1VIvL5uUXS45V+OnSN9fOnABEM90SWDAP/iNRcsLrM8ifR3R7hw8wDnb+hd/FHdfs8hZuJJdo0OLtlesSt1lXX/nf1Bb+iLcclIP4+Mz2LA4yfmSGccBxZSGSKhEBl3ZuMpQqFMRT/6TjyQdBp1OrSUGvRLhTour8cioWeGhrr+Qj5z/9NMnUlyfCbOTDzNpv4uBrsjnJhNcNl56/j9V+5uaG/cObnCVf5vfkN/ZM2/+fz17BodpDca5pFjs5xJptk9OlTWcfXA2BQTM3G+/uhJ1vdG2X3uALFIpKy8W+j8QjlcCum0vN/Meb1oIdHdT9UzkE5VrOF2OT185V+hu+3ug3RFwmfdMTw6Oc9MPLXilbpKvqTLf9DbNvXz0ktH+NKBCR6fmOXcoW7MjKn5JH2xCIlkhrHpBO9+xe6KfgCddiDpVOp06BlqwyOV6MS8vnVjH9dcuGnxbuBTJ+fBYPNAN9HwAidmFzizkGZ0Xc9ivmv8YFjPqNZvfvl6tg/3s6E/VnQ4iuXyzxF+9MINHBib4RuPnuKFF21c8Tyh1PmFcrgU0kl5v5nzeqk7iVIHxb4cB8fnyjpw5xSr2z/Uk73Kl3td7EpdpV/S5T/o2+4+yFBPlIV0hoFYBLNsLadYNMyLnrWBsal4Vb78nXQgEVEbHpHVef9rnr34/La7D7JzpJ+Dx2dJpDKs7+0iHMq2la/0omWtVOs3X+l68s8RhnqijAw+U1V0pf1W6vzi7S/Z2ZT7XaRemjmvhxodQKc7OjnPQPfSsvpavhxb1vUwE08tmTYTT7E7uNs21BNlbCrOUE+04FW/asWxfH2D3dnuxyFb7Wc2nlKbA5E1KvY71+9JZGVHJ+e5YFMfV25dRywaXhw+6rz1PU1bUKnWb77S9VRyjlDt8wuRdtLMeV2FxAar1pfjhj0ji72aZtwXn+faU7z9JTt5/2ueXfSqXbW/pLn1XbS5j0QqQzyZJpFMEw3bYlwisjqlfuciUlouLw0PdHPNjo28ZPcIu88d4tJzm7OACNX7zVe6nkrOEZr5JFik0Zo5r6uQWEcHxqa47e6D3PzJB7jt7oMcGJuq2pdjV5l3DIup9pc0t75oOMwVW7MxnJ5Pcem5g7x41zB37R9fsh9EZGWV/s5FOlmhPPfkyTlOzMSbLh/lzhc+/PUn6ImGSKbSFf3mG3mO0MwnwSKN1sx53dy90TGs2d69e33fvn2rWmbbLZ8r+t4Tt9auuXp+w+38toE3XbsdoKZd35bba2m1u+AttD6g6H5ohh+ErE2zdt8shZnZfe6+t9FxiBSy2ty+mryef6zqChvj04klvYLXMx8VO26WOl/Ij6vex91KtqccIVJbtcjr6rimThrVcHs1vZZWuxOYQuvLdWjTjL04ydo0c/fNIiL5yukVvB75qNRxs5yO5Bpx3K3kHEGdzIm0HlU3rZNGNdzOTzYhs8Xnd+0fr+l2i1ED9vbTbN8xEZFyNDIflTpulhOXjrsiUmsqJNZJoxpuN1uhTA3Y20+zfcdERMrRyHxU6rhZTlw67opIramQWCeNarjdbIUyNWBvP832HRMRKUcj81Gp42Y5cem4KyK1pkJinTSq96JmK5Q1cy9OsjbN9h0TESlHI/PRSsNWrRSXjrsiUmvquKaOGtFwO5ds8nsVe+1V5zW0UKYG7O2lGb9jIiLlaFQ+Wum4uVJcOu6KSK01pJBoZk8AM0AaSLn7XjPbAPwTsA14Avg5dz/diPjajQplUmv6jomIcvvqVHrc1HFXRGqpkdVNf9zdL88b0+MW4MvufjHw5eC1iIiItA7ldhGRNtBMbRJfCdwRPL8DeFXjQhEREZEqUG4XEWlBjSokOvBFM7vPzG4Kpo24+xhA8HdzoQXN7CYz22dm+yYmJuoUroiIiKxAuV1EpE00quOa57v702a2GbjbzH5Q7oLufjtwO8DevXu9VgGKiIjIqii3i4i0iYYUEt396eDvcTP7NPBcYNzMRt19zMxGgeONiE2a34GxqSU9uuW6DG/X7YqItALl9s7QDrmwHT6DSK3VvbqpmfWZ2UDuOfBSYD9wJ3BjMNuNwL/WOzZpfgfGprj9nkNMzScZHepmaj7J7fcc4sDYVFtuV0SkFSi3d4Z2yIXt8BlE6qERdxJHgE+bWW77/+Dud5nZd4BPmNkbgMPAaxoQmzS5u/aPM9QTZagnCrD496794zW9Ctio7YqItAjl9g7QDrmwHT6DSD3UvZDo7o8Dzy4w/SRwfb3jkdZydHKe0aHuJdMGuiMcnZxvy+2KiLQC5fbO0A65sB0+g0g9NNMQGCIr2rKuh5l4asm0mXiKLet62nK7IiIizaIdcmE7fAaRelAhUVrKDXtGmJpPMjWfJOO++PyGPSNtuV0REZFm0Q65sB0+g0g9qJAoLWXX6BA3XbudoZ4oY1Nxhnqi3HTt9pq3I2jUdkVERJpFO+TCdvgMIvXQqHESRdZs1+hQQw7mjdquiIhIs2iHXNgOn0Gk1nQnUURERERERBapkCgiIiIiIiKLVEgUERERERGRRSokioiIiIiIyCIVEkVERERERGSRCokiIiIiIiKySIVEERERERERWdRxhURb5XQRERFpXsrrIiLV13GFxGIfuON2hIiISBvojhQuDhabLiIiK+u4stFgTwTIXmHMPfKni4iISOu4aGQAA0IGkVD2rwXTRURkbepeSDSz883sq2Z2wMweMrNfD6a/y8yOmtn9weNltdj+xecMMtwfJRo2zCAaNob7o1x8zmAtNiciItL2GpnbX/SsEZ5zwRC9XWHMjN6uMM+5YIgXPWuk2psSEekYjbiTmAJ+0913Ac8D3mRmu4P3bnP3y4PHv9di4zdes5V0xgmHjEjICIeMdMa58ZqttdiciIhIJ2hYbr9hzwghC9HXFaG3K0xfV4SQhbhhjwqJIiJrVfdCoruPuft3g+czwAFgS12DsFwlU1/2WkRERFarkbn98YlZnjx1hnTGiVj2wu+Tp87w+MRsPTYvItKWGtom0cy2AVcA3womvdnMHjSzj5jZ+lps8457D7N5oJvLzlvHFVs3cNl569g80M0d9x6uxeZEREQ6Sr1z+x33HmZ9bxcXbu7nopEBLtzcz/reLuV1EZEKNKyQaGb9wL8Ab3P3aeBDwIXA5cAY8CdFlrvJzPaZ2b6JiYlVb3d8Os5ALLxk2kAszPh0fNXrEhERkWc0Ircrr4uIVF9DuvQ0syjZJPIxd/8UgLuP573/18BnCy3r7rcDtwPs3bvXV7vtkcFuDk3MMDmfWmybuK4nwvZh9YImIiKyVo3K7crrIiLV14jeTQ34MHDA3T+QN300b7ZXA/trsf3RwSgTs0lSaScEpNLOxGyS0cFoLTYnIiLS9hqZ25XXRUSqrxF3Ep8P/CLwfTO7P5j2u8DPm9nlZHuTeQL41Vps/DtPTtETMdIZSLsTDRnhUHa6iIiIrEnDcrvyuohI9dW9kOjuX+eZMezz1WTIi+Wm5pP0xsIkUr5YLSUWMabmk/XYvIiISNtpZG5XXhcRqb6G9m7aCL3RMNPzKdwhHDLcYXo+RW80vPLCIiIi0lSU10VEqq/jComXbO4nA6QyGTzjpDIZMsF0ERERaS3K6yIi1ddxhcRz1vdy9bb1dIVDLGScrnCIq7et55z1vY0OTURERFZJeV1EpPoaMgRGI21Z10N/LMJV2zctTpuaTzLUo17QREREWo3yuohI9XXcncQb9owwNZ9kaj5Jxn3x+Q17RhodmoiIiKyS8rqISPV1XCFx1+gQN127naGeKGNTcYZ6otx07XZ2jQ41OjQRERFZJeV1EZHq67jqppBNKEoeIiIi7UF5XUSkujruTqKIiIiIiIgUp0KiiIiIiIiILFIhUURERERERBaZuzc6hjUzswngyQpWsQk4UaVwaqlV4oTWibVV4gTFWgutEifUJtYL3H24yusUqYoKc3sr/bZzWjFmUNz11Ioxg+Kup0vcfaCaK2zpjmsqPckxs33uvrda8dRKq8QJrRNrq8QJirUWWiVOaK1YRaqhktzeir+XVowZFHc9tWLMoLjrycz2VXudqm4qIiIiIiIii1RIFBERERERkUWdXki8vdEBlKlV4oTWibVV4gTFWgutEie0VqwijdaKv5dWjBkUdz21YsyguOup6jG3dMc1IiIiIiIiUl2dfidRRERERERE8rRlIdHMbjCzR8zsUTO7pcD7ZmZ/Frz/oJldWe6yzRKrmZ1vZl81swNm9pCZ/Xozxpn3ftjMvmdmn61lnJXGambrzOyfzewHwb69pknjfHvwf99vZh83s+5axVlmrM8ys3vNLGFmN69m2WaJtQl/U0X3afB+3X5TIo1Qi1xuZhvM7G4z+2Hwd32LxP0uMztqZvcHj5c1UcwfMbPjZrZ/2TLNvq+LxV3TfV1J3KXyVK33d41ibuZ93W1m3zazB4K43523TNN+t1eIe3X7293b6gGEgceAHUAX8ACwe9k8LwM+DxjwPOBb5S7bRLGOAlcGzweAg7WKtZI4897/DeAfgM826/8/eO8O4FeC513AumaLE9gCHAJ6gtefAF7f4H26GbgKeA9w82qWbaJYm+03VTDOvPfr8pvSQ49GPCo8RhZdFngvcEvw/Bbgj1sk7ncVOg40OubgvWuBK4H9y5Zp2n29Qtw129dV+I4UzVO13N81jLmZ97UB/cHzKPAt4HnN/t1eIe5V7e92vJP4XOBRd3/c3ReAfwReuWyeVwJ/61nfBNaZ2WiZyzZFrO4+5u7fBXD3GeAA2cJDU8UJYGbnAS8H/qZG8VUlVjMbJJs0Pgzg7gvuPtlscQbvRYAeM4sAvcDTNYqzrFjd/bi7fwdIrnbZZom12X5TJfZpvX9TIo1Qq1z+SrIXAwn+vqpF4q6livKRu98DnCqw3mbe16XirrVanfvVcn+3yvlqNeN2d58N5okGD89bpim/2yvEvSrtWEjcAjyV9/oIZ38Zi81TzrLVVEmsi8xsG3AF2asFtVBpnH8K/DaQqVF85cax0jw7gAng/7dsNb6/MbO+ZovT3Y8C7wcOA2PAlLt/sUZxlhtrLZZdi6psr0l+U6X8KfX7TYk0Qq1y+Yi7j0H2whDZO/bVVMtzkDcH1co+UuXqbVU5Fymgmff1Smq1r8uNaS3nfrXc37U8X23afW3ZZh33A8eBu929Hvu6lnHDKvZ3OxYSrcC05SXoYvOUs2w1VRJr9k2zfuBfgLe5+3QVYys7hlLzmNlPAcfd/b7qh1VQJfs0QrbqyYfc/Qpgjmw1glqoZJ+uJ3sFaTtwLtBnZv+9yvGtGEcdll2LirfXRL+pwgvW/zcl0gitlMvz1SruDwEXApeTvTj4J2uMr5CKz0UapFZx13JflxtTM5z7lR1POfMUibmp97W7p939cuA84Llmtqe64RVVq7hXtb/bsZB4BDg/7/V5nF0Vr9g85SxbTZXEiplFyf7gPubun2rSOJ8PvMLMniB7u/xFZvb3tQu14v//kbwrLv9MttDYbHG+GDjk7hPungQ+BfxojeIsN9ZaLLsWFW2vyX5TxdT7NyXSCLXK5eN5TSFGyV5pr6aaxO3u48GJXwb4a7LV0Zoh5lKaeV8XVeN9XW5Mazn3q+X+rknMzb6v8+KcBP4DuCGY1BLf7eVxr3Z/t2Mh8TvAxWa23cy6gNcBdy6b507gl4KegZ5HtrreWJnLNkWsZmZk284dcPcP1DDGiuJ093e4+3nuvi1Y7ivuXsu7XpXEegx4yswuCea7Hni42eIkW830eWbWG3wPridbx79WKvldNONvqqAm/E0V1IDflEgj1CqX3wncGDy/EfjXVojbnmmPDvBqYD/VU0nMpTTzvi6qxvsaanfuV8v9XZOYm3xfD5vZuiDOHrIX6H+Qt0xTfrdLxb3q/e016lGokQ+yPf4cJNsz0O8F094IvNGf6fnn/wve/z6wt9SyzRgr8AKyt5UfBO4PHi9rtjiXreM66tATY4X//8uBfcF+/QywvknjfDfZH/1+4O+AWIP36Tlkr2pNA5PB88FiyzZjrE34myq6T/PWUZfflB56NOJR4TGy4HEH2Ah8Gfhh8HdDi8T9d8G8D5I9ORxtopg/TrbqWjI4Tr2hRfZ1sbhruq8riZsSearW+7tGMTfzvr4M+F4Q237gf+ets2m/2yvEvar9bcFCIiIiIiIiIm1Z3VRERERERETWSIVEERERERERWaRCooiIiIiIiCxSIVFEREREREQWqZAoIiIiIiIii1RIFBERERERkUUqJErTMLO3mtkBM/vYKpZZZ2a/tmzapWb2FTM7aGaPmdm7zawq33Uze72ZfbAa62o0M/vdZa//q1GxiIhI6+qk/G1m28zsrEHIzWyvmf3ZWmMws9lKY1th228zs9681/+eG3RdpBAVEqWZ/BrZAVZ/YRXLrAuWA8DMesgOEHqru+8EfgR4LvDrVYxzzcwsUsdthVeYZUkh0d1/tIbhiIhI+2r7/L0Sd9/n7m9t1PYtq9R5/duAxUKiu7/M3SdrHZe0LhUSpSmY2V8CO4A7zex3zOy/zOx7wd9LgnkuNbNvm9n9ZvagmV0M3ApcGEx7H/DfgG+4+xcB3P0M8Gbgt4J1vMvMbs7b7n4z2xY8/4yZ3WdmD5nZTXnz/N/BVc2vAc/Pm/6aYPkHzOyeEp/t9Wb2STP7N+CLZnadmX027/0Pmtnrg+dPBFdOv2tm3zezZwXTfyz4jPcH+2WgyLauM7Ovmtk/AN8v9rnM7FagJ1jfx4Jps8FfM7P3BZ/t+2b22pX+fyIi0pnaPH8Xijv//R3BZ70qP7eb2XML7YfA+WZ2l5k9YmbvLLLd3zKz7wTbfHeJ+LZZ9g7uXwDfDdb9ITPbF+yLdwfzvRU4F/iqmX01mPaEmW0Knv9GsD/2m9nbim1POoy766FHUzyAJ4BNwCAQCaa9GPiX4PmfA78QPO8CeoBtwP68dXwA+PUC6z5N9qrlu4Cb86bvB7YFzzcEf3uC6RuBUeAwMBxs8xvAB4P5vg9sCZ6vK/G5Xg8cyVv/dcBn897/IPD6vH3wluD5rwF/Ezz/N+D5wfP+3P4psK3rgDlge960sz5X8Hp22bKzwd+fAe4GwsBI8PlHG/390EMPPfTQozkfbZy/i8YNXAJ8D7g8eH8xt5fYD68HxoL4crHuDd7L5eCXArcDRvZmzmeBa4vEtw3IAM/Lm5bbF2HgP4DL8v9HBf5nzwn2Rx/Z84uHgCsa/Z3So/GPulV9E1mFIeCO4IqdA9Fg+r3A75nZecCn3P2HZrZ8WQuWKTR9JW81s1cHz88HLgbOAf7D3ScAzOyfgJ3BPN8APmpmnwA+tcK673b3U2XEQN667gN+Om9bHwju+n3K3Y+UWP7b7n4o73Whz3WyxPIvAD7u7mlgPLgCexXZakAiIiLFtFv+Lhb3MPCvwM+4+0MFliu2HyB7PnAyiOlTZHPuvrz3Xxo8vhe87g8+T7E7nk+6+zfzXv9ccDc1QragvBt4sMRnfAHwaXefy4vphXnblw6l6qbSjP4A+Kq77wH+L6AbwN3/AXgFMA98wcxeVGDZh4C9+RPMbAdwwrN171Ms/d53B/NcR/Zq3zXu/myyB8fuYJ5CSQt3fyPwP8kmpPvNbGOJzzSX97xgDHkSwd802YM87n4r8Ctkrzx+M1cNdaVtrfC5iiknIYuIiCzXVvm7RNxTwFPkVWFdpuB+KBLT8tcG/JG7Xx48LnL3DxfZDizN+duBm4Hr3f0y4HMo58saqZAozWgIOBo8f31uYpAsHnf3PyN7V+syYAbIb5/3MeAFZvbiYJke4M+AXL3/J4Arg/euBLbnbfO0u58JCmDPC6Z/C7jOzDaaWRR4TV48F7r7t9z9fwMnyCabcjwJ7DazmJkNAdevtECwre+7+x+TveJYqpCYr9jnAkgGn2m5e4DXmlnYzIaBa4Fvl7k9ERHpXG2Vv4vEDbAAvAr4JTP7b+Xuh8BLzGxD8PleRfauZr4vAL9sZv1BDFvMbHOh+AoYJFtonDKzEeAn895bvr9z7gFeZWa9ZtYHvBr4zzK3J21MhURpRu8F/sjMvkG2Tn3Oa4H9ZnY/2ULS3wZVNr4RNLZ+n7vPk73q93tmdpDswf8b7p7rlvtfgA3BOv4HcDCYfhcQMbMHyV4B/CaAu4+RbQdxL/Alsg3Dc95n2Y5d9pM9yD5Qzodz96eAT5Ct/vExyqvS8bZcI3uyVzQ/X862KPK5ArcDD9rZXZZ/OojtAeArwG+7+7EytyciIp2r3fL3WXHn3giqZ/4U8HYze2WZ+wHg68DfAfeTbauYX9UUz3bc8w/AvWb2feCfKVy4O4u7P0D2nOIh4CMsLYDeDnw+13FN3jLfBT5K9mLwt8j2haCqpoK5F7wTL9IWzOxVZBvD/7i7P9ngcERERKQMyt8ijaVCooiIiIiIiCxS76YiVWJmPwH88bLJh9z91YXmr3BbP0K2ukq+hLtfXe1tiYiItLN65u+1CDrW+XKBt67P9ZQqUm26kygiIiIiIiKL1HGNiIiIiIiILFIhUURERERERBapkCgiIiIiIiKLVEgUERERERGRRSokioiIiIiIyKL/A/qrKXoA7H+zAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -3468,7 +3946,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 98, "metadata": {}, "outputs": [ { @@ -3614,91 +4092,91 @@ " \n", " \n", " Runs\n", - " 76\n", - " 36\n", - " 13\n", - " 55\n", - " 65\n", + " 76.0\n", + " 36.0\n", + " 13.0\n", + " 55.0\n", + " 65.0\n", " \n", " \n", " TerrainParks\n", - " 2\n", - " 1\n", - " 1\n", - " 4\n", - " 2\n", + " 2.0\n", + " 1.0\n", + " 1.0\n", + " 4.0\n", + " 2.0\n", " \n", " \n", " LongestRun_mi\n", - " 1\n", - " 2\n", - " 1\n", - " 2\n", + " 1.0\n", + " 2.0\n", + " 1.0\n", + " 2.0\n", " 1.2\n", " \n", " \n", " SkiableTerrain_ac\n", - " 1610\n", - " 640\n", - " 30\n", - " 777\n", - " 800\n", + " 1610.0\n", + " 640.0\n", + " 30.0\n", + " 777.0\n", + " 800.0\n", " \n", " \n", " Snow Making_ac\n", - " 113\n", - " 60\n", - " 30\n", - " 104\n", - " 80\n", + " 113.0\n", + " 60.0\n", + " 30.0\n", + " 104.0\n", + " 80.0\n", " \n", " \n", " daysOpenLastYear\n", - " 150\n", - " 45\n", - " 150\n", - " 122\n", - " 115\n", + " 150.0\n", + " 45.0\n", + " 150.0\n", + " 122.0\n", + " 115.0\n", " \n", " \n", " yearsOpen\n", - " 60\n", - " 44\n", - " 36\n", - " 81\n", - " 49\n", + " 60.0\n", + " 44.0\n", + " 36.0\n", + " 81.0\n", + " 49.0\n", " \n", " \n", " averageSnowfall\n", - " 669\n", - " 350\n", - " 69\n", - " 260\n", - " 250\n", + " 669.0\n", + " 350.0\n", + " 69.0\n", + " 260.0\n", + " 250.0\n", " \n", " \n", " AdultWeekend\n", - " 85\n", - " 53\n", - " 34\n", - " 89\n", - " 78\n", + " 85.0\n", + " 53.0\n", + " 34.0\n", + " 89.0\n", + " 78.0\n", " \n", " \n", " projectedDaysOpen\n", - " 150\n", - " 90\n", - " 152\n", - " 122\n", - " 104\n", + " 150.0\n", + " 90.0\n", + " 152.0\n", + " 122.0\n", + " 104.0\n", " \n", " \n", " NightSkiing_ac\n", - " 550\n", + " 550.0\n", " NaN\n", - " 30\n", + " 30.0\n", " NaN\n", - " 80\n", + " 80.0\n", " \n", " \n", " resorts_per_state\n", @@ -3713,8 +4191,8 @@ " 0.410091\n", " 0.410091\n", " 0.410091\n", - " 0.0274774\n", - " 0.0274774\n", + " 0.027477\n", + " 0.027477\n", " \n", " \n", " resorts_per_100ksq_mile\n", @@ -3728,7 +4206,7 @@ " resort_skiable_area_ac_state_ratio\n", " 0.70614\n", " 0.280702\n", - " 0.0131579\n", + " 0.013158\n", " 0.492708\n", " 0.507292\n", " \n", @@ -3752,13 +4230,13 @@ " resort_night_skiing_state_ratio\n", " 0.948276\n", " NaN\n", - " 0.0517241\n", + " 0.051724\n", " NaN\n", - " 1\n", + " 1.0\n", " \n", " \n", " total_chairs_runs_ratio\n", - " 0.0921053\n", + " 0.092105\n", " 0.111111\n", " 0.230769\n", " 0.145455\n", @@ -3766,7 +4244,7 @@ " \n", " \n", " total_chairs_skiable_ratio\n", - " 0.00434783\n", + " 0.004348\n", " 0.00625\n", " 0.1\n", " 0.010296\n", @@ -3774,18 +4252,18 @@ " \n", " \n", " fastQuads_runs_ratio\n", - " 0.0263158\n", - " 0\n", - " 0\n", - " 0\n", - " 0.0153846\n", + " 0.026316\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.015385\n", " \n", " \n", " fastQuads_skiable_ratio\n", - " 0.00124224\n", - " 0\n", - " 0\n", - " 0\n", + " 0.001242\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " 0.00125\n", " \n", " \n", @@ -3808,17 +4286,17 @@ "double 0 4 \n", "surface 2 0 \n", "total_chairs 7 4 \n", - "Runs 76 36 \n", - "TerrainParks 2 1 \n", - "LongestRun_mi 1 2 \n", - "SkiableTerrain_ac 1610 640 \n", - "Snow Making_ac 113 60 \n", - "daysOpenLastYear 150 45 \n", - "yearsOpen 60 44 \n", - "averageSnowfall 669 350 \n", - "AdultWeekend 85 53 \n", - "projectedDaysOpen 150 90 \n", - "NightSkiing_ac 550 NaN \n", + "Runs 76.0 36.0 \n", + "TerrainParks 2.0 1.0 \n", + "LongestRun_mi 1.0 2.0 \n", + "SkiableTerrain_ac 1610.0 640.0 \n", + "Snow Making_ac 113.0 60.0 \n", + "daysOpenLastYear 150.0 45.0 \n", + "yearsOpen 60.0 44.0 \n", + "averageSnowfall 669.0 350.0 \n", + "AdultWeekend 85.0 53.0 \n", + "projectedDaysOpen 150.0 90.0 \n", + "NightSkiing_ac 550.0 NaN \n", "resorts_per_state 3 3 \n", "resorts_per_100kcapita 0.410091 0.410091 \n", "resorts_per_100ksq_mile 0.450867 0.450867 \n", @@ -3826,10 +4304,10 @@ "resort_days_open_state_ratio 0.434783 0.130435 \n", "resort_terrain_park_state_ratio 0.5 0.25 \n", "resort_night_skiing_state_ratio 0.948276 NaN \n", - "total_chairs_runs_ratio 0.0921053 0.111111 \n", - "total_chairs_skiable_ratio 0.00434783 0.00625 \n", - "fastQuads_runs_ratio 0.0263158 0 \n", - "fastQuads_skiable_ratio 0.00124224 0 \n", + "total_chairs_runs_ratio 0.092105 0.111111 \n", + "total_chairs_skiable_ratio 0.004348 0.00625 \n", + "fastQuads_runs_ratio 0.026316 0.0 \n", + "fastQuads_skiable_ratio 0.001242 0.0 \n", "\n", " 2 3 \\\n", "Name Hilltop Ski Area Arizona Snowbowl \n", @@ -3846,28 +4324,28 @@ "double 0 1 \n", "surface 2 2 \n", "total_chairs 3 8 \n", - "Runs 13 55 \n", - "TerrainParks 1 4 \n", - "LongestRun_mi 1 2 \n", - "SkiableTerrain_ac 30 777 \n", - "Snow Making_ac 30 104 \n", - "daysOpenLastYear 150 122 \n", - "yearsOpen 36 81 \n", - "averageSnowfall 69 260 \n", - "AdultWeekend 34 89 \n", - "projectedDaysOpen 152 122 \n", - "NightSkiing_ac 30 NaN \n", + "Runs 13.0 55.0 \n", + "TerrainParks 1.0 4.0 \n", + "LongestRun_mi 1.0 2.0 \n", + "SkiableTerrain_ac 30.0 777.0 \n", + "Snow Making_ac 30.0 104.0 \n", + "daysOpenLastYear 150.0 122.0 \n", + "yearsOpen 36.0 81.0 \n", + "averageSnowfall 69.0 260.0 \n", + "AdultWeekend 34.0 89.0 \n", + "projectedDaysOpen 152.0 122.0 \n", + "NightSkiing_ac 30.0 NaN \n", "resorts_per_state 3 2 \n", - "resorts_per_100kcapita 0.410091 0.0274774 \n", + "resorts_per_100kcapita 0.410091 0.027477 \n", "resorts_per_100ksq_mile 0.450867 1.75454 \n", - "resort_skiable_area_ac_state_ratio 0.0131579 0.492708 \n", + "resort_skiable_area_ac_state_ratio 0.013158 0.492708 \n", "resort_days_open_state_ratio 0.434783 0.514768 \n", "resort_terrain_park_state_ratio 0.25 0.666667 \n", - "resort_night_skiing_state_ratio 0.0517241 NaN \n", + "resort_night_skiing_state_ratio 0.051724 NaN \n", "total_chairs_runs_ratio 0.230769 0.145455 \n", "total_chairs_skiable_ratio 0.1 0.010296 \n", - "fastQuads_runs_ratio 0 0 \n", - "fastQuads_skiable_ratio 0 0 \n", + "fastQuads_runs_ratio 0.0 0.0 \n", + "fastQuads_skiable_ratio 0.0 0.0 \n", "\n", " 4 \n", "Name Sunrise Park Resort \n", @@ -3884,31 +4362,31 @@ "double 1 \n", "surface 0 \n", "total_chairs 7 \n", - "Runs 65 \n", - "TerrainParks 2 \n", + "Runs 65.0 \n", + "TerrainParks 2.0 \n", "LongestRun_mi 1.2 \n", - "SkiableTerrain_ac 800 \n", - "Snow Making_ac 80 \n", - "daysOpenLastYear 115 \n", - "yearsOpen 49 \n", - "averageSnowfall 250 \n", - "AdultWeekend 78 \n", - "projectedDaysOpen 104 \n", - "NightSkiing_ac 80 \n", + "SkiableTerrain_ac 800.0 \n", + "Snow Making_ac 80.0 \n", + "daysOpenLastYear 115.0 \n", + "yearsOpen 49.0 \n", + "averageSnowfall 250.0 \n", + "AdultWeekend 78.0 \n", + "projectedDaysOpen 104.0 \n", + "NightSkiing_ac 80.0 \n", "resorts_per_state 2 \n", - "resorts_per_100kcapita 0.0274774 \n", + "resorts_per_100kcapita 0.027477 \n", "resorts_per_100ksq_mile 1.75454 \n", "resort_skiable_area_ac_state_ratio 0.507292 \n", "resort_days_open_state_ratio 0.485232 \n", "resort_terrain_park_state_ratio 0.333333 \n", - "resort_night_skiing_state_ratio 1 \n", + "resort_night_skiing_state_ratio 1.0 \n", "total_chairs_runs_ratio 0.107692 \n", "total_chairs_skiable_ratio 0.00875 \n", - "fastQuads_runs_ratio 0.0153846 \n", + "fastQuads_runs_ratio 0.015385 \n", "fastQuads_skiable_ratio 0.00125 " ] }, - "execution_count": 56, + "execution_count": 98, "metadata": {}, "output_type": "execute_result" } @@ -3919,20 +4397,42 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 99, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing file. \"../data/ski_data_step3_features.csv\"\n" + ] + } + ], "source": [ "# Save the data \n", "\n", "datapath = '../data'\n", "save_file(ski_data, 'ski_data_step3_features.csv', datapath)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -3946,7 +4446,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.9.12" }, "toc": { "base_numbering": 1, diff --git a/data/ski_data_step3_features.csv b/data/ski_data_step3_features.csv new file mode 100644 index 000000000..6895fd09a --- /dev/null +++ b/data/ski_data_step3_features.csv @@ -0,0 +1,278 @@ +Name,Region,state,summit_elev,vertical_drop,base_elev,trams,fastSixes,fastQuads,quad,triple,double,surface,total_chairs,Runs,TerrainParks,LongestRun_mi,SkiableTerrain_ac,Snow Making_ac,daysOpenLastYear,yearsOpen,averageSnowfall,AdultWeekend,projectedDaysOpen,NightSkiing_ac,resorts_per_state,resorts_per_100kcapita,resorts_per_100ksq_mile,resort_skiable_area_ac_state_ratio,resort_days_open_state_ratio,resort_terrain_park_state_ratio,resort_night_skiing_state_ratio,total_chairs_runs_ratio,total_chairs_skiable_ratio,fastQuads_runs_ratio,fastQuads_skiable_ratio +Alyeska Resort,Alaska,Alaska,3939,2500,250,1,0,2,2,0,0,2,7,76.0,2.0,1.0,1610.0,113.0,150.0,60.0,669.0,85.0,150.0,550.0,3,0.4100909718472548,0.45086746901037594,0.706140350877193,0.43478260869565216,0.5,0.9482758620689655,0.09210526315789473,0.004347826086956522,0.02631578947368421,0.0012422360248447205 +Eaglecrest Ski Area,Alaska,Alaska,2600,1540,1200,0,0,0,0,0,4,0,4,36.0,1.0,2.0,640.0,60.0,45.0,44.0,350.0,53.0,90.0,,3,0.4100909718472548,0.45086746901037594,0.2807017543859649,0.13043478260869565,0.25,,0.1111111111111111,0.00625,0.0,0.0 +Hilltop Ski Area,Alaska,Alaska,2090,294,1796,0,0,0,0,1,0,2,3,13.0,1.0,1.0,30.0,30.0,150.0,36.0,69.0,34.0,152.0,30.0,3,0.4100909718472548,0.45086746901037594,0.013157894736842105,0.43478260869565216,0.25,0.05172413793103448,0.23076923076923078,0.1,0.0,0.0 +Arizona Snowbowl,Arizona,Arizona,11500,2300,9200,0,1,0,2,2,1,2,8,55.0,4.0,2.0,777.0,104.0,122.0,81.0,260.0,89.0,122.0,,2,0.027477369981550318,1.7545398719185894,0.49270767279644895,0.5147679324894515,0.6666666666666666,,0.14545454545454545,0.010296010296010296,0.0,0.0 +Sunrise Park Resort,Arizona,Arizona,11100,1800,9200,0,0,1,2,3,1,0,7,65.0,2.0,1.2,800.0,80.0,115.0,49.0,250.0,78.0,104.0,80.0,2,0.027477369981550318,1.7545398719185894,0.507292327203551,0.48523206751054854,0.3333333333333333,1.0,0.1076923076923077,0.00875,0.015384615384615385,0.00125 +Yosemite Ski & Snowboard Area,Northern California,California,7800,600,7200,0,0,0,0,1,3,1,5,10.0,2.0,0.4,88.0,,110.0,84.0,300.0,47.0,107.0,,21,0.05314811064920341,12.828736369467608,0.0033913981809773393,0.04017531044558072,0.024691358024691357,,0.5,0.056818181818181816,0.0,0.0 +Dodge Ridge,Sierra Nevada,California,8200,1600,6600,0,0,0,1,2,5,4,12,67.0,5.0,2.0,862.0,,,69.0,350.0,78.0,140.0,,21,0.05314811064920341,12.828736369467608,0.033220286727300756,,0.06172839506172839,,0.1791044776119403,0.013921113689095127,0.0,0.0 +Donner Ski Ranch,Sierra Nevada,California,8012,750,7031,0,0,0,0,1,5,2,8,52.0,2.0,1.5,505.0,60.0,163.0,82.0,400.0,75.0,170.0,,21,0.05314811064920341,12.828736369467608,0.019462000924926778,0.059532505478451424,0.024691358024691357,,0.15384615384615385,0.015841584158415842,0.0,0.0 +Mammoth Mountain Ski Area,Sierra Nevada,California,11053,3100,7953,3,2,9,1,6,4,0,25,154.0,7.0,3.0,3500.0,700.0,243.0,66.0,400.0,159.0,,,21,0.05314811064920341,12.828736369467608,0.1348851549252351,0.0887509130752374,0.08641975308641975,,0.16233766233766234,0.007142857142857143,0.05844155844155844,0.0025714285714285713 +Mt. Shasta Ski Park,Sierra Nevada,California,6890,1435,5500,0,0,0,0,3,0,1,4,32.0,2.0,1.1,425.0,225.0,140.0,34.0,300.0,59.0,130.0,,21,0.05314811064920341,12.828736369467608,0.016378911669492832,0.05113221329437546,0.024691358024691357,,0.125,0.009411764705882352,0.0,0.0 +Mountain High,Sierra Nevada,California,8200,1600,6600,0,0,2,2,2,5,3,14,59.0,1.0,1.6,290.0,275.0,118.0,95.0,108.0,84.0,150.0,73.0,21,0.05314811064920341,12.828736369467608,0.01117619855094805,0.04309715120525932,0.012345679012345678,0.12436115843270869,0.23728813559322035,0.04827586206896552,0.03389830508474576,0.006896551724137931 +Mt. Baldy,Sierra Nevada,California,8600,2100,6500,0,0,0,0,0,4,0,4,26.0,,2.5,400.0,80.0,175.0,67.0,178.0,69.0,200.0,,21,0.05314811064920341,12.828736369467608,0.015415446277169724,0.06391526661796933,,,0.15384615384615385,0.01,0.0,0.0 +Ski China Peak,Sierra Nevada,California,8709,1679,7030,0,0,0,1,4,2,4,11,45.0,1.0,2.2,1400.0,150.0,140.0,62.0,300.0,83.0,144.0,,21,0.05314811064920341,12.828736369467608,0.05395406197009404,0.05113221329437546,0.012345679012345678,,0.24444444444444444,0.007857142857142858,0.0,0.0 +Snow Valley,Sierra Nevada,California,7841,1041,6800,0,0,0,0,5,6,1,12,28.0,6.0,1.2,240.0,188.0,111.0,82.0,160.0,79.0,143.0,164.0,21,0.05314811064920341,12.828736369467608,0.009249267766301835,0.04054054054054054,0.07407407407407407,0.27938671209540034,0.42857142857142855,0.05,0.0,0.0 +Soda Springs,Sierra Nevada,California,7352,652,6700,0,0,0,0,1,1,2,4,18.0,,0.4,200.0,20.0,150.0,83.0,400.0,50.0,144.0,,21,0.05314811064920341,12.828736369467608,0.007707723138584862,0.0547845142439737,,,0.2222222222222222,0.02,0.0,0.0 +Sugar Bowl Resort,Sierra Nevada,California,8383,1500,6883,1,0,5,3,1,0,2,12,105.0,3.0,3.0,1650.0,375.0,151.0,80.0,500.0,125.0,150.0,,21,0.05314811064920341,12.828736369467608,0.06358871589332511,0.05514974433893353,0.037037037037037035,,0.11428571428571428,0.007272727272727273,0.047619047619047616,0.0030303030303030303 +Tahoe Donner,Sierra Nevada,California,7350,600,6750,0,0,0,1,1,0,3,5,14.0,2.0,1.0,120.0,,150.0,48.0,400.0,69.0,144.0,,21,0.05314811064920341,12.828736369467608,0.004624633883150917,0.0547845142439737,0.024691358024691357,,0.35714285714285715,0.041666666666666664,0.0,0.0 +Arapahoe Basin Ski Area,Colorado,Colorado,13050,2530,10780,0,0,1,2,1,2,3,9,145.0,3.0,1.5,1428.0,125.0,230.0,73.0,350.0,85.0,233.0,,22,0.3820282784277661,21.13474359713336,0.032690810860308596,0.07059545733578883,0.04054054054054054,,0.06206896551724138,0.0063025210084033615,0.006896551724137931,0.0007002801120448179 +Aspen / Snowmass,Colorado,Colorado,12510,4406,8104,3,1,15,4,3,5,9,40,336.0,10.0,5.3,5517.0,658.0,138.0,72.0,300.0,179.0,138.0,,22,0.3820282784277661,21.13474359713336,0.12629916212627626,0.0423572744014733,0.13513513513513514,,0.11904761904761904,0.0072503172013775605,0.044642857142857144,0.0027188689505165853 +Copper Mountain Resort,Colorado,Colorado,12313,2738,9712,1,2,4,0,4,4,9,24,150.0,6.0,1.7,2527.0,364.0,164.0,47.0,300.0,158.0,164.0,,22,0.3820282784277661,21.13474359713336,0.05784991529691864,0.05033763044812769,0.08108108108108109,,0.16,0.009497427779976256,0.02666666666666667,0.0015829046299960427 +Purgatory,Colorado,Colorado,10822,2029,8793,0,1,2,0,3,3,3,12,101.0,9.0,1.3,1605.0,250.0,130.0,54.0,260.0,89.0,130.0,,22,0.3820282784277661,21.13474359713336,0.03674282313080903,0.03990178023327195,0.12162162162162163,,0.1188118811881188,0.007476635514018692,0.019801980198019802,0.0012461059190031153 +Howelsen Hill,Colorado,Colorado,7136,440,6696,0,0,0,0,0,1,3,4,17.0,1.0,6.0,50.0,25.0,100.0,104.0,150.0,25.0,100.0,10.0,22,0.3820282784277661,21.13474359713336,0.0011446362346046427,0.030693677102516883,0.013513513513513514,0.02336448598130841,0.23529411764705882,0.08,0.0,0.0 +Loveland,Colorado,Colorado,13010,2210,10800,0,0,1,3,3,2,1,10,94.0,1.0,2.0,1800.0,240.0,205.0,82.0,422.0,79.0,184.0,,22,0.3820282784277661,21.13474359713336,0.041206904445767134,0.06292203806015961,0.013513513513513514,,0.10638297872340426,0.005555555555555556,0.010638297872340425,0.0005555555555555556 +Monarch Mountain,Colorado,Colorado,11952,1162,10790,0,0,0,1,0,4,2,7,64.0,2.0,1.0,800.0,,143.0,80.0,350.0,89.0,136.0,,22,0.3820282784277661,21.13474359713336,0.018314179753674283,0.04389195825659914,0.02702702702702703,,0.109375,0.00875,0.0,0.0 +Powderhorn,Colorado,Colorado,9850,1650,8200,0,0,1,0,0,2,2,5,42.0,2.0,1.5,1600.0,42.0,111.0,53.0,250.0,71.0,110.0,,22,0.3820282784277661,21.13474359713336,0.036628359507348565,0.03406998158379374,0.02702702702702703,,0.11904761904761904,0.003125,0.023809523809523808,0.000625 +Silverton Mountain,Colorado,Colorado,13487,3087,10400,0,0,0,0,0,1,0,1,,,1.5,1819.0,,175.0,17.0,400.0,79.0,181.0,,22,0.3820282784277661,21.13474359713336,0.041641866214916896,0.053713934929404544,,,,0.0005497526113249038,,0.0 +Cooper,Colorado,Colorado,11700,1200,10500,0,0,0,0,1,1,2,4,41.0,1.0,1.0,400.0,,130.0,74.0,260.0,56.0,130.0,,22,0.3820282784277661,21.13474359713336,0.009157089876837141,0.03990178023327195,0.013513513513513514,,0.0975609756097561,0.01,0.0,0.0 +Ski Granby Ranch,Colorado,Colorado,9202,1000,8202,0,0,2,0,1,1,1,5,40.0,1.0,0.6,406.0,170.0,116.0,36.0,220.0,84.0,92.0,100.0,22,0.3820282784277661,21.13474359713336,0.009294446224989698,0.03560466543891958,0.013513513513513514,0.2336448598130841,0.125,0.012315270935960592,0.05,0.0049261083743842365 +Sunlight Mountain Resort,Colorado,Colorado,9895,2010,7885,0,0,0,0,1,2,0,3,67.0,1.0,2.5,680.0,30.0,100.0,53.0,250.0,65.0,135.0,,22,0.3820282784277661,21.13474359713336,0.01556705279062314,0.030693677102516883,0.013513513513513514,,0.04477611940298507,0.004411764705882353,0.0,0.0 +Telluride,Colorado,Colorado,13150,4425,8725,2,0,6,1,2,2,4,17,148.0,3.0,4.6,2000.0,220.0,131.0,47.0,280.0,139.0,137.0,,22,0.3820282784277661,21.13474359713336,0.0457854493841857,0.040208717004297116,0.04054054054054054,,0.11486486486486487,0.0085,0.04054054054054054,0.003 +Wolf Creek Ski Area,Colorado,Colorado,11904,1604,10300,0,0,3,1,2,1,3,10,120.0,,2.0,1600.0,5.0,130.0,80.0,430.0,72.0,150.0,,22,0.3820282784277661,21.13474359713336,0.036628359507348565,0.03990178023327195,,,0.08333333333333333,0.00625,0.025,0.001875 +Mohawk Mountain,Connecticut,Connecticut,1600,650,950,0,0,0,0,5,0,3,8,25.0,,1.5,107.0,100.0,,72.0,92.0,65.0,110.0,64.0,5,0.14024151833321272,90.20386072523904,0.2988826815642458,,,0.25,0.32,0.07476635514018691,0.0,0.0 +Mount Southington Ski Area,Connecticut,Connecticut,525,425,100,0,0,0,0,2,2,3,7,14.0,2.0,0.3,51.0,51.0,63.0,55.0,80.0,60.0,95.0,51.0,5,0.14024151833321272,90.20386072523904,0.1424581005586592,0.17847025495750707,0.2,0.19921875,0.5,0.13725490196078433,0.0,0.0 +Powder Ridge Park,Connecticut,Connecticut,720,550,170,0,0,0,0,1,2,2,5,19.0,4.0,0.5,80.0,68.0,80.0,60.0,80.0,55.0,100.0,40.0,5,0.14024151833321272,90.20386072523904,0.22346368715083798,0.22662889518413598,0.4,0.15625,0.2631578947368421,0.0625,0.0,0.0 +Ski Sundown,Connecticut,Connecticut,1075,625,450,0,0,0,0,3,0,2,5,16.0,2.0,1.0,70.0,70.0,84.0,50.0,45.0,62.0,95.0,66.0,5,0.14024151833321272,90.20386072523904,0.19553072625698323,0.23796033994334279,0.2,0.2578125,0.3125,0.07142857142857142,0.0,0.0 +Woodbury Ski Area,Connecticut,Connecticut,730,300,430,0,0,0,0,0,1,4,5,12.0,2.0,0.2,50.0,50.0,126.0,57.0,70.0,42.0,180.0,35.0,5,0.14024151833321272,90.20386072523904,0.13966480446927373,0.35694050991501414,0.2,0.13671875,0.4166666666666667,0.1,0.0,0.0 +Bogus Basin,Idaho,Idaho,7582,1800,5800,0,0,3,0,1,3,4,11,91.0,3.0,1.5,2600.0,,134.0,77.0,250.0,64.0,130.0,165.0,12,0.6714920833881253,14.359391640440833,0.15857526225908758,0.11795774647887323,0.1111111111111111,0.39759036144578314,0.12087912087912088,0.004230769230769231,0.03296703296703297,0.001153846153846154 +Brundage Mountain Resort,Idaho,Idaho,7640,1800,5840,0,0,1,0,4,0,1,6,51.0,2.0,3.2,1920.0,2.0,126.0,58.0,320.0,70.0,,,12,0.6714920833881253,14.359391640440833,0.11710173212978775,0.11091549295774648,0.07407407407407407,,0.11764705882352941,0.003125,0.0196078431372549,0.0005208333333333333 +Kelly Canyon Ski Area,Idaho,Idaho,6600,1000,5600,0,0,0,0,0,4,2,6,51.0,1.0,1.3,740.0,,,62.0,200.0,42.0,,,12,0.6714920833881253,14.359391640440833,0.0451329592583557,,0.037037037037037035,,0.11764705882352941,0.008108108108108109,0.0,0.0 +Lookout Pass Ski Area,Idaho,Idaho,5650,1150,4500,0,0,0,0,1,3,0,4,35.0,2.0,1.5,540.0,,113.0,84.0,400.0,47.0,140.0,,12,0.6714920833881253,14.359391640440833,0.032934862161502806,0.0994718309859155,0.07407407407407407,,0.11428571428571428,0.007407407407407408,0.0,0.0 +Magic Mountain Ski Area,Idaho,Idaho,7200,700,6500,0,0,0,0,0,1,2,3,11.0,,1.5,280.0,,65.0,81.0,180.0,32.0,70.0,,12,0.6714920833881253,14.359391640440833,0.017077335935594046,0.05721830985915493,,,0.2727272727272727,0.010714285714285714,0.0,0.0 +Pebble Creek Ski Area,Idaho,Idaho,8560,2200,6360,0,0,0,0,3,0,0,3,54.0,2.0,1.3,1100.0,30.0,85.0,70.0,250.0,47.0,91.0,30.0,12,0.6714920833881253,14.359391640440833,0.0670895340326909,0.07482394366197183,0.07407407407407407,0.07228915662650602,0.05555555555555555,0.0027272727272727275,0.0,0.0 +Schweitzer,Idaho,Idaho,6400,2400,4000,0,1,2,0,1,3,2,9,92.0,3.0,2.1,2900.0,47.0,136.0,56.0,300.0,81.0,,100.0,12,0.6714920833881253,14.359391640440833,0.17687240790436692,0.11971830985915492,0.1111111111111111,0.24096385542168675,0.09782608695652174,0.003103448275862069,0.021739130434782608,0.000689655172413793 +Silver Mountain,Idaho,Idaho,6300,2200,4100,1,0,0,1,2,2,1,7,80.0,2.0,2.5,1600.0,225.0,130.0,29.0,300.0,62.0,193.0,20.0,12,0.6714920833881253,14.359391640440833,0.09758477677482313,0.11443661971830986,0.07407407407407407,0.04819277108433735,0.0875,0.004375,0.0,0.0 +Soldier Mountain Ski Area,Idaho,Idaho,7200,1400,5800,0,0,0,0,0,2,1,3,36.0,,0.4,1142.0,,60.0,71.0,,43.0,,,12,0.6714920833881253,14.359391640440833,0.06965113442303,0.0528169014084507,,,0.08333333333333333,0.002626970227670753,0.0,0.0 +Tamarack Resort,Idaho,Idaho,7700,2800,4900,0,0,2,2,0,0,2,6,48.0,3.0,1.5,1020.0,200.0,,15.0,300.0,71.0,150.0,,12,0.6714920833881253,14.359391640440833,0.062210295193949744,,0.1111111111111111,,0.125,0.0058823529411764705,0.041666666666666664,0.00196078431372549 +Chestnut Mountain Resort,Illinois,Illinois,1040,475,565,0,0,0,2,4,0,3,9,22.0,3.0,0.2,139.0,139.0,87.0,60.0,50.0,55.0,112.0,139.0,4,0.03156610245678186,6.906792830749041,0.7277486910994765,0.3936651583710407,0.5,0.7277486910994765,0.4090909090909091,0.06474820143884892,0.0,0.0 +Ski Snowstar Winter Sports Park,Illinois,Illinois,790,262,528,0,0,0,2,0,2,2,6,15.0,1.0,0.8,28.0,28.0,56.0,38.0,38.0,35.0,86.0,28.0,4,0.03156610245678186,6.906792830749041,0.14659685863874344,0.25339366515837103,0.16666666666666666,0.14659685863874344,0.4,0.21428571428571427,0.0,0.0 +Villa Olivia,Illinois,Illinois,500,180,320,0,0,0,1,0,0,6,7,7.0,1.0,0.1,15.0,15.0,,53.0,25.0,40.0,70.0,15.0,4,0.03156610245678186,6.906792830749041,0.07853403141361257,,0.16666666666666666,0.07853403141361257,1.0,0.4666666666666667,0.0,0.0 +Paoli Peaks,Indiana,Indiana,900,300,600,0,0,1,1,3,1,2,8,15.0,2.0,0.4,65.0,65.0,75.0,41.0,18.0,45.0,80.0,65.0,2,0.02970788680522722,5.491488193300384,0.3939393939393939,0.47770700636942676,0.5,0.3939393939393939,0.5333333333333333,0.12307692307692308,0.06666666666666667,0.015384615384615385 +Perfect North Slopes,Indiana,Indiana,800,400,400,0,0,0,2,3,0,6,11,23.0,2.0,1.0,100.0,100.0,82.0,39.0,24.0,52.0,90.0,100.0,2,0.02970788680522722,5.491488193300384,0.6060606060606061,0.5222929936305732,0.5,0.6060606060606061,0.4782608695652174,0.11,0.0,0.0 +Mt. Crescent Ski Area,Iowa,Iowa,1500,300,1200,0,0,0,1,0,1,0,2,11.0,1.0,0.2,50.0,50.0,,58.0,30.0,39.0,,50.0,3,0.0950850535804277,5.3311534839088015,0.35714285714285715,,0.2,0.35714285714285715,0.18181818181818182,0.04,0.0,0.0 +Seven Oaks,Iowa,Iowa,975,275,800,0,0,0,0,2,0,2,4,11.0,2.0,1.0,35.0,35.0,100.0,22.0,40.0,40.0,100.0,35.0,3,0.0950850535804277,5.3311534839088015,0.25,1.0,0.4,0.25,0.36363636363636365,0.11428571428571428,0.0,0.0 +Sundown Mountain,Iowa,Iowa,1059,475,584,0,0,0,1,1,2,2,6,21.0,2.0,0.6,55.0,55.0,,46.0,45.0,46.0,,55.0,3,0.0950850535804277,5.3311534839088015,0.39285714285714285,,0.4,0.39285714285714285,0.2857142857142857,0.10909090909090909,0.0,0.0 +Big Squaw Mountain Ski Resort,Maine,Maine,3200,660,1750,0,0,0,0,1,0,0,1,29.0,,0.8,,,67.0,6.0,,30.0,58.0,,9,0.6695372456130432,25.438100621820237,,0.07745664739884393,,,0.034482758620689655,,0.0, +Camden Snow Bowl,Maine,Maine,1080,850,150,0,0,0,0,1,1,1,3,26.0,2.0,1.0,100.0,48.0,68.0,83.0,69.0,43.0,70.0,48.0,9,0.6695372456130432,25.438100621820237,0.03109452736318408,0.07861271676300578,0.11764705882352941,0.12371134020618557,0.11538461538461539,0.03,0.0,0.0 +Lost Valley,Maine,Maine,495,240,255,0,0,0,0,0,2,2,4,22.0,2.0,0.3,45.0,45.0,87.0,58.0,50.0,55.0,104.0,45.0,9,0.6695372456130432,25.438100621820237,0.013992537313432836,0.10057803468208093,0.11764705882352941,0.11597938144329897,0.18181818181818182,0.08888888888888889,0.0,0.0 +Mt. Abram Ski Resort,Maine,Maine,2250,1150,1050,0,0,0,0,0,2,3,5,54.0,1.0,0.5,640.0,175.0,120.0,59.0,125.0,49.0,120.0,,9,0.6695372456130432,25.438100621820237,0.19900497512437812,0.13872832369942195,0.058823529411764705,,0.09259259259259259,0.0078125,0.0,0.0 +New Hermon Mountain,Maine,Maine,450,350,100,0,0,0,0,0,1,2,3,20.0,,1.9,70.0,70.0,102.0,55.0,90.0,32.0,117.0,45.0,9,0.6695372456130432,25.438100621820237,0.021766169154228857,0.11791907514450867,,0.11597938144329897,0.15,0.04285714285714286,0.0,0.0 +Shawnee Peak,Maine,Maine,1900,1350,600,0,0,0,1,2,1,2,6,43.0,3.0,0.8,239.0,234.0,97.0,81.0,110.0,75.0,103.0,110.0,9,0.6695372456130432,25.438100621820237,0.07431592039800995,0.11213872832369942,0.17647058823529413,0.28350515463917525,0.13953488372093023,0.02510460251046025,0.0,0.0 +Sugarloaf,Maine,Maine,4237,2820,1417,0,0,2,3,1,5,2,13,162.0,4.0,3.5,1240.0,618.0,159.0,68.0,200.0,99.0,155.0,,9,0.6695372456130432,25.438100621820237,0.3855721393034826,0.1838150289017341,0.23529411764705882,,0.08024691358024691,0.010483870967741936,0.012345679012345678,0.0016129032258064516 +Sunday River,Maine,Maine,3140,2340,800,1,0,4,5,3,1,1,15,135.0,5.0,3.0,870.0,552.0,165.0,60.0,167.0,105.0,169.0,140.0,9,0.6695372456130432,25.438100621820237,0.27052238805970147,0.1907514450867052,0.29411764705882354,0.36082474226804123,0.1111111111111111,0.017241379310344827,0.02962962962962963,0.004597701149425287 +Wisp,Maryland,Maryland,3115,700,2415,0,0,0,2,5,0,5,12,34.0,3.0,1.5,172.0,118.0,121.0,64.0,100.0,79.0,120.0,118.0,1,0.016540736525916026,8.060615831049493,1.0,1.0,1.0,1.0,0.35294117647058826,0.06976744186046512,0.0,0.0 +Berkshire East,Massachusetts,Massachusetts,1720,1180,540,0,0,0,2,1,1,2,6,47.0,2.0,2.0,180.0,165.0,120.0,68.0,120.0,68.0,120.0,80.0,11,0.1595936918707181,104.22588592003032,0.15437392795883362,0.17883755588673622,0.1111111111111111,0.137221269296741,0.1276595744680851,0.03333333333333333,0.0,0.0 +Blandford Ski Area,Massachusetts,Massachusetts,1685,465,1035,0,0,0,0,0,3,2,5,29.0,2.0,0.5,132.0,70.0,,83.0,50.0,45.0,,70.0,11,0.1595936918707181,104.22588592003032,0.11320754716981132,,0.1111111111111111,0.12006861063464837,0.1724137931034483,0.03787878787878788,0.0,0.0 +Blue Hills Ski Area,Massachusetts,Massachusetts,635,309,326,0,0,0,0,0,1,3,4,16.0,1.0,,60.0,60.0,,19.0,,45.0,,,11,0.1595936918707181,104.22588592003032,0.051457975986277875,,0.05555555555555555,,0.25,0.06666666666666667,0.0,0.0 +Bousquet Ski Area,Massachusetts,Massachusetts,1875,750,1125,0,0,0,0,0,3,2,5,23.0,1.0,1.0,200.0,98.0,,19.0,83.0,49.0,,100.0,11,0.1595936918707181,104.22588592003032,0.17152658662092624,,0.05555555555555555,0.17152658662092624,0.21739130434782608,0.025,0.0,0.0 +Bradford Ski Area,Massachusetts,Massachusetts,1548,248,1300,0,0,0,0,2,0,8,10,15.0,1.0,0.3,48.0,48.0,,71.0,,55.0,,,11,0.1595936918707181,104.22588592003032,0.0411663807890223,,0.05555555555555555,,0.6666666666666666,0.20833333333333334,0.0,0.0 +Jiminy Peak,Massachusetts,Massachusetts,2380,1150,1230,0,1,0,2,3,1,2,9,45.0,3.0,2.0,167.0,163.0,121.0,71.0,90.0,81.0,120.0,104.0,11,0.1595936918707181,104.22588592003032,0.1432246998284734,0.18032786885245902,0.16666666666666666,0.1783876500857633,0.2,0.05389221556886228,0.0,0.0 +Nashoba Valley,Massachusetts,Massachusetts,440,240,200,0,0,0,0,3,1,7,11,17.0,2.0,0.5,52.0,52.0,112.0,55.0,55.0,58.0,126.0,52.0,11,0.1595936918707181,104.22588592003032,0.044596912521440824,0.16691505216095381,0.1111111111111111,0.08919382504288165,0.6470588235294118,0.21153846153846154,0.0,0.0 +Otis Ridge Ski Area,Massachusetts,Massachusetts,1700,400,1300,0,0,0,0,0,1,3,4,11.0,1.0,1.0,60.0,55.0,106.0,73.0,70.0,40.0,106.0,35.0,11,0.1595936918707181,104.22588592003032,0.051457975986277875,0.15797317436661698,0.05555555555555555,0.060034305317324184,0.36363636363636365,0.06666666666666667,0.0,0.0 +Ski Butternut,Massachusetts,Massachusetts,1800,1000,800,0,0,0,3,1,1,6,11,22.0,2.0,1.5,110.0,110.0,107.0,56.0,115.0,60.0,110.0,,11,0.1595936918707181,104.22588592003032,0.09433962264150944,0.15946348733233978,0.1111111111111111,,0.5,0.1,0.0,0.0 +Wachusett Mountain Ski Area,Massachusetts,Massachusetts,2006,1000,1006,0,0,3,0,1,0,4,8,27.0,2.0,1.5,112.0,112.0,,57.0,100.0,71.0,120.0,104.0,11,0.1595936918707181,104.22588592003032,0.09605488850771869,,0.1111111111111111,0.1783876500857633,0.2962962962962963,0.07142857142857142,0.1111111111111111,0.026785714285714284 +Alpine Valley Ski Area,Michigan,Michigan,500,240,126,0,0,0,1,2,5,6,14,25.0,3.0,0.2,100.0,100.0,,57.0,20.0,47.0,,100.0,28,0.28036848830417815,28.951341067477305,0.022696323195642305,,0.047619047619047616,0.051387461459403906,0.56,0.14,0.0,0.0 +Apple Mountain,Michigan,Michigan,820,220,600,0,0,0,1,0,0,5,6,12.0,,,80.0,42.0,,58.0,52.0,35.0,,80.0,28,0.28036848830417815,28.951341067477305,0.018157058556513846,,,0.041109969167523124,0.5,0.075,0.0,0.0 +Big Powderhorn Mountain,Michigan,Michigan,1800,600,1200,0,0,0,0,0,9,1,10,45.0,2.0,1.0,253.0,228.0,100.0,55.0,214.0,69.0,108.0,,28,0.28036848830417815,28.951341067477305,0.057421697684975036,0.041858518208455424,0.031746031746031744,,0.2222222222222222,0.039525691699604744,0.0,0.0 +Bittersweet Ski Area,Michigan,Michigan,850,350,450,0,0,0,1,7,0,4,12,20.0,2.0,0.2,100.0,100.0,80.0,36.0,90.0,48.0,,100.0,28,0.28036848830417815,28.951341067477305,0.022696323195642305,0.033486814566764334,0.031746031746031744,0.051387461459403906,0.6,0.12,0.0,0.0 +Big Snow Resort - Blackjack,Michigan,Michigan,850,465,385,0,0,0,0,0,4,2,6,26.0,2.0,1.0,170.0,86.0,95.0,42.0,210.0,65.0,115.0,,28,0.28036848830417815,28.951341067477305,0.03858374943259192,0.03976559229803265,0.031746031746031744,,0.23076923076923078,0.03529411764705882,0.0,0.0 +Boyne Highlands,Michigan,Michigan,1290,552,745,0,0,1,3,4,0,2,10,55.0,4.0,1.2,435.0,400.0,97.0,56.0,140.0,98.0,120.0,150.0,28,0.28036848830417815,28.951341067477305,0.09872900590104403,0.04060276266220176,0.06349206349206349,0.07708119218910586,0.18181818181818182,0.022988505747126436,0.01818181818181818,0.0022988505747126436 +Caberfae Peaks,Michigan,Michigan,1569,485,1060,0,0,0,1,2,1,1,5,34.0,2.0,1.2,200.0,200.0,118.0,82.0,140.0,49.0,130.0,150.0,28,0.28036848830417815,28.951341067477305,0.04539264639128461,0.0493930514859774,0.031746031746031744,0.07708119218910586,0.14705882352941177,0.025,0.0,0.0 +Cannonsburg,Michigan,Michigan,1100,250,850,0,0,0,1,1,1,7,10,21.0,5.0,0.1,100.0,,100.0,54.0,100.0,37.0,100.0,,28,0.28036848830417815,28.951341067477305,0.022696323195642305,0.041858518208455424,0.07936507936507936,,0.47619047619047616,0.1,0.0,0.0 +Crystal Mountain,Michigan,Michigan,1132,375,757,0,0,1,3,2,0,2,8,58.0,3.0,0.3,102.0,96.0,120.0,63.0,132.0,64.0,135.0,56.0,28,0.28036848830417815,28.951341067477305,0.02315024965955515,0.05023022185014651,0.047619047619047616,0.02877697841726619,0.13793103448275862,0.0784313725490196,0.017241379310344827,0.00980392156862745 +Big Snow Resort - Indianhead Mountain,Michigan,Michigan,1935,638,1297,0,0,0,1,1,5,2,9,32.0,2.0,1.0,240.0,150.0,120.0,60.0,204.0,49.0,120.0,,28,0.28036848830417815,28.951341067477305,0.05447117566954154,0.05023022185014651,0.031746031746031744,,0.28125,0.0375,0.0,0.0 +Mont Ripley,Michigan,Michigan,1140,440,700,0,0,0,0,0,2,2,4,25.0,2.0,0.8,112.0,112.0,114.0,83.0,275.0,49.0,100.0,100.0,28,0.28036848830417815,28.951341067477305,0.02541988197911938,0.04771871075763918,0.031746031746031744,0.051387461459403906,0.16,0.03571428571428571,0.0,0.0 +Mount Bohemia,Michigan,Michigan,1500,900,600,0,0,0,0,1,1,0,2,,,2.3,585.0,,83.0,19.0,273.0,68.0,100.0,,28,0.28036848830417815,28.951341067477305,0.1327734906945075,0.034742570113018,,,,0.003418803418803419,,0.0 +Mt. Brighton,Michigan,Michigan,1330,230,1100,0,0,0,2,3,0,8,13,25.0,5.0,0.1,130.0,130.0,111.0,59.0,60.0,59.0,100.0,130.0,28,0.28036848830417815,28.951341067477305,0.029505220154335,0.046462955211385513,0.07936507936507936,0.06680369989722508,0.52,0.1,0.0,0.0 +Mt. Holiday Ski Area,Michigan,Michigan,440,200,240,0,0,0,0,0,2,2,4,12.0,,0.1,45.0,45.0,100.0,70.0,120.0,34.0,90.0,45.0,28,0.28036848830417815,28.951341067477305,0.010213345438039038,0.041858518208455424,,0.023124357656731757,0.3333333333333333,0.08888888888888889,0.0,0.0 +Mount Holly,Michigan,Michigan,1105,350,755,0,0,1,2,3,1,6,13,19.0,,0.1,100.0,100.0,,63.0,42.0,45.0,102.0,100.0,28,0.28036848830417815,28.951341067477305,0.022696323195642305,,,0.051387461459403906,0.6842105263157895,0.13,0.05263157894736842,0.01 +Mulligan's Hollow Ski Bowl,Michigan,Michigan,700,130,570,0,0,0,0,0,0,5,5,6.0,,0.2,10.0,10.0,,19.0,60.0,20.0,,10.0,28,0.28036848830417815,28.951341067477305,0.0022696323195642307,,,0.0051387461459403904,0.8333333333333334,0.5,0.0,0.0 +Norway Mountain,Michigan,Michigan,1335,500,835,0,0,0,0,1,2,3,6,17.0,1.0,1.4,186.0,186.0,110.0,45.0,100.0,45.0,110.0,40.0,28,0.28036848830417815,28.951341067477305,0.04221516114389469,0.046044370029300966,0.015873015873015872,0.020554984583761562,0.35294117647058826,0.03225806451612903,0.0,0.0 +Nubs Nob Ski Area,Michigan,Michigan,1338,427,911,0,0,0,3,4,2,1,10,53.0,3.0,0.9,248.0,248.0,133.0,61.0,135.0,85.0,130.0,160.0,28,0.28036848830417815,28.951341067477305,0.05628688152519292,0.05567182921724571,0.047619047619047616,0.08221993833504625,0.18867924528301888,0.04032258064516129,0.0,0.0 +Pine Mountain,Michigan,Michigan,1650,500,1150,0,0,0,0,1,2,1,4,28.0,1.0,0.5,160.0,160.0,110.0,80.0,60.0,45.0,126.0,80.0,28,0.28036848830417815,28.951341067477305,0.03631411711302769,0.046044370029300966,0.015873015873015872,0.041109969167523124,0.14285714285714285,0.025,0.0,0.0 +Schuss Mountain at Shanty Creek,Michigan,Michigan,1125,450,675,0,0,0,5,0,0,3,8,42.0,3.0,1.0,70.0,70.0,94.0,57.0,160.0,78.0,111.0,70.0,28,0.28036848830417815,28.951341067477305,0.015887426236949616,0.039347007115948095,0.047619047619047616,0.03597122302158273,0.19047619047619047,0.11428571428571428,0.0,0.0 +Ski Brule,Michigan,Michigan,1860,500,1360,0,0,0,0,0,5,7,12,17.0,3.0,1.0,150.0,150.0,164.0,62.0,150.0,49.0,165.0,40.0,28,0.28036848830417815,28.951341067477305,0.03404448479346346,0.06864796986186689,0.047619047619047616,0.020554984583761562,0.7058823529411765,0.08,0.0,0.0 +Snow Snake Mountain Ski Area,Michigan,Michigan,1230,210,1020,0,0,0,0,1,0,5,6,12.0,2.0,0.0,40.0,40.0,,72.0,,35.0,,40.0,28,0.28036848830417815,28.951341067477305,0.009078529278256923,,0.031746031746031744,0.020554984583761562,0.5,0.15,0.0,0.0 +Swiss Valley,Michigan,Michigan,1200,225,975,0,0,0,2,1,0,4,7,11.0,2.0,0.1,60.0,60.0,89.0,51.0,60.0,42.0,80.0,60.0,28,0.28036848830417815,28.951341067477305,0.013617793917385384,0.03725408120552533,0.031746031746031744,0.030832476875642344,0.6363636363636364,0.11666666666666667,0.0,0.0 +The Homestead,Michigan,Michigan,900,320,580,0,0,0,0,2,1,2,5,15.0,1.0,0.2,16.0,16.0,47.0,34.0,150.0,50.0,42.0,16.0,28,0.28036848830417815,28.951341067477305,0.003631411711302769,0.019673503557974047,0.015873015873015872,0.008221993833504625,0.3333333333333333,0.3125,0.0,0.0 +Timber Ridge,Michigan,Michigan,850,250,600,0,0,0,1,1,2,4,8,16.0,2.0,0.3,50.0,50.0,80.0,58.0,,45.0,,50.0,28,0.28036848830417815,28.951341067477305,0.011348161597821153,0.033486814566764334,0.031746031746031744,0.025693730729701953,0.5,0.16,0.0,0.0 +Afton Alps,Minnesota,Minnesota,1530,350,1180,0,0,0,1,3,14,4,22,48.0,5.0,0.5,250.0,250.0,135.0,56.0,60.0,60.0,135.0,250.0,14,0.24824314777985515,16.103800496917273,0.16025641025641027,0.09060402684563758,0.1724137931034483,0.24509803921568626,0.4583333333333333,0.088,0.0,0.0 +Andes Tower Hills Ski Area,Minnesota,Minnesota,1620,290,1330,0,0,0,1,2,0,3,6,15.0,2.0,0.2,35.0,35.0,100.0,38.0,55.0,45.0,110.0,35.0,14,0.24824314777985515,16.103800496917273,0.022435897435897436,0.06711409395973154,0.06896551724137931,0.03431372549019608,0.4,0.17142857142857143,0.0,0.0 +Buck Hill,Minnesota,Minnesota,1225,309,919,0,0,0,2,1,0,5,8,16.0,,0.2,45.0,45.0,115.0,65.0,60.0,47.0,112.0,45.0,14,0.24824314777985515,16.103800496917273,0.028846153846153848,0.07718120805369127,,0.04411764705882353,0.5,0.17777777777777778,0.0,0.0 +Buena Vista Ski Area,Minnesota,Minnesota,1510,230,1280,0,0,0,0,2,2,2,6,17.0,,0.3,30.0,30.0,57.0,70.0,78.0,44.0,60.0,30.0,14,0.24824314777985515,16.103800496917273,0.019230769230769232,0.03825503355704698,,0.029411764705882353,0.35294117647058826,0.2,0.0,0.0 +Coffee Mill Ski & Snowboard Resort,Minnesota,Minnesota,1150,425,725,0,0,0,0,0,2,1,3,14.0,1.0,1.0,40.0,35.0,57.0,39.0,48.0,37.0,56.0,35.0,14,0.24824314777985515,16.103800496917273,0.02564102564102564,0.03825503355704698,0.034482758620689655,0.03431372549019608,0.21428571428571427,0.075,0.0,0.0 +Elm Creek Winter Recreation Area,Minnesota,Minnesota,928,60,868,0,0,0,0,0,0,3,3,3.0,,1.0,15.0,20.0,105.0,13.0,45.0,17.0,102.0,15.0,14,0.24824314777985515,16.103800496917273,0.009615384615384616,0.07046979865771812,,0.014705882352941176,1.0,0.2,0.0,0.0 +Giants Ridge Resort,Minnesota,Minnesota,1972,500,1472,0,0,1,1,1,2,2,7,35.0,2.0,0.8,202.0,202.0,120.0,35.0,85.0,58.0,125.0,121.0,14,0.24824314777985515,16.103800496917273,0.1294871794871795,0.08053691275167785,0.06896551724137931,0.11862745098039215,0.2,0.034653465346534656,0.02857142857142857,0.0049504950495049506 +Hyland Ski & Snowboard Area,Minnesota,Minnesota,1075,175,900,0,0,0,2,1,0,5,8,14.0,1.0,1.0,35.0,35.0,110.0,61.0,55.0,35.34,115.0,35.0,14,0.24824314777985515,16.103800496917273,0.022435897435897436,0.0738255033557047,0.034482758620689655,0.03431372549019608,0.5714285714285714,0.22857142857142856,0.0,0.0 +Lutsen Mountains,Minnesota,Minnesota,1688,825,800,1,1,0,0,1,4,1,8,62.0,2.0,2.0,393.0,231.0,135.0,71.0,120.0,84.0,127.0,,14,0.24824314777985515,16.103800496917273,0.2519230769230769,0.09060402684563758,0.06896551724137931,,0.12903225806451613,0.020356234096692113,0.0,0.0 +Mount Kato Ski Area,Minnesota,Minnesota,540,240,300,0,0,0,5,0,3,2,10,19.0,4.0,1.0,55.0,55.0,115.0,43.0,50.0,46.0,120.0,50.0,14,0.24824314777985515,16.103800496917273,0.035256410256410256,0.07718120805369127,0.13793103448275862,0.049019607843137254,0.5263157894736842,0.18181818181818182,0.0,0.0 +Powder Ridge Ski Area,Minnesota,Minnesota,790,300,500,0,0,0,1,0,2,3,6,15.0,4.0,,60.0,60.0,97.0,58.0,45.0,48.0,113.0,60.0,14,0.24824314777985515,16.103800496917273,0.038461538461538464,0.06510067114093959,0.13793103448275862,0.058823529411764705,0.4,0.1,0.0,0.0 +Spirit Mountain,Minnesota,Minnesota,1320,700,620,0,0,1,1,2,1,2,7,22.0,3.0,1.0,175.0,175.0,100.0,45.0,100.0,59.0,125.0,144.0,14,0.24824314777985515,16.103800496917273,0.11217948717948718,0.06711409395973154,0.10344827586206896,0.1411764705882353,0.3181818181818182,0.04,0.045454545454545456,0.005714285714285714 +Welch Village,Minnesota,Minnesota,1060,360,700,0,0,0,3,1,4,2,10,50.0,1.0,0.8,125.0,125.0,114.0,54.0,45.0,60.0,122.0,100.0,14,0.24824314777985515,16.103800496917273,0.08012820512820513,0.07651006711409396,0.034482758620689655,0.09803921568627451,0.2,0.08,0.0,0.0 +Wild Mountain Ski & Snowboard Area,Minnesota,Minnesota,1113,300,813,0,0,0,4,0,0,4,8,26.0,4.0,0.9,100.0,100.0,130.0,47.0,50.0,55.0,140.0,100.0,14,0.24824314777985515,16.103800496917273,0.0641025641025641,0.087248322147651,0.13793103448275862,0.09803921568627451,0.3076923076923077,0.08,0.0,0.0 +Hidden Valley Ski Area,Missouri,Missouri,2566,310,2316,0,0,0,2,2,0,3,7,17.0,,0.1,30.0,30.0,,37.0,26.0,49.0,,17.0,2,0.03258694032744661,2.8691523089503206,0.5,,,0.3617021276595745,0.4117647058823529,0.23333333333333334,0.0,0.0 +Snow Creek,Missouri,Missouri,1100,300,800,0,0,0,0,2,1,2,5,14.0,2.0,0.3,30.0,30.0,69.0,33.0,20.0,47.0,85.0,30.0,2,0.03258694032744661,2.8691523089503206,0.5,1.0,1.0,0.6382978723404256,0.35714285714285715,0.16666666666666666,0.0,0.0 +Blacktail Mountain Ski Area,Montana,Montana,6676,1440,5236,0,0,0,0,1,2,1,4,27.0,,0.7,1000.0,,,21.0,250.0,42.0,,,12,1.1227776020838753,8.161044613710555,0.046707146193367584,,,,0.14814814814814814,0.004,0.0,0.0 +Bridger Bowl,Montana,Montana,8700,2600,6100,0,0,0,1,6,1,3,11,105.0,2.0,1.5,2000.0,100.0,122.0,64.0,350.0,63.0,133.0,,12,1.1227776020838753,8.161044613710555,0.09341429238673517,0.12828601472134596,0.07407407407407407,,0.10476190476190476,0.0055,0.0,0.0 +Discovery Ski Area,Montana,Montana,8150,2380,5770,0,0,0,0,5,2,1,8,74.0,1.0,1.5,2400.0,25.0,116.0,46.0,225.0,49.0,116.0,,12,1.1227776020838753,8.161044613710555,0.1120971508640822,0.12197686645636173,0.037037037037037035,,0.10810810810810811,0.0033333333333333335,0.0,0.0 +Great Divide,Montana,Montana,7330,1580,5750,0,0,0,0,0,5,1,6,110.0,6.0,3.0,1600.0,150.0,94.0,78.0,180.0,48.0,100.0,100.0,12,1.1227776020838753,8.161044613710555,0.07473143390938813,0.09884332281808622,0.2222222222222222,0.14084507042253522,0.05454545454545454,0.00375,0.0,0.0 +Lost Trail - Powder Mtn,Montana,Montana,8200,1800,6400,0,0,0,0,0,5,3,8,69.0,2.0,2.5,1800.0,,84.0,81.0,325.0,46.0,80.0,,12,1.1227776020838753,8.161044613710555,0.08407286314806166,0.08832807570977919,0.07407407407407407,,0.11594202898550725,0.0044444444444444444,0.0,0.0 +Maverick Mountain,Montana,Montana,8520,2020,6500,0,0,0,0,0,1,1,2,22.0,,1.3,255.0,,,83.0,160.0,39.0,,,12,1.1227776020838753,8.161044613710555,0.011910322279308735,,,,0.09090909090909091,0.00784313725490196,0.0,0.0 +Montana Snowbowl,Montana,Montana,7600,2600,5000,0,0,0,0,0,2,2,4,37.0,,1.2,950.0,20.0,,58.0,300.0,50.0,,10.0,12,1.1227776020838753,8.161044613710555,0.044371788883699206,,,0.014084507042253521,0.10810810810810811,0.004210526315789474,0.0,0.0 +Red Lodge Mountain,Montana,Montana,9416,2400,7016,0,0,2,0,1,3,1,7,70.0,2.0,2.5,1635.0,496.0,142.0,59.0,250.0,67.0,136.0,,12,1.1227776020838753,8.161044613710555,0.076366184026156,0.14931650893796003,0.07407407407407407,,0.1,0.004281345565749235,0.02857142857142857,0.0012232415902140672 +Showdown Montana,Montana,Montana,8200,1400,6800,0,0,0,0,1,2,1,4,36.0,1.0,1.8,640.0,,86.0,83.0,250.0,47.0,85.0,,12,1.1227776020838753,8.161044613710555,0.029892573563755253,0.0904311251314406,0.037037037037037035,,0.1111111111111111,0.00625,0.0,0.0 +Teton Pass Ski Resort,Montana,Montana,7200,1010,6190,0,0,0,0,0,1,2,3,43.0,1.0,3.0,330.0,,40.0,54.0,250.0,39.0,150.0,,12,1.1227776020838753,8.161044613710555,0.015413358243811303,0.04206098843322818,0.037037037037037035,,0.06976744186046512,0.00909090909090909,0.0,0.0 +Big Mountain Resort,Montana,Montana,6817,2353,4464,0,0,3,2,6,0,3,14,105.0,4.0,3.3,3000.0,600.0,123.0,72.0,333.0,81.0,123.0,600.0,12,1.1227776020838753,8.161044613710555,0.14012143858010276,0.12933753943217666,0.14814814814814814,0.8450704225352113,0.13333333333333333,0.004666666666666667,0.02857142857142857,0.001 +Diamond Peak,Sierra Nevada,Nevada,8540,1840,6700,0,0,1,2,0,3,1,7,30.0,3.0,2.5,655.0,492.0,100.0,53.0,300.0,99.0,122.0,,4,0.12986355236552954,3.61755236407047,0.3104265402843602,0.24096385542168675,0.3333333333333333,,0.23333333333333334,0.010687022900763359,0.03333333333333333,0.0015267175572519084 +Elko SnoBowl,Nevada,Nevada,7000,700,6300,0,0,0,0,0,1,1,2,10.0,,1.0,60.0,2.0,19.0,23.0,24.0,20.0,30.0,,4,0.12986355236552954,3.61755236407047,0.02843601895734597,0.04578313253012048,,,0.2,0.03333333333333333,0.0,0.0 +Lee Canyon,Nevada,Nevada,11289,860,8510,0,0,0,2,1,0,0,3,24.0,1.0,0.3,195.0,50.0,144.0,56.0,161.0,70.0,150.0,,4,0.12986355236552954,3.61755236407047,0.0924170616113744,0.3469879518072289,0.1111111111111111,,0.125,0.015384615384615385,0.0,0.0 +Mt. Rose - Ski Tahoe,Sierra Nevada,Nevada,9700,1800,8260,0,2,0,2,2,0,2,8,65.0,5.0,2.5,1200.0,330.0,152.0,55.0,350.0,135.0,150.0,,4,0.12986355236552954,3.61755236407047,0.5687203791469194,0.36626506024096384,0.5555555555555556,,0.12307692307692308,0.006666666666666667,0.0,0.0 +Attitash,New Hampshire,New Hampshire,2350,1750,600,0,0,2,1,3,2,1,9,68.0,3.0,3.0,311.0,240.0,115.0,54.0,120.0,89.0,130.0,,16,1.1767206413715856,171.14129853460264,0.09074992704989787,0.062263129399025445,0.06976744186046512,,0.1323529411764706,0.028938906752411574,0.029411764705882353,0.006430868167202572 +Black Mountain,New Hampshire,New Hampshire,2350,1100,1250,0,0,0,0,1,1,3,5,45.0,,1.6,143.0,120.0,110.0,84.0,125.0,59.0,107.0,,16,1.1767206413715856,171.14129853460264,0.04172745841844178,0.05955603681645912,,,0.1111111111111111,0.03496503496503497,0.0,0.0 +Bretton Woods,New Hampshire,New Hampshire,3100,1500,1600,0,0,4,1,1,0,3,9,63.0,2.0,2.0,464.0,427.0,180.0,46.0,200.0,99.0,180.0,45.0,16,1.1767206413715856,171.14129853460264,0.13539538955354538,0.09745533297238766,0.046511627906976744,0.1196808510638298,0.14285714285714285,0.01939655172413793,0.06349206349206349,0.008620689655172414 +Cannon Mountain,New Hampshire,New Hampshire,4080,2180,1900,1,0,1,2,3,1,3,11,97.0,3.0,2.3,285.0,192.0,124.0,81.0,160.0,79.0,143.0,,16,1.1767206413715856,171.14129853460264,0.083163116428363,0.06713589604764483,0.06976744186046512,,0.1134020618556701,0.03859649122807018,0.010309278350515464,0.0035087719298245615 +Crotched Mountain,New Hampshire,New Hampshire,2066,1016,1050,0,0,1,1,1,1,1,5,25.0,3.0,1.2,100.0,100.0,105.0,16.0,105.0,69.0,100.0,100.0,16,1.1767206413715856,171.14129853460264,0.029180040852057193,0.0568489442338928,0.06976744186046512,0.26595744680851063,0.2,0.05,0.04,0.01 +Dartmouth Skiway,New Hampshire,New Hampshire,1943,969,974,0,0,0,1,0,1,2,4,28.0,1.0,1.1,107.0,54.0,104.0,63.0,100.0,50.0,105.0,,16,1.1767206413715856,171.14129853460264,0.031222643711701196,0.056307525717379535,0.023255813953488372,,0.14285714285714285,0.037383177570093455,0.0,0.0 +Gunstock,New Hampshire,New Hampshire,2300,1400,900,0,0,1,2,2,0,1,6,55.0,4.0,1.5,227.0,176.0,106.0,82.0,120.0,92.0,,60.0,16,1.1767206413715856,171.14129853460264,0.06623869273416982,0.057390362750406064,0.09302325581395349,0.1595744680851064,0.10909090909090909,0.02643171806167401,0.01818181818181818,0.004405286343612335 +King Pine,New Hampshire,New Hampshire,850,350,500,0,0,0,0,3,0,3,6,17.0,2.0,0.3,48.0,45.0,105.0,57.0,120.0,58.0,107.0,23.0,16,1.1767206413715856,171.14129853460264,0.014006419608987453,0.0568489442338928,0.046511627906976744,0.061170212765957445,0.35294117647058826,0.125,0.0,0.0 +Mount Sunapee,New Hampshire,New Hampshire,2743,1510,1233,0,0,2,1,2,1,4,10,66.0,4.0,0.8,232.0,215.0,130.0,71.0,100.0,93.0,136.0,,16,1.1767206413715856,171.14129853460264,0.06769769477677269,0.07038440714672442,0.09302325581395349,,0.15151515151515152,0.04310344827586207,0.030303030303030304,0.008620689655172414 +Pats Peak,New Hampshire,New Hampshire,1460,770,690,0,0,0,0,4,2,5,11,28.0,3.0,1.5,115.0,115.0,109.0,56.0,100.0,72.0,112.0,93.0,16,1.1767206413715856,171.14129853460264,0.03355704697986577,0.05901461829994586,0.06976744186046512,0.2473404255319149,0.39285714285714285,0.09565217391304348,0.0,0.0 +Ragged Mountain Resort,New Hampshire,New Hampshire,2250,1250,1000,0,1,1,0,1,0,3,6,57.0,3.0,0.7,250.0,200.0,,54.0,100.0,84.0,140.0,,16,1.1767206413715856,171.14129853460264,0.07295010213014298,,0.06976744186046512,,0.10526315789473684,0.024,0.017543859649122806,0.004 +Waterville Valley,New Hampshire,New Hampshire,4004,2020,1984,0,0,2,0,2,3,4,11,62.0,4.0,1.9,265.0,220.0,142.0,54.0,148.0,93.0,142.0,,16,1.1767206413715856,171.14129853460264,0.07732710825795155,0.0768814293448836,0.09302325581395349,,0.1774193548387097,0.04150943396226415,0.03225806451612903,0.007547169811320755 +Whaleback Mountain,New Hampshire,New Hampshire,1800,700,1100,0,0,0,0,0,1,3,4,30.0,1.0,1.0,85.0,60.0,105.0,64.0,110.0,45.0,105.0,55.0,16,1.1767206413715856,171.14129853460264,0.024803034724248614,0.0568489442338928,0.023255813953488372,0.14627659574468085,0.13333333333333333,0.047058823529411764,0.0,0.0 +Wildcat Mountain,New Hampshire,New Hampshire,4062,2112,1950,0,0,1,0,3,0,1,5,48.0,,2.8,225.0,200.0,156.0,61.0,200.0,89.0,150.0,,16,1.1767206413715856,171.14129853460264,0.06565509191712868,0.0844612885760693,,,0.10416666666666667,0.022222222222222223,0.020833333333333332,0.0044444444444444444 +Mountain Creek Resort,New Jersey,New Jersey,1480,1040,440,1,0,2,2,1,1,3,10,46.0,3.0,2.0,167.0,167.0,90.0,54.0,65.0,79.99,100.0,167.0,2,0.022516969351027167,22.927891780350798,0.8789473684210526,0.5294117647058824,0.75,0.9226519337016574,0.21739130434782608,0.059880239520958084,0.043478260869565216,0.011976047904191617 +Angel Fire Resort,New Mexico,New Mexico,10677,2077,8600,0,0,2,0,0,3,2,7,81.0,3.0,3.0,560.0,230.0,101.0,53.0,210.0,77.0,101.0,50.0,9,0.4292195500920676,7.401924500370097,0.10721807390388666,0.10455486542443064,0.16666666666666666,1.0,0.08641975308641975,0.0125,0.024691358024691357,0.0035714285714285713 +Enchanted Forest Ski Area,New Mexico,New Mexico,10078,400,9820,0,0,0,0,0,0,0,0,33.0,,2.5,600.0,,130.0,34.0,240.0,20.0,140.0,,9,0.4292195500920676,7.401924500370097,0.11487650775416428,0.13457556935817805,,,0.0,0.0,0.0,0.0 +Pajarito Mountain Ski Area,New Mexico,New Mexico,10441,1410,9031,0,0,0,1,1,3,1,6,45.0,2.0,0.6,750.0,35.0,89.0,62.0,163.0,49.0,117.0,,9,0.4292195500920676,7.401924500370097,0.14359563469270534,0.09213250517598344,0.1111111111111111,,0.13333333333333333,0.008,0.0,0.0 +Red River,New Mexico,New Mexico,10350,1600,8750,0,0,0,1,3,1,2,7,63.0,3.0,2.5,209.0,,110.0,60.0,214.0,79.0,,,9,0.4292195500920676,7.401924500370097,0.04001531686770055,0.11387163561076605,0.16666666666666666,,0.1111111111111111,0.03349282296650718,0.0,0.0 +Sandia Peak,New Mexico,New Mexico,10378,1700,8678,0,0,0,0,0,4,1,5,39.0,1.0,2.0,200.0,30.0,32.0,82.0,100.0,55.0,38.0,,9,0.4292195500920676,7.401924500370097,0.03829216925138809,0.033126293995859216,0.05555555555555555,,0.1282051282051282,0.025,0.0,0.0 +Sipapu Ski Resort,New Mexico,New Mexico,9255,1055,8200,0,0,0,1,2,0,3,6,42.0,4.0,0.5,200.0,140.0,127.0,67.0,190.0,47.0,143.0,,9,0.4292195500920676,7.401924500370097,0.03829216925138809,0.13146997929606624,0.2222222222222222,,0.14285714285714285,0.03,0.0,0.0 +Ski Apache,New Mexico,New Mexico,11500,1900,9600,1,0,0,2,6,0,2,11,55.0,3.0,2.0,750.0,270.0,133.0,58.0,185.0,74.0,124.0,,9,0.4292195500920676,7.401924500370097,0.14359563469270534,0.13768115942028986,0.16666666666666666,,0.2,0.014666666666666666,0.0,0.0 +Ski Santa Fe,New Mexico,New Mexico,12075,1725,10350,0,0,0,1,2,2,2,7,83.0,1.0,3.0,660.0,275.0,107.0,73.0,225.0,80.0,130.0,,9,0.4292195500920676,7.401924500370097,0.1263641585295807,0.11076604554865424,0.05555555555555555,,0.08433734939759036,0.010606060606060607,0.0,0.0 +Taos Ski Valley,New Mexico,New Mexico,12481,3281,9200,1,0,1,3,4,1,4,14,111.0,1.0,5.0,1294.0,647.0,137.0,64.0,300.0,110.0,136.0,,9,0.4292195500920676,7.401924500370097,0.24775033505648095,0.14182194616977226,0.05555555555555555,,0.12612612612612611,0.010819165378670788,0.009009009009009009,0.0007727975270479134 +Belleayre,New York,New York,3429,1404,2025,1,0,1,1,1,2,2,8,50.0,2.0,2.2,175.0,168.0,154.0,70.0,130.0,72.0,150.0,,33,0.16963475221837276,60.48941435248832,0.03173739571998549,0.06459731543624161,0.027777777777777776,,0.16,0.045714285714285714,0.02,0.005714285714285714 +Brantling Ski Slopes,New York,New York,850,250,600,0,0,0,0,0,0,5,5,10.0,,0.1,20.0,16.0,,19.0,110.0,32.0,,,33,0.16963475221837276,60.48941435248832,0.003627130939426913,,,,0.5,0.25,0.0,0.0 +Bristol Mountain,New York,New York,2200,1200,1000,0,0,2,1,1,1,1,6,34.0,3.0,2.0,160.0,148.0,129.0,55.0,60.0,76.0,129.0,154.0,33,0.16963475221837276,60.48941435248832,0.029017047515415305,0.054110738255033555,0.041666666666666664,0.054301833568406205,0.17647058823529413,0.0375,0.058823529411764705,0.0125 +Buffalo Ski Club Ski Area,New York,New York,3429,500,2025,0,0,0,0,0,2,4,6,43.0,1.0,,225.0,150.0,,12.0,,50.0,,100.0,33,0.16963475221837276,60.48941435248832,0.040805223068552776,,0.013888888888888888,0.03526093088857546,0.13953488372093023,0.02666666666666667,0.0,0.0 +Catamount,New York,New York,2000,1000,1000,0,0,0,1,1,2,3,7,36.0,5.0,2.0,133.0,130.0,100.0,80.0,108.0,69.0,90.0,55.0,33,0.16963475221837276,60.48941435248832,0.024120420747188974,0.04194630872483222,0.06944444444444445,0.019393511988716503,0.19444444444444445,0.05263157894736842,0.0,0.0 +Dry Hill Ski Area,New York,New York,950,300,650,0,0,0,0,0,1,2,3,7.0,1.0,0.2,35.0,26.0,,55.0,125.0,35.0,,26.0,33,0.16963475221837276,60.48941435248832,0.006347479143997099,,0.013888888888888888,0.009167842031029619,0.42857142857142855,0.08571428571428572,0.0,0.0 +Gore Mountain,New York,New York,3600,2537,998,1,0,2,2,3,2,4,14,110.0,7.0,4.5,439.0,338.0,142.0,55.0,150.0,88.0,,15.0,33,0.16963475221837276,60.48941435248832,0.07961552412042075,0.05956375838926174,0.09722222222222222,0.005289139633286318,0.12727272727272726,0.03189066059225513,0.01818181818181818,0.004555808656036446 +Greek Peak,New York,New York,2100,952,1148,0,0,0,1,1,4,2,8,56.0,4.0,1.5,220.0,184.0,110.0,62.0,122.0,63.2,113.0,175.0,33,0.16963475221837276,60.48941435248832,0.03989844033369604,0.04614093959731544,0.05555555555555555,0.06170662905500705,0.14285714285714285,0.03636363636363636,0.0,0.0 +Holiday Mountain,New York,New York,1550,400,1150,0,0,0,1,0,1,2,4,9.0,,0.4,37.0,37.0,75.0,60.0,50.0,42.0,85.0,37.0,33,0.16963475221837276,60.48941435248832,0.00671019223793979,0.031459731543624164,,0.01304654442877292,0.4444444444444444,0.10810810810810811,0.0,0.0 +Holiday Valley,New York,New York,2250,750,1500,0,0,3,8,0,0,2,13,60.0,5.0,1.0,290.0,266.0,116.0,62.0,180.0,78.0,129.0,189.0,33,0.16963475221837276,60.48941435248832,0.05259339862169024,0.04865771812080537,0.06944444444444445,0.06664315937940761,0.21666666666666667,0.04482758620689655,0.05,0.010344827586206896 +Holimont Ski Area,New York,New York,2260,700,1560,0,0,1,1,2,3,1,8,53.0,3.0,1.5,135.0,135.0,110.0,57.0,180.0,75.0,119.0,,33,0.16963475221837276,60.48941435248832,0.024483133841131665,0.04614093959731544,0.041666666666666664,,0.1509433962264151,0.05925925925925926,0.018867924528301886,0.007407407407407408 +Hunt Hollow Ski Club,New York,New York,2030,825,1000,0,0,0,0,1,1,1,3,19.0,1.0,1.0,400.0,400.0,,52.0,130.0,58.0,75.0,400.0,33,0.16963475221837276,60.48941435248832,0.07254261878853827,,0.013888888888888888,0.14104372355430184,0.15789473684210525,0.0075,0.0,0.0 +Hunter Mountain,New York,New York,3200,1600,1600,0,2,1,2,2,2,4,13,67.0,4.0,2.0,320.0,320.0,148.0,59.0,120.0,89.0,155.0,,33,0.16963475221837276,60.48941435248832,0.05803409503083061,0.06208053691275168,0.05555555555555555,,0.19402985074626866,0.040625,0.014925373134328358,0.003125 +Kissing Bridge,New York,New York,1700,550,1150,0,0,0,2,1,4,3,10,39.0,5.0,0.5,700.0,550.0,103.0,59.0,120.0,60.0,100.0,650.0,33,0.16963475221837276,60.48941435248832,0.12694958287994196,0.04320469798657718,0.06944444444444445,0.22919605077574048,0.2564102564102564,0.014285714285714285,0.0,0.0 +Labrador Mt.,New York,New York,1825,700,1125,0,0,0,0,1,2,1,4,23.0,1.0,1.0,250.0,237.0,,62.0,125.0,59.0,100.0,180.0,33,0.16963475221837276,60.48941435248832,0.04533913674283642,,0.013888888888888888,0.06346967559943582,0.17391304347826086,0.016,0.0,0.0 +Maple Ski Ridge,New York,New York,1200,450,750,0,0,0,0,1,1,1,3,10.0,,0.3,25.0,25.0,,57.0,,38.0,,20.0,33,0.16963475221837276,60.48941435248832,0.004533913674283642,,,0.007052186177715092,0.3,0.12,0.0,0.0 +McCauley Mountain Ski Center,New York,New York,2250,633,1563,0,0,0,0,0,1,4,5,23.0,1.0,0.3,70.0,55.0,105.0,61.0,200.0,30.0,105.0,,33,0.16963475221837276,60.48941435248832,0.012694958287994197,0.044043624161073824,0.013888888888888888,,0.21739130434782608,0.07142857142857142,0.0,0.0 +Mount Peter Ski Area,New York,New York,1250,450,750,0,0,0,1,0,2,2,5,14.0,1.0,1.0,69.0,69.0,100.0,83.0,50.0,54.0,100.0,69.0,33,0.16963475221837276,60.48941435248832,0.012513601741022852,0.04194630872483222,0.013888888888888888,0.024330042313117067,0.35714285714285715,0.07246376811594203,0.0,0.0 +Oak Mountain,New York,New York,2400,650,1750,0,0,0,1,0,0,3,4,22.0,1.0,1.2,46.0,18.0,,71.0,120.0,40.0,,12.0,33,0.16963475221837276,60.48941435248832,0.008342401160681901,,0.013888888888888888,0.004231311706629055,0.18181818181818182,0.08695652173913043,0.0,0.0 +Peek'n Peak,New York,New York,1800,400,1400,0,0,0,0,8,0,2,10,27.0,4.0,2.4,110.0,110.0,110.0,55.0,225.0,63.0,,110.0,33,0.16963475221837276,60.48941435248832,0.01994922016684802,0.04614093959731544,0.05555555555555555,0.038787023977433006,0.37037037037037035,0.09090909090909091,0.0,0.0 +Plattekill Mountain,New York,New York,3500,1100,2400,0,0,0,0,1,1,2,4,38.0,1.0,2.0,110.0,75.0,65.0,26.0,175.0,67.0,65.0,,33,0.16963475221837276,60.48941435248832,0.01994922016684802,0.02726510067114094,0.013888888888888888,,0.10526315789473684,0.03636363636363636,0.0,0.0 +Royal Mountain Ski Area,New York,New York,1800,550,1250,0,0,0,0,0,3,0,3,14.0,,0.3,35.0,28.0,,63.0,90.0,45.0,,,33,0.16963475221837276,60.48941435248832,0.006347479143997099,,,,0.21428571428571427,0.08571428571428572,0.0,0.0 +Snow Ridge,New York,New York,2000,650,1350,0,0,0,0,0,4,2,6,21.0,2.0,0.8,130.0,65.0,73.0,74.0,230.0,48.0,100.0,40.0,33,0.16963475221837276,60.48941435248832,0.023576351106274936,0.030620805369127518,0.027777777777777776,0.014104372355430184,0.2857142857142857,0.046153846153846156,0.0,0.0 +Song Mountain,New York,New York,1940,700,1240,0,0,0,0,1,1,3,5,24.0,,0.4,93.0,70.0,90.0,55.0,125.0,59.0,122.0,70.0,33,0.16963475221837276,60.48941435248832,0.016866158868335146,0.037751677852348994,,0.02468265162200282,0.20833333333333334,0.053763440860215055,0.0,0.0 +Swain,New York,New York,1970,650,1320,0,0,0,3,0,1,1,5,35.0,3.0,1.0,130.0,90.0,102.0,72.0,120.0,59.0,100.0,80.0,33,0.16963475221837276,60.48941435248832,0.023576351106274936,0.04278523489932886,0.041666666666666664,0.028208744710860368,0.14285714285714285,0.038461538461538464,0.0,0.0 +Thunder Ridge,New York,New York,1270,500,770,0,0,0,0,1,2,3,6,30.0,,0.4,100.0,100.0,121.0,60.0,,57.0,121.0,100.0,33,0.16963475221837276,60.48941435248832,0.018135654697134566,0.05075503355704698,,0.03526093088857546,0.2,0.06,0.0,0.0 +Titus Mountain,New York,New York,2025,1200,825,0,0,0,0,2,6,2,10,50.0,3.0,2.0,200.0,150.0,101.0,59.0,150.0,49.0,100.0,70.0,33,0.16963475221837276,60.48941435248832,0.03627130939426913,0.04236577181208054,0.041666666666666664,0.02468265162200282,0.2,0.05,0.0,0.0 +Toggenburg Mountain,New York,New York,2000,700,1300,0,0,0,0,1,1,3,5,22.0,2.0,0.4,85.0,,,66.0,130.0,55.0,122.0,73.0,33,0.16963475221837276,60.48941435248832,0.015415306492564382,,0.027777777777777776,0.025740479548660086,0.22727272727272727,0.058823529411764705,0.0,0.0 +West Mountain,New York,New York,1470,1010,460,0,0,0,0,1,2,2,5,29.0,1.0,0.6,124.0,105.0,,58.0,80.0,59.0,120.0,105.0,33,0.16963475221837276,60.48941435248832,0.022488211824446862,,0.013888888888888888,0.03702397743300423,0.1724137931034483,0.04032258064516129,0.0,0.0 +Whiteface Mountain Resort,New York,New York,4650,3430,1220,1,0,1,1,2,5,2,12,86.0,5.0,2.1,288.0,220.0,122.0,61.0,168.0,96.0,141.0,,33,0.16963475221837276,60.48941435248832,0.05223068552774755,0.051174496644295304,0.06944444444444445,,0.13953488372093023,0.041666666666666664,0.011627906976744186,0.003472222222222222 +Willard Mountain,New York,New York,1415,505,910,0,0,0,0,0,2,3,5,16.0,,0.4,50.0,35.0,85.0,19.0,80.0,46.0,120.0,35.0,33,0.16963475221837276,60.48941435248832,0.009067827348567283,0.03565436241610738,,0.01234132581100141,0.3125,0.1,0.0,0.0 +Windham Mountain,New York,New York,3100,1600,1500,0,1,2,0,3,1,5,12,54.0,6.0,2.0,285.0,280.0,123.0,59.0,105.0,95.0,130.0,56.0,33,0.16963475221837276,60.48941435248832,0.051686615886833515,0.051593959731543626,0.08333333333333333,0.019746121297602257,0.2222222222222222,0.042105263157894736,0.037037037037037035,0.007017543859649123 +Woods Valley Ski Area,New York,New York,1400,500,900,0,0,0,0,0,2,4,6,21.0,,0.3,25.0,16.0,,55.0,180.0,39.0,,15.0,33,0.16963475221837276,60.48941435248832,0.004533913674283642,,,0.005289139633286318,0.2857142857142857,0.24,0.0,0.0 +Appalachian Ski Mountain,North Carolina,North Carolina,4000,365,3635,0,0,0,2,0,1,2,5,12.0,3.0,0.5,27.0,27.0,100.0,57.0,50.0,64.0,100.0,27.0,6,0.057207779800390615,11.148479161634366,0.07297297297297298,0.1976284584980237,0.3333333333333333,0.08059701492537313,0.4166666666666667,0.18518518518518517,0.0,0.0 +Cataloochee Ski Area,North Carolina,North Carolina,5400,740,4660,0,0,0,1,1,1,2,5,18.0,2.0,1.0,50.0,50.0,141.0,58.0,50.0,70.0,108.0,50.0,6,0.057207779800390615,11.148479161634366,0.13513513513513514,0.27865612648221344,0.2222222222222222,0.14925373134328357,0.2777777777777778,0.1,0.0,0.0 +Sapphire Valley,North Carolina,North Carolina,3450,200,3200,0,0,0,1,0,0,2,3,,1.0,1.0,8.0,8.0,53.0,55.0,24.0,43.0,60.0,8.0,6,0.057207779800390615,11.148479161634366,0.021621621621621623,0.10474308300395258,0.1111111111111111,0.023880597014925373,,0.375,,0.0 +Beech Mountain Resort,North Carolina,North Carolina,5506,830,4675,0,0,0,3,0,3,2,8,17.0,1.0,1.0,95.0,95.0,98.0,52.0,31.0,68.0,,95.0,6,0.057207779800390615,11.148479161634366,0.25675675675675674,0.19367588932806323,0.1111111111111111,0.2835820895522388,0.47058823529411764,0.08421052631578947,0.0,0.0 +Sugar Mountain Resort,North Carolina,North Carolina,5300,1200,4100,0,1,0,0,1,4,2,8,21.0,1.0,1.5,125.0,125.0,114.0,50.0,77.0,75.0,120.0,95.0,6,0.057207779800390615,11.148479161634366,0.33783783783783783,0.22529644268774704,0.1111111111111111,0.2835820895522388,0.38095238095238093,0.064,0.0,0.0 +Wolf Ridge Ski Resort,North Carolina,North Carolina,4700,720,4000,0,0,0,1,0,1,2,4,15.0,1.0,0.6,65.0,65.0,,49.0,65.0,65.0,100.0,60.0,6,0.057207779800390615,11.148479161634366,0.17567567567567569,,0.1111111111111111,0.1791044776119403,0.26666666666666666,0.06153846153846154,0.0,0.0 +Alpine Valley,Ohio,Ohio,1500,230,1260,0,0,0,1,2,1,1,5,11.0,1.0,0.2,72.0,72.0,105.0,53.0,120.0,43.0,,72.0,5,0.042774892848893416,11.154240842368269,0.171021377672209,0.2147239263803681,0.08333333333333333,0.171021377672209,0.45454545454545453,0.06944444444444445,0.0,0.0 +Boston Mills,Ohio,Ohio,871,264,631,0,0,0,0,4,2,2,8,7.0,2.0,0.3,40.0,40.0,92.0,56.0,51.0,44.0,110.0,40.0,5,0.042774892848893416,11.154240842368269,0.09501187648456057,0.18813905930470348,0.16666666666666666,0.09501187648456057,1.1428571428571428,0.2,0.0,0.0 +Brandywine,Ohio,Ohio,871,240,631,0,0,0,2,7,2,5,16,11.0,2.0,0.3,85.0,85.0,92.0,56.0,51.0,44.0,110.0,85.0,5,0.042774892848893416,11.154240842368269,0.20190023752969122,0.18813905930470348,0.16666666666666666,0.20190023752969122,1.4545454545454546,0.18823529411764706,0.0,0.0 +Mad River Mountain,Ohio,Ohio,1460,300,1160,0,0,0,1,2,3,6,12,20.0,4.0,0.5,144.0,144.0,99.0,57.0,36.0,44.0,90.0,144.0,5,0.042774892848893416,11.154240842368269,0.342042755344418,0.20245398773006135,0.3333333333333333,0.342042755344418,0.6,0.08333333333333333,0.0,0.0 +Snow Trails,Ohio,Ohio,1475,301,1174,0,0,0,0,4,2,3,9,17.0,3.0,0.2,80.0,80.0,101.0,58.0,50.0,52.0,70.0,80.0,5,0.042774892848893416,11.154240842368269,0.19002375296912113,0.2065439672801636,0.25,0.19002375296912113,0.5294117647058824,0.1125,0.0,0.0 +Anthony Lakes Mountain Resort,Oregon,Oregon,8000,900,7100,0,0,0,0,1,0,2,3,21.0,2.0,1.5,1100.0,,75.0,56.0,300.0,40.0,80.0,,10,0.23709396768930827,10.164770936886937,0.09342619330728724,0.0635593220338983,0.09090909090909091,,0.14285714285714285,0.0027272727272727275,0.0,0.0 +Cooper Spur,Mt. Hood,Oregon,4000,350,3500,0,0,0,0,0,1,1,2,10.0,,0.1,50.0,,78.0,66.0,100.0,39.0,90.0,,10,0.23709396768930827,10.164770936886937,0.004246645150331238,0.06610169491525424,,,0.2,0.04,0.0,0.0 +Hoodoo Ski Area,Oregon,Oregon,5703,1035,4668,0,0,0,3,1,1,0,5,34.0,,0.4,806.0,,80.0,81.0,350.0,59.0,108.0,200.0,10,0.23709396768930827,10.164770936886937,0.06845591982333957,0.06779661016949153,,0.1774622892635315,0.14705882352941177,0.00620347394540943,0.0,0.0 +Mt. Ashland,Oregon,Oregon,7533,1150,6383,0,0,0,0,2,2,1,5,23.0,2.0,1.0,220.0,,94.0,55.0,300.0,52.0,92.0,40.0,10,0.23709396768930827,10.164770936886937,0.018685238661457448,0.07966101694915254,0.09090909090909091,0.0354924578527063,0.21739130434782608,0.022727272727272728,0.0,0.0 +Mt. Bachelor,Oregon,Oregon,9065,3365,5700,0,0,8,0,3,0,0,11,101.0,5.0,4.0,4318.0,20.0,185.0,61.0,462.0,99.0,185.0,,10,0.23709396768930827,10.164770936886937,0.36674027518260577,0.15677966101694915,0.22727272727272727,,0.10891089108910891,0.0025474756831866605,0.07920792079207921,0.0018527095877721167 +Mt. Hood Skibowl,Mt. Hood,Oregon,5100,1500,3600,0,0,0,0,0,4,5,9,65.0,2.0,3.0,960.0,29.0,125.0,82.0,300.0,70.0,144.0,317.0,10,0.23709396768930827,10.164770936886937,0.08153558688635977,0.1059322033898305,0.09090909090909091,0.28127772848269744,0.13846153846153847,0.009375,0.0,0.0 +Willamette Pass,Oregon,Oregon,6683,1563,5120,0,1,0,0,3,0,1,5,29.0,,2.1,555.0,60.0,3.0,78.0,430.0,60.0,100.0,,10,0.23709396768930827,10.164770936886937,0.047137761168676746,0.002542372881355932,,,0.1724137931034483,0.009009009009009009,0.0,0.0 +Bear Creek Mountain Resort,Pennsylvania,Pennsylvania,1100,510,600,0,0,0,3,1,0,2,6,23.0,3.0,1.0,86.0,86.0,91.0,52.0,30.0,60.0,90.0,86.0,19,0.14841443778775315,41.255916967038694,0.045550847457627115,0.06481481481481481,0.06382978723404255,0.056282722513089,0.2608695652173913,0.06976744186046512,0.0,0.0 +Ski Big Bear,Pennsylvania,Pennsylvania,1250,650,600,0,0,0,0,0,4,2,6,18.0,1.0,1.5,26.0,26.0,75.0,43.0,69.0,62.0,75.0,26.0,19,0.14841443778775315,41.255916967038694,0.013771186440677966,0.053418803418803416,0.02127659574468085,0.017015706806282723,0.3333333333333333,0.23076923076923078,0.0,0.0 +Big Boulder,Pennsylvania,Pennsylvania,2175,600,1700,0,0,0,0,2,5,1,8,16.0,8.0,,55.0,55.0,76.0,72.0,50.0,65.0,95.0,55.0,19,0.14841443778775315,41.255916967038694,0.02913135593220339,0.05413105413105413,0.1702127659574468,0.03599476439790576,0.5,0.14545454545454545,0.0,0.0 +Blue Knob,Pennsylvania,Pennsylvania,3146,1072,2074,0,0,0,0,2,2,2,6,34.0,1.0,2.0,100.0,84.0,87.0,56.0,120.0,68.0,105.0,42.0,19,0.14841443778775315,41.255916967038694,0.05296610169491525,0.06196581196581197,0.02127659574468085,0.0274869109947644,0.17647058823529413,0.06,0.0,0.0 +Blue Mountain Resort,Pennsylvania,Pennsylvania,1600,1082,460,0,1,1,1,1,3,9,16,39.0,5.0,1.2,164.0,164.0,122.0,42.0,33.0,65.0,112.0,164.0,19,0.14841443778775315,41.255916967038694,0.08686440677966102,0.0868945868945869,0.10638297872340426,0.10732984293193717,0.41025641025641024,0.0975609756097561,0.02564102564102564,0.006097560975609756 +Camelback Mountain Resort,Pennsylvania,Pennsylvania,2100,800,1250,0,0,2,0,3,5,6,16,37.0,5.0,1.0,166.0,166.0,100.0,56.0,50.0,70.0,100.0,160.0,19,0.14841443778775315,41.255916967038694,0.08792372881355932,0.07122507122507123,0.10638297872340426,0.10471204188481675,0.43243243243243246,0.0963855421686747,0.05405405405405406,0.012048192771084338 +Elk Mountain Ski Resort,Pennsylvania,Pennsylvania,2693,1000,1693,0,0,0,1,0,5,1,7,27.0,2.0,0.7,180.0,146.0,,60.0,60.0,69.0,100.0,90.0,19,0.14841443778775315,41.255916967038694,0.09533898305084745,,0.0425531914893617,0.058900523560209424,0.25925925925925924,0.03888888888888889,0.0,0.0 +Jack Frost,Pennsylvania,Pennsylvania,2000,600,1400,0,0,0,1,2,5,1,9,20.0,1.0,1.0,100.0,100.0,96.0,47.0,50.0,65.0,105.0,,19,0.14841443778775315,41.255916967038694,0.05296610169491525,0.06837606837606838,0.02127659574468085,,0.45,0.09,0.0,0.0 +Liberty,Pennsylvania,Pennsylvania,1190,620,570,0,0,0,5,0,0,3,8,16.0,3.0,1.0,100.0,100.0,107.0,54.0,31.0,77.0,97.0,100.0,19,0.14841443778775315,41.255916967038694,0.05296610169491525,0.07621082621082621,0.06382978723404255,0.06544502617801047,0.5,0.08,0.0,0.0 +Mount Pleasant of Edinboro,Pennsylvania,Pennsylvania,1540,340,1200,0,0,0,0,1,0,1,2,10.0,,0.5,40.0,35.0,75.0,48.0,100.0,33.0,90.0,35.0,19,0.14841443778775315,41.255916967038694,0.0211864406779661,0.053418803418803416,,0.022905759162303665,0.2,0.05,0.0,0.0 +Roundtop Mountain Resort,Pennsylvania,Pennsylvania,1400,600,800,0,0,0,3,2,0,3,8,20.0,2.0,0.4,103.0,103.0,,55.0,30.0,73.0,,100.0,19,0.14841443778775315,41.255916967038694,0.05455508474576271,,0.0425531914893617,0.06544502617801047,0.4,0.07766990291262135,0.0,0.0 +Seven Springs,Pennsylvania,Pennsylvania,2994,750,2240,0,2,0,3,5,0,4,14,33.0,7.0,1.2,285.0,285.0,99.0,87.0,135.0,87.0,115.0,200.0,19,0.14841443778775315,41.255916967038694,0.15095338983050846,0.07051282051282051,0.14893617021276595,0.13089005235602094,0.42424242424242425,0.04912280701754386,0.0,0.0 +Shawnee Mountain Ski Area,Pennsylvania,Pennsylvania,1350,700,650,0,0,1,1,0,4,4,10,23.0,2.0,1.6,125.0,125.0,100.0,44.0,50.0,65.0,122.0,120.0,19,0.14841443778775315,41.255916967038694,0.06620762711864407,0.07122507122507123,0.0425531914893617,0.07853403141361257,0.43478260869565216,0.08,0.043478260869565216,0.008 +Ski Sawmill,Pennsylvania,Pennsylvania,2215,515,1700,0,0,0,0,1,1,3,5,14.0,1.0,0.1,15.0,13.0,,50.0,24.0,44.0,90.0,15.0,19,0.14841443778775315,41.255916967038694,0.007944915254237288,,0.02127659574468085,0.00981675392670157,0.35714285714285715,0.3333333333333333,0.0,0.0 +Tussey Mountain,Pennsylvania,Pennsylvania,1750,520,1230,0,0,0,1,0,1,3,5,8.0,1.0,0.3,38.0,30.0,100.0,39.0,41.0,45.0,100.0,30.0,19,0.14841443778775315,41.255916967038694,0.020127118644067795,0.07122507122507123,0.02127659574468085,0.01963350785340314,0.625,0.13157894736842105,0.0,0.0 +Whitetail Resort,Pennsylvania,Pennsylvania,1800,935,865,0,0,1,3,0,2,2,8,23.0,2.0,1.0,120.0,120.0,116.0,28.0,40.0,71.0,100.0,120.0,19,0.14841443778775315,41.255916967038694,0.0635593220338983,0.08262108262108261,0.0425531914893617,0.07853403141361257,0.34782608695652173,0.06666666666666667,0.043478260869565216,0.008333333333333333 +Deer Mountain Ski Resort,South Dakota,South Dakota,6850,940,6040,0,0,0,0,1,1,2,4,63.0,2.0,1.6,500.0,50.0,69.0,51.0,200.0,45.0,81.0,,2,0.22607581000136776,2.593495513252762,0.5263157894736842,0.3770491803278688,0.6666666666666666,,0.06349206349206349,0.008,0.0,0.0 +Terry Peak Ski Area,South Dakota,South Dakota,7100,1100,5900,0,0,3,0,1,0,1,5,30.0,1.0,1.2,450.0,225.0,114.0,65.0,150.0,58.0,120.0,,2,0.22607581000136776,2.593495513252762,0.47368421052631576,0.6229508196721312,0.3333333333333333,,0.16666666666666666,0.011111111111111112,0.1,0.006666666666666667 +Ober Gatlinburg Ski Resort,Tennessee,Tennessee,3300,600,2700,0,0,0,2,0,1,1,4,10.0,1.0,1.0,,,83.0,44.0,35.0,65.0,94.0,,1,0.014643059321669063,2.3728170083523157,,1.0,1.0,,0.4,,0.0, +Alta Ski Area,Salt Lake City,Utah,11068,2538,8530,0,0,3,0,1,2,0,6,116.0,,1.3,2614.0,140.0,150.0,81.0,545.0,116.0,140.0,,13,0.4054950189615709,15.312673003757494,0.08568244394912809,0.09715025906735751,,,0.05172413793103448,0.0022953328232593728,0.02586206896551724,0.0011476664116296864 +Beaver Mountain,Utah,Utah,8600,1600,7232,0,0,0,0,1,3,1,5,48.0,2.0,0.8,464.0,,120.0,81.0,400.0,50.0,120.0,,13,0.4054950189615709,15.312673003757494,0.015209125475285171,0.07772020725388601,0.07692307692307693,,0.10416666666666667,0.010775862068965518,0.0,0.0 +Brian Head Resort,Utah,Utah,10970,1548,9600,0,0,1,0,6,1,0,8,71.0,2.0,0.6,650.0,216.0,149.0,54.0,360.0,59.0,148.0,,13,0.4054950189615709,15.312673003757494,0.02130588698046414,0.09650259067357513,0.07692307692307693,,0.11267605633802817,0.012307692307692308,0.014084507042253521,0.0015384615384615385 +Brighton Resort,Salt Lake City,Utah,10500,1745,8755,0,0,3,1,1,0,2,7,66.0,4.0,1.2,1050.0,200.0,138.0,83.0,500.0,85.0,138.0,200.0,13,0.4054950189615709,15.312673003757494,0.03441720204536515,0.08937823834196891,0.15384615384615385,0.3115264797507788,0.10606060606060606,0.006666666666666667,0.045454545454545456,0.002857142857142857 +Deer Valley Resort,Salt Lake City,Utah,9570,3000,6570,1,0,13,0,5,2,0,21,103.0,,2.8,2026.0,660.0,,39.0,300.0,169.0,,,13,0.4054950189615709,15.312673003757494,0.06640881080372361,,,,0.20388349514563106,0.010365251727541954,0.1262135922330097,0.006416584402764067 +Eagle Point,Utah,Utah,10600,1500,9100,0,0,0,1,1,2,1,5,40.0,1.0,0.9,650.0,,,9.0,400.0,60.0,109.0,,13,0.4054950189615709,15.312673003757494,0.02130588698046414,,0.038461538461538464,,0.125,0.007692307692307693,0.0,0.0 +Powder Mountain,Utah,Utah,9422,2522,6900,0,0,1,4,1,0,3,9,167.0,2.0,3.5,8464.0,,120.0,47.0,500.0,88.0,146.0,300.0,13,0.4054950189615709,15.312673003757494,0.27743542677330535,0.07772020725388601,0.07692307692307693,0.4672897196261682,0.05389221556886228,0.0010633270321361058,0.005988023952095809,0.00011814744801512288 +Snowbasin,Utah,Utah,9350,2900,6450,3,1,2,0,3,0,2,11,107.0,4.0,3.5,3000.0,625.0,143.0,79.0,300.0,115.0,138.0,,13,0.4054950189615709,15.312673003757494,0.09833486298675757,0.09261658031088082,0.15384615384615385,,0.102803738317757,0.0036666666666666666,0.018691588785046728,0.0006666666666666666 +Snowbird,Salt Lake City,Utah,11000,3240,7760,1,0,6,0,0,4,3,14,170.0,1.0,2.5,2500.0,,188.0,48.0,500.0,125.0,180.0,2.0,13,0.4054950189615709,15.312673003757494,0.08194571915563131,0.12176165803108809,0.038461538461538464,0.003115264797507788,0.08235294117647059,0.0056,0.03529411764705882,0.0024 +Solitude Mountain Resort,Salt Lake City,Utah,10488,2494,7994,0,0,4,2,1,1,1,9,80.0,,3.0,1200.0,150.0,161.0,62.0,500.0,119.0,148.0,,13,0.4054950189615709,15.312673003757494,0.03933394519470303,0.10427461139896373,,,0.1125,0.0075,0.05,0.0033333333333333335 +Sundance,Utah,Utah,8250,2150,6100,0,0,0,2,2,0,1,5,45.0,1.0,0.6,450.0,112.0,128.0,50.0,320.0,80.0,129.0,,13,0.4054950189615709,15.312673003757494,0.014750229448013635,0.08290155440414508,0.038461538461538464,,0.1111111111111111,0.011111111111111112,0.0,0.0 +Nordic Valley Resort,Utah,Utah,6400,960,5440,0,0,0,0,0,2,2,4,23.0,1.0,0.4,140.0,84.0,105.0,51.0,300.0,50.0,105.0,140.0,13,0.4054950189615709,15.312673003757494,0.004588960272715353,0.06800518134715026,0.038461538461538464,0.21806853582554517,0.17391304347826086,0.02857142857142857,0.0,0.0 +Bolton Valley,Vermont,Vermont,3150,1704,1446,0,0,0,2,0,3,1,6,71.0,3.0,0.6,300.0,90.0,133.0,53.0,300.0,79.0,132.0,50.0,15,2.4038885300862676,155.99001663893512,0.04144218814753419,0.07484524479459764,0.06,1.0,0.08450704225352113,0.02,0.0,0.0 +Bromley Mountain,Vermont,Vermont,3284,1334,1950,0,0,1,1,0,4,3,9,47.0,1.0,2.5,178.0,153.0,,83.0,168.0,91.0,152.0,,15,2.4038885300862676,155.99001663893512,0.02458903163420362,,0.02,,0.19148936170212766,0.05056179775280899,0.02127659574468085,0.0056179775280898875 +Burke Mountain,Vermont,Vermont,3267,2011,1210,0,0,2,1,0,0,3,6,50.0,3.0,2.2,178.0,125.0,110.0,62.0,217.0,73.0,125.0,,15,2.4038885300862676,155.99001663893512,0.02458903163420362,0.061902082160945414,0.06,,0.12,0.033707865168539325,0.04,0.011235955056179775 +Jay Peak,Vermont,Vermont,3968,2153,1815,1,0,1,3,1,1,2,9,79.0,2.0,3.0,385.0,300.0,155.0,64.0,349.0,89.0,160.0,,15,2.4038885300862676,155.99001663893512,0.05318414145600221,0.08722566122678672,0.04,,0.11392405063291139,0.023376623376623377,0.012658227848101266,0.0025974025974025974 +Killington Resort,Vermont,Vermont,4241,3050,1165,3,1,5,4,3,1,5,22,155.0,6.0,6.0,1515.0,600.0,192.0,61.0,250.0,119.0,,,15,2.4038885300862676,155.99001663893512,0.20928305014504767,0.1080472706809229,0.12,,0.14193548387096774,0.014521452145214522,0.03225806451612903,0.0033003300330033004 +Magic Mountain,Vermont,Vermont,2850,1500,1350,0,0,0,0,0,3,3,6,50.0,1.0,1.6,205.0,95.0,76.0,59.0,150.0,74.0,80.0,,15,2.4038885300862676,155.99001663893512,0.028318828567481698,0.04276871131119865,0.02,,0.12,0.02926829268292683,0.0,0.0 +Pico Mountain,Vermont,Vermont,3967,1967,2000,0,0,2,0,2,2,1,7,59.0,1.0,4.0,260.0,156.0,,82.0,250.0,81.0,,,15,2.4038885300862676,155.99001663893512,0.0359165630611963,,0.02,,0.11864406779661017,0.026923076923076925,0.03389830508474576,0.007692307692307693 +Smugglers' Notch Resort,Vermont,Vermont,3640,2610,1030,0,0,0,0,0,6,2,8,78.0,6.0,3.0,1000.0,192.0,136.0,63.0,280.0,79.0,135.0,,15,2.4038885300862676,155.99001663893512,0.1381406271584473,0.07653348339898705,0.12,,0.10256410256410256,0.008,0.0,0.0 +Sugarbush,Vermont,Vermont,4083,2600,1483,0,0,5,5,2,1,3,16,111.0,4.0,3.0,581.0,406.0,150.0,61.0,250.0,119.0,156.0,,15,2.4038885300862676,155.99001663893512,0.08025970437905788,0.08441193021947102,0.08,,0.14414414414414414,0.027538726333907058,0.04504504504504504,0.008605851979345954 +Suicide Six,Vermont,Vermont,1200,650,550,0,0,0,0,0,2,1,3,24.0,,0.4,100.0,50.0,100.0,85.0,90.0,75.0,106.0,,15,2.4038885300862676,155.99001663893512,0.01381406271584473,0.056274620146314014,,,0.125,0.03,0.0,0.0 +Bryce Resort,Virginia,Virginia,1750,500,1250,0,0,0,1,0,1,5,7,8.0,,0.4,25.0,25.0,100.0,54.0,30.0,68.0,95.0,20.0,4,0.04686299684881493,9.35125657510228,0.09293680297397769,0.273224043715847,,0.14814814814814814,0.875,0.28,0.0,0.0 +49 Degrees North,Washington,Washington,5774,1851,3932,0,0,0,1,0,5,1,7,89.0,1.0,2.0,2325.0,,101.0,48.0,301.0,62.0,135.0,250.0,10,0.13132160885254723,14.02563886785043,0.15166340508806261,0.09882583170254403,0.047619047619047616,0.12518778167250877,0.07865168539325842,0.003010752688172043,0.0,0.0 +Bluewood,Washington,Washington,5670,1125,4545,0,0,0,0,2,0,1,3,24.0,2.0,2.0,355.0,,70.0,40.0,300.0,47.0,110.0,,10,0.13132160885254723,14.02563886785043,0.023157208088714937,0.0684931506849315,0.09523809523809523,,0.125,0.008450704225352112,0.0,0.0 +Crystal Mountain,Washington,Washington,7012,3100,4400,1,2,2,1,2,2,0,10,57.0,1.0,2.5,2600.0,10.0,,57.0,486.0,99.0,,,10,0.13132160885254723,14.02563886785043,0.16960208741030658,,0.047619047619047616,,0.17543859649122806,0.0038461538461538464,0.03508771929824561,0.0007692307692307692 +Mt. Baker,Washington,Washington,5000,1500,3500,0,0,0,8,0,0,2,10,38.0,,0.7,1000.0,,143.0,66.0,663.0,60.01,165.0,,10,0.13132160885254723,14.02563886785043,0.06523157208088715,0.13992172211350293,,,0.2631578947368421,0.01,0.0,0.0 +Mt. Spokane Ski and Snowboard Park,Washington,Washington,5889,2000,4200,0,0,0,0,1,5,1,7,52.0,3.0,0.6,1704.0,,100.0,81.0,300.0,59.0,103.0,45.0,10,0.13132160885254723,14.02563886785043,0.1111545988258317,0.09784735812133072,0.14285714285714285,0.022533800701051578,0.1346153846153846,0.004107981220657277,0.0,0.0 +The Summit at Snoqualmie,Washington,Washington,3865,1025,2840,0,0,3,3,4,10,7,27,112.0,5.0,0.8,1994.0,5.0,120.0,82.0,428.0,95.0,140.0,541.0,10,0.13132160885254723,14.02563886785043,0.13007175472928897,0.11741682974559686,0.23809523809523808,0.27090635953930897,0.24107142857142858,0.01354062186559679,0.026785714285714284,0.0015045135406218655 +White Pass,Washington,Washington,6550,2050,4500,0,0,2,1,1,2,2,8,45.0,2.0,2.5,1402.0,30.0,148.0,67.0,400.0,69.0,144.0,90.0,10,0.13132160885254723,14.02563886785043,0.09145466405740378,0.14481409001956946,0.09523809523809523,0.045067601402103155,0.17777777777777778,0.005706134094151213,0.044444444444444446,0.0014265335235378032 +Canaan Valley Resort,West Virginia,West Virginia,4280,850,3430,0,0,0,1,2,0,1,4,47.0,1.0,1.2,95.0,75.0,,48.0,160.0,68.0,93.0,,4,0.22319597666932456,16.50846058605035,0.1752767527675277,,0.1111111111111111,,0.0851063829787234,0.042105263157894736,0.0,0.0 +Snowshoe Mountain Resort,West Virginia,West Virginia,4848,1500,3348,0,0,3,2,6,0,3,14,60.0,5.0,1.5,257.0,257.0,125.0,46.0,180.0,87.0,138.0,86.0,4,0.22319597666932456,16.50846058605035,0.474169741697417,0.3654970760233918,0.5555555555555556,0.45989304812834225,0.23333333333333334,0.054474708171206226,0.05,0.011673151750972763 +Timberline Four Seasons,West Virginia,West Virginia,4265,1000,3268,0,0,0,0,2,1,1,4,40.0,1.0,2.0,100.0,100.0,97.0,37.0,150.0,92.0,115.0,27.0,4,0.22319597666932456,16.50846058605035,0.18450184501845018,0.28362573099415206,0.1111111111111111,0.1443850267379679,0.1,0.04,0.0,0.0 +Winterplace Ski Resort,West Virginia,West Virginia,3600,603,2997,0,0,0,2,3,2,2,9,27.0,2.0,1.2,90.0,90.0,120.0,36.0,100.0,72.0,120.0,74.0,4,0.22319597666932456,16.50846058605035,0.16605166051660517,0.3508771929824561,0.2222222222222222,0.39572192513368987,0.3333333333333333,0.1,0.0,0.0 +Alpine Valley Resort,Wisconsin,Wisconsin,1040,388,820,0,0,3,0,3,1,5,12,21.0,3.0,0.2,90.0,90.0,100.0,55.0,80.0,65.0,120.0,90.0,15,0.2576242169511926,22.90216196408941,0.05142857142857143,0.06583278472679395,0.075,0.08450704225352113,0.5714285714285714,0.13333333333333333,0.14285714285714285,0.03333333333333333 +Bruce Mound,Wisconsin,Wisconsin,1375,375,1000,0,0,0,0,1,0,4,5,12.0,2.0,0.5,40.0,30.0,42.0,71.0,42.0,25.0,42.0,30.0,15,0.2576242169511926,22.90216196408941,0.022857142857142857,0.027649769585253458,0.05,0.028169014084507043,0.4166666666666667,0.125,0.0,0.0 +Cascade Mountain,Wisconsin,Wisconsin,1280,460,820,0,0,2,2,3,2,3,12,47.0,4.0,1.1,175.0,175.0,120.0,57.0,56.0,64.0,120.0,,15,0.2576242169511926,22.90216196408941,0.1,0.07899934167215274,0.1,,0.2553191489361702,0.06857142857142857,0.0425531914893617,0.011428571428571429 +Christie Mountain,Wisconsin,Wisconsin,1650,350,1300,0,0,0,0,0,1,5,6,30.0,4.0,0.8,45.0,41.0,92.0,43.0,48.0,38.0,120.0,35.0,15,0.2576242169511926,22.90216196408941,0.025714285714285714,0.06056616194865043,0.1,0.03286384976525822,0.2,0.13333333333333333,0.0,0.0 +Devils Head,Wisconsin,Wisconsin,995,500,495,0,0,0,3,1,6,2,12,27.0,1.0,1.0,260.0,260.0,110.0,48.0,45.0,65.0,135.0,200.0,15,0.2576242169511926,22.90216196408941,0.14857142857142858,0.07241606319947334,0.025,0.18779342723004694,0.4444444444444444,0.046153846153846156,0.0,0.0 +Grand Geneva,Wisconsin,Wisconsin,1086,211,875,0,0,0,0,0,3,3,6,20.0,1.0,0.2,30.0,30.0,90.0,25.0,25.0,49.0,93.0,30.0,15,0.2576242169511926,22.90216196408941,0.017142857142857144,0.05924950625411455,0.025,0.028169014084507043,0.3,0.2,0.0,0.0 +Granite Peak Ski Area,Wisconsin,Wisconsin,1942,700,1242,0,1,2,0,2,0,2,7,75.0,4.0,0.6,220.0,160.0,136.0,82.0,75.0,92.0,135.0,200.0,15,0.2576242169511926,22.90216196408941,0.12571428571428572,0.08953258722843976,0.1,0.18779342723004694,0.09333333333333334,0.031818181818181815,0.02666666666666667,0.00909090909090909 +Mount La Crosse,Wisconsin,Wisconsin,1110,516,594,0,0,0,0,0,3,1,4,19.0,1.0,0.4,100.0,100.0,115.0,60.0,40.0,56.0,100.0,90.0,15,0.2576242169511926,22.90216196408941,0.05714285714285714,0.07570770243581304,0.025,0.08450704225352113,0.21052631578947367,0.04,0.0,0.0 +Nordic Mountain,Wisconsin,Wisconsin,1137,265,872,0,0,0,0,1,1,5,7,18.0,4.0,1.0,60.0,60.0,68.0,43.0,80.0,47.0,90.0,60.0,15,0.2576242169511926,22.90216196408941,0.03428571428571429,0.04476629361421988,0.1,0.056338028169014086,0.3888888888888889,0.11666666666666667,0.0,0.0 +Sunburst,Wisconsin,Wisconsin,1100,214,866,0,0,0,0,0,3,6,9,13.0,4.0,0.5,37.0,37.0,99.0,59.0,50.0,44.0,115.0,37.0,15,0.2576242169511926,22.90216196408941,0.021142857142857144,0.065174456879526,0.1,0.03474178403755868,0.6923076923076923,0.24324324324324326,0.0,0.0 +Trollhaugen,Wisconsin,Wisconsin,1200,260,920,0,0,0,2,0,1,5,8,24.0,4.0,0.5,86.0,86.0,130.0,69.0,50.0,54.0,120.0,86.0,15,0.2576242169511926,22.90216196408941,0.04914285714285714,0.08558262014483213,0.1,0.08075117370892018,0.3333333333333333,0.09302325581395349,0.0,0.0 +Tyrol Basin,Wisconsin,Wisconsin,1160,300,860,0,0,0,0,3,0,2,5,18.0,5.0,0.5,32.0,32.0,112.0,61.0,41.0,48.0,103.0,32.0,15,0.2576242169511926,22.90216196408941,0.018285714285714287,0.07373271889400922,0.125,0.03004694835680751,0.2777777777777778,0.15625,0.0,0.0 +Whitecap Mountain,Wisconsin,Wisconsin,1750,400,1295,0,0,0,1,0,4,0,5,43.0,1.0,1.0,400.0,300.0,105.0,57.0,200.0,60.0,118.0,,15,0.2576242169511926,22.90216196408941,0.22857142857142856,0.06912442396313365,0.025,,0.11627906976744186,0.0125,0.0,0.0 +Wilmot Mountain,Wisconsin,Wisconsin,1030,230,800,0,0,0,3,2,2,3,10,23.0,2.0,0.5,135.0,135.0,125.0,81.0,70.0,66.0,139.0,135.0,15,0.2576242169511926,22.90216196408941,0.07714285714285714,0.08229098090849243,0.05,0.1267605633802817,0.43478260869565216,0.07407407407407407,0.0,0.0 +Grand Targhee Resort,Wyoming,Wyoming,9920,2270,7851,0,0,2,2,0,0,1,5,95.0,1.0,2.7,2602.0,,152.0,50.0,500.0,90.0,152.0,,8,1.3822679215355613,8.17887192908918,0.3988962133987429,0.2122905027932961,0.07142857142857142,,0.05263157894736842,0.001921598770176787,0.021052631578947368,0.0007686395080707148 +Hogadon Basin,Wyoming,Wyoming,8000,640,7400,0,0,0,0,0,1,1,2,28.0,1.0,0.6,92.0,32.0,121.0,61.0,80.0,48.0,95.0,,8,1.3822679215355613,8.17887192908918,0.01410393990495171,0.16899441340782123,0.07142857142857142,,0.07142857142857142,0.021739130434782608,0.0,0.0 +Sleeping Giant Ski Resort,Wyoming,Wyoming,7428,810,6619,0,0,0,0,1,1,1,3,48.0,1.0,1.0,184.0,18.0,61.0,81.0,310.0,42.0,77.0,,8,1.3822679215355613,8.17887192908918,0.02820787980990342,0.08519553072625698,0.07142857142857142,,0.0625,0.016304347826086956,0.0,0.0 +Snow King Resort,Wyoming,Wyoming,7808,1571,6237,0,0,0,1,1,1,0,3,32.0,2.0,1.0,400.0,250.0,121.0,80.0,300.0,59.0,123.0,110.0,8,1.3822679215355613,8.17887192908918,0.06132147784761613,0.16899441340782123,0.14285714285714285,1.0,0.09375,0.0075,0.0,0.0 +Snowy Range Ski & Recreation Area,Wyoming,Wyoming,9663,990,8798,0,0,0,0,1,3,1,5,33.0,2.0,0.7,75.0,30.0,131.0,59.0,250.0,49.0,,,8,1.3822679215355613,8.17887192908918,0.011497777096428024,0.1829608938547486,0.14285714285714285,,0.15151515151515152,0.06666666666666667,0.0,0.0 +White Pine Ski Area,Wyoming,Wyoming,9500,1100,8400,0,0,0,0,2,0,0,2,25.0,,0.4,370.0,,,81.0,150.0,49.0,,,8,1.3822679215355613,8.17887192908918,0.05672236700904492,,,,0.08,0.005405405405405406,0.0,0.0 From 2c5ea33c987eda945afd76278212bbc0c98d7348 Mon Sep 17 00:00:00 2001 From: jiahui-01 Date: Sun, 30 Apr 2023 23:35:50 -0500 Subject: [PATCH 6/7] Finished the code part4 --- Notebooks/04_preprocessing_and_training.ipynb | 1135 +++++++++++------ models/ski_resort_pricing_model.pkl | Bin 0 -> 5145293 bytes 2 files changed, 745 insertions(+), 390 deletions(-) create mode 100644 models/ski_resort_pricing_model.pkl diff --git a/Notebooks/04_preprocessing_and_training.ipynb b/Notebooks/04_preprocessing_and_training.ipynb index 94ff2aeba..a31dd0248 100644 --- a/Notebooks/04_preprocessing_and_training.ipynb +++ b/Notebooks/04_preprocessing_and_training.ipynb @@ -119,6 +119,7 @@ "from sklearn.pipeline import make_pipeline\n", "from sklearn.impute import SimpleImputer\n", "from sklearn.feature_selection import SelectKBest, f_regression\n", + "\n", "import datetime\n", "\n", "from library.sb_utils import save_file" @@ -281,91 +282,91 @@ " \n", " \n", " Runs\n", - " 76\n", - " 36\n", - " 13\n", - " 55\n", - " 65\n", + " 76.0\n", + " 36.0\n", + " 13.0\n", + " 55.0\n", + " 65.0\n", " \n", " \n", " TerrainParks\n", - " 2\n", - " 1\n", - " 1\n", - " 4\n", - " 2\n", + " 2.0\n", + " 1.0\n", + " 1.0\n", + " 4.0\n", + " 2.0\n", " \n", " \n", " LongestRun_mi\n", - " 1\n", - " 2\n", - " 1\n", - " 2\n", + " 1.0\n", + " 2.0\n", + " 1.0\n", + " 2.0\n", " 1.2\n", " \n", " \n", " SkiableTerrain_ac\n", - " 1610\n", - " 640\n", - " 30\n", - " 777\n", - " 800\n", + " 1610.0\n", + " 640.0\n", + " 30.0\n", + " 777.0\n", + " 800.0\n", " \n", " \n", " Snow Making_ac\n", - " 113\n", - " 60\n", - " 30\n", - " 104\n", - " 80\n", + " 113.0\n", + " 60.0\n", + " 30.0\n", + " 104.0\n", + " 80.0\n", " \n", " \n", " daysOpenLastYear\n", - " 150\n", - " 45\n", - " 150\n", - " 122\n", - " 115\n", + " 150.0\n", + " 45.0\n", + " 150.0\n", + " 122.0\n", + " 115.0\n", " \n", " \n", " yearsOpen\n", - " 60\n", - " 44\n", - " 36\n", - " 81\n", - " 49\n", + " 60.0\n", + " 44.0\n", + " 36.0\n", + " 81.0\n", + " 49.0\n", " \n", " \n", " averageSnowfall\n", - " 669\n", - " 350\n", - " 69\n", - " 260\n", - " 250\n", + " 669.0\n", + " 350.0\n", + " 69.0\n", + " 260.0\n", + " 250.0\n", " \n", " \n", " AdultWeekend\n", - " 85\n", - " 53\n", - " 34\n", - " 89\n", - " 78\n", + " 85.0\n", + " 53.0\n", + " 34.0\n", + " 89.0\n", + " 78.0\n", " \n", " \n", " projectedDaysOpen\n", - " 150\n", - " 90\n", - " 152\n", - " 122\n", - " 104\n", + " 150.0\n", + " 90.0\n", + " 152.0\n", + " 122.0\n", + " 104.0\n", " \n", " \n", " NightSkiing_ac\n", - " 550\n", + " 550.0\n", " NaN\n", - " 30\n", + " 30.0\n", " NaN\n", - " 80\n", + " 80.0\n", " \n", " \n", " resorts_per_state\n", @@ -380,8 +381,8 @@ " 0.410091\n", " 0.410091\n", " 0.410091\n", - " 0.0274774\n", - " 0.0274774\n", + " 0.027477\n", + " 0.027477\n", " \n", " \n", " resorts_per_100ksq_mile\n", @@ -395,7 +396,7 @@ " resort_skiable_area_ac_state_ratio\n", " 0.70614\n", " 0.280702\n", - " 0.0131579\n", + " 0.013158\n", " 0.492708\n", " 0.507292\n", " \n", @@ -419,13 +420,13 @@ " resort_night_skiing_state_ratio\n", " 0.948276\n", " NaN\n", - " 0.0517241\n", + " 0.051724\n", " NaN\n", - " 1\n", + " 1.0\n", " \n", " \n", " total_chairs_runs_ratio\n", - " 0.0921053\n", + " 0.092105\n", " 0.111111\n", " 0.230769\n", " 0.145455\n", @@ -433,7 +434,7 @@ " \n", " \n", " total_chairs_skiable_ratio\n", - " 0.00434783\n", + " 0.004348\n", " 0.00625\n", " 0.1\n", " 0.010296\n", @@ -441,18 +442,18 @@ " \n", " \n", " fastQuads_runs_ratio\n", - " 0.0263158\n", - " 0\n", - " 0\n", - " 0\n", - " 0.0153846\n", + " 0.026316\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", + " 0.015385\n", " \n", " \n", " fastQuads_skiable_ratio\n", - " 0.00124224\n", - " 0\n", - " 0\n", - " 0\n", + " 0.001242\n", + " 0.0\n", + " 0.0\n", + " 0.0\n", " 0.00125\n", " \n", " \n", @@ -475,17 +476,17 @@ "double 0 4 \n", "surface 2 0 \n", "total_chairs 7 4 \n", - "Runs 76 36 \n", - "TerrainParks 2 1 \n", - "LongestRun_mi 1 2 \n", - "SkiableTerrain_ac 1610 640 \n", - "Snow Making_ac 113 60 \n", - "daysOpenLastYear 150 45 \n", - "yearsOpen 60 44 \n", - "averageSnowfall 669 350 \n", - "AdultWeekend 85 53 \n", - "projectedDaysOpen 150 90 \n", - "NightSkiing_ac 550 NaN \n", + "Runs 76.0 36.0 \n", + "TerrainParks 2.0 1.0 \n", + "LongestRun_mi 1.0 2.0 \n", + "SkiableTerrain_ac 1610.0 640.0 \n", + "Snow Making_ac 113.0 60.0 \n", + "daysOpenLastYear 150.0 45.0 \n", + "yearsOpen 60.0 44.0 \n", + "averageSnowfall 669.0 350.0 \n", + "AdultWeekend 85.0 53.0 \n", + "projectedDaysOpen 150.0 90.0 \n", + "NightSkiing_ac 550.0 NaN \n", "resorts_per_state 3 3 \n", "resorts_per_100kcapita 0.410091 0.410091 \n", "resorts_per_100ksq_mile 0.450867 0.450867 \n", @@ -493,10 +494,10 @@ "resort_days_open_state_ratio 0.434783 0.130435 \n", "resort_terrain_park_state_ratio 0.5 0.25 \n", "resort_night_skiing_state_ratio 0.948276 NaN \n", - "total_chairs_runs_ratio 0.0921053 0.111111 \n", - "total_chairs_skiable_ratio 0.00434783 0.00625 \n", - "fastQuads_runs_ratio 0.0263158 0 \n", - "fastQuads_skiable_ratio 0.00124224 0 \n", + "total_chairs_runs_ratio 0.092105 0.111111 \n", + "total_chairs_skiable_ratio 0.004348 0.00625 \n", + "fastQuads_runs_ratio 0.026316 0.0 \n", + "fastQuads_skiable_ratio 0.001242 0.0 \n", "\n", " 2 3 \\\n", "Name Hilltop Ski Area Arizona Snowbowl \n", @@ -513,28 +514,28 @@ "double 0 1 \n", "surface 2 2 \n", "total_chairs 3 8 \n", - "Runs 13 55 \n", - "TerrainParks 1 4 \n", - "LongestRun_mi 1 2 \n", - "SkiableTerrain_ac 30 777 \n", - "Snow Making_ac 30 104 \n", - "daysOpenLastYear 150 122 \n", - "yearsOpen 36 81 \n", - "averageSnowfall 69 260 \n", - "AdultWeekend 34 89 \n", - "projectedDaysOpen 152 122 \n", - "NightSkiing_ac 30 NaN \n", + "Runs 13.0 55.0 \n", + "TerrainParks 1.0 4.0 \n", + "LongestRun_mi 1.0 2.0 \n", + "SkiableTerrain_ac 30.0 777.0 \n", + "Snow Making_ac 30.0 104.0 \n", + "daysOpenLastYear 150.0 122.0 \n", + "yearsOpen 36.0 81.0 \n", + "averageSnowfall 69.0 260.0 \n", + "AdultWeekend 34.0 89.0 \n", + "projectedDaysOpen 152.0 122.0 \n", + "NightSkiing_ac 30.0 NaN \n", "resorts_per_state 3 2 \n", - "resorts_per_100kcapita 0.410091 0.0274774 \n", + "resorts_per_100kcapita 0.410091 0.027477 \n", "resorts_per_100ksq_mile 0.450867 1.75454 \n", - "resort_skiable_area_ac_state_ratio 0.0131579 0.492708 \n", + "resort_skiable_area_ac_state_ratio 0.013158 0.492708 \n", "resort_days_open_state_ratio 0.434783 0.514768 \n", "resort_terrain_park_state_ratio 0.25 0.666667 \n", - "resort_night_skiing_state_ratio 0.0517241 NaN \n", + "resort_night_skiing_state_ratio 0.051724 NaN \n", "total_chairs_runs_ratio 0.230769 0.145455 \n", "total_chairs_skiable_ratio 0.1 0.010296 \n", - "fastQuads_runs_ratio 0 0 \n", - "fastQuads_skiable_ratio 0 0 \n", + "fastQuads_runs_ratio 0.0 0.0 \n", + "fastQuads_skiable_ratio 0.0 0.0 \n", "\n", " 4 \n", "Name Sunrise Park Resort \n", @@ -551,27 +552,27 @@ "double 1 \n", "surface 0 \n", "total_chairs 7 \n", - "Runs 65 \n", - "TerrainParks 2 \n", + "Runs 65.0 \n", + "TerrainParks 2.0 \n", "LongestRun_mi 1.2 \n", - "SkiableTerrain_ac 800 \n", - "Snow Making_ac 80 \n", - "daysOpenLastYear 115 \n", - "yearsOpen 49 \n", - "averageSnowfall 250 \n", - "AdultWeekend 78 \n", - "projectedDaysOpen 104 \n", - "NightSkiing_ac 80 \n", + "SkiableTerrain_ac 800.0 \n", + "Snow Making_ac 80.0 \n", + "daysOpenLastYear 115.0 \n", + "yearsOpen 49.0 \n", + "averageSnowfall 250.0 \n", + "AdultWeekend 78.0 \n", + "projectedDaysOpen 104.0 \n", + "NightSkiing_ac 80.0 \n", "resorts_per_state 2 \n", - "resorts_per_100kcapita 0.0274774 \n", + "resorts_per_100kcapita 0.027477 \n", "resorts_per_100ksq_mile 1.75454 \n", "resort_skiable_area_ac_state_ratio 0.507292 \n", "resort_days_open_state_ratio 0.485232 \n", "resort_terrain_park_state_ratio 0.333333 \n", - "resort_night_skiing_state_ratio 1 \n", + "resort_night_skiing_state_ratio 1.0 \n", "total_chairs_runs_ratio 0.107692 \n", "total_chairs_skiable_ratio 0.00875 \n", - "fastQuads_runs_ratio 0.0153846 \n", + "fastQuads_runs_ratio 0.015385 \n", "fastQuads_skiable_ratio 0.00125 " ] }, @@ -927,7 +928,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -938,16 +939,16 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "((193, 35), (83, 35))" + "((193, 35), (84, 35))" ] }, - "execution_count": 10, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -958,16 +959,16 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "((193,), (83,))" + "((193,), (84,))" ] }, - "execution_count": 11, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -978,41 +979,138 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "((193, 32), (84, 32))" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 1#\n", "#Save the 'Name', 'state', and 'Region' columns from the train/test data into names_train and names_test\n", "#Then drop those columns from `X_train` and `X_test`. Use 'inplace=True'\n", "names_list = ['Name', 'state', 'Region']\n", - "names_train = X_train[___]\n", - "names_test = X_test[___]\n", - "X_train.___(columns=names_list, inplace=___)\n", - "X_test.___(columns=names_list, inplace=___)\n", + "names_train = X_train[names_list]\n", + "names_test = X_test[names_list]\n", + "X_train.drop(columns=names_list, inplace=True)\n", + "X_test.drop(columns=names_list, inplace=True)\n", "X_train.shape, X_test.shape" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "summit_elev int64\n", + "vertical_drop int64\n", + "base_elev int64\n", + "trams int64\n", + "fastSixes int64\n", + "fastQuads int64\n", + "quad int64\n", + "triple int64\n", + "double int64\n", + "surface int64\n", + "total_chairs int64\n", + "Runs float64\n", + "TerrainParks float64\n", + "LongestRun_mi float64\n", + "SkiableTerrain_ac float64\n", + "Snow Making_ac float64\n", + "daysOpenLastYear float64\n", + "yearsOpen float64\n", + "averageSnowfall float64\n", + "projectedDaysOpen float64\n", + "NightSkiing_ac float64\n", + "resorts_per_state int64\n", + "resorts_per_100kcapita float64\n", + "resorts_per_100ksq_mile float64\n", + "resort_skiable_area_ac_state_ratio float64\n", + "resort_days_open_state_ratio float64\n", + "resort_terrain_park_state_ratio float64\n", + "resort_night_skiing_state_ratio float64\n", + "total_chairs_runs_ratio float64\n", + "total_chairs_skiable_ratio float64\n", + "fastQuads_runs_ratio float64\n", + "fastQuads_skiable_ratio float64\n", + "dtype: object" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 2#\n", "#Check the `dtypes` attribute of `X_train` to verify all features are numeric\n", - "X_train.___" + "X_train.dtypes" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "summit_elev int64\n", + "vertical_drop int64\n", + "base_elev int64\n", + "trams int64\n", + "fastSixes int64\n", + "fastQuads int64\n", + "quad int64\n", + "triple int64\n", + "double int64\n", + "surface int64\n", + "total_chairs int64\n", + "Runs float64\n", + "TerrainParks float64\n", + "LongestRun_mi float64\n", + "SkiableTerrain_ac float64\n", + "Snow Making_ac float64\n", + "daysOpenLastYear float64\n", + "yearsOpen float64\n", + "averageSnowfall float64\n", + "projectedDaysOpen float64\n", + "NightSkiing_ac float64\n", + "resorts_per_state int64\n", + "resorts_per_100kcapita float64\n", + "resorts_per_100ksq_mile float64\n", + "resort_skiable_area_ac_state_ratio float64\n", + "resort_days_open_state_ratio float64\n", + "resort_terrain_park_state_ratio float64\n", + "resort_night_skiing_state_ratio float64\n", + "total_chairs_runs_ratio float64\n", + "total_chairs_skiable_ratio float64\n", + "fastQuads_runs_ratio float64\n", + "fastQuads_skiable_ratio float64\n", + "dtype: object" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 3#\n", "#Repeat this check for the test split in `X_test`\n", - "X_test.___" + "X_test.dtypes" ] }, { @@ -1038,13 +1136,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "63.961398963730566" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 4#\n", "#Calculate the mean of `y_train`\n", - "train_mean = y_train.___\n", + "train_mean = y_train.mean()\n", "train_mean" ] }, @@ -1057,17 +1166,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[63.96139896]])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 5#\n", "#Fit the dummy regressor on the training data\n", "#Hint, call its `.fit()` method with `X_train` and `y_train` as arguments\n", "#Then print the object's `constant_` attribute and verify it's the same as the mean above\n", "dumb_reg = DummyRegressor(strategy='mean')\n", - "dumb_reg.___(___, ___)\n", - "dumb_reg.___" + "dumb_reg.fit(X_train, y_train)\n", + "dumb_reg.constant_" ] }, { @@ -1124,7 +1244,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -1140,9 +1260,9 @@ " ypred -- the predicted values\n", " \"\"\"\n", " ybar = np.sum(y) / len(y) #yes, we could use np.mean(y)\n", - " sum_sq_tot = np.___((y - ybar)**2) #total sum of squares error\n", - " sum_sq_res = np.___((y - ypred)**2) #residual sum of squares error\n", - " R2 = 1.0 - ___ / ___\n", + " sum_sq_tot = np.sum((y - ybar)**2) #total sum of squares error\n", + " sum_sq_res = np.sum((y - ypred)**2) #residual sum of squares error\n", + " R2 = 1.0 - sum_sq_res / sum_sq_tot\n", " return R2" ] }, @@ -1155,16 +1275,16 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([63.81108808, 63.81108808, 63.81108808, 63.81108808, 63.81108808])" + "array([63.96139896, 63.96139896, 63.96139896, 63.96139896, 63.96139896])" ] }, - "execution_count": 18, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -1183,16 +1303,16 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([63.81108808, 63.81108808, 63.81108808, 63.81108808, 63.81108808])" + "array([63.96139896, 63.96139896, 63.96139896, 63.96139896, 63.96139896])" ] }, - "execution_count": 19, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -1211,7 +1331,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -1220,7 +1340,7 @@ "0.0" ] }, - "execution_count": 20, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -1245,16 +1365,16 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "-0.0031235200417913944" + "-0.0015324079131544543" ] }, - "execution_count": 21, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -1296,7 +1416,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -1311,23 +1431,23 @@ " y -- the observed values\n", " ypred -- the predicted values\n", " \"\"\"\n", - " abs_error = np.abs(___ - ___)\n", - " mae = np.mean(___)\n", + " abs_error = np.abs(y - ypred)\n", + " mae = np.mean(abs_error)\n", " return mae" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "17.923463717146785" + "17.735482831753874" ] }, - "execution_count": 23, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1338,16 +1458,16 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "19.136142081278486" + "19.58960461386627" ] }, - "execution_count": 24, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1381,7 +1501,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": { "scrolled": true }, @@ -1398,23 +1518,23 @@ " y -- the observed values\n", " ypred -- the predicted values\n", " \"\"\"\n", - " sq_error = (___ - ___)**2\n", - " mse = np.mean(___)\n", + " sq_error = (y - ypred)**2\n", + " mse = np.mean(sq_error)\n", " return mse" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "614.1334096969057" + "558.775482498859" ] }, - "execution_count": 26, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1425,16 +1545,16 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "581.4365441953481" + "704.8367793503884" ] }, - "execution_count": 27, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -1452,16 +1572,16 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([24.78171523, 24.11299534])" + "array([23.63843232, 26.54876229])" ] }, - "execution_count": 28, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1493,16 +1613,16 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.0, -0.0031235200417913944)" + "(0.0, -0.0015324079131544543)" ] }, - "execution_count": 29, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -1520,16 +1640,16 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(17.92346371714677, 19.136142081278486)" + "(17.735482831753874, 19.58960461386627)" ] }, - "execution_count": 30, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -1547,16 +1667,16 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(614.1334096969046, 581.4365441953483)" + "(558.775482498859, 704.8367793503884)" ] }, - "execution_count": 31, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -1588,16 +1708,16 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.0, -3.041041349306602e+30)" + "(0.0, -1.1067688684101517e+31)" ] }, - "execution_count": 32, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -1610,16 +1730,16 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(-0.0031235200417913944, 0.0)" + "(-0.0015324079131544543, -3.490182681275203e+30)" ] }, - "execution_count": 33, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -1632,16 +1752,16 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.0, -3.041041349306602e+30)" + "(0.0, -1.1067688684101517e+31)" ] }, - "execution_count": 34, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -1654,24 +1774,16 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 31, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/guy/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:15: RuntimeWarning: divide by zero encountered in double_scalars\n", - " from ipykernel import kernelapp as app\n" - ] - }, { "data": { "text/plain": [ - "(-0.0031235200417913944, -inf)" + "(-0.0015324079131544543, -3.490182681275203e+30)" ] }, - "execution_count": 35, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -1737,48 +1849,48 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "summit_elev 2215.000000\n", - "vertical_drop 750.000000\n", + "summit_elev 2250.000000\n", + "vertical_drop 800.000000\n", "base_elev 1300.000000\n", "trams 0.000000\n", "fastSixes 0.000000\n", "fastQuads 0.000000\n", - "quad 1.000000\n", + "quad 0.000000\n", "triple 1.000000\n", "double 1.000000\n", "surface 2.000000\n", "total_chairs 7.000000\n", - "Runs 28.000000\n", + "Runs 30.000000\n", "TerrainParks 2.000000\n", "LongestRun_mi 1.000000\n", - "SkiableTerrain_ac 170.000000\n", - "Snow Making_ac 96.500000\n", - "daysOpenLastYear 109.000000\n", - "yearsOpen 57.000000\n", - "averageSnowfall 120.000000\n", + "SkiableTerrain_ac 178.000000\n", + "Snow Making_ac 100.000000\n", + "daysOpenLastYear 110.000000\n", + "yearsOpen 58.000000\n", + "averageSnowfall 125.000000\n", "projectedDaysOpen 115.000000\n", "NightSkiing_ac 70.000000\n", "resorts_per_state 15.000000\n", "resorts_per_100kcapita 0.248243\n", "resorts_per_100ksq_mile 22.902162\n", - "resort_skiable_area_ac_state_ratio 0.051458\n", - "resort_days_open_state_ratio 0.071225\n", + "resort_skiable_area_ac_state_ratio 0.051687\n", + "resort_days_open_state_ratio 0.071821\n", "resort_terrain_park_state_ratio 0.069444\n", "resort_night_skiing_state_ratio 0.077081\n", "total_chairs_runs_ratio 0.200000\n", - "total_chairs_skiable_ratio 0.040323\n", + "total_chairs_skiable_ratio 0.040000\n", "fastQuads_runs_ratio 0.000000\n", "fastQuads_skiable_ratio 0.000000\n", "dtype: float64" ] }, - "execution_count": 36, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -1798,15 +1910,15 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "#Code task 9#\n", "#Call `X_train` and `X_test`'s `fillna()` method, passing `X_defaults_median` as the values to use\n", "#Assign the results to `X_tr` and `X_te`, respectively\n", - "X_tr = X_train.___(___)\n", - "X_te = X_test.___(___)" + "X_tr = X_train.fillna(X_defaults_median)\n", + "X_te = X_test.fillna(X_defaults_median)" ] }, { @@ -1825,7 +1937,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, "outputs": [], "source": [ @@ -1834,9 +1946,9 @@ "#then use it's `transform()` method to apply the scaling to both the train and test split\n", "#data (`X_tr` and `X_te`), naming the results `X_tr_scaled` and `X_te_scaled`, respectively\n", "scaler = StandardScaler()\n", - "scaler.___(X_tr)\n", - "X_tr_scaled = scaler.___(X_tr)\n", - "X_te_scaled = scaler.___(X_te)" + "scaler.fit(X_tr)\n", + "X_tr_scaled = scaler.transform(X_tr)\n", + "X_te_scaled = scaler.transform(X_te)" ] }, { @@ -1848,7 +1960,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -1864,15 +1976,15 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "#Code task 11#\n", "#Call the `predict()` method of the model (`lm`) on both the (scaled) train and test data\n", "#Assign the predictions to `y_tr_pred` and `y_te_pred`, respectively\n", - "y_tr_pred = lm.___(X_tr_scaled)\n", - "y_te_pred = lm.___(X_te_scaled)" + "y_tr_pred = lm.predict(X_tr_scaled)\n", + "y_te_pred = lm.predict(X_te_scaled)" ] }, { @@ -1884,16 +1996,16 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.8177988515690604, 0.7209725843435142)" + "(0.8144386003347038, 0.7588675340576476)" ] }, - "execution_count": 41, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -1913,15 +2025,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(8.168087397673387, 10.045694095532316)" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 12#\n", "#Now calculate the mean absolute error scores using `sklearn`'s `mean_absolute_error` function\n", "# as we did above for R^2\n", "# MAE - train, test\n", - "median_mae = ___(y_train, y_tr_pred), ___(y_test, y_te_pred)\n", + "median_mae = mean_absolute_error(y_train, y_tr_pred), mean_absolute_error(y_test, y_te_pred)\n", "median_mae" ] }, @@ -1934,14 +2057,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 46, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(103.68716063113948, 169.69898262779174)" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 13#\n", "#And also do the same using `sklearn`'s `mean_squared_error`\n", "# MSE - train, test\n", - "median_mse = ___(___, ___), ___(___, ___)\n", + "median_mse = mean_squared_error(y_train, y_tr_pred), mean_squared_error(y_test, y_te_pred)\n", "median_mse" ] }, @@ -1968,14 +2102,57 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 47, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "summit_elev 4103.155440\n", + "vertical_drop 1085.886010\n", + "base_elev 2999.854922\n", + "trams 0.098446\n", + "fastSixes 0.056995\n", + "fastQuads 0.740933\n", + "quad 0.937824\n", + "triple 1.445596\n", + "double 1.792746\n", + "surface 2.590674\n", + "total_chairs 7.663212\n", + "Runs 43.366492\n", + "TerrainParks 2.444444\n", + "LongestRun_mi 1.339267\n", + "SkiableTerrain_ac 480.272251\n", + "Snow Making_ac 132.935673\n", + "daysOpenLastYear 111.777778\n", + "yearsOpen 56.948187\n", + "averageSnowfall 165.951872\n", + "projectedDaysOpen 116.766467\n", + "NightSkiing_ac 91.564103\n", + "resorts_per_state 16.424870\n", + "resorts_per_100kcapita 0.442261\n", + "resorts_per_100ksq_mile 42.539036\n", + "resort_skiable_area_ac_state_ratio 0.096123\n", + "resort_days_open_state_ratio 0.121879\n", + "resort_terrain_park_state_ratio 0.113350\n", + "resort_night_skiing_state_ratio 0.163529\n", + "total_chairs_runs_ratio 0.260567\n", + "total_chairs_skiable_ratio 0.068081\n", + "fastQuads_runs_ratio 0.011186\n", + "fastQuads_skiable_ratio 0.001760\n", + "dtype: float64" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 14#\n", "#As we did for the median above, calculate mean values for imputing missing values\n", "# These are the values we'll use to fill in any missing values\n", - "X_defaults_mean = X_train.___()\n", + "X_defaults_mean = X_train.mean()\n", "X_defaults_mean" ] }, @@ -1995,7 +2172,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 48, "metadata": {}, "outputs": [], "source": [ @@ -2012,7 +2189,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -2031,7 +2208,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 50, "metadata": {}, "outputs": [], "source": [ @@ -2047,7 +2224,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ @@ -2064,16 +2241,16 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.8170154093990025, 0.716381471695996)" + "(0.8153961204004764, 0.751673539985321)" ] }, - "execution_count": 49, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -2084,16 +2261,16 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(8.536884040670973, 9.416375625789271)" + "(8.171846911392265, 10.14549531382307)" ] }, - "execution_count": 50, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -2104,16 +2281,16 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(112.37695054778276, 164.3926930952436)" + "(103.15212189438508, 174.7618159146045)" ] }, - "execution_count": 51, + "execution_count": 54, "metadata": {}, "output_type": "execute_result" } @@ -2168,7 +2345,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 55, "metadata": {}, "outputs": [], "source": [ @@ -2181,7 +2358,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -2190,7 +2367,7 @@ "sklearn.pipeline.Pipeline" ] }, - "execution_count": 53, + "execution_count": 56, "metadata": {}, "output_type": "execute_result" } @@ -2201,7 +2378,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 57, "metadata": {}, "outputs": [ { @@ -2210,7 +2387,7 @@ "(True, True)" ] }, - "execution_count": 54, + "execution_count": 57, "metadata": {}, "output_type": "execute_result" } @@ -2235,13 +2412,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 59, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='median')),\n", + " ('standardscaler', StandardScaler()),\n", + " ('linearregression', LinearRegression())])" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 15#\n", "#Call the pipe's `fit()` method with `X_train` and `y_train` as arguments\n", - "pipe.___(___, ___)" + "pipe.fit(X_train, y_train)" ] }, { @@ -2253,7 +2443,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 60, "metadata": {}, "outputs": [], "source": [ @@ -2270,16 +2460,16 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.8177988515690604, 0.7209725843435142)" + "(0.8144386003347038, 0.7588675340576476)" ] }, - "execution_count": 57, + "execution_count": 61, "metadata": {}, "output_type": "execute_result" } @@ -2297,16 +2487,16 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.8177988515690604, 0.7209725843435142)" + "(0.8144386003347038, 0.7588675340576476)" ] }, - "execution_count": 58, + "execution_count": 62, "metadata": {}, "output_type": "execute_result" } @@ -2317,16 +2507,16 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 63, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(8.547850301825427, 9.40702011858132)" + "(8.168087397673387, 10.045694095532316)" ] }, - "execution_count": 59, + "execution_count": 63, "metadata": {}, "output_type": "execute_result" } @@ -2337,25 +2527,34 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 64, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (200383607.py, line 1)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m Input \u001b[0;32mIn [64]\u001b[0;36m\u001b[0m\n\u001b[0;31m Compare with your earlier result:\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ], "source": [ "Compare with your earlier result:" ] }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 66, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(8.547850301825427, 9.40702011858132)" + "(8.168087397673387, 10.045694095532316)" ] }, - "execution_count": 60, + "execution_count": 66, "metadata": {}, "output_type": "execute_result" } @@ -2366,16 +2565,16 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(111.89581253658478, 161.73156451192284)" + "(103.68716063113948, 169.69898262779174)" ] }, - "execution_count": 61, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } @@ -2393,16 +2592,16 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(111.89581253658478, 161.73156451192284)" + "(103.68716063113948, 169.69898262779174)" ] }, - "execution_count": 62, + "execution_count": 68, "metadata": {}, "output_type": "execute_result" } @@ -2449,7 +2648,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 69, "metadata": {}, "outputs": [], "source": [ @@ -2459,7 +2658,7 @@ "pipe = make_pipeline(\n", " SimpleImputer(strategy='median'), \n", " StandardScaler(),\n", - " ___(___),\n", + " SelectKBest(f_regression),\n", " LinearRegression()\n", ")" ] @@ -2473,7 +2672,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 70, "metadata": {}, "outputs": [ { @@ -2482,11 +2681,11 @@ "Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='median')),\n", " ('standardscaler', StandardScaler()),\n", " ('selectkbest',\n", - " SelectKBest(score_func=)),\n", + " SelectKBest(score_func=)),\n", " ('linearregression', LinearRegression())])" ] }, - "execution_count": 64, + "execution_count": 70, "metadata": {}, "output_type": "execute_result" } @@ -2504,7 +2703,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 71, "metadata": {}, "outputs": [], "source": [ @@ -2514,16 +2713,16 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 72, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.7674914326052744, 0.6259877354190833)" + "(0.76754436691681, 0.652345460432426)" ] }, - "execution_count": 66, + "execution_count": 72, "metadata": {}, "output_type": "execute_result" } @@ -2534,16 +2733,16 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 73, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(9.501495079727484, 11.201830190332057)" + "(9.22352816084057, 11.499273075171825)" ] }, - "execution_count": 67, + "execution_count": 73, "metadata": {}, "output_type": "execute_result" } @@ -2568,7 +2767,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 74, "metadata": {}, "outputs": [], "source": [ @@ -2577,7 +2776,7 @@ "pipe15 = make_pipeline(\n", " SimpleImputer(strategy='median'), \n", " StandardScaler(),\n", - " ___(___, k=___),\n", + " SelectKBest(f_regression, k=15),\n", " LinearRegression()\n", ")" ] @@ -2591,7 +2790,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 75, "metadata": {}, "outputs": [ { @@ -2601,11 +2800,11 @@ " ('standardscaler', StandardScaler()),\n", " ('selectkbest',\n", " SelectKBest(k=15,\n", - " score_func=)),\n", + " score_func=)),\n", " ('linearregression', LinearRegression())])" ] }, - "execution_count": 69, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } @@ -2623,7 +2822,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 76, "metadata": {}, "outputs": [], "source": [ @@ -2633,16 +2832,16 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 77, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.7924096060483825, 0.6376199973170795)" + "(0.7719217266659403, 0.6354911802705956)" ] }, - "execution_count": 71, + "execution_count": 77, "metadata": {}, "output_type": "execute_result" } @@ -2653,16 +2852,16 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 78, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(9.211767769307116, 10.488246867294356)" + "(9.087070639150937, 11.799373665384278)" ] }, - "execution_count": 72, + "execution_count": 78, "metadata": {}, "output_type": "execute_result" } @@ -2689,7 +2888,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 79, "metadata": {}, "outputs": [], "source": [ @@ -2698,16 +2897,16 @@ }, { "cell_type": "code", - "execution_count": 74, + "execution_count": 80, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.63760862, 0.72831381, 0.74443537, 0.5487915 , 0.50441472])" + "array([0.75600194, 0.76329002, 0.61829898, 0.71323734, 0.56464865])" ] }, - "execution_count": 74, + "execution_count": 80, "metadata": {}, "output_type": "execute_result" } @@ -2726,16 +2925,16 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": 81, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.6327128053007867, 0.09502487849877672)" + "(0.68309538556131, 0.07859171118008614)" ] }, - "execution_count": 75, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" } @@ -2753,16 +2952,16 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": 82, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.44, 0.82])" + "array([0.53, 0.84])" ] }, - "execution_count": 76, + "execution_count": 82, "metadata": {}, "output_type": "execute_result" } @@ -2797,14 +2996,51 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 86, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'memory': None,\n", + " 'steps': [('simpleimputer', SimpleImputer(strategy='median')),\n", + " ('standardscaler', StandardScaler()),\n", + " ('selectkbest',\n", + " SelectKBest(score_func=)),\n", + " ('linearregression', LinearRegression())],\n", + " 'verbose': False,\n", + " 'simpleimputer': SimpleImputer(strategy='median'),\n", + " 'standardscaler': StandardScaler(),\n", + " 'selectkbest': SelectKBest(score_func=),\n", + " 'linearregression': LinearRegression(),\n", + " 'simpleimputer__add_indicator': False,\n", + " 'simpleimputer__copy': True,\n", + " 'simpleimputer__fill_value': None,\n", + " 'simpleimputer__missing_values': nan,\n", + " 'simpleimputer__strategy': 'median',\n", + " 'simpleimputer__verbose': 0,\n", + " 'standardscaler__copy': True,\n", + " 'standardscaler__with_mean': True,\n", + " 'standardscaler__with_std': True,\n", + " 'selectkbest__k': 10,\n", + " 'selectkbest__score_func': ,\n", + " 'linearregression__copy_X': True,\n", + " 'linearregression__fit_intercept': True,\n", + " 'linearregression__n_jobs': None,\n", + " 'linearregression__normalize': 'deprecated',\n", + " 'linearregression__positive': False}" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 18#\n", "#Call `pipe`'s `get_params()` method to get a dict of available parameters and print their names\n", "#using dict's `keys()` method\n", - "pipe.___.keys()" + "pipe.get_params()" ] }, { @@ -2816,7 +3052,7 @@ }, { "cell_type": "code", - "execution_count": 78, + "execution_count": 87, "metadata": {}, "outputs": [], "source": [ @@ -2834,7 +3070,7 @@ }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 98, "metadata": {}, "outputs": [], "source": [ @@ -2843,7 +3079,7 @@ }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 99, "metadata": {}, "outputs": [ { @@ -2854,7 +3090,7 @@ " SimpleImputer(strategy='median')),\n", " ('standardscaler', StandardScaler()),\n", " ('selectkbest',\n", - " SelectKBest(score_func=)),\n", + " SelectKBest(score_func=)),\n", " ('linearregression',\n", " LinearRegression())]),\n", " n_jobs=-1,\n", @@ -2864,7 +3100,7 @@ " 30, ...]})" ] }, - "execution_count": 80, + "execution_count": 99, "metadata": {}, "output_type": "execute_result" } @@ -2875,7 +3111,7 @@ }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 100, "metadata": {}, "outputs": [], "source": [ @@ -2886,24 +3122,48 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 110, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "17" + ] + }, + "execution_count": 110, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 19#\n", "#Print the `best_params_` attribute of `lr_grid_cv`\n", - "lr_grid_cv.___" + "lr_grid_cv.best_params_['selectkbest__k']\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 112, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAFNCAYAAABFbcjcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABAA0lEQVR4nO3deXxcdb3/8dcnW5ck3ZPuaUtXSqEV2gpll8WKcBFEoAgILoBerle9Kvy8ivuKIih4yyICIruAiOwom2xtoXTf6ZJu6ZombdJsn98f5ySdpkk6SWZ6JpP38/GYx5xz5iyfOXMy88l3O+buiIiIiEhqyIg6ABERERHZR8mZiIiISApRciYiIiKSQpSciYiIiKQQJWciIiIiKUTJmYiIiEgKUXIm0kZmVm5mhyVgP/eY2U/C6RPNbGn7o5NUYmZdzGyRmQ2IOpZ6sded7M/MXjGzL4bT/2FmD0Udk3QuSs5EWmBmq82sIkzENpvZn8wsD8Dd89x9VSKP5+6vu/vYRO6zIzCzS8xsdnieN5rZs2Z2gpnNCD8Da7R+lpmVmNnZUcXcSlcBr7n7pqgD6WjM7Dtm9rM41/2xmc03sxoz+0Eiju/uTwETzOyoROxPJB5KzkQO7hx3zwOOBqYA3404nrRiZt8AbgZ+BvQHioA/AOcCTwC9gJMbbTYdcOC5QxVnPTPLasNmVwN/TtTxWhtDG2M+JPsPk+/hLaxyFvBMnLtbAXwb+Edb42nGgwQJtsghoeRMJE7uvh54FpgAYGZuZqPC6XvMbKaZvWhmZWb2qpkNq9/WzMaFr203s6VmdmFTxzCzU8ysOGZ+tZl908zmmVmpmT1sZl1jXj/bzOaa2U4ze7Ol/+7DeL9iZsvDGH9sZiPN7C0z22Vmj5hZTjz7NrPrzWxluJ9FZnZezGtXmNkbZvZrM9thZh+a2Seaiakn8CPgP939cXff7e7V7v53d/+Wu1cCjwCXN9r0cuAv7l7TxD5Hhee/1My2mtnDMa8dEfM5bDaz74TLu5jZzWa2IXzcbGZdYj8TM7vOzDYBfzKzjJhzsC08d32aeY9FwEjgnZhlXcLzszaMY6aZdWvheD8ws8fM7H4z2wVcYWaDzOyp8L2sMLMvxez/gPWbig3o18I1e4uZrQuvjTlmdmJL+zezqRaUfu4K39NNzRwzbmbWGxgDvBXP+u5+r7s/C5Q1sa+WroszzGxJ+NqtgDXa/BXgk21+IyKtpORMJE5mNpTgv/j3m1nls8CPgX7AXOAv4Xa5wIvAA0AhMAP4g5kdEeehLyQoKRoBHEX4Q2tmRwN3E5TK9AVuB56qTyqaMR04BjiWoIThjjDuoQRJ54w4970SOBHoCfwQuN/MBsYc56PA0vBc/Ar4o5k1/sEDOA7oSlBC1px7gQtikpeewDnAfc2s/2PgBaA3MAT4fbhdPvASQWnbIGAU8HK4zf+G52QSMBGYyv4lpAOAPsAwghKUrwKfIijRGwTsAG5rJp4jgVWNEslfEiQdk8I4BgM3tHA8CEoSHyMoSfwLQWlOcXj8C4CfmdlpMftovH5TmrxmQ7PC+PoQXLuPWsw/Bk3s/xbgFnfvQZCMPtLMMVvj48DL7l6bgH01d130A/5K8Hn3I7i2j2+07WJguJn1SEAcIgel5Ezk4J40s53AG8CrBNVvTfmHu7/m7nsJfuyPCxO6s4HV7v4nd69x9/cIfgwuiPP4v3P3De6+Hfg7wQ8mwJeA2939HXevdfd7gb0ESUZzfunuu9x9IbAAeMHdV7l7KUGp4Efi2be7PxrGVOfuDwPLCRKaemvc/c7wR/VeYCBBlWVjfYGtTZWA1XP3fwObgfrSuQuBZe4+t5lNqgmSmkHuXunub4TLzwY2uftvwuVl7l5fmvVZ4EfuXuLuWwgSzsti9lkHfN/d97p7BUHS+r/uXhx+3j8gSCCbqt7rRUxJTpikfgn4urtvd/cygmvq4haOB/CWuz/p7nUEScQJwHXhe5kL3NUo5ob1Y/bRWHPXLO5+v7tvC6/Z3wBdgNj2kI33Xw2MMrN+7l7u7m83c8zW+CTxV2keTHPXxVnAInd/zN2rCarYG7cNrP/8eiUoFpEWKTkTObhPuXsvdx/m7l9p4YduXf2Eu5cD2wlKNYYBHw2rB3eGid5nCUpH4hH7Q7EHyAunhwH/02i/Q8NjNmdzzHRFE/Nx7dvMLrd9VZ47CUrd+jUVs7vvCSfzONA2gqq1g7VZuo99VZuXESR8zfk2QbXUu2a20Mw+Hy4fSlAq0pRBwJqY+TXsfx63hFWs9YYBT8S8/8VALU0noDuA/Jj5AqA7MCdm++fC5c0dD2KurzC2+sQuNubBzazfnOauWczsf8xscVjVt5OglLRfU9uGvkBQGrjEzGZZM501zKyo0XVVBMyLWXZJuF4GcAZhu0ILOomUh4/PxvHeGmvuuhjU6Dx4E++t/vPb2YbjirRaUhuJinQyQ+snLOjR2QfYQPBF/6q7n5Hg460DfuruP03wflvcd9gu6U7gNILSk1ozm8uB7XTi8RZQSVBF+FgL690H3GBmxxGU3jXZZg8g7BH5pTDWE4CXzOy18D3NaGazDQQJ18Jwvihc1rDbRuuvAz4fluodzDzgMDPLCksItxIkwkeE7RibfBsHWbYB6GNm+TEJWhGwvpn1m9PkNRu2L7uO4DNe6O51ZraD/T/j/fbv7suBGWFSdT7wmJn1dffdjdZbS0wJlJmtBk5x99WNYptCUOK8JdyuyXaL8WrhutjI/ufBYudDh4ex7GpPDCLxUsmZSOKcZcHwDzkE7Vvecfd1wNPAGDO7zMyyw8cUMzu8nce7E7jGzD5qgVwz+2TYtqq9Wtp3LsEP8xYAM7uSsJNEa4XVqTcAt5nZp8yse3h+PmFmv4pZbw1BtfKDwIstDUlhZp8xsyHh7I4w1lqCz2GAmX3Nggb5+Wb20XC9B4HvmllB2AbpBuD+FkKfCfw0TFQJtzu3mfdYTEy1b1gteSfwWzMrDLcfbGYfb+F4jfe5DngT+LmZdbWgs8YXaL5tWXOau2bzgRqCzzjLzG4AWmxvZWaXmllB+P52hovb01as1VWa4bXTleC3LSs8N5nha81dF/8AjjCz88MS3K9yYKn2yQTV/iKHhJIzkcR5APg+QdXQMQRVl4QlG2cStCnaQFDl90uCNjxt5u6zCUoCbiX4sVlB873yErZvd18E/Iag1GszQYP3eEqQmjvWTcA3CBpkbyEolboWeLLRqvcSlG411xGg3hTgHTMrB54C/tvdPww/hzMIOhNsIkiYTg23+Qkwm6CUaz7wXrisObeE+37BzMqAtwk6QTTndvZvD3YdwTl924Leji+xf3uueMwAhhNcU08QtFF7sZX7aPKaBZ4nSEaWEVSXVnLwatLpwMLwvN8CXNxE1WxrtGYIjXp3EpRKziBoQ1fBvvPe3HWxFfgM8AuCavbRHHg9zyD4DEUOCQuq10WkPczsHqDY3TUGmhzAgl6u7wOnufvGqONJdWbWn6D36CCP+EfKzM4BLnP3ZqvSRRJNbc5ERJIs7A05Puo4OpCewDeiTswA3P3vBL2kRQ4ZJWciIpJS3H0ZQZWqSKeU1DZnZjbdgtHQV5jZ9U283tPM/m5mH4Rdm6+Md1uRVOLuV6hKU0REEiFpbc7CHjLLCBrgFhOMNj0jbExcv853gJ7ufp2ZFRCMKD6AoAdNi9uKiIiIpKNklpxNBVaEo49XAQ8R3O4jlgP54bgyeQQ9hmri3FZEREQk7SSzzdlg9u96XcyBXc1vJejSvIFgXJ2LwsEO49kWADO7ivDec7m5uceMGzcuMdGLiMRj27bguW/faOMQkQ5nzpw5W929oPHyZCZnTY0W3rgO9eME3aU/RnCj3BfN7PU4tw0Wut9BcPNmJk+e7LNnz25rvCIirffSS8Hz6adHG4eIdDhmtqap5clMzorZ/xYYQ9j/digAVwK/CLtLrzCzD4FxcW4rIhI9JWUikmDJbHM2CxhtZiPCW4NcTFCFGWstwb3b6gcdHAusinNbERERkbSTtJIzd68xs2sJbgOSCdzt7gvN7Jrw9ZkE93K7x8zmE1RlXhfeSoOmtk1WrCIibfbww8HzRRdFG4eIpI2kDkLr7s/Q6N5oYVJWP72B4J6DcW0rIpJyKiqijkBE0oxufC4iIiKSQpSciYiIiKQQJWciIiIiKUQ3PhcRaY8RI6KOQETSjJIzEZH2OPnkqCMQkTSjak0RERGRFKLkTESkHX7/+e/z+89/P+owRCSNqFpTRKQdMmtrow5BRNKMSs5EREREUoiSMxEREZEUouRMOp2Lbn+Li25/K+owREREmqQ2ZyIi7bCxf1HUIYhImlFyJiLSDstGHhl1CCKSZlStKSIiIpJCVHImItIOJ7/5j2Di6uOiDURE0oZKzkQ6KHVsEBFJT0rORDopJXciIqlJyZmIiIhIClFyJiKRUemdiMiB1CFARNqkPql6uJM3hC8eNCLqEEQkzSg5E4mAEpvUkIjPYeXw8YkKR0QEUHImIh1YKiS5mbU17do+Fd6DiKQWJWciIu1wwjvPBxNfOTHaQEQkbahDgIiISAKog4skipIzkTbQl7CIJFp7v1cS8b2k77bUoORMREREJIUkNTkzs+lmttTMVpjZ9U28/i0zmxs+FphZrZn1CV9bbWbzw9dmJzNO6Vj0n53IPqnw95AKMYikk6R1CDCzTOA24AygGJhlZk+5+6L6ddz9RuDGcP1zgK+7+/aY3Zzq7luTFaOISHutHjo66hDSQtS9VqM+frpo73nU5xBIZm/NqcAKd18FYGYPAecCi5pZfwbwYBLjERFJuDVDx0QdgqAfdUkvyazWHAysi5kvDpcdwMy6A9OBv8YsduAFM5tjZlclLUoRkXbIqaokp6oy6jDaRdWSIqklmSVn1sQyb2bdc4B/N6rSPN7dN5hZIfCimS1x99cOOEiQuF0FUFRU1N6YRURa5bjZL4dTp0Yah4ikj2SWnBUDQ2PmhwAbmln3YhpVabr7hvC5BHiCoJr0AO5+h7tPdvfJBQUF7Q46mfTfqYiIiBxMMpOzWcBoMxthZjkECdhTjVcys57AycDfYpblmll+/TRwJrAgibGKiIhIGkiHgpCkVWu6e42ZXQs8D2QCd7v7QjO7Jnx9ZrjqecAL7r47ZvP+wBNmVh/jA+7+XLJilUNLDXdFRESal9R7a7r7M8AzjZbNbDR/D3BPo2WrgInJjE1EREQkFenG5yIi7bBq2LioQxCRNKPkTESkHdYNHhl1CCKSQKnQ9EbJmYhIO3SrKI86BBFJM0rORETaYer7r4ZTZ0Qah4ikj6Te+FxEREREWkfJWQeTDuO3iIiISPOUnImIiIikECVnIiIiIilEHQJERNph2WETog5BRNKMkjMRkXbYOGBY1CGISJpRciYi0g755TujDkFE0oySMxGRdjh63r/DqU9EGoeIpA91CBARERFJIUrORERERFKIkjMRERGRFKLkTERERCSFqEOAiEg7LB49KeoQRCTNKDkTEWmHkoLBUYcgImlGyVknU3/T9IevPi7iSETSQ8/SbVGHICJpRsmZiEg7TFr4djh1dqRxiEj6UIeAVrjo9rcaSp5EREREkkHJmYiIiEgKUXImraLSQxERkeRSciYiIiKSQtQhQESkHRaMmxx1CCKSZpSciYi0w7Y+/aMOQUTSTFKrNc1supktNbMVZnZ9E69/y8zmho8FZlZrZn3i2VZEJBX03b6Zvts3Rx2GiKSRpCVnZpYJ3AZ8AhgPzDCz8bHruPuN7j7J3ScB/w941d23x7OtiEgqmLBkNhOWzI46DBFJI8ksOZsKrHD3Ve5eBTwEnNvC+jOAB9u4rYiIiEhaSGZyNhhYFzNfHC47gJl1B6YDf23ttiIiIiLpJJnJmTWxzJtZ9xzg3+6+vbXbmtlVZjbbzGZv2bKlDWGKiIiIpI5kJmfFwNCY+SHAhmbWvZh9VZqt2tbd73D3ye4+uaCgoB3hioiIiEQvmUNpzAJGm9kIYD1BAnZJ45XMrCdwMnBpa7cVEYna3COOjToEEUkzSUvO3L3GzK4FngcygbvdfaGZXRO+PjNc9TzgBXfffbBtkxWriEhblfbsG3UIIpJmkjoIrbs/AzzTaNnMRvP3APfEs62ISKop3LI+6hBEJM3oDgEiIu1w+PK54dQFUYYhImlENz4XERERSSEqORMRaYVt5XtZuqmMJZvKWLqpjDf6HkFh9R5O2bCL8YN6RB2eiKQBJWciIk2oqKpl2eayfYnY5l0s3VTG1vKqhnX65ubQFZjXvZCzfvc6k4b24pKpRZw9cSDdc/T1KiJto28PEenU3J2VW8pjSsOCJGzN9j14OPR1t+xMxvTP42PjChnTP59xA3owdkA+Bfld+MPnvkuFZdH7i5/jgXfX8u2/zuNHTy/iUx8ZxIypRRwxqGe0b1BSkruzY081q7ftZu22PazetpsVJeXUuvPFe2cBhoXDsRtgBhaOz262/zwWrLO8pBwDrn3gvX2jtjs4jjsN13PDPPuWES5buqmMnKwM7ntrNaMK8xjTP59+eV2Sf0JkP0rOROSQK91TzT+XbmZFSTkA331yPvlds8nvmkV+12x6dM1qmM7rsm86v0sWGRlN3UAkUFfn7KqsZseeanbsqaI0fN6xp5qde6r2n95dzYqScqrr6jjtN68CkGEwvF8u4wf14LyPDGHsgHzGDchnaJ/uZDZz3PeOOh6Au04YwZXHD2f2mh08+M5aHpldzP1vr2XikJ5c8tEizj5qELld9JXbmdTVOSVle1mzbTdrwgRszfY9DfNllTX7rZ+TmUFWprFhZ2VDcuVh9tRUYlX/ev30nqoacFi0YVdDwgZgZk0meLGv1S+rqq2jbG8NN/xt3+hVfXJzGB0mamP65zGqMHjuq6QtafRNIZ1STW0d7o5Z8z/0klgbSyt4cdFmnl+4iXdWbaemzsnKMDIzjH/M20hZZQ01dc3d4W2ffclaFht2VgLwsV+/EiRjFdU0t4sMg57dsundPYde3bMZ2LMrJWWVZGdm8D9njmXcgHxGFebRNTuzVe+rLK9Xw7SZMWV4H6YM78MN54zniffX88A7a7nur/P58dOLOXdSUJo2YbBK09JNZXUtW8r2sqeqli/dN5u12/awZvtuKqvrGtbJzDCG9u5GUd9cji7qTVGf7gzvm8uwvt0Z2qc7n7v7XQAevvq4NsVw0e1vtWv7+n24O7+/5GiWbS5j2eZylm8uY9nmMp58fz1le/cllH1zcxjdP0jaRvfPZ3RhHtW1dWRnqq9heyk5k07D3Xl12RYWbdxFWWUNE3/4AhMG99z3GNSD4X1zWyyZaau6Omf9zoqGarPlJeXU1NbxXw++T7+8HPrldaEgvwsFeV0apvvm5XToLzl3Z0VJOS8s2swLCzfxQXEpACMLcvnSSYdx5vj+/PyZxZgZD199HO5OZXUdZZXV7KqsoayymvK9NZSF02WVNQ3L65dtKg2Ss8MH9aB39/rEKydmOrthvkfX7AM+2/ofswuOGdLm9zlw05pwav8fxF7dc7jy+BFcMW04763dwV/eWctjc4r5yztrOWpITy6ZWsQ5Ewe1+biSGqpq6nhk9jpu/ecKNu2qxAx6bMuiqE8uJ47ux7C+3RkWJmCDenXrEH/TZkb/Hl3p36MrJ47ed1tEd2fTrsqGhG355nKWlZTx+HvrKY9J2jIMJv/kJbrnZNItO5NuOZnNTGcdsHz77ioyM4x12/cwqFe3Zkus052SM0l7NbV1/GP+Rma+uorFG3eRnWkM6tWVU8YWsmB9Kff8ezVVtcF/t3ldshg/qAdHDu7JhMHB84h+ea36gti+u4ql9W2XNgftmJZtKmN3VW3DOl2yMsjOzGB+8U62llft98UWq1f37CBZy+tCv/wu9MvLoSA/SOB27Kki04z5xaV0ywm/3MIvuS5ZGZGUCtbVOe+v28kLizbx4sLNrNoa3Phj0tBefHv6WM4cP4BRhXkN68fGaGYN76Mwzk6P9cnVbZccnbg30UpjVi1o8XUz45hhfThmWB++f/YRPPF+MQ++u47rH5/Pj59eRG6XLAryulBX50n5x0CSo6a2jsffX8/vXl5O8Y4KjhnWm17dgyr5R66ZFnV4SWFmDOzZjYE9u3HymP2Tto2llSzbXMYNf1tAVU0dp47rT0VVDRXVteypqqWiqpbSimoqqsL56mBZ/XdvYyf+6l90ycpgRL9cRhXmMbIgr+H5sILcVpdwdzRKziRtVVTV8uicddz5+irWba9gZEEuv7rgKB6dvY4MM3523pEAVNfWsWxzGQvX72L++lIWbCjl/rfXsLcm+NLonpPJ+IE9mDC4J0cM6sGRQ3oG7Twc5heXsiRsQF6fiG0p29sQQ6/u2Yztn88FxwxhbNiIfEz/PL5472xgX/VDRVUtW8v3sqV8L1vK9rK1fC9by6qCZeF8c4ncObe+ccB7zzAa/hvtFvNfarfsDLrnZNEtJ5OVW8rJzDBuenEZPbsFPyo9umWH09n0DH9o8rpktZjoVdXU8ebKrbywaDMvLtrMlrK9ZGUYx43sy5UnjOCMw/szoGfX9n2YaaJn92yuOH4En5s2nPfW7uTBd9fy+HvFlJTt5aM/f5mPjS3ktMMLOWF0P/X2TFG1dc7T8zZw80vL+XDrbo4c3JOffGoCJ48p4OI73o46vEiYGYN6dWNQryBxA/j5+UfGtW1NbV1DolZRXcu1D7xHTa3zuWnDWbmlnBUl5cwrLuUf8zc2tLszgyG9uwUJW0EeI2OStz65Ocl6m4fUQf/6zSwDmAgMAiqAhe6+OdmBibTVzj1V3PfWGu55czXbd1dxdFEvvvfJ8Zx+eH8yMoy/zineb/3szAyOGNSTIwb15MIpQ4HgC2Pllt1BshY+Hpm9jj1h6ZdZ0EC3PjHqkpXB6P55nDS6gHED8hsakhfkd4mrBKtbTiZD+wTtTg6mPpG75s9zqHXnf84cG3651ez3H2nsdEVVLXvCdUrKKtlTVcuuihpq3fndy8tbPF6GQY/6hK1bNj26ZdGjazartuym1p1jfvwiZXtr6J6TyaljCznziP6cMraQnt2yD/peOqugNK03xwzrzYdbytlZUc24gT14Zv5GHp69ji5ZGUwb2ZfTDu/PaYcXNvzgSXTq6pznF27ipheXsbyknHED8rnjsmM4Y3x/tV1th6zMDPIzM8jvGnxf1P9TcvHUov3Wq6yu5cOtuxsStpVbdrOypJy3V23br11f7+7Z1NQ6vXOzqayu7bAlbM0mZ2Y2ErgOOB1YDmwBugJjzGwPcDtwr7s3XSYpcoht2FnBXa9/yEOz1rKnqpZTxxbw5VNGMWV471Z/eWZlZjA2TLLq2yPV1jkfbi1nwfpd/OLZJWRmwP9+cjxjB+QzvG/uIWsbUZ/I5XUN/nzPGN+/TfuprxJ84EvHUl5Zw67KakorqtlVUR0z3Xh5DaUV1ZTsKmdnRTDe16ePHsKZR/Rn2sh+HfaLMEpZmRn0y+vCbZccTVVNHbNWb+elxZt5eXEJ/1q6gO8+CUcM6hEkauMKOXJwT1V/HkLuzj+XlPCbF5axaOMuRhbkcuslH+GsCQP1ORxCXbMzOXxgDw4fuH+bh/r2vLFJ21Nz17N2ewWn/eZV/ufMMXxq0uAO91m1VHL2E+D/gKvdfb/+T2ZWCFwCXAbcm7zwRA5u2eYyZr66kqfmbsCB/5g4iKtPPoxxAxI7WntmhjGqMJ9Rhfk8+O5aAM46cmBCjxGFzAyjZ/egGnNoK7arT+5+8emjkhNYJ5STlcHxo/px/Kh+3HD2eFaUlPPS4hJeXryZW/+5nN+9vJzC/C58bFwhpx3enxNG9Ys65Ejtqaph9uodvLlyGws2lILDtx79ICy57sGYAXkU5MVXet2Yu/P68q3c9OIy5q7bybC+3bnpwomcO2lwp22knooyMqyh1uGUsYUArNpSTmlFNVmZxjce+YA7X/+Q//eJcZwU004u1TWbnLn7jBZeKwFuTkZAIvGatXo7M19ZyctLSuiWncmlxw7jiyeOYEjvg1cNiiTKux85GYCvJHi/ZhYMT9A/ny+fMpLtu6t4ZWkJLy8u4el5G3loVlD92S07k57dsnlsTnHDWFawb0yr5sazqn/NCDqxADy/cFO4j5hxsWLXbTReVv32pRXVZGYYuyqr6dE1edXZe2tqeX/tTt5cuY23V27j/XU7qK51sjONrlmZWAb8a+kWHo1putAnN4ex/fMbSsKDdp/55LUw5tw7q7bxmxeW8e7q7Qzu1Y1fnH8knz5mSIfoaSmBnt2yefBLx/L3eRu48fmlXH73u5wwqh/Xf2JchxjKpqVqzfNb2tDdH098OCLNq66tY+mmMjbvqmRreRWfmfkWvbtn87XTR/O544bTO00agkrHUtEt7+ArJUCf3BzOP3oI5x89hKqaOt79MKj+fPDdteysqOabj37Q7mNc/ec57dr+qB+8QGF+lwN6140qzKN/j9aXYNXU1jF/fSlvrtzGWyu3MXvNdiqr68gwOHJwT75wwmFMG9mXycN7c+WfZgFBJ5vY+58uCzvqxLYZhaBB+bgwURs7IJ89VTXU1jmX3vUOb6zYSmF+F3507hFcNGUoXbJUXd8RZWQY504azPQJA7j/7bXc+s/lnP37Nzh30iC+eebYuNr4RqWlas1zwudCYBrwz3D+VOAVQMmZJE1dnfPhtt18sG4n84pL+aB4J4s27GroQdklK4MfnDOeC6cMVa82idTQ9SvDqbYP/NlaOVkZnDC6HyeM7seiDaVU1Tq/u/gjDaPHQ/2teTzmFj2NX9s32vy3wsSuvoo69rX6/dTF7KNh+3D/P3xqITV1zvlHDwnb/ZQfMGBpbk4mIwsb967LZVjf3IYSKXdn0YZdvLlyK2+t3MY7H25v6J08bkA+M6YWMW1kP6aO6NNih5O+eV2YNqoL02KqfevqnOIdFSzdHAxzU3/j+n8t3UJtzMjFfXP38t1PHs6lxw5TG8o00SUrky+cMILPTB7CzFdW8sc3PuTZ+Zu49Nhh/NfHRqXkP/YtVWteCWBmTwPj3X1jOD8QuO3QhCedQf0YOR+s28kHxaXMK97J/OLShi/27jmZTBjUk8uPG8ZRQ3px1+ur6JKVwRXHj4g4chE4bM2SSI9vZnTJMor6tr0UoP62Um2t7ukRJkpfPmVkwzJ3Z0vZXlZsKWdl2FB7RUk5b63axuPvr29YLysjiH1rOLr+Wb97HYDD+uVy7qRBTBvZj2MP69PuWwVlhMcp6tt9v040e2tqWbVlN9c+8B51dc7TXz1Rt9lKUz26ZvPt6eO4/Ljh/PbFZdzz5oc8Onsd15wyks8fP4JuOamTjMdzBQ6vT8xCm4ExSYpHOoGa2jrK99Zwy0vLmVccJGRby4OxwbIzjXEDevAfkwYxcWgvJg7pxajC/QeBvf/tNc3tWkRShJlR2KMrhT26Mm3k/h0XyvfWsGpL+b4ediW72VRaSa/u2XznrMM5bmTfQzZ8SJesoBdg/c29lZilvwE9u/LLC47iCyeO4JfPLuHG55fy57fW8I0zxvDpdtwtJJHiuQpfMbPngQcJSrMvBv6V1KgkbS3fXMbc4lJq65xlJcsYWZDHSWP6MXFIL44a0pPDB/ZQVYJImsvrksVRQ3px1JBeDcvqe/+ef3Rq/DhK+hvTP58/XjGFd1Zt42fPLuHbf53HXW+sAqBXxOM0HjQ5c/drzew84KRw0R3u/kRyw5J0tH13FV+4dzYZBqMH5PPoNcc1DDwoIiIShY8e1pcnvzKNZxds4lfPLWH1tj3kd82itKI6ssG04y2/fQ8oc/eXzKy7meW7e1kyA5P0UlVTxzV/nsOmXZWMKcwnr2uWEjMREUkJZsZZRw7kjPH9OeOmVymtqKZH1+iquA86aIuZfQl4jOCOAACDgSeTGJOkGXfnf5+Yz7urt/Prz0xsGNleJB28Nfk03pp8WtRhiEgCZGdm0L9HV8b0z4/0tlzxjKj3n8DxwC4Ad19OMLyGSFzufH0Vj84p5qunjeY/Jg6KOhyRhKrK6UpVjm7sLiKJE08Rxl53r6rPIM0si6BjgMhBvbRoMz9/dgmfPHIgXzttdNThiCTcsHXLwqlDN86ZiKS3eJKzV83sO0A3MzuD4C4lf09uWJIOFm/cxX8/9D5HDu7Jrz8zscPdeFYkHsPXLY86BBFJM/FUa14HbAHmA1cDzwDfTWZQ0vFtKdvLF++dTV7XLO68fHJKDe4nIiKSylosOTOzDGCeu08A7jw0IUlHV1ldy9V/ns223Xt59Opp9O+h9jgiIiLxarHkzN3rgA/MrKgtOzez6Wa21MxWmNn1zaxzipnNNbOFZvZqzPLVZjY/fG12W44vh5678/8en897a3dy04WTOHJI224HIyIi0lnF0+ZsILDQzN4FdtcvdPf/aGkjM8skuAfnGUAxMMvMnnL3RTHr9AL+AEx397Vm1rgX6KnuvjWudyIp4Q+vrOSJ99fzzTPHcNaRA6MOR0REpMOJJzn7YRv3PRVY4e6rAMzsIeBcYFHMOpcAj7v7WgB3L2njsSQFPLdgIzc+v5RzJw3iP08dFXU4IofEGx/9OBD0lBIRSYR4bt/06sHWacZgYF3MfDHw0UbrjAGyzewVIB+4xd3vqz808IKZOXC7u9/R1EHM7CrgKoCiojbVvkoCLFhfytcf/oBJQ3vxy08fFengfSKHUm2mBlUWkcQ66LeKmR0L/B44HMgBMoHd7t7jYJs2sazx+GhZwDHAaUA34C0ze9vdlwHHu/uGsKrzRTNb4u6vHbDDIGm7A2Dy5Mkafy0CJbsq+eK9s+ndPZs7Lj9GNy6XTmXk6vrKAI1zJiKJEc+/fLcCFwOPApOBy4F4RhMtBobGzA8BNjSxzlZ33w3sNrPXgInAMnffAEFVp5k9QVBNekByJtGqrK7lS/fNZldlNY9dM43CfPXMlM5lyIYPow5BRNJMPOOc4e4rgEx3r3X3PwGnxLHZLGC0mY0wsxyCBO+pRuv8DTjRzLLMrDtBtediM8s1s3wAM8sFzgQWxPWO5JBxd7756AfMW1/KLRd/hPGDDlaYKiIiIgcTT8nZnjC5mmtmvwI2ArkH28jda8zsWuB5gqrQu919oZldE74+090Xm9lzwDygDrjL3ReY2WHAE2G7pSzgAXd/ri1vUJLnlpeX8/S8jVz/iXGcMb5/1OGIiIikhXiSs8sIkqtrga8TVFV+Op6du/szBHcUiF02s9H8jcCNjZatIqjelBT19w82cPNLy7ngmCFcfdJhUYcjIiKSNuLprbkmnKyg7cNqSBop31vDNx/9gCnDe/PT8yaoZ6aIiEgCxdNb80MO7GWJu6u4pBPaW1PLss1lDOjZlZmXHkOXLPXMlM7t1WmfBDTOmYgkTjzVmpNjprsCnwH6JCccSWUbSytYvLGMOoc/fm4KffO6RB2SiIhI2omnWnNbo0U3m9kbwA3JCUlS0eZdlVxy5zvU1DrjBuYzpn9+1CGJpIQxK+eHUxrnTEQSI55qzaNjZjMIStL0y9yJlOyqZMYdb1Oyq5KxA/LI66IR0UXqDdy8NuoQRCTNxPMr+5uY6RpgNXBhUqKRlFNSVsmMO99m065K7vv8VG58fmnUIYmIiKS1eKo1Tz0UgUjq2Vq+l8/e+Q4bSyu558qpTB6upoYiIiLJFk+15jdaet3db0pcOJIqtpXv5ZI736Z4RwV/unIKU0coMRMRETkU4u2tOYV9t146h+Ael+uSFZREa/vuKj571zus3b6Hu6+YwrGH9Y06JJGUVZup4WREJLHiSc76AUe7exmAmf0AeNTdv5jMwCQaO8LE7MOtu7n7iilMG9kv6pBEUtobH50OwH9FHIeIpI94krMioCpmvgoYnpRoJFI791Rx6R/fYeWWcu66fDLHj1JiJiIicqjFk5z9GXjXzJ4guFPAecC9SY1KDrnSPdVc9sd3Wb65nDsuP4aTxhREHZJIh3D4svfDKY1zJiKJEU9vzZ+a2bPAieGiK939/Za2kY6ltKKay+9+h6Wbyrj9smM4ZWxh1CGJdBiFWzdEHYKIpJl4emuOBBa6+3tmdgpwopl96O47kxybHAJlldV87u53WbRxFzMvPYZTxykxExERiVJGHOv8Fag1s1HAXcAI4IGkRiVNemP5VpZs2sWKknLuf3sNSzeVUVd3wD3p41a+t4bP3f0uC9aXctslR3Pa4f0TGK2IiIi0RTxtzurcvcbMzgducfffm5mqNQ+hlVvK+dk/FvPykhJyMjNwavnukwsA6NE1i2OG9Wby8D5MHtabiUN70TX74F37d++t4Yq732VecSm3XnI0Zx4xINlvQ0REROIQT3JWbWYzgMsJxjgDyE5eSFJv554qbnl5OX9+aw1dszO5/hPjeHnRZszg15+ZxKzV25m9ZjuzV+/gX0uD2yplZxpHDu7JlOF9GpK2Prk5++23ts658p5ZvL9uJ7fO+AjTJygxE2mrqpwuUYcgImkmnuTsSuAa4Kfu/qGZjQDuT25YnVt1bR1/eXsNN7+8nF0V1Vw0pYhvnDGGgvwu/GtJCQBFfbtT1Lc7nz5mCBCMTzZnzQ5mrdnOnNU7+NO/V3P7a6sAGFmQ25Cs7amqYfW2PezeW8PvZnyETxw5MLL3KZIO3pp8OgBfizYMEUkj8fTWXAR8FcDMjnb394BfJDuwzsjdeWXpFn7yj0Ws3LKb40f15bufHM/hA3scdNveuTmcPr4/p48P2o1VVtcyf30ps1fvYPbq7Ty7YBMPzdp3U4dbLp7E2UcNStp7ERERkbaJp+Qs1l3A0ckIpLNbtrmMHz+9iNeXb2VEv1zuunwypx1eiJm1aX9dszOZMrwPU4b3AUZSV+es2FLO1ffNpmt2JudOGpzYNyDSSR25eFY4pXHORCQxWpuctS1TkGZtK9/Lb19axgPvrCWvSxbfO3s8lx07jJyseDrSxi8jwxjTP5/CHl0Tul+Rzq7PjpKoQ5A08fDV7Uvw27t9ovYh7ddicmZmmcC97n5puOiHyQ+pc6iqqePeN1fzu38uZ09VLZcdO4yvnT6G3o0a74uIiEjn0mJy5u61ZlZgZjnuXuXuTx6iuNKWu/P8wk38/JnFrN62h1PGFvDdTx7OqML8qEMTERFpF5W8JUY81ZqrgX+b2VPA7vqF7n5TsoJKV3ura1m1dTdX/3kOowvzuOfKKbpVkoiISEjJXSCe5GxD+MgAVLzTRjW1dSzfUk5FVS0/PvcIZkwtIiszse3KROTQq+iWG3UIIhIjHRK8eIbSUDuzBLj9tVXs3lvLyIJcLjtueNThiEiCvPuRU6IOQUTSTLPJmZndAfze3ec38VoucBGw193/0sI+pgO3AJnAXe5+wPho4c3Ubya468BWdz853m07ikUbdnHzS8vok5tDXzX4F0kZ6fAftqQOXU+SKC2VnP0B+J6ZHQksALYAXYHRQA/gbqClxCwTuA04AygGZpnZU+GgtvXr9AqPM93d15pZYbzbdhRVNXV845G59OyWQ1Gfbm0et0xEDpQKP4YTF74dTkUfi4ikh2aTM3efC1xoZnnAZGAgUAEsdvelcex7KrDC3VcBmNlDwLlAbIJ1CfC4u68Nj1nSim07hFteXsaSTWXcdflk7nx9VdThiKSUVEiu2qtX6baoQxCRNHPQFunuXu7ur7j7g+7+ZJyJGcBgYF3MfHG4LNYYoLeZvWJmc8zs8lZsm/LeW7uD/3tlJZ85ZkjDbZVEREREWtLaOwS0RlP1d97E8Y8BTgO6AW+Z2dtxbhscxOwq4CqAoqKiNgebaBVVtXzzkQ8Y2LMb3ztnfNThSIpJhxIjERFJjmSO5VAMDI2ZH0IwJEfjdZ5z993uvhV4DZgY57YAuPsd7j7Z3ScXFBQkLPj2+uVzS1i1dTc3XnAUPbpmRx2OiIiIdBBxl5yZWa677z74mg1mAaPNbASwHriYoI1ZrL8Bt5pZFpADfBT4LbAkjm1T1psrtnLPm6u5Ytpwpo3qF3U4kgQq+ZJ6ZXk927W9rqXE0HmUdHLQ5MzMpgF3AXlAkZlNBK5296+0tJ2715jZtcDzBMNh3O3uC83smvD1me6+2MyeA+YBdQRDZiwIj3vAtm1+l4dQWWU133psHiP65XLd9HFRhyMiSfbeUSdEHUK7KbERSS3xlJz9Fvg48BSAu39gZifFs3N3fwZ4ptGymY3mbwRujGfbjuDHTy9iY2kFj14zjW45mVGHIyJJpsRGRBItrjZn7r6u0aLaJMTS4b28eDOPzC7m6pNHcsyw3lGHIyKHwt//HjxERBIknpKzdWHVpptZDvBVYHFyw+p4duyu4vrH5zNuQD5fO3101OGIyKGyTeOciUhixZOcXUNwG6XBBL0oXwD+M5lBdUTf/dsCdu6p4t4rp9IlS9WZInJopEK1airEIJJOWkzOwtso3ezunz1E8XRIf/9gA/+Yt5FvnjmG8YN6RB1OytMXeWK09zxGvb2ISCpKhe+2FpMzd681swIzy3H3qkMVVEdSsquS7/1tAZOG9uKak0dGHU6noKRCRBJN3wuSSuKp1lwN/NvMngIaxjlz95uSFVRH4e5c//h8Kqpq+c2FE8nKTOaYviKSkgYMiDoCEUkz8SRnG8JHBpCf3HA6lkdmr+OfS0q44ezxjCzIizocEYnC9OlRR5AWVHIlss9BkzN3/yGAmeUHs16e9Kg6gHXb9/Cjvy/i2MP6cMW04VGHIyIiImnioPVwZjbBzN4HFgALzWyOmR2R/NBSV12d863HPsDMuPGCiWRkNHWfdhHpFB5/PHiIiCRIPNWadwDfcPd/AZjZKcCdwLTkhZXa7nlzNW+v2s4vP30kQ/t0jzocEYnSrl1RRyAiaSaeFuy59YkZgLu/AuQmLaIUV1FVyy+fW8LHxhVy4eShUYcjIiIiaSaekrNVZvY94M/h/KXAh8kLKXW5Oyu3ltMtJ5NfnH8kZqrOFBERkcSKp+Ts80AB8Hj46AdcmcygUtWG0kp2763lx+dOoLBH16jDERERkTQUT2/NHQT30+zUamrr2LG7ij65OZwzcVDU4YhIqhgyJOoIRCTNHDQ5M7MXgc+4+85wvjfwkLt/PMmxpZSszAzGD+pBnUcdiYiklNNPjzoCEUkz8bQ561efmEFQkmZmhckLKXVlmKFRM0RERCSZ4mlzVmdmRfUzZjYMUPmRiAjAww8HDxGRBImn5Ox/gTfM7NVw/iTgquSFJCLSgVRURB2BiKSZeDoEPGdmRwPHAgZ83d23Jj0yERERkU4ong4BxwNz3f1pM7sU+I6Z3eLua5IfnqQa3ZxYREQkueJpc/Z/wB4zmwh8C1gD3JfUqEREREQ6qXiSsxp3d+Bc4HfufguQn9ywREQ6iBEjgoeISILE0yGgzMz+H8Ftm04ys0wgO7lhiYh0ECefHHUEIpJm4ik5uwjYC3zB3TcBg4EbkxqViIiISCcVT2/NTcBNMfNrUZszEZHA/fcHz5deGm0cIpI24qnWFBGR5tTURB2BiKSZeKo128zMppvZUjNbYWbXN/H6KWZWamZzw8cNMa+tNrP54fLZyYxTREREJFU0W3JmZt8EHnb3dW3Zcdhx4DbgDKAYmGVmT7n7okarvu7uZzezm1M14K2IiIh0Ji2VnA0G3jSz18zsy2bWr5X7ngqscPdV7l4FPEQwHIeIiIiINKPZ5Mzdvw4UAd8DjgLmmdmzZna5mcUzztlgILbUrThc1thxZvZBuO8jYkMAXjCzOWame3mKSGoaMyZ4iIgkSIsdAsLBZ18FXjWza4HTgV8AM4HuB9m3NbXLRvPvAcPcvdzMzgKeBEaHrx3v7hvMrBB40cyWuPtrBxwkSNyuAigqKjpISCIiCTZtWtQRiEiaiatDgJkdCfyIoA1ZFfCdODYrBobGzA8BNsSu4O673L08nH4GyK6vPnX3DeFzCfAEQTXpAdz9Dnef7O6TCwoK4nk7IiIiIimrpQ4Bo4EZwMVALUGbsTPdfVWc+54FjDazEcD6cD+XNDrGAGCzu7uZTSVIFreZWS6Q4e5l4fSZBMmhiEhqueee4PmKK6KMQkTSSEvVms8DDwIXufv81u7Y3WvCqtDngUzgbndfaGbXhK/PBC4AvmxmNUAFcHGYqPUHnjCz+hgfcPfnWhuDiIiISEfTUnL2caB/48TMzE4ENrj7yoPtPKyqfKbRspkx07cCtzax3Spg4sH2LyIiIpJuWmpz9ltgVxPLK4CbkxKNiIiISCfXUnI23N3nNV7o7rOB4UmLSERERKQTa6las2sLr3VLdCAiIh3SEUccfB0RkVZoKTmbZWZfcvc7Yxea2ReAOckNS0Skg5gyJeoIRCTNtJScfY2gx+Rn2ZeMTQZygPOSHJeISMdQXR08Z2dHG4eIpI1mkzN33wxMM7NTgQnh4n+4+z8PSWQiIh3BX/4SPGucMxFJkBZv3wTg7v8C/nUIYhERERHp9OK6fZOIiIiIHBpKzkRERERSiJIzERERkRRy0DZnIiLSgkmToo5ARNKMkjMRkfZQciYiCaZqTRGR9tizJ3iIiCSIkjMRkfZ45JHgISKSIErORERERFKIkjMRERGRFKLkTERERCSFKDkTERERSSEaSkNEpD0mT446AhFJM0rORETaY8KEqCMQkTSj5KyTefjq46IOQSS9lJYGzz17RhuHiKQNtTkTEWmPJ54IHiIiCaLkTERERCSFKDkTERERSSFKzkRERERSiJIzERERkRSi3podjHpbiqSY4/Q3KSKJldSSMzObbmZLzWyFmV3fxOunmFmpmc0NHzfEu62ISEoYOzZ4iIgkSNJKzswsE7gNOAMoBmaZ2VPuvqjRqq+7+9lt3FZEJFpbtwbP/fpFG4eIpI1klpxNBVa4+yp3rwIeAs49BNuKiBw6Tz8dPEREEiSZydlgYF3MfHG4rLHjzOwDM3vWzI5o5bYiIiIiaSWZHQKsiWXeaP49YJi7l5vZWcCTwOg4tw0OYnYVcBVAUVFRm4MVERERSQXJLDkrBobGzA8BNsSu4O673L08nH4GyDazfvFsG7OPO9x9srtPLigoSGT8IiIiIodcMpOzWcBoMxthZjnAxcBTsSuY2QAzs3B6ahjPtni2FREREUlHSavWdPcaM7sWeB7IBO5294Vmdk34+kzgAuDLZlYDVAAXu7sDTW6brFhFRNrspJOijkBE0kxSB6ENqyqfabRsZsz0rcCt8W4rIpJyDjss6ghEJM3o9k0iIu2xaVPwEBFJECVnIiLt8dxzwUNEJEGUnImIiIikECVnIiIiIilEyZmIiIhIClFyJiIiIpJCkjqUhohI2jvttKgjEJE0o+RMRKQ9hg49+DoiIq2gak0RkfZYty54iIgkiJIzEZH2ePnl4CEikiBKzkRERERSiJIzERERkRSi5ExEREQkhSg5ExEREUkhGkpDRKQ9pk+POgIRSTNKzkRE2mPAgKgjEJE0o2pNEZH2WLUqeIiIJIhKzkRE2uO114Lnww6LNg4RSRtKzg6hh68+LuoQREREJMWpWlNEREQkhSg5ExEREUkhSs5EREREUojanImItMfZZ0cdgYikGSVnIiLt0a9f1BGISJpRtaaISHssXRo8REQSRCVnIiLt8dZbwfPYsdHGISJpI6klZ2Y23cyWmtkKM7u+hfWmmFmtmV0Qs2y1mc03s7lmNjuZcYqIiIikiqSVnJlZJnAbcAZQDMwys6fcfVET6/0SeL6J3Zzq7luTFaOIiIhIqklmydlUYIW7r3L3KuAh4Nwm1vsv4K9ASRJjEREREekQkpmcDQbWxcwXh8samNlg4DxgZhPbO/CCmc0xs6uSFqWIiIhICklmhwBrYpk3mr8ZuM7da80OWP14d99gZoXAi2a2xN1fO+AgQeJ2FUBRUVH7oxYRaY3zzos6AhFJM8ksOSsGhsbMDwE2NFpnMvCQma0GLgD+YGafAnD3DeFzCfAEQTXpAdz9Dnef7O6TCwoKEvoGREQOqmfP4CEikiDJTM5mAaPNbISZ5QAXA0/FruDuI9x9uLsPBx4DvuLuT5pZrpnlA5hZLnAmsCCJsYqItM2CBcFDRCRBklat6e41ZnYtQS/MTOBud19oZteErzfVzqxef+CJsKozC3jA3Z9LVqwiIm02OxzpZ8KEaOMQkbSR1EFo3f0Z4JlGy5pMytz9ipjpVcDEZMYmIiIikop0+yYRERGRFKLkTERERCSFKDkTERERSSG68bmISHtceGHUEYhImlFyJiLSHt27Rx2BiKQZVWuKiLTH3LnBQ0QkQVRy1goPX31c1CGISKqpT8wmTYoyChFJIyo5ExEREUkhSs5EREREUoiSMxEREZEUouRMREREJIWoQ4CISHt89rNRRyAiaUbJmYhIe2RnRx2BiKQZVWuKiLTHrFnBQ0QkQZSciYi0x8KFwUNEJEGUnImIiIikECVnIiIiIilEyZmIiIhIClFyJiIiIpJCzN2jjiFhzGwLsOYgq/UDth6CcNKZzmFi6Dwmhs5jYug8JobOY/t1pnM4zN0LGi9Mq+QsHmY2290nRx1HR6ZzmBg6j4mh85gYOo+JofPYfjqHqtYUERERSSlKzkRERERSSGdMzu6IOoA0oHOYGDqPiaHzmBg6j4mh89h+nf4cdro2ZyIiIiKprDOWnImIiIikrE6TnJnZdDNbamYrzOz6qOPpqMxstZnNN7O5ZjY76ng6CjO728xKzGxBzLI+ZvaimS0Pn3tHGWNH0Mx5/IGZrQ+vyblmdlaUMaY6MxtqZv8ys8VmttDM/jtcruuxFVo4j7oeW8HMuprZu2b2QXgefxgu79TXY6eo1jSzTGAZcAZQDMwCZrj7okgD64DMbDUw2d07yxg0CWFmJwHlwH3uPiFc9itgu7v/IvyHobe7XxdlnKmumfP4A6Dc3X8dZWwdhZkNBAa6+3tmlg/MAT4FXIGux7i1cB4vRNdj3MzMgFx3LzezbOAN4L+B8+nE12NnKTmbCqxw91XuXgU8BJwbcUzSibj7a8D2RovPBe4Np+8l+GKXFjRzHqUV3H2ju78XTpcBi4HB6HpslRbOo7SCB8rD2ezw4XTy67GzJGeDgXUx88Xoj6itHHjBzOaY2VVRB9PB9Xf3jRB80QOFEcfTkV1rZvPCas9OVf3RHmY2HPgI8A66Htus0XkEXY+tYmaZZjYXKAFedPdOfz12luTMmliW/vW5yXG8ux8NfAL4z7CaSSRK/weMBCYBG4HfRBpNB2FmecBfga+5+66o4+momjiPuh5byd1r3X0SMASYamYTIg4pcp0lOSsGhsbMDwE2RBRLh+buG8LnEuAJgipjaZvNYbuV+vYrJRHH0yG5++bwy70OuBNdkwcVtu35K/AXd388XKzrsZWaOo+6HtvO3XcCrwDT6eTXY2dJzmYBo81shJnlABcDT0UcU4djZrlhw1fMLBc4E1jQ8lbSgqeAz4XTnwP+FmEsHVb9F3joPHRNtihsgP1HYLG73xTzkq7HVmjuPOp6bB0zKzCzXuF0N+B0YAmd/HrsFL01AcLuzDcDmcDd7v7TaCPqeMzsMILSMoAs4AGdx/iY2YPAKUA/YDPwfeBJ4BGgCFgLfMbd1di9Bc2cx1MIqpAcWA1cXd9WRQ5kZicArwPzgbpw8XcI2kvpeoxTC+dxBroe42ZmRxE0+M8kKDB6xN1/ZGZ96cTXY6dJzkREREQ6gs5SrSkiIiLSISg5ExEREUkhSs5EREREUoiSMxEREZEUouRMREREJIUoORMRaYaZDTczjVMlIoeUkjMRERGRFKLkTEQkDmZ2mJm9b2ZToo5FRNKbkjMRkYMws7EE91C80t1nRR2PiKS3rKgDEBFJcQUE9/X7tLsvjDoYEUl/KjkTEWlZKbAOOD7qQESkc1DJmYhIy6qATwHPm1m5uz8QcTwikuaUnImIHIS77zazs4EXzWy3u/8t6phEJH2Zu0cdg4iIiIiE1OZMREREJIUoORMRERFJIUrORERERFKIkjMRERGRFKLkTERERCSFKDkTERERSSFKzkRERERSiJIzERERkRTy/wGJrrGzmSJCegAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "#Code task 20#\n", "#Assign the value of k from the above dict of `best_params_` and assign it to `best_k`\n", - "___ = lr_grid_cv.___['selectkbest__k']\n", + "best_k = lr_grid_cv.best_params_['selectkbest__k']\n", "plt.subplots(figsize=(10, 5))\n", "plt.errorbar(cv_k, score_mean, yerr=score_std)\n", "plt.axvline(x=best_k, c='r', ls='--', alpha=.5)\n", @@ -2928,7 +3188,7 @@ }, { "cell_type": "code", - "execution_count": 84, + "execution_count": 113, "metadata": {}, "outputs": [], "source": [ @@ -2944,9 +3204,37 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 114, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "vertical_drop 9.394854\n", + "fastQuads 7.653361\n", + "total_chairs 6.107187\n", + "Runs 3.700963\n", + "fastSixes 3.544047\n", + "Snow Making_ac 3.402577\n", + "daysOpenLastYear 3.206760\n", + "averageSnowfall 1.576638\n", + "summit_elev -0.213549\n", + "total_chairs_skiable_ratio -0.274846\n", + "fastQuads_runs_ratio -0.444024\n", + "projectedDaysOpen -0.448548\n", + "LongestRun_mi -0.519307\n", + "TerrainParks -1.642032\n", + "total_chairs_runs_ratio -1.958943\n", + "trams -3.441610\n", + "SkiableTerrain_ac -7.064449\n", + "dtype: float64" + ] + }, + "execution_count": 114, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 21#\n", "#Get the linear model coefficients from the `coef_` attribute and store in `coefs`,\n", @@ -2955,7 +3243,7 @@ "#sorting the values in descending order\n", "coefs = lr_grid_cv.best_estimator_.named_steps.linearregression.coef_\n", "features = X_train.columns[selected]\n", - "pd.Series(___, index=___).___(ascending=___)" + "pd.Series(coefs, index=features).sort_values(ascending=False)" ] }, { @@ -2990,7 +3278,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 117, "metadata": {}, "outputs": [], "source": [ @@ -3000,9 +3288,9 @@ "#StandardScaler(),\n", "#and then RandomForestRegressor() with a random state of 47\n", "RF_pipe = make_pipeline(\n", - " ___(strategy=___),\n", - " ___,\n", - " ___(random_state=___)\n", + " SimpleImputer(strategy='median'),\n", + " StandardScaler(),\n", + " RandomForestRegressor(random_state=47)\n", ")" ] }, @@ -3015,7 +3303,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 118, "metadata": {}, "outputs": [], "source": [ @@ -3023,21 +3311,21 @@ "#Call `cross_validate` to estimate the pipeline's performance.\n", "#Pass it the random forest pipe object, `X_train` and `y_train`,\n", "#and get it to use 5-fold cross-validation\n", - "rf_default_cv_results = cross_validate(___, ___, ___, cv=___)" + "rf_default_cv_results = cross_validate(RF_pipe,X_train, y_train, cv=5)" ] }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 119, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.69249204, 0.78061953, 0.77546915, 0.62190924, 0.61742339])" + "array([0.69338843, 0.77876169, 0.53563563, 0.69378006, 0.61798337])" ] }, - "execution_count": 88, + "execution_count": 119, "metadata": {}, "output_type": "execute_result" } @@ -3049,16 +3337,16 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 120, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.6975826707112506, 0.07090742940774528)" + "(0.6639098368762419, 0.08187268171412249)" ] }, - "execution_count": 89, + "execution_count": 120, "metadata": {}, "output_type": "execute_result" } @@ -3083,7 +3371,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 121, "metadata": {}, "outputs": [ { @@ -3113,7 +3401,7 @@ " 'simpleimputer__strategy': ['mean', 'median']}" ] }, - "execution_count": 90, + "execution_count": 121, "metadata": {}, "output_type": "execute_result" } @@ -3130,37 +3418,76 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 123, "metadata": {}, "outputs": [], "source": [ "#Code task 24#\n", "#Call `GridSearchCV` with the random forest pipeline, passing in the above `grid_params`\n", "#dict for parameters to evaluate, 5-fold cross-validation, and all available CPU cores (if desired)\n", - "rf_grid_cv = GridSearchCV(___, param_grid=___, cv=___, n_jobs=-1)" + "rf_grid_cv = GridSearchCV(RF_pipe, param_grid=grid_params, cv=5, n_jobs=-1)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 124, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "GridSearchCV(cv=5,\n", + " estimator=Pipeline(steps=[('simpleimputer',\n", + " SimpleImputer(strategy='median')),\n", + " ('standardscaler', StandardScaler()),\n", + " ('randomforestregressor',\n", + " RandomForestRegressor(random_state=47))]),\n", + " n_jobs=-1,\n", + " param_grid={'randomforestregressor__n_estimators': [10, 12, 16, 20,\n", + " 26, 33, 42, 54,\n", + " 69, 88, 112,\n", + " 143, 183, 233,\n", + " 297, 379, 483,\n", + " 615, 784,\n", + " 1000],\n", + " 'simpleimputer__strategy': ['mean', 'median'],\n", + " 'standardscaler': [StandardScaler(), None]})" + ] + }, + "execution_count": 124, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 25#\n", "#Now call the `GridSearchCV`'s `fit()` method with `X_train` and `y_train` as arguments\n", "#to actually start the grid search. This may take a minute or two.\n", - "rf_grid_cv.___(___, ___)" + "rf_grid_cv.fit(X_train, y_train)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 125, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'randomforestregressor__n_estimators': 379,\n", + " 'simpleimputer__strategy': 'median',\n", + " 'standardscaler': StandardScaler()}" + ] + }, + "execution_count": 125, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#Code task 26#\n", "#Print the best params (`best_params_` attribute) from the grid search\n", - "rf_grid_cv.___" + "rf_grid_cv.best_params_" ] }, { @@ -3172,16 +3499,16 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 126, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.6951357 , 0.79430697, 0.77170917, 0.62254707, 0.66499334])" + "array([0.70491559, 0.7806689 , 0.55392265, 0.69922481, 0.59872704])" ] }, - "execution_count": 94, + "execution_count": 126, "metadata": {}, "output_type": "execute_result" } @@ -3194,16 +3521,16 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 127, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(0.7097384501425082, 0.06451341966873386)" + "(0.6674917992965128, 0.08104705309191935)" ] }, - "execution_count": 95, + "execution_count": 127, "metadata": {}, "output_type": "execute_result" } @@ -3221,9 +3548,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 130, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAHuCAYAAADa5aucAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACK/0lEQVR4nO3debx9Y/n/8dfbPNOglMyhVEhEUVFRUkklSfNEExqURjR8k0aNaECFSqUQIRlD5nn4kchQGTKVmev3x3Xvz9lnf/Y5Z6291z57n/N5Px+P8zhnD+ve99l77bXudQ/XpYjAzMzMzEbDfMOugJmZmZmNcePMzMzMbIS4cWZmZmY2Qtw4MzMzMxshbpyZmZmZjRA3zszMzMxGiBtnZjOApOskvXQaXmdRSUdJukvS4YN+PZucpPdJ+rek/0p63LDrU4ekYyW9bdj1MJuJ3DizWaM0YO4rJ7I7JP1B0goNlTvwhtGIeD3wROBxEbHtdL2opIMkfXG6Xm8mkLQg8A1gi4hYIiJu76OslSWFpAWaq+HkImLLiDh4ul5vMpJOlvTuYdfDrCo3zmy2eVVELAE8Cfg38J3prsB0ngAHYCXg/0XEw3U3nM7/u+nXGvZnNsHrPxFYBLhsmqszF6UZd76YqfU2IyL8459Z8QNcB7y07fYryIZG6/bCwNeAf5ANt/2ARctjjweOBu4E/gOcRl68/Ax4FLgP+C/w8S6vuylwI/AJ4F9lm8eU8m4F7ih/P6Vtm5OBLwB/Ae4Bjgce3/b4W4DrgduBT7f/b+X/+BZwc/n5FrBwR10+DtwC/BN4Teu9KP/bpyZ4//YCHgQeKv/ru8p78JlSl1uAnwJLl+evDER53j+AU8v97wSuKP/3ccBK5X4B3yzl3AVcDDwTeG95zQfL6x41Qf0C+ABwNfD3ct8rgQvL53YGsHbb89cDLijv7+HAL4EvTvKZzQfsDvytvO+/Ah5bnr8I8PNy/53AOcATy2NvB64tr/N3YIdyf+33rq3uawD/K8/5L/Dncv/TgBPK53gV8Ia2bbYq/+/dwA3Anm2P/aOtrP8CzwP2BH7e9pxWnRZo20e/RO6j9wFPnez1u3xeJwPvbnuP/lI+/zvL+/X8cv8N5f15W9u2B5HfzxPK+3oKZT8qjz+/fAZ3ld/P73jd9nofAjwC3F/+9++W5+1bXvtu4DzgBW1l7Fk+/5+W178MWL/t8RWA35Lf79tbZfay/w/7uOmf0fwZegX845+mfhjfgFkMOBj4advj3wKOBB4LLAkcBXy5PPblcjJYsPy8AFBnuRO87qbAw8BXyIbTosDjgNeVeixJNg5+17bNyWQjYI3y/JOBvctja5WTyAtLed8o5bf+t88DZwFPAJYlGyVf6KjL58r/8Z5yAjm01OMZ5SS16gT/y56MP2G/E7gGWBVYopyQflYeW5k8mf8UWLz8H68pz386sADZODmjPP9l5ElwmXKiejrwpPLYQZSG0yTvc5An68eW11qvnOg2BOYH3lY+q4WBhchG0S7lfXgt2fj74iSf2a7lfX1KuW9/4LDy/B3J/WWx8lrPAZYq//fdwJrleU8CntHLe9fl/209p9VYWpxsTLyjvLfrAbe1vd6mwLPIRuHa5AXIa7qVNcFn3fl6J5ONumeU11t6stfvUv+TGd84e7hsOz/wxVL298p7vQXZCFqibX+4h7HvwL7A6eWxx5INn7eUemxfbj9ugnov2F6Xtvq9mfyeLgB8lGykL9L23txPXtTMTx4fziqPzQ9cRDa0Ficb7puUx15DD/u/f/zT+TP0CvjHP039kCfm/5JX5g+TvUrPKo+J7IlYre35z2OsB+bzwO+Bp05Q7lSNswdbB/YJnrMucEfb7ZOBz7Tdfj/wx/L354BftD22eCm/1Tj7G/CKtsdfBlzXVpf7gPnL7SXJE+6Gbc8/j3LS7lLPPRl/wj4ReH/b7TXJXq4FGDuZr9r2+LHAu9puzwfcSw6XvpjsvdsImK/jdQ+iWuPsxW23f0BplLbddxXwIvKkfhOlgV0eO53xjbNxnxnZ2/GStttPavtf30lHz1zbZ3Mn2RBftOOxWu9dl/+39ZxWY2k74LSO5+wP7DHB9t8CvtmtrAk+687XOxn4fNvjdV//ZMY3zq5ue+xZ5bWe2Hbf7cC6bftD+3dgCbL3awWyUXZ2x2udCby9W7076zLJ+30HsE7be/OntsfWAu4rfz+PvOBZoEsZPe3//vFP54/H4m22eU1ELENebX8QOEXScmQP02LAeZLulHQn8MdyP8BXySve4yVdK2n3mq97a0Tc37ohaTFJ+0u6XtLdwKnAMpLmb9vmX21/30uegACeTPZQABAR/yNPXLQ9fn3b7evLfS23R8Qj5e/7yu9/tz1+X9trTaXbay1AzodquaHt75WAfdve4/+QDePlI+LPwHfJ3pJ/SzpA0lIV6zHRa3209Vrl9VYodX4ycFNExATbQsdnVso7oq2sK8gGwRPJYc/jgF9IulnSPpIWLJ/NdsBOwD/LIpSnlfLqvndTWQnYsOP/3QFYDkDShpJOknSrpLtKnR5fo/xuOt/vCV+/gs59kIiYbL9s/w78l9yXWp9t+/tKub38BPXuStJHJV1RVibfSfYMtr9fnd/PRcrcwBWA66P7vMxB7/82j3DjzGaliHgkIn5Lnlw3IYdf7iOHYJYpP0tHLh4gIu6JiI9GxKrAq4CPSHpJq7gqL9lx+6NkT8mGEbEU2ZMDeaCeyj/JE0BuIC1GDr+03EyeBFpWLPcNQrfXepjxJ9rOBtCObe/xMhGxaEScARAR346I55BDTmsAu3UpYzKdr/WljtdaLCIOI9/D5SW1v9+dK3c7X/MGYMuO8haJiJsi4qGI2Csi1iLnO70SeGv5n46LiM3JnrYrgR+W8uq+d1O5ATilo35LRMT7yuOHksP2K0TE0uQwfev/7/Y6/yMvWFq6NbI63+/JXr9p7d+BJcjhzNY8y5U6nrsi2VPard5z3Zb0AnK+4RuAx5QLuruo9v28AVhxgkUcve7/ZuO4cWazUlmltTU5Mf+KiHiUPGl+U9ITynOWl/Sy8vcrJT21nMzvJht1rd6nf5PzhupYkmwM3inpscAeNbb9NfBKSZtIWogccm3/rh4GfEbSspIeTw6D/rxm/ao6DPiwpFXKCfL/gF9O0GsA2SD4pKRnAEhaWtK25e8NSu/OgmTD4H76e49/COxUypSkxSVtJWlJcpjrEeCDkhYo+8JzpyhvP+BLklYq9V22bIekzSQ9q/R83k0OTz4i6YmSXi1pceABcli99T/Vfe+mcjSwhqS3SFqw/Gwg6enl8SWB/0TE/ZKeC7ypbdtbyYUt7e/xhcALJa0oaWngk32+ftNe0fYd+ALw14i4ATim1ONN5bPdjhx2PHqSsjr3ryXJhvKtwAKSPkfOIazibLLxv3fZ5xaRtHF5rNf932wcN85stjlK0n/JE+iXyBVgrVAEnyCHLs8qQ41/Inu3AFYvt/9Lnti/HxEnl8e+TDaG7pT0sYr1+BY5yfw2cpL5H6v+A6W+HyB7Qv5JzoW5se0pXwTOJVd7XQKcX+4bhJ+QQ3qnkisR7wc+NNGTI+IIcpL9L8p7fCmwZXl4KbJBdQdjK1G/Vh77MbBWeY9/V6ViEXEuueDhu6XMa8i5TUTEg+QigHeRc8LeTJ68H5ikyH3JnqfjJd1Dfm4blseWIxvNd5PDnaeQDeL5yF7Sm8khrBeR8weh5ntX4f+9h5w4/8byev9ibEED5XU/X+r+OXK1YWvbeykrGMt7vFFEnECuYL2YnIc4WeOmyus37VDyouY/5AKMHUo9bid7Lj9K7kMfB14ZEbdNUta+wOuV8Q+/TQ5RH0vOAbue/GwqDTGXKQOvIlev/oP8bm5XHut1/zcbp7UazcxsVpP0V2C/iDhw2HWxyUk6CLgxIj4z7LqYDYN7zsxsVpL0IknLlaGvt5HhJSr3YJqZDctMjmRuZjaZNcmhvSXI8COvj4h/DrdKZmZT87CmmZmZ2QjxsKaZmZnZCJlVw5qPf/zjY+WVVx52NczMzMymdN55590WEct23j+rGmcrr7wy55577rCrYWZmZjYlSZ3ZLgAPa5qZmZmNFDfOzMzMzEaIG2dmZmZmI8SNMzMzM7MR4saZmZmZ2Qhx48zMzMxshLhxZmZmZjZC3DgzMzMzGyFunJmZmZmNEDfOzMzMzEaIG2dmZmZmI2RW5dbstPLuf5jyOdftvdU01MTMzMysGvecmZmZmY0QN87MzMzMRogbZ2ZmZmYjxI0zMzMzsxHixpmZmZnZCHHjzMzMzGyEuHFmZmZmNkLcODMzMzMbIW6cmZmZmY0QN87MzMzMRogbZ2ZmZmYjxI0zMzMzsxHixpmZmZnZCHHjzMzMzGyEuHFmZmZmNkLcODMzMzMbIW6cmZmZmY0QN87MzMzMRogbZ2ZmZmYjxI0zMzMzsxHixpmZmZnZCHHjzMzMzGyEuHFmZmZmNkLcODMzMzMbIQNtnEl6uaSrJF0jafcuj+8g6eLyc4akddoeu07SJZIulHTuIOtpZmZmNioWGFTBkuYHvgdsDtwInCPpyIi4vO1pfwdeFBF3SNoSOADYsO3xzSLitkHV0czMzGzUDLLn7LnANRFxbUQ8CPwC2Lr9CRFxRkTcUW6eBTxlgPUxMzMzG3mDbJwtD9zQdvvGct9E3gUc23Y7gOMlnSfpvRNtJOm9ks6VdO6tt97aV4XNzMzMhm1gw5qAutwXXZ8obUY2zjZpu3vjiLhZ0hOAEyRdGRGnzlVgxAHkcCjrr79+1/LNzMzMZopB9pzdCKzQdvspwM2dT5K0NvAjYOuIuL11f0TcXH7fAhxBDpOamZmZzWqDbJydA6wuaRVJCwFvBI5sf4KkFYHfAm+JiP/Xdv/ikpZs/Q1sAVw6wLqamZmZjYSBDWtGxMOSPggcB8wP/CQiLpO0U3l8P+BzwOOA70sCeDgi1geeCBxR7lsAODQi/jioupqZmZmNikHOOSMijgGO6bhvv7a/3w28u8t21wLrdN5vZmZmNts5Q4CZmZnZCHHjzMzMzGyEuHFmZmZmNkLcODMzMzMbIW6cmZmZmY0QN87MzMzMRogbZ2ZmZmYjxI0zMzMzsxHixpmZmZnZCHHjzMzMzGyEuHFmZmZmNkLcODMzMzMbIW6cmZmZmY0QN87MzMzMRogbZ2ZmZmYjxI0zMzMzsxHixpmZmZnZCHHjzMzMzGyEuHFmZmZmNkLcODMzMzMbIW6cmZmZmY0QN87MzMzMRogbZ2ZmZmYjxI0zMzMzsxHixpmZmZnZCHHjzMzMzGyEuHFmZmZmNkLcODMzMzMbIW6cmZmZmY0QN87MzMzMRogbZ2ZmZmYjxI0zMzMzsxHixpmZmZnZCHHjzMzMzGyEuHFmZmZmNkLcODMzMzMbIW6cmZmZmY2QgTbOJL1c0lWSrpG0e5fHd5B0cfk5Q9I6Vbc1MzMzm40G1jiTND/wPWBLYC1ge0lrdTzt78CLImJt4AvAATW2NTMzM5t1Btlz9lzgmoi4NiIeBH4BbN3+hIg4IyLuKDfPAp5SdVszMzOz2WiQjbPlgRvabt9Y7pvIu4Bje9zWzMzMbFZYYIBlq8t90fWJ0mZk42yTHrZ9L/BegBVXXLF+Lc3MzMxGyCB7zm4EVmi7/RTg5s4nSVob+BGwdUTcXmdbgIg4ICLWj4j1l1122UYqbmZmZjYsg2ycnQOsLmkVSQsBbwSObH+CpBWB3wJviYj/V2dbMzMzs9loYMOaEfGwpA8CxwHzAz+JiMsk7VQe3w/4HPA44PuSAB4uvWBdtx1UXc3MzMxGxSDnnBERxwDHdNy3X9vf7wbeXXVbMzMzs9nOGQLMzMzMRogbZ2ZmZmYjxI0zMzMzsxHixpmZmZnZCHHjzMzMzGyEuHFmZmZmNkLcODMzMzMbIW6cmZmZmY0QN87MzMzMRogbZ2ZmZmYjxI0zMzMzsxHixpmZmZnZCHHjzMzMzGyEuHFmZmZmNkLcODMzMzMbIW6cmZmZmY0QN87MzMzMRogbZ2ZmZmYjpHLjTNJKkl5a/l5U0pKDq5aZmZnZvKlS40zSe4BfA/uXu54C/G5AdTIzMzObZ1XtOfsAsDFwN0BEXA08YVCVMjMzM5tXVW2cPRARD7ZuSFoAiMFUyczMzGzeVbVxdoqkTwGLStocOBw4anDVMjMzM5s3VW2c7Q7cClwC7AgcA3xmUJUyMzMzm1ctUPF5iwI/iYgfAkiav9x376AqZmZmZjYvqtpzdiLZGGtZFPhT89UxMzMzm7dVbZwtEhH/bd0ofy82mCqZmZmZzbuqNs7+J2m91g1JzwHuG0yVzMzMzOZdVeec7QocLunmcvtJwHYDqZGZmZnZPKxS4ywizpH0NGBNQMCVEfHQQGtmZmZmNg+q2nMGsAGwctnm2ZKIiJ8OpFZmZmZm86hKjTNJPwNWAy4EHil3B+DGmZmZmVmDqvacrQ+sFRFO2WRmZmY2QFVXa14KLDfIipiZmZlZ9Z6zxwOXSzobeKB1Z0S8eiC1MjMzM5tHVW2c7TnISpiZmZlZqhpK45RBV8TMzMzMKs45k7SRpHMk/VfSg5IekXT3oCtnZmZmNq+puiDgu8D2wNVk0vN3l/smJenlkq6SdI2k3bs8/jRJZ0p6QNLHOh67TtIlki6UdG7FepqZmZnNaJWD0EbENZLmj4hHgAMlnTHZ8yXND3wP2By4EThH0pERcXnb0/4D7Ay8ZoJiNouI26rW0czMzGymq9o4u1fSQsCFkvYB/gksPsU2zwWuiYhrAST9AtgamNM4i4hbgFskbVW75mZmZmazUNVhzbeU534Q+B+wAvDaKbZZHrih7faN5b6qAjhe0nmS3jvRkyS9V9K5ks699dZbaxRvZmZmNnqqNs5eExH3R8TdEbFXRHwEeOUU26jLfXUyDGwcEesBWwIfkPTCbk+KiAMiYv2IWH/ZZZetUbyZmZnZ6KnaOHtbl/vePsU2N5I9bC1PAW6u+HpExM3l9y3AEeQwqZmZmdmsNumcM0nbA28CVpV0ZNtDSwK3T1H2OcDqklYBbgLeWMqakqTFgfki4p7y9xbA56tsa2ZmZjaTTbUg4Axy8v/jga+33X8PcPFkG0bEw5I+CBwHzA/8JCIuk7RTeXw/ScsB5wJLAY9K2hVYq7zeEZJadTw0Iv5Y838zMzMzm3EmbZxFxPWSbgT+10uWgIg4Bjim47792v7+Fznc2eluYJ26r2dmZmY2000556zENbtX0tLTUB8zMzOzeVrVOGf3A5dIOoEMpQFAROw8kFqZmZmZzaOqNs7+UH7MzMzMbIAqNc4i4uCSIWCNctdVEfHQ4KplZmZmNm+q1DiTtClwMHAdGVx2BUlvi4hTB1YzMzMzs3lQ1WHNrwNbRMRVAJLWAA4DnjOoipmZmZnNi6pmCFiw1TADiIj/Byw4mCqZmZmZzbuq9pydK+nHwM/K7R2A8wZTJTMzM7N5V9XG2fuADwA7k3POTgW+P6hKmZmZmc2rqq7WfEDSd4ETgUfJ1ZoPDrRmZmZmZvOgqqs1twL2A/5G9pytImnHiDh2kJUzMzMzm9fUWa25WURcAyBpNTIorRtnZmZmZg2qulrzllbDrLgWuGUA9TEzMzObp1XtObtM0jHAr4AAtgXOkfRagIj47YDqZ2ZmZjZPqdo4WwT4N/CicvtW4LHAq8jGmhtnZmZmZg2oulrzHYOuiJmZmZlVX625CvAhYOX2bSLi1YOplpmZmdm8qeqw5u+AHwNHkXHOzMzMzGwAqjbO7o+Ibw+0JiNq5d3/MOVzrtt7q2moiZmZmc0LqjbO9pW0B3A88EDrzog4fyC1moXcyDMzM7MqqjbOngW8BXgxY8OaUW6bmZmZWUOqNs62AVZ1Pk0zMzOzwaqaIeAiYJkB1sPMzMzMqN5z9kTgSknnMH7OmUNpmJmZmTWoauNsj4HWwszMzMyA6hkCThl0RczMzMxsisaZpNMjYhNJ95CrM+c8BERELDXQ2pmZmZnNYyZtnEXEJuX3ktNTHTMzM7N5W9XVmmZmZmY2Ddw4MzMzMxshbpyZmZmZjRA3zszMzMxGiBtnZmZmZiPEjTMzMzOzEeLGmZmZmdkIcePMzMzMbIS4cWZmZmY2QgbaOJP0cklXSbpG0u5dHn+apDMlPSDpY3W2NTMzM5uNBtY4kzQ/8D1gS2AtYHtJa3U87T/AzsDXetjWzMzMbNYZZM/Zc4FrIuLaiHgQ+AWwdfsTIuKWiDgHeKjutmZmZmaz0SAbZ8sDN7TdvrHc1+i2kt4r6VxJ59566609VdTMzMxsVAyycaYu90XT20bEARGxfkSsv+yyy1aunJmZmdkoGmTj7EZghbbbTwFunoZtzczMzGasQTbOzgFWl7SKpIWANwJHTsO2ZmZmZjPWAoMqOCIelvRB4DhgfuAnEXGZpJ3K4/tJWg44F1gKeFTSrsBaEXF3t20HVVczMzOzUTGwxhlARBwDHNNx335tf/+LHLKstK2ZmZnZbOcMAWZmZmYjxI0zMzMzsxHixpmZmZnZCHHjzMzMzGyEuHFmZmZmNkLcODMzMzMbIW6cmZmZmY0QN87MzMzMRogbZ2ZmZmYjxI0zMzMzsxHixpmZmZnZCHHjzMzMzGyEDDTxuTVr5d3/MOVzrtt7q2moiZmZmQ2Ke87MzMzMRogbZ2ZmZmYjxI0zMzMzsxHixpmZmZnZCHHjzMzMzGyEuHFmZmZmNkLcODMzMzMbIW6cmZmZmY0QN87MzMzMRogbZ2ZmZmYjxI0zMzMzsxHixpmZmZnZCHHjzMzMzGyEuHFmZmZmNkLcODMzMzMbIW6cmZmZmY2QBYZdAZt+K+/+h0kfv27vraapJmZmZtbJPWdmZmZmI8SNMzMzM7MR4saZmZmZ2Qhx48zMzMxshLhxZmZmZjZC3DgzMzMzGyFunJmZmZmNkIE2ziS9XNJVkq6RtHuXxyXp2+XxiyWt1/bYdZIukXShpHMHWU8zMzOzUTGwILSS5ge+B2wO3AicI+nIiLi87WlbAquXnw2BH5TfLZtFxG2DqqOZmZnZqBlkz9lzgWsi4tqIeBD4BbB1x3O2Bn4a6SxgGUlPGmCdzMzMzEbaIBtnywM3tN2+sdxX9TkBHC/pPEnvnehFJL1X0rmSzr311lsbqLaZmZnZ8AyycaYu90WN52wcEeuRQ58fkPTCbi8SEQdExPoRsf6yyy7be23NzMzMRsAgG2c3Aiu03X4KcHPV50RE6/ctwBHkMKmZmZnZrDbIxtk5wOqSVpG0EPBG4MiO5xwJvLWs2twIuCsi/ilpcUlLAkhaHNgCuHSAdTUzMzMbCQNbrRkRD0v6IHAcMD/wk4i4TNJO5fH9gGOAVwDXAPcC7yibPxE4QlKrjodGxB8HVVczMzOzUTGwxhlARBxDNsDa79uv7e8APtBlu2uBdQZZNzMzM7NR5AwBZmZmZiPEjTMzMzOzEeLGmZmZmdkIcePMzMzMbIS4cWZmZmY2Qtw4MzMzMxshbpyZmZmZjRA3zszMzMxGiBtnZmZmZiNkoBkCbPZaefc/TPmc6/beahpqYmZmNru458zMzMxshLjnzIZqqh44976Zmdm8xj1nZmZmZiPEjTMzMzOzEeJhTZvxvDjBzMxmE/ecmZmZmY0QN87MzMzMRogbZ2ZmZmYjxI0zMzMzsxHiBQFmeFGBmZmNDjfOzBrkRp6ZmfXLw5pmZmZmI8Q9Z2Yjxr1vZmbzNjfOzGYp5y01M5uZPKxpZmZmNkLcODMzMzMbIR7WNLMJef6bmdn0c+PMzAbO89/MzKrzsKaZmZnZCHHPmZnNCE0MsXqY1sxmAvecmZmZmY0Q95yZmdU0Sr14o1QXM2uGe87MzMzMRoh7zszMrBFelWvWDDfOzMxsZEzXcK+HjG2UuXFmZmY24kapoege0sFz48zMzMymlXsUJzfQxpmklwP7AvMDP4qIvTseV3n8FcC9wNsj4vwq25qZmdm8bbb24g2scSZpfuB7wObAjcA5ko6MiMvbnrYlsHr52RD4AbBhxW3NzMzM+jKKvXiD7Dl7LnBNRFwLIOkXwNZAewNra+CnERHAWZKWkfQkYOUK25qZmZkNXdMNPGW7qHmSXg+8PCLeXW6/BdgwIj7Y9pyjgb0j4vRy+0TgE2TjbNJt28p4L/DecnNN4KpJqvV44LY+/7WmypltdZlt/4/rMvp1mW3/j+syuDJcF9dlusuoWs5KEbFs552D7DlTl/s6W4ITPafKtnlnxAHAAZUqJJ0bEetXee6gy5ltdZlt/4/rMvp1mW3/j+syuDJcF9dlusvot5xBNs5uBFZou/0U4OaKz1mowrZmZmZms84g0zedA6wuaRVJCwFvBI7seM6RwFuVNgLuioh/VtzWzMzMbNYZWM9ZRDws6YPAcWQ4jJ9ExGWSdiqP7wccQ4bRuIYMpfGOybZtoFqVhj+nqZzZVpfZ9v80VY7rMtplNFWO6zLaZTRVjusyuDKaKmdUyuirnIEtCDAzMzOz+gY5rGlmZmZmNblxZmZmZjZC3DgzMzMzGyFunJmZmdnQSJpP0lLDrscomfULAiTtAhwI3AP8CHg2sHtEHN9jeY8BVoiIi3vcfjkytVUA50TEv3ooYx3gBeXmaRFxUQ9lLA7cFxGPltvzAYtExL0Vt58fOC4iXlr3tTvKOQHYNiLuLLcfA/wiIl7WQ1lPBDYoN8+OiFt6KGNZ4D1kloo5q5kj4p01ylgNuDEiHpC0KbA2mabszorbLxURd0t6bLfHI+I/VevSVuaSuWn8t+62Zfv5gScy/j35Rw/lNPEZvRp4Ybl5SkQcVbeMJkhaEHhfe12A/SLioZrlbAMcExEP9FGXZ0fEBb1uX8oQsAOwakR8XtKKwHIRcXaNMhYDPgqsGBHvkbQ6sGZEHF1x+/Umezwizq9al7Yy+97nSjmbAKtHxIHlOLFERPx9im1eO9njEfHbHuqxDfDniLir3F4G2DQiflejjKb23drvSdu2hwI7AY8A5wFLA9+IiK/WrEPf+20pp6/jdlNlzClrHmicXRQR60h6GfAB4LPAgREx6UGgo4yTgVeTJ6YLgVvJk8JHatbl3cDngD+TWRBeBHw+In5So4xdyMZD60u9DXBARHynZl3OAl7aOllLWgI4PiKeX6OMI4G3tA4SvZB0QUQ8e6r7KpTzBuCrwMnke/sCYLeI+HXNcs4ATiMPFo+07o+I39Qo40JgfbKBdxwZo2/NiHhFxe2PjohXSvo7c2fMiIhYtUZdngX8FHhsKedW4G0RcWmNMj4E7AH8G3i0rR5rVy2jlNP3ZyTpy+TFzSHlru2BcyPikzXrsiyZKm4tYJHW/RHx4hpl/AhYEDi43PUW4JFW2rka5RwIvBg4FfgFedHzcM0yTgKeBBxOXtzUDj0k6Qfk5/viiHh6uVA6PiI2mGLT9jJ+SX533hoRz5S0KHBmRKxb4/+YSNT5fEp5TR0X9iC/02tGxBqSngwcHhEbT7HdgeXPJwDPJ4/9AJsBJ0fEpI23Ccq8sPP9rHvMbGLf7fU9adv+wohYV9IOwHPI7+N5PRxX+t5vW/Whj+N2U2XMERGz+ge4uPzeF9im/H1BzTIuKL/fDezVXm7Ncq4CHtd2+3HAVXX/H2DxttuL91iXC6vcN0UZvwL+AfwY+Hbrp2YZ55FX2a3bKwHn9/D/XAQ8oe32ssBFTbwvPZRxfvm9G/ChXva5pn6AM4DN2m5vCpxRs4xr2vfbPurS92dU9v/52m7P3+P+fzzwLuAK8iLpJ8BX6v4/Ve6rWNaC5AXgIcD1wI96KGM5YGfgL8AlwGdqbt/aby/o9f8hG8p9ldHkT5PHBbJx1/5/Vd7vgKOBJ7XdfhLw2x7/p7leF7ik7vtS5b4BvyeXlf3+cOBFdbdvK6fv/bajnJ6P200e+weZvmlUnCfpeGAV4JNleOfRKbbptICkJwFvAD7dR11uJIdXW+4BbqhZhmjr0Sl/d8tFOpX/SVovyjCBpOcA99Us4w/lpx+fBk6XdEq5/ULGEtnXMV+MH664nd7mVB4t6RURcUwP27Y8JGl74G3Aq8p9C/ZSkKS1mXuItc5QyOIRMac3IiJOLkPaddwA9Nw72qapz2gZoDW0u3SPdXlcRPxY0i4RcQpwSts+WNUjklaLiL8BSFqV8d/NyiLiIUnHkj2liwJbkxeDdcr4F/Dt0vv0cbKX/os1inioDF8HzOldrHusfLD0lrXKWA2oPFw7gGHApva5ByMiJLX+r7rfoZUjs9+0/BtYo4d6AJwr6RvA98j3+UPkRW4dTey7/b4n+wPXkQ3oUyWtRG/HmSb221Y5/R63Gzv2zwuNs3cB6wLXRsS9kh5HyURQw+fJLsrTI+KcsiNf3UNdbgL+Kun35I60NXC2pI8ARMQ3KpRxYCnjiHL7NWTPVV27AodLauUsfRKwXZ0CIuLgqZ81ZRl/LPNMNiIbmR+OiNt6KOqPko4DDiu3tyMzUNS1C/ApSQ8CD5Y6RUTUmaz6DnIuxZci4u+SVgF+Xrcikn5Czlm4jLbhRMaGtKu4VtJngZ+V228GKs0JaS8DOFnSH2g70VbcX9s18Rl9GbigNEBENuZrDWkWrbk1/5S0FZm79yk1y9gNOEnStaUuK1H/2IKkl5Mp6jYjh99+RF4I1inj6eT7uS1wGzk8+tGaVfk2cATwBElfAl4PfKZmGXsCfwRWkHQIsDH13pNXTfJY3X0fmjsu/ErS/sAykt4DvBP4YY3tT26rR5Cf92RDuJP5EDk955fkfnc8OWWnjib23X7fk/0j4tutG5L+QZ7P6mpiv4VmjtuNHPthHphzBiBpeXLna+99OHUI9dhjsscjYq+K5awHbEJ+qU6NHicCl0mha5Zyroz6k0FXJ0+WnfN2Ks+JKuU8Bli9o4zan4+k15Eng9b7csQUmzSuXMEdHBFvbqCsyyNirT7LeAywF237C7BnRNxRo4yu+23V/bWjrL4/o9KLvUEp46/R26KaV5JzC1cAvgMsRb4vtRYXSFqY8d+h2pP6Jf2CbEwd28v2pYyzyBP/4RFx81TPn6ScpwEvIf+fEyPiih7KeBxjF1tn9Xix1ZimjguSNge2KOUcFxEn1Nz+tYwt5BrK8amjPk3suz2/J+Vib+so8yvL9/roiHhOD/Xoe78t5SxKTrO5qpftmzTrG2eSvkJeLV3OWLdtRMSrK2z7HUpXaTcRsXOPdaq9ck6DWcH3TOZuWP20xvankxPFv0le8b6D3KcmbYR2lPFusrfqKeQcho3ICcS1Jv42RZqz8meViPiCpBXIuSJ1VqwdB7wqIh7ssy4/Br4eEZf3U05TJC0eEf8b0ms/LSKu1ASr+aLmKj5JG0fEX6a6b4JtXxwRf55oCK6HoTfKkM7qEfGncoJYICLumWq7jjL6OrFI2gi4rPW65Ti1VkT8tUYZJ0bES6a6r2JZWwHPYPzx6fN1y5ltyrDdx5n7vZnymDmIfbdXpbdtK+B15EXSkcDHomIkhYnOhS11z4mSXgV8DVgoIlaRtC65YG/KtkJbGa8EvsBYZ1AvIy/AvDGs+RpytUQvV6Tnlt8bk42YX5bb21J/jL/VGPoZuXIOSbeRq5qqrKw6FHhled32BqPK7bq9VXuQk8PXIrv5twROJ1f2VbVoRJwoSRFxPbCnpNPIBltVu5C9IGdFxGblCqhyj4yk0yNiE0n30OV96eFL8X3Kyh/yS/Zfcm5HnZU/1wF/Ua5mndOY6WEY8GDgTEn/IocTW//TlKuZJH0rInaVdBRdLjBqHnCeRw6dLwGsqAzlsmNEvL/i9k18Rh8h5yJ+vctjQX5edXwH6GzodbuvmxeRq+66DcHVHnorJ6n3kseF1cgLlf3InoCqZcw5sQA9nViAHzD+//9fl/smev1FgMWAx5fe2tY82KWAJ9eoQ6u8/Up5m5HDvK8H6lwgNXJc6LJ9r+VsRO5fTyc/o/mB//Vy0iYXjfySPB/sRM5vurXitn3vu029JxHxQ0kLAb8j59XuGBFnVNm2aJ0Lu825rn1OJIfkn0tOLSAiLizDknV8C3gtuUCjr56veaFxdi05Ia9246w1p0rS28kVbw+V2/uR4/x1HQB8JMoEbWUclB+SS6ynqssry++6O8tEXg+sQ64keYcyFtCPapZxvzI+2tWSPkjOqXtC3TIi4n5JSFq49I6sWXXjiNik/F6y5utOZMOIWE/SBaXcO8oBpI6by898QD/1+gm5xP0S6k9wbc0x+1ofr9/yLeBl5JUtEXGRpBdOukWbJj6jiGgtEtkyIu5vf6w0DCopDc3nA8uqzPUsliJPmFXq0rr4+Hx0xHTq4WAOOV/oucBfS/lXS6r7PdqTuU8sK9csQ+0nlIh4VFLVc8SO5DzWJ5MnzdYJ827y4qau50fE2pIujoi9JH2dGo3epo4LDR5XvkvOMzucDLXwVuCpPZbV82KWJvbdft+Tju+dyF6zC4GNJG1U9SK2wXNhy8MRcVcOnoy9TM0ybgAu7bdhBvNG4+xe4EJJJzJ+MnOdIcknkyfZVjfpEvRwNUgDK+caHDa4rxx8H1ZGZr6F+lcau5JXtzuTvUybkVdxddyoDKL4O+AESXeQDZtaJP0sIt4y1X0V9L3yJ3qYizWBf0TEkb1sGBGtnt11I2Lf9seUsfJqrUyMiBs6Dlq1VyU29Bmdwdw9Od3um8hC5Pd3AcY3nO8mL1jq+E2X1/01GbOpjgci4sHW+1saRHUP7t1OLHVdK2lnsrcM4P3kxe2Uyj62r6QPRc2YixNoNcDvVcbPup1ccV9Lv/tck9NJIuIaSfNHxCPAgcqYir1oYjFLI/uuxuY/B7lgrsr8587G3RET3F+nHq9tq8dpUSMgb5tLJb0JmF85n3pn8thSx8eBY0pjuZ/FU/NE4+zI8tOPvRlbIQbZNbxnD+X0vHKu6WEDcjn2MmTP3Xnk8F2tiMoRcU6pW0RE7VVqpYxtyp97lvd3aXK1F6Xsx0S1yevPaL9RTnC1J5YytvLniaq58qfJocTiSmUU7aMY/0WvM2z2NjLGX7u3d7lvMjdIej4QpRdxZzI+WF09f0bKzBrLA4tKejbj9//FqlagrafhoDIUX1sZen8GsHTH3J2laJsDVMMpkj5F/m+bk42iulkPmjix7ETu/58h998TqRnWJiK+oz7nshZHlePTV4HzS33qrARs6fe40DmdZFxAaKpf0N5bvjsXStoH+CcZo7IXX5S0NLkat7WY5cNVNmxy35X0OXKKT+t4dJCkwyNi0vAtpSd0fmDviNitzmtOUI/vk72QrRW5O0naPCLqrmD9EBna6QHycz+ejNRQx5fIc+ki5IVgz2b9goCmlJPDhuVmryvE2lfOQa6c26tK46P0duxKNsRuYvywwQ8j4rt169NW9srAUtGWkkrSM6aaC6e2uUgRUXsuUsW6nR+TZHOQ9EngU2RsqFbqKZFhMA6ImpHjS5mtlT+QaVIqNUQkPScizpP0om6Pl4ZBnXoc2L2YqVNJKWPtvInc105re2hJMhJ45bRbkh5PNuZeSg7VHgfsEhG3V9y+789I0tvIRuX6jM0FhYwVeFDVBmsTDWhJW5NzWV/N+Au/e8jo/LUaRWVqwLtoW/VGBqGtfHBWpk36dEcZX+gcAh40TTCXNSIq9UpK2jYiDpe0SmvYTbmqcJGokYlkEMeFfigXfNxCTrH5MHkR+v2IuGYAr/XJiPjyBI81tu9KugJ4dmsfUy5IOT8inl5x+54WinQp5zLgma3vS/k+XRIRz5h8y7nKWSs6Fl9J2jQiTq5RxrkRsX6d152wrNneONNYCpxxYprDPai5XJRNDRtM9TqTNorKc/5K9iwdGSV1iKRLI+KZDdbjgqiQlkTSl5s64HZ01f8lesjnNx2mOAivRA4DfRnYve2he8go3LXSAzWhic9I0uuiRiqtLts31oCW9LyIOLPXuoya0jv/LuZeBVgnr+wljM1lXUdlLmtETBa/rH378yPnfE55/KlYXpPHhX4DQk+LisfuvvddZdDk7WMsL/IywM+jzI+usP3XyXPq4YxfOFV3Qc1vyfiY15fbK5G9ctvXLOdSckHcV8n9fx9g/Yh4Xo0y9iYv6HvK3d1uXhjWbG/FLkJ2w066BLeTJgj3QI0VYhHxiKR7JS1d5wqwSzlNDRtMpdLklSbmIk31EhXr8cl+G9Awrqv+N+R7cGCVrvqOMhqJ/1bBtuV15lIOVNcDlQ8sE1EGXd6X3O+D3Pc/HBGV5iO11anvzygifqM+QixEmYsXEaeUYaankf/TVVE/9MkFkj7QpS6VGjOlITNZqJ4qq3K79gC2lVFnKP1nwJXk4o/PkyFl6g5f9zuX9fYyvWEV5WrncepODWjwuNBXQOimOgkqqnLs7nnf1ViIqQeAyySdUG5vTq74r+qx5FzC9vNoL4GGHwdcIak1LWcDcpV7awFT1X1mQ+Ar5HSAJclVsZXyhLb5APBxSQ+QcwMdSmMiXYZevqWMz/W5GsX0Fe6hzf3AJWVnbr9SqLw4YaJhA+qFwKiiSqOoqblIfWuiAV1sz/iu+r3JOS910uAcyFj8t80o8d9q1qOKKctUM0v4DyVX3LXmB76RnN+x4YRbdK9L35+R+gyx0FbOVmS4ir+R7+MqknaMiGNrFNNvY6ZSD8MUmliN2/LUiNhW0tYRcbByvuNxNcvody7rVuRE9Z/RPWxKLQ0eFzaK/gJC991JUEOVY3c/+25rWsF5jE3mh7JSuKrocZ5yF3XO5ZN5iExhuCj5Gf09IuouBmtqdS+TJt6cDT/kF731sz456bVugtdzyu8LgYVbf/dQl7d1+6lZxiXkvJ+Lyu0nAkcN4H2bMPk4GQtsKeDx5NXFv8kr5J/TQILsjte6oMb7skjrcyF7RH7Zw+sdCyzTdnsZMmp1nTLOa9Wp7b7TpvMzanvOueRk2QvIhtk7yNQidV7nr13uO6uH+vb9GVESI7f9XgI4voe6XEk2Rlq3VyOjpNfeN9vqsiA5pNHLZ7kS8NLy96LAkj2UsSgZ07HX/ens8vtU4Jnl+31tH+WtDKzd47br9/q6Te9zZbsfkwF5+65TW5mnN1leW7kXVH1OE/tuH/VchOxp+j4ZNugnwE+msw4d9bmIbKguCCwH/B74dQ/lPIYMa/PC1k8v9Zn1PWeMv/p6mAwQum3NMhoJ9xAN5KKkmRAYVUw2xHMdedW0R0Ts0M+LqPsS9XtiLJVU1QmjfcVLa9O1q17St6FyL2cT8d+qqDr03O8S/pMk7U6mGAoy48YfWp9dVA8n0MRn1EiIBeCWGD8Z+1ryu1RHax+9s0w1+BfZIKlFoxOE9oAyBPgZcrL4EmQOx8raJ3lHxHWd99XwDWXavXPIxuJpEXFJzTKgueNCzwGhYc481pb5yI6C5npZxju8wnP63ncbGKrtq+dZzQcgf1dEtHoF/wVsLalWKKYGe2pnf+MsIjZrv61cSr0d8P9qlDFpuIepNDG3pE3fITDa6jVhztGI2GiS+u6jTGr8DUnvJE8kj7Y9XmfOwPlkEMI7yC/VMmT8nluA98RYvK6pNNKAJrvpe+6qL3ZlfPy3F1M//lsVVQ7CTSzh36783rHj/ndSL5xAE59RUyEWLpN0DPCrUsa2wDkq4QUq7sN9N2aKoQahVQYz3Re4InLl+KnUzzjSaKifiHhh2W83IKdx/EHSEhFRdyiwqeNCPwGhITsJWueAXjsJAGhdKHa4Czg3In4fEf9XoZgm9t1+h2r7GkaPhgINq8SyI0Ndddb/DzWLa2oK1OxdrVl6lT5Axkb6PfCncvtj5JDg1jXKWrHb/RHxj4rbr1T+bMVdacU52wG4NypOZlbOvH9KRNxQbq9MRwiMqtRHztG2Mt5KxnX5M22TZKPe6q79gCMi4rhyewvg5eRJc9+IqDWvqZTxIkoDOmpO8i4nmaeSB9K/xTSHIuioy7LAe5h7hVid93clcth5IQa8hL+OXj6j0hu5UZTl/uohxEJbWQdO8vCU+3Cpy+sj4ld1X7tLWX+NiA1VViaXC8jz61y0dZZR7ru4ShmSLoyIddXHCkk1HOpH0iZkkvAXkBdsF5K9Z4dNstlUZfZzXPhz9JHvV9JHGR8nbdyJN2oEKZV0ADk827o4ex25UGEFchh61ym2b2zf7VL26a1GU4Xnnh0Rz5V0Khnb71/k0HrlC4Pyv1wcfUQIkHR0RLyyrSdwXCy7mvU5JyI2kHQhmW3mgdb3q3a9ZnHj7Pdkb8yZ5PDAY8gT1C4RcWHNslo9XyKvEFYhV3fVjaPyl4jYeKr7pijjvIjoJbhqZzlXkfNBaqe1kvQMMor4zeSqvX/2UY+54sK07qu6Uzf0BV0A+D+yN+h6cujhKeTk/k+3DbNWKWsNYDfm7pWsdXAvw4+nkT2kc1bBRsVQEsrwLQdHxJvrvG5HGU8gLyqeQX4HLge+FxG1hgCb+IxKOWdGjaXtgyTp1IionMZqknL2Ae4kU/p8iDxRXR4Rn65Rxo/JoLG7kyfrnYEFI2KnCtseRq7qfQLQ3mivNXRXymok1I+kR8j5kl8GjqnbmCplNLLPlbK+TzYSewoIXXqFNiA7CkTmtjyVTPdD1MgqIunPwBZRwuGUY9fx5BSMS6LCwoUm9t0JhmrfFxHrVNz+3eSq+LXJ4+wSwGcjYv+a9TgE+GTVzpJBknQEOa93V3LE5A7ye/iKumXN5mHNVSPiWQCSfgTcBqwYEffULahVTkvZKTuHeKpYXNImEXF6Kef51B9iOkvSBlGi8/eh55yjZJqPXaKBWC7AfyR9gpzPBNmbd0dpWFQaPoicg3eRpBX7+IJ+lZwDskprHym9r18rP7vUKOtwcqj3h/QXWmSxiPhErxtHhm9ZVtJCPZ7cNiZXah5ErgYWubDmbEk7RMRfatSlic8I4HhJrwN+G31cWaqBmF7kMNnHyCTU7auvK6f0KXYvdbmEPK4cQ/08t53RzY+j4grjiNheGWT7ODI4aT/+JWnJiLhH0mfI/eWLUT9W4OPIMAYvBHaW9ChwZkRUHnprcJ+DXGzxABnkd85LUD3sw+OB9dqOLXsCh0fEu3uoy/LkeaPVY7w48OTyfa96PG9i3+02n/sNVTaU9BqysfvcMmrSz7zpJ5HTFM5m/P9SaV8uowt3tnrgJW1GBuq9jrwQrXzsjD6nQI2r1yzuORvXRd9Pl32V8itu8xxy7sLS5Bf7LuCddQ5cki4H1iB7d/5HD1e3pZzfkMEia+ccVU6sfUDSVzobD93um6Ksx5NhJzYh/5fTyTH6u8jGdKXht3I1uQE5/66XL+jVwBqdJ/zSSLwyIlavUk7ZpqnezS8CZ0TEMX2UsT95gjyS8e/LlMMoks4ir4Qv6Lh/XWD/qDnk3O9nVMq4hzwZPUwuDuhp8q+kw8nJyG+ibTJyRFRuhJdhkE61hkEqvs5vIuJ1fZbxnYj40CSP993LWsq5ODJh+SZkr9fXgE/V3VdKWU8nU+W9gExW/4+IeFHNMvre5yq+zoQBocvjVwLrtEYqlEPyF0XE03p4rXeRc8VOJvf/F5K9/ocBe0aFlEjTte9O8NrfJy+KziBHtY6KiC/0Ud7Z5EjFnLuAr1Td55TB1LeJiJvLse1P5L67NvBQ1QZ0kz21MLsbZ48w9mUUY2k8ah/MJX2k7eZ85MnucRHxsh7rthT53t/Vcf/bYooVnRqbvzZOjEVHrpSLUpkOp1s5lVeUdmugquI8l6apz4jvkv5fRKxR97GO57Umk+5Mrvw7gvEN31o9Km0NkZ4DGirj4s2lyjCKpMsnGiKZ7LFJyuvrM6r4GlOmHSvPuyByflerMbEgmcGj53lFXV5j84g4oYFyLogKWTKmKKNK1Pg/Aq/upZe1rYzW+/plcojt0F7qL+lvwFXkxdppZDiXXnp/B77PldeZKs3cp8lepSPIC/NtyJAeEzbopni9J5ELQETO0+plkcNk5U+57yrze+5BNg4BTiFXCE86B1QZiX+d0tO3GDmXsOeL2X7PQ+3PlfQ14NGI+HhpbF1Y53zW5BDrrB3WjIj5GyyufTXIw+QKjp5TyESuDOlmF3LJ9mTbTpWs+USy8ThVHXoO6yHpfeS8mFUltS9GWBKoPNRVylqDXKSxMn3Mz5rqYKup5ypdLumt0ZFpQdKbyR6WKjqTI7dfzdVZ1ZgbNBDQcKpG2BQ9KurW2C+N0Pl6qEu/n1EVP6PC/k9DYTCm8BWg78YZ1YKKNuF64C/KyOq1elnb3FR6a18KfKX0ENXeV4DVo2YA0G6maZ8DJg9rExFfUqY7ekG56x2dPdI1zQfcSh4znyrpqVEz68EUquy7PwEuZWwo8y3k3LHXTrHdg5FhfYiIeyVN+t5NpMHzUPvrvxj4ZKnboz1Ura8h1naztnHWpIjYq/R2TdawakITUeQnLUPSryLiDZogvEfFq4RDyWCtc+VtrNs7xNj8rB/RfOqndotM8fgHgN8qQ4O0GlkbkD2u20y2YUtE9BJva0KSuk7YbfggPNlilG+Sc7w+RoatAHgOeeD+ZoN1aJnqM6qi6neoWyiBpiKN163LqLi5/MxH7zG43kCutv5aRNxZenjmXKRU7dkHnqxME7Qx+V08nZznemOP9ZpIE/scVGhAR05f6TtPr8ZW2nemkmryuFBl312tY7h9L+Uqxak8ra0xJWC1crvuFJ2mzkN/lvQrMszQY8joA63eybq9tUswPvOHyONlbW6cTUHSruTBZZG8qduAz0XELyStECWsRUOauEKeqozWnJqeU8eUbuu7lBN+/xU5/2xTYG1JP42SCLeihyPiB73WpYZJ35eIuAnYUNKLyfkQAo6NiBPrvpAyZ90hMZYQ+DFkguDv1yyqvedtEXIY4zx6CGjYi4g4QNLNZKy29tWaX4yIowbxktNVRkS0JtzXjunVdF0qGPhFG9RbMThJGffSNkk+ciV3+2ruSj37ZA/MoYzFAntzuW/zfuvYYZQ+o6peQ2aC6GUxV1VV3pf7NH6B28Zk+qOpPL2vmhWt8xCZcq8fu5KN3eWATWJsZf5y5CKbOhbo7K2VtGgvlXLjbBLKFTXPBV4QJcmzShLoMvfrPWRMrMZessGyuioHyyrDo1X8Blhf0lPJ9CZHkgfUOsuGj5L0fvqcn9Wg68lJ+PdL2lTSzkDdBud7IuJ7rRsRcYcyCnytxllEvKr9tqQVgH3qlNGviDgaOHo6X3M6SPo/YJ+OBvRHI+IzQ6rPouQCmKu6PDzlAhtJ20bE4ZPct2+FMk6ie296kxcDVY9xy0ZEeyy6g8qF8qiqEhC6Kf2stG/STsBPy9wzyLARUwbbbujc05iICOAXysVsN7Xdf0HppZwyMG6TU31a3Dib3A7As6ItEGlEXCvpDeR4/5safr2ePsQOlQ5+aiYh9qMR8bAyqvq3IuI7kurOo2h9mfuan1VB1ZNCEw3O+SSpfOlbK+EWqlPZCdxI5jxsUpXk6fuQYRnuI5eFrwPsGhE/n+66VFB1GGLLiPhU60ZpQL+CHOZsynVVnqQpUi9FtZA1n2TuBsKc+yLioAplfKzt70XIeGkPV9iujqo9VbeV+Z6toLPbk6m6mlb1eNktKv8cUS2tW1PuJTN+1F5pX8N1Ez2g8QvkfspYOKj/kXMNKwVFL+eNr5Dx9USPK68btDlzXwht2eW+bpqc6gO4cTaVR6NLhPiIuE/STRFxZJVCOnbmubQm3EbEByuWtwk5YfZAZRT5JSKitTS6ag677wJvJA/e65MBMOv2Aj4kafuybauXZ8E6BTQ1T0vS4ozlHV2DjKB9bFsXddUcaU00OI8DfqXMfhDkFWbtWDdlzk3rZDYfsC6ZnLc2SYtHxP+6PDRljwoZ8PLjkrYhG4jbAieRie7r1mMlct/9U+ktWiDGYg9O+RmVoZMLI+J/5eS9HplJ4npg0rRjHeZXCQlTyl0UWLjm/7IY8FGyx+s9klYnh5uOLnWZamJ0y570nnppS/LCYfmOBsRS1GxYxdyp0v4iqdFVjTW8kzxGfZP8DpxR7qut332uWARYi4wLBvkdOI/MXDDdjiw/Petz323NR1yT8YF130y9eW/7AK+KiMr5NAehrderNfetpXKvV4NDrHO4cTa5GyW9pHPeUZmXdNME23TTWIJbZWiE9ckvxoFkY+jnlInddVrp0X9C7HeQDY8vRcTfJa1CxRO2pBdHxJ9LI6hb3erk54Q8KLygDE+dSEYX347s/SQiLq1YTt8NTvJK673A+8iD1vHUDyoK+T+0PAwcFjUCvwIoAx3/iJyouqKkdYAdI+L9ULlHpfX/v6LU4T+9LLDSFAm+K35GPwDWKf/Hx8nezZ+S8bDq+DlwojKNU5An/p9OvslcDiRP0K3VfjeSFzt1h4Efjoi7ely0djO5n7y61KXlHjJdV2Uan1ewFfF9uV4qNdnLVHlSZCiCvmORNbTPAawObNa62CsXXsdHRK33uAnRx0r7Nj3vu625iZKOp0tg3Rp1+PewG2ZF471eTXDjbHI7A7+XdDrjV/BtTI0DRxMTbdtsAzybsuonMnBeL42/vhNiR8Tl5HvUuv13YO+Km7+IXBXzqi6P1Ym83aLIZdnvAr4TmZy9l6XqPTc4WyJDAOxXfuauaMWgop0HYUlbSDohIupMiv4m8DLKlXZEXKQJVoFO4khlEM37gPeX3tpeco42keD74YgISVuTPWY/1gQx+yZT9o+LyWEYAV+Ikt+1htUiYrvSmG/1qPfSwrpU0pvI3rzVye9UpQuliLgIuEjSIVHS+fShPRTMQ+TQ1ruqbqxqQTgr9eyrgbyyRRP7HGTO0CWB1sl6CXpI6N4PNbPSvqWJfXdFxk8jeJB64WjOlfRLMil97ZRYTYlmF7g1xo2zSUTEZcoYSG9ibAXfqWTPQ+2Tk5pJGfNgOTm15jPVTf/U8hby6viD5BX2CuQck8rKieTLZHd/+/8z5XyxiGgFR90pOlYddVzB16iOnkf2lLVOKL3s36uS86keLfWs0+Cs8xoTKj2z+5EH/9+R0b9b6ZO+VPfFIuKGjuNu5ZAl5YR7FDkEcXdk4Mh7ga3r1gN4ICIebNVFmROw7mq5eyR9khxCeWGZz1e3ZxNJW0bEsbQNN0vaKSK6Nqgn8GAZJmt9F1ejt0na7amXDiOHxStFTG+dsIELWseEdjVP2J8gk4LfLemz5JDxvVU3jgrpkmr0RPyeDD77J/oLsdPEPgd5DLhAuWgC8uJyzz7q1Yu+V9q3aWLf/RmZyq09sG6dXr2lyP2r15RYTWtivnFzIsI/U/yQqSCmvK9COYeTB92/kRPhjyev/uuU8TFgf3LFznvIxO4fqlnG/MDPG3hfTievhC8mk3zvCexVs4w/kHNAWreXA87roS4vJL9Mnyi3VwW+3UM5Py+fzz7A0we0P50/xeMXAJuSc6BeA9xNxnjq5bV+Taa+OZ+ccP4x4Bc1yzizof97H+BTZFDfzckVul+qWcZywEfIFdSQV+9v7aEuZwAvbrv9CXKOYp0yNiejot8KHEL2NG3a53s0P7BUjec/qfxeqdtPzde+uPzehLwI3ZqMzF+njD+TQ6onMjY36sge3ocLR2Wf69j3ti4/yzVRv2H9kA2izn13sx7KWY9sNO4CPHvY/1ef78n55ffHKedU4IJh1WfWpm9qkhpKU6SGUsZI2pz8cqlsXzsKuaTjyMmY/aRqOS8iniPpkhhLMn9aRLxgqm3byngPsBXZa7cCeTD/WDSTVL0nyoDD25NDnEHOzzgsxiYR91v+VKleOvPC/i0iVuvxtR5PTvpvDd8dD+wcNeZSSNqLbID3m2x8PrJXs33f/WGv5fWjvC9Hk6uEX04uIHljjC0gqVrO44CNyP/nrIi4rYe6HEoOpT9CDi0uDXwjIr7aQ1lLMX4YsM7n3Do+9Zx6SQ2lS1IDeWVLOY3sc5piIcp0kHR6RGyiTOvW/j3sNb9s3/tuLyR9PHJaQfuCpzliele+zqHMsfktshf7VZHTWi6NhnJl1uVhzUmogVUcHRpJGVMaY/2mhbmO/lO13F8OfldL+iC5SKLWfI6I+GGZ+/Y78r3YMSLqLkxoLA1U2eZuZWL4RckAhdsAu0n6dkR8p2553ao7xePLaPxCCbXfjnpzMtaMiB3GvXieaOrsvx+hJBuX1HOycfJqdF9gzslR0i7lvkrU0PL7iLhN0qvJYbPzgNdXbXhK6mxYt4KsrliG9OpGgV+r7HM7AMeQvXjnAZUbZ5J2JBO438fYCa9uSJq+Uy9FxCkavzpyMbI3sK5dgE9JeoCxVadD2eeK9oUou5Gpi3pZiNKziNik/O57gZmkEyPiJeTIRed9g9ZaBHDupM+afn3PN26Se84moQyu9xgaWsUh6d3kuPazgIMoKWOiwjyXLldLcx6it6umPbrdHzUWL0jagPyiLUMO1y5FBvb8a4Vt28OLiJwDdwk5pFe3kYiki8h5WufRNkcl5g4PMFU5ryJX7q1Gzqk4OCJuKSeZKyJipTrlTfAaW0zWM6hcQTiRiBpzFCfo9Z0yCfYgTFCXuj0z19DH8vu275HK74XIk39Q8XvUNu+om+ihJ/wyMkzKocB3SwPnoohYp0YZVwPP66f3o+zjLyd7za5Wpq95Vp1ebLWtjoyI1cq81P2m6aTfrT5973Pt5Uj6HHBT5EKUYX2P3hURP+64b++I2H2ibdqetwiwGBkKZ1PGLhSXIof1G4neb/1zz9kkouFVHNFHypgmrpZayiTq1SPizf2UExHnlD//S151IOlrlJVRU+j8f46Y4P6qmkoDtS3wzejIXxm5EnTSRpEmWEXFWAN67VLWpCe7iGi9l6vEWPy61mtUigunXBzxfGDZjobwUvTQk6EMUbI64xd+VIpppFwR9iYywGp7fKYlqR9YtK/l9018jyJis37L6LA/2ZN9EXBq6Xmqm8P3b9SYvN9NTJ16qYq+VkeW//3OcuxF0mbkvMvrgO9FxWkYDe9z0NBClIa8XtL9EXEIgKTvUz1H6I7kaMCTyQvZVuPsbuB7E2wzEMoVuZ9g7gVl05Kerkt9el7gNpD6uOdsaspkruuTQ2bHkfOi1oyIWqs41FDKmDKssgnZEDg9ImqHjFADc84mKPcfEbFik2VWfN09gVsYYhqocmKZUN35KRNc9Z8XEc+psO2LyCvjnRgf0uMe4KiIuLpGPd5NDjM9hQy6uRG5SKDSQbS8L6vQpQeanIReOQSEpH3Jidm/o8fl95JENiCWJ79DNwNnVx3WbCtnEXLaQ+u7eBrZS9RLmJHOsheo+b48m5wb+VcGFzW+Sj3+GhEbamz+2gLkROtK83PLvJ9tIkMErUsOO38ZWBt4KCLeXbGcxva5Ut5yZGPvnIg4TdKK5OKPurHx+qZcZXkkObS6JfCfiNi1ZhkfamiKRs+UcdJ+SU5H2YlcJHdrRFSJyD+I+pwO7EGGH3oV2eGgGIssML31ceNsam1d2h8no9B/p8eu8bm2qds1XrrVt2XsCvc1wOER8cWaddmfnNTaz5yzbuXeEBEr1Hj+suTqmM7wInWHhv7e5e6oe9WjZtJa9UXS08j3Yx/Gp7VaCtgtIp5Ro6yV6jYKu5RxCRnf76yIWLfUb6+I2K6fcnusS7ch38pDvZK2IHOcXs1YIOmnkNkx3l9zCO9X5Mm+NS9le+AxEbHtxFtNWNZWzP0d+HyN7c8mV09fAjzaVkYTAUsrU8ZMvJMM4vwhsvF6eURUSiCttoVWpRf+0cjsFPORE/JrLcJqisZCr7TfVzf0Sr91aA8xtCR5gfIX4HNQ/0JUOe+5s5do2hqbGltQ1v6ZnxIR0zaPb4L69LzArUke1qymiajx0EDKGPIE8OzW1bmkvckwCbUaZ2Rvwc3khN9aQz2aOA5Za4J2HYeQV0+vpO3qqWYZRENpoGggrVUDDbw1yfdjGcYH6b2HDJ9Sx72Svkp/jd/7IxPBU/bfKyWtWbMejTR8W0O+fdgXeGlEXNdRt1XIyfh15tys2TEv7CTl3MdalNHmFwM2I7M5vB44u2YxD0fEpGnipsnu5OrIS8ghtGOolx2j/fjxYjI/KJEx1GpXpsGLrc9KeiAi/lzK/QTZMz1tjTPGBwlu/d6q/NRa/KGcc7wp2Tg7huyBO536WTL60Vog989ycXIzeaE0LH0vcGuSG2fVNLWKo1vKmLpXtteRJ9nW0MnC5HyTWmIsBcdEORcn036Q6FQrFAHwuDK5dpfI5fanqId8fpLe2u3+Xq4Eo/+0Vn018CLi92RmiudFxJk1X7tTE43fGyUtQ16pnyDpDvJAWlcTDd/Wd2ecqj1n5DHvxi7330T9C64LJG0UEWeVum1Ib6u4nx8ZWufiiNhL0tepH4jzJEnvJQMGD2VYv7zeo5IOJodXA7iq5nDxn0uP5D/JxVitxtCTqJ7Uvl0TOYQhM8IcLak99Erf6aXqaPACFPICYB0yjtc7JD2R3lLM9eOLykV3HyUb0EtRM+VYEyT9LCLeQgY+XozM0PEF8uLgbdNdnxY3ziqI/tIUtZezTxkiegnUSxmjsZgwDwCXSTqh3N6cvOKpRTlh/MdMkHNxiv+jyYNEU1dPG7T9vQj5Hp9P/SvBvtNaQSMNPIBtlCv57iMj2a9DZi+oc2HQd+M3IrYpf+6pXKm4ND0kci9l9fu+tOf+W4QMc1KnofgT4BxJvwBuKPetQJ7AfzzhVm00tvBjQeCtkv5Rbq8EXF6jLi33ld/3SnoyOWG97nfsTeX3J9vuqxtKo2/lO7wfecEockL+jp1DgpPYlcyJ+yRgkxiLO7ccGX+qtia+i9FH6JWmKFfH3xAR/yq330rGh7we2LNmQ/y+0pB+WBkb7xamcV/R2KK0o8mE4U0vsqnjOWWO4g5kyJV7yQbjULlxVoEaXMVRDlJVD1TtWjFhzmNsZSPAyT2UBRlsr9+ci0hanjwptccWq7SKr2jk6ikiPtRRr6XJUBh19Z3WioYaeMAWZb7NNmRvz7bkEvg6jbNGGr+SNiEPpgeWeYLLA93m+U2miXyuv+mo12HkCbPq9l+W9Huy1+N5ZAPiRmCHchFWRRPpc9odXXom92EseXmtXoyGL5j68XVgs4i4BkCZFugPVDzmlQbPL8q2K0l6aUT8CbgKuKaH+vS1z6l76JVVyRWTMZ1zUclVvS8t9Xoh2UHwITIMywFkb1hV55Z97ofkPvdf6g+l9ywyDdyrycn3w7YfebG5KmMrWNs/c6/WHFXqcxWHGo7s3AR1rKoq99WNrfQV8ir3csZii0VETGt3fzfK7AsXRw9xe0rjg4ioPfetbL8S8G/yQP5hsqfpexFRa/hZ0mUR8QxJPwR+ExF/7OEzeiW5inAFxhq/e0bEUTXK2IMcElozItYovTuHR8TGNf+fRt6XjjLXBP4QEb0MVTVCGSqi/aKta17JSbZfFHgf8ALGVn3+IGqs+iw9EVsxdxDmvhb41CXp1Ih4YdttAae031exnEbipQ1inxuW9u++pO+RKxv3LLcvjIh1eyx3ZTJl2MVTPbdJkr5Efh6/ZPyitLpBnJuqzw8i4n3DeO1u3HNWzaIRcaLyUul6cnjnNLLBNqVoNrJzX714bXNkbpD0fCDKleXOjEVuruo15Am7drJnSd+e7PGoGQJA0lGMNXznI9+fX9XYXuTn+UGy0TyfpIeB70SNVXPFayIjkN8PtOb27UJORq/jKElXksNe7y+NxrphGu6IEq+PMnSgzBBQxzbAs8lhYiLDHPSyL/f9vnS5wPkXGSup6vZLk0N/rwGWLXffQs432TtqxC4sV/5fJ2NG3UL2IF9BLr6o42BysUfrO7E9ORz/hhplHEW+r+NWaw7BZZKOIb97Qfb2nqOS4SKqhzzpK15amyb2uUZCrzRgfo2FWHkJ2XhtqXUuV1s2gCiLYzR9GQJanl9+tx9fg5zrNe1GqWEGbpxV1cgqjraJh5PeN4UDGevF24zSi1dj+++TITR2Ig9Qy5PDOseTB8Q6riXn3dRunJXXv5Q8iN9M/VWenb7W9vfDwPUR0W3i90R2BTYGNihzCpG0KvADSR+OiDrd729j7oP/27vcN6mI2L30Tt5dhgHuJZMu1/Ed8vOe6r7JPBgRISkgF5HUrENLX+9LOUk+o27PVIdfkZPMN22bu7Ncqcfh5BzOqr5Axnz7U2RMr83IhlVdTaz6fEoMKcxEh0XInqpWOIRbgceSIw5B9YUOD0TEgyorNJXx0nppDPW7z00YekVSrdArDTiMnDN6G3nBdlqp41PJi68paSxDwOOVcTbbMwQ8ufEaT1yP+YEjax5X5ylunE1Cza/iGHdFXQ44UwYU7dBXL15LZJqXHaZ84uTuJedynEj9wJdPIq+qtyMbU78kh+7uqFuJ8kX/bES8tO62bd4KbB5t6W8i4lplkuPjqTA3QhNHJV+KHqKSK9PpfABYkbxKfjIZZuPoybYr2zaZIeBXyrh4y5ThpnfSlquwQl0aeV9KA/EI6n9n2q0cEV/pKPdfwN6S6obpeCgibpc0n6T5IuKk0piuq4lVn8dqirRg0yGmCHUi6ZMR8eUKRZ0i6VPAopI2J+Ol1RmKb+q72GTolb5ExJfKsfZJwPFtPXetObJVjESGgBGbczaS3DibXCOrOJRpP1oHmlZaFpFLww+oWVy/vXirdhysxqk5X+zI8lNbRNxOTsTcT7moYHtySOQTEVFrIn+rV0nS0mUIrxcLRpe8hBFxq3L+WhVnkBOOH08Od7XcA/Qyn+NA8gDa6v6/kezdmbJxRs6xWYL8jrcPQd5NvYnDkA3vP5Vt1yTzwZ5QY/sm35ezJG0QY6nD6rpeGUz64Ij4N4AyjMDbGVu9WdWdkpYg07EdIukWxpJ0T0nNrvo8CziiHBseYojzWaewLTktYyr9xktrap9rMvRK3yLirNJpcETbff9P0s/IxUxTbb8vsK9GIEMAcIak7zIic85GjRcETELSzuRE3VXJL+O4VRxV53mVsuYDfhQ1klZPUE5nsvGlyZRQZ1Xc/mpgwhQokeEW6tRnUWDFiLiqznZt269HNsw2JxsiX4/qq+bay/kVOcR0AuO/6JXmrmmSTA2TPTZJeU9kLLzH2RFxS53tSxnnRsT66m/Rxkqlh7W1Dy4REbXyNkr6Ihlq4nwyFMVxvcy3KcOhrSX8a5Cxoo6NsXAJVcq4HFiDDB/wPxift7TC9o8hT/xbM3ZR82/yIuMrUSMcQfl/7i912IH8Lh5SLjyqbN9Yui9J15Lz6C4ZwlyoytRDZpU+X6+vfa5cWL+BXEHaGXrlVxV7ARvVeTwqIweXRMRaNcrYFvhjRNyjzB29HvDF6WwYKcPydIoYUm7NUePGWQVqaBWHKuZFHKReGhqTlPUqcq7XQhGxijIX3uer9L5J2osMSXAFeeD7Y9TMd9dRXtdh5qiYvkbSI7Q16tofAhaJiMpXyeXA9zUyzInIVXi7RcSvq5ZRyjmDnPj7l8j0YasBh0XEc2uUcSg5v+8RsvG7NPCNiPhqzboI2IKc47g+OXfrx1Fj1Zuk88j34jFkT8+5wL0RUXl4faIGTVsD9DG9DI3PdMpcuVtGxDAXA0yp6vGnrVex3V3kPvPFGg3gJva5tcjQK8vDnNArR/ZyEdmP9hEYxpLczxmBiYhPTrRtl7Iujgx8vAnZk/k14FMRsWHD1bYeuXE2jZTLnw/qZUhG0rciYleNX5U4R9XhSEm/jYjX1n39Cco6j5x/d3Jbz86cvGRTbPsouaCgFYCz9T/V6gmpUdffRETdeGW9vtZF5Py1W8rtZclJ45V7vMp2mwOfIVeeHk8uWHh7RJxco4wLI/Nh7kDO1foEcF4v768yUPE7yAjpJ1F6KiPi4xW3b+Wo/RA5d3KfpntS+rn4kPSOiOiWu7PzeaMYGucgsof/WMbP/5zWUBpTqfp5K2OSPQIcWu56Y/l9Nxmc9lVdN5y7nIHvc9NN0pfrNMQmKOOCyEUsXyZ73Q4dQq/mE4H/A54cEVuWRvDzIqJSMOjZznPOptdmwE6SrqP+kExrHtbXJn3WFFoNM+Vk84+SQ5LvUYboWDMyYnNVD0fEXRqf865qa3+6g2ZOOgStifOFArXT4MzXMYx5Ozlpt5aIOEHS+WQjSMAu0WVe3BQWLHPmXgN8NyIeUll1WVUZ3n8bcBs572e3Us585Cq2So2zLErPI4cA31Xua/oY1M+q373IeX6TigZD4zTo7+VnofIzqg6v+LyNY3wcvUsk/SUiNlYu0qmqr31ODYZeaUpEfFL9B/++SbnI56XAVyQtTA/HqD4dRH7fWpkf/h85/8yNM9w4m25b9rphRLQih/+37W9gzvBiXa3J5s8rt+tMNm+5VNKbyPg7q5OrWSulRqkzn6YhUzVI2vOFrgjcUf5eBvgH9RqTx5ZhpsPK7e3ICc21lPl4kBObIdNsLU2GCak6BLw/mY/1IuDUMixYa84ZOan6tZ2fWZnHUyda/i7kie6IiLhMGaqk27yTfkz6OUuaaDK4gCfWeSFJ7+q8ype0d0TsXqecJkTJlTtspcfri0yQciwi/q9iUUtI2jAi/lrKfS65wAVqLLqg/32uydArjZC0N9mTOC74N7kwpao3kD3gX4uIO5W5S3dre42BTQ/QWKy2x0fEr8pwLRHxcJleYgAR4Z9p/AE2Ad5R/l4WWKXm9ucDz2q7vT3w1x7qcW75fUHbfRfVLGMx4EvAOeRcji+R87OG/j53e98qPm8/4BVtt7ckFynUea2vAK8FvkEuFd+GnGxet85nkfNJziUbjw+U9/paMrVTL++DgAXabr9t2J9NW12+M+jPmZz8vy7Z69D+szJwc83XOpZM+9S6/X3gJ0N6704iGxHjfoZQjwvL723I4LqPrXtcKdtvQK7U/Dt5cXExGQh2ceAN07XPkYnbaz824Pf4KmDhAb9GpeNlP2WTc3If13Z7IzKbxLS/p6P4456zaaS2NDhkz9WCZJ7EOhHbXw/8uswh2oSMz7VFD9V5ULnSshVYdDVqBpONiHuBTytjO0VE3NNDPaZL1eGuDSJip9aNiDhW0hdqvtbmEfEJ2gJulgUQlSPZF9cB74qIy0oZa5FXt18oZdeOaRV5FGzvediFPImOgrqZC7qZ6nM+mlyxeuFcG0on13yt1wJHlvmTWwL/iYj31yyjKR9r+3sRMh9szwts+tBaOPMKcvHKfzqmPVQSOS/3WaWnWDF++LBy5o8KptrnrldzoVea0k/w76r6DQpepeyPkKukV5P0F7Kzom6Yn1nLjbPp1XcanMjAqG8EfkceHLaIiPsm36qrPchhhxUkHUKZbF6nAGVYj59Q4mhJugt4Z3QMu05RxouBs0pDrxHKcAkrxPhccVUbRrcpl5b/nGy4vpmKQSslvY8Mlrlqx/DZktQPKgrwtFbDDCAiLpf07LIP9FBcV4M8CDeuXETcGBEPSNoUWBv4advJe9L0MxHxrkkee1Pb60w4rNMxP/Hd5HfxL8DnJT026s1PbESX79xfJNUKi9OQJlKOASBpKzJw9yKt/T3qp1Lr13Zk6JVTNJY+qhV6pU56rb5J+g55TOon+HdVg1wp2B4Y+whyyofI/+Wl9BYTctZx42x69ZwGR3MvLX8sGen9r5KImqvvopnJ5j8G3h8RrTQim5A9gnXq8nYyEO3tZDqS04DTJzoxTqT0erya3KcvBG6VdEpEfAQgqkdO355suB7B2DyOqil5DiWHur5MHtBb7unxhH2VpB+QoUYgTxT/r0zerRwbbAozbbn2b4D1lSlrfkyeJA8le2posGF0IhOnuGqfn9j6vVX5CaZYfDIIHQ3G+cge+uWmux7kd6cz5VidwNYASNqPnDaxGbkI5fXA2U1WtIpyHPoE9Xu9B+Hc8vs8egz+PSLmJ+cPdl4YLjaEuowsN86mVz9pcOpMvJ5Q2yTzlvbJ5itGvSCE97QaZgARcXoJL1BZRLy11OvJ5AH4e2Rqkbr75tIRcbekdwMHRsQek0z+nqw+/wF2kbRERPy35ratBOO95Ffs5u1kT9yu5IHsdHL46iHypNWEUeo5q1KXRyMnDm8DfCsiviPpgumsS0RM90rjKtobjA9RhsSHUI8zoy2USUT8T5lerm54k+dHxuG6OCL2kvR1quflrKPn/V8VQ680JSrGbGzIII8L/xxCD+iM48bZ9HqU7Bm6m4xyXjkNTowF2ew6rFOjDl+f5LEg45ZVdXZpbB5Wtt0OOLnVAKzS0CvL4l8APIsM1fBdSkLfmhYoK47ewNjS7NokPZ+8Ul+CbLCuA+w4jLlEZbj663T/zGo1HCfRy3DroFRJRv2QMm/i28hk2jCYNDpT9iiqe5T1L0TEIBqLU/lEqcvdkj5b6tLYVIGplBWMy5Mp6p7N2Ml9KXrrEWkNhd5bLtxuZzDhdyolQJ9ApdArTesyigI1A/RWWGk86fSAPo3SBeHIcuNsei1JXs3+hxyq6mVsfdJhnalERFM9LpCr3mDupOvPp3pD71vA38hVkidFR4LhGj4PHEcOiZ5Tlsxf3UM53wReRhk2iIiLJL2wxzr1RdLGwJ7MHc+oTtqw/yPTe91Zbj8G+GhEfKaUVTVhct+U6XN2Y+7/58Xl90EVinkHmfHgSxHxd2UC6p83X9tKPhsRh5fh/JeRMQj3A4YRZf0zkWEJNiHDO3wd+ME01uVlZE/vU8prtyfU/lQP5R0laRngq+Qc3aD6KMMc6h60u9WQ2X+qfa7J0CsNOpa5A/SK/L8OYuyiZTKvl3R/RBwCIOn7wMKtBwc8b3KQDb9ZwxkChkDS2mQv0+vIXrCX1ti2FfH642TOuO+oh8jOkhYhh8w2IQ9epwH7RURPk3f7IekZwAtLXVYnl6hPmcR3QHX5a0RsqD7yWTZYlyuBD5NDVnPi/1S5Mm4rY659Qw2m8KpDmTlhP+b+fyotIFHmEDw4IuoEIe1Jle+URiDK+ijVRRmUePvWCb/PcjaKiDPK7YXJED139VDWvuQqwPaYg/8iUyAtNdVxRtK/yYZn5xxYAWdExJPr1qlfKsF4u92n6hlaFiUvQH/C2ErjXQdSYeuJe86G4xbyAHE7Y8mXq2oN67yV/oZ1fgrcA3yn3N6ezEKwbZWNJT2T7AV5Btm4u5wMaHhJnUpIWooM+tqKNbU0OfxbdfvWCqaueljBdEMZ2gxJC5GBda+oWUZT7oqIY/ssY35JC0fEAzDnoLzwFNsMysMR8YNeNy4TzJeVtFBEPNhrOeXkf3FEPHOSp1W5uh+FKOsjU5fIoMQ7An01zko5X6cEyC77bq9hI54dEe0930dJOjUiXijpsgm3GtNk6JWm9BygVyO40ti6c8/ZNFKGWtiOvJL7NfDLqJk8Vxnraidy4u1hZVhnu4jYu2Y5c/UGVe0hkrQ1OYTzZXJ4QGTexk8CH4uI39eox8XkRPfTgVMj4sbq/wVoLOH5xmQOyl+W29uSOSQ/XLO8x5PzUF5K/l/HAzsP46CljAQ+PzkRun3JfOVFG6WH9dXk3JggF6EcGRH7NFvbSnXZk7wwOYLx/0/l97Y0QNYjr/rnJKqPmjkkleFjPhkR/6izXUcZi5FR1i+JiKvLnMdntVYGaxqTsE9Vl+lS5rvdR34P2z+fWt8fZVzAi4HfRh8nKUlXAC9rfc6SViTn5q3VZM/iNH/WrRBGrRWPd5MNrcuArSJiwjhwkv7O3PlgW6LOlAkbLDfOplE52f6i21VYg69RKcG3MlHyfhFxVrm9IRktfsqJ72V4auvO+WGSVgZ+38sQoDLeW0TNFZJt259Exnx7qNxeEDi+7hw7SRtHxF+mum86lP+pU7TmaNUoZ0uyJ0jke3JcE/Wrq5wYOtU6ISgDOXcrpFb6Ikl/JqPQn834RkTtsA+TvMZQho+HqYnPuJRzD5kN4BGysddTUnlJryCH0v9WyliFnM5xMvCeiPhWnfImeZ1p/6zVPUBvle3mIxOMj9JiIOvgxtksM9XVYNtKnwXJTAX/KLdXAi6fYqinVcblEbFW3ccmeP4zyeHUx5IHz1vJRuKlVcso5VxFHnD+U24/hgxuu2bNcuY6yM6LJ9nZTtKLut0fEY0Fbh3W/DMbrwzxPo08vlw5iHm10/FZS3pzRPxcYwFcx6nTeyzpzIh43tTPtGHxnLPZZ6rWdhPx0h5SxkQbNySkTKpdN2XMAcBHIuKkUsam5b7n1yxnb+CCtt6mF5ErHSuR9Lzymst2HPyWIocWp125Mt6DXCwBcArw+ToToyVtRM4rfDqwEPm//K9uD0QTytDbR4AVI+K9klYH1oyIoyts+62I2FXdV9/V7vGKiFPK/rp6RPyp1K3pz3meu/ItPdbvY2yfPZlcFVkraLIkATuQuYe/IGkF4EkR0Usg2ueQ81kXANZWBu2uE36oiun4rFtBy2tllZnA8ZJeR5/DxjY4bpzNY6LES2tRpiRZpGYxewB/UoZpaAW/3ICMil83kvbirYZZqd/JqpE5oW27AyUdy1jogN0j4l81iliInMOxAOMPfnczvHxvPwEuZSxNzFvIuWOvrVHGd8ml9oeTUePfCjy1wTrWcSC5v7Qa3jeWek3ZOCN7VyHnOvZNGQT6vWSP7WpkjK798DL/fv2A7JX/frn9lnLfu2uW831yYdCLyVyy/yUDVG9QpxBJPyM/3wsZWyEc1IsNORIiYv/yu9YQ/gQ+Qjb2HpZ0Pz0OG9vguHE2+1QK8Cfp1WQ8oieTk7RXIlclPmOqbSPid2VuyUeBD5XXvAx4Q0RcVLO+15ZJxK2T75uBbvNWqniAzHiwCLCGpDUi4tQqG5bhrFMkHdTZgB2i1TrmD+4l6cK6hUTENZLmj4hHgAMlndFYDetZLSK2K6uNiYj7Sg/JlKKE22hw2PEDwHOBv5Zyr9ZY7sSmzIvBNjfomHP65zJHta4NI0MGXQCZRkm5erqu9YG1pqF3aOCftaTPTfJwRMQXqpYVEU30vtkAuXE2g6m/BN9fIPNq/ikyPtJm1Eg7VBphb22ry3yMLeeu451kpO3fkge4U8lAo7Uo0zbtQgbBvJD8386kXsYDgB9J2jbGB239RUS8rG6dGnCfpE0i4vRSl43JydF13FtOahdK2odsvNbumWzIg8pQHq3csqtRM0RCGQr9Mrkyd06Pbw+rzB6IiAdbbUNJC1BzaEp9JmGfpR6RtFpE/A1AGQz6kSm26eYhZVy71r6yLDVC7LS5lMwx+s+pnjgRNRd6pV//63Lf4mRg88eRx/TKyrFtdcZ/jypdzNo0iAj/zKAfcg7HUuRwzD/IYaJv9FDOueX3RcB85e+za5ZxaKnL4sCV5AFwtyG9L5eQB5kLy+2nkaFK6pZzQZX7pul/Wqd8PteVnwuAtWuWsVJ5X5Yih6O/ATx1SP/P5uS8uVvJWFjXAZvWLON08kR4cfnf9gT26qEu+5CR668s9TqCzDpQp4wLyQvcp5KrAb8JHDOM93ZUfspn849ynDqlfMab9VDODmS4lBuBLwFXAdv2UM5JZADZ40p5R5KhZOqWcwg5V3Lo73Gpz5LAZ8hRhq8AT6i5/bvLMfOO8h7dB/x52P+Xf8Z+3HM28ywdDST4Bu6UtATZU3WIpFuoP5l/rVKXHYBjyF6788iUK5UoU/p8jLEJu8BYSp8a7o+I+yWhDLp6paRaKzWLR9sXO5RJ40OZMBvZO7mOMlAv5b3elRppv2JsiPZ+sodynKqhV5oQESdIOp/s1RSwS0TcVrOYRSPiREkq/9ueysTaXUNsTGJ3ssfhEmBHcv/9Uc0ypisJ+4xRPpvVyZXgrdWRtQPIRsQhks5jLATMayKil2DQe/awTTdPAi6TNLDQK1Uog8h+hGy8HgysF73FV9uFnL93VkRsJulpdDk+2PC4cTbzNJLgG9iaPGF/mPyiL03mp6xjwbI66zXAdyPiIUl1GzKHkxOxf0Rvwx8tNypz8f0OOEHSHcDNPZTzaeB0Sa25TS8kJ44PTUTc3XbzI2Q+0qZMd9DJFzGWMmxBsseqjvvLMNPVkj4I3ET9LBtERqE/mJxzFmTKsLr77nQlYZ8xNJYM/mJlMvg9JH0xagROLuXsS/Z8f6+f+kRzcxSH3nCR9FVyMdABZIDhnmJCFk1dzNqAOM7ZDFMOfp8lE3y/v8zp+Op09X501GVnsrfsImArMg3TzyPiBTXKOC8intNwvV5ENjb/GD2k+VFmCWj17pzZQ+/OwEi6ISJWaLC8aYvhpkyu/FTG5zn8W0R8oEYZG5ALV5Yh59gsTSZ2P6tmXbZi7uCkO0aNdFlqKFvHbCLp4ohYW5mA/cvk6tpPRUStBOzKzB/bAWuQDfhfRsS5NbY/PSI2UQaz7YyIH9HDqsRuoVci4p665fRK0qPkHM2H6fN/knQEObd3V3Je7h3AghHxisYqbH1x42we0+RBq20FYOu2yANW5eFRNZDSp5SzYrf7o2Z6nrb4SqtGxOdLuctFb/GVGifpHxHR9X/tsbzpbJxdBjyz1UNVesAuiYgpVwgPoC5XAq+MiGvK7dWAP0TE0ypuP21J2GcSNZyAvQzjvY4MB7NiRKzeZH1r1GNO6JWIWK0M3e4XETN+0Ue/F7M2GB7WnCHUUILviNik/G5iKfU1kg4n575dUU66deettXJj7tZeTeoPt/2hbCdyAvwq5CTiuif+9vhKnyeTw/+GmvGV+tGl4TznIWDRpl+u4fImcxXZu9qaB7cCNebPwZw5iruRiwH6maN4S6thVlxLXiRUEg0lYZ+Fmk7A/lRycc/KQOU8xJKWKnM0H9vt8boXf0xP6JVpJWk9xqYY/MX78Whx42zmaHXpd03wXbcwSe+KiB933Ld3ROxeo5i1ySvaH5dekJ+QYSfunnyzMRGxSo3Xm6ycZ7XfLgeeHXsoqqn4Sj1rqOFcVd2gwf14HHBFmVQN2eA9U9KRUHlydWuO4g/pb47iZZKOAX5Fnpy2Bc6R9NpSl99WKOM64C+l/j0nYZ9l3kAmYP9aRNxZ5sfuNsU2c5H0FXJ+1d/IY90Xol4OyUPJbCitINnjEnxT/+Kv79Aro0QZM21bMoQRZPzDwyPii0OslrVx42yGiIiDASS9nVya3krwvR9wfA9Fvl7S/RFxSCnn+9TMFFDmW/wQ+KGkF5Jzib4p6dfkwfSaibYtc4duiBLFX9JbyeGL64E9e7iy7azb+eU16moqvtJI0BRxwSKil32nV5MF0azq4Yj4QQPlLAL8m1ygABne47HkxP5g7KQ1mZvLz3w0k1JnxouIe5UrvzcBriZ70q/uoai/k5kkVgUWZiztUtWg0q8sv+e6+JOqBT7ucIqkTwGLStqcTJ5+VA/ljIrtgWdHyTMqaW/gfMCNsxHhxtnM82TyRNBqvCxR7qvrtcCRZZLplsB/IuL9dQoojZityImlK5MZBw4BXkCGJlhjks1bQx+Uht3eZLaBdcnVSLVSJml8Psz5gPXIE25d3ybnvz1B0pdKPT7TQzmj4kAyzMQ3gc3Iz2ookesj81k+kbEh4rMjotJQYtvw1FGS3k+fcxQjYtJAx5I+GRFfnqKMoa/gGzWS9iCj8q9J7nsLAj8ne/zreAT4M30GlZb0+Yj4XNvt+chsJDvUrE8ToVdGyXXkBUorCfzCZC+ljQgvCJhhJL2DjN0zLsF3q2etwvbtczCWBH5PBvb8HNQ7yUm6ttTjxxFxRsdj355sHpyki6KkeZH0PeDWiNiz3L4wItatWo+yTXucq4fJg89vWleGNct6GmPxlU6M3uIrjYTWalhJl7SGfiWdVmdFbYN1eQMZA+9k8r19ARm0+NcVtv07cw9PtUTUzxAw1etNuFBCDSdhn02U6cWeDZzfWgTQWsFZs5xLGIvDtW75Tu4VEdvVLOcgMkzKl8v8t8NL3fasU04payFy/lsr9MqMnaMl6Xfk+3sC+f9sTp4HboHqc5htcNxzNsNE/wm+2+dgtH6/ovxAvbkYa8cEsXYqfLnnl7RAWdn5EsbHEqu9X0bEXmoL1lp3+44JxLcwFu6hlebk7vaVqTNII3HBGvJpMvfiLTBnyPhPwJSNs6bmJtYwWe9io0nYZ5kHIyJU4h1K6jVVWFNxuN5BBtn+JNlzfGxEfLNuIeoSekVSrdArI+YIxscYPHlI9bAJuHE2M/Wc4JuMHXRDRPwT5sQTeh3Z07RnzXo8LOkD5IrI9vlM76yw7WHkPI7byNQhp5X6PBW4q04llFHzdyt1UCnzcxHxC0krRMQNFYqZbAIxwBKSfhgRn6pTtxGwK7AYsDMZF2wzxlbITrf5OoYxb6fmSr6yvx0S43Ofbh8R32+slmmyldFNJ2GfFcpcrqPLas1lSviJd5LzUuvqK6h0WRDUsi85jeIv5DFnvagZFJecsrFZZ+gVYEY2zqYaadE0Zg6x7jysOcNoggTfVUMJKNPnvDQi/lPmev2CsbleT4+IynO9lGE0rgTeRIad2AG4IiJ2qbj9RmRalOMj4n/lvjWAJaoePJVx0p4LfDAiri33rUoekE8H3hMRT636P03yOvMDl0bE0/staxgkLd56j4dYh6+SK3zbg9BeHBGVV4x2G/JWH3G0JnmdKcucarHFvKgcXz4BbEFe4BwXESf0WWbtOFySTprk4agbekXSqRHxwrbbAk5pv282GcR3yupxz9nM029OtPnb5pVtBxwQEb8BflPmi9Tx1IjYVtLWEXGwpEPJBMOVRJeo7hHx/2rWYQcylcmcuWURcW2Z33Qr2XCsRdKrybRNACdHxNFlSHPGNcwkPQ/4MblwZEVJ65CR8Gst/mhCROymDFWxCXniPiAi6qZvmk+SIuYEsp0fGESok8MrPGdkFluMkDOBOyOidviMifTSQxkRmzX1+kUToVdmEvfaDFk/wQFtOO5vW/68cERcSa6Mqmp+ZYweyLlef257rG5j/aHy+05JzySvbleuWUa/Hu026T8i7gNuiogj6xRWlpTvQga8vBzYRRntfKb6FvAycgixlUx9aFf7EfHbiPhIRHy4s2Em6cwKRRwH/ErSSyS9mOyF+2PdekjaR9JSkhaUdKKk2yTNifYfEf9XoZhFI+JEcgTi+jLJvG4w3NlmMzJ23d8kXdz6GVZlJO1SPmdJ+pGk8yVt0UNR7aFXNmV86JVXNlZhs8I9ZzNPvwm+G5vrBRxQ5vx8BjiS7J35bM0y+nWjpJeUk+Qc5cR9Uw/lvQJYNyIeLeUcDFwAfLLvmg5JRNyg8aGdRnVhQ5U4e58gF4+8j+ylOp7eQhpsEREfl7QNcCPZE3ISGfahqlFabDEqthx2BTq8MyL2lfQy8rN5B9njWSu+XzQQemWGmdd7gIfOjbMZJiK2KX/uWeZVLE2NnoOI+JKkExmb69Xqvp6PnHs2JY2PKdY6aH2v/O51dVavdgZ+L+l0xibzb0DGVeo1pMEyjMWRW7rfCg7ZDZKeD4QyFMDOZOLwUTTlUEppNO9XfuZSYyLzguX3K4DDyhzMyhUtdmX8YosXM7zFFiMhIq6f+lnTqvWhvoJMM3eRevigK9iWnH84W0xn5hDrwo2zGUbjE3z/vfxeDqic4LuBuV6taOhrkg2h1tDhq4Cqq0YbERGXlSHVN5GrRlXqsGO34c4K/g+4oDR8RQ4BztheM2AncnHE8mQP0fFknsDZqupk/KOUyc/vA96vDOtRa3+JiHPKn/9l7CLFRst5ko4nc+1+UtKSDCbjx4zqaZK0Mbk6v5WjVrTFC4zpzRxiXXi15gyjDM44V4LviKib4LuJuhwPvC4yjRPlwHd4RLx8CHX5Sueqv273TVHGfGRGgNPIRqeAv9aMIzcyymT5gyPizVM+eQQ0sUJMkwSP7XjewmSv192RScwXJ1cJ/7vGazWVhN0GpHyn1wWujcz1+Thg+Yi4uDz+jIi4rIHXqbTfjYpyYfJhcrRhzjSHiLh9aJWycdxzNsNEcwm+m7Ai0L60/UGmf0FAy+bM3RW/ZZf7JhQRj0r6YET8irHewBmrNDqWlbRQ1RAEg1QaQPeV93kNMtr6sVHyxAJvmcbqnNl+Mo2I/0k6jUz7VVVTSdhtQMow+Pltt2+nLI4pfka9z3wiM6rnDLgrZm4A3XmCG2czXPSe4LsJPwPOlnQE2Zu3DVApjVRTJL2PTEK8WseqsCXJoJN1nSDpY8AvgTlxwaLPROxDdB3wF0lHMv7/+cYQ6nIq8IKyiORE4FwynMsOpU6XNvAak54kJS1HDvEuKunZbc9fiuxJq6OpJOw2PE01qqqEXhklJ5W4g79lfI7ausF5bUA8rDnDqHuC78dFxMuGVJ/1yByJAKdGxAXT/PpLA48hJ+Pu3vbQPb00qDSWw3GcmRpYVONzjs4RQ0ja3Rr6kfQhMgzFPk0Hu5S0xWTzZZQZMd5OJuc+h7GT893kEPCU8ao0lp92ZzLVV19J2G14agyD7wN8kZyj+EdgHWDXiKizundkqHuQ3trBeW1w3DibYdRggu/ZRJlO5caIeEDSpmQk+p9GSfNTo5xFyZ64TchG2mnAfiVumvVB0gXke/tN4F1lMcechOxTbNuaaznXQ+RJpXJi7TIPafuIOKTqNh3bT2sSdhucGo2zCyMTsG8DvIacr3VSRKwz6DravMnDmjNM9Jngexb7DbB+idf2Y3LO2KGMJXSv6mCyF+Xb5fb25b43NFTPaVVWIX6cufOfDuMKeRdy5esRpWG2KhlbrIrGAn2WOW87Aj01zmL6k7Db4FSdi9lE6JWhk/TmiPh5xwjMHEOa7mBduHE2g6iZBN+z1aMR8bAyncq3IuI7paemrjU7roZPknRRQ3UchkPI+XOvJMNqvI2Mbj4M/4mIObHnInOh7lxlwwHEz+p7bqGmLwm79UjSiRHxkonui4iNKhbVd+iVEdGKQ7nkpM+yofOw5gyhaUrwPVNJ+iuZqujTwKsi4u+SLo2IZ9Ys5yByGPOscntD4G0xhFyUTZB0XkQ8R9LFraE/SadExIuGUJfTyTyYBwGH1h1yLmVsBHyHzHO6EDA/8L+IWKpmOX/vcnetIUlNUxJ2q0/SIuQCj5PIdEvtCz+OjYhaeXKbCL1iVod7zmaOxhN8zzLvIHuGvlQaZqtQLxVPy4bAWyW1gvquCFzRmvNUZ27TiGiFqfinpK3IVF9PGUZFImKTEkLjHcC5ks4GDqoZ8PK7wBvJ1XHrA28Fal+UNDQ0OV1J2K2+HckMDk8mY3m1L/z43gTbTKaJ0CsjozRe38Xc0x3eObRK2TjuOZshJF0VEV0TnE/2mNUjaaXJHh/A8NpASXoluahhBbLHaSlgr6iZEL7hOs1PTqr+NnmyFPCpiislz42I9Tt6As+IiOfXrMOCZH7OVhL4k4H922KuVSnjq2Rcv/3IBQI7ATdExEfr1MUGR9KHIuI7fWzfCr3yc/ICuL0Hbr+IeFr/tZx+kg4HriT/p8+TF/9XRMQuQ62YzeHG2QyhzIf5f9E9wfdn5vUl0JJWJ8NprMX4K0GvnJuEpjFhs6S1yV6zrYATgB+XOH1PJnsmJm0YlzJOBV5KJjv/F/BP4O11V81J+hE5ybsVl+8twCMR8e4aZcxHJmF/KW1J2CPCAWlHiDK37MqMz+Lw04rb9h16ZRS1ht9bFznlYuW4ef08MkrcOJshJD0D+D05v2yuBN8RcfkQqzd0ZT7THmSYhleRjQBFRNc4X5amM+1MaVj9EPh1Z2gSSW+JiJ9VKGMl4N/k8OGHycT034uIv9Wsy0WdDbpu9/VD1ZOw24BI+hmwGnAhY1kcIiIqLUQpZfQVemUUSTo7Ip5bvpPvJy90zvbF7Ohw42wGKfME2hN8X0auFpuJq4Ya1TbxfU7cLEmnRcQLptp2XjbTJrBL2iUi9p3qvgrlnA9s22rUlcU1v26yoTrT3tvZSNIVwFrR54lO0qkR8cKpnzkzSHo3GX7oWeQCnSWAz0bE/sOsl43xgoAZJCLul7Rm55wW1UzwPUvdX65wr5b0QeAm4AlDrtNMMG1XZw0NPb+NXKHc7u1d7pvKbmSYlGvJC52VyN7WJvnKd/guBZYjh7/7MWvSupXj5N0RcQeZUs29ZSPIPWczTLdhqPbJ0fMaST+LiLdI+jjwfWAZ4AvkcNc+rZAY1t109u70M/QsaXuy13gTcoFDy1JkjsuX9lCfhYE1ycbZlRHxwBSb1C1/2oaMbTxJR5GN4yWBdYGzGZ9i69Xdt5ywvL5Dr4yS2dYTOBu552yGUPMJvmeL55R5SDuQ85nuBbxarrrpTNi8aEScWMJPXA/sWcIRVJkXeAbZ+/F44Ott998DXNx1i0lI2hb4Y0RcLOkzwB6SvhjNJn6eeSHkZ4+vNVlYQ6FXRsms6QmcrdxzNkOo4QTfs4WkncmQCKuSQ5liLO/hjL2ybUqJK/YD4IkR8cyyYvLVEfHFIdTlL8ALgF8DfyY/r73rhoGR9ERyMQzkJOZbeqhLa5XaJuR36mtkOI8N65Y1yWtMmoTdZo4mQq+MktnWEzgbuXE2w6ihBN+zjaQfRMT7hl2PUSPpFHJ+1f6t4cteMic0VJcNgCvoY+i59Hh9jTw5imzs7RYRv65Zl1YogS8Dl0TEoVWHeNVgEnYbLEn3MPdndRdwLvDRKNlWKpTTd+iVUVHmnG0bEb8cdl1sYm6czTCSLiRj7qwMHEcm+F4zIuom+LZ5gKRzImKD9oaHuqQdmimUeU43b/WWKXMc/qmHOGdHkz13LwWeQ+ZMPLtKObMtUPFsJmkvMivGoWTj+Y3kAoGrgPdFxKYVyxl46JXp5Dlno89zzmaephJ827zhttLb2kox9Hr6X7lWS9vk7K5qTs6er2MY83Zgvh6q9Qbg5cDXIuJOSU8iexin5MbXjPLyjqHqAySdFRGfl/SpGuU8Imm1jtArMznYsOecjTg3zmaeh8rKtbeSK94gu9vNuvkAcADwNEk3AX8H3jzNdWhNzn4t2WvRynm6PXBdzbKOlXQccFi5vR1wTN0KRcS9km4hV39eDTxcflemhpKw20A9qsw/3Br2fn3bY3WGjaYj9Mp0auXQ/EDbfYHDaowMD2vOMJLWInP4nRkRhykTfG8XEXsPuWo2wiQtTvY63TPEOsw1lFJ3eEXSV4C/ko0qkXGaNqob50/SHuT0gDUjYg1lCqnDI2LjGmWcS5ck7BHx6Tp1scEpPVz7As8jGx9nkZklbgKeExGn1yhroKFXzNq5cWY2C0n6yGSPR8Q3pqsuLSVa+1atSdjlwuKYiHh6jTIaifNX5m4+Gzi/bS5erXLUUBJ2G31toVfuKaFX1gOaDr0ybSQtBnwEWDEi3lsCRK8ZEUcPuWpWeFhzhmkoyrrNfksOuwJdfBg4uQwNQS5qeW+VDdvi/K3aUJy/ByMiJLXm4i3eQxn3SloIuFDSPuRcvl7KsYZJ+nhE7CPpO3QZvowauTWLz0bE4SX0ysvIofofAI2FXplmB5I5mlsXEjeSPcBunI0IN85mngMZi7K+GSXK+lBrZCMnIvYadh06RcQfy8XF08pd44aGJG0eESdMsPmhwLE0EOdPkoCjJe0PLCPpPeQcnB/WKYcMpzAf8EGy4bkCOa/Ohu+K8vvchsprTf7fCvhBRPxe0p4NlT0Mq0XEdmX+MhFxX/le2IjwsOYMIyf4thra5txsRPYgnAl8uGp8p+k0nemOlInPPwFsQV7cHDdJw3CiMnaJBpKw2+jrJ/TKKJJ0BvAS4C8RsV5Z0X1YRDx3yFWzwj1nM48TfFsdhwLfA7Ypt99IrnQcxeGY6bxyPxO4MyIqhc+YQFNJ2G1ASoaMj5FD6HPOdxHx4ppF9Rx6ZUTtCfwRWEHSIcDGzOzVp7OOe85mCDnBt/VA0l87UxKVOE8bDatOE5nmnrPLgTWA6xkf52nKBQEaQBJ2G4wStHg/cn7VnLhkEXFeD2VtAqweEQeW4MdLRES3NEgzgqTHkT3qAs6KiNuGXCVr48bZDFFOJluSGQE2paOXwcEDrZ2kx5Y/Pw7cCfyCHNbcDlg4Ir4wpKpNaJobZ12j/FcJMFu2XYUu89+AiyPi4UYqaX1rTQNpoJy+Q6+MEkknRsRLprrPhsfDmjPHfmQ39KrkVeC4BN84eKCNdx5j+wfAjm2PBdnrOq0kLdwZG6rjvuumqy79RPkv214PPE/jk7Bf4YbZyDlK0vuBI4A5+14PF7PbUEKvlO1vljSKK6InJWkRYDHg8ZIew9jxYSngyUOrmM3FPWczjJzg22aoCWKUTVtvWdPUUBJ2GxxJ3YYdo27oIUlnR8RzW/trCb1y5kxLci9pF2BXsiF2E2ONs7uBH0bEd4dUNevgxpnZLCfpmcwdF++n0/j6ywHLk2mb3sT4q/X9IuJpE207yppKwm7DM0X4ltZzBHyW3Ic3J4ez3wkcGhHfGXwtmyfpQ5PVvcr7YoPlxpnZLFbmymxKNs6OIectnh4Rr59su4br8DZyFeP6wDmMv1o/OCJ+O111aVJ7OJtyez7govb7bLRV7bltIvTKTDKTe7RnC885M5vdXg+sA1wQEe8oc6R+NJ0ViIiDJf0M2D4iDpnO1x6wRpKw21BVDd/SROiVmcQBaYdsvmFXwMwG6r6IeBR4WNJSwC0MYfFIqcOOUz5xZglgf2BtsgF8wHCrYz2oOnS0GXCmpL9Jurj1M8iKDZmH1IbMPWdms9u5kpYhUxOdB/wXOHtIdTlB0seAXzI+tthMDQOzeUR8ApgzLCtpL3L4y2aXLYddAZu3eM6Z2TxC0srAUhExlCv+plbODVt7Enbgb20PLUmmw3nzUCpmc5kqfIuk30bEPJcP1e/L6HPjzGwWkvS0iLhSUtdJvRFx/nTXabaQtDTwGBpIwm6DNdvCtzTF78vo87Cm2ez0EeC9wNe7PBZA3dyCfZO0IPA+4IXlrpOB/SPioemuSz8i4i7gLmD7YdfFumsL37KopGczPnzLYkOr2JD5fZk53HNmNotJUnR8ySUtEhH3D6EuPwIWBA4ud70FeCQi3j3ddbHZbbaGb+mX35eZw40zs1lM0k8i4p1ttxcHjhxGDj1JF3UGaO12n1kTSty52Ra+pW9+X2YGh9Iwm91ukvQDgJJL7wQyUv8wPCJptdYNSasCjwypLjbLzdLwLX3z+zIzuOfMbJaT9BVgaeA5wN4R8Zsh1eMlwIHAteRwykrAOyLipGHUx2Y/SZ8F7mP2hG9phN+X0efGmdksJKl9GXwrN+DZwB8BhjW3RNLCwJqlTld2Luc3a9JsCd/SNL8vo8+NM7NZSNKBkzwc7fPQpoukbYE/RsQ9kj4DrAd80WE9zMzGc+PMzKaFpIsjYm1Jm5Axwr4GfCoiNhxy1WyWmi3hW5rm92X0eUGA2SwmaR9JS0laUNKJkm6TNKwI9q3J/1sBP4iI3wMLDakuNm/4ATnX8vvl5znlvnmd35cR554zs1lM0oURsa6kbYDXAB8GThpG+ApJRwM3AS8lTwb3AWc7lIYNisO3dOf3ZfS558xsdluw/H4FcNiQV2O9ATgOeHlE3Ak8FthtiPWx2c/hW7rz+zLinL7JbHY7StKVZC/V+yUtC0x7dgCAiLhX0i3AJsDVwMPlt9mg7AacJGlc+JbhVmkk+H0ZcR7WNJvlSvDZuyPikZIhYMmI+Fd5bPOIOGGa6rEHmTZmzYhYQ9KTgcMjYuPpeH2bNzl8S3d+X0abhzXNZrmIuCMiHil//6/VMCu+Mo1V2QZ4NSXoZUTcDCw5ja9v85gSvmWhiLgYeBVwmKT1hlytofP7MvrcODObt2nqpzTmwZKEPWBOnk+zQfpsiau3CfAy4GC8KhH8vow8N87M5m3TMq9BkoCjJe0PLCPpPcCfgB9Ox+vbPMvhW7rz+zLivCDAzAYuIkLSa4BPAHeTc10+N13z3WyedVO5IHgp8JUyz8qdEn5fRp4XBJjNYpIW7pzo236fpN9GxGu7b914Xb4HHBQR50zH65lJWgx4OXBJRFwt6UnAsyLi+CFXbaj8vow+t5TNZrczJ7tvuhpmxWbAmZL+Juni1s80vr7NYyLiXqAVvgUcvgXw+zITeFjTbBaStBywPLCopGczNvF/KWCxIVVryyG9rs2j2sO3AAeSQZl/DszT4Vv8vow+N87MZqeXAW8HngJ8nbHG2d3Ap4ZRoYi4fhiva/O0bYBnA+dDhm+R5PAtfl9GnhtnZrNQRBws6WfA9hFxyLDrYzYkD5bFKA7fMp7flxHnOWdms1REPArsOOx6mA2Dw7d05/dlZvBqTbNZTNJnybyav6RE5gcYcgJ0s2kh6XwyfMsW5ND+cQ7f4vdlJnDjzGwWk/T3LndHRKw67ZUxm2YO39Kd35fR58aZmZnNSpIuB9YArmd8z/HaQ6vUCPD7MvrcODObxSQtCLwPeGG562Rg/4h4aGiVMpsmklbqdv+8vnLY78voc+PMbBaT9CMyhtHB5a63AI9ExLuHVyszM5uMG2dms5ikiyJinanuMzOz0eFQGmaz2yOSVmvdkLQq8MgQ62NmZlNwEFqz2W034CRJ15JL5lcC3jHcKpmZ2WQ8rGk2y0lamMyhJ+DKiHhgyFUyM7NJeFjTbBaTtC2wUERcDLwKOEzSekOulpmZTcKNM7PZ7bMRcY+kTchk6AcDPxhynczMbBJunJnNbq3J/1sBP4iI3wMLDbE+ZmY2BTfOzGa3m0qC4zcAx5T5Z/7em5mNMC8IMJvFJC0GvBy4JCKulvQk4FkRcfyQq2ZmZhPwFbTZLBYR9wK3AJuUux4Grh5ejczMbCruOTObxSTtAawPrBkRa0h6MnB4RGw85KqZmdkE3HNmNrttA7wa+B9ARNwMLDnUGpmZ2aTcODOb3R6M7B4PAEmLD7k+ZmY2BTfOzGYpSQKOLqs1l5H0HuBPwA+HWzMzM5uM55yZzWKSzgc+AWxBpm86LiJOGG6tzMxsMk58bja7nQncGRG7DbsiZmZWjXvOzGYxSZcDawDXUxYFAETE2kOrlJmZTcqNM7NZTNJK3e6PiOunuy5mZlaNG2dmZmZmI8SrNc3MzMxGiBtnZmZmZiPEjTMzm3Uk7SzpCkmH1NxuZUlvGlS9zMyqcOPMzGaj9wOviIgdam63MlC7cSZp/rrbmJlNxI0zM5tVJO0HrAocKenTkn4i6RxJF0jaujxnZUmnSTq//Dy/bL438AJJF0r6sKS3S/puW9lHS9q0/P1fSZ+X9FfgeZLeLOnssu3+kuYvPwdJulTSJZI+PK1vhpnNSG6cmdmsEhE7ATcDmwGLA3+OiA3K7a+W/KK3AJtHxHrAdsC3y+a7A6dFxLoR8c0pXmpx4NKI2BC4vZSzcUSsCzwC7ACsCywfEc+MiGcBBzb3n5rZbOUMAWY2m20BvFrSx8rtRYAVycbbdyWtSzak1uih7EeA35S/XwI8BzgnU5qyKNkAPApYVdJ3gD8Ax/f2b5jZvMSNMzObzQS8LiKuGnentCfwb2AdcgTh/gm2f5jxIwyLtP19f0Q80vY6B0fEJ+eqgLQO8DLgA8AbgHfW/zfMbF7iYU0zm82OAz6k0p0l6dnl/qWBf0bEo8BbgNaE/nuAJdu2vw5YV9J8klYAnjvB65wIvF7SE8rrPFbSSpIeD8wXEb8BPgus19y/ZmazlXvOzGw2+wLwLeDi0kC7Dngl8H3gN5K2BU5iLO/oxcDDki4CDirb/h24BLgUOL/bi0TE5ZI+AxwvaT7gIbKn7D7gwHIfwFw9a2ZmnZy+yczMzGyEeFjTzMzMbIS4cWZmZmY2Qtw4MzMzMxshbpyZmZmZjRA3zszMzMxGiBtnZmZmZiPEjTMzMzOzEfL/AdjQv+cSvU2rAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "#Code task 27#\n", "#Plot a barplot of the random forest's feature importances,\n", @@ -3232,8 +3572,8 @@ "#create a pandas Series object of the feature importances, with the index given by the\n", "#training data column names, sorting the values in descending order\n", "plt.subplots(figsize=(10, 5))\n", - "imps = rf_grid_cv.best_estimator_.named_steps.randomforestregressor.___\n", - "rf_feat_imps = pd.Series(___, index=X_train.columns).sort_values(ascending=False)\n", + "imps = rf_grid_cv.best_estimator_.named_steps.randomforestregressor.feature_importances_\n", + "rf_feat_imps = pd.Series(imps, index=X_train.columns).sort_values(ascending=False)\n", "rf_feat_imps.plot(kind='bar')\n", "plt.xlabel('features')\n", "plt.ylabel('importance')\n", @@ -3283,7 +3623,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 131, "metadata": {}, "outputs": [], "source": [ @@ -3294,16 +3634,16 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 132, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(10.499032338015297, 1.6220608976799646)" + "(10.040198594080895, 0.8616072645320196)" ] }, - "execution_count": 98, + "execution_count": 132, "metadata": {}, "output_type": "execute_result" } @@ -3316,16 +3656,16 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 133, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "11.793465668669327" + "10.651725789630266" ] }, - "execution_count": 99, + "execution_count": 133, "metadata": {}, "output_type": "execute_result" } @@ -3343,7 +3683,7 @@ }, { "cell_type": "code", - "execution_count": 100, + "execution_count": 134, "metadata": {}, "outputs": [], "source": [ @@ -3353,16 +3693,16 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 135, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(9.644639167595688, 1.3528565172191818)" + "(10.008191024038684, 0.5942372285275324)" ] }, - "execution_count": 101, + "execution_count": 135, "metadata": {}, "output_type": "execute_result" } @@ -3375,16 +3715,16 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 136, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "9.537730050637332" + "10.097662394773215" ] }, - "execution_count": 102, + "execution_count": 136, "metadata": {}, "output_type": "execute_result" } @@ -3423,9 +3763,24 @@ }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 137, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jiahuieffiehu/opt/anaconda3/lib/python3.9/site-packages/sklearn/feature_selection/_univariate_selection.py:289: RuntimeWarning: invalid value encountered in divide\n", + " correlation_coefficient /= X_norms\n", + "/Users/jiahuieffiehu/opt/anaconda3/lib/python3.9/site-packages/sklearn/feature_selection/_univariate_selection.py:289: RuntimeWarning: invalid value encountered in divide\n", + " correlation_coefficient /= X_norms\n", + "/Users/jiahuieffiehu/opt/anaconda3/lib/python3.9/site-packages/sklearn/feature_selection/_univariate_selection.py:289: RuntimeWarning: invalid value encountered in divide\n", + " correlation_coefficient /= X_norms\n", + "/Users/jiahuieffiehu/opt/anaconda3/lib/python3.9/site-packages/sklearn/feature_selection/_univariate_selection.py:289: RuntimeWarning: invalid value encountered in divide\n", + " correlation_coefficient /= X_norms\n" + ] + } + ], "source": [ "fractions = [.2, .25, .3, .35, .4, .45, .5, .6, .75, .8, 1.0]\n", "train_size, train_scores, test_scores = learning_curve(pipe, X_train, y_train, train_sizes=fractions)\n", @@ -3437,12 +3792,12 @@ }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 138, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnIAAAFNCAYAAACE6oJwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZxddX3/8ddnJpnsELJCCCFComwKtRFFcWevirZVtPqrdSnV1lptbRWxrbW/trb24da6oT9/aLUq+iuVVhJAiyCisqjAhDUskhAmC2HJnszM5/fHOZPcTO6dTJaZM2fyej4e9zFn+d5zPvd778x9z/ecc29kJpIkSaqftqoLkCRJ0r4xyEmSJNWUQU6SJKmmDHKSJEk1ZZCTJEmqKYOcJElSTRnkpBEkIuZHREbEmHJ+cUS8eTBt92FfH4yIL+1Pvdo7EfHCiLjnQLetg4jYEBHHHMDtzSu32X6gtinVUfg5choNIuJ3gD8FjgPWA78E/i4zb6i0sL0UEfOBB4Gxmdl9ANu+BPhaZs49EHUejCLiw8CCzHxT1bVUJSISWJiZy6quRVLBETnVXkT8KfBJ4O+B2cA84LPA+S3a79MIlkaGkfr8RcG/qTXnCJ9qJzO9eavtDTgU2AC8doA2Hwa+A3wNeAp4OzAHuAJYBywDfr+h/anALWXbVcDHy+Xjy208BjwB3AzMbrK/1wO39Fv2XuCKcvo3gF+U218OfLih3XwggTHl/A+Bt5fT7cA/A2uBB4A/6tf2LcBdFCOSDwB/UC6fBGwGesu+2lA+/g9TjNL17ftVwNLysf0QOL5h3UPA+4DbgSeBbwHjW/T3AuC6st1a4FsN604Erin7fRXwwXL5OIowvrK8fRIYV657CbACeD/QBfwbxT+hHwDuL5+Py4BpLeo5DPhvYA3weDk9t2H975X9tZ5ihPONTbZxDrAN2F72320Nz8/fAT8u+3hBq+eh8bEMpl/3pm25/i+AR8v+e3v52ljQok9aPmbgrWX9jwNXAUeXy68vt7mx7IML9vK5z3L9HHa+DjcAm4Dc0/6b7Gs+u/+u/G35XKwHrgZmNLQ/HbiR4vW9HPi9cvmlwOeAK8vHdkZZ4/8rXzMPAu/u9/fhJ+V2HgX+Fego1wXwCWB12Qe3Ayc1vMb/GXiY4rX/eWBCuW4GxevyCYrfjR8BbVX/ffVWj1vlBXjztj83ijfY7r4/5i3afJjiDfjVFAFgQvlm81mKcHZK+Qf75WX7nwD/q5yeDDyvnP4D4L+AiRSh6teBQ5rsb2L5RrKwYdnNwOvL6ZcAzyxreVb5R/3V5bpmb059Qe4dwN3AUcA04Np+bX8DOLZ8M3kxxRvksxv2uaJJv3ytnH56+SZ2JjCWIhQsa3iDegi4qXyDm0bxRvuOFv39DeDi8vGNB04vl08p3/j+rFw+BXhuue4jwE+BWcBMijfcv22ovRv4R4o3wwnAe8r2c8tlXwC+0aKe6cBvlc/LFODbwH+W6yZRBOpnlPNHACcO8Dr6Wr9lP6R4Yz4RGFP23aCfh4H6dS/bnkMRck8sH+e/0SLIDfSYKX5HlgHHl4/nQ8CNDfdtGQ4Heu4Hui/w9b7nbk/773e/+ez+u3I/xWt5Qjn/0XLdPIrfyTeUz9F04JRy3aUUoesFZd0TgVuBvwI6gGMoQu/ZZftfB55X1je/fB7eU647u7zv1PL5Px44olz3SYp/HqdRvA7/C/iHct0/UAS7seXthZSnPnnztqdb5QV487Y/N+CNQNce2nwYuL5h/iigB5jSsOwfgEvL6euBv6Hhv/ly+VspAsazBlHX14C/KqcXlm8iE1u0/STwiXK62ZtTX5D7HxrCE3BWY9sm2/1P4E/K6ZcwcJD7S+CyhnVtwCPAS8r5h4A3Naz/J+DzLfb7VeASGka9yuVvAH7R4j73A+c1zJ8NPNRQ+zZ2HX26izJ4l/NHUIT1loG+oe0pwOPl9CSKUZDfohwd2cPrqFmQ+8ge7tfyeRioX/ey7ZcpQ0E5v4CBg1zTxwwsBt7W73WwiZ2jcnsKck2f+1b3pRhlvZWdI1MD7r/ffeez++/KhxrW/yGwpJy+CLi8Rc2XAl9tmH8u8HC/NhcB/7fF/d/Tt23gZcC9FEGvraFNUPyjdGzDstOAB8vpjwDfHahvvXlrdfN8DtXdY8CMQZw3tbxheg6wLjPXNyz7FXBkOf02iv/q746ImyPiFeXyf6M41PPNiFgZEf8UEWPLqws3lLelZdt/pwguAL9DMQK0CSAinhsR10bEmoh4kmKkbcYgHuucfo/jV40rI+LciPhpRKyLiCeA8wa53b5t79heZvaW+zqyoU1Xw/QmitHKZv6C4o3rpohYGhFvLZcfRRHY9rj/cnpOw/yazNzSMH80cHlEPFE+1rsowvns/huOiIkR8YWI+FVEPEUR1KdGRHtmbgQuoHgOHo2I70XEcS1qbKXxOdmX52Gw/TpQ2/6vjV1qarSHx3w08KmGfl1H8Vwe2Xxru2n13O8mIs4F/oRiNHrzAdp/q/4Z6LUHu/bX0cCcvhrKOj5I+dqKiKdHxH9HRFf5evp7yuc3M/+H4lDrZ4BVEXFJRBxCMco8Ebi1YZtLyuUAH6MYibw6Ih6IiA8M8vFKBjnV3k+ALRSHZAaSDdMrgWkRMaVh2TyKESgy877MfAPFYb5/BL4TEZMyc3tm/k1mngA8H3gF8LuZ+aPMnFzeTiy3dzVFwDyFItD9e8O+/p3iEMtRmXkoxSGVGMRjfZTiDamxZgAiYhzFOT3/THHe3lSKc376ttv4+JtZSfEG1re9KPf1yCDq2kVmdmXm72fmHIrD0Z+NiAUUb5bHDmb/FI9tZeNm+7VfDpybmVMbbuMzs1m9fwY8g+Iw7iHAi8rlUdZ7VWaeSTGqdzfwxVYPbU/LB/E8DJVHKQ4z9zmqVUMY8DEvpzinr7FfJ2TmjYMpYoDnfhcR8QzgK8DrMrN/AN3n/Q9goNce7PrcLqcYKWusYUpmnleu/xxFny0sX08fpOH5zcxPZ+avUxzmfjrw5xTnC26mOITdt81DM3NyeZ/1mflnmXkM8ErgTyPi5fv5mHWQMMip1jLzSYpzWT4TEa8uR1/GlqMi/9TiPsspDpH+Q0SMj4hnUYzCfR0gIt4UETPLUaknyrv1RMRLI+KZ5VVtT1EcyutpsY9uigssPkZxTsw1DaunUIwIbomIUylG7AbjMuDdETE3Ig6jONm/TwfFuWJrgO5ytOOshvWrgOkRcegA2/6NiHh5RIylCD9bKfppr0TEayOiL1Q8TvEm2UNxMvfhEfGeiBgXEVMi4rllu28AH4qImRExg+I5/doAu/k88HcRcXS5z5kR0fQqZYr+3gw8ERHTgL9uqHV2RLwqIiaVj3cDLZ5Tij6cv4crU/f0PAyVy4C3RMTxETGRov+a2sNj/jxwUUScWLY9NCJe23D3VRTnjLXadqvnvrHNIRSHET+Uu3880J72v6++DpwREa+LiDERMb38J6uZm4CnIuL9ETEhItoj4qSIeE65fgrF7/+GciTznQ2P7TnliPtYikOpW4Ce8m/JF4FPRMSssu2REXF2Of2KiFhQ/gP1FEWftXodSrswyKn2MvPjFJ8h9yGKN9DlwLsozk1q5Q0U59isBC4H/joz+8LWOcDSiNgAfIriIoUtwOEU4ewpikN51zFw2Ph3iivgvp27fs7bHwIfiYj1FG+4lw3yoX6R4tDubcDPgf/oW1EeJn53ua3HKcLhFQ3r76YISw+Uh3YaD1uSmfcAbwL+hWL04JXAKzNz2yBra/Qc4Gdl/11BcX7Yg2WNZ5bb7gLuA15a3ud/U1wpfDtwR/n4/vcA+/hUue2ry378KcW5Tc18kuLk97VluyUN69ooQutKisN4L6Z4fpr5dvnzsYj4ebMGe3oehkpmLgY+TXEBzDKKkWooglp/LR9zZl5OMQr9zfKwYSdwbsN9Pwx8pXwNva7Jtps+9/3aPJtihPTjsfOUhA2D3P8+ycyHKQ5x/1n5mH8JnNyibQ/Fa/QUiitW1wJforhCHoorh3+H4rzXL1JcPdznkHLZ4xSnBzxGMToLxfmAy4Cflo/t+xT9AMV5tN+nCNU/AT6bmT/cj4esg4gfCCxJo0xEHE8RgsblHj4sWlK9OSInSaNARLwmIjrKw+7/CPyXIU4a/QxykjQ6/AHFqQX3U5xf9c6Bm0saDTy0KkmSVFOOyEmSJNWUQU6SJKmm9vRp+LU0Y8aMnD9/ftVlSJIk7dGtt966NjNn7rnl7kZlkJs/fz633HJL1WVIkiTtUUT8as+tmvPQqiRJUk0Z5CRJkmrKICdJklRTBjlJkqSaMshJkiTVlEFOkiSppgxykiRJNWWQkyRJqimDnCRJUk0Z5CRJkmrKICdpr1zwhZ9wwRd+UnUZkiQMclKtGKKqY99LB5e6/M4b5FQbI+GXaiTUIB1Mqv6dq3r/0p4Y5PaBv9j2gSRJI8GYqguQJEkCyEy6e5PtPb1s70m6e3p3zHf3JN29vWzrLn42W7+9p5ftveXynmR7b8Pysv2O9Tv209em2G5f+3u61hNRdY/smUFOkqSay0x6enPXUNMQdvqHlP6hpnH9tobQ1D8s9Q89O7ffP0DtnN7W07vLvrt7s6GOXQNXd28OS3+NaQvGtAdj29oYO6aNMW3B2PY2xrTHjultPb20t438JGeQkw6wzOIP15ZtvWza3s3mbT1s2tbDlu3Fz8bpzdt72Lytm83b+y3fsW7X5Ws2bKU3k+P+cjFtEbRFEEE5Xf5sa5juv74tdmkbLe/Hrusa1t/TtR4CLvzqLbS3Fcvbo/jj1zfd1ha0t7FzOoL29vJnWUN7287pnfdll23u2Hb7zvvsvC+7bGfHttua76d9xzZpmN617sb79PWBRrci/OwMEd09vfT0FkGkpyfZvK2HJOl85Mkd6/cUerb3Jtu7exuWDS70bN8RdPoHqL5wtnsgaxy9Gg7tbdEv9LQxtn3n/Ni2cnl7G2PLsDRl7Jhi/UD3K9f33a9/uGrcbkd5/93uV86PbbJ+7Ji2ndtoi0H9btfl9CGDnDSA3t7k0ae2sGz1Bu5fvYEH126kuzd5+1dubhHKip89e/lfZXtbMHFsO+M72pnY0c6Ese1MKH9OnTiWCR1jmDC2jevuXUNbBK86eQ69mfQm9GaS5c+e3mJZZu62vli3s23f+my4X7P13T29u7Td3tNLAg+v20RPb9KTSW85EtBbzvf0NtRTLmtcn8PznrPf2gLGtLXR1gbbunsBeOZfXwUBQRH0onEaykMxjcsh2LVdn4jm68tN7Lbdvnb0X95vG+xyn923QbPaBtp+Q917fIy77aN5Lez2uHfdRt/2H1y7kUx437dv2xFsdoSu3jJ09YWvntxlvq9NY0hrvG937+Bfi6/4lxsG+7JpKoIdQaJV2NgRUsr5iR1jdoSejjEN7ZuGlPJ+gwg9xf77lu1h/Y5tFdNtNRihOtgY5CRgy/YeHnpsI/ev3sj9azYUwW3NBh5Ys5HN23t2tGtvC8a2BSuf2MKEjnamjB/DrCnjmFAGsPFjG4PYGCb0zZfLdmnT0c7EsWOY0NHO2Pa9+w/xovOOH7K+GGwN3/qD0/Z5G33hsQiBFOGvpy8E5o4Q2H96x/q++/Rf3xAsd66D7t7eHdO9vc33s+t92Tldtrnil48AcO4zj9jx5p+ZJJAJSZY/KdeX803XFcvYsaxxOzvnabzvQPtosQ3619Z/G72Q9LbcBg3zfTXv3E6LfexWf4t+GmQfPrFpOxHwk/sfK0aDyhGVMQ2jK8XoThvjxxYhpL2tCCjtbUXAaW/bGY523KdvvnE7/du0tfHZHy4jgD8/57i9Cj0d7W07ttdXkzQUDHI1dSDeTA9Gj2/ctktQu39NEdyWr9tE4yDa3MMmcOzMyTz3adM5dtYkFsyczLGzJvOHX7uViLDf91OUh0vr9AfotuVPAPDXrzyx4koOLlX/rbvsluUAnH3i4ZXsX9qTOv0dlQalpzd55PHNZVDb0BDcNrJu47Yd7caNaeNpMybxzCMP5dWnHMmxsyZz7MxJHDNjMhM62ptu23OmJOngUJd/2A1yqq3N23p4YG0R0HaMsJXnsW0tz2cCmD6pg2NnTubsE2dzbDmytmDmZOZMneDhDklSrRnkNCJt7+nl8Y3bWLthG+s2buOxjVvpenILW7t7ePOXb2LZ6g088sTmHe3bAo6aNpEFMyfzoqfP5NiZk4rQNnMyh03qqPCRSJI0dAxyGhbdPb08vmk7j23cyroN21i7cRvrNmzlsY3bituGrUVg21DMP7l5e9PttAXMmLKVRfMP44KZR7FgVhHWjp4+kfFjmx8OHU3qMtQvjRb+zmmkqzTIRcQ5wKeAduBLmfnRfutfAnwXeLBc9B+Z+ZFhLVItbe/p5d5V68vwVQSxYgRt645A1hfQnti8vell/m0B0yZ1MG1SB9MnjeP4OYcwY1IH0yaNY/rkDqZP6mD65HFMm9TB+79zG+1twWXveP7wP1jtcLC+sR2sj7tq9rs0sMqCXES0A58BzgRWADdHxBWZeWe/pj/KzFcMe4HazZObtnPj/Wv50bK1/HL5E2zt7uWsT1y/S5sIOGxiXzDr4BmHT2H6pCKIzZi8e0A7dMLYQZ+nNqa9+q8G9k1FkjSSVDkidyqwLDMfAIiIbwLnA/2DnCqytbuHW3/1OD9etpYb7lvLHY88SW/C5HHFZ5/NPmQcf372cWUwKwLaYRM7vIBAkqRhUmWQOxJY3jC/Anhuk3anRcRtwErgfZm5dDiKOxj19iZ3d63nx8uKUbebHnyMLduL75r7taOm8scvW8gLF87g5KOm8qYv/QyAV548p+KqJUk6eFUZ5JoN2/Q/i+rnwNGZuSEizgP+E1jYdGMRFwIXAsybN+9A1jmqPfrkZn5031p+vKy4rd1QfM7aglmTef1z5nH6ghk895hpTBk/tuJKJUlSf1UGuRXAUQ3zcylG3XbIzKcapq+MiM9GxIzMXNt/Y5l5CXAJwKJFi2ryTY7D76kt2/np/Y/tGHV7YM1GAGZMHsfpC2Zw+sKZvGDBdI44dELFlUqSpD2pMsjdDCyMiKcBjwCvB36nsUFEHA6sysyMiFOBNuCxYa+0xrb39PKLh5/ghmVrueG+Ndy24kl6epMJY9t57jHT+J1T53H6whk8Y/YUv7VAkqSaqSzIZWZ3RLwLuIri40e+nJlLI+Id5frPA78NvDMiuoHNwOszm32IhfpkJvet3sAN963lhmVr+dkDj7FxWw9tAc+aO5V3vvhYTl84g1+bN5VxY0b/565JkjSaVfo5cpl5JXBlv2Wfb5j+V+Bfh7uuuln91JZixK08z23VU1sBeNqMSbzm2Udy+oKZnHbMdA6d6HlukiSNJn6zQ02t37KddRu3cdYnruPeVRuA4oN1n3/sdF64cAYvWDCDuYdNrLhKSZI0lAxyNfTQ2o3c+eh6ImDh7Cn85rPncvqCGZxwxCG0+RlukiQdNAxyNXRl56MAnHzkofzb25p99N7o5LcqSJK0q+q/80h7bUlnF5M62hl3EHxJvCRJas0gVzMrHt/E7SueZNqkjqpLkSRJFfPQas0s6ewCqDzIeZhTkqTqOSJXM0s6uzj+iEMY72FVSZIOega5Gln91BZuffhxzj3p8KpLkSRJI4BBrkauWtpFJgY5SZIEGORqZXFnF8fOnMTC2VOqLkWSJI0ABrmaWLdxGz97cB3nnnRE1aVIkqQRwiBXE9fc2UVPb3KOh1UlSVLJIFcTV97RxVHTJnDinEOqLkWSJI0QBrkaeHLzdm68fy3nnnQEEX6XqiRJKhjkauAHd61ie4+HVSVJ0q4McjWwuLOLww8Zzylzp1ZdiiRJGkEMciPcxq3dXH/vGs456XDa2jysKkmSdvK7Vke4a+9Zzdbu3t0Oq/pdp5IkyRG5EW5xZxczJnfwnPnTqi5FkiSNMAa5EWzL9h6uvXs1Z55wOO0eVpUkSf0Y5Eaw6+9dw6ZtPX63qiRJasogN4It6ezi0AljOe3Y6VWXIkmSRiCD3Ai1rbuXa+5axRnHz2Zsu0+TJEnanQlhhLrx/rWs39LtYVVJktSSQW6EWtLZxaSOdk5fOKPqUiRJ0ghlkBuBunt6ufrOVbzs+NmMH9tedTmSJGmEMsiNQDc9tI51G7d5WFWSJA3IIDcCLensYvzYNl7yjJlVlyJJkkYwg9wI09ubLOns4sVPn8nEDr9BTZIktVZpkIuIcyLinohYFhEfaLI+IuLT5frbI+LZVdQ5nH6x/HFWr9/KuScdUXUpkiRphKssyEVEO/AZ4FzgBOANEXFCv2bnAgvL24XA54a1yAosvqOLjvY2Xnb8rKpLkSRJI1yVI3KnAssy84HM3AZ8Ezi/X5vzga9m4afA1IgYtUNVmcnizi5OXziDQ8aPrbocSZI0wlUZ5I4EljfMryiX7W2bUeOOR57kkSc2c45Xq0qSpEGoMshFk2W5D22KhhEXRsQtEXHLmjVr9ru4Kizu7KK9LTjz+NlVlyJJkmqgyiC3AjiqYX4usHIf2gCQmZdk5qLMXDRzZv0+tiOzuFr1tGOmc9ikjqrLkSRJNVBlkLsZWBgRT4uIDuD1wBX92lwB/G559erzgCcz89HhLnQ43LNqPQ+u3ehhVUmSNGiVfVBZZnZHxLuAq4B24MuZuTQi3lGu/zxwJXAesAzYBLylqnqH2uI7uoiAs070sKokSRqcSj9xNjOvpAhrjcs+3zCdwB8Nd11VWNLZxXOOnsasKeOrLkWSJNWE3+wwAjywZgP3rFrvYVVJkrRXDHIjwOLOLgCDnCRJ2isGuRFgSWcXJx81lTlTJ1RdiiRJqhGDXMWWr9vEHY88ybmOxkmSpL1kkKvYVUuLw6oGOUmStLcMchVb3NnF8UccwtHTJ1VdiiRJqhmDXIVWPbWFW3/1uKNxkiRpnxjkKuRhVUmStD8MchVafEcXx86cxMLZU6ouRZIk1ZBBriKPbdjKzx58jHNPOqLqUiRJUk0Z5CpyzZ2r6E0/BFiSJO07g1xFFnd2cdS0CZw455CqS5EkSTVlkKvAk5u3c+P9azn3pCOIiKrLkSRJNWWQq8AP7lrF9p70sKokSdovBrkKXHlHF4cfMp5T5k6tuhRJklRjBrlhtmFrN9fft4ZzTjqctjYPq0qSpH1nkBtm1969mm3dvR5WlSRJ+80gN8yWdHYxY3IHz5k/repSJElSzRnkhtGW7T1ce89qzjrxcNo9rCpJkvaTQW4YXXfvGjZt6/G7VSVJ0gFhkBtGSzq7OHTCWJ53zPSqS5EkSaOAQW6YbOvu5ft3reLME2Yztt1ulyRJ+89EMUx+fP9a1m/p9rCqJEk6YAxyw2TJHV1MHjeG0xfOqLoUSZI0ShjkhkF3Ty9X39nFy46bxbgx7VWXI0mSRgmD3DC46cF1PL5pu4dVJUnSAWWQGwaLO7sYP7aNFz9jZtWlSJKkUcQgN8R6e5OrlnbxkqfPYmLHmKrLkSRJo4hBboj9/OHHWb1+K+c+08OqkiTpwDLIDbHFnV10tLfxsuNmVV2KJEkaZSo51hcR04BvAfOBh4DXZebjTdo9BKwHeoDuzFw0fFXuv8xkSWcXpy+cwZTxY6suR5IkjTJVjch9APhBZi4EflDOt/LSzDylbiEO4I5HnuSRJzZzjlerSpKkIVBVkDsf+Eo5/RXg1RXVMaQWd3bR3hacefzsqkuRJEmjUFVBbnZmPgpQ/mx1AlkCV0fErRFx4UAbjIgLI+KWiLhlzZo1B7jcvZeZLL7jUU47ZjqHTeqouhxJkjQKDdk5chHxfaDZMcWL92IzL8jMlRExC7gmIu7OzOubNczMS4BLABYtWpR7XfABdnfXeh56bBNvf+ExVZciSZJGqSELcpl5Rqt1EbEqIo7IzEcj4ghgdYttrCx/ro6Iy4FTgaZBbqRZ3NlFBJx1oodVJUnS0Kjq0OoVwJvL6TcD3+3fICImRcSUvmngLKBz2CrcT0s6H+U5R09j1pTxVZciSZJGqaqC3EeBMyPiPuDMcp6ImBMRV5ZtZgM3RMRtwE3A9zJzSSXV7qX712zg3lUbvFpVkiQNqUo+Ry4zHwNe3mT5SuC8cvoB4ORhLu2AWNLZBWCQkyRJQ8pvdhgCizsf5eSjpjJn6oSqS5EkSaPYHoNcea5aWzn99Ih4VUT4NQUtLF+3ic5HnuJcR+MkSdIQG8yI3PXA+Ig4kuJbGN4CXDqURdVZ32FVg5wkSRpqgwlykZmbgN8E/iUzXwOcMLRl1dfizkc54YhDOHr6pKpLkSRJo9ygglxEnAa8EfheuaySiyRGuq4nt/Dzh59wNE6SJA2LwQS59wAXAZdn5tKIOAa4dmjLqqerlpaHVZ9pkJMkSUNvjyNrmXkdcF35obx9Hwvy7qEurI4Wdz7KglmTWTBrStWlSJKkg8Bgrlo9LSLuBO4q50+OiM8OeWU189iGrdz04DoPq0qSpGEzmEOrnwTOBh4DyMzbgBcNZVF1dPWdq+hNPwRYkiQNn0F9IHBmLu+3qGcIaqm1xZ1dzJs2kROOOKTqUiRJ0kFiMEFueUQ8H8iI6IiI91EeZlXhyU3buXHZWs496XAioupyJEnSQWIwQe4dwB8BRwIrgFPKeZW+f9cqunvTw6qSJGlYDXjVakS0A5/MzDcOUz21tLiziyMOHc/Jc6dWXYokSTqIDDgil5k9wMyI6Bimempnw9Zurr9vDWefeDhtbR5WlSRJw2cw39DwEPDjiLgC2Ni3MDM/PlRF1cm1d69mW3evHzsiSZKG3WCC3Mry1gb4Sbf9LO58lBmTO1g0f1rVpUiSpIPMYL7Z4W8AImJKMZsbhryqmti8rYdr717Da559JO0eVpUkScNsMN/scFJE/ALoBJZGxK0RceLQlzbyXXfvGjZv7/GwqiRJqsRgPn7kEuBPM/PozDwa+DPgi0NbVj0s6XyUQyeM5XnHTK+6FEmSdBAaTJCblJnX9s1k5g+BSUNWUU30ZvKDu1Zz5gmzGds+qC/IkCRJOqAGc7HDAxHxl8C/lfNvAh4cupLq4anN21m/tdvDqpIkqTKDGUp6KzAT+I/yNgN4y1AWVQfrNm5j8h3BZeMAABE5SURBVLgxnL5wRtWlSJKkg9Rgrlp9HHj3MNRSG5nJ45u2c94zj2DcmPaqy5EkSQepwVy1ek1ETG2YPywirhraska2p7Z0092bHlaVJEmVGsyh1RmZ+UTfTDlCN2voShr51m3cRlvAi58xs+pSJEnSQWwwQa43Iub1zUTE0UAOXUkjW2by1JbtHDphLBM7BnOtiCRJ0tAYTBK5GLghIq4r518EXDh0JY1sEcEz5xxKd+9Bm2UlSdIIMZiLHZZExLOB5wEBvDcz1w55ZSNYW1vQ4VdySZKkig3mYocXAJsz87+BQ4EPlodXJUmSVKHBnCP3OWBTRJwM/DnwK+Cr+7PTiHhtRCyNiN6IWDRAu3Mi4p6IWBYRH9iffUqSJI02gwly3ZmZwPnApzPzU8CU/dxvJ/CbwPWtGkREO/AZ4FzgBOANEXHCfu5XkiRp1BjMxQ7rI+Iiiq/melEZsMbuz04z8y4oLhwYwKnAssx8oGz7TYoweef+7FuSJGm0GMyI3AXAVuBtmdkFHAl8bEirKhwJLG+YX1EukyRJEoO7arUL+HjD/MMM4hy5iPg+0OyrDy7OzO8OorZmw3UtP/MjIi6k/FiUefPmtWomSZI0agzZJ9pm5hn7uYkVwFEN83OBlQPs7xLgEoBFixb5IW+SJGnUG8yh1arcDCyMiKdFRAfweuCKimuSJEkaMVoGuYh4X0Qc1Wr9/oiI10TECuA04HsRcVW5fE5EXAmQmd3Au4CrgLuAyzJz6VDUI0mSVEcDHVo9ErgxIh4EvgF8+0B9o0NmXg5c3mT5SuC8hvkrgSsPxD4lSZJGm5Yjcpn5XmAe8JfAs4DbI2JxRPxuROzv58hJkiRpPw14jlwWrsvMd1JcePBJ4L3AquEoTpIkSa0N6qrViHgmxcUGFwCPAR8cyqIkSZK0Zy2DXEQsBN5AEeB6gG8CZ/V904IkSZKqNdCI3FUUFzlckJl3DFM9kiRJGqSBgtzZwOz+IS4iXgiszMz7h7QySZIkDWigix0+ATzVZPlmioseJEmSVKGBgtz8zLy9/8LMvAWYP2QVSZIkaVAGCnLjB1g34UAXIkmSpL0zUJC7OSJ+v//CiHgbcOvQlSRJkqTBGOhih/cAl0fEG9kZ3BYBHcBrhrowSZIkDaxlkMvMVcDzI+KlwEnl4u9l5v8MS2WSJEka0B6/2SEzrwWuHYZaJEmStBcG/K5VSZIkjVwGOUmSpJoyyEmSJNWUQU6SJKmmDHKSJEk1ZZCTJEmqKYOcJElSTRnkJEmSasogJ0mSVFMGOUmSpJoyyEmSJNWUQU6SJKmmDHKSJEk1ZZCTJEmqKYOcJElSTRnkJEmSaqqSIBcRr42IpRHRGxGLBmj3UETcERG/jIhbhrNGSZKkkW5MRfvtBH4T+MIg2r40M9cOcT2SJEm1U0mQy8y7ACKiit1LkiSNCiP9HLkEro6IWyPiwqqLkSRJGkmGbEQuIr4PHN5k1cWZ+d1BbuYFmbkyImYB10TE3Zl5fYv9XQhcCDBv3rx9qlmSJKlOhizIZeYZB2AbK8ufqyPicuBUoGmQy8xLgEsAFi1alPu7b0mSpJFuxB5ajYhJETGlbxo4i+IiCUmSJFHdx4+8JiJWAKcB34uIq8rlcyLiyrLZbOCGiLgNuAn4XmYuqaJeSZKkkaiqq1YvBy5vsnwlcF45/QBw8jCXJkmSVBsj9tCqJEmSBmaQkyRJqimDnCRJUk0Z5CRJkmrKICdJklRTBjlJkqSaMshJkiTVlEFOkiSppgxykiRJNWWQkyRJqimDnCRJUk0Z5CRJkmrKICdJklRTBjlJkqSaMshJkiTVlEFOkiSppgxykiRJNWWQkyRJqimDnCRJUk0Z5CRJkmrKICdJklRTBjlJkqSaMshJkiTVlEFOkiSppgxykiRJNWWQkyRJqimDnCRJUk0Z5CRJkmrKICdJklRTBjlJkqSaqiTIRcTHIuLuiLg9Ii6PiKkt2p0TEfdExLKI+MBw1ylJkjSSVTUidw1wUmY+C7gXuKh/g4hoBz4DnAucALwhIk4Y1iolSZJGsEqCXGZenZnd5exPgblNmp0KLMvMBzJzG/BN4PzhqlGSJGmkGwnnyL0VWNxk+ZHA8ob5FeWypiLiwoi4JSJuWbNmzQEuUZIkaeQZM1QbjojvA4c3WXVxZn63bHMx0A18vdkmmizLVvvLzEuASwAWLVrUsp0kSdJoMWRBLjPPGGh9RLwZeAXw8sxsFrxWAEc1zM8FVh64CiVJkuqtqqtWzwHeD7wqMze1aHYzsDAinhYRHcDrgSuGq0ZJkqSRrqpz5P4VmAJcExG/jIjPA0TEnIi4EqC8GOJdwFXAXcBlmbm0onolSZJGnCE7tDqQzFzQYvlK4LyG+SuBK4erLkmSpDoZCVetSpIkaR8Y5CRJkmrKICdJklRTBjlJkqSaMshJkiTVlEFOkiSppgxykiRJNWWQkyRJqimDnCRJUk0Z5CRJkmrKICdJklRTBjlJkqSaMshJkiTVlEFOkiSppgxykiRJNWWQkyRJqimDnCRJUk0Z5CRJkmrKICdJklRTBjlJkqSaMshJkiTVlEFOkiSppgxykiRJNWWQkyRJqimDnCRJUk0Z5CRJkmrKICdJklRTBjlJkqSaMshJkiTV1JgqdhoRHwNeCWwD7gfekplPNGn3ELAe6AG6M3PRcNYpSZI0klU1IncNcFJmPgu4F7hogLYvzcxTDHGSJEm7qiTIZebVmdldzv4UmFtFHZIkSXVWyaHVft4KfKvFugSujogEvpCZlwxfWa196w9Oq7oESZKkoQtyEfF94PAmqy7OzO+WbS4GuoGvt9jMCzJzZUTMAq6JiLsz8/oW+7sQuBBg3rx5+12/JEnSSDdkQS4zzxhofUS8GXgF8PLMzBbbWFn+XB0RlwOnAk2DXDladwnAokWLmm5PkiRpNKnkHLmIOAd4P/CqzNzUos2kiJjSNw2cBXQOX5WSJEkjW1VXrf4rMIXicOkvI+LzABExJyKuLNvMBm6IiNuAm4DvZeaSasqVJEkaeSq52CEzF7RYvhI4r5x+ADh5OOuSJEmqE7/ZQZIkqaYMcpIkSTVlkJMkSaopg5wkSVJNGeQkSZJqyiAnSZJUUwY5SZKkmooW345VaxGxBvhV1XWMADOAtVUXMQrYj/vPPjww7McDw348MOzHA2MGMCkzZ+7LnUdlkFMhIm7JzEVV11F39uP+sw8PDPvxwLAfDwz78cDY33700KokSVJNGeQkSZJqyiA3ul1SdQGjhP24/+zDA8N+PDDsxwPDfjww9qsfPUdOkiSpphyRkyRJqimD3CgSEe0R8YuI+O9yflpEXBMR95U/D6u6xpEuIqZGxHci4u6IuCsiTrMf915EvDcilkZEZ0R8IyLG2497FhFfjojVEdHZsKxlv0XERRGxLCLuiYizq6l65GnRjx8rf69vj4jLI2Jqwzr7sYlm/diw7n0RkRExo2GZ/dhPqz6MiD8u+2lpRPxTw/K97kOD3OjyJ8BdDfMfAH6QmQuBH5TzGtingCWZeRxwMkV/2o97ISKOBN4NLMrMk4B24PXYj4NxKXBOv2VN+y0iTqDo1xPL+3w2ItqHr9QR7VJ278drgJMy81nAvcBFYD/uwaXs3o9ExFHAmcDDDcvsx+YupV8fRsRLgfOBZ2XmicA/l8v3qQ8NcqNERMwFfgP4UsPi84GvlNNfAV493HXVSUQcArwI+D8AmbktM5/AftwXY4AJETEGmAisxH7co8y8HljXb3Grfjsf+GZmbs3MB4FlwKnDUugI16wfM/PqzOwuZ38KzC2n7ccWWrweAT4B/AXQeJK9/dhEiz58J/DRzNxatlldLt+nPjTIjR6fpPjF6m1YNjszHwUof86qorAaOQZYA/zf8hD1lyJiEvbjXsnMRyj+w3wYeBR4MjOvxn7cV6367UhgeUO7FeUy7dlbgcXltP24FyLiVcAjmXlbv1X24+A9HXhhRPwsIq6LiOeUy/epDw1yo0BEvAJYnZm3Vl1LzY0Bng18LjN/DdiIh//2WnkO1/nA04A5wKSIeFO1VY1K0WSZH0OwBxFxMdANfL1vUZNm9mMTETERuBj4q2armyyzH5sbAxwGPA/4c+CyiAj2sQ8NcqPDC4BXRcRDwDeBl0XE14BVEXEEQPlzdetNiOK/nxWZ+bNy/jsUwc5+3DtnAA9m5prM3A78B/B87Md91arfVgBHNbSbS3EIWy1ExJuBVwBvzJ2fvWU/Dt6xFP+g3Va+38wFfh4Rh2M/7o0VwH9k4SaKI2kz2Mc+NMiNApl5UWbOzcz5FCdK/k9mvgm4Anhz2ezNwHcrKrEWMrMLWB4RzygXvRy4E/txbz0MPC8iJpb/Zb6c4qIR+3HftOq3K4DXR8S4iHgasBC4qYL6aiEizgHeD7wqMzc1rLIfBykz78jMWZk5v3y/WQE8u/zbaT8O3n8CLwOIiKcDHcBa9rEPxwxhoareRymGbN9G8eb62orrqYM/Br4eER3AA8BbKP7hsR8HKTN/FhHfAX5OcQjrFxSfXD4Z+3FAEfEN4CXAjIhYAfw1LX6PM3NpRFxG8c9GN/BHmdlTSeEjTIt+vAgYB1xT/H/BTzPzHfZja836MTP/T7O29mNzLV6LXwa+XH4kyTbgzeUI8T71od/sIEmSVFMeWpUkSaopg5wkSVJNGeQkSZJqyiAnSZJUUwY5SZKkmjLISRoRImJ6RPyyvHVFxCMN8x17uO+iiPj0IPZx44GrePAi4oN72f4jEXHGUNUjafTw40ckjTgR8WFgQ2b+c8OyMQ1fel4rEbEhMydXXYek0ccROUkjVkRcGhEfj4hrgX+MiFMj4saI+EX58xllu5dExH+X0x+OiC9HxA8j4oGIeHfD9jY0tP9hRHwnIu6OiK+X30JBRJxXLrshIj7dt91+dZ0YETeVo4W3R8TCcvmbGpZ/ISLaI+KjwIRy2df7bae9fIydEXFHRLy34XH/djnS2DcqeUdEZLn+2IhYEhG3RsSPIuK4oeh/SSOf3+wgaaR7OnBGZvZExCHAizKzuzz0+PfAbzW5z3HAS4EpwD0R8bnye18b/RpwIsV3Gf4YeEFE3AJ8odzHg+WnsjfzDuBTmdn3LSDtEXE8cAHwgszcHhGfpfhOzw9ExLsy85Qm2zkFODIzTwKIiKmNKzPzlrINEfExYEm56hLgHZl5X0Q8F/gs5Vf+SDq4GOQkjXTfbviamkOBr5QjYAmMbXGf72XmVmBrRKwGZlN8L2SjmzJzBUBE/BKYD2wAHsjMB8s23wAubLL9nwAXR8Rcii+/vi8iXg78OnBzObg3gZ1fcN/KA8AxEfEvwPeAq5s1iojXAc8GzoqIycDzgW+X+4Hiq6ckHYQMcpJGuo0N038LXJuZr4mI+cAPW9xna8N0D83/1jVrE03a7SYz/z0ifgb8BnBVRLy9vO9XMvOiwWyj3M7jEXEycDbwR8DrgLc2tomIE4G/oRgl7ImINuCJFiN8kg4yniMnqU4OBR4pp39vCLZ/N8UI2fxy/oJmjSLiGIqRu08DVwDPAn4A/HZEzCrbTIuIo8u7bI+I3UYPI2IG0JaZ/w/4S4pRt8b1hwLfBH43M9cAZOZTwIMR8dqyTZRhUNJByCAnqU7+CfiHiPgx0H6gN56Zm4E/BJZExA3AKuDJJk0vADrLQ7LHAV/NzDuBDwFXR8TtwDXAEWX7S4Db+1/sABwJ/LDczqVA/9G8VwNHA1/su+ihXP5G4G0RcRuwFDh/Xx+zpHrz40ckqUFETM7MDeVVrJ8B7svMT1RdlyQ144icJO3q98uRr6UUh3K/UHE9ktSSI3KSJEk15YicJElSTRnkJEmSasogJ0mSVFMGOUmSpJoyyEmSJNWUQU6SJKmm/j99CR8CQGBu1AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnIAAAFNCAYAAACE6oJwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAxn0lEQVR4nO3deZwcdZ3/8ddnZjK5D0JCCDkBwxUEhMgpLoiIHIoXgsqKAiKurqvrseKxou56/7x2RUVAcFERUBQFOTy4UUiQAAHkSCAJSSAJue+Z+f7+qBrSmXTPdJKZ6amZ1/ORfkx11beqPv3tnvR7vlVdHSklJEmSVDx1tS5AkiRJ28cgJ0mSVFAGOUmSpIIyyEmSJBWUQU6SJKmgDHKSJEkFZZCTepCImBwRKSIa8vt/iIizqmm7Hfv6dERcsiP1attExNER8Y/OblsEEbE6IvboxO1NzLdZ31nblIoovI6ceoOIeCfw78A+wCrgQeC/U0p31bKubRURk4E5QL+UUlMntj0GuDKlNL5TCu2DIuJC4GUppTNrXUutREQCpqSUnqp1LZIyjsip8CLi34HvAF8GxgATgYuAUyu0364RLPUMPfX5i4z/pxacI3wqnJSSN2+FvQHDgdXAae20uRC4FrgSWAmcC+wGXA+8CDwFvK+k/aHA9Lzt88C38vkD8m0sBZYD9wNjyuzvDGB6m3kfBa7Pp08G/p5vfx5wYUm7yUACGvL7twHn5tP1wDeBJcBs4INt2r4XeIxsRHI28P58/mBgHdCS99Xq/PFfSDZK17rvNwKz8sd2G7BvybJngI8DDwErgF8CAyr098uA2/N2S4BfliybCtya9/vzwKfz+f3JwviC/PYdoH++7BhgPvAfwCLg/8j+CP0U8HT+fFwNjKxQz07A74HFwLJ8enzJ8vfk/bWKbITzXWW28XpgI7Ap77+ZJc/PfwN35338skrPQ+ljqaZft6VtvvyTwMK8/84le228rEKfVHzMwNl5/cuAm4FJ+fw78m2uyfvg9G187lO+fDc2vw5XA2uB1NH+y+xrMlv/rnwpfy5WAbcAo0ravwq4h+z1PQ94Tz7/cuAHwI35Y3ttXuOvyF4zc4APt/n/4d58OwuB/wUa82UBfBt4Ie+Dh4D9S17j3wTmkr32fwgMzJeNIntdLif73bgTqKv1/6/einGreQHevO3IjewNtqn1P/MKbS4kewN+E1kAGJi/2VxEFs4Oyv/DPi5vfy/wz/n0EODwfPr9wO+AQWSh6hBgWJn9DcrfSKaUzLsfOCOfPgZ4eV7LAfl/6m/Kl5V7c2oNcucDjwMTgJHAX9q0PRnYM38z+SeyN8iDS/Y5v0y/XJlP75W/iR0P9CMLBU+VvEE9A9yXv8GNJHujPb9Cf/8C+Ez++AYAr8rnD83f+D6Wzx8KHJYv+yLwV2AXYDTZG+6XSmpvAr5G9mY4EPhI3n58Pu9HwC8q1LMz8Nb8eRkKXAP8Jl82mCxQ753fHwtMbed1dGWbebeRvTFPBRryvqv6eWivX7ex7evJQu7U/HH+HxWCXHuPmex35Clg3/zxfBa4p2TdiuGwvee+vXWBn7U+dx3tv816k9n6d+VpstfywPz+V/NlE8l+J9+RP0c7Awflyy4nC11H5XUPAmYA/wk0AnuQhd4T8vaHAIfn9U3On4eP5MtOyNcdkT//+wJj82XfIfvjcSTZ6/B3wFfyZV8hC3b98tvR5Kc+efPW0a3mBXjztiM34F3Aog7aXAjcUXJ/AtAMDC2Z9xXg8nz6DuALlPw1n88/myxgHFBFXVcC/5lPT8nfRAZVaPsd4Nv5dLk3p9Yg92dKwhPwutK2Zbb7G+Df8uljaD/IfQ64umRZHfAccEx+/xngzJLlXwd+WGG/PwUupmTUK5//DuDvFdZ5Gjip5P4JwDMltW9ky9Gnx8iDd35/LFlYrxjoS9oeBCzLpweTjYK8lXx0pIPXUbkg98UO1qv4PLTXr9vY9jLyUJDffxntB7myjxn4A3BOm9fBWjaPynUU5Mo+95XWJRtlncHmkal2999m3cls/bvy2ZLl/wLclE9fAFxXoebLgZ+W3D8MmNumzQXATyqs/5HWbQOvAZ4gC3p1JW2C7A+lPUvmHQHMyae/CPy2vb715q3SzfM5VHRLgVFVnDc1r2R6N+DFlNKqknnPAuPy6XPI/qp/PCLuj4hT8vn/R3ao56qIWBARX4+IfvmnC1fnt1l525+TBReAd5KNAK0FiIjDIuIvEbE4IlaQjbSNquKx7tbmcTxbujAiToyIv0bEixGxHDipyu22bvul7aWUWvJ9jStps6hkei3ZaGU5nyR747ovImZFxNn5/Alkga3D/efTu5XcX5xSWl9yfxJwXUQszx/rY2ThfEzbDUfEoIj4UUQ8GxEryYL6iIioTymtAU4new4WRsQNEbFPhRorKX1Otud5qLZf22vb9rWxRU2lOnjMk4DvlvTri2TP5biyG9taped+KxFxIvBvZKPR6zpp/5X6p73XHmzZX5OA3VpryOv4NPlrKyL2iojfR8Si/PX0ZfLnN6X0Z7JDrd8Hno+IiyNiGNko8yBgRsk2b8rnA3yDbCTyloiYHRGfqvLxSgY5Fd69wHqyQzLtSSXTC4CRETG0ZN5EshEoUkpPppTeQXaY72vAtRExOKW0KaX0hZTSfsCRwCnAu1NKd6aUhuS3qfn2biELmAeRBbqfl+zr52SHWCaklIaTHVKJKh7rQrI3pNKaAYiI/mTn9HyT7Ly9EWTn/LRut/Txl7OA7A2sdXuR7+u5KuraQkppUUrpfSml3cgOR18UES8je7Pcs5r9kz22BaWbbdN+HnBiSmlEyW1ASqlcvR8D9iY7jDsMeHU+P/J6b04pHU82qvc48ONKD62j+VU8D11lIdlh5lYTKjWEdh/zPLJz+kr7dWBK6Z5qimjnud9CROwNXAG8PaXUNoBu9/7b0d5rD7Z8bueRjZSV1jA0pXRSvvwHZH02JX89fZqS5zel9L2U0iFkh7n3Aj5Bdr7gOrJD2K3bHJ5SGpKvsyql9LGU0h7AG4B/j4jjdvAxq48wyKnQUkoryM5l+X5EvCkffemXj4p8vcI688gOkX4lIgZExAFko3A/A4iIMyNidD4qtTxfrTkijo2Il+efaltJdiivucI+msg+YPENsnNibi1ZPJRsRHB9RBxKNmJXjauBD0fE+IjYiexk/1aNZOeKLQaa8tGO15Usfx7YOSKGt7PtkyPiuIjoRxZ+NpD10zaJiNMiojVULCN7k2wmO5l714j4SET0j4ihEXFY3u4XwGcjYnREjCJ7Tq9sZzc/BP47Iibl+xwdEadWaDuU7E10eUSMBD5fUuuYiHhjRAzOH+9qKjynZH04uYNPpnb0PHSVq4H3RsS+ETGIrP/K6uAx/xC4ICKm5m2HR8RpJas/T3bOWKVtV3ruS9sMIzuM+Nm09eWBOtr/9voZ8NqIeHtENETEzvkfWeXcB6yMiP+IiIERUR8R+0fEK/PlQ8l+/1fnI5kfKHlsr8xH3PuRHUpdDzTn/5f8GPh2ROyStx0XESfk06dExMvyP6BWkvVZpdehtAWDnAovpfQtsmvIfZbsDXQe8CGyc5MqeQfZOTYLgOuAz6eUWsPW64FZEbEa+C7ZhxTWA7uShbOVZIfybqf9sPFzsk/AXZO2vM7bvwBfjIhVZG+4V1f5UH9Mdmh3JvAA8OvWBflh4g/n21pGFg6vL1n+OFlYmp0f2ik9bElK6R/AmcD/kI0evAF4Q0ppY5W1lXol8Le8/64nOz9sTl7j8fm2FwFPAsfm6/wX2SeFHwIezh/ff7Wzj+/m274l78e/kp3bVM53yE5+X5K3u6lkWR1ZaF1Adhjvn8ien3KuyX8ujYgHyjXo6HnoKimlPwDfI/sAzFNkI9WQBbW2Kj7mlNJ1ZKPQV+WHDR8BTixZ90Lgivw19PYy2y773LdpczDZCOm3YvMpCaur3P92SSnNJTvE/bH8MT8IHFihbTPZa/Qgsk+sLgEuIfuEPGSfHH4n2XmvPyb79HCrYfm8ZWSnBywlG52F7HzAp4C/5o/tj2T9ANl5tH8kC9X3AhellG7b7gesPsULAktSLxMR+5KFoP6pg4tFSyo2R+QkqReIiDdHRGN+2P1rwO8McVLvZ5CTpN7h/WSnFjxNdn7VB9pvLqk38NCqJElSQTkiJ0mSVFAGOUmSpILq6Gr4hTRq1Kg0efLkWpchSZLUoRkzZixJKY3uuOXWemWQmzx5MtOnT691GZIkSR2KiGc7blWeh1YlSZIKyiAnSZJUUAY5SZKkgjLISZIkFZRBTpIkqaAMcpIkSQVlkJMkSSoog5wkSVJBGeQkSZIKyiAnSZJUUAY5SZIqOP1H93L6j+6tdRlSRQY5SVKPZZCS2meQk6QqGCikvqUov/MGOUmSpIIyyEmSJBWUQU7SNinK4QZJ6gsMctI2qHWIqfX+JUk9i0FOkiSpoBpqXYAk9SQpJVas28SS1RtYvGojS9dsYMmqDcxfthaA7/3pSerrgoa62Pyzvm7L+3VBQ11dyfIK8+uChpeWVdhGybr1EdTVRY17SFJPYpCT1Os1Nbfw4pqNLFm9kSWrN7Bk9QaW5tOLV29gyeqNLC2Z39SSKm7rW7c+0Y2Vb60uqDoktgbF+ro66kvXq28ndG6xvG7r0FpXV2b9NkG0vsL8NjV1FFwb6oKmlhZIsHT1BppbEk0tqeRnC00tiabm1GZZCy0t0NTSUn6drdpv3lZz85bzn126Fkh88XePUhcQARFBkP8M8mkIgrr8Ttt5retlz+HW62253WxZXV12v3V7Va0XWTvYPL/terxU05brbfG42qzHFo+ldHttpkvWo7QP6krqrXa9yPdXxXq0Pga2Xm/rPi993MX/w8ggJ6mQ1m9qzkPZ5hC2ZPVGFq/awNI1G1myKg9mazaybO1GUpls1thQx+gh/Rk1pJExwwYwdbdhjBrSn53zeaOH9GfU0P7sPLiRD1w5A4BfnHfElgGhecsAsUVAaK4wv5pAsVVAaWnTrnV5mfkl229JW9ezoam5TPu8zuYK81sSm5orB9yudsh//bFb99cahJuaWwC4evo8Ukq0JEgkUoJENoK7xTSUfa2p5yoXAAnY1NxCfQGCnkFOUo+QUmLVhiaWtAli5UbRlqzeyOoNTWW3M7R/AzsPaWTUkP7sOXoIh+6eTY8a2p9Rgxuzn3lQG9K/oeq/yFvbZW/w9Z32uIumpUzA2yL4NXducP3J3XMIgnOO3r2qUb76KDcquK2jjvHS89364aJfvv+IbeqntgGvNAACtJQLgC1bh8TW9fJ/W6+XyO9vvR4l81rKta1mvZbN4bS1jrZhtiW11rd5uy1bhNqUz6sUgrder3R7Fdcr2UdL3rGpwnqUeSxtt9F2vesfXEDPj3EGOUldqKUlsWztloc0W6eXbjG9kcWrN7CxqWWrbUTAToMaGTWkkZ0H9+fl40cwKg9qm3/2fym8DejXd0NWd6irCxpfOk+v6/v6pkcWAfDuIyZ3+b46U5QcJqQQcUBtPTh3ea1LqIpBTlLVUto8YvLIcyuy88vKHMpcvCoLaS+u2UC5080a6uKl4DVqSH9etsuQ/BBnf0YNzQJb6/TIQY001PsBe0kqxyAn9REpJdZtambV+iZWrd/EyvVNL01v+bOJlWXmtU63fhDglP+5a4vtD+xX/1IIG7/TIF4xcUQeyLY8nDlqSH+GD+zXK04ylqRaM8hJBbF+UzMbm7Jzj2Y8u6xsyGr9ubJ03obN7Zrb+TQmZIcxh/RvYNiAfgwd0MDQAQ2MGTaAl+3SkN/vx+9nLqC+LrjgpH0ZNaQ/o/PDmoP7+9+JJHU3/+eVuklKidUbmlixbhMr1m1i5bqm/OcmVq7fVDK/ZHr95val54+99Qf3bLX9ujyEDc1D2LAB/Rg7fAB7DRjy0ryhJQFtWJl5gxsbOrxO2QPPLgPghKm7dm4HSZK2mUFO2gYpv5TDnCVr2gSuLYNYa0grXbZy3aay54u1ioBhA/oxfGA/hg1sYPjAfowZNoDhA1vn9eOa6fOorws+e8p+DNsihPVjcGO9hyu70LZ+alGSuoNBTupASokH5i7nmunzmP7sMloSHPvN28q2bayvY9jAfgwf2MCwgf3YeUgje4we/FJAKw1pwwb22zx/UD+GVDEadscTiwE4du9dOvthSpIKyCAnVfD8yvX8+oHnuGbGPGYvXsPAfvWMHNzI4MYGPnL8lJLRs80hrX9DnaNikqRuY5BTYWzvhTm3xYamZv702AtcM30etz+xmJYEr5y8E+e/ek9OOmAs51x+PwBvfsX4LqtB0ma1PqRd6/2rdory3BvktF26I1R1p1kLVnDN9Pn89sHnWLZ2E7sOG8AHjtmTtx0ygd1HDa51eZIklWWQU5+1bM1GfvPgc1wzfT6PLlxJY30dx08dw2mHjOfoKaOp7+B8NUmSas0gpz6lqbmFO59cwjUz5nHro8+zqTnx8nHD+eKpU3njgbsxYlBjrUuUJKlqBjn1CU8vXs010+fz6wfm88KqDYwc3Mg/Hz6Z06aNZ9+xw2pdniRJ28Ugp15r1fpN3PDQQq6ePo8H5i6nvi44du/RvO2QCbxmn11obPD7O7dHbzkvUpJ6A4OcepWWlsRf5yzl2unzufGRhazf1MLLdhnCp0/ahze9Yhy7DB1Q6xIlSeo0NQ1yEfF64LtAPXBJSumrbZYfA/wWmJPP+nVK6YvdWaOKYf6ytVw7Yz6/emA+815cx9D+Dbzl4PGcdsh4Dpowotdc283RMElSqZoFuYioB74PHA/MB+6PiOtTSo+2aXpnSumUbi9QPd76Tc3c9Mgirpkxj3ueXgrAkXvuzMdftzcnTN2VAf3qa1yhJEldq5YjcocCT6WUZgNExFXAqUDbICe9JPu6rGVcM30+v5+5gFUbmpgwciAfOW4v3nrIOMbvNKjWJUqS1G1qGeTGAfNK7s8HDivT7oiImAksAD6eUprVHcWpfU3NLbywagPfvPkfJBIp/zL4BKQEiUT+L5ufUj6/ZHk+/dLyMsvSS20SsxevYdWGTbzlonsY0K+Ok/Yfy2nTJnDY7iM7/I5SSZJ6o1oGuXLvvKnN/QeASSml1RFxEvAbYErZjUWcB5wHMHHixE4sU22llHh6yRqWr93ERbc99dL5ZwFEQBDk/7L5+byI1jax+ckvnVcyXbo98nWXr9vIgIZ6LnzLVE4+YCxDB/Trvged8xw1SVJPUssgNx+YUHJ/PNmo20tSSitLpm+MiIsiYlRKaUnbjaWULgYuBpg2bVrbQKhOdN3fn2P52k1MHDmQOz75mm7bb+vXgp1xqEFdkiSAWl5I635gSkTsHhGNwBnA9aUNImLXyIdnIuJQsnqXdnulesmiFev5/PWzGNK/gV2HeSkPSZJqqWYjcimlpoj4EHAz2eVHLkspzYqI8/PlPwTeBnwgIpqAdcAZKSVH22okpcR//OohNjW3sPeYob3mkh6SJBVVTa8jl1K6Ebixzbwflkz/L/C/3V2Xyrt6+jxuf2IxF75hP/7wyKJalyNJUp/ndxSpKvOXreVLv3+Mw/cYybuPmFzrciRJEgY5VaGlJTukmlLiG2870Et9SJLUQxjk1KGf3TeXu59ayqdP3pcJI73griRJPYVBTu2au3QtX7nxMY6eMop3etkPSZJ6FIOcKmppSXz82pnUR/C1tx7gp1QlSephavqpVfVsP7nnGe6b8yJff9sB7DZi4BbL/IYDSZJqzyCnsmYvXs3Xb3qc4/bZhdMOGV/rcgDDoyRJbXloVVtpbkl8/JqZDOhXz5ff8nIPqUqS1EM5Iqet/PjO2TwwdznfOf0gxvg1XJIk9ViOyGkLTz6/im/d8gQnTB3DqQftVutyJElSOwxyeklTcwsfu2YmQwY08N9v9pCqJEk9nYdW9ZIf3PY0D81fwfffeTCjhvSvdTmSJKkDjsgJgEcXrOR7f36SUw4Yy8kHjK11OZIkqQoGObGxKTukOnxgI186df9alyNJkqrkoVXxv39+kscWruTifz6EnQY31rocSZJUJUfk+riH5i/n+7c9zVteMY7XTd211uVIkqRtYJDrwzY0NfOxq2cyakgjn3/D1FqXI0mStpGHVgvq9B/dC+zY11Z9+9YnefKF1fzkva9k+KB+nVWaJEnqJo7I9VEPzF3GxXc8zenTJnDs3rvUuhxJkrQdDHJ90PpNzXz86pmMHT6Qz56yb63LkSRJ28lDq33QN27+B7OXrOHKcw5j6AAPqUqSVFSOyPUx9815kcvunsOZh0/kVVNG1bocSZK0AwxyfcjajU18/JqZTNhpEBec6CFVSZKKzkOr26EzPjFaC1/9w+PMW7aWq953OIP7+9RLklR0jsj1EXc/tYSf3vss7z1ydw7bY+dalyNJkjqBQa4PWLV+E5+89iF2HzWYT5ywd63LkSRJncTja33Al298jIUr1nHN+UcysLG+1uVIkqRO4ohcL3fbP17gF/fN432v3oNDJu1U63IkSVInMsj1YivWbeJTv3qYKbsM4aOv3avW5UiSpE7modVe7Iu/e5TFqzdw8bsPYUA/D6lKktTbOCLXS9366PP86oH5/Msxe3LA+BG1LkeSJHUBg1wvtGzNRi749cPss+tQ/vU1U2pdjiRJ6iIeWu2FPn/9LJav3cgVZ7+SxgazuiRJvZXv8r3MHx5eyPUzF/Dh46YwdbfhtS5HkiR1IYNcL7Jk9QY+85tHePm44XzgmD1rXY4kSepiBrleIqXEZ697hNXrm/h/bz+QfvU+tZIk9Xa+2/cS189cwE2zFvHR4/dirzFDa12OJEnqBga5XuCFlev5z9/O4hUTR3Deq/eodTmSJKmbGOQKLqXEBb9+mPWbmvnmaQdSXxe1LkmSJHUTg1zB/eqB5/jT4y/wiRP2Zs/RQ2pdjiRJ6kYGuQLb0NTCF343i0Mnj+Tso3avdTmSJKmbGeQKKqXEnCWraWpOfOO0A6jzkKokSX2OQa6gFq/awIp1TVxw0j5M2nlwrcuRJEk1YJAroKWrN/Dsi2sZNqCBMw+bVOtyJElSjRjkCuhnf5tLS4JJOw/2kKokSX2YQa5g1m9q5qf3PsOIgf0Y1Fhf63IkSVIN1TTIRcTrI+IfEfFURHyqzPKIiO/lyx+KiINrUWdPcv3MBSxZvZFdhw+odSmSJKnGahbkIqIe+D5wIrAf8I6I2K9NsxOBKfntPOAH3VpkD5NS4tI757DPrkMZNqCh1uVIkqQaq+WI3KHAUyml2SmljcBVwKlt2pwK/DRl/gqMiIix3V1oT3HXU0v4x/OrOPfoPYjw3DhJkvq6Wga5ccC8kvvz83nb2gaAiDgvIqZHxPTFixd3aqE9xSV3zmH00P684cA+m2UlSVKJWga5ckNKaTvaZDNTujilNC2lNG306NE7XFxP88Tzq7j9icWcdcQk+jf4IQdJklTbIDcfmFByfzywYDva9AmX3jmHAf3qeKfXjZMkSblaBrn7gSkRsXtENAJnANe3aXM98O7806uHAytSSgu7u9BaW7xqA9c9+BxvPXg8Iwc31rocSZLUQ9Tso48ppaaI+BBwM1APXJZSmhUR5+fLfwjcCJwEPAWsBd5bq3pr6cq/PsvGphbOftXutS5FkiT1IDW9hkVK6UaysFY674cl0wn4YHfX1ZOs39TMlX99luP22YU9Rw+pdTmSJKkH8Zsderjf/P05lq7ZyLlH71HrUiRJUg9jkOvBUkpcctccpu42jMP3GFnrciRJUg9jkOvBbn9iMU+9sJpzj97dCwBLkqStGOR6sEvvmsOYYf05+eW71boUSZLUAxnkeqjHF63kzieXcNaRk2ls8GmSJElbMyH0UJfeOYeB/ep556ETa12KJEnqoQxyPdALq9bz2wcXcNq08YwY5AWAJUlSeQa5Huj/7n2WTS0tvPcoLwAsSZIqM8j1MOs2ZhcAfu2+Y9h91OBalyNJknowg1wP8+u/z2fZ2k2c69dxSZKkDnQY5CJicETU5dN7RcQbI6Jf15fW97S0JC69aw4vHzecQ3f3AsCSJKl91YzI3QEMiIhxwJ/Ivrj+8q4sqq+67YkXmL14jRcAliRJVakmyEVKaS3wFuB/UkpvBvbr2rL6pkvunMPY4QM46eVja12KJEkqgKqCXEQcAbwLuCGf19B1JfVNsxas4J6nl/KeIyfTr95TFyVJUseqSQwfAS4ArkspzYqIPYC/dGlVfdCld81hUGM9Z3gBYEmSVKUOR9ZSSrcDt0fE4Pz+bODDXV1YX/L8yvX8buYC3nXYJIYPrO5zJL98/xFdXJUkSerpqvnU6hER8SjwWH7/wIi4qMsr60N+eu8zNLUkzvYCwJIkaRtUc2j1O8AJwFKAlNJM4NVdWFOfsnZjEz/721xO2G9XJu48qNblSJKkAqnqrPqU0rw2s5q7oJY+6Vcz5rN87SbOPdrROEmStG2q+fTpvIg4EkgR0Uh2ftxjXVtW39B6AeADJ4zgkEk71bocSZJUMNWMyJ0PfBAYB8wHDsrvawf96fEXeGbpWs59lRcAliRJ267dEbmIqAe+k1J6VzfV06dccudsxo0YyIn771rrUiRJUgG1OyKXUmoGRueHVNWJHp6/gr/NeZH3HDmZBi8ALEmStkM158g9A9wdEdcDa1pnppS+1VVF9QWX3jWbwY31nH7ohFqXIkmSCqqaILcgv9UBQ7u2nL5h4Yp1/P6hhbz7iMkMG1DdBYAlSZLaquabHb4AEBFDs7tpdZdX1ctdcc+ztKTEe4+aXOtSJElSgVXzzQ77R8TfgUeAWRExIyKmdn1pvdOaDU38/G/PcuL+Y5kw0gsAS5Kk7VfNWfYXA/+eUpqUUpoEfAz4cdeW1XtdO2M+K9c3cY4XAJYkSTuomiA3OKX0l9Y7KaXbgMFdVlEv1tySuOzuORw8cQQHT/QCwJIkacdUE+RmR8TnImJyfvssMKerC+uNbn30eZ5dupZzj96j1qVIkqReoJogdzYwGvh1fhsFvLcri+qtLr1rNuN3Gsjr9htT61IkSVIvUM2nVpeRfb+qdsCD85Zz/zPL+Nwp+3kBYEmS1Cmq+dTqrRExouT+ThFxc5dW1QtdetcchvZv4O3Txte6FEmS1EtUMzQ0KqW0vPVOPkK3S5dV1As9t3wdNz68kDMOncBQLwAsSZI6STVBriUiJrbeiYhJQOq6knqfK+55BoCzjpxc0zokSVLvUs1XdH0GuCsibs/vvxo4r+tK6l1Wb2jiF3+by4n778r4nbwAsCRJ6jzVfNjhpog4GDgcCOCjKaUlXV5ZL3H1/fNYtaHJS45IkqROV82HHY4C1qWUfg8MBz6dH15VB1ovADxt0k4cNGFErcuRJEm9TDXnyP0AWBsRBwKfAJ4FftqlVfUSt8xaxPxl6xyNkyRJXaKaINeUUkrAqcD3UkrfBYZ2bVm9wyV3zWHiyEEc7wWAJUlSF6gmyK2KiAuAM4EbIqIe8BoaHXhg7jJmPLuMs4+aTH1d1LocSZLUC1UT5E4HNgDnpJQWAeOAb3RpVb3ApXfOYeiABk6bNqHWpUiSpF6qmk+tLgK+VXJ/Lp4j1655L67lD48s5H2v3oPB/au5woskSdK280s/u8Dl9zxDXQTv8QLAkiSpCxnkOtnK9Zv45f3zOPmAsYwdPrDW5UiSpF6sYpCLiI9HhCd4baOr75/H6g1NnPOq3WtdiiRJ6uXaG5EbB9wTEXdExAciYlRn7TQiRkbErRHxZP5zpwrtnomIhyPiwYiY3ln77ypNzS385O5nOHT3kRwwfkSty5EkSb1cxSCXUvooMBH4HHAA8FBE/CEi3h0RO3oduU8Bf0opTQH+lN+v5NiU0kEppWk7uM8ud9OsRTy3fB3nOhonSZK6QbvnyKXM7SmlDwATgO8AHwWe38H9ngpckU9fAbxpB7dXcyklfnznHCbvPIjj9vUCwJIkqetV9WGHiHg58EXg+8BG4NM7uN8xKaWFAPnPXSq0S8AtETEjIs7roMbzImJ6RExfvHjxDpa37R6Yu4yZ85Zz9qt29wLAkiSpW1S8yFlETAHeAZwBNANXAa9LKc2uZsMR8Udg1zKLPrMN9R2VUloQEbsAt0bE4ymlO8o1TCldDFwMMG3atLQN++gUl9w5h+ED+/G2Q8Z3964lSVIf1d7Vam8GfgGcnlJ6eFs3nFJ6baVlEfF8RIxNKS2MiLHACxW2sSD/+UJEXAccCpQNcrU0d+labp61iPP/aU8GNXoBYEmS1D3aO7R6AvCHtiEuIo6OiD13cL/XA2fl02cBv23bICIGt36oIiIGA68DHtnB/XaJy+6eQ31dcJYXAJYkSd2ovSD3bWBlmfnryD70sCO+ChwfEU8Cx+f3iYjdIuLGvM0Y4K6ImAncB9yQUrppB/fb6Vas28TV0+fxhgN2Y8ywAbUuR5Ik9SHtHQecnFJ6qO3MlNL0iJi8IztNKS0FjiszfwFwUj49GzhwR/bTHa66by5rNzZztpcckSRJ3ay9Ebn2hpf87ilgU3MLl9/zDEfssTP7jxte63IkSVIf016Quz8i3td2ZkScA8zoupKK48aHF7JwxXrOPdrROEmS1P3aO7T6EeC6iHgXm4PbNKAReHMX19XjpZS49K457DFqMMfuXekyeJIkSV2nYpBLKT0PHBkRxwL757NvSCn9uVsq6+FWbWjisYWr+K837U+dFwCWJEk10OFFz1JKfwH+0g21FMqiFesZMagfbz3YCwBLkqTaqOorurSl9ZuaWbZ2E2ceNomBjfW1LkeSJPVRBrntsGjlegJ49xGTal2KJEnqwwxy2yilxJoNzew8pJFdvACwJEmqIb8YdBtFBPuNHUpLqnUlkiSprzPIbYeIoN4PqkqSpBrz0KokSVJBGeQkSZIKyiAnSZJUUAY5SZKkgjLISZIkFZRBTpIkqaAMcpIkSQVlkJMkSSoog5wkSVJBGeQkSZIKyiAnSZJUUAY5SZKkgjLISZIkFZRBTpIkqaAMcpIkSQVlkJMkSSoog5wkSVJBGeQkSZIKyiAnSZJUUAY5SZKkgjLISZIkFZRBTpIkqaAMcpIkSQVlkJMkSSoog5wkSVJBGeQkSZIKyiAnSZJUUAY5SZKkgjLISZIkFZRBTpIkqaAMcpIkSQVlkJMkSSoog5wkSVJBGeQkSZIKyiAnSZJUUDUJchFxWkTMioiWiJjWTrvXR8Q/IuKpiPhUd9YoSZLU09VqRO4R4C3AHZUaREQ98H3gRGA/4B0RsV/3lCdJktTzNdRipymlxwAior1mhwJPpZRm522vAk4FHu3yAiVJkgqgJ58jNw6YV3J/fj5PkiRJdOGIXET8Edi1zKLPpJR+W80mysxL7ezvPOA8gIkTJ1ZVoyRJUpF1WZBLKb12BzcxH5hQcn88sKCd/V0MXAwwbdq0ioFPkiSpt+jJh1bvB6ZExO4R0QicAVxf45okSZJ6jFpdfuTNETEfOAK4ISJuzufvFhE3AqSUmoAPATcDjwFXp5Rm1aJeSZKknqhWn1q9DriuzPwFwEkl928EbuzG0iRJkgqjJx9alSRJUjsMcpIkSQVlkJMkSSoog5wkSVJBGeQkSZIKyiAnSZJUUAY5SZKkgjLISZIkFZRBTpIkqaAMcpIkSQVlkJMkSSoog5wkSVJBGeQkSZIKyiAnSZJUUAY5SZKkgjLISZIkFZRBTpIkqaAMcpIkSQVlkJMkSSoog5wkSVJBGeQkSZIKyiAnSZJUUAY5SZKkgjLISZIkFZRBTpIkqaAMcpIkSQVlkJMkSSoog5wkSVJBGeQkSZIKyiAnSZJUUAY5SZKkgjLISZIkFZRBTpIkqaAMcpIkSQVlkJMkSSoog5wkSVJBGeQkSZIKyiAnSZJUUAY5SZKkgjLISZIkFZRBTpIkqaAMcpIkSQVlkJMkSSoog5wkSVJBGeQkSZIKyiAnSZJUUDUJchFxWkTMioiWiJjWTrtnIuLhiHgwIqZ3Z42SJEk9XUON9vsI8BbgR1W0PTaltKSL69kmv3z/EbUuQZIkqTZBLqX0GEBE1GL3kiRJvUJPP0cuAbdExIyIOK/WxUiSJPUkXTYiFxF/BHYts+gzKaXfVrmZo1JKCyJiF+DWiHg8pXRHhf2dB5wHMHHixO2qWZIkqUi6LMillF7bCdtYkP98ISKuAw4Fyga5lNLFwMUA06ZNSzu6b0mSpJ6uxx5ajYjBETG0dRp4HdmHJCRJkkTtLj/y5oiYDxwB3BARN+fzd4uIG/NmY4C7ImImcB9wQ0rpplrUK0mS1BPV6lOr1wHXlZm/ADgpn54NHNjNpUmSJBVGjz20KkmSpPYZ5CRJkgrKICdJklRQBjlJkqSCMshJkiQVVKTU+66dGxGLgWdrXUcPMApYUusiegH7ccfZh53Dfuwc9mPnsB87xyhgcEpp9Pas3CuDnDIRMT2lNK3WdRSd/bjj7MPOYT92Dvuxc9iPnWNH+9FDq5IkSQVlkJMkSSoog1zvdnGtC+gl7McdZx92Dvuxc9iPncN+7Bw71I+eIydJklRQjshJkiQVlEGuF4mI+oj4e0T8Pr8/MiJujYgn85871brGni4iRkTEtRHxeEQ8FhFH2I/bLiI+GhGzIuKRiPhFRAywHzsWEZdFxAsR8UjJvIr9FhEXRMRTEfGPiDihNlX3PBX68Rv57/VDEXFdRIwoWWY/llGuH0uWfTwiUkSMKplnP7ZRqQ8j4l/zfpoVEV8vmb/NfWiQ613+DXis5P6ngD+llKYAf8rvq33fBW5KKe0DHEjWn/bjNoiIccCHgWkppf2BeuAM7MdqXA68vs28sv0WEfuR9evUfJ2LIqK++0rt0S5n6368Fdg/pXQA8ARwAdiPHbicrfuRiJgAHA/MLZlnP5Z3OW36MCKOBU4FDkgpTQW+mc/frj40yPUSETEeOBm4pGT2qcAV+fQVwJu6uaxCiYhhwKuBSwFSShtTSsuxH7dHAzAwIhqAQcAC7McOpZTuAF5sM7tSv50KXJVS2pBSmgM8BRzaHXX2dOX6MaV0S0qpKb/7V2B8Pm0/VlDh9QjwbeCTQOlJ9vZjGRX68APAV1NKG/I2L+Tzt6sPDXK9x3fIfrFaSuaNSSktBMh/7lKDuopkD2Ax8JP8EPUlETEY+3GbpJSeI/sLcy6wEFiRUroF+3F7Veq3ccC8knbz83nq2NnAH/Jp+3EbRMQbgedSSjPbLLIfq7cXcHRE/C0ibo+IV+bzt6sPDXK9QEScAryQUppR61oKrgE4GPhBSukVwBo8/LfN8nO4TgV2B3YDBkfEmbWtqleKMvO8DEEHIuIzQBPws9ZZZZrZj2VExCDgM8B/lltcZp79WF4DsBNwOPAJ4OqICLazDw1yvcNRwBsj4hngKuA1EXEl8HxEjAXIf75QeRMi++tnfkrpb/n9a8mCnf24bV4LzEkpLU4pbQJ+DRyJ/bi9KvXbfGBCSbvxZIewVUFEnAWcArwrbb72lv1YvT3J/kCbmb/fjAceiIhdsR+3xXzg1ylzH9mRtFFsZx8a5HqBlNIFKaXxKaXJZCdK/jmldCZwPXBW3uws4Lc1KrEQUkqLgHkRsXc+6zjgUezHbTUXODwiBuV/ZR5H9qER+3H7VOq364EzIqJ/ROwOTAHuq0F9hRARrwf+A3hjSmltySL7sUoppYdTSruklCbn7zfzgYPz/zvtx+r9BngNQETsBTQCS9jOPmzoujrVA3yVbMj2HLI319NqXE8R/Cvws4hoBGYD7yX7g8d+rFJK6W8RcS3wANkhrL+TXbl8CPZjuyLiF8AxwKiImA98ngq/xymlWRFxNdkfG03AB1NKzTUpvIep0I8XAP2BW7O/L/hrSul8+7Gycv2YUrq0XFv7sbwKr8XLgMvyS5JsBM7KR4i3qw/9ZgdJkqSC8tCqJElSQRnkJEmSCsogJ0mSVFAGOUmSpIIyyEmSJBWUQU5SjxARO0fEg/ltUUQ8V3K/sYN1p0XE96rYxz2dV3H1IuLT29j+ixHx2q6qR1Lv4eVHJPU4EXEhsDql9M2SeQ0lX3peKBGxOqU0pNZ1SOp9HJGT1GNFxOUR8a2I+AvwtYg4NCLuiYi/5z/3ztsdExG/z6cvjIjLIuK2iJgdER8u2d7qkva3RcS1EfF4RPws/xYKIuKkfN5dEfG91u22qWtqRNyXjxY+FBFT8vlnlsz/UUTUR8RXgYH5vJ+12U59/hgfiYiHI+KjJY/7bflIY+uo5MMRkfLle0bETRExIyLujIh9uqL/JfV8frODpJ5uL+C1KaXmiBgGvDql1JQfevwy8NYy6+wDHAsMBf4RET/Iv/e11CuAqWTfZXg3cFRETAd+lO9jTn5V9nLOB76bUmr9FpD6iNgXOB04KqW0KSIuIvtOz09FxIdSSgeV2c5BwLiU0v4AETGidGFKaXrehoj4BnBTvuhi4PyU0pMRcRhwEflX/kjqWwxyknq6a0q+pmY4cEU+ApaAfhXWuSGltAHYEBEvAGPIvhey1H0ppfkAEfEgMBlYDcxOKc3J2/wCOK/M9u8FPhMR48m+/PrJiDgOOAS4Px/cG8jmL7ivZDawR0T8D3ADcEu5RhHxduBg4HURMQQ4Ergm3w9kXz0lqQ8yyEnq6daUTH8J+EtK6c0RMRm4rcI6G0qmmyn/f125NlGm3VZSSj+PiL8BJwM3R8S5+bpXpJQuqGYb+XaWRcSBwAnAB4G3A2eXtomIqcAXyEYJmyOiDlheYYRPUh/jOXKSimQ48Fw+/Z4u2P7jZCNkk/P7p5drFBF7kI3cfQ+4HjgA+BPwtojYJW8zMiIm5atsioitRg8jYhRQl1L6FfA5slG30uXDgauAd6eUFgOklFYCcyLitLxN5GFQUh9kkJNUJF8HvhIRdwP1nb3xlNI64F+AmyLiLuB5YEWZpqcDj+SHZPcBfppSehT4LHBLRDwE3AqMzdtfDDzU9sMOwDjgtnw7lwNtR/PeBEwCftz6oYd8/ruAcyJiJjALOHV7Hq+k4vPyI5JUIiKGpJRW559i/T7wZErp27WuS5LKcUROkrb0vnzkaxbZodwf1bYcSarMETlJkqSCckROkiSpoAxykiRJBWWQkyRJKiiDnCRJUkEZ5CRJkgrKICdJklRQ/x/KmasW2Fv7FgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -3492,10 +3847,10 @@ "#and the current datetime (`datetime.datetime.now()`) to the `build_datetime` attribute\n", "#Let's call this model version '1.0'\n", "best_model = rf_grid_cv.best_estimator_\n", - "best_model.version = ___\n", + "best_model.version = pd.__version__\n", "best_model.pandas_version = ___\n", - "best_model.numpy_version = ___\n", - "best_model.sklearn_version = ___\n", + "best_model.numpy_version = np.__version__\n", + "best_model.sklearn_version = sklearn_version\n", "best_model.X_columns = [col for col in X_train.columns]\n", "best_model.build_datetime = ___" ] @@ -3536,7 +3891,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -3550,7 +3905,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.9" + "version": "3.9.12" }, "toc": { "base_numbering": 1, diff --git a/models/ski_resort_pricing_model.pkl b/models/ski_resort_pricing_model.pkl new file mode 100644 index 0000000000000000000000000000000000000000..e6abd88d5c5abd1746c71221d2148d4148113109 GIT binary patch literal 5145293 zcmdSC3!F{W`#-+j$F+&U(8Ng-lcaIK+Y4h1!x%H;7MdAjIPSxYTTus}L`@nR5@C`` zq()bw&QU@kqaqb`N}&>`q)?ywKYOqD+Gm}0>i<2z-9(@L^75Xw&$IS=)>_Yc*0V0p zTCVcTM$|5&8BczA?)VAWnNue<&l#JOJz?ym?85x8Wbx<2g*VSFoKqN+Um-UyJ14hr z1pQe(ckINR3EA}Dw7l%8h4~TU1N=?%^pTml^pWbRCRuNgSzoF#acpkx*hyp3r)N%> zmYrMJ>z<1yBU*m-%u%D#$4(kGHY+o4^3=jb`C++vQ#13j$IL3suQ)M#)Y!~Ph51!R zkDV}q$1P0CuQWY->d48IT%wj=K5KH$tipx)*N)E4%$qhfJAG2-#Oz%9V0vMG?Mc%n z=FDoIHF;`w^NG_Y``W9;eCZEg)xa`5*_yzIwSKdjLMsplWjyP+rNF`qJ{j|a`|Ou7bYbo_4$Jy^S?wr zuW;ldqui?IPMbJ!Y+icygzV{5Jj8h(<#a;&sHu~43iB%)rH0=sP_`%L(!0@_xp}E$ zXHqHgzXwdq97TVZpF&7wk~eiMRRsMpYVx#^#vhe(r%fH5nMHq9%bT1>-_CMoj-6`6 zNSQW?pjuis<$LU;nsgowp zaP-R@Z&aD_B79Wltla)N*^~Mbb3;jTh__h;=DWiDYceTgnPakzXrnVHOrWpkOr1O~ zJ1Z}HR2*W`SCht$apqBS;;YwA&CZ=XH7_?kCwppoZXVToVSXL?U5nV*@mZNUWAic# z^XsZV}jRI)Ie@V~f8A;Eanw?2p^Dm~8FpZsDm>&fqBO~dPDJOwHH^k2*+(ucY z=TKq&ImIL+6GmD_E=;CH5_RR`PoGMKFMg>X@QdIRoJANFZdP(YoVxzkff2Gvw(@IC zN{7UAVNZ1ASFu`AIyI8225Vz;N!oJL3!QbH^$m%3M#=JgLw?!O0aDyqkz&n|;_e#P z8Jbr3IOC0W5y#|0g!$XQ{@({_v6UYIeLcU_W}65 zIZHjfEN{~8gZll`Zmjdu$+oQNS$E}4(>Lll!-w5+c;pNEVU(p|jRPXK$+KYe;l64P~60o|{c_TpQNWbM*FcSMKDM{fH@UHWRcbilyW^bPD8~?yB1#F`$ee27UpJu1tf4t)MR@?Lw z%lhw{(0sGL_Zj1dQ~JCHH{bAd*|Yl4|IVeqe$nS2e>A_&^S|j24DNdEi`&XG^YzmW z*m5J<>Yl7iO82A+zm;W^E{A(Mr(e+D*mAjCm-pwe9X~Ewap0y5me7a3{P{4py;Z$i z@0it>ndvMW#V*C|Kl%O*BUsjjN_Vc`mB!xx(qJT(y|-+?w`|feeSW_MH~kUUlP#%~ zaXER;R{h>1b)UUA`gOhggeN;Cx81JaIDP8Yu!lW*O1sO`KVDa&f3m&G>gR6XqL&%< zYL^c-Ezs}Ib)J3t{^7bQ0p+J>PW?a1Y17aBe6RmDrrV649z3+nbyK&4`<{7YV3o{n zUG#@)>rd{|yR014D{pMEp1gSV`N~5ovQ_1NI{04RZ~B*eQ@=Rdu?$=MM3tZRMbu#L z-V!zEt43AXk~H6`W_Pw>8&c1=y436ucB1u^4R0lCY}Kz@s;qtQygsM(rWW_!bwjs_ zZ}c3#c)~vR+`i6JYrd4v=B+v1`}eIm?77Te*Vc?Y$f9OX-@r2NV}~2HzT-mCi>zhr zb@_L^HIQ}O_fEo=m*3Yb{PFY7%CA4pPFFY+aXx9W{@W)hFTK}&nVwXB$%|DtE!B_w z5bixbVy*5O`fl};Pp;FGKA7BYmE$fwzQycqufEz<|E9)>+CTRHv8!25rZ{H*A0>5T z!y$bieQ6WBeb^8A%{txBX1qK7hs#5sX1fwMFR%F0$9nr`>px4<`wQJ?4?_(#|bQ-*6?Fd#jBIC;?NnI)2_32r|V%f5{ z7dLJFKsx(<@s~5!5ADQ;<<)uWt*rxC#UT}IhCkDY)p@4psNVg)(B0G8mv8w&FIHjW zk3TPrcI(MukDXpSOb^;1lVat?M5F_lN{siZq5PaI9Q3fU#uV+g2gEXs44IleDxLaCgTJucoC#y|=vOi~MiT2}7fj5YnLa8zC(lW} z(6tk(FSWFlL0XttHa}c`OB!`_VPcv5NaN*=G%1O_h zkmJns6Y*NguQn;2a>z?Fx3J$`W%9$VuwgJ5=39(&v2&^OVP~OpnRB`G5$B`M70y*g zsf?UFInS_cb4aOIo;-PEdahxYlD%7TQu?^bBZ+tCip1NTHOZ!}G9z>9L?Z`N^9mO^ zS5jYYWD})Gbc>x2IhQ6mA5JXmq=IuUvohmco?kw5THfSB=OanZNByr?`TsOJkSdeX zCr`^GL!K-HD)?&x<%C*oetuOeV?;xCtn&drBrwx1a4z|)^quRCq*wI0udw>{G6yS@ zoPkU@pQMzl%hgG|IP%E|&L+K)Uo%itjkhFVhI~>Nm*@z#XUdRqGiFhbFw0hKOmdml$hWzeL!EjA-~+9Hf{X|zVoJ}nEWaevPb8U zaXoednc-EZnu3Z@CCDVzbDoo$u5+?M6DH)2I{Qhcgj$uDUzbZdH6-PiJd@!!L+Qp7 zwFQOFx10wO!w7c~h7-Q+Oi7F++)d~p+(YkU2=`Jrc0u8^#P&3r2{#S9nC6;g+quxj zs*1LzX?MFByEg94mSv@7H%b4rbN;@9D3OtUSWk0BiYw_pG_;m|MH&tJdj>J($El zQM6?hKvxYYeb*6N{RekZgL}UlFr*u+=>H!56>Wtpvi;%{?dw?O$H~H&F?5ul-x0uPJV2|y5Vjf5r&qxTM0wQ^ z320iusO4X}dGNF@>Y0bbZKh{8e?DE*m*7vT_YY4@zvR}w`gfFPILhx@pv331J05(` z?b=9B)7vb0e?lJ#eL=4ab{#$oKFccY&#qi+w)0mXd`<=m zIj7)|8NFZAwF$fOZXTD(y5e^eJVV)a2=@VsdZA!J{n$6%u3FbuiH#o0TH|*UT!Wa< zU&0a)dYgU^kNoYluKiT9`Tj8j*!2PNdRt)!-b-?wv-<1}K$Fg`qv09yyFwM_GZ{Lz`6*8ZJdda7^MLO+(qF*!8+u{4nt+{Caa>{tD}{&~0Nxm+@&;k!zEu-pDZFPFf22wkq# zdPqRNdIP2YHsj>GBrm&-dT*xmx1qNOH9foiZ6f%)11NpB;Jb-mxxIyb-zn^yY}w%^ znX3ou3;I-`G=3;}Z2MWa=g#S2$7c3mVw}#&+OmG2PXbDMnfJHm_^+X2XW4BJKD|HE zNeNExVs_gfb*;5w*PU17EP^G2egIIilN~$DlYTLul2RH^hc2H|{TLkBZhvV!1KKd4 z)F02hXZZ=Pwpe?m-;8AgK|cs6*=Hq77JP_uiB`tNcE_nceK69w9Vpr5IRo>5(6xkj zJs)hYtjJ3vHU#uTfs!5K`tsd}-I~K#82l=z-tD%dP~!#a7rXs*I2(?9jQ~pHO>-WM zzjj#jb3AOf9fi(kVE#0g4*o_1rSa&B7xo=;yRyH}`)z(tWuC7E%K&{QQ0kAu7B6~R z*H)h#f8k6=YhI6&HMZFvG&U0HWCJC=^qYI|N4hrESYf_Vk?Te*3-qIalAg#}mGC{< z!`@QrH$!jl<-iXIyY=qV$KX4YfRg?h^yWQJxwXO*G+|dyDVIp*1pRoRG+y!Ez3+Xu zcKS|QnlGcY+Xyxm^y7eH{*{6SBW^va3p+Vb&g}M^_Qzurz~4lmRPQDGZd=For>6D~ zq1T^O&Xj^(KJCZLLB6H{W&67FW2f91Ltjs9&^JRF$2GOt{(SmWq%#dDjmKgq#&2_L z#{Q0X`Z1}$A<7t*3;H~u)NW0C!eed>>0U~9mfiBy*mUqW2PnyP>%l+L1{qVo+@_3I z8nGFmzY{3gS-zhJ(0F>nv)4R$L2Z9g*80vY#FNJF;SK7X`q#+kUEpsvP_mQR(ET*- za2Vswv!&Eehu;2F{c<<>y9X$b;}Xhz0X^?i?7`5}E3NiE7yOj~rS{^gcTXkeqWQBA zr_N_$o{W@Y(D500Ht=DGi$*KcaeVJ zx%;0R&BVMTkJp#|2lV#>CH)ewIUH60TGB(0pN>%iWgFOJk#Xw2Fcn*2CyR`;};#JqVB3VA@9|TJB;#&66 zTclqM`+CtAJ8@ZvEBy3$+KM9qm-wgMGW)UcK9&&su|gy$Y1(bxKCZeWSbT zOxRgx$3SIWrYl?E-dqO|%I`~CZR@V6N#*@M~-moa`|trdM8&7K7P2B4&`Gww?JN!N17 z;C(DuUq1!1tgr)IztB9GI=}Q9=(htUc`Ar~ z>LkkL>dU7+y`-@>kguJ<8bAVX>tD!T@)~x?@46(n^iw25!_+*WZwMqvp56IZl#9C0 zD)e?+I_<%yzX`tH0!s6B3sSqji)^U%XID?yok#KMZ-c*gfqp&cIzHEPLf3w!WyAV| zmHEghwj1>C0HtwUNz=7enE84IQ{+0F?E(GX;CMx;Gk!z;m6knWw_NPk!#?C|KTvA7 zz8L*yUE5{!o29i*X+MAOfxm-5sr|*Ydj2_H51tgIUkSY(N%^J}LgzD34~DTr;O~8) z)INQEi~itzx`rrr)|KzaxLXgrcmHJ5JZ&nc-S$p$7F$tK(|*0aN0Zq*l99;a} zB(P3fYIWL@+MT_2dffxfFZW;v_R~`>p3#;W`WMGG8Jm1Ic4uZG&}y-XS~rfKo(RVS zd$NJXbGSFcKvyCUv+j7`m5nx@lOoLc`y%oEI35=1xmqG#YhVkurzEe^ubcZYbCG#* zZ}wn5J=J>g-)F{iJ_dFMeFtDyHmtY;{R5rgi)Ozx<8k%l$dWl~pwmSD5;)(}<5|q} zkMCH}67OBzIX&%~(u{}r?zCZk#|`uSzrR_j;cVYd5fRCtE(c9Tx%5Z+15n?6 z**7FUuWjhV!?gv!eL#ow*kABLvt?#}w7#JC$1^AWf9QjJLyla64q;8u2iN0MPa02u zHX`p(&$`D&{rdSf)6Kwp4JhP*%F&ePX#$Z&;@j);5|?i;bdksvs#@% z=NZDkvoaawC-NoALF8iqugC8Z&nv#0%F`h&X|~sV{4V(MAgrOjggm?Y^L#WJ$R<3W zel|KHjU9NTT(eJS<9nhWDBqg-^kUC-b__lBZ7RF851|LdO?5xKu(tddJn#<;k{!J@-qnE12Tc2^D6vlX(*rM!156CW7Qw(Uz8uo zqgj6M4&>Mrd=)AA7JM?$jT_AQiv=>E2K0*X5KiYA%$7#?rhj-JK9s*_{@*p@p_l)4^%I26c8t=21(ThzR$=&(>UtQW3?5TG9|LM}^+(gc4 z&pMyCxh?Sn=WBn`xspfP&PCm2cdbG*r zQ=p0~54wK9Yy9zCZ>IgGdruvT9JnxpHTS=#zfvtTyb9h+(@qXoo6~N#>{9E9Q9}Zk zqo`q%&0#*3gX3wpXPtIChCf6LS?#U-aIy$%x-1OwBtErsF~VKs>JQKD4MW4MWuIu| zPnzZ`Y2M)-xA#!qJHtn%THE1GGEx-PKwljw4e!E}mwn-O#lM<-?LBc!k|UzjZB7IE z^cqN~7Er4960n_ip}^#q*dX$Y(YB$%1JhU)K&5qC`NdZQ(e{O5MoHc?UEW&QEkljUgJtFc?*@p@MK=07*H z&8LuKQQvj_>Ba5{JLT4f(>9fAVU`}^Kil1=qFHWHvRop`ga(_*Eh1q@!wv^dDcim5 zZ%Y%)l?{-H)IVsg&(790_R(*}3EPzAsL+?cr23&09JcGh0sd|P3VmaIw8_KN{)Vrw z*7!=y=!+`O|$Hv+rX#P&z0;u@(sB+@a3pLd9gbU z6ncLYST367uGJZQO8v_AW1Ba_t+S=F%-Wo_1bw^Ucv~-3IPccB)u}wLsl&3zI9XHH z3iPdkqMxUrYeA(S-CDTOZog6Vnf-R#2I;f~3VYHB{@VH(_n&W5x$<^Fd+^r@DEfH{ zx~krI5!2eWEIXW&MX?T`?+BFItvC1E52%0O+YSQd%zk->YPSZ;nf>zYf_!xa3j39U zC1tizzhXXD-))s~Mzn4~slO`P7A@RsRX26J`X%)CF7ZK}`Sc#(F99gVSrm*tR`#&l zW0+?uY;* z9maYiUwwdL+(W^lV>L-Wi;V&;6V#7|nqFZ2Y1Z*8eUYA2p59)M8vP&Nb|=Q`oXmdv z3zg46{bINNg59;G{1@Mm_MO|4wqmB1ND;K z{?>lGO$C2LfWp3~VED1558R&KM`ySj^<d8t4ZC#rTYZ-p!Nfm;u9F`mRYS z$(c_V^G1V_o*2hd5N<8JUkQ}6f4*M{l(Psn6#R__UI!!yTUmjYXCI<*ajhTmy^TUnrd+HXg9fWJ(jG_R9W z;nJIKEz+nzRWC)dbkJu2C5T<#(bzs`_$gfdZB!${SQb#SdtBF!Jf>?I#uCieiXCaU zz5Dc0NGBU8*~!T*HvZN2EBksPRJ|+7EpcYwE^s1WbAi%#3pRZEw9Y2Rt~<5%4knGW z$ufC=v%6w}Wn+p0|pfs-f4_otJUVlN`5$*D6 zU#{)8qv^=kETA->#qN8p#O)eN-EEI{LH+Fv(9Z-)da2~?Gaq5xe@2;~u&bBsm*<_} zZw^pux5XK6(e`TdIjQK+aCR5yX9LB$4h7j$QG5Q!>s@2_AYU$^B-b(B&r|Yds7;CH?8zy6#8aL(b9Rd(#yC+17H`T8Mbkyp;2+?+&@m;lqS(id$!E z%U$a}#FOOO`}Ip=eEYdF-|ArZf_?!|%wtoqq*3nYke9tmd$6kq?Y5)P>p|`}jCsXH z$X7m4S|^dV@vCm?G3ZR8 zje^Ggi$V7gP+FHs?%jaK#V*5b{5M6v*za!(kj@gIY`-|?eqG9P7P`Dhd=O{90h#9N|ZS()jP<>l%LB9ql z<>Pegg~ILl>g&%U@b?5zn!kwscs3pPP)y5zE3Z-PrA9&ST9ST=X%+V)+O29Q+tm|x z+g})4k9<7|3E6QCw@~^3Pd*dpNy@-6h1eEMn zuesj1rEBXWPj^@BPy72rUPd~v0Ok4C@YA#&{_&#KM;EnH<_GQW5Ao@*BAwTOwSfd% zYp6*FFbx;}SgnlexpgkY@ zI43Y(7<&`^y$zJ?4bvTzeb*yv&IV_YUH%s6cLAmGO0;ndjmwzs$)dYd@H+?l{g_=n zu^Z{{0ZR5~aqEWPaQ&%Wr|=nic}n$4DcH~7JK(PbDCui$`K&6e$hd~;QiVdtOq10s($%6uZMzRSG_!qjqc8m|70t9pr2OT^-CIFNK0mW zI?s7&<$n@cnr~{AJ8JZ16HLb=^2?x2uo2CBaet0hotc?iS6hx+YhVW;W8JU+u-o+? z_F^C1K7RAdM|$%2o@5?BSNLsphkrs3#Eau7{IF@ z;&kKud~iP(gekvfH1eA*jYn{W%K19j!nA?pJ-` z4uPbR~!Fq!+!HCECkei(?57s(8_s`GyEsU`F$EQ-4BoVR{XzuvH9nX3K_^c z8_y1W$1{k3FBbVEeR%;l=~5dJ&4vzYO`f(~KNV0Q3)=Y!|T zug%m;H3uS|NI#Xw6ZtDa`WfKM1r+%u{><;Zfbz5C2j9_zT!^rs6ZIp)_+8WkO)r`J z6CbAkl)4xc%RNO8DZB@9%i?5q;_w%(`9$? zFu4_J#^V8fcs380lAl(uZ8K*5qkdXd$xrLxpZRGW{7d z(G#9N*0tK3F6)>_^JmFVs~zZT_~UuLf5z+1XGKYW{e9|Gp9S z)Ku&syY_bI_FC!K>0#FRz7Fyg;m=>}6YEa9T`yHQKj!mD$67$1SJ$TFQ_0hcaU3&4&WT+$mCb+s=>sex+Nwi1$ zo$JBaec^jvJEp8x+a0&sop%Uh4Z(MFpy($km~bKGEw|^H9`inWgjw>>$#mub{f$6r zU7=Zxl{?*@{*9l@o7_^_uhqu7R;v->3B5)^@9}k5hstPfyB(F*d{Z>|YXX$k^?bD# z(th(FeDp+GdYzNCu>7_n3^A^E&N$m`=gsd-xMg?Jq5iVUt5duc};cyM(FdJf%7VM+k;PU2L8z8G9RgZ z7X99U_L;c;%x}tWdUop}oZSZgS^}kd$m=%z1G*N}*uSA(7ZA;2LEi!>>D~RW#T|v5 zmDX`mq32K1kHnczZw3C^0_A#`eBlkZ*50rq)%Fk-bgfnu#3zWI_YtjQnEju+f7ovQ z{qyZlEtmGl&lsSv3n^H<>xsAA%rIYmP|ra~vHY}zoiE8t!J1#+b+h-rpM8Iu!HWIa zi*-agi9pHz%t-zEtnT^vhMcTzeHDG(mURL>14??(b>jTzZkI7JQ(wJyqm^~7mX3Im ze4hF4EM3=OYnlVpLu+LGi4kQV_mD&JGfk;=6&*}TYIU8cX!KhWuCt=>jC-%pp=iT;YD=4 zr}4Pd>odYFKdqjKC-v{i&3>nTI>Q*cm)^ekc%;({DC{N*rgdu~uD`tc`xNZed+7G3 zR6msU(ECkQzw|{p_5(_Go%X=+?P!(`WgH%Qdr;G}S1uas5B}}|O8IB==s0M{#WzQ7 z^bSz`v^ub4&<_Smc9u5x*hg-Uagf~pB*i{!&IW)!1t^WD!xy%vafk7+PS!jICv$|n z4lMC+ekqlIKpONS;qCDQWK8ish%yhvDj zEX{}DI?6!%^M9pZ30=Ra?KU0dF$yRF%j`(k$(Rd$&6R#7nq`163n-Q6f9j1tg?^>7 zBG=(86Z9j25>$R)kY=v4Kb+DiRJ1o>&n?RL=+y8Z;? z=|DNNYfpqO*AgF85_a{V|5~jXC{Ho(Ny-SO>`{2qwAD;Tko{yJ54e=aCsr!RT!1J?tz&X%9n!-yx=M=6-I>@r=OvUN+fKKG7L z^mSwFTCD=aljc!aQH2k5mw94pC&fOC3c6NHtXI-!HY5+&=QiD@+Q*ifyetNP4*{kA zC@ktA<{AD4e!NS--%_Ah*P-Ci7QcTCxmNv@LmyWK>UsO^uMqq_0+jlrn0g-geHV38 z#yR1ZpVo53lh#*CK2JR6=C9RphC{Y1^(6mC2*ct zGSBT=HYCdXgz9I|!t&EvjR;abgzq`{I?gAnsztkd z-Fl!r59TqhV|M*J&LOdD7d(x8Z2(Go;_@$GbWin|T7x@gDC-?<*k;hb1eE5NO#ezY_vvBh z=cg$Bbju(=EvZ~CK6am&zwV>7hhRS~$)3>G8{;waiB;xlue`o~0p;-`P?8JR*RwI- zqg{PIUj~1#0j2&uQd{(su3cw1v~*DHrDp6E(7y_l<|iBtUOLRL4{m>hQh#>+k-~!f zw50j#;_UbmUGo?R;hj_V3532L5ZFK1wL`+$c9h2spd_Cw>NVWQzfz~4@w^xg1D>2%#+2V;CRKCfqJwQ|Qcjeok-TvV%=wW^xaDT9>aEl{vDt+KjEz&aang6{zxBZD(xtmy$$-^K&k!pZCvXhFYdl- zJ=m9*JxFISP_nb~?&({O;kBYa?Y0NI@~K&VTKm9|)UWvW#kv|R@@c=H-j8$+0Hyg5 zHfyLjH|p0?>Zh-KdH$6j(?P!<(@Yv;-)vm(5SGkZ4sMux;qgA~h1KVt-u-D$zTf@R z4$Lea)`lY;du@g-|0TwbzO7AoxpFVO@5_<=Qp|nphkN3EJl-Qrekt6KAPK+s<7oMD z;69p-{qcJ;us?faZT;JhPZ0MewZr??zz(d(><2cCZx_$~js|vPX9kd+y{Q|1@5XL^ zvM{9&ZAUcyj$Q#j8QuBsk{^|3Ji@<*j$bpwn#fNaGrgIw@5TLo){FcJ6#gQjToQPE zy1%ED`Sii}#CxEI??or_@*9|lctGKQM1C~Jp@LH$OJdvRtr*^|Z(n|Y()IrG;(ksj zSMpEN%m?Ky{EDa^cs(U^|Ds1w&aneP5A@)@LwPU!SUh-deK(cIcl8FM9B7+&iZSdt zg!ke;DJJOP*F%0?n(+{SCTao&T|E4_;GfhqiI?k($gk!9q2^cI$Ao&yK)o_iuR=Zr z_E6II^L3YT%ln-|PQf1&^$*lUxF5UCyudAm6@HX_M~`g-n7NDP6#Tx<{~z}aQMvXv z9QNW;I6uNa<)Z)IE3=$LeUylL6ZMq>KQP2+%6BxBd+mY9?_iFOG>*a#M@wVpQir!J z|J^`#$T$VHM;iBk*_OiM4F|OfkQ2K9%k&#-D&!pX;z2oC^@{prs3%cxLXI4eBOzZJ z_;w**F7W389r*#xG#~g)RT%{Sf#knr-ZQouepmUTJn%hl3U3d~L^?`2iFDL-y`r2@ zex5Y$kCZY9_ut{Y3*XZ~PyA@+1O7FCeew6n@Dm)w<+~Q@MH|G+eG$UscV*HGf1?t7 z-{mhCvp&APozwk^pAnBg0)BGCK?nL|@qK(x_;qPRI34*ZnemH6ykR^XJA$JI6n;yd zzjvQh*sWgYKkBDc?f>CEspV$Q1MZXZ%x`i)_m11-sWE$wbyB-fmOALZG1mFFoXmfp6!qEWBaNTU`<;?6T;Fxx#AJ3Oem8*}P0J%(0T|~0-8@gn zW%k53U3L4f68IANs_N&{yibEgZ+IrWdhfvX2I>e!e(Hi=8lNOr?!Q;h_-Vq|BaZY| z<}q4Weo9pkFWjG=>)fSZxgDO|TDj*ZHspOy()fzL?9)YlL^{%bLFT%d=Kr5+{;Iw= zQd!4tZl!+>_^U1P`Du5^(_eP^41K&F$Y<#B)cOs7DHBgl#|Q z_LNQgea|KqxK8NmW}Oq)0`Wxqr=WRXk85wW#^Z}xDf=P2SocXa3QjNfl8f%EGwhkS z8Y|~#b+-JJ8X}&k7YYtpFrM~*nI{cgYw1}|7Gdo#7vp=W++xe*@3HDndT&IvtzSZw zGqoNZoMG(-prj{?pUt9khKfq_Jb(N11EODR3_e9aK|x2{KJr&NdE0@btiGZ@+gax= z-h_Bk{dvs!|9^=eT@&yZ3zX&~3L5sLbDmewd{VtiR=>r`T3hS(w;-NWF2xJ3qxv%* z-+5hXC-fqg-E97#X-$EmJyOtBcM8s9(cV+^pu?to+U*}ASTpc<8&GO5;XT)ibE&*R z=ThAY`sP3>|E~Lu{oQ}+9}_yCYCE#m{z7l>fqLHVI-%YE!SAQk9_1;?nP>Y0wBOp8 zNjQ9)q6Z@_Kc#kvC+T_5txag1*L=<^au&|ofW9qI*oPF%d3+N2eU)ncgLEjH3>{klLPK@71_f!7-)Mp#|Tm3SR*TeEtVu)7_NMO$Ax=O~DTirInvTym% z&8_=zbc*y@BY>0`IHa8=F4vs)= zhy4<>W0iF@2O9wT6rjI9ay@r=-`mg=SHC>dz~5k?7>`qMNSiPB;+)d@LH*`H&<_Io z^QU>7zrRZRnE&4WN0R(e3ZeH$f%?;KJM!s6k+0i>^H;Qk8TB6PP1(NR_WVR({xoYo z?GB_T>D>(!sfpBKMud%3HsCx(N51W>Y*GZIg}3pvZ_5?C(w^+c%sSYZA_t-s*& z*)x!@EMR3I!OTui(77#7=5(p@Q42*rql5gEQRYAGrWa~G_|LiG>4&i~{10t9P|QzJFznmahuj&)_KZHmtobWW z*52|{8jpBV{=9ATzI4ZyBR`j3nbtfhCu?NgCp8Z7Q@Hu+OyT|GOop_pQQ8;QEVdUCjq5-4gdUSac5;ef&F@)jC68iIe3thD@z z?bpLp@HY)8$(i=>d(=<2HUv%G-yOzsL7xYd+GldzPd`TfuD-v6UHv%&`I-%s#z%uH zKJt#PJzYKT6Lyt2Pxz5mezez_ak0IAVE$_H9A*%W9$!ie-)?b-NtMI=oSIR{5J*nHjDXD z*Pb;TrW+}GH-g;<`h`Hr&MLV0GWNw$eoCucLahh2Jnh8`v;36ukv}OP#qqt#UYcnv z#8y(u#cuoa-zT*g>G{Xun&{l=Yl8W7b#5>2lPbOQFxMiTBB0bBr1|oze;(#K@b@%OvX}V% zT*mvltra^fmOTOb^+2iKOUf)H{{!>>)Y9|gc@pV71(fWN_V>&Y$X2`+yMSI z1Eq1eXYM)jKfh?4z+X?9PmZ?yl%7RAsofSovi)aW^BFs5s|K})jiBEIl&ad`A1SO85Tv(B&*Jf1$U(z<56Wb>wR|P?DF7fkSD%cC z!QTO(1RE>Ty{$va4S-b_o2v50oJG`!Qu04-d6Ho(^p9cI$!0f1%wcwX^M3U&FS^ zEaA@0-dbxDSFe`Z|xG9r%qaSg+J z576>+LOiV-k0<G zd=Zbn!|xXod?P*Lul?)a^qYKVFZd_*#&;4q()~7?@i=;M+>3OQf!6mCX5u@7A3=xs z zzX|M}+m`<}^7Uj!XP9-VG6VS>0)B*_4NC!k12}rXzqlWYwgqX%WAWdQT`)!&hrti= zVJsRxA?|Pb6Qnu7=X#Y%!o5?%KMCmx{~m@gOXca2UyYHh=7FEi+r9a{QSFg`Az!ZU z%plW9PRx6OQjkBdC@+x?%GoM6QP0SK5s=a|Kj-q7i@EE!UN2K?FV0H9?)TY;X~X=E8{Qho z47bvlV=006O%;iHM12#z`8^MiwyBxnX9scqry-vrU*RGQqs;9TNdn&f;qv8=N&v5a$BFSF+8 zKj(7idgmia&J}$UZeQH-ANSKb@n`o*o#6LLZD`?NXa5lVRTX^FIr2~b_^ZC~K$8kL zUo)S%{O_q_aawj*BHq{V|IV)K;dQt7q(@EuaVnePf3InD5mz~c>j0&BD%Y^}U%P!h zZ<==ZJ?YlIZBCYK*^AW?uQJepUt2%pF5XiT#y zYy4CR@yY-Rimz$-z1wA;Pvo%p;y;Ieo=2el6lLu{5c#U>PtS30I;}(T$0~Oov}Qcewe!x3a$4$eIu0ziXPb z&X&9)lGYIVoIH}%Lc9o|1itqx(>_ZF z9lN#ltg?=1cN}@;6EeVs9uoB}%85SXc)w{m zk9W_^7b?Bohl%p$pVvd4f0g*4s6Jh+H+BJ^5)|Ivce|S<4DVc(){g`0sjKCu)f5pV zeeK%x*(tZ{))tMv`lG8=&z!7_<)?KM;tBbtV8(|@@6dfcgTMbKKU$e@im}Q`%)d$b zFOK-)7g|@~=lu#j%Rg^dUVM5(@aF)^`G06B=22b2_f3Sl{;1Z&4M-;%DEbK_SSM_q zTN`4SF2VOyGy?sNK+&I3@Z#>r#Ccs;e}2nuxim(;ZU$Ba67cgztBlyaIH8)-|3$GT zpo;-Y^5Ux1^k?W7)o;qKyo9b_0{dIL{h!8eLB2WyrFwU@j9ss5ov#1G`=+`+*TV7} z>412mU!tJ*r+Ku`@>s)B8_vX7b^s@9&Ta*LYoJt~-nLF!XY=NdUs6<2S-)z^nuDH9 zJoC8@NKkU!7qowPl=qt>zxkB;-bU7aQn8?y>YcBfnD0w#T`%Dz@Yf0`%@=NX zeTA`K+33gKE2VzSuDpZ=`Dsc0O3tbT;ZJ>1SueA1FSSE?vqyoO^xc6{|L1z{bNIPtl-7K<{q`PeKc?#Wp2$}MP|~{# z&HM3;_msc#_?<&Ii$_?D+of?%MvFt@9>%LLXT8B^AD|eoQgCMS8nN!|Q}p1KZx4OJ z-;+RL=TXo+f0sR$^?TL0@vJ|7H^DQU^+UJ-DA}#%`Q^oL&n=U5Zj_~GIavxz0{vv5 z)NdAFzpljX*ilgLmbrHX&NI0BSm}>MJgGbvKKI{~dd9`%_yGr!mHTMBuw>8=1WJ5{ zm-(6O9;4a5*3KGVa7)TAKDQ3*q0|&U`Hbx_i_QfvRljz-{j~k| zkcE6r0!sZ=Y^#wMb&u%}F-WoJ8(Dr@V-QcwQ&7f!45)1lf~s(#5qzH))m?VZ}2?xLj-9 zuev>-2mTfTB|XURIr#c`qv*Hem2;KavT2}q0VTOE_~FMBZWrA$*|#K4>BnN(bkNTN zO6|Smk?W{jjFq_ex+v{E(pqnsiFi_bh@Jk1xWD7-kN@rjfA<9QS#oVY`I8wBoo5`_ zZ-%qGKz}z-Di_a_`$-R)_hDXC`lB#58}xI4QazOHd|lYdSHE2Bwm-Y^=At|n0Hyil zgt%MwlHD_OLHi@s6*-G$^FV(uP#SN#diJ6HwahqoFZdq!`Jn#~P_jd+eK~SB^x)N> zUkbH6B{`xTg$4O(A)5xUpX+`><++~rew@IA|7!cQYY%FcpVkVLi=@xI zkDs9V-TLX1_ca`1oma`pTCt^|Ults%WYFcKyx;WRtgLT3*u$VN1p4biD|xRL=6kf# zx_`y~e9v<5_Xtpu&x~(Yy$wB~?spA+-ZZfN*{{Dx!QUF7tOtL|+2i(ndhx-&y;GI( zW@F1wYZc;2_2Btq;3>DK{O;awP3xwt-`X$F$B@oypk%-Bb1YmNGtyG7bo&|g58wJ24mO;&^-f`>{jjVaam~Zs(gmt-UG|UetX{p{+ujH3%$Ju%4c}c zeNxgq*iRL{G5nv5M{N&w<=UC?AyMzlA8(tK<9x!d;f>iLuX8n1!=b)YmKQnYm} z*~uAyzVBi?=yw1m$l2Tt>HQ1J#jf7H((!hp0N({l_KWtK>xkR6X7i4HpD<-#WefHu z=-&cL^;b~0GTkR^Jf03g{j}Zu?Ls7|VD!*mXFtS@i;-OYEY{ZXJao*rFu%}%bD$l;_Me&-N+JxF{|RGdS=Ys)b$_Q-v^FGni&ZWQ|r^q&JI zeU@+`MeJw)NofzE+e?A%;Y!=PcJ;j7c$(>Gvg~4YUi{9Fopqh{6E$+ZR6nZ(~a?J z5*WwBmLp_O{N4xH8z?Sf>&zW-Hnzh14!{=Nk!K*o#cn#@GhkOBt$)1#s$)*o1U7C_ z(ekiy@p#{XwcI&>*19+1+16E?UN}1;o|(tYHHm}c6!;PjiVnf2;2&Wo=)~^=<5@#v zn_z<;xFD?uPuI$KoOMCo!u#l{l)z?~PcL@=>Z6NRAB~5D8~FA5zpELKt0y}^>pT1R z<9CM5fyzK8f)e}utD zK{5|}@ZNIF65#>(K9C%`ZkgEq%gPTYv+c)zcl4;2#HwAl>%hb364`^r$36(#m%#Je zOkD8S9r01m!qHWfFO`pZAK69F-=DxQN_$)68z>xF$#K=p=c7tFQu&zl(XY&RZJ&O+``4pgtp9Q`Z*n1=eA zD;(p%mq&b8$+t&1w1SR_dI!2hSo}_o(#CdZxTCQ_42$o z9B=^bBg#XRr#~Gto&(>Zc49h8J|)6H&j8l()ML5tbwK{;qB+xV`Px+I7dUqIK|WnT zFZiK+o9SqHFD@z+@<04L4x2BI+@JD~J8XXXXAYa6a)-^+xA`45cbPc~xLD8i z@GW$Kz{d1Di#N@)4hl8NB!|rzh<6Q;Ao=LY1MZUf?`dz(n8K#|-%~@(whZNFcrO`% z+J;G|-N_NJoqJ@@DArSs$A(!3VP(9RCUn`T+rM-dN>sjT%!*&M@p-<2S8n~Ku;F}m= zRQL1gh^_vE+tIB0!_FE#6bH5L*2GOs&<6>HcAE~c^V=u`_GZ?G6d@;~oQ%)> zaCx0>ey+W`aoS-mRMs#FG)*7{3q~!c4TJv@2g7jicP&uLpSjUj+iM*BQ|+n`+-iZp z2%xBc3c9M^c#$utw6CM^8TvpM=a&wcj8Dc){fl}oMNiivHZ$K>`o;rG9qhzh;E z2iAk#fuc{p9_85pD3yzAXj{X9d1%($e(J%Rp-)K2`KBa7Uf5Fe=Ky~<1BHB3u=qa> z_Pe!_8_vW|yIGkSYHl5r8iROp{!9nF@plhdU(KP&OC#0@^fv(|C|Gg$J1#Gt^U6Ww z4(r0$Xhe|YI^*QKRPUv_A=!R;HU@u9fRdgsx#0r!V~jh*1x|d~?KeZ`Gf-Yamorsf znj&Af07W}Ag4ezC2=9+b9s~1dR}b3FU%2J4nFc;3eQi3P6fC|cCv$0*Zrff`>#qgU zX$h3%O#5VwxOmm4Y;X&`Jk@%)H}UM#TZ6xLK+%stOMxdfx^C{U~Juf zC2p5-0O+FD$^p@xSx3-!0!roLI`RN*pgmMLB+7e>G9ll>cK^^B>4=6c`d@mzw|qJl z7`;`Mh5A_QV!f`2Uj;~D9{9q8>OzboWIhAigMIzNz*i5TR1ew;C+rvPqT-Pt)Gr$A1wQ)%rS@W8#G%D`cejkW zUa=<{vjos50)^d0LDo5*>aPLc09GEqb7;hRBisiljeo#dmLwz!QTL&)ZZ2tJpevkv5Gxmw_JRB3erghO8VMc zu=F=lb5m)&xnJowL$AL;xwbog(AYrmcLz`!zia<>dfmxu+SmDGT!u2w(1i^G{V<@U z&kCNNfdl_pFx+-%*JuC0&sP~;^l=wdyo|I<8!u|ZfXTT1OV^zsap7yre2V~{_o9kF^VK1cmE zQ}_%Ea@eef_yp#~z&v>M4<4{9FJqCPJfNfpW1qWB8-cge`^{2)rAf3rTsh>_RQ1}!W%MZql~%p_B+M?jABzjKQ%bsic!DPcoQ4d?2f|&+mYS= zHuQEISnoc48uB$ADAjv-@2wwVzUS)C3(o|9PXncVWaJ;&uNTdV8C5lItTi8DlF`ED zEYPn5O7*Vw-TuCwLFcny(GhGWOssoJ}?qUz^)7b((RyY{Pgxi104di?v}%* z3-r>wO>A#tW25n$8DOpZa59JGuz3%Ep-FnsTjwaPbD2*|MSq4{7wg@Pc+$8rrs!uc zPfxr02VB_GpBkHse9Z$&)1!DbXVi&@+LE;%!9SD95$CCUS%KwcOW6@%$n0o(PwtY?>_xue1ADm z*7J+w3hBZ~!%?@aBA<~#7wd`jboz{Rkl+7my@y*D>#ah$i1kAX<{T0!sh6g_Cy-u3Bgkig?W zXgXSsvy$WYt6T{}{0C&XFk z^C5xyB`oM-J!I2>@EyzPz+Ge7CQ98Ysn zU&jk9&oIkjb0_$d>fLj);!nEk<|>^U-!M=)5T%`UvED|+^V^@Us`-_vKYHnfQR_~` zD|)w8$n*1oeERfFNatCgG~V=#=t=W@db5;@Yua1;RybKp+v#maI~x4rP5MnmrHt;^27N8wH!G{TWa2fefLx zzrga;EQie(_=n{K(mnfs+DiJ5am zJNWYerSA^;_QtYIi!|(|7{z{xVmm+&fzl-VIy~w4`*Hz{w20^P&=|GXFmM^(s>UkjW@&J zz3245X8x=M{CyByF0nVIysDeSfT(z-Tq1)m)|1L}=AC!#q666tJNXx-|FdhK*{yfG z?bfFsMtK|sO5>{H`!3PCwsCV+=V^+*j<6gyKSDf7?}m@B0Y__cfRWmlL20{Ru`8b+ zgTGIJ()#?xll$s0^EKUk70Bn6?;rl^V#H7Vett)3EVlK&_g&Ei{n_Qdi#v?{tS`H? z@Re!qvc1{%h|P(IE(<@o_Q)0kw&kd`26kY#bm}`|(rxkFU+DcF{C!SO?&mT(4s-%> zF=5kQ{Jrp3BmXw;Khh2FyCWWBhcd#dFDUNCdc_|4{GFyf`TL@H(BV5CyeB^|&3MQ^ z?9$sy)0=ewKbqek&%D6#I4*$OgZRn9?@Yu8YQ5lp13E1M-xvHRBHRavFkL8U`qAVh zviYqO=C|IP0KcDPPAB~3$bU*RAE0XhGyMhc6X|up@1nfB@^E|b!Fq8&xS0qGKfQ2- zz2bdu9#51v#nX((Bk~~-^q$~y7-8O|*c1M8aqt60xl?(Y-_t}Go_!8w`#?NQYr%(FaTFJ@5d2e^KE@U%*rhWWkoGbEG z(;v_Gv9YiIffoi=&#iCOGymD{JhNuacMAE6@Tcc}atiHpkKGr(=e1+XIL7X{!frii z*8Fh`KY!L=cPyoKp2$y!w>jQL@grr{zIQQx5#>vfeYF>U<93+`7PL~|rC(1+0-^?XGst5B#o}G%k*p*MaLPhm_?Z)~pYn`~+6MWI(^{SsS5eqMLc^3WHmU#{Kx2aP$v-wi-X zKEpql@Qqu`GuFQ6QxVu3>6Q_y$IYFbw+X_#9$ z=^9I~bF!waG3ajvO694Q?@#$NhXOzAq95U8G1kS3O@rfw_gqW!YUblpE~s%>7aZM; zcoLu5Bg06~d-!@rIsDGSe*M|CCvHLd&48l)QqURwwXtuD#QM%%ivF}K*P-i|z;X$< z{Pb=M<})YvW9)O+RR1Eo{buNV%5wB~)-zfnUu}R=`^z{#75!0hCl=U`g|k+mZw-{} ziI;XH8~uavT>Xn?+Hyv;cEI{T0#Cc-y*dy6@9q!mi2Td|N_J23u031b8ClP+7xJJ<@C>ysR%CcD^(&s+6VA9ZjPtXr547|UC+o{PgT4!}5|F@u0i7pK=^yO3hpzZO zDoPV}lks}%9G9+LZ}?r^q>KaX>NC4`t55F+K1Tv2JLKz^dOohR)EhqWjUB*5|If+# zuMpDS(atJtkwSr5?11EqEwo09UC+jY;R@6#SvFO=@W;y~XM zDC`mnUfg+(_B$I-(0)?; zPL`kE0K}8ZC9LF}S7#5DoBh)SW}UCX$y!)`dP%|YV*6JmKfRK%>lf2lx8ULrn^FUR=ntM7j^5d7T%l;q+W_lyZOsPzNP}J0|{JhI^M6lt}oked1jn4o^EShtT++$QhP6WCH@1qtDfQ5 z(n=Y}wY2>7#5}AtA2K8_h4z=#E38uMToY^Fl7GH28;x|v1gBT@LW%HCx%&IE$AZ6c zK*@etQTW9k+Fy3$x8j74mG<7qX8#bz#v`2xKuJEaFWa!|b}Hk)e|~-`aQqj+CV{`n zKuPaDJEtSop6^{0J1IT!p*2TFF2 z=4h@HpY&whqLfQG%LDy1pw#|yiUxc^`_7H|iE7IDA#^?i^Jlkz2z?wb$phucr_V&b z?gNGc3HGk>mbh7;hA*sLGnP60?@43zvi$U1crWH(DVR`W`Y3bLt(MCiq;oe=(x2f`2WkH* z=A{DbFZ6m3Oz+Cq`&{H}9#FD-%!@er&Vy8?9_;D~pFSVyEC5P!mb`BAr*7>*x}WC8 zR!aRvT7G)>BA!@ZqoC{l;oEt;rTMJDdaz&b_WF1G^}Z1KS`C!O9Y;sk*-8D_9plC? z9&Vi{Xp*_Qu|=RS07~|RNtPl%pM!UvGI?+|Bzc7}MbRGms@n$Z6Ld?5e{qc&udbh84m!LdW0A=|-m-JuV zY!4524$_}XLBA}xJiRZzK=bnn)V=SnVy%C3vZ$bo6&oTxfn(h%T+sbD=7nYc|IYmG za`5#CP_pa7n@{~7diRXd-tD(PyY>Dk_P1jO8#>E$8OjC$1*FX_fqsys~|r;Nzd~OIZQvc1f@Lf z*1J!C9Q>^VN_K0G?>Nbs`NS&oJ@(7x|D*0(;B2be|FYMhUMOTCXIfjtNLmw?jv%)K?| zVy6AxHubBYnke(Xc(wxaFNXWuH0Tud4}Nd|#Z&%N=2b1i3@cWGe}X{9p#ajeM42DC zY@XipkeAj6`8~(l8x}t^be@|%EC`^m@2SDF*6)=GQkbbs1uK18uC&~ICK{5rq3g4zj} zxsQHEX@u&5Cs;twxB3|zaEuWFMFH$)o4FdXhu80POG-+I( z@O9na>~=6TJg4dDw0#NaJD}(5z`tB)*Ul^BET`iTr+P-QUC{4sptN3KY+GWNF8N4gjU_w7?HH=$dsQLiwMsbC#aY z+lhlnkN1I6`Hl9!R)g`^Q_84+aNfWF9k1+zAg^o{mD#61eWX~sI)}a8XiAICBeK|U z`S(pv8kme|v}ZjtS}n~wn#|7h-SutK1iUx8exD`A|GK zZ%h4dFE)A9Rg*`J?aPwPC)Ujxj@-Pm<^VVMXQxLW?k3*M;*#OL?wsRhH<-^?+29R= zchnI6$iA9IKWi_(10+5ZxA&BT@Am@=IT218e^2RR+26V!@(DSdx7ZJE7f=)513zsc z+=Abv@|sE!uHZpwxd<G3j+?2j;H{Y{(XixBV;{xv zZrjKGIN$3V5w6e&NcqR>y(lli{IkkOi~jt3Ug%>0{Xnu$w(b5O8t(ZTe5^X+JMbsU zkB0Xe(s@!IGpql)+IehV>n*32?iKQRyq^6Obeq|#*?g@$t`8G>4S*Y{4dnHp&OrX& zkN5t8O#kZ99$)1SLVgZp!+YOR{lqJ|Y|dMi?m)^fXFZp7^+QpyUV&B(liBZCd@v&GpjDdfGKtk%bzS7v` z`Qv(zWm&=ZRDg%ugTHNT=%;PUoWmy#|k{b{$aU2RZW} z9R7ySePpA5(R>d}!S5DO0~8InSjQ7?dc7(Cs_%W;pyaPtv>I&Ncd^8&qZj2^l*=f5 zhrl~H?}V>(`tkN7UQAKSbqjkvsy5_n1^p%5c{|pPsR;{BPp9K{r|GHL=Y++%3MpMY zPuBX?$JMT>lxr6g>Abyhdl>hm{MqClC z4N#gN7XDsBysaAt+*Rp{Jeyy_#oYEi%+ys_k7zH*QCM>d_IIbXxA~l0D#7N7HRCTd z$)DD<1MxWa9XkC{lUTbQ;$kgWW5~OJQhJ`M|C=b+HI??vX?q>en;@K~Kv5sbd3}5H zTwMT?&doMr%^?>T z?yuDQ#Cn}9dmdU=_#b88CdTH8T?K!le3R4jUHf$?*UouHq3IHNdaCK-Y@H>b$0J@> z1EueJ=QR}Lg7QBHc@6Yy4V3zaz9!FIt7ERG$144F zfP-UeYH6 zdN+jA9Vqn=MQ_|m{3Po+rL@P^N&CB#iRMOMwyegpgK{%N}sXlmPCQ<+H zGUts|mHweVONV?0P>i$5S^WJ&G_L!fKK~lU`XXMrK&gBNYV0ST!+}8Ws-035K1K(Y z4S6?Eniuo^v*DX=9oauy$v>z4t;TW?PCuYD{#lf9k?>nQX0Mr=6bM*yXDl+x74gZIi@jNds#zV9vRPhKPMr^Wgs z4=-|mq2UGeQP6udP-^Gvmp<_p?>GMi_mGc)e&c{*9e|uAuMDAfKJ|@~cP9<9*P$#i zI)8pW#iZtP_&c`%1&F=)Bmcf4F)lD(fgcYP zK7{&#{0viJfipMN_PIrCMW@nYs3CjH&ne1-J6#=7z{+PGY zL0#)LeDV90$0~dw#tg{K1xn*qYd?ogXmj-Fq0ve^(b~4>c0c?{^=NUA>7_ouNpsjR zNEsKzvU?yu6DaA~`TRb*56Zfi>uRNcaGDPR{a%D~A5iRfku!MzBGtFhdgMI+oQ<;r z`Yh=808kqDa62l7IbNz1Hr|~L`8hzTope@rFNop z(CN2){?ESp@b|y~Wn7TR9)bL$KnV(G&!BZv(~P?>RaxhAdj2(_FF*iK1Eu<>{kiK^ zT8Ca*{aHOx>8In_LdY)$O7o-O{Y+Xy*!kQWZN*$#g4Cjf}f`5X9OaAkrUbc3AE_AwR>>0#o2~etMllK4d zov!sakKEN#>U;e#o|v>=5O}I5%{Q%k_>L>jafo=u}V5=83I9cvAdJf4ulhDre?X{`cao;)-aSfsKI#oohGNnDNJZ^Qy<@ zDZIjzp1lD1wZIxcf+=n{@l@_DTC#qpOBwgHW-mhS zC1BN{zqATPG(Iz*(uzvCb~zqjug3S+0Ht(sPwS5RlBgY&>K92yzK$ZL7x|04{|l`T zQLGsHZ2(pQ5(N5Jp>kHt?v$h8jyXK(v$boWuxbXZU>`np4h8M52-yX zYIls*!4{hvoDIVI2dC}JMuf8oDCLvq?4j>@`J{XfO;4xoi_`KF(6>Op*ML&KC!`wG zKUhzqqNnrloTaD6wn4u)fl|3P*gb#f38uZ>g@%28kBhZp+ad1*O6`lWW6c*nqv@E^ zuRc`mjz_-EAmytW0`nuBH-OT-V|JCeicFhl?mKl>+NDNp2jq7FrTWSHX{&rT4=bOq zLw+YvN|#crzFY6h|6HZBe0RQY{}$3?H!uoF!0p(Y_hT;^AC{iZ^wikf`2HTCln?Il z73whSb(z_da^8Oa9q(svkoS{+iKfMOxTNB<%iL_!rY?8gaJ(2m zA)YscoX+J8gsb)7Za==~PsZ;+5sp6Pvu z&)?_a`-adPcCl&+zEB$fjt6J}DICpu(mC4xg&rxPd?Vs}SmMM3YHSXZ60^A5m5%fL zeZkYfd%*)Co`>a+_!c$I=ixNi#liR6iSUrlBE5t@6rSbZ5a}!s=~$Q!UQj0F5Wdh? z>%*o`uCVU;>$1ULK|F{*!g)NI&|Ab${2u(?!?!*=jAgpn;On}5mc38BPh*q{SKjwx zHp0zepIfVth%ebOvh-GYA9Re@dd~#raJS%Z7&)A`(^=S!!uMVHp5S#*dRpHR>FmLG z$iMZT<**Uo*BSAB9^~xw?9G2Sklu#K|1`G!=c9Li_a8Ug`kMK;*>ZC^Z!~y3FNEi- zRW6@!^Zaj>!+AuFg5h)h;PwOUcpzRBk9OvBE7C)xk0#vt>^67h+uUt(S+{;`o1N=Q z{3&1l4|ALM<-Cj*;DzPk`-bp`c#CwR^swweeS`Ak73E)~gK(#^e&%jK&3@p)3BFe@ z(hW#F59=0^%CLiU9`C8Ve>CUm!*ho9=kmgilV1MX+_=-x8Rd_Vb|%S zVE9)03jT|Tw?~vm%R3l#nk55bSogj=9U*PwnpUj3M57wq^5*2TO|s@YH;4t<}8KMZc* z-|=~b{U$ngZ>4wcXzq{rIGXu*uj5E|oJ^-iw3Gjar_=4J<{kcVp3WzK#nbtO^K?$N z3G#IOR*XXIIr;aW|4R3~xw-X>&+oSH(X+%Pp3XJ!cNvhNbpI^cXPH0ZBiH;w`~FMo zXa9Bf_#_7MRfGQgo(-pb#XIV?Sa)o6sNEZl+2hN~kdF@fGrs%vyw7XW^4sPr^YK>p z`rjqt{z__(tmNmf)%E?z*L^Ak^`O6;j_;!FasH+FUX9>)jRw=c@v)63XC?3HW6SZM zosR1RwjBkVREw^nN0cLsSnqI`*RN@^Ed_8$Hv=k{wM9cu$cx{~v7^9G+`dRYGJ z*ma;^JW#4H#6m~vh&F^s3v5dH~DPu4u)GgiL)?xL!F?DD~XZtZYA zETD`1`sN5nDxXDt_WiDF=YJe?=k=YHb;4G5J0 zQl{rzou_A{^Z$y72Ztz|r_&PeFADzd{~(dl^U?`bHYB#R`*Y#%D#*nFrTXA+)QS3) z#hG>H?Wv-yzd4`(M;br19y#@QHR9C@DC(2xteQaU%GUYx^0)WU8v4xwihhEeo6Pgu zuFDH{{xRzY)(^j1;P)^Z5?aqtplH9zS$xIP5?^#qe(R_iqimjxC1&(z36Sptl=mv!aCb3`3>vBiQY>8(8FOnuh~4EG=wMGQ*yfQyyBRy zt*8Bj%I%bMcHLQf$m>99e3nozi|)lw89Dl!txc8wsGH5p?F@fXdlopE_>E7q3=Y>; z+Ur)VBjh^)rS`1b=b4{C4fXu*g|A0lpkH^O7&npg)YsqA{jk<~or=o1E{=7Dd^ez! zE}o~lzEAu?bLD8iF10%(>2zG~G+mf5Lp6iR8cM%%D$or#E ze^HDv3Hc}?R_QmJhVgWy z{PV9G^(Bob%!48al>Cc4T|(Pyr~5OJr)Ow*n$6QmMY@Q2899UZ#+TXs;ZEb{bX*Y7 z(-E&hKrs&_=dQ<2g6~EPAJTjJsTIqByy!Qoz)j#DlJmOH6<4Rl(HePS#g?ir@E2fn0CA}l=9igzOSP%`~~&#*Ez7y~j62o+L#O?N^ZGX!dJO?e^SDjt3x1~ly)4fsIMq|Lc{B{CqLeC9ry=|V(82A(GcI33~XZD+BfYXze`d*)nfc$kpxgO2<^pKCu zf1NIHY^RjZ80LZeXrNdhA!qR3664aac48#tM**dAR&@2A#8WL(KEs7CXHMriPW_EV zI^GMEpd@+i7N21*Pn_=#|jOTK5}S4p9KBJEms1LVg6rEz)j zgN(*!@pK{Mxo*n3O?!v)hk!mF;S>U;@nF$2=lA%u?M-iAyyGgR-)v{|bZ&${slFGl zyn)Ui?l$iwZ5URro#w+tgmV*6TJMqUpPX05b&>a*QaeB)MBcur{q4=rZxT=%XKCl# zKkw5Hlli@pI?6h9E1RctEBs00Pw$DG_t78iSK{Y#nD3F#JJk5y2K}Z2rS*_i&Dzkq zcL|w4>HLSXeqEnUhWzb7d0f8ZV&XwqJfzQ+_(iT~X#Qzz3c|SqD7Aw{RhrOxvNaJe ztNU*+d^t7H$)#ZDbv%cShc+Ct?mnl#7UhmW5Y6bSac&W0^ z=X`watR19P1n74^P^_Di)7$*LpLDz~BR!p$>)B9b8&K-UT+{cQ*GoG-*Q9RkvCM_v zIi%b6oL<6vX*};=^Zwhq_uY*><8wUry;)o=&9>+CApA+~r~eMxw=f<{9(=8DSg2hC zjm!!|ejZS2uY>dAVs)P5w0t@*FAqV#=Ye&B1hWs#B>u~WD_h0hmuKI1$A9j|=0olo zpyaP~{_Aw_OrPVco`1QIeJ>vu>&%KE|1eORcldi&B!8oBysPKj-paf<-eG?f&>ulK zPXp!g(yXRG=-R4f3)ZacsH`i-+4h{CfIn&e&hPtrby?@s=T!Tiv1|e47XhX5OXiZU;m6A0lrDrFNV`a9Yj+`eNw!I8a*0Eb6gj8?_Vs zzP8ZtoR?3h?b(yi?})^IiHLeaC5i59sSGJv41SQ0h0`*%#5h3DJrDCofJ= z`Z4F{JT@SlSAo(xkukitd^GxpPoCA-yZ@i0SR1*<9^di&E<*KQsOP}-h z?3Yw!pV?*GbJ~sYr2c5iA9HBm-a6Tz5Y|t>3Hi5x^?(HV*}t3TiTM28>9{qtTu0u1 zhL$s@}9xe|?tHo;e+71@r?5 z=RKe_5Ackx`VHNOY+CraLMbmXtOWA!0;>ZF{72Ko`LpuhcRC2Y-UmwK3D=5S-l2T| zckDYw+U|zdBaIzGygmj>`4FwUD={sPrVqCaR`Ra}I}G`c!u^$uY5b?IeM!f!{p!7B zk)OW~t+)Stf25|%-|^%=3G(C)U!rO6eNb!6%I0pGhAnA6EH#T2nY(Q}k~oiI2xB~T zIs@ASyKsKXTfIWxm-dFcCwNy$-0cEt$#^g1@ZNx%rEqz{N77PQ=d~@KsdG&ld#z8k zi>^+^?^+jjV|?{4KmVG-h-H^t??@`b&EmY3LEvxYrQto0_-&l$6CRFbe@EC6BL0_V zK0*)Tnf?04BO_XE?#=CeE$qe2pEc6^jK%Zn$=#%{)w_J)=58Yg@3YyeJ+DqHbZ4_W zYi_Bx(S6X6Jie@`;L52XCGJ|}ooS~hr(nLON%+5GoXq=%3r z9v4ri417=Mmlf(};rV2R=NIvWe~PE|y@k2lzu-j~xopT6?|--X1oZHyg13e5dQ*A& z$BTFh6y*%*ZuEj)utW8#o6T$T^v3%Az)w4i_z|D*Y{Na{;{{D9_Lp=Tc*`$xz%IbbM%kT2??#V6ies&J* zhy~Mwe-G($TKET2{7qWoGL{|6w-n`$;%o5|w`8Gwq8?Jaz{{g>i*l)?m*A@=hA z_KSQ6&c^RjJ+Qv(&F9|}JUjz-ti}!E?_C2pua2%qvE&PdUj4!2g`47K{ce9>#5b4^ z*6$k9W!yk6PdqzrKM?XByeHlu|DLcLhTlbcXyW_BV0Ujgw_?r{(Yb>D_^tN%np-|9PyvpGiSm&t*V@=-W<|`i!qz)?4qp!9EXY{mh2h+?sjn4wd-l6lk=HqE$rvn!c+S97eUue=evZPyGx-Z^p zsZ@K!_3im{HTa7L5^S0{elHJ?*6pP4(N9k2lTOnma(|(EM($5aXEO!tb&Qs#EA;s- z^@)8xzj+RI<^bhEeQrZ+5Zw7i;6aw7wbmqZZj6 zN;9tlXlBQC67D%fdYZ@o zdn7A7jP~|9Ly?ZPg8tlz9f<#Coeym6I6XtlnbZ0Zo)%liIy{G$P3X#AY&=`o>mv=DWzxe(kjF^pS-1m-m0N8PL6z? zGBmt^-WB0o3zYJq4iw{havrZ2FYGOr|M;^9^rMc>dZhW0 z>o@xxaf#CZMc$8vwx5yLKhn&eN#jrL?Yqr$cjlws&+|{0v*3CQ4?m#i@ISNxK&gLs@9*`FPjjDr zW$NT8rQL18`awPyD3zCz1|=W*w1f|d;83cxFOi>13vDODd3sWNZEPA#_ZC}xrm{N6 z@4O$2tiEen=r}o=o;%Mj={6ez8~u=}gN?=!4@>m+5p$N9eX zFoZJ-DAobUSvct6r@Cg{Xx7$VpW|XNHcxK^{7LHto||iled}M8^E8q7e`-7LK{z9U z()?CCy6FR|@BhpD&jI~9#Ons2)PAN}_w1POKkcZr6A5e#9W*cH$d}#^WK|A zO8*{tI}w@>8XJpn3V>oAhMW^(-*|)g%Kr{KIpd(;c%W3@4|_Wj&m@}6DmA`DDc8=& zyAu%3jX*iwig%IyC-b3uq(j>!SH$PbLfdPn`4`Y{f__th(sx~BUie93eW_95zJOka1rol-tqvzsA*3s3@2>=!g1>`n_)eH$t5S)9XkiD9=Q zfXP5AVk0b5>(4v%$3D>bW{LUfU=IK3!_fmUS@X5#Pb>r5aHIBrOU`=FyMjv)R z+z$eS`CyE?Vsf$WUv&Kh*Ny${eIG8?iOquiY@k#=U2lC!>+I%z>YryR{fg84(`=sJ zJcJiE-?VNB4!3Le0OaQarG9#U_nGgZ9+m(6$XR<9&>up)76HY6B{@s3Px?wX%x#O2 zOj+kkw0U}uz@Joa^Shk;T-WvxU+dlGNL z_)~LferwSF*sVaGF-&vV zd5S$=t-EbcYZ?4W>u1{bqSZWI=J!{|kqI_WZz=pqtyS|}Pdc6#k;%D6-WxY0zDeb(|emW}5o|ZH|^G9Dn_dpr^KFZK} zzw_~6r0t7Tjws4eHcyW?u$m@~2Lt#2Nqi>rF+57Xw_uyCA2e+%Q0o8O6|0@mwVmeu zL&KH!C5CN*{A^GLUGMYQceX*@WsY2^w`D>BCgWyR-p-cI00~My z$f(4;jqA3oxOSG(Z#HFbLhfy#R3A2F7E=67iy-^mO1ZAj-h%vYpwzy)&rPNBQesZv z>nZsVd3_J9x6aqgBW))n{V7HPeJ|qm4p5p`6%Bfz2D4t5+4&yl`#>fyX<<|}SHIw+ zf_eoFGc-E(+-TN-)Y*+Y*r(7(rph+&EWAN z!i~xQ88+!!xD$bGf$ce#GLA-1Alw?A3;PS16`IOnNQLK-G5NxuzoH)p@ zWpcM|P%4Wbl%JOZ;zDo8Cqa&}rslI0#FITKoJf_L8cIxJsgMV1!kvQmAS~o1hkl>Z zL$e;Fk0Jc$@b`urzXOS&RIg*};sc%f;&+iQJ>c%mCXM$kP21I%rR{9{+GP{7SZ@6O z9@9?t!S6y3ksnAOBi$wzY1RWhONBlnJ_4b)Kh6Fw_t%Gc4_?ysMk5>Vb2!1nFT%;P zi5}HP`n2U z!ka$_@f7I+)PRE6A&4kMaB2PfxXk6LxzJyv2lR4@auO^*=`EjI&~HyJYhXRO>@%`k zwe5KjRpvn-BB)sTR0sKB*IT5I7R(=OIc`=Smw&E5PY)N60R`cuI1j%AC4!EXjubzO zsFOaB%S8hP(S^b72bMtJ0-=v6e6*jakIG1I5l>OhMf@mVI6+CtXO_$L zD+V&;dn*xN#E*zaB3>5mhCC60tn#)3ZaUv+{Vvjp;%oihVi14NhH@k#kR_)LL;i^L z$%h>Bp##D-ke;WN?^C{52EdMac>Lmr@piY`aQ+?tFnn(W-1xpR2JX=u|4YMOm5;5@ z{6`5x)rl~4@UI9%2RUIVu61z1ZI8yEN-3_S{YY2&Tn zlUX177T16Mor~VNh20+f9{m+03?<@y4e9qqLyq~py>H4o@a$MNNP4enqwIlMWxTH$ z{5|0#_wPRTbHA1`1BS51!T0o6n!V9TV*=}u20+D~kNx1|Z_EFJQ!&AA2|X_d68I0! z-QhD_`yO3-Utjy+KmR$!UT|v!`AdWTijp7yOfTK~>(Mt0d$W4M_cUPXX`nNf#nX?JD_jntzd(&(M5`+@DmxNY8*S z%5hUAp5~9sYk%nTf7fwz)vZZk3rV6sXaav#fCQ`Zqf30Qp5Kpt=dN&r45IyZL0&2s z5|N_;3oX}?mrpf*PAAUJ{AsKi;?)8u+Cy@(*S37^(?;J_@KTNDc7Mmk8nIZ&HwQ}b zFZ^zyXa~z`W8ZmsxeEHl0YyJS&cZr>hyw^^MJ#l_pb!uJ+5)BWx!5e99_!%c0DJtv z#hTg&JQCnf>i_(+M{V^P?ahO_UBmLP738l0ih4y(mcU-o4Qs^P)bT=+TCQnmXFY9z z(s=2YxSE16q_&^`eE$%tr_*}t++RDSMlj86BW&vI7ep~dZyC-Ga{hcLd^s)_m^@KmE zoE0@o{nTeHuh#v@)FiuqoOzVT2(`Pvg5g1R?5F8I7}? z*4wBs!jKpjQgr=C9}*Y)U92nsyCObdD8-vT8PKmqIx=8YAOSy^Uu>GL{#xnZ8?hdc z(}7}qN6x~ZOQ@YU_(j1N<97~`j|)QejJ!UCjtiXD_ki9DdMAhIZ#n!6-uxOD4s^E1 z?_8`i>kauNpfui<2*Lf7{@r+AL3#iY{F0` z{7L+>Nkt#)`bD9(o2>8$Z5IOSUSSV0E+nwIXwd& zqKk>G=SRJ4%4g*DJ+yqruq^1;7brntastg8`J?o=k*A9^j-oHcuxxzL4V3cTzjM)Z zWQe0I4-!P4E>7#a8b4?CA)xn1dW;83{hznVmeabipnm#o7iHV?SuWO%U=dg6oL3K6ao8vyx%K&hQzE2n*hX0`kY-C~_;F!U7bDdc1s```5$=KkO; z)gW~Hi2EZo|Aru(QQ_egpF8xfZj3yA%lVm!_WBMNYt4p2egsg=SIHT8FP6sTapsMx z|556DBipdoaQKtPt&6Y9`5g5xpo|M5?~g*uwbS|#&^^#^Bv6W<|MDGVSi!m}q^t~u zI_-}%HX8bk14{KF;h{@^=H)ujA#D6|9puM^$M46nPwmwC#q~9n{vmSWNN73J*!2i! zEKvI0Rrk6t$w2et^!%z2D!o z0j2q-Cw@9ETKA|1f}+`tke>*Y*1=p?Ju1fK<$qzUvvkpH!jOUZN#l^kZ!S3QGk0!l zEFG;7teI`t>rVKS%8TZTCSta^!?R{Y*gWS}$WH-E{d-~3>2tjP{n1mYM=qN%B=$3; zc2N7HJ=F*EF;rr9G`kJqOa@B+iax&bR2dU(FMNHt1M!*){LAv`Q4fAOop(5GcLVw~ z=yx|ztlN^aXxU4cH+q^Y>o3vvzSng4ljh;YQ#YFZiuwGnwo4kD!6TsE50uiSbk{jL z(D=tsx0OyxSLQkG**%b-36$!Q=i@|5m#uXUr@Y}((lhe@NbMi)ML72XrSWIUd+Fvl z#GsqNrYqwRr{yftaY*4dRnJ+_Z#GaGha_yB+M60l=jSd`|um|?H# z@J|ruxqd&-cO!hf>#Y9^=*9T{I-oQk;}?YfO9%uTpx;)Yl%Az$TYX7}uS^So?Unv0 zXxM8b{7L1r@a&V+p0)md`tkOvLCh9mgdwSY`FK>`AtLOVhJh<6{fg6lpvc?#(0(Px zCJb#x{G|Gl_T^makF1*tepcGS$k%&9!_&eDL(+JHW$Zmm<&*D^h5Ba_V#L?!BiSVH>>0|LO;?u$J5_*c?@f{}K3;)8MfpEaf@MLj! zOa`0T@`pj4>i6M>P}YHmwGi?Q@wVd&H-mq{S2MDZ&Uh~j+|YZ?eCS?g3vK<<;dXPR z_|e+SBe8EIKJ|eKB46S5tLY^2Tf|cs&Ju2sZz4VV@bHLNvi;tlYJI#ni}k%}>cJC*tUJ>!EtkaeIb2)GCZIS*cXQZF?UDC@!%2!_h zMEpcNgd2L40yUuz43xcs?|Fds_u(!DYVhyRVJ$4nZF$fmi&^GA-hx{j#`T$+$9YT3 z`g1uK{8KzFeP6(Ljo|k!KI)J>Hm^0Au-XfLR2_Vmcu-b+iKoT+SOd75_*d5V#=$Lk zcf_Z%;Ft8w>{-4`&#)7*R#1%YLFu$Ov;NgNt`W8HzaZ$m7 zj0yz{Q#CvVj}t6;*yAEG|Ch#j{?)DMVw*<}PFwxyb@q8$?mc+UItt&b5d3b@ z@&{=>=83f*Y9{h=UT=;G#!LL=KUfv( za7C%gzEFZ4-|CRADSVl?U7w%}!3U8cqTXGV{he0!eqA-lOXJvaLz|2B$?`uxCFVy` zxwK>0bn_XXmTg{`?Na8EEgY`HMcaI~+6YBjhl{&>30(+hU9=rg);Sv4=h|w)pHx2i z`Dia+uc&BiZ~hT^ISU=%M?No*^e_W-m@ZD&0W|yEdX^bFJyJPq-}cv?KG*hopA4;( z&*J&d{C~r3^AXeWUZg8It#cTznf*q7F(=nHSj5FrY{O37;7{6Duy~SMBX^56F_}zy zPm;+@%*PtSpKy~i|H&@=9GgE!SJr!(X~f476ZU)LM~ ziFTBnoNv{`B(&64+ND-D&$cQ2N#VJs)}eOZ;?Go2>TOfzf_xL8RR8jSsz&GEP>(|E zgVT1`d3|UG{bGUA`j*!I+iA9*WmDgs>KSbt#JLK3Rsj-3U*n_p(;9iJ>r|1i+lIC; z0X+`iZwZw8qs7mh-^15&!uItpbbF@RJgwHyQ_jDh9jJW9JV-aCUuKV2xL70B3i8(g zMSDTcrxMoe@@b`Ixi0NA-vfFZ=to0C>yhd$UzfJtmjAw9BJ}G3l*WUb(qDfU<>ewJ zA6&L!r}pqC#jkM5M05PYFIo$2C!CgR=j}^J=+`Mce)TVI@&@TymKQ5JFE3r7Uss^i zf8^VI4#@7`uyg3`bBw4e-z8Eg}j)LNb`WeBYn^L zG}A6Z``~9m{$uwtlby`irZp2a)mufq*#^n`pbpcucB zbAx5D%wLx6lJoJP(|k`xyi$NtyF2Q|5nt&1wK|V;ULTz5nFjs(03~p@Uw;7YS^4vu zGoV-|@RFdSL7p8g0EM=n7d}1vLa#wUG0!C@TXw70r+wU{aCC!A<$Oa&mJRv-KnVg( znp6L7u3%M(x7P>w?{Ulx!5rWfL64=!&+I_{U2Ly^@Sk0d+rfVLelAd|?^@lcr9RCt z4OARZ_H&({lXW`Iin4iH1E8nW?z%@LfagO7{6fdOPQwf60})O>P|TOeY22Ah`+@(G z_G~cp8wr#kp{OdI8#nFWjJ#S|e~D#7ASifKQh%FpW6EZqW^OdRQ!T7t847>HfYSWP zb!RGgB4Gx(FMPcn0sTC{x$m$3?L_&HubuW|V-c?@KnY3`l780x6_!6XYwaLqouQM>)4CZRq zsk_9-(%;>)E#GagKXS3w>;}je0;TlS)~}`hy-RXxzttH^d+lQ5Ab%53>aSk9a|W%~ zeSPaIbvh;}^(dN+hx`QKr9czTw}0NJMZGv`_qk}LJ##t_2PkUwp-HX+|%AsY2 zS19=&WAn6bLwM4zRG?s z&r3gj@g(&;b{BRpA`t~Glp<*dGK*y(=wlhV__vy*uq)O^(b_QH>Q zW^+ZfIY4PVpK#Bi6KLl(r9MR7zDVgsAq4aX5YAknR3D5#cF}psf609m4?@2MKxu!) zX!s-D3t2Gc?WEM9%Ds^7*h7$?50v&tjZY6fsT-@w-f>Ltuy)>Q`&oo=9tBG4L`KzS z)UQ}iIM3%{$Ug#<`Xg`gzFm6R@^vnJxn78PJq483Te+bS^LmH}bChviEA|-V7lr%d z`$xCZM$l7NE91Jz_eItEuo&Sy4wS}`d_UYn22H;HT)B@a^8P5af7jR(2{-ZrfztX?;lkg@Kw7EEo2sjb_KeXiqW89(R!`wHl{ z0eBgZAkbv?2R{Guyv)JthA4*ZQ`kz#tpZB>GVb3R5l`~VdD$`1naa9`({mRA{dt75 z1{eh-_}w><#*q!48QyYlJEfh74dZD^_5HO^SFh#w(g^$MeC2AJ9$| zUK`pjUHJO`GW2^JD3$A|qBqv)M)k_0o*kSMdd|aOHcx9e{7Lm__SUqEn6}}SyOTav z*P%PGS0TS6++T6qt6ubJOU?VAx+&)_+Ov(2-wKrGsq>cC_(|7xQ@`@AYM3j|=4rhK ze^R@|@1p=uD|DSU#y0G<1^%S*S@fW7=K4fg&Q~scd%X?u5He8AO;4xogk~FddINek1`-tfSwrlr0z(Jriz6PI@&mYRFyf{sl z51`+tKxzI^eBax3nCr%0es5d(US&KO&pw3wCqOA4(W{Do*BS9auDow#*tqTxF}Lp0bA6a)M(yTQZtrR!V^-=K zi5w+>9hEV{=pr85uoVP7qs z+j>h>8t0kKN#(yUNa4ubtXEW%d!u`$u%Fw%eoOYU6gH~<{UhsNlEQgf{lGtbA?a_! z<@_LoYx59=8{rVoO*0=R+(6%Er4 zk<#CC(=xM#Hh(Y|JkBis-lKfa$YPvNnE`)55uQt=m*9bhr;ioiI}pC$dl`N4y=-9L zQ2Sp(Uy?UzZ0*`X?^1lnuf)&j$13gJJu_}^4m(lO^pjuLxY^M8bPZQ@HZvEea=aNV zWBR(|^kzkBhaQ60_kwUE->F<_<|D$R{Nv#v-TWdw zp%e0j$+Uv3`20k^-C6Z)be?JP7mbqRC#v9%d^b$Ef3~1kH3%y z5+Bb@Ce4+{zc&u)LHT37_vi9*IZxz|_?~cs$M_rMs2o}0j6*swk={Vc2d)>sPx;OD z5^f+JV_R3d+q&A9j|3lZ1TPPhhe5A=j%+w^1m5F!&q(h6FYURlexP^rf0QR!jd+3| z{S{B}BhC|?(k93gT&(fuN+5w{mu-r1>hdE$&#>=(w0@R&f4>~V4o{7Lg}W61IozS0&kZSJf-Je2Q88GSM2D+8tRrjeZdjnBJe{m%DK zWZ1kpF4o$fr;7Q^rSMM>_0%+RpH=yv6ODpiHG#E)dTJ{#C*EF@j|0Ds?h!Vg7V)X3 z_$R05_C91+!R$afUt^~O7mKxdf+8KId~k37k@joro9E@fRn8ekzAqw`2Qx^A=OLr) zbDUy*O`0zhSI?w%sF(hFUK;6mI#kbqUV|r)77dj0A-d64aW1E<)^nYX!vng|t2Xo$ z<$#=)9Y4*yAM9VSpHc_<#REloBd77=(Jy_aoBO!8eVc3ZZ@5^{zRgweC*@P%lWR}; zJpIyLM-Hg#tLj344Vgw_=t5DDP4-U9uemZ%ir#f z=tso*p=j?Zex)TIYG3$cx9i;Lbp9OBUHD)Vpp>3z=laon-NpGoq4Q^_?OEjYR%)+I z&1`#avCvb>KjS&~_df00xwU?*S4Bw|r+NnT<_M<+P}E0q8nxqpLO$#+vwfdP+uhJ~ ziDGfkuO(3QXXLcbae1gUdua49ruvICJSm;c5FFR{tDzqQO5gR?eC~{o)p_>GX+yJY zo~$KC6aH3^zXn(xNZ?ASPWKi3I`ZMfLT2}O{O3f6dTRFhtS$&gv>T>##;3SX)!Rj3;ZN{%W*0{UUp0#Dkkaq*cxQU$JYfpTxYnJ`Z;Jqna ztQAXvd>^2cF43kPDy^egK4TPKX&g(1d>T+1_Y@?(@EPh~S@Hdx=X*Nz%K}Q{R;^0G zW?hS(yI{u3^SacIlVnqt0r^azG@i)6e|&(>HFAEMn6GoO$oFBS_KLhZ9cM+ezR)il zD3#BI){R9zlz%&z1O55|rTCZpHh|6xT2F#9?s1;)k+w_HxP~+c+H=c;o>D(u`;!}p z*Y+#1}Vr@5N9kYea6TA`rqtz}`Zx)t+ zH$Z+IP^{mP^Ov4&E;PxxU73}~|SX$Pw+128LUUUzWQqJKC*LQZke7?(ld(P3HfP2 zX&mz7*dO*HAIg7R7g@Rl_uqJQ0{Y#E*KD9P{*E*4*czX|nHX26qf)M0Faz>4ffBG8 zS5QA@-b*vGiPG-I+WUI)Po=(RT zPTSom_6YP_1eCz_U=6Z!SEc)rCmIL$zxnS?*`pAA3@F8qpAX(m$KJoLsN`QGwgB=A zfzo_>Ih%Kw=KX)gYjc_|k(cYx`f#D^t;QZldXxaAbw^j?xZm`I%wZG%e0+wzzrn@& z+C0HG;7?kYN?Z8-%Rc6+dC}Qpqghk@Zh_HPqkbxNBGYH zql5Ys-`Mex&suiV)0J^SD~IV4&{yF5Yk^X_@bd-nN4Bq@daW{^i2uKMg2laVI_lG| zB>q8atg@~j7qOn9=@QMJhkk2-R{{x&dTL+ta%NOe+B28U6I=~>X??=IqS0Hr=J~7f zXMOe}G(2G8c(>t7?1fT9R!u$lVnG> z9`YN2Qu|W)VdC#R-|0S?(DLH6op8F263}0Petw`d-#lY{MLcWsgz=!x%6e9Nnib5>Zvjf{A%VlEXupHa@;^AHRN=d~uz7-;;ZK}PA?K7% zU%yZ7;O`XR9;F?0x^5cz`kB*m7MkzTY%Aim4JehDxY(KR(*4YQohY=OcRD@`=-Uwv zC7kt0;{wS(tU8Xo@a1y{^xFlL=2hAj<3p}K>!7rs^=+QuPWY4RCtF=l@C3_$pDWV# zEVR5tu{RN~x5CqU-30r=uBvUHO$XT;=n+E1L|qp1W7c_oiVyL1|p>dG$fMm&QCl zvEQxad*t&mNe|L2n!OMGJ^)JVL?vSy|EcrWP0PK%Jp}y@1LgM2wi`$UhS2y$UOq$1 zne+1bclPl<3i9Z7)7qcsw>zr8SJTZtFKIWo_{((Gr`4eWi+)OBO|6G9E0%x3pNk=S zL$|g)Ilp6&;B7%(6Nuj%B=PSM&&>Lsw>L+LH)ruEUg!$BF2Eja`Uh5x5y8nM_t>*^6 zOX%t5dI}y?DcpV_l?zi{P4Ko{A{|9KWievo4V}L>T{ongKcA6Rz^f*Ik;~JigGf*KFUEHbpa_R4 z@BMI7K3Mu|qTCGNZjl}u(nW*3cK~lUk_Phpt2z+n7yh(?+&}U9tnU&p&T60P=cUnAmZs&$^+$tHR{aqaDDTJ zay|URI2waEvcY(dczCaado;)Yk|%d_wWKlsC{He$cyc@ciYK>|^W;{=2lwg3yjq&i zS?j!8=Nxz>rvD5!MUx(hC-*2`OXJX@?GrxqmBxLyeT;E4yIJz4xyCXv4{eS2mj{1m zHRc}ic~0q%$Hb3i1B36W!5w9f_e40C1%GF$tLUEX)SGU6VC8HaZ{x8IZ1!gAfR6gy~KD> zN*7Pu{a^T8Lp$DcdQhrze|0yTw^I-PF98zpd+VP6#n&vojlw5tZ@Z;%gwJTBCEbhi zdvRKWDOcLx=RYRe>p;~ZEz;EtkK3^^e<=U+7d4=t$nS=56U?rgLHCSW=XENCtxrWm zt~Rhr&>z1Kb<@;E-RlQ*Dc&RzZ=XM|1$hxJIRn{~X}_}cukJ;Oe7+M}UYyR4HTyi9 zn1|O4#*g(FO#BHCKOZZ#A0!d^x`ESqi)c@{I!@yk={o2=Vdp)>`3_M|gq!rS?CJ3y zH2hxgNb7rOx@dO$Cic~;1@nR53;o<*-{T)?c%kJbpo{fVvHu|23kueQ z_RCzYC>G2A(5?bXP`vr0FS(w5+bHXH3HG_y7VsdoOU9bd#5s|&TF-PEKh54pZV5fZ z%Jt!zORby3@)FS7Bb+RtG;U3J#&=R@`#06Sv`Q~! z9NE>5Z%6o(%7wf2GU7Fx$Gb*!vc~~jtaHSAhUQ-s>x6JJfnr=?I-6~$^~@$w_qd`G zmHWp#u+EV01C-LU=sUK|r&%jk&6NGh_N)u!MR}+SH$kyy1C0wTyUdr{<3|2-E7lcq z-GEX#i+W@T@h;vp$34~T`2rVnx}NE@K4`W*yA`gcE*8sjAm0xtjYAIK){Mp>=7m|GS5ewQr{!8> zxd^8}P--WP2Zp{z_r(6yeDj}gccuDeYQ_dYKd}xZ&6{Vh`491CEW2@y$}C;-5#Au6 z)Q@>9z%II}S7`Zknl6#ohtPBh=tH32^+2hgHfFs2sLyY%=wCj_UT@)I?QNdi2>288 zM{>H4JVfgZSJ3$L%QSo4i;KnCJh|cUCyys?-nJ0;DP5+di}UgsX?qr$E>X+_{YC?& zbn(XKP`@&YXjU~^+Utm1ESx7N&2Nk1*Am~`x-Y7%;^(})T!(m#0gClLaxT9A;_Wnl zFrV`8kH&IEv~fTwJ^g>?VV=4_TPbHQnyeJITtr* zOguokO?pi#Q_5Kkn*jNnfYP|9c-ev@7*Etx+OueOBjhInrFt7kK4CZT2 zoxLr)9r9CwVqKD)#^KuqkF$X?Ux~H%ckX~csr}sQzu7!5&d1jm<97~D+xf`LS?KsP zI*cbL^+yR^29v!xzj-lWR9O9UTFwNIZ#v>Fjg#YMzDe^`>nZNuV zle4793pDPz^jGiLR}+=~$Q5yWrlx0P^{;SS==i!mdl33P0+izCeR=Y4biUaX<^&bdlLSnab&eG zMu~RfTBRRr$`(O>F;Lp?;QSZ!y%DRdFGaqt5n4WjJh>+jo-|J_8g>ow2d&3>{}39U z^YZx=^m`g8jSI9DztX*V1I(j4s=Y_&;XQ+Jo&`$nf%lw$Bl^vNau4r?A4fW^4@(iR zWk6{@<~~^C3!i`SvPtLnj8N9~yE<$?qu6qU^CD1Mm+}PC={)?kqfWd@2j`^mEJ=1^ z&q00#P#V9uy0j+Vn)Oss>VxxkekH?L_Vivrcv5{yxb7i3 z7i5iFca_n)aOC3&Ne|L2+P0^+4th%M62CX7?t~q6Cv;NwNm{ejkY59o#vz=SSH}FF zwFsveD3$9;Z~gr5S@&KK{Wbul^bWj!+hLUJ)=K{n=dk{1>}7=WN_e`sW*($_*AmPV z&GnUWR&2!KN&1^1*gUz-2=7WDL6HBc{jTucT(&*EO^}z?Cw}R6@(1F{{dfB$p?W$U z?>enVQS3Fu%MX<5k@nafRhU8VOApUh^1&6xldB2;1PTAC`4-B{bxJ$ve15wf-^Yiw z#=-C=_n7~-ZaL`ya_D^epHI)w`E(T90li)aO5@hj#&2E9tk-46D~UYcrSXEP!r$6w z+8N}P)Tgrp8#Yf`wWD=5n^djM{@$~)SdA6C#~w+@U{kIba^}WSDQxCPok#EW_eQi5 zIZF1KHjuG}pJpYoy-Si`J$prpWu^V*r&73FX&U?ii5I}_tt7KEyZWBlwIAo#^O7M4 z)RMVeM|?-{2Q;{~GOlHz*);*dEx6o6__rbYq;Re$2+PL|5gLDz@zDU1p@HnzK&P(OIhz26xlX(0-P|E|t z7kn5>N6mUfegNtB>&>Sw>__8d>{mplTohITD%-0(QeyQkY->rNzqtm6??BYApi&pN+ z=HY8u>;dyhhn}U-dl1}yAakSqqx>?&Hvw)DKbFImTz1-f*=dn4L4FG7cOm~YlzWlh zE~KO28<5_o$IqQvDY+lFQ$>1NtN9i1T?647{Sl8mj()gpJ_Ft}@p~?-oO^u3#KK%Q z$ut!ABX~{YL_CA(Vx@b6cn{PBBL14t8~XS~`Uw3}*hh1oK0N0NgirZhbD73*i=ezz)|6 zQJ#TJAmoRRZxPpfY z<`)zdJY4Wd--1UoE-F}%QK4XAs)ncFv4Z6Vi~1HUPVdyN*|>j{r*RqaG*0{#PvZpV zY1B^)uE&%>J*j_mU9#g>{pHwZrGs9c$z}`vO_X>Vqr?40f4J&XU;QJG9gZ1xi@mOH ziItAA*ZpGPPnri<_Kb?(e7DjoXU2q{1Eh*^G2|}=3jgFx_|^E<7xg&Ji_?cI`xf!` zxQqI5>yg3>eD~@pzOOyMp{*B}ay~w*jBvzyVqLfiB!0(vWqsnGAD>D2N~%QJ=~Nr~ z)eP!ce5UbPK8|dh6E@zh3b|T95nt2!{clTkA|J_HT(7gV ze`KClJa&bhU;Oitub+j+FQAL{0Wt2Z!ar#K&v_Gd&H2j3cDdp|N1pGY^OY!jeMF?A z^!uqbbHu&W|Eud#PRG{)y$;e{tP6_rMz0IsJgE7N{ZCd}JbQ$F?$#2gj#tzhv92WQ z6aCKZ{aAu6m3kW;X3t1!C;0t^W-lky>O@)26Evz|Z0))^W@-UXEEweicYZ{Y8gvhEgn`zh5+3c>k0 zbfozg8eX(*&nO=86Zt~UqEp%Db;I-QsG8&Am3@o2FrJ2}PvkGULU*!v_t^ZrQ?qI+ z?OA>Me0vLoC+ZbBjV+%MKj75HwH3cSr}Re`e!V;n`n3c`0}1#&*p^#uKO@g~sT`SK zig^7@^>?+U2N`SzO8tsfH)^R*Gw)k};i9m9tQF+10ZRF>srY-b->=5csh-Z;>qyIW zMZ|+cw9V6KhxekLB4^P<+dlFcrn&JqyDI6@$mVI#P}F*)_T{xtSFc8WFaLYV+C#q% zKry}`r>o_&wBKPKr={^kXu3EZPdF{t0lgFS>jjkBiG&5sX#c3oz-_B@v+VwWi}kj7 z8r|Se^tyFk7xQ0k}Gv_5l8*ACP9DbXwPMZxUZBIxa7v?NUHzh*wWw zH6Q`!Z(8p1=Rx;|UZa3gefK;z;ai>k@_XCVuaazDFc<4;^E9&HPnvg3aX)k1XB@cx zgD=N*QN}M_STf|(fKq$S_s6XFRh0RPD~zWh%^N)(=Foj@|B`#V`XFAJKrz1}r+?Y4 zbicHl?35J#M;R~0uyn|00HyKSf`e_${Y~>JtMc;CkF(VJ(3eL*%La;h2ste~j>h}Z zS##cKr`+G$*5SAypt}*y2w){3LGb=US5tc)%zsW`IglF+l=9E@Tr}P18MCzdvwB^7 zzRtzsSwF}R1P1GoG0M|tldh$iON+zDMdWG`uL5|Np3a6YwaC?R~gFgs`ZQHENUr0z@{$z6f-M zuxFbj1i~IRiKrM91O%boSOhgHASz%$K|sYIf{4ou%BG@55y5=`5k%BMMN!oIKi&0K zPfd;Y_s!Qg8tsRNH#L2#>(su!br7$?K)GIIIgft!1jWyK%71(|R4Bqm0M+txV%sJk zTWC#iW3_%IWY1_g{K@qja&}tm35tCG2gEPh{L}M2AMqLmROS!t(e~?{_FB((cj5j0 z-}pu3aWTZ7blH_+&rK%4k?*d`Iyh!Z_iVQ67wD2 zx-DkX1_|V^11jS||8{?X?tif^KFHxpJ3x}%9eYLv@TZIi#k$Si)&gOhG8$*a@~aWf zgh)NT73$HtqW#20)CYI@9yG2&IM)J|`jHi zl>VsG;Judp_)xgJ&9Ux@wx06uSKQTy z7(QJ@fSEuAY&$xpbt78S1a171=-4xw0S`*~+&c71=4X>Fk5#qu;(kA1Cc>EwRL1kq zUcQXZd;ezHk3Vh5eI_ARo8JQYSwLmpA9&yrY2T#$&*8euzo2m|;&lg5S)cEnw3g!2E*_7{b2gUTt0R@16%l-%p3HGsN&Yh}T@8vYz$r;%6&z z)84P@qVY8T{`k#@ek*`V`Sf1cne1Fx%aH^1e!7Rl(|7>>ly#z#2VSLi$?B(H@oMv< z_7V1slyyw=`U?*E0`@&^+1k9LVT3&+rGLoZa@__RpZzo1`FoKbML=boTylLJ@mKZ` zkNs3)nYByzA)Nbx7XS$gyF6<357rIAZ%4FC(bjjjsx zbRPP@*adqG@{a?RanIUGo5{|TeKhndE#KYe-)e-jCQ?scGmFX#)-l8DyW9MWzQ0xK zC28h<(J@w=X;&to64Ed;%yHLc<~Fm56K!B)Qy zGg8*GihkL&kJ<_ADgSvm6rl;Qc+`2-0_z?n`ze1tUxj`~Xr!(R!9G?Loc?YPZ%jDThXgp{?<-bn*F7*2d zcrK72n0g>+cbI{|Kj*Q$bSG-*1_1* z@1T9jZyb>i??Zk+P+4bqX;`XE&$7D5%3jnDPl3vO#j|$??UPvR*Dqvf&EIC94^gVs^3r&ANHe0p5&zsK-^{XxbK0qX+^@|(_inbsr!w{uA0@r%BE>ixqJ z==B9qIfs=0UJ}lU7Y!}%o7r zwioI^Um{k96EjobuLn@N5gwh(X7(cyzY~GcCg=_A4}ZOZ(qA8uUSFo-cZuozyrbm)8d-;1R-$}gHjB7JE9X{$-?LY?PU|_15 zSGeh1I2 zS>NC$`{Uv}^1Z|mQC6gf{60|T6ZM}qAv9N}E8<1@Vf*{l3j=ML!jRG=l+QXcT|((# ze`hh`Mg9d57x9zjREBq2&mZJtk@mZpCGzDagd@|Rez)VzW%${moUO^m?>Pd^Z0HZe zTAStXIcUe=W&?!0A8voPC>J;4`$~9MtbF;7pRxy_9%l)|bd9ov`H#o5#CIoX`uU}v z^81LdQ{PZN=ze`>J^ox#Ur!DcMAFFv#qW}6s_V<4za(Tzf~Fsay%Ip|T#xTaIW|aq z*96k}6bhZfm%k5&8+u7YSwR^e^S(lN}zwt|3nyVQ}L#Zzmzaq{r`ty zubY^7ssjnW2+UbzbQ*s9!1vj0&P9{g;WXJ<06G`)=Y{-vlFmEjvkkWlyV8*puiY*T z2aU@3eifjiXX$5^EBVFGXSD@Tw-emx2cQ+9kAN6wL9HQvSM*%eZ}TCeFm=x#M`jGt zE|}`(9N?$}e=zJSawFfOVbtzJ2?w~HQ`U99hBbY9~gNPniyKAz3YNxozpzb4SH7f|VM1AQL)(#P{( z?e@nHLwE@-){bsD09FGM#J2RE^qG6!TGMhv zPv^n{@%l>M3UXHf>j4S;opY(2d8~s-=ethN@N(vMp*F@LjP`(jO8kNYsvR@T7Pn`Q zI^4w>2MDna&IJRaVl$?+^F=#n&<3?Vo@nKaSA@Sdye-1%1XRkWH)lK!@CM_Zag`8D z;_V>c5vcUAn z>wLe#YFJA~H6!}lE|9+xD954X^jRkTyp*Qr)1S;)B z=}*V#AoWq>maSa}ITt|KVsx`vAIN6_<$RT#HgV9bnECvdbGf!r(vbIsd^#{5NZ_x2 z_$`rtLHz=A5AO%L{y?Rl&a3!79o)8`vYMwdXFi{X@Gb!o1S@YL13LDj=bzj5CHndh z-oLx`=eFGq5k|)&J(TfFQI$4yarV5a(>GVmaV}C3VtpLK=m_|$3nbtjSA6XAS2^eH zty}tQ1f4EC8*+nyO1tYh_Zk{6(e(_!dizDpk8&VC5LgvRU>ihXd#!o6J}!vk10a_R zRK^p$b)OGF5ICtFRCPNK_`AzXh%h=F@l)zi;PkmcQIF0v*6OW?4~F~@ppx(Y%8O~< z7*FSBZqW^mxa}VpABu2>0p+>_IiI?&1C_IX$VJxf=0`zeB;s`yP?^V-+;)P-b%$wO ze&%BBfMg=ihx|C8G9KjbzPHa{lgC`NsMT+Mgh{}I-rsd z!LvV7xwh_Oshy&=gY6u`=(X@C*B8kdsA(CBu^zL9wk{mYC)h6-y9TJ#+k)&wdGN6O zFRF>Q9);%v;}a3DDL^GX`L1JRD9w77b=KxbNe*H32KZCPk%8fPbb$d|o%!qI7dY$3 zLadcT7@Y)vN_w)14HozWfvo)dhZ~{aWT296`M&OQ{p?3WSq~@4#Hj0gc)55X&rC%wWK8FmKy}jhbwO@_r z4e{Ov8t+brdnPb6e(`^{|NY+#cDZ$;ePqNs!_APN0aV5l=4Bmd{%1ciWwc)BzFms8 z{we89ng@+ph}VNaWxarv zU#%46_aGe~04npNfM+@7`x)zE+a}t$AfDd~`68gYKJmEs30gO`78WaL?U~zspcsB1 z!nq%)&O7$4-s2E$$|gPC&WqjVL(o`^cr5`c>mlai1FuoLWIg3S&RQxIVXJ{kf5cBr z`oiZwLDRUU+1fsOSN;&>9|tP)j^d72(|G>r3y5LWUYoD9;15H7B~WSSi)ZYm_4%Ye zU;VVWvDPj%a|oj=;7@_T?_X1Y`=4<<)yIylSEXs*RN}6;}^H#{r&ZJ4dV4Q zP#vFI7lSkF-k<0CYyE8t{siQo0$v6rNE%S@tifiIeeJtjN3^?ZA@?LuY0sCwcq6U9 zbhR$NtE08MwfQ>8uLmma3w!WF%V2U@_M7h8!D#zUCEiwyT+cf;AU!q%mHF7b%jVDp zZ+Z2J(bZaOU*aPOqoMIUi zIiNDGOWJV72R>O|&cS;De|^0TZ_nK3d(e0udT))4U;gUn=mL?8S6#mG%+1>VrrV1W znL`+T3E?T_#asN-7N2R|Tey3?whrCOA&kBVe@Z*=$*obH+dtER-|%#CKhAPj|6=&d z(9aK4AgM*K|DasA(CSe`{t5)CK-rJde%cqDieGDM?V#KEMc+S!m+RUQhP~AE&L1b^ z=h5=PZGCWGt}Oz~pYc{S!(LgpfBMkEC7FC-D>4C9y&pdnq^B?i=gHf1k?dUHpYT<_ zT+uu4Te`2-KEFPsH_maV;GBCe`0Io3^c6__5N193Jq0qL3Hf4#C;2VJ7x{S0b@Z>V z&?^n!qvCFThB@cm%CEkebji(A^S-^h4uE5T~p1jG<>SMFJLcT^{ zoO@2j`|gNu3fwaM9{i)!f-6>b>j&P0j3?wMzP;-WC)-8+p(nmyBK1la-}9#lG=U0_ z!{!5hDftgl|NhXUAI{^;@5%2-w@fdIGF^Z&ohaRGHS48w`x@*Fq}M^O2&WKkdG6i= zH<#%u-H>Owd~5?Uom4T6+w`ba{REHaV;C+Yd#iuSqj2&M@hr&@Jb;7@q)#UD1?eVv zC6ez#`qsIQvZDo1@75)aZ9x7Mjy1Psft}I6;^pfS$l=%RC zVqkDASMp}G^fBS~$aIq5m+n47|NglMKL_qo6c z`9TJ-tj{yaxA4R5A1HojNC%mp3_O|d2cTWZ;k7MGd#!Vj|G*ESzvMYkcy_)G#_wFl z4}6vV(AR|iGC$0L;Kcxc8X(erVXjEWI=RpjDC5DQznLTa|1?O*FCGN>Jb`2|j9Cxy zKt#Eh?}3shLVS?Jhv*qK4Dw^Ziy0!^4DyoKBK0tbwVjk8XIS-CxSns6jl9?SE$2Yr8P))u~y?Fw8VNrXe>uz4K>0W5l+Y)Urj-Y0f&n zEvE1^nnwC#YbV<0=gnHp$MST%7m)AFvl`;}>Y?}k*QR{xGmnpXaOSr|G(+y(8P7=h zOG5tm*dd2~`Fpdr-EwY*bG}==4jGb=>!npg{@B@e>wKkqttVZZchq*qT~!o${8=)x z&M`6k;_bBYi~DhiyK!XDknyPo<&=3xaPOORk(u2S)pgQch($lnQpauN*X6u1Xw-my z^?))T$yrqR{Z~H!^1@b0i`#1JVC|jrnR5KEtm_vpJpPAa+6{JsHV;T}_AxF*c*;6h zuzy85huh-~|GuZIYU^hWoqga~_><{NPGNw|KHpka7wtu#p5gfr!)rpnT0rTxoVS+9 z{lus`Lke&qt@A<~ZwptSo-4KA=b4Wp>KGNR9#(&FQ1K|cN3tjzvT2!nt$A2hGhUr=c~m#hP@iYpOU}4(pM*Z>=RlK z>7(x-MZeA-p6_nUncH+>4o_ng;wSqva@q!1iaY02TlDEj=bXJQMgzgiA>RV1rsw@} z%pb_>{qwzBhligpAc8Xuee9<>P_}F2jEOz>l<41C=W_4gTSC9SKqY=LCzikKGaC&( z+lPqM9=x}KEN{1h`wHNBq4%-x4<^1^ev?lUrer$(i13%~8 zXYn5!yKPU=`u7xvr_l!f6ey~-g2s_aMvLsq`nkL|QR^9AuH&5Y(+L4x918GYrwd;p zzJ+yTvuR70V@5Mzapo}66jnP<~ijZKe>J|5PB-(!IEvO4*ARuFLp{A)+6FvR|e#Bfy($= z7~-&3gd_Q5nUK#0D(P7`;!Zj*_0%t;?rX!e`p}SjA)f_Q%G1qRw^O^6WR=fD zpx*$XoR5<;e@L}mI8XcUoyQGAyoLdl`B>77sUHzvrWZ~8b;IKgBMf^f<&6C?dyP*R z8mXeS^X}X0A<%CqP-zDhLyYCmcNz};@_|Zvn%~v&8El}%PrX!2mpDEG@*{!g0}1%k z^~f+Hx6TEX)wn16_FAczq>B6T(rCoz>QKDoU-r1wEL!>OYm>P)-tF%2G_HcQGX9KN zF=(YQ5c_K@t$j)0V-zgk#8Je{CqVH(!OZ4;b@OIv9y2L~n_EOpxPwoLa zf40L~*C?y=OK$tkpfLgII0dMzM;1JM=XPO`_O8}iztWCh1NlOrG9Qb-?W0$H?Aj-e z)E^cXG5)+3^49~EaTc@BJ$ZlFeDh5)&bqS@Yr?OC{6wIlr++~{F34mrMU0oCUGE96 z57F17@bRwOauyR|*h}eeS4_BOC$$q+`?6mv*Y3x4HzFM;14H$wWcRW{DxcuFh1UnS z<2twXC}`XS{iXtydCq%7?DJ>Vi#A%j8-0Hi9zXZ>Xgc&;53CO)2wb&ej*mCn*}ql7 zP2s!{T7S72a`yq1_2i^aD(?3MIvyF4ka%^t0czS%o&ouJK&Ac_|GMBwqm;IR#!boB z>TNSV6Y_I`=K=}5=S-%0Ydu|cgG3(3u$O5IFs7^%ZLRajVKUHc5n{V)^){Z*g8Xct zvYwpx@a5l&@csdY0B(hTw*lpPHaR_C{6YOncX2*4e7)6eeFz%2Bb+;cq58+nOK&PM z#Lquy_1%3vx)b5d0V?fhe*58{QF#C6bDTkAKH_x`P?_g=Z)tJTFzGnMWp}1((ijh1Y7-)%dq;}Esi|BQ9MRnTuW zP+2eV+)|Iuhxq$mG;P~yLmAhQWJCTK<(I_gvesMUnrZd6onzSR*~sv)jxy$!f~RU}=U7@e zhP^hzpOSyIbAG1#F6?>ENp0Sk;P5m`;7@6H%{nowd}TX7a+?p)j|aocS#7=v@p=xZ zthYb_?)1P$1mcql{sF3)Szu?k3FuKoGN~&<0#f^ z#@cZk$PS79xo=WAo$984@_XI+C2w4l_{_=-@DPyxbUxgU_GY+)UXflkvhY2iR}C2m0`S!e2hp!{L|6c&GBm$ehLThUxfzn!qC1ahM=~2TJ~dlOE6~ zsV{gTdVZ#G%RGs91oWWvwfG7+xsN&D{`fO$oXYH%J|9m zuqW~*;-~XZDE%(9o>MZtGr`9Qr7yD|$#;<7K{`{q*t?Z$viQFD=*i9!_7{GH|4#oU z|0rDX-E4sz_9K3f^7!2kH=Vz?o3!&G-BM1vv*14q^$PXF6Pa$d-m?5izJiR0KZj?MnVFN1 zBYq^;(jwOM9e{Mi?`)vZJ0Ixq5~Mp9^-4>py*a$0^&E!%j=SW08D0*zO68<@X`e%e zH$a3(`q}#D!%h4P+b#JWCi02+26rt#IDh%HJW(Hx3>3Vj>_MV@R33!(5BfSh2dV!c z@!i-wd_Pa5>wf%B_AErWa0haQoAeQUANd{meW2t=NIr#sgzzWrV9@*jg(q>tFELmC zr96rAi6?R3&v+6C1WzL7iV!d24LgMxI~PdcX*1zhBk8$gSGV`v=ByXnuN9tzT*s&t z@>e=K_kdA6ylDG?NjLB*q2H~QbEkjrir>!xyrlT_~KFRMY%jzA?I-m00_Jt}XG8%l;}F2j2pXh0y>E!yGtdZG7A zSH670Fh|_+!=(p%@=HR$Q^()a*|(7ScB%6Ix5n#@z^lITowp=A=g!6J6o)4v$L&gZ zfwbzc`b_J3ptsvZ+*=2z(VcDfyJM!(Obq%*1Fb{!*V)I|C< z2P*09-?w19k2Sn@+Jv9FYj$C{bB}yo_*2TKxu(`BpZVV5J=qJIYwN3>cx}kn0V+_` z{%blfzjyGMThnW4<=SohqEAmne^M!E$nwz;3M%RCf4&Q?BM!@N_T3$gv~}6`T<*`x z`I`I=eJ1v7Cf##j?>98i)*}*}@+#M3W&I$3{HLn4US>a)opwmLJyEY)D*BVx7^hyz zbvdawy(}y>Xy49jQ9bqZSnkWUtf#UaP}=!G+^=-*s7&Yi?(^Lv64tS2A=_X2x$o)h z*N_k8zrWE4dNu*d^d)EM;wE1jZ0zCR_gwvlA^Q;_*5v=w6f3I0J@oJ9lZKsk>j zr)`%azvV;s%&0NI8Bg0{w7}a3^4UN|&vvbUp>YUVLcV@XYB)cQamSuTKlr-{NKkn5 zt)Kh+YkE9)=m)OtD>sXJ9I3a1{qg-wpwh1-ZTOY$JF}krMjHP-k*7jF1E_qrq|P$p z!`T=0RM*D4@jMOk>A)I53qt&uf6u;ac>fo}y@*d1Q0Z@1NWDxG_{hQ=XNT50D6Tku@S z=K+;@s%QT)vTtS`lj(E5Hh*uz2SR=jP?^8)+3+;o3tVKK3;#~z7e;?xH#|Mv&QoI} z>{%%Fy~g3uyU_gW=W^VRd)&6Wj1NOP4hPD05poticFpcG=Ep=|KEv~Y@sZFkAE=aH zPdD4%-?4>>-$dSP>9&6#g>Xg#)p5_EGsKT!)=9%zS~+u@f6=B(;mhIa;evAlVr2Ln@>7A8fCP`v{o|~`FaMz8vO9V@>w)5RTZbnx z5%NlZYp%F;zrh-f3w-rKXYE{78(skUtAR@U68vxlt($JxzbPf4-yiOlugN0pSt#YK zcBo}JzD2zCpR9Ypn?>~Rg^<4ysH_ux(x^GDOC9|4{%;cGZvZNgpZ$!*1Nk@4 zADFZMaT6k@^tZ*8FNIwZc9FJj>b9MawtWfh`v|q%`-XQ-_Au+Bn30JMV71Q^(sba&4V5C72 zI6=$5+7b3F;N6CXrLQ18%l}@eN1<3TP+1>j?Yi7$n7NNW`E)^=HePaH&fMi6B;5}q5V|rF%z_N5Q!1?Ea2UO z*n?v!9|GbYKc&5*SMKfhJ&OP~0hNBN@WKDkc@4}P)%>w|O3~K$@NshV?MwLjuG{?_ z#PymddV#F=F#x1deLJp6gcZv!gv52hX|2_5hBVN0J3OqHm>S2S~#{_iy>v8;52)+hX>fgae zM`<6Z_#t|#MwGK?>z|TdRtS6t!r2L|3$)&)=YDKRd#P^AXLvriEiciR>+tvmjXj9Z z>p-PH>bh@e=n`PxXpL>@p}{cy$@9Owb_#C)wpTV@`vB0t=lB>8JY_|)&$t!N$V-(&0fG1`0vh(XwhTXq2BzObC!1~y|6d`W#|1PTXdH1 zd-9W3HGDFeuQ)cH{`D4olZPlg`;n;s{{O*SVg2F1A23z$OeXgNKLh$oK8&>MV?;_WO&9>~OZGx;M{ zFaHqS#H%85-b-_y%@F*x&(e5j>$a6KX|OMqA^gesOI{P{@w|20`cRo)QonS5e?q_e z6JGC!@+IvY$#Mvkc6Ma^xGX0!K1f&MO?9wnbtztGC=@R{ADr}uo}{0!=OlSy_@4Z}43EolK1hUHI6xrF z5lH2jS&!sjar{olsKoDid_;vCo_V1-hwn=5I6qnH;nY)^|8y-CUA}&3eHOQ@()Fo; z_)s`@y=*stf0}>S%n#m@;i4QU`FpkXTrTy?;Fi^;$yo#V=`|f+{!04uLtm*k#n+~J zc7;FE(=Pu%ARH=Z)~GahzjVuZNq4p=H~n&vo{-NSDB^DdB@d40B3)!W;4YPJpkL}E z{UiPT1BE`)t`A+`Zl^N`n&8hh8!Ud8d^F;{+3~tPAK?#!Kgdbm8QJ||){{R{ARi&n zKOAoSE_rF@IPrV_RgfF=Kk?MQzBNop(9_Pb>VD&d+2u>78W?;iY)xDth45&jScwBTG=&j8Gj8QrTQ~RJL}jj@Vj!3 zA-3JhL%v|0dtUiw|0tfM`lEtd3GS-E3q$Yox?Rfrv8RR)|1@z(_<0Mnhcl0lfqboy zzb~(U{XL((%`xmsM=$X@(w>hpe)PWZ3Y~AXpR;AO9_4nv;eK9J4e4+>ur83`VB@&m zM*f8zx^8Zj>F|@pYwny&Nr1dM9{(;F@a20iNy|IjTRVr@%~=n-1pY1s68I~=am+BA zoZGz1p5%yoP|kx~EKn&go;l0t{B(nqadX#o)aFI4ob|;EH2>sG>O7t9)5E%%GH#|< zfB(LpEXOilN_u)9-to21Zpm(JtIgjMob;`S_^IhR{P5?7eZ6aa{eJp*=UlDKZyI~c zN9=P>;1m$>JK*8*4vsy*z=L`C4XkCZz+D(e$0XR zi1O(!JsFq%PebUbq-SC0Z(%nhP}OPIg_wtXAm0F})Q8yF*OR?(oCA~nh!BhZTtRsL zMZeAy?$2%e5^Xzwn|8i2Xf#H8Gy%$fkeq_QXOH+AX#Jo2^4S#OBm!l-P0rdIe8D|B(kG)$m(Vyzs1-DtLBHleW&Mib&0d;gT9 zzWmGn;1!zXI(%9Cy_xLrH9EqBk`IZWUrpyzS<_LU|K8K-CxuvBho{yK{*-!TcCPZC zNS9B#YxUjZjMv)2pEAyxwtgnA-uf&)%^-%;pyT&A5su6 zFHmVGLgxna`Z@CqA(q5@LcSkR(WkiC_#-}(*29i;O47<_BJTzH-asY1!og>W=WFk$ zeWjH%x9Q0oo?2go7t!CA>A7q7?O=cCmkw0wpJyQ>o|=76d8{_hig$QwY49iKFVu+r zVH~CNYWCy4-YWS@Uvl4`WkA17pqyWkvt9FC+9$So2xWCn(S1Hd+aHD3_gJ2dcwGZj z+Lyw)osRhm`|ezvKX{zezY4J&o&)(IK&8Ddxop?hz9Q>Bj>Y-T{V+nTox@Yhg+HZz zP59lj&zCoxo$x33Y%A>d&6zML=&ywjD9>H9$rj@ zJ)iSM1g!rHW*#Aajs587BHgxwZp#bfLxm!2EKtrn$+@S}$WmXR(G$N6={7*)88&fv zYNOy!fut9I+b+%{EH<46FdwL-+vx5&r3Nds)(iA;T}*^MA7valZOMM{3I4_R zzK=$Fi~-gL68v_$kj~M9Pf%9vS+wnhl0TM4d>r(;3aGRbv2}0#4g8^cTD^7K{{@Zl z2xkINiGN8#_g_$t&T9Q_Yy?kDiO2ft&r3d!zP{wP9z{PMRP>-2x%C&~sXY{#4@oD# z3>fVCS=B2v9PZplBgE1idp^_PPp;dN)7eYh~+mxzo|fF{K7^K zdP0;lQ$NS&;Wt8lGEixkN>){)_*vJ!th`984{rOFpfLsE+yqp{^Chp;ru7i}s>gq; z9m=3F9r3yc7#a_<*soU{HTa~?BW^wJb=IAQSZ9Z)wgCPV;E!B#%HSt%ID7k3{j_mN z8;7TM8$2lOZfUSP-LGfun-_JAm_N*f{4GFbe#-~%rSpczt@*?G+Pa3@@k`K{g>Y^K zD&v>H^WW|k<&`l>U9*eXm&OZ>@Qw`|=WAkKDKO(e_8-;W1|)aSr0G z)W2yh6L$O9;fkYku8z~jA@TeU$lnQ6=2gYd-SjK*m8|>OzS8#N{_6h0?56h*bD`fn zpxkF6C-1m|%2|+(3BRh}59K}|<|CZDBEu`37P}wq^&TxB)Xr&U5N${a=Wu_8|Nz^P@daFgh=4FTkA9#&t1{J)b4;r;I=O{#Khs zJNPf22SnQrhS#GIPwi2pi&D7zA1L;jV2`%(=3o&YNSO3A$sk{#y5bkb^fbFJPc@Rg8%9H^{^ zu&yJI`dDAdHEA5}9-Cy0?;ik^&YZ$&UgdrM%elQ8YV|hy@x1yy z3W7g}a5e*#@k`R^?ZkWcTPJP5*7`rU^Trs5r}jL;s|6%TdTiOze@wgUw*T9P_`C&F z%5{F1`A2=?r0HQx2 zA3v}rkRWfyfFF_Xxi;So`8_}-e&*=aw2y8-WoNJUb%gTNZ^2l-7;-fiyh6V7YX zlh1F~!lvhlj384XTNkqU*ZqiyunAjBK#zvg5e5U(w^|hDgT% z@{{Z&+In*tKEn0)753I7?^c%Y#j?D~awzpl=O>!9j(KXCm(QO^&z?-d2h0b*HW%@f z;YtTLynJ zznBaMSc><4`F*L^Kt~^&*Lfd!p*3VYvQhtKx@g~#=`Qth(mNO5MfzNX^pJc^$_G(z z5RQ`{a65d?JhcCV#P>{~~f9Y`H z7Y6HVEtFMp@>z%{IOjBE`BL&B;GInCvGxEd$oOU zxA%s*%?G#R{pkILmlqbn(^U3%7wx;^kWW}F?!m+Txt*`MEoaQ(Y0GtVrM?$mH|2X@ z{#RSCUVKfOlg}c1JGm?`kvz?dLgj_edg+kQ|MvCQXIAK?@u50K9bR~PGN)Z^g>YoM zM$Y0to_XD1)z|GjTcvwMJ1Fa$Y~K}sNjE(BjgMD4wBho%+G*#T+C=a)WxGb<+2;g> z8s&d}(jydMO@Xrhl5^|1r-+x9{LWSTbDL@F@JYM@hRCzSd{A-Ju#K_e0RH3usB z;9rnW>-U8>HoJ&jxg0AblLd_jPVX{(H8UP zIy{m*_&X11!7D{i8^uW*hw|t19p0(^+Mn&%8%u$_lJBttZ+qXzt@Y7LeI0(f5bMp` zLcTjt_7micDgBPlOIz7Mc8%qDMToWI?I7O`DBDw7dW-q}F|u#;ZeIP1zfRKHmljTZ zyTYFW#{-X1J7Hhg%UU|~DDm2Tx+LTKJ%CC*GM~SK<{j2kX7`>(pDud)(i8d(0xILIgL`(p zE0XP{))98FdqI96P|mN&S#;T1#@W$bbsqC2YU9CLajn)ii#Dp08pN&BW_|GHBJZJwIM`$4`x zP?x9|7O3>M{ISR1@$ns%?_Rulw07Re;6ork z9H`76iYi@ySll1BcbHb++c`YVVeqHqyLs2J7ezam-%y)(c%rTk;pyVOUl{@Y#sHP} zy7Z@GpZkg}Uj5Pm&bpTnOXMRVpC9S3sj_w{^t@WL%*p&WgNm1jcs(_hh-1)gb_Y2h>x%*DA&K~Gsis(KSlh?zkE(Z zyru({e1COhk3)3c@84wCF+bwIvYCk2Y@kw)0!@Z|=JPMux^e3Dd0Kr)4 z+B^sI#ikcjpW0XJZ{7Dt?#3^So6zr8pt4TO>c*@R{X>3}GU^{<_-zPhE>LODi?+0+ z^TbOn!t8}w|4`fEY2E>U%KV5=?Y9l}LEq1Do1Q`APJ}ZDsMNpU#%B&wc-DTLzMtd1 zJ#(9X?)(Lf`H0sRppp-T$GZM(m`^6`YyR~N-W2a`Ff;gFa6bZ6=C|I%*L>(Rt()k_ zkJi@DdhrF2F9Is_%97_t;vDON4%)aii7$lw-9Tj?&d#=5=VKRJ26AGx^5T9xaSy_| z7pUx46?bU8<{z`ZbRYCv1XRY!`D?!>yDZBlzIDNZ(7nMztRcT2@(%#(0|}Cr6k2u~ z%CfzVe*H`-f22y#SPZ?E0+sr1wkP{=%xfJLJFWGbaeN8n9|S7pv-FOOh<9f{Lw?RPwJVttZ_lWIyHKzb}J+>wwDm#XIne4}E-6%bM>e_GXM44Nvk6}T`Nx3qK!W@$&m&&b9&5bRDx$tW3b|sSlAeX;hEM*>_|yG7btS@C z1*`?6;dSLt`hh1F!5??qAGxhZZv6#~)rij;;AKwy*wV+Ue@N{FJ#>Ip8Q0JcZsQj; zp0Gd2*jk`6kMq2`*SeqSpV2O@hkl!Y%KWzYkJ8`ip1LV7{GQxITc>UHfAKU+RyY5~ zU`f`=((@zcV^1NRXMjpQDv7y~!n2<<+J25Ff~Tph_Y@DwwdS`XJuBh60-~=EO8-q> zqtEwne{Rbs;~Sy(vp}W3^GV0wapoQ2vcWA-@9{>i?MMhWI}WcCEF)(n!m{h7tAz z6@SN@*CgH#w+8gTYxTkHc;0P&aJ%2Z_%5W!ZlF>hK6rhoT$j2?oA*brXLx;gTRz?U zvv@y?kDnvdDEP3TUctqwjE)7z&s~(gD3QoNuZIXgeQELVwcW4HX-DI{vHo_I(|+jB zCzbwo`o*{DJ~(2hf4rp+x9mn8+1i`i$yL$|2emcBXbRE9mLtNBFrWl~@}N6|VYT)8 z?|sDgi3no*CxS#cAtMX#Q~CRqiJ_Fz19GkTf6i_hno%O%o%u&^1dP^wQuw-)Nz~D& z2stjl3#4$mTh~laNf8IZ>-2(LPka|{Ni6Y0U(%mh4-s*eq%64h*o+?hOwN(jkMv9q zCkzo$$u=mo3E|7{$aG@e`Aw5{oV(GJ!M(k&e{;z4G#q4yfvs!PK!{3*!L2lr51pie zur#5ELpVy)(knx}mk0VKL5YY3Hi4&3KfF&BCC+f3%4#NNF2l^bhaxe@Q*km)bOmH7a9BD&bblf5$C@q4~>14)iq zkJ*D;z$kuIp1Ybq(%UQiFH9G|C!xIfy~1sR0Fm2YxMT6VB&>KK&w!E;Q7Gesd}LB@ z7(iQ$_Z}G!DKD`vPhL^;i_0s(a8^zZ(mz}1LFb*A_4sA@aGP1k{~YnY1n376@j>L{ z0P$WDVu-LJ2s)YkfsrkK+4)8ex3`Na9l{KUQF>6QGy=#KD2W(;e2>ZBb4C81!0-Bd z(&x9@57yXz^FZ+(3ZK5pSc@!ScvJ=i?m#M!7Rz!{Jo0D1Ob;NF@kaXO zYxzUzWCh29TKZ9XemH;m!TB%e3PRY#92n*sAkr;Yi>K6^%XrFg5igGKQ#?evOZ|X6 zn}7E$Jrf5BeHf4kD?&cI3w`K?N zRp;IP!P6AlS_xF2a#S89&@an6do@h6t2I z8OI>nRsWM=vq4+uCI6*_ne)i7+3r6h%%*b^%Fyq0CUKB6V3Py#3q$XVyMFkqZyK4`c`Rvwws4c+Y!JwaX5ElKX3Toju$@Vr z9KFQrSmyv^706!_^5-qQk2Y|{qYap%pU5fcMPG6|@Nqvtlj$xOFqMf{?CZDe6!9bG zbEQzc>906vq9rH%bwck;>pVgWBE|oV4G1{_lM5lrL_F!D?yvjU8dyo43XJ5K<-n;?Mfn7VfsY9xXbeHL`EJ(61x)vA#+I}e5t6yB)!nt6!HvG%{ zCugUx>;5Y0Lzx|rbYCB2J(UwwnNFl<=)x=3(W$2*ItdYk8AQ_pZ^PnmeC$T62dVG0 z3*vqB7nA7qR+g)a5s=bO6lSDi1Bq4A>XFCg0j3aPM&`Ff3f^qEf-Y2#vxXLjw25l; z3ut=$qTR?-+7D92?L;+b)JHmY04n+v6*c+RXVyveJ~t=BAt2adG*IzCzAaGp6XZ;~ zBItFf_b7-UR%N+twG2~ z5N1Hc)cf0L^$cH7cE3=21++>6%6@{Jfz^}b0^yGl8=TSVsi$XagwqD7l+T#gGw48= z{gl6^xo3qq`@Y9|9xRzA1?c4A!ay+&3eM05?<*ti|GC6r4>8Y?ZK7bNwR}O zm_Y_JrJR|c9C*amb5eXajeyk9nHO|Lc&fiCUz{Lfoz=fr(8dMs`@e1or#n!o?|~T& ztai|1Jnhgnx}xv@!t1-+dK)x2^h*ZT2NIY~r|dH9b3uP%fW~b(>w)j50OdHFob$e_ zM1&IiDgOfvy`Y~LD93B$EV-}Naf8u0fdTV$gJ{hh!b~6dQ~I%@P7|mdoHw6#ATHF( zSrgaey1ob}JyOrock5I8@?QvY{UDzPl=B{PdP?iTfC>9j8xO|v{*X@vD)k*3vDS<7 z&p&tNlkp71D-)=UliAXDClS%6ED5S^+xZxt1^u#t%DA6X9yYt zpkFRf&Oga12##siMZ(ow&#S`6FL8Vz!Wjfq>fido%jp8!5^MfmR)*=^rVHbPq2Dl| zT-PF}f9c91ABzpXyJ>M1ZC$E09|HNIK&4&UQ?i5VZKBw44DTQQ`VGhMe5mahHX8vw zmHyu*CjYsi%>>u&V6^pJosUpc$Md1ztw5zeD!F*jE??5cyi?6ac_uac%7C3D5dG6UWECyf#ZaV9<(>f&5sYQjffC z+FRp^RU5mvtE{aTxXt&VF%IEe1ytfE+If2`qO8^nV)%H3Qvg(eKlmNR&l-UK0}d!p zfMVAH<$5SNW36>)v)=RX7Se`}GEbvd9)1nvuLa8WH*$I}o=U{Q(tk#~G!gnu0xIz^ z7ytT^!5UP5w?R^St(?`4Ak4^hN&1YrDEKs$PwOfF`TGsF9*o@xRMt&P=4V?5R%>-h zsPvY0v61`r$Y|Ror5&&|a|kmg^i;-Ye8t1x8s--31XFjdooLH%g8WpV(%$*~E06hD z*H0g=zvOale$>WgyBjp7A)MKfdV1&8paWs&y}Kwc-lMH+wC2+xe=|_7gOaoO=k9X+ zSx4*tl3eRK1L4dBD&wWRhcEx$Cx{xq7)p63$yP4IV-bWIrJS)n$qT7HtM=}kciz$F zf6bx}FTB5vzMWUf1I5q%{MKE$4jQ*1{T~D>=`9QeSi|cPqqPeRIy;1!d*Dy$|B4$` zeck6TUfj6WrP&edt#?5FZlE&nPr9LVWzHHVr{7u7S}UK;_??hn2vpW>iq?Nb^S`dv zQJ+|?d?xZake?5%1tjQn-eU)8ox!@VB&g+kLp~RB^MIjwNB-J#-}%H4KbO@3dbi`& z7>6*k0D3CpI{V^6W{UYyc=?QeT|;jNqb+CQhI4QrF%1<%Wps3xya8JGkZFOnRW1YDUcxP+=a({ z#gA;Q{(izJZC+*YMHyMt*DJ#n>dEeUVuNPJ?k*`1}oo<7TJ|Q)8;u1`SXz93RK1g19~>K zE*AS|tiMD%9;}3T2#9{16<*HVwu2$Uj30U^{X^347w#qk=c}g^KgrhS4+)N8GgMHf ztnXI3{ED}H>@w?|PWc;J*^YSa04nu?b)0_6V54uL9`{OZyc-`um{HpKw+3HBL{tC& zcENXeJ&L}*hv$1N--&qb0xIhTg3x9EUjD?F|7N&mcZj#riRRc-&)xpfH{&vRjn=bg zUUFl9e&Ug(ugt%?kKkRjHMkuce|v$fEwDAP9k9DVe-CjEdOgSQ$pVSTVxQ06-xKZ> zU@yM+gVz_$8q!yszrF;&`@6zFzRNnpEe+M+JJOJiKlEL3KE4;^dprJ^{iO2CPX6AQ zUDJ>MQR~LBHyONOorP-gkwU#)8OYc zli>qRpuZ2~`wGmLZXlEHG{~g`Q$_l|+MkbE*m_som^5x5KmV~m(j7dJ6EeKM;4w%y zkiIX{3E!87aJUQy$kO?WgBAfGjoSt>-c1#Hki0$W>IDA*p!84vnDv+v)4=1A{$;%2 zCjNpgFAch|EMXAjNT&Fm-U}X62IM4W@>J`2vk!O@GJZ%`O7AekGY;>hFJCa~;%Pg& zX7a`hP7QkH$5g(psNL$rX_?|XEwh|(1+M^Z6NX=!!A*KH>!IUAR`3Hhxj>$#jihlFrXN+J4aiZ$EBdv;DUGUOJyQ*LvXg z10}CV@|4W}Jkz$MBH#Bzc+!n}Li!8CEm=IvB1WwCf_Ic9;&VDnTwlKtdKZS`E%g^X zH5o4;%NF7JfwElqWqE<2nYO7SoLpI6Lgml?zLIYuJe1${x#Iht0RkD21BtiM>zn@X zZ@6Qis4tBMfDa_g8}!iYqpW`($T{UxmP34B@=J)nW9t={>+oaxS>~(1kopaRen6rh zh;oVd#3Ql&lcAT!mdBbh9s{|>mTz@)j;Ifh!Jy9sgvWs87dG!B+%WqwD%c8`BdkXF?C@Q$G z;Qow)2U05*EK03Vu(*#MGy1P!Nx|a<4`viB?LXtfCFlI*Je4>9jHmLZ;Hea}2=P?p zI9eGWcq(uI#RyIxRAWP6rnBE-M?>MMv_-tmm+_-!VAV$fU$F7CTPLMo&#w*rPH(Pq z)_JPo_X|VslRotR=9_nV=`T<9&JVv(h#Ig;kdyPDnjwGo{;su*bkCSPZ9Em{xGO_m ziC;;lBebt!KW8J(@kBe0R=!7Hayy=iapoy<9Hq=-O<_=zKJU@TwQk4X(d((lPp(t7 z5(&qYc~?=b35=WG#iNg84RrVdwippsYe2p+P{xy-_IaG*_?zPII-MTAZbbv8^B`Xr zD9a5wlWsdeJdXAB#P!zBpLcTB7cPK5rJVJxnT2zu)AWlCJuc^?%-N5rh43VjvvBa) zAj(-qZGA1yIln2(vy3nK^MBUYx(LO3%6}a~u8+uaDUp;5)Xm2FJ?Saysjc?ka8XG3 zyd-4UMedi%_JZ^Y?K1?rJM~TInZ)J%OwK2j_RQ-`KtA}}XzOck*PGqezZhpd*dr8Y z%D&r6%PZ5m>Ku&?BK+y)#r%BIUH4RK=!^q|SoG^p;qi-!Fzh1R zDeJrU-Y?sw^1pbc1=6D>P|I(ueQS8HGX?tEwb3h37cs6enm<1c;1_I_Pn zME)f~ur*M&zvMLc@l}TXGw-g&&u#nZcHHCMUpvHWHc;uO^Q;R=^Gn(`$elHod-2|e z;(W)j%PjmZ$4}%8yzI2`Sq6tfRwI=>~sF`(n+lnyO3m6)I@&-Tr{F>OW8`D_h2e#n` zUd}eKn7vpi}L*l*r{hnk5&=aV(ug9O7va$n(-{iX9Jad@TQHG=RC`w|2P2p z|K-}e!#!_nAi^08RPudoOdXo9#4cEL>l0@q&It~Jd>&Al=Xj^3(7gd%@Cw7rXY}QsV+*aD5p~{(+kP`>Ohh=7fJ!~eZ}ueBqjuJnf{h}| z+4Ybw1S<2mZ8t8L=d8=WU2@yL+=zHhi;N#zzVAMR^|P+FyFzQvTJgz{p9)mg-HO*v zr15SCYXjnvi1m;ukiQA2wDW}z6ooFR4_`NpKHtOJm+03E-1^hY^>oDRW}wnPeA1{n z)=k-u+ITnm_=SfT{d_Duezo~b=ywZH$-iA|N-J{lbNTau-Ii-pM1VaBROVxzz$JT( zK)+#w@2@hJd+^={GnL;8cQH^&H_!5>KN{vU`!}W37_80vdpm|*=EI-bzEqv?rO%xH z;O2d|4siB2gjlk}Q<(>UN_n~Y!Cptiyd$ZLHouMKcR+qFP#F)#uDF{F-CE;?aso>Ttkklp6HTYq;UJ?;i7`Cj~K9*vXFoBR=fB1Kz&>FyYI zSqOhhKlaj*AkD|D=O3`ncMtS?5U4=Xho|`+yPSmwfB$RGkm(ejIW?!g&CwtTVj$$jB@r%3S zfW;%W9(`Zi?flm5xSTmWl{G>kru3V(0ZVfREx3+K*77}puY&wz!1_Rf*yUf)`2u^P zwwl%-xv%e!HmlwDF?Nf-?CZJMYj(;(Ar_X$|c)-##!!&+GlL(%Qk}l?yKC6AE zwL871PsDi1t)9<7zY<`?e0rdD6tsbse{S2|ps^9*JPWJ=B;a$mNghs6>mS^gPq*pv z9Q1k~sPwnRiw^BJSWmha_NgnhaY4MpQ`rK4%DkiW&ed}MryENB>&vw=-m^4w47
N4YK5_qW`QHolBJ_I|D9@!>&Wn=*2Dj`nZJDFhqgMPS$ZrQK`?tZn7shb= z=kEq+^~e)p*hOj2*wN3Ppnbg4D>rse)arxV@eAYV7?~e>#sUfQj;ue2vj8nm^r=wp z>sfB=(QAm$8$e|}Wb3Y z+WO*W&6c*vOJlM>F?F%b_sc58i} z4k3V7(3RUxhey<1{JuX`{O<27kd}pnoYa%}57+Kr_C$3rza_81GYclC^OIjsXmMA! zbbhzh`aPE_co`Y}xn1*~7ask){`ft1;ijU3b z=-C&18ksH<5pJ=J50LmEfe&V^@Sf7YvrYU- zLw@0VlGh=>E6amSPcx0%W^5kF6ycLy6q{GGIfL6gi3DA*bP>NBr9N50AL$kQNdJ_# z$sS7D0~Nk(ab+fdXUU0c*L~~dcRx6>=Iz9<3A4{a@^-vWz`x{&5Z{JbPXH+0lCQ#G z2PX~oR@NgQ{W89AJMooz%JS1+eBX)x0O2Nn2ZhR*5lK^OP&kz(XZvRQ$J*QDd6#F`cS^v;ZlCzMQpC+dEhbqnuT(dE#8}&{TP-bekVSO zZO7^+q?aGaVV~wLgh%OShvUKb`)lb-^7i`xpM+f~ znXW*Yu70?QpHrB3cFyK!a)tZ@+2FaL9GZw9#oN|PmJj(I;t`2>4-)TroWnUAN#w+ud(Pu30LPM{v(84rWzx} z_xNyu4Cn_+`!bT>lmEZjlX>ou#+Cnap3bL##?$#!@O1K$LOdP0E~)It`Zv7)y3wN3 zZ!dlJ*{#k#hn;{5Pp75*17oVc1^GvP{HI4ftAkhbT)Y=B${EjA!tWP^-p4+C+jqX8 zbq@5-kj`H_q#MK`g>544~64>><0%cGqCDf!?%68y$z4xM?$mKRbTyDWBg z(LgU2`6lP@66xpQx?X?ym^Grhp{sUpV7sWxwW5a=l4DOs&L3oXqj$0EhLd4sDlPGS zT50puHjdtPt*_7{^Mn5MB%OCkl+QEgIOWk6BKs1x#UHE=P`WK==sbM+@88S$o2<`D zKA6{yqx~oQ`9ZsfBk}*@>6o|KhNCTy>b)(||1^R@YZLx-o+ z5dLJjA*X-HVKVq`KS8bCjeZ@iY}#Gs+=JXWQqSVH&8&Ob%JP2n=<{7~mzqMq7C_m5 zTF&J5sDJs%5&d5xWI-?w(g%BI)@IFSspVB|%-92KbkNte+)m8~39D74TEZyOm z423`0ACl9XJDB(yZ`N8d{?1&7XK0JjLPBfE_XjHdO3A9MXMOC#^!Ym*Wb%vfUO+N$ z19wND@;+``$AHf~y(QzT`u#P2NL$_(@*RLmIb#hw-R2WFG4yrDsX{EqvFFwv{*-#1 z6r6Ajk&ZiUNbtO(Ob?U!s-g?~ij+{q1p-7s zSRp_NE%Z?2P9P+KbRZD=(t{{OM8$$GSSTU}1QkSG#DWMCigesnKoC$ON>MDK2#Bbw zh+_TzbML%!cXn3)fB*YM<98n(-pt-Jch1b5nK@I=97(T>7(eAl_z|k8jPLf(112Gz zWT2Ff{2nvN?*0d3h4iwbXW89{_vUfpZ4oPEl<1SN-7x31&VnD1-XBT zzQ%c^o=Q7v#nM2Z4Xgkp;P&&Y$;{)?mWq5fvFvoRKrf9)juCNmzS($u^_BkG!7@Of z36%OXR?BV-77y0T3l=Q5)p)2T|&p6{AxSC3Pu)BX4>Q6>0 zPsd|l(D^m<@hk1Ye)}7Md<_Ija^@Poi}vN<52&Q(9pSbIwH*xte}jQy-GG9QqqEOq zd?@{S<52K73>X0<;C@BQ_CCJ(QYU4cw%ecCmFoyL0(^}DiupVRUB>xe*ME*b>nt-^ zv2Sh1T%aEbl;&}shD~6<88jAf^D6XHqjp`d#ux}VZ~ z)cJIjWv4R%@uc*!%ANS!tGOQ}2LlUD-C!6cgnzZwgR49~ALi?ipP>Wo!tP{{0nG z!QcHrsXr+G)c3L1t?$eF=wyFueU+1Sx9&H)8}X#}w`on)WnTA=2A$tM*3;TI;ABlK ze=>I=o}~9UUv!{9^Vd_>QJm~f&`$$Oa+dW{JvvY3`0wn*rF>Hg;n#bxoQ1!B7MxxL zy9fEY7bx}fzAyKk_L}aoZtbb`^LE#>{Q7jHb01LBd)VF6ggtxd-$&~Pe-8kqa&eUX zp6;z)(_+c_E4`HYdppZcXC~rF^;ER~^()k0^L;1jccQdkp7#1rEyPYol53}NUz^E( zK?h~t5f@^oBdtr#?)Xlx2wN|-yVYH+ON+>`9B7f-@n(1><6bAjufs{#_1Mp z4(R6rrS;Fa5ALFJ@zDJ$OTSh0@`fS)WW>G#eP-X>$?x;>3^_+{cRaEyFA?lfn5Z*B1NUJR9MUx54dCV+&CZj{_w=EB}mP zf9C#owA;nt?>JD>L)hml%dvf}v?oR!pK0CiWs=c>rYAuEG*D`{z8WjO@aDJs@%|pe zr&{|WJYFC6B-t(x%b(1f zh$pT0~uCDo;2P%zxj&n3yjsl+#8kshxTj*=wAcY01_0o zZ$RtGKUTOdwrh+sjF6OdF}xHPN39oTbT1{m$9DpMTwQ?8%PHNtVwzZ{Q4LKYCrhTm#5u& zcnkU41*`%z!1RM?{NYSf)|3DF{OvLLpl3e^`Mg_Rg*W`V#-=P?dqll&wh4P1^zQ&A zIgFXM?xfXjuf}^0PPP}}eZX>o_dli{qx7_g|A*HxBiI4t=O9q(m)w)0sbAV}%sW~r z_5SzwOH%z9oU!-7-v>ZdKHY|1x7VfUOAXl}&>sd$`tDCVTa{t_=jMuD;9y0de;-&6 zNZ{%4zBq?e`u7FfZSNlvi&PUFq10{7y=_*w+h=BAsJEslRsad&yXr zGM-4>MDd>LZ{+%YD?ip^ST-|zmFUEZewyS($H3)Q{%#jT&dp2-Hz+3{_|XZvt_j6I2r=dL~bq1&NL-7=H7 z9az;K{CBqwyA1}q1pF?-o#B_ICw>Q#UEP)92d?ctEt$Wk>*6%?VX!kv;^BSx-6!}E zh~J%{^8sm^Y<@=A+ZBP%Exs@4Qn{U0jXs=SO93kJ>3gRA%0cnIH@=UsFN5d^)C1^h{w-ywS~6X|yonW%R`4|}^Rq3^lfqL3Tpi}Ign zJiD`aIc6iDMH!GwQ4RtF@eCz8Cr8LD-ZLTJLY|Yjy!{3{whR5iKalJf&3ssXutYjQ zvI{ir#*St)V{xtCEaXd+kI26p{?>=VBaLH!_Ik*_$Uqlxr@xuf{^ zgngi6ED!rebNnyu1XJEl9rw4}32y&0JHhSTPVjt8z)o*6wPYvQ6ZBUF;`wTm--m+7yM5y8n#TqOe%CbDC`(^zf#0R{w3||I;flbhz8#S%;_mwMwKT*!oyv9}YhjOgALXR1@f6_Dfd_E~YqP`*# zUxX=GkpKOcUaeWx?d3Xlwd}4qSzv$qTEvs*mls@Hy;_^^?mN@IsWNYCV%;ZLH8fss z^NX~fY5MC{?-vUHJY*SsmxJAUj|j076!J#jjr*hwt;d^BN%@Tn*a_C)AJ(M$EAs67 z7IIel>rg`eMZ1&wiQ+QlzVo`L^f)_yUz}z4$g`u{Tz?Gs^P;ZJe5wHnihr1SLD$ZI z)#l!qM#?>-H(K)A6!fAU8$r`=`tu`ydF*ISW#6Z()jmY|OZ`$&n~`+C-iLc`Y45IJ z`IqCL?`+v6i+vl>9_c-|_cPal4=VFu`}0|Q>jRqQ&nucUt~r1NY;yVKbdQy>&UQ(! z68N3|>d3@8!VUOc^oJBox!iXb-N(=OYo&bCtG28G=$$|*J>R&Ge((x^7*hKp%IL7= zCAhtZKYteE4`<66;?GO;YxJJ`GcgHwDCaYrVe=Wh{uq9LCbci(z^^yv3~Nn*LQW~@ zUfty~`iXstoZ0UO?a5jA`xL?X(?a}tN$-90Ya9FY##8$Jpxtt5$uppJ1WNr&R;-8Y zLmhObP8-!8t{ZCw`VK&;9R)yKGBvw#>wo< zXB(u`9w_w(&OdHHOy_HibE1DJ`!`XRonSk}li>Wb6@-0nNuAIC=lfl|^3n+f!GKb~ z8@RtLGxWZKc+jIm&_q8>KM$?HunKd}>^t(*?`=c$v(AXu9Vm|j=6=y|GMZ_D@>`TwD*QK`LvtAdMpwAO$18gEw_9AbZLVp zE{?VOJxprqGv`?N}v-&=ggaAn@uizR_R2Png+2<-1aHr$#I@%M2o8H6c7 zsXRSTlbkVAth1GKKz8qi_UpZoP8Lv-i>&g$UeMj0`)ppjx?{+_3VlGI2^4xd1@(&S z>6{^15k$VG`e%w}si4mQO5;&p-4+ym{;Y$it#LY7&-(k% zr3UL+cH5ENcz!(_1<@BM>u2A2zk&U01!aB0etP|oPJf`(|FG@j-bDAW_JiTKTj_h0 zf?d7NZaj?*M7~A=uK^O6_7&{+}E8U0E*Zh5)7hMSCjmoY#G({fJk`_g2nn zH?h{Y1|wc|AVEa`Yv}%?e~F#TQ1CSZDCXl7Olh`)>}HL})k7KIogx0bq<$j*v1Wd+ z+fdKmi&Mr2yX`jodJk^5k<4XgK+{G7B{@9Ys?mr48o3?~{>A{M{!JsC;ogX1O{sUMO+Lf# z&!q8@Q|gyIFE;;LXLSZg z#T_23tb^UiZUOyFU>zWV@2+dk>h8B+Psv)*&su-vue-2Gpql}d<^lc_Py9jg=$Onq zeUx>ncs3dI`9LWjraheYW%p;BRbtkcn zoJEG%35s=INN3fhZta~n}BR#P`Nx>G)8kS|6_TTyW3@(@O`qbz!^f6AvI?4+5ojd%@Z803ZKC{6X25GrN2~4E|;TCHb5k zyN=plu~84D@84h!_}d7S=9~U?x0Pf5|BRj)_u50&dORmfw(JC-Lp)h8cz*l^-4`D{ zpmNVi);@(v=1#QydCf;Wsb9LXbJb?AHY20%`HjPreUf-K5A=@$rFt){@y#b*XY)E0 zuZ-)yLrIg+NK~ncaEcPA~KI|E%KpY-RlG5Mn1N#fz`` zq_DdT^*0x;d8FK>4We5&{3*)12la;-5B_*)B<+O>butH0`OOWZ3rEFG<^*R`?yd96mgazFxy z*F*bb6>o}7tgFuZV=X(u6`+^&EY~mxt!H&N&P{hv=F{QtQ%d|(3V!_sr1J_;>gNlK zo}+Wq1%^LhN65O{i=bZ#l=KNt`RhL+yDx*!-xWEFWG{jKWuQDh+*Rfh>b<1)4a1-J z2bW9uavdDcudhPBUIj|^=jpmb^w%YI4&8qK)_}j)fKvSxjY|~w6gvOmaWiyWDFlD( zfKtEftNApogPBjLeMPwApIU$GkgX?`j7S43%FUhMIyh1dy7>$`=s zem>{bjP0>*w=3%?ks)@1l6)2ne}(Q%G9Efu9h^VA{ij{|^y^zqMl@|3P};xEns`-B zX8!EXRrs`95BBr-S9S~A19l6?sqbG~<4BR`{Y=*6m#%|aPEKXjrjKz|x;L3kS$=)W z;}7=Y*=4ohNhZR>UUYr39=`-ADp&o_7M!Rds*9pO*N zlZg1hKRI9jpA#3nYyL>G{P$EmaO0zeLz7wS9UT>tA z!ufa-?{C7n`VC2VpA1CU0o25Mpi9sJHGzG2e3pvu05yTx+&>2`J88yKoWvR%j%=!n z@Am-T2vhl)bZ&ttf44|K4d`Igzo%}~w1YU;m-~Bq5Oh?YtqpPiMx5uz?>_Mzpz|;CHj>6|L%5i6zB7W{~pg6{(A|X(|@H-(sh69IsGbm zTT_qx**X0q{G9$%tpfVi+Zul){olFk{4ctrOg@2w zO{m=RH}{>^Iy{dz&f0J8f$vofe3z}eT&CJ^f#2z`p_U%g4!_q8ymw_J z9QGFE*WYpW?jgbV`)KLbyhZGXNqqWTY?>leB{d$nBS=9CjR;SMS{QDK+&Ek zIPH%mYTTt-B(?i z7ul5;yYsgQYhR!N@+IV(g6F%;I0t!A?>n~3r(Jo`tozH_f=?me6fAz>`~T?LoblcB z#W@hv=kU4(~aHzn-Y} zXHD^)7@$-xPx)&3t$Xx?*So`Ce^%48+ivZ}^Xtu#FH)V%NA!ynDEOc?mFIDOZ)0%& zB3TR2w**S<;rPjgw60sCb~$$2gWdM7S^j+5Ab-+09q{Y&KWs129{JLN5=?();&HG0 zscHI@I{hs@j=yihI)JbnP-^e_l{(V>!^XP6>43h;$r`ebpzj0}`VR#?oqCCN&zj2k zV7LGD>+wjZGf-L=yn8_Twnn_usObh-kia}z1GryBPj8IP*>{L^yn z*Kg#EXx)KQxjeZ2i{rFEVmNMZpp3WS@B0PoA@=K!fxiUcH9&&G?Z?Ugh54xaY5#nA z_5@!ufij=_p8iJnY<+!1_SV6Qzpzx62>J;?sU4YqWSs4W{l2J7KWn@*$=rQdFVGJK zN>H%Mf70vAIJ z!AR52*EkpXFSzH-UcCqW`3yw!Fid$Ey_JU640{uv!Bxl@TQFMbJZay2OjMMhz#cn$q4gSUerSW0f0zc_> zb!bZ{*{O^V_UnBt(i!(x<>FaF&(DfpXLme`u>AStAw5Z7Dtw^)7yp{^;U@5RD^QaA zf~6yA9YrUH?UVW|=h)k_iJ-q3D1pD`w`5mkJjDZ)`m?Xs-GT)2fl_;z{o3zmb$)+l z==r}%pq~tsZ5TC$2XX7@^A(L-V*o}_|LO)tyZtjei}1$>sh^`y z+U=L@*F$*q?z>Sf&j(Q+D}d5`%voG_pYD3%XstopZVvVfLI(&Q0(}8c`mWEg-*eu! zXwrzQ#w+$wUD(5*pA#A{;@x3~z0Nvc^&I{C5M{l!9-9UF*`e_~4Q_;-{R{57o(ujS z1xn)zzqjA;M-ij?3yZYQ>CZzvNuC_t+k8XvX*{JruFN<2(6q;Z(zXnixae5cXCst(YCFrH&tk-r#v|>Gf;GBkj7P)! zD|&e>dmQwOfYN*|cWJZl(GQmX`Nk)}-x8p-Z^-t4Md!m)Xy9xWqx9F&A?Ng^`AXEq zsx*(=N7Jzem6Z8=`17$~d9kY}Yiud<^)yggpC~SS)o!bw4^Gdne1<>&Q|0;@@F&jc zOXca=xSjN5^G4D*r5?f`kAl(3#*=Yf*m6Jg%l<1-e}s)y)H9?&lbO8Z$^S5KvN zFgLev3!YDhU!KABV86YGH~t0AJPQ35DGCyj_wu62LP?AsoqWR)}()X10EN9sDUNZ7&S1<7E zRM6)07Esa)SbEM0UGo@zJufTeQjhsS|0b{jkRW&dVPhTIcuId?CfxBaxE>c z5Ad(%#li9H_AmDJrM=+qL!hK@6!-qBHZy+SGHgyrd)Np113+oKjr+aYUaw|Y3JlCs z^!XU}4(Rs-rFNTNYiAjzT`>I8B`f2YUHPl>%vc6)Tp1h&~xtJE#_z7i%6MeA|McsJkWLXW3P|AoVdFN@JeBgaTQ2tH>@fKHAe7J9 z^&h5t)=Z0&j-}3Lxa~by4{ZEFPY`xyBMST~=ka5+KfPvLY zQfhk*sMT-%tSt6H!#j=+`z4(fwQ_b`Ob$^#{UGANjo0*I$569KD6#U9P+(HX7~x|u!s!GNNcT^oXqL=C9xHckOfo2ByM;yPNXLc zxeykHP#WS9-=+hTb}2CYN#WlUhAWoC5zq_6EMbu4P6glTaI6AHJ(j_e$bTXnVhBF) zyHD^b_z{j;(!huKekKnK!xJ(%(Ts--P{zE|`ib8Tr?GN}$L7?ZoW>rR)*{~bbvkQ$ z$Ec=voPxp3b$vKJ8DbgHG-q#)!mx{}`A%WG;;QV5o0rb%iZglnTtK>H5JX?mG+K8w zQGAE&5V+$M@NJb(8Vt(Pxxv~(d{-Dw3BD+PGh;n&n#f-=GiFhdj%;R_<*i_u!H#1n zeKWne+2EreN6C=M1gA|m58|5nulWO979?(-d=65uaPG6pn!=m0$-lLKs zPpIEwpfEsl3wZzvd35*S-}i}n5Qcrd;a~*6TkzbVf zLrJ_B`4{C(21#7*!M`t*FSA@@MLGgSezVy}bDlXq=X#WjXfITLyqtRTc93tt8QlKi!|7^XAib?a8}Uhq2MtMo>i%R}+!wIKYt+=e)(n zhIG%SR(|;FdX_>T0s6>5yn!63IH>v*PW*(!1D<2pe zwoz7n@z2(?E~Jvu5h>m{A_f;){tG7F)xlK_U`@d#sY^9tfAngmi?i~U{PWj#CyIVu z$gxOAgz3BPGM|WYQ4RjWm+LYC{*AwwSSS$(@TB@!IcF(3G%%miUjPvc;`KN~n&6v) zg~JEZ0kCcHuQh*5JrL5+G8hy6nCNGW&%89{AUQNxL;ccj#gNW!{e@o-QoAHh{JPj6 zs&6nxk5o@ZU2D;X(Sy&vyDGE1GBLHAp51=QZalw!1J9P_I77;Rew^o`*FCG_y?;E_ zNf}qVSO#M)5&s$>f#btLWXNjRZ^bsT`XT=!!!*{Lij#aaeq zO%YGDdkS8;Fr6IUxa%J9^mi!zS*XF77?&s>cd+Aph#XRXQ$liPcYM%T4D!_sDD^K{ zBR`~z>mOJL3Zw-;GoHN#knk6Vg88&7 z*P7+vpab$J`fW3RdHcOue`9J;&eC%@SwqXQOIyT~z%|Q7hTZ0d`vt|ouwID4n3SF; z`r^mvulFen`Qi5y!R2CC&ir~iWT-t*YDbRYsaJ4e=l|-(sT%8qe8mH${$@Ih zCFSrYe7TnTRpKnda_n*s_>}asr*a)+kn>povRfxiWMY0{lF@{;E9h?mO6@kQL5Fv} zt}2sbYri{MF&s*_9J`D~yaqr5$1`V+c#F&QyQ}HY;g&%*f8C4S2)dy_X?)kpUVcq? z$42iNOneFbl#}&j-9euWycS5{m>zw~>+03*rbo*6RSv4%$S?qC4D@vZ@yr9)jQlvQ z>mIN4gW(@|39bjfo`CNs0fk;k!K{zllH*ImPB6ZXHUHvdQLG2(djW->M!_nlM!k(} zs0M}())VxJK&k$U?>lg~gxjCp{?o2p+l{BO6qH9lptSMhpOE^I*GJcwUSFn{H6P++ z9a(SCX90yiNx`BKKam0Y4YitGo!MN`3mURMpw9$K{lvyScU~k1h{gs^l@K{g1${6W>CWt9==1!-)!^|qe0?`~d##&Qu)((Bxx9DABJ zwu}Sw6%{#)W&=P!5Gbt^MHmi%wG!1^?UrYRwZ1hNd`fbd-)knxH8b>U^#FrixwfnK z*w5cEU+k^%0D~l-D`EF-ormY6x<#(HUjCmfRcWe6u0touQte7cdMbu zi~aF$B+?lLl*aKbY3=9&h}p&f_?vP-Bm8+saQ^)IXrwa+D9MX|@OkQYO}Q?8c^L=( z#)p=RYkF;JfBaF_KkfIsdHCQ2ptRnzW%>O(p%;|?MfwxL-z1i_ZOro>l3Y5KIrcZ zjaPJ__49P`4lTDn)kV=mT38p#O+`GZ-m|*I(!4+G((8BMp&krx65`lJ>X#gg%KZfS zEUAl`?e@EV{dVN*4xlt{YD?B_r}j>UC(|R8b`*YpCiNebg8hDJ8u+^lD9y(_15@b$ zW{F;CV_#3UtDoJAd@TV=^$_!0m$N$S+3eU2bH^}AKOxF4Y&z)OKxsbaai*W~`nq@N za%a|H>*6;~){)%@`ul;Bex3is&16_pq8A9*9pC->4DdG-D9y(_pTGC9*B#s8_cOm| zSo zAi8KWc;4t>^FjX@P?xFsB%jAu6_X>2vhz0Fb=CEX zoYk`&yF7__Qa|C|U++1u=8C#?^kbD2y*!F72K^JE@d}2uGaM-JdA}qNL>d14NUB$g zXJ7veuO4QH7_x>JuOP%=Whu(z8K9*1_^MAjsq>Ato{C=JU{8a78Bl8PMFlNr9&SF4 zQtt=DE0@6e6J&=yhd(|9O7nixQB{_&?uGr|J%ARUpzq3lN(wFV=p6~lt0!e`m*je4iLVV7$Pq(g8n6- zRGzL5!#*PeAmf6=bISUXU41v)eks(UmOXj#>#rbRtASE~!29`bhT|IbV!cSV3iPi6 zrS(?d8!v3p|JMx+Uqik&0Ht+BZV;YDb_5ffDE)jiTMPO^pw!Q6*EJ%2BF{LHtX@E7 zf8MbU>8uAz;{ewSG`@Z&>4`)c{`erZ6C(widTRvR2>xCNUJoSjjXNSP!YK~XL+r}+ zCVYQ0P@3QV_Vt}~J_H7^!R7LIw_CNp4mft%A1Dv;m+QfYNv|`WG5wVFkWhm$NuQ4z zwU+jQw*H>*@csnl;@nmt24j+Z7P{YqV`NP|UuU=8?aovE`Wt4(HEkDAoDZU)uao}_ zUDW&S!U|WnQu_H=MhcPnyalWXBygJNf{Kj&xIYv*i()>|y$O`|@fd3&^xe|m_qEp^ zG|OOYFY*@wB;Xf<#T}&seGX;*P><~a-P=HEd}mw#L;9}yl$3)qyY0`f?*o7D0IL8A zicJIN620KUu3X!1M+cFgLqJInDZVE17hT&-_f~(W8jMAU7>r5%MDeHouTg)cf5Al& z^7THj0nmWt@ArDOdB(ndjG~`~zs?stjzzG;`2Gh#Nq;GL;mi0sya?bm7G!IojH|lB#K9KDAel)J@J;M0! zWbb#;FsFSr0pTn-=1Sp?vMQ(G_ug=vl>)oF-q!D$`M@6T2>2vBA#PVB!b(19x@x{( zm4tG{dyk+4lKq}(zjGvzKc1d=5B^v>_{jjKvxjONJ@A7+oh?84!Z!y-r?Nwry3xPh zY}WU6_D_sSVI#M`TT=X z9rXb|ReLyh8q!bY=+5FO?9qH#+}^7V?5)lw!(J-1d`)|=4Ja33uVvYjrL)fF{p>;> zx}*F>K9YIg9`oPV+_(~O7g zvC2>Gn6M`a=~DUSAMLiHB9%XXFX~6gTOW2^*#T8sHUvL@pcAM8862&3=*z!j(IL!$ z8qkM$l&|N#k01HIV-`EVksO9=S+M6*%Oxw=UeYb%58&ysT<|{-h%g=78?tJ{i(O9S zvYW1creo2B0qpl@RzK0Hd=7i8W<;Z}qx!K2S{|R-G8guBRWjhHEi>58PRJ>h7q>U; zhxXkM=>gpW`&#yQX1(=6Jy1PyJ3tWzYNDPHU;BU931$ss4UOj%@?R{{1(JQ=Trz8X zCU+p`^Cr-FfEvolEy4r1W4UOQTLDnm-T88PKeZU~m?&p~!(b;lgqMeir-^#W<#wER z48?oU#SKIG0m&ZEv|GG5lJis6#ov>CpIPpghV!s+^yWjn|I$wH%W+?({jGL-mB_K1 z_s{I~yxdN2U$ek?F7}BUXx5W;sPHKHpgy+tm#x#-H0x*jLvrjU=E;&CnRVL#wYTtK z{(zJ;~yt6u&ZG4qyKYUSF|0|Iw^<459x@^-z51ir=d} zS0|~~*2c=dU^{EwM9h~YJ>RwVdb$Ab;Goen(rYMssoi;~-Te7=aSq0TdXVJBzo`qY zcNou>YpncmvVfhQkP|7M@9G(d7h-Q0e*H=1Y$R!O{ZF&@_aiyunj{xlS8n*qtF2x| z&t+Y-7fu#qo$s!Jcy)jT#rLh)%F87re|Gt_J5TfLHNlrC|LOrgoxW|fzUej$WiMFm zjlYf#vD1^v#dAYrIw$5k`deYjR>fW<{PTfj1ANe5PMh^-zg$Fp<$w>--%yZW=sBS5 z!3LW~vR*Quz9E(!K|Fr16?k7*6o07qO)4=caSEjW;)f&H7l-~c^{uQrz zU*cQYmOS#;otc=gwgSCWe~x;GXkT!{9bNu-GhOLl+E|X=1Rrw!B~?1%^%-Kls)u4< z+lq(EB-=!?M%shIo~L1cj?d zi}T~9Uw_@f7te^MN%C26RT=7+%%}AC6BEE^B2el_ieJ6^oL77NQ2OofGE3hy$!OuV z2k3hOg??uQM@&8Mb(t%6y-H~QV80&}`coG8l;kY#wO{B0yjlCJ_It9mGT-dZl0e@Z zDCQp&bVM8?dtO6r{pAKle`(K>L7xJY#v@nV!E~>|ZsR;+NnIFhzg+r&zjUCOM^Lcd z%#YvlYB#@py1~#0YktYe+OSm6rvasTW7m^uCv>f_O1Dp!eya!T*Wv5sSL3@J?2gk8 zmVxhN0;Trno>E(!U;Ry)KiD6S!rgxkE|+>N8~pVJO8R_CvlR!uT1`X$Y^aQz_AhSk zhjjV_B|Y-^^~=aHQGuansSZcNuRp2(Fj5G6UKL#L^(;HR>EKhI2V8gG0n&G;AHVOY z%bI7HWVBE^5cD?zC16dvo%Xuxy}O{?QPr+Gk>!GLEKr({?YruY?{#w}xM@mAdmjY) zF+hn=?U85Kc(v!(b#H$(PMNQ?V1q$F3@Ej~s1p;&5oZ@;N1>WBUx{JDPI4&XiS-R5 z_|px?z5Kj$>Dx062Y(}h(m2g8!u|_68v%M3Py)w~v_7c$495)nm2-u5_q*-(FB%&K z#zq4rJ@QQLSaC1K|L!^Pamd#MsRG2GAHG5M6y^?ICq=)G3UTZv$>)G6*PVnqjhFM)O%qXhS=#z`q{=6i#~;%6)Ad1_~UzUxr8rgcH>EM zL?z+Z??8Fn1(d+Q_T?XSZShY&f2)=u?e9(yP6JBilAHYU7rN%FUAgC(-L}_5?B%cI z>>KVuzU~D|^5UHT=!t*Lyy`yiHv=f?pT*mCx<6x2!?DF*c2vgqhU|XOyF=r-=iWvR zsZ4vO(w{%f1b?%DlK#fe$D8*+h2HP-0O%hCO7avt zy?1@Rh}whs{O^v_bC9oXz;ZwWXWN^8(F<13c|jVsVDmt=04U8HvrbK< z`Pl05vwUkZlyS2odldBZfzo`1uX`KEmgl!o^a=ap*keei04TLvhkixO8%uxPW+C`n z0+iMV3r3{U{&duL2P>>`D*K}CEIYj?5KpRyxR36o^YL-Uk%!7kzZ7lR=`BV)so#xz zZU^b*u&0pv0iv|4*V(Nf|wqcjCJUe)UU%Y&)|9pUp|B5*=>J*{biKHDxlO)JQWi`_xT#j zS&91R{HK2bDD6JE*7e9Z;>o(50$ESq!*WvOR-2ODnPH#QZljNG)2^qf^H&*J;$qGTg z4k)!F&D=+aJ$7(<;g1i&@@ZGD?aRwXu&QP_Hd;h8nPXr z-wBlDvv5evE{uN-mHx%9{b~69OK^J#KVEQq_-i{1Z@>=Y3e63=dHTP*{-sQoe%`ZiM2pTn@q1#hy~FV&{yR(I zNYe(*e1I*0Y{&b*bzp1JM4&gbg&!S~bI zwZ`*U2EI$jo{Z7^)^r|rWFVgilfN9zc*t&mpL5UTVLC2l{H$4iZD4oNC!7DSob2@(o4=JwmLg*UlDScN))6$^1NY6+xGX_q{ASUe3v| z%MkS<5c#$0U;Lf|J0FoR_>mF*p2!`CWjatrwN z;dUedxfG2WH{hUW3DfX8lG4ZkW(5NF zuh$>v=X3abvI8*lNA?LOy83Y}0&0lwLD&uSiEv+5$1w0Y+MiV#p7G{^3H{jYS@cxM z;r_eY41j%t$QR_#g?2!87iPMYKhs|5Jos@Bgnhz5ya&>Gf79ErZ0-go1gbsUP0c1yoDKgkEfQ&TawH(SH*Q+}#P+^CHUjT?yit}OAoPp6f%lG0Lr;1O53DWtPt0g#eJt71J1T&_dLUlm z`ORN@srFgDAZ~hFu zt@O`(U89soWFUW@8Hs+c@59F{cN*VDImcml-`cNVi|>ncI{rR0($EL2-e583tR>jPHy6e|#cRPEL14O*%pojPqlH@Gk zQ-9{RER$Ek^m-9Xo{&;6+7Db|Y`fe+E{Dd=-;p!0M6Zur>$bEw}OA;(U{s{|zA zez}ZraRp_a#A%%$Y5;nXz7ecFXeX@~bGa^y_Z-5X7fR)9L=C%Kg5x=Z6y*MkZli8uS!=6b=VWayzZx-!C(GHd?WsRAHK0~X{WWAw zK;IN7$*=qNGvrq$j-Qjh8t*yS9XIXPUxa0+&;oo&a?j5Fb`j%PbxZHyWR4JjLQ?*G zEt}H))%;QP0{i2;-G0z+yjI9SYoMfO73QSUc{X$1>0k-%gM?o$!SWKt+JL|IK&k%x zw>QMO17B1~{j~*sJD}7aij$Yn{U86+`viWyBl2}SQ0NsD+!8r;z3%$Rv!q|4OROYu zDw@c30{w8H7(Xf4zRl0H9#?y4$0 z#wFCB+1)45EPq0MLivnoeB<}J>AxtilQkdWWHBre^u2&WPd9=;Mt(?o`73eX-50IQ zbDG%H3nDB#1u<`z<$7fmIxl2A?#jx%!)Y@;hviSGxA|dBlk_a7ugMQO|M|Q!f3Uyr zVz>R-jhBXe4FXDXtwr>s^B?3TWb`u`id?r~>7efql}8pq$CGQ(zm$Hti~xT(0qXz> z3J%=-nb&=F3bhG@jxkF@sJBNpEe$6FJ+z+%|?QL3{aXM7A{*t^CNR- zKs^r}8Dgg()t}FkE&P#|{<_UrB-Hw8BIX}Zb<(p=T{t{=|DNIH@NnSo&`VyTF z98>(|(cc`3d^WV~6eb~_B%iKNtC1b4-?-;>ML*v7CU1XaR}wt` z`}@Z~sk{u%*lpl%Dp0D2R*&~2Ju=ErM1EJ~%wzwmQ@%jZqb?3WpAcT9eBrh)z*pwxdlhF(YIl2*S;{OMS0 zzk!p*vb#WkH&9wiS^k7(AR$T43g(~wi25_*`6R?n_J00Ca|0#4_59>mx(5UIrj*5d4&lpL z$+SPa{d|PAk5~ZyB|XG3U?%B3Dc{{0M;8=IdLmKATK-CzALId``J{4E4Z>l(8kokDj1=5w90Zezb(!tFm*xn2bRo(4+m z6Q-Xmch8L{FYQeUX}60(zZ5972hWSm>73?4V;`tqh~D!A=${1E2NHOyjQd#ERvPzQ zl?jp0aPt=|pAPmEzP|)0%^Q9B<9|mzl)j#9FMkni8S?cUumO<3^LSMuX9>zU?O@M< z?pdJRj&e`U)%pH(>D$GJTP~_xFGs#U1eOC5n08+N&vq>Jmv>wDgz?uYA$AJV`uyzU z>o0np`@1a|xOlvxpY^c4Zu0{8`T!`+JDlIIEzf+p1yyEDaasGyCYd{dy$Je3prqfJ z_u=_!JXY!9_j8$CuNv8vy#)F-K&d@!8FZffAsSDs-b%Z5vX?=>5-64T%B>rUc|3Ou z+wE5Ro{<831?j8;Rs|BcZ`fnZ8|nFz{Uf{b@~ZhkOe(mH&FdMW4{iYcCZIGP<(B#In65RW3+FGlQRF&0#GjC?pBnc(^3RpNAGgiO*EXP} zpSknyBfZCbRR3B|wgvQCfl@s<>o`8A{E?Ygu2t=_RPO0)#ohq@o4^J@0$1kQw;(T9l=5^iywH50j|{|n zZtA2eOw;}y{fpiHa~JZn8z|{@?zzox^J?9@mYvk1lcGn4zmKQZ`yQlo5LgdL;C`qR z+1D1+$?v_5l=Zr3_BQAa0Ht*e&og}sX&!DE#Qdb3pNL|6LB9_u>B+7k*+#t^hI(g| zdbc~@j9~8|o&7*5e_ESiv_5D)rN6FkS6<#lzKVd-{C!dH*H7yF=Sqq`;b8B9{t!^o z3+ml5pUy#;Pw9_;?}NX?KuQ1fryisGXa6O9+O5AM$k!)8sXuqDEc{LPJko00`5w22 zwD+T+KLM2biI_vh8Z&<`9ITA*PIe6R9|NWSGv0CV16?y5$b8jH*|(1j@h2p;Blj_# z?h7}cx*>9Aw_L)F7rb6)cO50%@lVsF`k@?0uuoBrp8+Mk!11et_K%F^-KzbS^$ELt z+F#c&3^D%9U()B2ogU47UXB0Znj4m6vPLI5f|)+J9U^Ap$}XW^8*Y6-C8 z5%0x!RKG@vJU&b1NdAX3^GRjZdPLmtU_lDEPsvHf@7Zim#>L$k7r{qXB7c9RCx1`d z0%mmbr(~i};hXYd+Vj**;qTo6zda_surn0)b`n4Qz2L78k5BeD=BZNhmt?-zz^Aa= z$q1H3?6nX@wIHWlDs9=8JPn6 zrzFHjd28JfuLtL|Pcqwf{(0(%1iwh9Sd z*bCKvT9d`@@Aqt~^VbY!WMkCJY2aIwtKe7o`4ZtY{yk56uwAMsXOT}zC-M2Yj>#`) zvEQ>kxVFQmne6S3o9N5+5yL;ACA##0CMDM-hKe2IK`M12YS-ax)JTX?7_viks z#+hab&o1o8#je{;3-3)R9&N3Ilg?m1(!A3D?v(Gmg`HpDcJ#B6%6e;}r5_4Cz9QliL@c|P{Cb#= zde4>Jbq%|ER)nQDR|kKUfCQ#pPyXHI2fegAn@Rc}32uTlPp%fA7k@Q+Zt};v@2c@b zA1T|xqT??E=LSUiR}ir@ZCci|IG5+X!QzX*jzRtCKz5RdFk>HOgAMKfL=a!J`o zw|k$HX078~gLI_&D_Za{orCZg>tKhJd4KrpV5)u{?mQqko`YShlt;}#xfIoWn$E2i zm*hH;eZ4%~{7LPLa^lx(AU{oj(*8uz!SBD+eRQqeqYtH9c9)#2qjjFXG2+z%5=1=w z9qm7yn)2G+L)s|!;kC2w)f4kfNxln5&p7GTMlERTpW4Wh5B}MMNc-`EyrpL~?CD>NsXsUhMK|H=bW_ihRWY z<$5?%k?gJw&$CsB*sce)KWm0`Vu2F4TRZ+e>ya(M*eyUY4pK1p&feQ}|FOC^xI7~* z`xukVJ&d&k{V1RqpD0-P{<*Wd`~40L>W&;>(V1j4foTQ$UO=h8HqV3k&Q^9Wj_Vif zca0{BtwGO#lHBJXe1-b!j@@=@$q9=6G-Gj~ZwHk2b36;ilV2TU2HvKlGCssxc8YBg zPw00P%({9i_H*1Z$~xFT-yYh7zZ-$lIJPpos!un!AErht_hhtZ9YEg^7^0tg|^9-GkPM6U1X216PSzW7VocAuTjGNJxonmLiliFEc(;U)!u>UUA4^f7%UrTai zq!4!gt_D9GLj5U8dZZTEFFvoFGqx));g1hec@e9Ay*v0uhpt5g@*&-`@Sd_?H(C-Bj182FL|{yk=OSg)Xhg`zVw6S{6{MKS$+LbPv9#Bh&aYlxnUA$&{XstvD5Y0?cru-zH=jz1ULF-NpOfErQ5N6jV7EWBJFeL8=LdoB!9Ynb$a3}GqHFF7SHHLAZCx7oi840q_AZx~ zv2PgeygzuHj%Gu_-!Pz5f4=r)_riZx=N;jfXRv(Qm23O)T*%i*pwut1S=)qs_Ez-B z@XNDg@~5%U;O{1&1jXNVI>YZr&g~I$PHqec#{yF&SlG1hmT$7i-Y-eY9&`DEIFoecUZKzaPjT71&$erlRNrB03_pG{ak z=x+sz^)L!L7eD_Q>5;~PhPq1qg{z+h_9^)1?aEoCWv4g|d`kN67Gr(aXPA8+>#DS) zNH!JpcLJsP^!eRm-}Rcu2kSLe^pFU4JLvBKO8TzW{+oNz@0R{~sc^@YlIjQVMtM96 zl-4yO9M5dieLdSZuCXSqFOz^aVf(W=dQ`;MD8`*D&`IdIn8Y z^q0sGJ4I=KGk&-+uc~j{e^&Z_)9sC$n&nT)hw_x>&8D5A>nQu+my|Jz9&)2)rzi$i zsekeBeTeJ^4Rv?T2xT8Vo~=MSF94u?~s(ns-%TDn%#FO|bI30)m zO*#Nt9`89gL;NX8`iu7be%$}!QtjsLuk)=!`mX||{*3!|bQv2~Unu>cUA->gPiYO( zliIB_YbD)dZ9b*nf35|8g+NJP3hb{Gc2x98`}JV2-9}h;ikrcwBxm`DUp&Lh)74m! zvlzAk^c#WF_@^!GPyW8l=Le_--UE`10_8xrAgscjQ^~z6aDl3 z%U{{O>?b!uSRr;62 z*45~`uEzEr{CCz9{-Y32>%|OjOVRK2Z z;kQZagYPEs^Y0&|AwAHO-GS*JCk=K6tMEJ79cacQ>=Rff4{HLmcsMJSqhxntdWX!y zdpa*asO98&uIdQWd3|Buu<7XFiEBFa=5`t1i+t1a*2k%Nt(PNA>6`W#4oU zc?hq&H&m5ogOrU%m;X-3(M-AyE*=(k50;(8X!dB~Cm%$l z!jIO>9QJajonNN61|KBPrX9%LIXqvV;CB!B$O`bU8IMnd@!o^5sDJU^kM9Wk53=(y z;};I#=u+|(hp+}@A}r{EZlJI`5#RNQ`Vn#<_#DRbRb?b>$>0a9`wq>wlAXw-Aa7tr z)3Oc~9`(kpo_T0v>nZHk!0*%njkEO3IQ%Z@&1~IeI#(TiL(2t+@~m?SCK(B6Sr z^7p~Mf>!$XjM>#IDK?5+E%h`eLqGy=iJ`fXP4H| zM9ku;Eva10eTD0-cEew`waKSn7yVv+q$0K3^Q)`=;MIl>rl*o+2gb?TgxHCQc2Dn% zuG)(GzR8{?xIFF7&+ON`7)Kf+f1({zuyF00bY8i@^HPtES1J35vCIkj8-P-MxV~+_ z4*in49~gfAg3HBz{u+V5=uke{PmA8Cc69W&!jz8`JErjW^;A9^Bb_EdAwLu>y0I_q ztD95FH%n+;Ed2F~U_K*R4ESpXyb4I*n_pY_r7Hb()NuPHiGRvM_~oL;Yl(7b1r+0x z5&Whu`4uyth9$IaYq$Tj8_%z|;Th2G21@-I^OXBQFDM-O%gsB-SbmdCGB${{1$_cg z8jnnST<7&0Dz$&wW!b%$WbPc+4)hEt?XPN`2GM@RwY65Y`@FBxe|BK)LEi}|^)Jr+ zRkR=fLX~cxE=^SKWk=;te+d`08CldfwYT-KT|aPnAo zBjR-jN^<6C>7{Cj9aY)_3jiC)sVc_TojbK0M>v5TG>f6nu3H zomcj|3mYWlvIcn1p$|(%I14D|<3`Z1(_+o8&fGjMGeqA_1AQh?(y#CBx8$tuGv?v3 z2_f^2bkJu2#k`Y(p7Pg!qVxOx?cWa=+>XN62c_~NR_u@O*~r%bpw#bjyFTL>cfACq z-;H5?L7xMZ`lY-hH7F?e8;|)Z< z1_LF1qDq&xd%gVU=ny%}1^pnPwC>@bystXL&mrqX;kLhEIkTHTyK)v`*@@hWjEH$W z1x@>Ow!Yim?A5A&#RN7C^e&(zXYSWN|J3WA@OJsblaiHlCY{)D(2oF0dTZ9?I?#Jc z?7V^9am=re1b;UHB{}qDE_hAX3U5p(d!dzb?zo-h&uTp4)c_LkdkF>)_;z81MoPPl zwd_R3fL>a+IeuLc*`dW4=dLP;$frFyi(q4s&N!gdzvM5UMD``H{|%N;yX9$LuJgd( z1fZlxvYXfJqJD|rBNN=8g>OG9)hneCe*S{X#bMcrOah;hK9QHQ@nf7Ptg7fCQITk)|5Vd^ z2L2b9;B(&o_lcJoF~ z_1=X@HW&1d0HyiZ6Z2-%JluT#cjbCM^7S-O(zCL5@7?0{y`>#^`nxHM;pP!%y&A0!HmKFowp<76J&|l7(s>-H z&cpf7wUqwM{`jy6=`03H;5dDM;2s$%-$W9=o)z3~?duayg0ZK7l3w6zzwsjc1jj4m zyWMpgzrF7F@il27haT(zv2+=ycTU&e(i*R3#^8p}?F}=EZj9 zMGLVLDTj0kqMoewsjj(8Qm?aLo_6*5&B)Idpd@F0--Bf5>iF;Go5Afb;{RqR68GV| z!VcT7oGba~%SG79?L@gq`qH$nE53r?ei zn(X92iUzE?xui#UJMY?H---n}R z*dyvAoy8ds8Qxre$*?#;J$Mk$GU!R+1~K1ebNRa?n;SH|9^f~~07DpDP`z%xg)E)w z_T}j_AQ^6$1`(GL_5j^LpZL8Wk0%Tk$bjLuhhLwZdrulSkg1r#o;K|5$zhUd2yh$k)7WYrl+8$UVMUOVENan?pTCkr?> ziAKD-K!Ugj;y&`mb&cyjaMO_BgEH@fPgm-RY2p*#&Bk%8~gU)?PQ zO(S38)*TGAZmt+Sbg;^|7Rpi7KLuYf zFWxd8{MJ#*Gs=>K8i*(Ak%Ip9tHlBDv&ux@t|G2k?W!iylQuN@!7=mq(qEvnH(}5$ zgOwYQKT)m}oOUF4hu2*=_~FKtoyvjaR+hnv*f^EqMb%O#X=%DV~q~uQb@N)L-}$Md^D+j>7IIB)O$%k=BNe)A$NKQoqZ(Oced+C1oMX z!Rm8ztpQL1_C`b62rV`)2s^0cFZ>OTU_QgoUvRnDU0Cqz4UwTnKry};!7o00S=T20 zeC?OD%PI>XcH3Y0<)Y@VG5Bi>l-?JeJapFUIjnDLI(wkiuXD0??Eg^r9pF(F-TRj& zks<*C21HmRB?N>3p_e<96aopGgcABn69FX((gax>A}9o;2?(JhB7~+0;x0w0Y6KCm zU;rs9>Y}0u>i0kQ&O3K!XYu#!|9)uv?!&{IxqIf$nSQ3cGc_S!8z|*_)|g*Td9?pH z+7EuNc~E_*1^H;8=&#AiH(>Jj%0gP`@w-*|9s~XE14{jobLZVe_`91Xf@{@OCXl09 z9mv-OmH-lP;-2X)_;#=!^r{aO{WUpr5?oYo#~C|i)QhX_ZbXQ%E;ea^@FehVtWW(B zGY%$JFLDTd;yEziLoY8u9BYY0O$czAaEHpSgK|ko{SL7PkI~wCq$a z7ROpbz70^Sf93{SZ9%!|MJ5(i7Bm~MR*-KEEC(cT9$s*o7AlTSe0|CLy4;RyTFsFA z&7%JA(O;qW(}CqWoFTz9hVM!3(ou6mt9elAWn}@t?nJQN@)>RsR@y^Psh&9}k3U5d zHl8U+znB)cc?o~wpk z-iV%WmGQgXaez;M0E!I-O5?__V*c1idKx=7-&4l@p>IeIY?nf}v!r(1(2Na(e#3!M zJ<4;Arj75Hje{d9DdWG;^;E+ffp8uIN_M&9{F${LEy*~`P$f)<9zSUzoR-W+Qy+nTj{+s|T|7Y-Um3&3s`n}LpP`Q%)qEI*0LB2N@|o?tbQ|Lr zW0X_uo-pfTlgHpsvIl!b{_+05COz%i$>R{Oxj<=L%$6>qja>9(73vXmP}6wGPXkKr zu2w2~mhSHP`)i{H#VZ?OTeAs}e-!s)LT{I(e5DY4`qK#Knc(o;cP#tdqiMzl zOm%}|=;MyS^t9Vf`1C2z?|Gp7-K7t|rn`-PdR<&lJMkRkrvjz*04*_=<`vB+T(PhJ z`FywAPE1FrwIY6l$;Tw`&#ysseLH5~f$iDxbnir+12keL5?goZuzy7@p{k%Y_ z{q$`bRg5`fl5a1+cZ#)+W{S~#!9vLI0!sNebogqGxsPU#T6*_TYkiUXYs(fveh07^ zkia}()bUJe!*wHE>`woCO{0St7sI^`D21n;82pRwZP0bhf(aScIxiP%V-Z%i!k;`2 zH!jA|s;;?|R4>_D$L3;yRLl>^w<}tg?pW9joJ#w*T7GWg^{-k&~-uBS} zYx|6K(I{nHY`;HRhH#bxrTJv%>MHxuzT_$O&u)Jddij*fJ82fiRzkmxK&kvX-}=v0 zU7Nq{*p)J^6nm)wTLt-bK*?Up`KTcg>5Tma+iEHHQnYok$(mq)+FK0kB<|Wu|7U+* zYAwQf6)261IpHDCm`^VF3#DFzej9+&yhipfMR0M8`&;F}K?hq8`PYF`IdjE4K?i2J z`GE{Y@jHjm%XMIR2|XVI{e@mWrSeCr`t)4ry#*-EC-VzY_FSb7K2|9&5kZ6%sXgNa z67zcnf1sN^d&z#k@&?lJEufU%hhlqByK9(BSK9=o=bMn<4wU+%YZZ420*QKnT1o9-k7Roww-+e2TPvUYlL#`#dNJigV0wn04}s;( z?)WyCuu{n%zns$7agmWb^A_o8zr6g_MJftUrP__1AFcVW3-iu-rp=&fo!IP(Kl_R& zC$RU+Umf|((e})Y-A(u@y-!E(?l7_g|D7&CF|Tzj84q_m?2~5j57gS?_YUUfjjHcL z-kZqZ=Op3xjvN`>v|U#-AAt#suJCQ#?|KJT-?-^uLp*pg_#W|CxI8cie3Nbo{5|b& z=f4YgB75B2y&~ev=ZoJ{1LeKQFE`{| zBLBpDV5XC$^=m)A^eQL!?*P)pG)C*SzX9BWccVGM??8Tu_mpp%@re9%q;og%6pYsz z6MPcrDf|)7!u;I}q;xjj7QY61PDx|;*8MeZ&yP-AT-1fVP|v6k(9bA0##2ElPeLEB z&_~1%7pcT3@e{lv!NYQ+ehOZcRXUHD(2Y2KA zxTD>Xp4~V)@LlPmk}}5gVORcpEYJaY;-Q%O%!OO%BQ7r4o`H*DM0|mQ$3pSu7a|Eg zMEIFJJi$v5-=p%y>l1!=2sxk^{@uNiPJQ@yynTU?v+_^WJJj2S19<%%)}PCZ3ulCX z_h7sqg6|FduXrk-U)bI9Z{?|!B%aE=rh&~u;v zXa7^yI*n#L5>F-3eBu9&@oTvf=RL7KdbRQv%CgqWOtBpQ#VTSym}HM+XT5X9<9O$@ zPijo-6S$AgO$|Q6DF(b9ND#Jo;w8){6#V{*;?S!hP#SN0@2j=T<83&rWQnF3);?e^ zmSW8ll!d<%Kmzli@SH#HJ(_TvGjP8V5iCVI2>VimPyYCU*v5CRMJwyA{`G8;-_rb3 z27?+SpT#)Ui0at_y@GozzRTu{EF#c!JM~$uwbA)Y}a1Ytcz8` z6@AH>yYnQa%fEzAQx5u-2MT@3Y4V!9Q-&tjozYoYS8QuL|3o>y7vV|uHn;T4-_b#a zSL+lT79TjzN%Ny3pT&Bx$bb5bBewJvp6?EaGQSqfDk7XafudfJGkeL6Lntrmc-wBi z+Z_k_bTRG``v4?8vkqPV8S|<|t$NC%Q#XjGB9-6l;WcTWggGy#?nkvd&a-_Vf&&w6z9`L{2 zc1dIR;0sX!-!mQA3y#x13G=z6toPWR*9pCxN#%hw2xHZ`A{uqs<|CD}scril^SHko z{rl4;la+GTz&hAI8vdku>u9x))=kgSe8RPgN;@BI^-r~e{kdHOslJhqvne|e(F;9If`6hPjtxr#aezSnpfCM>vM;`UKhfJR}d-wxP z#Do9bk9CAxKcKMJ$my<`aM9z)dVFHFxIRquA6%>(ONM-Jpj56MBYU6H-M4>NW9$6x z)_91Ewfw&>R>@pg`$vyC^YT!l!pCpMIwPDEptRqJAADK)+x7z|sRy2hZVv{QYoDHq zaJm46eNIk?_u3CA*A8Vp%f1~FYW)lBH^YN?DwUxxLCyow=REHJSZH?V1E zX)FWZ?*$a&GIFwS2F=m6uoe&H9II%}M{u!vtSjVu0HtwU^qBHTbuGqNHw{<%hw7{w z)@L@Vwo}U{Kn16Q5r~UCtsO2m$JtM61 zV)`O}l3n2Jowf({p&<*5pItlBemmG7`aK-1C+DH=JH0ldb-HqnO=sqU{9vFo4scvs zbjHKJitGQ{1F6<|DO{`xyC3ocfKvQ(sy$Bo;Z_=kdHJAn9cn&E-=h#BEuP9CgeR4= zQm3~c*ZJ#$p9dQP{T>8L?L_vsSHAL?7hxs0SI*yvW)DDqC{UVLT>DvT@Tk0MIkRgg zhd!PT>>t8{cq&ppoW1YqpLl(6*HZG`?)cWHk3f1n6r7$}gESha{!8XVMnb=*fYLbb z+OBnPdbDC2zQ419!aJY~x3eHW2`JS+_mAUNd9>>(PuF>>kut7oWL>;I8vdmElC#o7 zcDYggdf%(`N3rZt$d3X_dd{hEH}S7>jeTvZ{b{#3Qbs zxtk-D`T6Q>4CKcH#XLPZ-Ib#@Q+cT~xYAj5UMhl(h5R_66rS_fS;RXqA9rgho$1X# z-_D2De!7&4YBY8OTouO8M^n zd2)`f-H|c>vubsf{-_>%7V^`8()jP2?enR>-EQ!j)bmur=5UakYnnO!^5ZaE9RJ_OdIaEqt%BH|Y`{xjd-qm0Mw zw!1!k2Ev&Ml==tu(a~eNrWyUi5#_v(e>z?4+AltRHsZArD9uOa4e9W;o@3CcvR#4a zDQNB3OORgxl=3NT+lyOt_tj;a+HCEi@D5tBIgpy0#~!EbfKK4*G<3e zw8B#fov$vXGkr3Wt-$wJ0;PW1JRj!Y(k`urerteIK4fjJhjle?wOcek3S(;#&Z|Jl zF37HanZk=S+LxlrJha{RMPus_&TGNp<$pK!h<>Xt;#rSyUI*R=B;f1ern}(lUubr@ zrUjO3jpZUfZvmz8iuUKn;P13iFNk(nJe4=#Pnu^~JhI^qk7jIlpP|mbM6%70-v$)> zM98`RTWJ7K8V{6%H_9?jl?{BEE$ z50*PPf%x3UQ@5wmo;jEY@?PNGKms%ZS5n%eNeFaA(tS0^XSxxOPKvR5h_vvvH^v$GQ!k5waJ17IBc;#k<> z)+tHs()cA8$DdB%@AKO6ecP2faJS%X+=M^D&)sK`0}`L)*iqvV;Wh^kA&JYm5Dsh4 z-I@re9rl5PS8yEu1>b=7v-5rQ34!;oX!xGsCothpyia7kjOSDEEDquK9Oz^1lkdp& zaloJSUB1sdmG9&3=7ip9K;iBTcPC&9$8fy&B0TH<4%`P5BX}I}$DoI$S2F*OOMFL! zgYOI8gy6prAA;}8hhBoeKzsr7{c-rScnc|fKmG+L>vyF>|0@-Q9Ky}%h<)=SJdtjx zTrcbUDQukaTod`8g8lS~7O#fiFA~rFiE>5ThRyp$dW(D${)HRi5idhC9>G7L{r+aY zyx`>JqGT$ziod#Y2(t~&y z=J#`eUXf0~?diUmT+g^(H|8{=k+YzFK=AmJ)|bwBAvx|MY>UXo8h?AQJ=eV zx41V&6YlQ(eRx;g8il>^MDJ*s5gky_NXRry>94&bugV8NX^bg;4;k$y@ zA@~?VFVe%j&u9hor1xfd8z%GyGGHv?t3kgl{`58DDdI2EBOkweMSh6%%jEGLihD?6 zGLip1`1^dI206hCVdCBryeE3187}c>OccBpO~f1Nu)xKC5AVa#-It>V^a@0{xA;Dj zsOb~y|E)ZcGQ<;k|7JXq_c>4GWL-bML)ev)-D#ea(7`=@#ej%staS^XphGSDO{@z_ zIYM6lkjjJM)k@zx5S~DC=8x(|`^Mih z=3noy@|lZ8TJv3{;ZL%g!}rWR@8K80s_S}o=WXqd3qrS>1JfnUI+vv^;wSxX@}Jn% zdgEjBnN=RSSd7hl@advFit(|?fBLSupMsyaRaeRPXzN_LiqKPh$MDy1#TJZ1Zd3Bl zVevo2I7!O)tc`cm{S@ZoQ|8_6k0(N%uaMH&(7= zgO&r^bqYLJiUub4Kt2j6g%`g161AVV^c)?#<Avq0zbfsL-EwWWU$NW1gdUz$ z9*mT*_5~**U4)%L&e*#$iZSE0_k073$7i_7n^mt8_zT(2%9@LXMwgFOb*J+iTTd62k8Ylzz{iULE|kf5CXO6ZA_5 zO55a?w@_S@2SkdcAog+ogv=^D7Axm^Y8k^<2Kd<--%W1iD;Gr`Bb1(uO0QO zeM#pn8|MK2p!Dx{_iKgT?n?PXnuReZ^h*N@d)xT2O)c8j;xP7k-KzUqLNC{2=d(HMJ#?cIP3a$1_R-j_e?GlG z!f^qmaq6|+*(+%M-{7n6R_vwF$HlV#_Q$vO+xdZr*ASpI|9Rl{8FWsi`CL=d(_!6b zG8q1({9_|t-%I{(cCLQt=@QsZgxRwNR`)9h-)AC? z|D=8R>ilQu^+?j6RI%T_*c(^*^l?as@j%JWa>vnWl-d#FQRjQ?&!bF0IFAD*d+^%K z`;L0}>w>?hU=sA34V1v~am1gxYh1Sp?zY_(d#NFN0)j6BrSWu*v%`K}d+SD(YVWtP z)b=U5HO?{XS{ayf80}?p)^gD@iR`By0GoaTjpfv8t zOk8tb*TP>ZyQ+2YxgawkpA8i2I^<;SijbYfj2{XfGvM6#D5zYr*`ujFNJ{S4_@@a1JO^jiv)?ADL2 z-gbcMt+AC#y+Q$!hqM>^jyoBM0SEwF~Ty8|~)1pC|Gf^pyL*o{!SF!^hY00_R^M*sG9V z2b9{otXJ23PxA%0k`HLNoP}Dh{rj;H9ozG68}NZ`Kxv$_pjs>96|a6Z{Gn@|6+UhZ z+X(s1K&hR`Yxk3A&mxs_7HRQBHo>3NUdL`7XskE>JI-U;0{ylErEy1Wv+*aab*{j2 zX1832US0y{Q8e}j^m{W{&)fxrL_S0->*#jv-O%F~sAo8P3;G=bO6w^6UW+H`p4}r; zm2plZizl)h{vW)b~p=MSBqskA^#3gY6p`_?>nZO(}P#qD)TRq>}|;J z0^SKEaP=zj9@@burp7NcJL^`}TP=tuBCWgqI=G3!^D!P(PrL0)=;c#tS1Ej-zQ@#q zZl457?RD;R8>t^Nc9ehKP3gy~TRf5X;7|Il^Xh~`Ov~BSChn7amHey1_Cfw#pj0m0 z6~dNNy}fz=U@!kdPnTO&UJf8$2Z53u5?jeD){6_?Ex!qa?VCTmr}6G2c6D{r zU0jyTS27viH?aI`#^ctx zo0d%tr?D-^1nYj8Hr!3$Y3cbT`|z}6gx4B!ao`E4-)X~kpKj1Nm$pe0dm;YLT}klg zgg=34?A5-{e>yihi5ZJ6k5uW*`3IjN{%#Tf6oez(>hFpCyMm`sDv{rxu_1viP00NI z!DkZqy&kV7F!OfG8IUJFi^&tIp2Yp<10^00=f4Pfq%ZNC4h@gqxU7{(?+#r5K5$!n zCiv5Ye!_nO_*#CqW@{t|j`-p_GY7hVoZBnRFDqahx|i!u2&ojc=u zDS_YB(zu)WJmx(*8F1&P^7oXUCjY1#+!8NFGoB-m&jeb$6Wo{bnDU;%E%J$Y8l3l( zj_`nj$Kg$9Wjl;r_r=LHHsuhV&r-z6^H1E1a;gjWC-^@HM7c`k`F*70ka#pEKd3=xc5uu)ODm5|=DeMF)LSOchX&p%>}}!XaLe;Y}0eNE6}VJLKQ|UFe(Bhx570^#gCLFaKQw zdV#Dzf6saXdvO$eBXOUMcOZZ78uDM=C*wUw{PcY{3!_} zV3nRYtY@BUf9AVip0w_NH-C2cc|v6&U&8M%{65cRPgYm$^V?TFVC_#Zf2Iq1gk2E^ zdEuX&Ijv4z_vD-V{CX+tvyE6$$QK7n^KtpJljyvq<%WI9tnYKND%NO6`4^=^B1sa-oi%-Rnk(!a7le&%_!rZcC5G9M6ad;UR`50U;NKPVi2e@)fG zG+}k0GOt$C8Yh;9e$qJ2-ReQ&37L<&&(;yLo}yfd?}VBUf%a^;b$)U<^px!Nyb6nG z9v$c32KxKw?cj3IuNzS03pw5Ae)`fAdwKHNxbrTShTl2#v-Wq_#e2!V&TTvNJCAE^ zrSIEz=*nVbf9_OkK3>eLNdB_czD)ZVD^`2-`i*8*`f=}#t$pZX94U}~UodVT&C4tt zyLfpdqMAwd8Dd&w2jTEt;RUKOPCSoJr|LQSj-ap5Db1N|V-0 zNBsHR`yThOsjK&$t!vdAE@t-}X+KY>2Ew}=NZ@VgeMYF}dFt_Sn5xeCjjNJ>x zssnHLE4ngyo==DK7LBv*_A5TUCKRa!l=6@Lay!jitfkWwmtE0CzskizpQj9LKQ-(A zxH`e%xj&gs`v-E2n@CRut;^SjylAha{ypcY(s%T39@xR`4g~6Fc`F$i++Dtx@7G>EhTr9@o2{nPgia-LE((N-|AH3x(`;Y$| zZt*S~Lq4b;WgA4xYfAeP#u`CB4k+pA`(m${k1P0fUAyJQuD@nTkLEzBUi0(Lrtfb+~fAP?-Gf>zwyZToUTpp(LOO_MkD4v zCEp`iBIJ{RQh(&_{^mT&KjSI*_9dAsqICjF`S-i0#|h-0%ICE^E)LyZQtNFB^m77* zy-d!m)J_+8deT1Wz;?;OQX$_37}TEK(s7)9J4=ku(xIo+zPQ$HruJolVfTEk)FZq5 z5&iecbVYbldak|v1MN34`JlJzoaNB-U25kH%`BeKOz0`*4ak{)wHWPlXgc+U-jRJQ zUb-pfPGLPD-w#*@NN|m<&G$IGn}(gE@vX4K`OlqLCggeorTW16r;pP_?wRUJIkUU} z->3INIDLUq{Gwe$KG3z%#sW=o#qNo+ctU;PPt5y}Gk5(!vCpsI`^`}MmB4%tWBn1Y zA;IaApZM|xkE?e7+?f0{YkbMY5||6}1A&qqnKdr_xW~M%qjJ2Ge^r9+lacHY?QE0R z&|cqA<{AF}c2G^1L5SC2U{HHz*4xWUJ7L%E3BBG1w%3|2l95@?JS1T0MUM z{4(*@JQNpW7Efp-{7LiB3%114IDER}Zucg&zDEY}grxSG4PHgO@n&hAM%B4Pskipq z>xZDlQB>PP3)!|dr_s&7}eH7$J1I2tMIbDUdFFkJa1j0CFKGJ^vJ%(_`044iV zYtefV-8XHl#Ft`$^~i3$wQq-vgMQGm1}c6_P=^gpij?6d}aaVe)_TgZ=$>m zvTYZrG0Z zd60h@DD|7Z)Gsc1+>U9h8uS_(cwY{ki#8wf3xJY+7Q5m4x5x)gNtb`Vzg-CZ76GMp z$sFgfH9yb%?)lz<_O8}GfS7mNIwo@lKPn__go;1bBM0EPnzoNqt)sjjVGa(CgTQOZ8znrtcLa)44j z%9%0wOI>psTiDe0+U`7bM9_UQQa;3fTk$%|%dJ{Bv|G-6`bwn7DxhTVdPn_4>0&+w ze{Ss>=(imx)!XcmZxjF9nAUiJDeFhgtovj(!e3P&!P<)359%7Rqn~fuR9O#i62ud# z?DrR5yfd96^wrGf$!}Iu%30_9e&yjy0DC2jB&H5htcqK4?_RD83; zW-H{ScEUBV7Peo_x$v$u#*dZ+!30+>)#KF=&)V* z;{Z^yTeEvkE5p2-C(LgZIX-Az`yI&d1xoXZjx+st>gJBt#;%}!c^=5`0TuxgV<)nD{z>TVL|}Odyb&@^wAOIx2zt>2mHlb2`4Iy$m$U(R^0+*9$)T$TBz zE&J`=+5PJ_Z_6$ly~S&71O00q`29A$5)e)&j$sMl!64jk;_*9B+;iiGKRQ-gGajKY zeV4o2v4=l<eU(FPvR)jQ+zK=2LB^j*Ija?-SWKlOKEjT4oov zu|fZ)JLacyp2QL8L-95JbrbqQ4-pTc2k}9AGBu5lZYtk0%?W){czL;i{A9T2CdQwirZ>9B$V9J5Z-0E-k1u_`@yED7r}=K=Hd9ZsDJJJEp%}aX${e=T^dDkQ4k3>w7)8e~UMi$!cz$ zpV#kfcb2{Tx5&ja;g8Ct8IH(Ts%M-(*3EkV`dyu8eK?^TtNYH`I`2evWA%4jT0Z^Z z4F0T_zuKh6X_t__}vG$#k+yqA>t*{8*X=RW?moEq#xqfm)DaD{W(vjC*BKQ zjJGeBBN_*fXD{w{_vFan7JL~?{=ehNv}^eOu)mcjQ=0D6Id?Oj%sI}JS=+#G7oODk zQxZtv*n8=^?ks$)%2)lKw9W@Jf0lSMT_7)w+g*e9e(8xk`)2r@6QkHz|MzHz!w}0J ziNkxzehi<`{In;0?27T5nhXlur%w$>QOMT^miK=*w)wn0x;AG@<@gV}2kjRv2DzHR z;(mYHmFvs({7DHftbD*3INzrE@7EFX(mbRq?*6l${B2F&97hdjIq7?v)-vRAZJ?bL zVcE;K<9mht-_3dGu^&C|!rL4_R*F~F3!8)-p7cHXvd=pI`yPZN<%4VfH)lQG%4}cr zcbf+B9z^*NcDNLe+*zH!@VM)*Z{25UePuqQq2(@v@b2=*FaP0zbWcX)moWpLu5P6R z|2f(^XIGRjDZQPaHavx4MZu55!V#Z4fhGL$Tbmh9>i{c%iTd<|vdTO`b!(q;1mr9D z{kcotOZUf?qHUO){#4d+s#xVtst3ZS`{6q;BV7u9eow@wBD53fM9%2ppL_o`_b7?- zFY39-N7B=`JD+$tv2$J@w&0wyU&j8tlD+YwX0>l(9OPG~ zCg!cgyroob!uxf)hVoMI>)_Q89|usXM@dgsqJ4wrqw4whk81X3{L}s@yZ z%Hqk?hCivDkDM@_*3Zqyr_{fHK3(cSzq&xt50W!4dNDC z_5($;rjTz16m}Ci*`}*>Uy1R!)N_%;Su^toO=}Jm{UABLy0aKx`XAF_01zmvnZJ>lkneXA&xQ&a2v38Je4-|FtJ?QZCHh`${$KWsDK={5`K)fp(ptK{V87GxPyGwS(dkt`YVoq$q* ztF5U=<;88-kp<6}NP&K-Kq()R%zVK9@WAx6YnR(^U!2fy6|fqRAZPDL+8;2hrlYEF zxOG2}`7=#Gr9o~6P#PbxoMOlH@NWIy8rf@z#S1mXyxmwjVVXPj#wjY1i07v~Ty`HNW+0 zU0&JuS(EjGd~cwf4{?=$(D}M%AtgQSu50@AJ_x5TP|Cl!OM|}A`D?YmwVR%H>ygI# zLq8W#%!iRP+C1;u+)t^tOZLl|z5YF%4S;^5fYLZ1`|ya<9#`V(`LCDiYmL{rSUejD z`4K?LK693BPUnWu$rInKeJo z#Uj|lkRKWB&#`#)M?5{XN=o}_x8B-qKm9zJN1>-wAH0hXhpwY%QsjX(3a7ybG8SK0B(IIb}p1NrelDP3~croH3Q zM!);#=En;M^$%kqKMr^skbs|eplv0d{WJgYJc`Ta`Sbp$WH=F!1iA|X12S=zOTS~Yq$TiTOY!Lcrs#Lz|gmc!Lv8)tZNaEkmrNDw9>wW zv+0n30VwrH`@T88|;cHEkXBFWe!2kB`@_G2eQlMlHx(W|HqiYjsdumoyrJawlcruIOPnyqK z>r6XLcI%yVmUJcjRDeKNDc=abr09{+wB5jJKm%H2zoKhpdK^8!s%s!$P;1S$L2d_7 z8joeoz5c1L8Pn{)CoAM}4Q$ewJBZKbKk@};&g}#r;-_7n554}B;^fzK;d){L~U^6#EeJM}boQg@3CN-)z0H@uHm4?nbga$bSTs@;84+ z#ve$R|5bZJV;>`4$AQxP5 zeJ*;;*F-!iSUvguU~?}O4*{$|lZ#&fQ^k z0vk1S)^`*4w`Yrcl>czrCv-kt{Jn*~oYe7w?mB;S$m#U!+4i_s@h| zq(AbR((O#~C-RG*cC!9gD)hfHm(Ke%ruCPA*!hBxS1-UqzIDd;-69_l4t>|GPv`M_ zP6pS*3v>ggDg;Fac|rK|rgP%s7Eun69uAbJb%=*3N3@^FOfM=oCQ&#cogHXbadUQj z2EGIR=)0y|mPi+&cN!xa=%(_Icjdne0;1dR=EPXI1)IXysx?7`g<;gZKA z6Yqi4?|r>|dc7S(k)Ce&V?b|@K;owxat@#-@H+?|N?F&7DUZ5aqQhsa3lQW1TU1(-FHM-!;I3M7#0YiHX&7}XQ*M4%&q&d+; zXAGS=G<)c*p|ewmzSODk&^et74V{~4`k?=Y&KtUN=={{73zEMt=jr&j6E@$!8DaB% zPS`wI*FT}=l0#i&PY`z44#ef9PBBS?s!itywCcI9T zwQ+>|^Ak4fLH-WEKkbj9`5xC7QExpnVleA2z1Q3>YXas@yqENJzjpefCwIvsZwv_Q z#Uz7^B>e{&hrwTY|97)`-tf`Ew=?4p%x|D9q&2Vxa>XGZ?)T>%a_VPnP^_p7-2Q%p zGth9a2ucfBLJgA=ORTN_J6zE$-5XHA!UMg%Z z)6J~|x`n(*AMzd^_NUk=Q}7$(svtgffYJih_GhM_(%Jp{tB(#(RSukMYPF};;ZLf! z?(4771eUR%phXL-esi%n>)`o&;7`im@Z;tE2Xjf~h$J1X8sr^7k*?&7-dl9LPDj<6 z8!3z8cMhS~BS{bPYQKC&A^dxRqTG-(|9mf6V7#S70=w;*#%e&n7@$<&vp+b8`kvcd zY3HL^O~}^gk*6rgy(_KXl?VJ03M$iWK29R$Cl-i}(X2bJ6?w7M(`uLvC zfd^{P#85-XHwH?2#y)id<;+!6DW8s@i_N5Ro!!5aATFp24t5vPLNA|z_KRi_Hk%@T zk{uG;^9b2l=A+t6|Gb`}9JC46)7)t2-FD{#yT-S-><2EUTNj(PhCeCaYtEWhoN33O zqbsNCD)x01))MlqfKs~oj=e@3HyuX*@V&AzAoTu0`W}T4djAmU&wjq^h*wu&1dzbj zdKzuCH+ZvMOt?I7PCDC|mdW{zur0qy*6$~eGoJMYswAe?xhWM?gi_=*xmB#p&l4wxBmI`6oiusl;V-oc+Fd=F6srAq356U zJqp36cR@H#pcogBGpyNm8W-P`F!oQk6Fxm1`egv6{=vO(KW$VqpMo!E-JoA4P)cv# z#(nR2+>MAwe!Zd6Pgk+#e|o^*?LY!f+`~9PD!25L-E#K#=U`i+D--cdhY8 z+AwdVs+*{PXRL-Enw-q{kqjG~RUGK8!9lGxoPNb6Mj{ zE|$bxkiQ=&r?mGpoFrWlkFUEiE@fr)27gLme zB{GPxDftWE`PjD}?v7Q)NB?}e9uCDG21?~qOUPQo^W7Dtv}fUL1mqtAO8JmmVKI%T z&8OfGo*N1MvV!$=|1e%07+>)H%A?S4e6XIr&sx(w?a&Snj`Vd@=Chi!QIH=86!T)_ z%qbfE8|rP_pp7!4AwL!N-#OUr z$3nLU<@WLa$KI97EvXuMc&fh%i0`vNDgL8B`11!{n@0B_ENW)0Z*Z}O7Gd)#_>=N4 z_ov20VBWWK%FyI!WusvOi?BHv{-pTltn|=$C7%-^i{W<;(QFdjPXNU_3pu^p5{W2p zJ_Ua;qMIwCJqeV6U-)Le_+44Iusn+Vnbha;BeU(BcA>%$DLh&B@_jpMYB zx@?4=1#h3tf_}4s5`^bO{;qR(RDs()bD-EZpj6H>pMK`Dt_?g`e_pGB$~yKjSaZ+N`Mk?;?vDg8s7Mc7;j zdC6{#{PVG+y4J34`fW?9D)w1a5MfiEciWIf>(iKD3T$6OpI?&VO`6#qZ-(BU1?s7> z#Ym4=fU^Dat&a|l7&)-goD%;15?svwfiFuC&I+JZ|9oFwdP&!EIFT;UUaHQPLVh{0 z6wrYG?0dty*i5n)=$9y#V+hc*jD!4t*uFx-zWzX&7q;8~+0DPu`?0|CV&BeMg_PI; zl+rVANQbX=?TsX7#rLM%~#=18sFx!7f$M$YgR+w==wqZ(Hh9F1>OxLa1HsE z>~c5XClFXZ?WU*w@!vY=^*T_RPj>fqz2(u&t!2j*dnwYo*la!gN%<5unbC#V|I-96 zpS}_C+6=r6NPq)h=&#&1O8Xhkav`?~D6NO*J-do7s5YO1CrodFep`XkyrN_Eqesx+ z7W_E;4d{o2)1>x}kB^LlTQ2$csd4dWi?I0){8s}KggrU$XI)!xVffX{kxIR-$+kmo zCr}#abl?B-UP>2ZoO)SVU#T8+v6)n_r?&arI3Sj<%Si7jgnz!@d>irF1(fD(vdgZb z@uv3gXqW7cJM8+~jr2GGl-fa)IApxe8a+uFPsg%7kbf5_t>1=iePavFYm}g!LCuwN zR^1|O?t?$6oGrM0${&;u#`AMfyBli!0?V2G{`Nhth_)Xn%?td}=>)a&#zXs90>ca4 zK9l+l`jFlJ&!-hfG^S94ws0#KvC*~`Q;v90oTmV{b-@?hZs=iM%+(U#YYuF~n(g{JW#sja ze1H3~B>p}>fnWI5Igz`qcqlv}@qNKxaU^qnx^=>Lk`Ycvd>CY7Kxp1M|8hpBtD8}Jl+(Jf+s?JiywCVdiwE^9r?cg*|_*?NM|lb zyd&~O5B$-0%vH4(No<_?B=Yol0qNrd5^u=lpS&U5K#|^>l75s zku?c=QGW4s0-x$aaK3Z>P+m0f?b@fYPR3Ib7mQ6n{9}%-uI+)Wq08LzdWgE-zIp3s-!z2pB@o=_>e*zLoc@q|9)JfWof{5&DCZdTHasrlbm z`BUcT+0z?sozr{bU-E>wVc`D``OMBJ^_9oz>Q$lbkU=cL|2>-G>top~)JL07A^-2$ zD_^|g$-gq>iyfmgS#|$=$`GeDE*18g`t}p@cNLK)=#p&ZFL*dt~UFo>fl6+m%#mXu;zEl!JlNG<*z?W z>+;5puhnNy*BO7z1*HQ zm_;adqTO+!T{~a1)`!bLPiY+EZgQ8Hx2R*4M=oZ+yo4hhk&aS5a^CZ%SYI#rb&2xO zGg{G?oDSn+Fm|=X?<RYkUN&K3+$rXX zrFxq)BL@fcd;icyd%(kUFtH9H#`97=%05<~_zii+xc;(I-|dgLLLG-n`WvcR^|3Nn zTod||Gq3OuG%sq-uk2IiSL~MS(8o>Eyb`Gr9(1vrlz&>yO0>RbRNJ~yR(ryuQ`aVc z!>3n8dfW??%Tr=3t*?Jq=e4m1%UkUp7mEqv2}$+HS79poyS8joo45-~dWPPInf{1fSyu0bgipKdR8_j1a7zbNiJr0ADmCGiEwHGMSo#9 zmo40^YvIPc;aAFhPUz)2Fdyu-yLuJ=m1#r;HRQWzhXZh$V4-rdO!)Xnh&{XwJ(9`8G1eh#?O8}*lRz1dILl# z4k)cFu^Nr&qF7@DnbTBhm*Om*P$T#g{R}zzg{Zf5UDs~9gt5lZuL)4}Yld^^GjyTt z#6K6T7~NReHxd(ayBnDARe~;dlhSkT%(rR2zq>KCsjAp@k=Dg-Eup96&+AQEZrRsr zztSA?Er7QJ4Y(2aD*XMg?pxMaYs9AwQ1ol$T)88K>~ixd_ zr9X;b?IGU*D8b2B(rG>4yqLD&`I2JXng|7@{?E@tq>J4G>!1B~YrE}dN9flXDAm8r zg|&b5A)#lC1G8 z7mH!3kk0^0<+{pKpY9=^voXNEPq9C1vM!KM2TJwGUHxI=w;wUa9V!nhk~txt29)e; zSKB_sFS@0?@xMPG0?Tz6>xy{w0E&47a+c~J`-w-JV(5&yv4< zBR$oNy6leQ?59g6^y>+f>e0WdAL|YM`T(W!ndHnf*5&ER?p@&ZwjcBx3zW)}YucvE zx;y*QSJ_2V1NR5gLD>BvKL{9P&l?9`CNx)gvaOg4^7jKJ`^C523x4L}=1Tc=gluO8 z+Q~kB0Kypvl;$t^ewy{hLDA|#nRdq=q1Oi~ok_EBHW>Pi21?`G++XgdgT;+{`$S!Z zKODz~KzTkeo8xG|01MG2*(YS>;leLHr{)GRqBI-JpuX2K&d^; z3G2UAzqRw%_RHs!(C;arln=4Z#~bTv{9LBM`e47l+Z*SESr@x)gr1UJVD5Kz-T3_D z%EQ!)j8oaOke>$(>ZiZ#8`I{^OluzB6r+tDQy~8$Q0iCWCOEvh_G{6yYwt=?#vP5= zbC90~l-e`*!qYS#nZ1WfXiLQo3BK4(vXj}@6QEF_O7#kKbjZ5Y%Kg1QTmnYK^MD8?dNU1P8kBhFyCp z^!`@rHz-C9oA#McpO5rd50vcBEO!j;lQzybJKs@Rr)*~Ngx0`cH6Ven?rO4=OLsp1 zN>)R~PHxOzhTL*s1;0Pn*NfiOP3MegrJabiE_Pc6`QmkuUCOmf9ptYZH(Xf`CozgZr2X+>FW^AYe1v@NZ=g#{GYm)dX-As zdn@f=L$(QWTY*wPmUV0c@%POgj!c=St;aS)ehaV!kYM!WdFOQQyj2%9+fUDJ(CclW zRDL<%r|7CZ`)<@`l3hxYHG?j8llq71J$@vfLby>M!W4U=y2TUPj_{=ZD9Pl%-Sh%1 zyX(`Tw=aS1QaIZI{dNLN0tv2F+zB3rR`C1z?6!mNAU>#|nv@TbVK=_k-Nt!2`{Qp> zy$wAd0_&|$-wi!K07~=v+Q%bGGUIjrj44X}b67l~{qR>6NYElV_Y>V^%zxhhh+@A~ z3E~M!{d;DY-_Ls7#=TiFy%f9Ee*JqFdc6mf+KF*iJHgs0`Cvai?Ut7V(C;8n8izYh zpI#`^_))o`EUf`ybqM}!CfIt>@O(z@vYtb zGcJs{887KWKQCzTr&CvZMXdIyBh*s14VIr;o69dI8KzAJbl z7Jo#%$Gtr3+QWZ5coM=buw7t$#XUq`=s|oDQ@=_gJ%rxEod(|2U-N(l)EYCO)-Rn9 zzhsUqm7^<#qqj4DhgC>QFVb}IwJIcmcO&vkpvXt?$+m!>)(!bW(_m(Ftb7ys02KT+ zkscP$D2=_frtG}OKXrn?1wDO8A1Y68K4dVfkUoN6M(NbZc#5R4R_2q&!*`|e@>v#c zE52#GeBFoln({k+&$J#(r6V7}bNL2xUf~bFi~JM$rq&PqjprnYifJ+8Z+1>$Qg;TDUo#(PcyD8-I-SXq3VA z&*_SI0ExGx84p9aqWn<$m^`;%kiL}OT`uoSz1%^R%QWcG1^0`Ias?i1>JgoQR*` zO)2sGEB=?3$@LWcAj&s>k6L&BUhs)Tc!G~aysaIVjEjtV@OET;57e6;f&LiWKA;=n z3BD8Yhd9qolrNEiyfm-Cw#_{6 z$&O7-`swIk>zs7cI}zB5;X9>(()_zyYy21!rC6nx_OK>ZWQwZ!ase6?|(Li z8IL4b-{+r?wCwUQgeUC_@V@P&b>4l3zfy`_Y}fv?Z%>zieqwwm(1_pRKHqrU*e@uJ ztLdlE^_1*hBP84N&ZQ0C^n`QJ?gA2IpFK&uC|Yh9IH|K$KKRd7f_O^h{Qlg{5A3?d z=Th69pVO@UHbOsXU29+U);QlGS69l5-SJ82`6smllyW{@l;f62N9p&xGap{?#J;d< zP2Z6NSOb4L(_a}DPpKZ>OZCV+pDL%(wCUe|)Xm~0aj{mG`yTj{%BOjM87ncre80t= zl=X&&OpJRS@F&d=N|gw{Ii=6_Un--S7IJe#FNy^omGj}7t4KIw_2UzLG78{ zahsU85dDH^w<)~KxlL%D5a+lSMFMdMecm~+U9wvr?ABYK9tFK?0YyJyIIaEp6I&|f z#lh}{d`+MzH=5?YOj6OQ10g(kK-N> z?SFN?MPv05uO>jzZjjUcY{Or4_ILyl)H*5Uy1KOwsS*4I)rY$bgGs&rD$?pN8p5BP z4@>fBecyc4a&5Q1+igEJ76<(r1BG2ePDgC%E6}sx&ueQ6{h9%#cGoqt-&L-sTiq9D zH$8oNbA;0ZDEeP=hUYdC`&MohKih75t+7_nuM1FWU-F|K`^@8bvFOB6OYT?B^{0bY zAfE)3>OS=|s$cc2(YlJipEOyVV)&#l@IVz++?W0}xzFi`3@ukBj*Ch@6y zew1{ru60fe7i-3PLVgfXZYP>Q{H3nF{lkrSekiZZFEwVpAb&qlYUgvi4El)bL!FN& z*0@8lvl>|U8M)w3O3zPAIWN#YuK7DJO)jL2<6>AJ$oB`91rp@+jwXJE*XYMi>w)93 zXx0~U{et}+{rM$2AHjUo{BzhW*LLl*(Dzvcwx6N4XUle}^?d-+V<1qS*U%is59+?L zP{Rv2_sRIs-=3aox(qQwrRM<-nt$H3RrmZ=dywz9YCp2wdaGGHr76%;ZqLrA<$7F2 z=B?em??G!miHqrM8004bgY2_Lhfi)?nrY3?ak1tWPiYMNN$KXUKXbqC9x>(1KaU3U zf=599F`(2=Xxm=ht83#n?=10qq&4r%#j3D}AfE-4=9ls-<&%A#xvbhpSFb7eMn+om z?jzw((v$V0{tEZ-UcLa&%OSsPRkJa={t`oc9wnna}>Tm8Ys2% zm*&hc&NbGqoo#Zxjg(%7q|N#lYPrs8t+p?A?U1pE*F>Nck83X;Da6dznej?FbFguc ze;g={bKET=h+nbQAc)2&{Yn)!9`X}_()e#}-W@dmdCBNkDk}Cw==mq0djgT9Wv^J@f3W&@)TD@ zdm1R^yR&0eDld6PzW=Dy+tB-IwLUz9aGnK9_BHro2H{q{ufnd~YPXz)Sv;i~&{Klg zuTy{5vyAaa{1ZAJ0R68c-^~S>=bExy5|AP}{R$ z`{f1b_aad0Z~48+=KD%a(%*RVx7T;IoY`%6vk|Xdz%oFBOLH&&tb0G1bS87j;J|x0 zX+z8`$ZZ8mc6s(MMXu>?x>dN$78jGo2PE0q;wilje^NZyW6OWk+1IDt4L7A*>u+2v z-r^}OhCiuY(zY)+?s5PAbjg<%CMkALTQ&#sbA!Xnx$33y(IFbYe^giLSE6m_-#mn~ z2v`kBaA{Vf!c1%R=)#T1%PaM$X3%{`()h^z`H4lm{dE7JjB^|oPw8cZBc-?F?ajtI z-v2WH+-|)MW3M1RRstpa+Shmr&4aC=eLYj#E92rOYzgF-0;>WE+$U16QM+WE*nFEZ zFJ+fc?9+4b{S`o|{md>~`K+$FjPtq9EB#RvTL$^%KncRnO*Zn~c+~X=yZu<`c8^q_ zDSZ3>R+;*1+G?PbF6OxrZljyNLs#Y*?AO~h2xlEoY6qu&T{K_U(qcNlU9E=FPSj*; zA^$2+iobhdOFEwt^Mgh3I|sY@5V~Eb_D8QF{PjSoKCE@79j5YP%(w1S%30`kNMLxO z>nWudY39>6K)+2usXgQKOXhoZJ=MWBLOvHL^$!P@J81pEdarm^-$WE2zChahk=rP zmh?pY=hRLZPeUa=?WRlU^(e5MY3zNji1qJJ(<2tdXbEho6Q6-7dZit_T6;5D>m&L#F(--a8yIYpe za&N?Uh*zN*kHt$#;PH5_Ju^?oc&#nx;am{_2q zo`+K4P6Cf3f!_mj2jmuW@PQWZ zCV_4K>dsD2G(dc{Hf;B~GR0dx0Upd2QLd0KE`+Oz@RQi{Q|Tf8%eb-h{OV*YmeUiJ z#;P}c^xmdFf^StKjqB?}ID&6Q`f0{P{yEPL;dt@h4b;*h2mdSsZoDVnON}+jkFJYI zV`UaMTD~qNtS5`3`l5O0xhR(^^6Lw-4sZZ5nR=_B$vNBNF;&rptIkp5K9joYK{ z{2~?UAj$<$a|YH2tNx4p73tfJr-R`A5G_PA9!hr;ML9FdmqGiS-JRcCRjdaySstH5 z-U}2wC*mcU`SXoGzxemM;X9f9`%)q|T^uOc;oip%{NZt({o}xcGtz_R%Zfq%HefiA zAbR-c-hYjq69&D+css(cr^#<(zfcSNRC8s&OPu8{1$oJi%RX|2&Y>~SJ&jiE{sycB z8brucE3l9<>%J~+KqO{CwA@kFzfs(kscNN>5@5RIGwv;j5B6bQ|7&*EuNAn zmlgf~*rc-T2#OdM6%jNnA|N`WARr1vML-l7lug`55ky7r|8&<|JvBAn-#1_1XtW<5-qiG| zu2cJ|s&nc@FZWC97GlNjI>SDnqP|4=*E7nGKhAkeNzWqiZ`MzYvFwy4AyZiE?Owc%nZV!Lc8cU%BSDHXhPosO9IvB=hH5demZFDaJ$N zy`leHWE5xpKGryE#?xXW{3-F@&HsOG*#de;tgSV!^Y?b^-EM!kAJ2&l(UfLBQoGN; zSn`d}yY;$emp(Pn@^4}iks#O*^a(&|KQK_g`DILdwf%F+tJ+%Q0w?QW`K4%#coKLY z?MeOJSb-!ovc@m|zOBu3JI%6FYL0}&ct}C_@O@+-llOS*;H2^q`tnUd-wY_mdkV7i z6;EOQ3o7H8-TnXQ#}{c_C01grdvmV^pOT)8v*#zjl3u?t(Ep-K^+S|#tOe-ffnxln zpfjc0w`7l6h4y8?SMC>#eqT2HTqOGb5FRi3c{4m-47(2bY6+Ca2~YfeXLN0+(c#N} zU)BZw(tuY33H(zYKjL$?t+!x(U=S1SkiX8b?37YKFUCU(y7w0E_cA9VjgcIdW@-Vyz_4d~kfrT&m#t$@xYjeWg#ZIpgwzu&e)I$eNb z9;9Hu3QxTU|3*y}xwSQG5Bd&3sXw?U{`d{un`!t1si??3&1{Y@LA@i=xdABEU*SuK zXq+f8R`fq9`jGa|l{+Dw&Ok9AQqb+G_c@(Q8vS;!qE8TgzYQN>qVIp<@f?<&5(A&o zyyAS|;@7%)eSW>h%06&?%T7s0JZarA|BDM>W8AfGHze^vDMT+1hUYKF@~6}Td&0b)zkZQ?x_4eh<8Hlv zPwc7GSD7DLu`JMM1I7LZ1@le)ZgWStsnQ>!9|zTTmVQ@7jx3?cw8f#QMlCpZ3Rz z!QgKMP@1P*uBn@Kt;;1D4?S|NA{R8V?39Kg-jzUt{F}y+eVW_wlX6a(Z|$xFg8DFg z|3;wHUOY#pQ9byt9bNYe)y~sy`_z~R=?n)->*AtUem{x+?(Hg#J46}%dZl#QXHXvr z{zd^MdC)(8^l_hd(a@BQE%SBwP2g_=P?D3qf$4K~Z8GW4?ryF0ql5^5N)h7{3v6#4 zS4(N1%`AUPw<5hzdtrO8>qz&SxQu`R(9uB2b#&gGbY7U2N_b)K>bD z-TrRB-tPc^cSe+_#<~p>_TX^}pMU?nDeRQyfls-=xBYIiUUc2rCtj&FoQZuFPS(e= zQ<{Z%R{#kX)NSy-&mZ&BrYmZsD}M7jS^ku!fnJj9O#e9k)BC2zO=rqFyp?qhbzfw9 zj(r1ZUHsvWqH7A8TjwI2EP+i1{S=_Ie^%7K)eE!_ZR{_VeS5hd{5=G$3N)bE?{wZV zcf|YG9F0-*ikmSn=pF!y^CSuu4az0EME1*dodzCI_Q9fEzk3urx)}B#(wPdB=EuCV z(+vIY9lw?g@G1KR_Vw_hwI3-5emK~dU#8%_iA#~MLv~6t5l?Do zDVz4~qjE8xvR{uyTb@$A65m06w#h$T9tD)n8-tH*D95zDRcFtAK=o79h|K~0V?b%1 z4%sPrRDVNG_6X=71xn)!?lm!9l>Plch2ZaTpd{BhhQC90dwIqN#pOzSvD-d1%TDP@ zq$feZf9HY!($4<=dBtu!n~w}F1Xc`X(7gA<|MTfjcU2x}-7m;rcem`67Jy#rw}ll8 zKGXTnWp7{qH28Z7D2?+g8gAdBvs+%PbMu?o5%%@ZfPOhp=uuG6)n(vEK8?IEb&2hw z%zyEgKc(joPwKbc8HZ_HavJ+*brre1k!7c}81ba_)6Ao(bU&Vx>j_+j_Z;l65?BG0;X-w~x206e)4p835{#_|O6xKA7q@=u^BQJt z&u1$8imlnppkD=)_Ft-2^a*_;mm<&q{q_C|_*(-Et>d(OPwGah2defOy_9`LSA?CC z)Smp$B(CM{#5zJkUx^G5l0$~c(7)`5NluojSj`x`P-R0-?@gdApH-Vj^4Y-|+kY*IQS`y=u2&-Ml%(}-QH84wI}pR3@whS{*_}6I zm>>Ci`%m&W@AnJ;nD)69{A~kDea^D3&o(m34nxo9EgwmYvcbq*oqD5KKD| z)LEMGj8(?LR%|=y-UAAKD++pNT|1Gt>tJW)+}Fu=fPN=X8b1rabcuRsq|6U?`-9zi zMYHUbc7so;9=uoIS}st~c-DFV*v6yZNXe zOuXNxZEmM0WaUQ4$t9rw5Gb7=EvPsh_swfRDg8bA^`A5zQwny+iJ<;5_}d4R=1s>f z*OUFLvCaOaDi7KpcRxWo`+?HFqN{T%>2;Y;*{|RKo1NK#kUy-A6*R44<>Gp4YP;F0 z;P#0L&t`DDftz}ByM}2!nVB1JYmSm%EYlw0gCiD}*ikCh;Em+9m9^#P5QC5fA>KEc>D~ zd_RLFb{gMmd7BLLa{HR(N38bR!f6SkQn`J{Kv9muJ}DV~aqv6YyO?%vXGOR-FW(&^ z9?GBcX?S_sa2xm%c4b!i_Ok4TG~@A#d zzHG|4hqHY*BR&)LD(W$b4I64aefamu4o@>5@Zm>T*w@i}!>sJCI)X1jFZfGghI9AF zmcm}`Y+rn@FUvAcgR8*~Xd!+V_C_j-{AigxK7(CXi%jnK?G@Ou#lsHijNk`I@l1Q4 zF^KOK-+^6QUC@biHGJ<(7Eh1ti!|f$BJ9lJVJ(*<*&*%eHhKEcPcqrjhMB!)-rSeH zT5IwbDUVTmsdxK#>z;uf)JmjdrSE2j(p&yvYJaoGp89QJhGoab+X>21wT~h`&HSuH z`(mPfi}oTA{bmC4TLSbe`DMa>OXL?A5cEJ{H%9zCHJ_e4MY*88i1MR$dGy}z-~9PV zHn)o%D(vsFx!vR(e4px(N>$VR0<$r`;Jc#SHI%nk{4VOX52w!se^$9>^54&idQ$mE z{7I<4q5+%_FHqQdiTV|GV}X90PPHdv{kh+-Nl4Fu?~3>=H{9=+KL>VW$dAZhktk1* zPn1`}V5B>eqc)IZA=2?8T~S_?o@P8n{V<+@Zw=@b;Q_F79Rm8H9Q{CTD35;zHR&spK^U-ZJJ z%h%_;;bnJ(ekTp^keyl@ewX4Eetp|<--Y9Is|CK!x9%-9$ymsrRwKl_D)e2~zPN+F zqQ%|kx0uk6C4_#b0VtD|L--1yB=7h=>rVSv>UH}+pPJ5U$niAYT1QmD@6x`~&b0|& z>ZVv-zej}JNivD~R0P%m5>)wO#CF|ldfdFu`aXYM-#R~x0ll=3?3wmF>7kg9ef`vM zdDXuBSPA@zaunrCKl_iQ&^hD3dcC1pc4`fg&uTz|g4+U@FwL;k?cY_|hiq@@wM+FT zVme+NLiako)8melvl}bx=ysN!nrJ7|{+G9MV_Kh@Hw|2&w3jB9{(ViPBDG)7YpZF0 z2=yS^KPPKso%;*=dV)*R!yGm+)Xu`&i{16G-F07#rFU8z{0XF>qu+zHpIEATFLwKb z{q?X|$2yU}h~HLY=hlQoO5QxoG1z32BO)iyS4$|>VglL$LCshzs-8AkhU zZhmiEdGN!bQG}gZNDoY7TM|gm+kDjXbGz-uZh1x@@3OG`*b^~h)dNH4h@t%I> zeiP&44)18w-5M`Bc?Zj$h(rYQ5#t&Kir>tmamnz{zOsrkp2f1}ppOGq1rh|=3etxS zaJ|9s`is8bhL2~_w->3r3|1_ETGxUFopW|luK7vf3z&p-O4 z@Y_~e{*mn0Uu*E!4k+eN3bK$s&{0LN)ydj`zAaE{*ZH@V(EM&brFE`if8LC?y-4*# zoI6+tVI0|JJ5?{>ON%j`=x5Tz5(fU0!sa8z`j23`LyHa4K>QXyxsBIZhNuY zZ?y3?LjJ6_R8Z^n9nJ`orim$WxNU%lGuN8#gq^zuY_yS7_@LA@9F>kX9Z!S!{J z#(DE`DDzl-mIV4#pfqo4$1adwD>HWTjw$0yO_mJ$6rd!Zc?vFlo6`Gt>Ai&4gWdk8 zv2>KjaG=y*Tn`>N;q#oYekiSItkrKg*fc{kk9Dx@ z)N&E;a-adGKRe@(w<7&Y^fi8`Cx?S3jh``T-+rrWJx9_F=aF`)ZqR2&#tZI0f7GX~ zFyy66t$hqm7X7#zUJnkIg>Pfx!+_GdSo7}A z^l2y0UtTx9yCV0rwCvP|BA(d)p`h#YOUd6`y}6ZYe1E-Cf6Xj^T7wWz8b2?bd;)r4 zT6IM~)oJtGU9?Y9P29)Hwl$f;By4Se(wq>F+Z#J>))W#s5H12YJbkiSiBc&hJwCvPwK|E=nwj|aC zx%D5QkA5ro8ylIww*7w$QvdsR&F|s;wx)Hj+(XEp)UMqF8}8M;8H0y3d^p?M@8o2i zSw83=080B{j+j4w)crMj7LD7c`kigVCV>8Spwu5?i-!N=(}wNuvqSHx$k(lGj-Nq& zBGS1JDCMs>zY?uijORu5J~$Vf1p2#xQa|!sI*RPcyWIal=H}~^eZF|>+~iKgljN7; zT8%DZyjJbI?T(-J=i37CcP~(q&)kDE-|=Z%PSX{em6ZP8%(7Fv2k|61*_}R$);W&< zO^-cX?y);wYY}#8(s#Y99e&hW zxvpT~$A+G1Y1-@BZ7N}duFd$d-mY6+%6hDgWvBKe;z{GDzt0i)zqrs?*~fHQc4~!)R|7~eXW`5p zWZ!K#8mpx2Pqbu@g6=V3^-#S0pG(9&L0gpdyVLf(5^eho-w&y8`O|s={7G_FVYel3 zQaj^*oXUmxr@x}tpAN70==a^i<3-=jr2a*G2K9O1dp=OwhxX1I@&@J4c$~`m$Zmg# ze*RPQw}3OEJqwiTfz|%~Yh4@VCPzTmE9=H)Y$50u0i}Kv^UUy1D1Qeo7N>lw*y}c8 zPlNuM$n;#dC2gX1y`2sq-nOmRs@6la?K8Yw?6w!X^{27tP##4<2^M{F|A#)!&^TO| zuE-(L+FNUyn!hDTU^!44mo)$7WM^UCc(3l4*JMjUzYHj?$KVInc%kmU*j=aE?SFRT z1@#w@ua|++_{rul@(3(;w{CUr=9#@>mU&!=96uXX=tQhobfYLmj?~O-m+7B9r2|4D-0a@Mb|nR3jXaP=CRj6zX2%m!!BN4f$^Wqe*I^+JU1aSgbP6M=$qC^f5zObxp8D{;R_jD zTqsXB{Ele<)RpbrY?k|>Ml~DuVRyJMr++D|;X{rdF%5-6es^XTm$wJU0OM#m>JW~5 zdgAw9KoP!yhy6)x@7XT&4~}sr3dQ~u{=NvPrSdQt3~)y?$@m`L3&Q{{jTvq{Pd5?< zA8GamXr$3%|g;K$IK%FXRf6xlU|N#UJ4z<~h>IjYf&hZNmSr1u>0 z9s0gm9^_c3^1z)vYPSYo?!Mp$-}S2LW%BRPezo~MQp`6|e4pywG`P4cnbk2pte`wJ zQO}~>MY|Kfi~2&jGnAiKlvf7({4;v4%3|4<-MeES=^4l0{Ce=^AKYv~qv!6J`chxy zzc)8@Stsg6q%Xq4(M@DKHuFK{m7aI~k~g=xS>~|ByRSIWmzzhXiSj_aIc_-A!tc&3 zUJibghZkXT0LAMC<*xNbc_Hi+EUXbfR9UoXmWY zqJK5x$;9`>`OVS{)t3=xvK#sLiV)U-ejqvC`Ckkc){o4Y z^p_ee7>;#z|CzzUZf>w}Fd<~HAU5zNLF~A3fuf_TcXXY3_gEXgn(;^m3)h=J(4HTV zAh2h~F`qMi=(zi1$FRPk-|4SmmOv*IIVy$Tn~Dnudz4?fkBzbvY|Ym+@stCd;IC>Z zp0@CguYJXaKEQ?nisEHQOW+adR0zf62hm2j*lm5Ezjj&zRz=X)0TRqia|C=|x>xd% zbE@HSq`^Wc8o6w(v)t$9F2)qW-R{E6{>Fek0oDEjqY4V57Esh91-&mHIps5d?$Sj$ zm~vSL1=SHxS^&FWICIFS>1|1}ZKP~iCRpu2Z1_tX>cImK85_>V(?qHFSWDs8!3i`e zo;UwPx=_@-NNA6;kz}|2qAyQ*Az=SP*q~km`4St=0_o>s(=gtAU!n-^&ZswX!}*MU zfv?6B3rVTpfpgLz`SyF>UP#akj~9J;a>-tNGWrFE8c!_fX(%-xnV(CGy*~EtAn%jK zIaYh*RBbGSg=-N{+9(TtKdT%we~wL3HvV0f!9qOZN#(QZ;L~Inv;B!16MktGv7sQo z-vaSOf1;qP)>E_*_>tj|xS`Vj5}0WJO%PAYzpKLdGd}GDL$O;^7Wi@O8qhZeO6B5s zdn;`O7Sr&#+cz+i z%8R}feLIuNi{eE;&WFd-EQ5tOohh3BQJPq2KweeX}m6Jx`XQ7eAENp zzrX+4o5!Lr&+z*D`}21l%D*L0;%CLQTw$12T8hv1^XCG8?SNvup`gFl;xj&Py-Lk~ z-sZ6k223(i#A*fl)1@f3oXl>2*R1s0B0VvF8^Ir^9QJA3jPb1O6$09W zzbQbe-@4Y1EYFIJ`(5S@VxrtRS(at6zz|PrFNJp}e&b_5?0NqC;klM!ib>|rv>do~ zj*M3{r{4EI@2j7zOANHOSha|#yy@c21h zJNHN4hNn|3`GLnvW<5ba94JBIl2fE8_}Regf4w`=l8<=2UaS`g(}7aG=Wp|z^05au z6ralM9)3Zqw?~A*f>bWfgOm6BH1n#Q_KMuoB*I`pDi_bNt)#$pjd2A{Q>8!HuRnYJ zA*lC8d87d&*2PQLbZfi6v7&%y|G*$xJ|#Ygv)BlO1!=r48F4!)9PQy3IZNXs#p`St zEMy~pQauz^zlG}0c)n|>PFS6#4_k!PL)6{_KwPcI9LT z>ks~h0j2eAubKge2prWQ_urLJlQa!CI zD%#H5nWj1faj-$49}JYn!C*nJa(;eM!3Rot+8rnCmS^C^j!}P|GFyc{+T36#f2$#D~Ed8v*`C0;TcAJ@_4x%ZrQ+$uE@pi=NN$^cG? zP#=r(m;jXCS1I@WPTIFI)*Y&2fmn7M=*I!YezXz%t?f%bEuI{Ko^vSsn9+~B;r$`T zGFZq*dXn7Z$f~j# z)&m-F%lOwgpZ@>{cy`<8{m9QQptSGCj;<)r0xMIl-!%3P>mm!2jAbz|=$8Pc`eQ}q zKh~XZcfTg}&9UrSyf=Z?{SP2K3n;DM{iFJy^5vf?44j*muPCnTmSdfV5l>3bbFkng zjAu2ib2LuYh)o6kLqKs3NWs`mdq|!)rp=YAd~J8$3>hp;M|x7fW$!OILhIW<-~Y5% zf02%Lr26x;8%pV!Pub7Y(dJK`A7-N*=K`hn5**Wk4702DDmmMCuyStE-ZEHt4DqD- zZ$SRSFLjMBu-Y)iB1sTo-M*NchB+gZ?R?Bu56?=aJ#o1-cRTo$^X~+O7AXz5wYg1j;aW`w6iLD**`> z3~-eAG!KcNaW$2CsL2+C?m3_|?s~qhv-Q7>gLdoBuKZ~?UQl0(d~E`j2NJ|SRqe3u zrQMJNjrxUOJf`(z%RsjtD9%YKSajxvl{6nU>hR2lp2~S~XSN*lYk*Qe@;=h-GNu{# zp?7SnocnfU&x8Jz$asMXPttyCk8)>{x~Pr_+prfv|1wZ&7w)mOPwCov+8&%yL+Q5( zmchab#FOg1WN0sPAnG&}k%P***zUemP=5*OtOQEuN3XQ}hUOK`SXZfzk?fAUcH4`C ztpb0mfzmplFu(5}pKwH24(~ZcUoMx0#j~5gp#CbpQw)^GUDkTeR^ro;m$oV6pxt@J z?mm%&tp$JUfRg;Ft^R=eL#$y?T3Y8$_Q(0xz~4ro)Neg~d;X$(O+{&@jGr-V1L$7| zO6~f1op?GwGM|6%I(#$o^&U`?lU*|}UevvRELb+_H&T4Ydk*pJ4TQG?rTq!#;R`2p z%@_tBRrSc?*cQ-l1xn*?-Wy|o(6!@6#Fomwa3l66=>0&6pM#4BQ9RQjYjs6#jb(3v z9u=iY>9M(Q8W+p(i!H+Yt=)DOeLs@gpTQw}8+^V4jA&=(e(N_%fB);H^be!}E8E%>7Sz7u9(bv0Lp3#;| zc)XzgJ~H$HP|`m;ot^{vv)lxxwlllw*^T$#9Hs0I+3n=f9(v0T`P1&Wq%Yg@20g!} zvKLpixOLalJ(-z1%RZ+AOEvE&Z_D-Y+qCBICC4eeG;ZL(le)4QE=*)*wD)@8_wKO6 zVF&|-{f~xt{zU$s#6`_`go6{yo+k~zC$TF|w3~atoyx-j*aNjmM!IlRk}JZ=hzHbw zMIxLM{+{ewj7`lp>yr5I3@Ge=G=#->EIuGuiqdYkaZlVmh~nsM`bY zyK(!2cqQLdp62NMRt5{SJU8m%of+J2Ay45?l)E<>_5~;x;*;BV^hP>Bvad1i2uAf` zS7+6j^ZMEhc4)=-WB1+Fhb_7Obmd%P`)Bvksi<^(g79${XnnyJq6_;+LLG(B7NboN3=)ryQmKlPoQW=y;xJDqkV*Q zG?6~amC92yAA|*8OwecX_knEC<#P1ncmDtuJO7EX2k{r;Q}?*Q;6!r+taWX$$CP=tYGPs8nj zGSMDH`|86En~w-94se{vFO>^-=!CEb=oRmQemDsEDTm$Iy^H$x zD)mkFOm~iGPXGFIepdDaf1$9+XFSSX*efx-j|aUMsKMdM7}OWF88}fUv?|gy;Jd5N`1}v_x$5-#u8LlLOKaam$lG%M z4E<_8bCkWFSS92~t)L>;u$B zJ`L!w?qk0EW*JI5b1<=PsRw#d9~9j9%IX8UmT!n|ms{fyCyTN4M8*D{Xs7f(ki3xW zTFmF)bH1mp@9eI(#5rI~UI6m{C2ig}_BUxA^Hh?uukEt*e48VN7-uNx8ucsbQ5j~I z$2wbffSfFWH2{4hpi~d8dYwpL-7pLM)uo(2*Jn=9Hw4P#?rabBKl3U3`fCjSngB!X z(=+~|>*=C(Q?k28Y1j7mVVfeIWjivxex0;Tri z_-GgHKh*m=apaUZYkuWq^;rwh#{GkA3909#}l&{ON|n!!NEU0lXE;!2^`W zdDHO~8@=Rk-TebuJG?i61oPGir^>(czuCyMUU$(JVmd%vbLZXd`RO z6>qh39q}aacB1uz7?-4RfJp3K&=-BZmy;MV>@d0`+yf}ppLgTUG(VX8+Uhy$-!Dh@ z1b@AN(s=HjcR=VJ)GhP<>16Pi0+hxV(;+7R`EzT1$-~a5`-7BkiW>bnvNRr3ypWyH zK+b?B)^ikeWjs$8+mic^s^2DB_a<<%E-Vf7ZlKg3PG|jx#@)E@ADZ}pYH!}oa%|EU z@q~O%LD!Y%E@zr)|NV<1ht#y}g!&+!SPvNS+IIf@A0yY<8|PzKCh|1^7z-rWS@BUi zS2CUpRTR0$#j?y7nwATc=1uSTs-(AE(v+^~Q|<8MSvKf%fKojiUz$MjyqC*M;c`#( z@=|y^i+)}SmzQE#Kk(NdC_&7&OUQ1(d`gt|5`8}k=QH~8Gn~)pF5%@FeR~NnPrLDg`f%jyrpWRv{OOycK0mECOLq2G_9wbnc0!{OPtM1U?Z419 z^Mt5(#6H7F(2oL2<;mh#(uI!ZQ}*jrd+jBt-;8{X0gC+}3VN?}{jq~Cs2|j9cMOE{e3>5!t?JmQ}#95v$3GR4H#PY zYi$0MpM093cDKEbB7Y`CEf<9I8Pvxioe4l`-qarWoa|O(#>Dr$>Pp4VIX=QpNcwJJ zVYBbhK2Iy-ZuI?K`W|r>eLcwi%h>^~a<2#<7_LHJ#6#c$;czSl_kf1&p%Qm>811|`~7w%(s>vt$@4{{^7o-1mDc=czg%X6zl}g?AFTNKAAi$5>Cg2V zGhhO9;ys6q2s?L?n8nCwOJRC}K$mYvW7#FO?f z+?P!v`%~!IhR>U^5q3gSy%%U_={x}I)bRdpcO0}^@Amh>o}_ zri;e3{4ajrdCMP){MpR16M6v=Bt8%B91zeoW}G7&QsjarmYvY^h$pQ(?m7P}>BoBw z{Q~=raKh`sZa=as&)XfZBkhEwa&diK``7=uT*AjsyZN(Qo-u4S>iZR-H10Z&(7p@* zS+$e3JDx?KKeb$n!QbmZX`FZXipU=ADBX*;qr0-7)r749{aT>3AL%~*DeWhlj^nRY z#zFi0-s_OgdZ5(bcjn(r_obRDyvLOFt=;uX40{dfYye&kBq$tu9oad1OH)th@2>Y4 zwh8&!0+i-4_Q%Bgxjw_mw1|4&4Ei^KQoWa)`);?7|9q(;UpsBeJ<*RZ;p3pgvJ-j> zd`kPY+UN8CK>sWI`-=aYU4-J#q~JewD|~Xdo1OKJdiL7K(z*Wqo+M`GF19B}%?&+t z;kTnJerLcNxIXTfp3pl_g#K?Le{b0f;Co)-|D+e<3;P8T29ln?sW1FX3h0o2Jl^{S zJ@^%N0m7bwu8r1=r=U02+kYmN>o?z)#((#V@22uF*+CFBZA_+f6#gLspeMb0EC!f%O&?~s0b^Jm7ceeZ=n>=yIMV6(qUcwyawzO4HEd+QC~ zlmYt@@Fnao{P-TFPh8N`o0s=2*cH(7=*_P(#^3X?2m?uPn%j4Pe=YR8X_fd1@@wTA zbVY7vCPVt=CQ>^vQT2O5b_}N74EgE!$#7Tm80fvA4*)g%?ib$$9?xVoJFltHd5zG2 z2c1aQi*P{12WnZIAJQx5^&#@1GPZPT7T|W=;dtwz4O_ui}7s9=6-$dfj!5Q+1&2s4t$sF zGtBr5DC``_zQXK3?T}AVP7Gm-KeTgEuGEjXy-7c`KjeqLYkn^m4B}M- z61YBfU-ZQe-}GX&ej}B0p01XhdO7H&^96ssGyC-t<2wFCRd2bzB_CBlJZZlpzhFjX z#(!4jq3Gq(aJk0rzJ=X*LA@gKRTC(!9||`$Iqq}L@BWhOhje9~-QHTSS4F(5fdo!Z zvxBYelv0)A{$y zeqY9cauDsgPN-a5<IKFvqfv;Di**>?A39IO%Y(-$TvQe8XJq{0I~Ra3?nr{&M28RCiYo`QivM@g^Aad7CRt4eEMCa5<@IwV?{ zkJQezS8_KS-L+t1{4d?Y^JjN{h_=0WlzYLVZ`a{`YSw*_>ByguV<>oG#l7X3zd`L5 zmyJ)d#uHA~Bf?HW`ficuEcyFrv8JOxxq~%+@pyL6qk?)%@RtUZ#xwVn6We^+Lw#DW zOlWD1vnCmBC|nPE7f>2^ovtf>@M$N{UtTx9DU-$>qU;uRyH>}ER!FBc@G77IOY-SF z_?s*He{|w%<(#go?eyB<``v(2e{ja#C&s~A$~j#ZYrg1!c#<3$JlXnNKAv5uV98aS z%w^eEv`0LtKXg8p{+ZDq=m{!%9MSKqg_mcv{UIdx^Ypa{ei@_Za)<_k?r1d4S51xp^EPWQwbPoSKlPveZRQxNh2QRnv?^c9as z=ONN~WqiqY|BJR-x`(;JgGxY_14p7MH6m-9Rf$TSoW8_L56}henbAvt;D76d6jBTPHosFn> zd*u?;vye_UP@2aUbnwyn*FU7accFxEsCvDb*{bV84A10)NAS5%PS!&jObW@1>0M@s^#!FvOGQ z2Y!F&-ti4RbK{k9zCIfQ`k_E+d@26oZn_`XYrNR0jGxhugW=_Aw_Jkyjo{A%l-l*o z*#kb-wYYi}FPywu(Mz+RUUdD>^JaKE3;8n{9m!{2t$V2d6&V-IUQqgbEE@^>Q9wzK zE_m;Ly0620)cH30dQka{E`O2o;9ncBSXqy0mYu>xl#5jF-`{=xhq|_#{8m*{@3(Bt zZUO!6K&iib?#=m0*UXcE_R4r2$HsvER-n|6xV-Bz^o*`i`cd@j_wag%vFsGaBRy#x zELoI)9CFsrihhza!k>vGpB2pigvK-6i&;A3lHL6fjpZX>6M)kGr(^d)%3rD4zeV5Q z!^_3K+&T&Qx*J#yNU(gyA9R1bF^~NaA2E;J0lEU9yl$-9k?OClaiVxt#J<~|puYo= zWYE6|l*X5mfw!L3i!MEpwCLqqSwp-xfe!qqAp8(eN-yv1G}`A|yk_=+|BSTub9uZZ z%TD3`$auxWa=!NY4KqYKsF%*$h%);9a;ZH~ycp(1I#YpSUz&pKyF{`-H6Bk>rJXq} zerAJ%w~Xo0Z=N>{6Q09nAZKPZi`!}e#$$rnV^3dD4pjx-!4b@ zunkzTXYvo7l=FagHrL@An}u|q0!r)D;c7e&1NQyc_*`CA{B8zwVIQA8``Yp8$VP0v$kt z-pMZ-ddsEh&&2M$5@XpZ%m;sxoaLQ0Uhr_Z{Sc-V^eoyCxG%jhSsYh(Tz1VG^&m&(i0HtvvXUi>z zXq+HB`~g*!b{4%H5%7SbxUcthsUI+u)6m ze}jY6W*ytVY;&Zoo8?T+d*iEX(wLbm(z`eBS%0D(!mT-KZGo+TJy}v6LvuNahZ*$l z>-NC=?i~Gz9O=87`SgTc0OHYo{9Mnx7v2jL-*vN>Jk|n|`Nz^f}+D_)aoMq2KQp;S}Y48hfwf<8x|!)fe=nS8iCx z`};7uoB4r0*Y*K@UzYvl^UrJ(dhmp%*Y8X4p1Gkfox-Y`57MFE`?UXb)RViD+4tYk zGfwc)gOT#*{Cl4kVU&;Hv!lvqsJt}eDZ+a}PkQ|3?^K>#Pgul9d63?^`QC~2@FWO911o9lRFUSDBos1(09#ziSpL6&|Z*VugE{>XuFD+1JIMp!~T98S$~eC53d;y zmG4(eXSdwE0(4GsUq9Z9c%<)d(v!YB_cxKl!;*f!`FraD{P$uY>B-M&x%u?c*$7j7 zW3%(ijRpEV{o-Lre*;U2F0{TX)cDf?NKmwO{6{{AKCZ*43lCWPoaSpuProbZCHc|x zCy@Wl>cPQJ$FTmP@6kTtaBDpvS(ANva z^XwjvduwRm2;V=6UT#t454-E4%fVL{p!D5??>I@%=J$fJ15TtX`@zYUKD>|{rFiZU z&z|%-_tuFo) z_tiGDU7nYO@u^wqUxDANgx*W{g*nPxj;{*7Y6GQpU&+wkzw283;kVY_Q^zWIP8M(J zd(=QYX&=@r-=Ze?s|9ob3GSTH@f6u% zb3M0mq2KAR==UL|d{aET>wV4Aa~1tSv^VDo7j-AZ|7ecFVH`NxTP z()^I0z3`;Yf8L_(OGLkp4zCBh`%yu?5%_Bil-fn`rJtxjm`||G^&6Xlzh*#DpGL4< zs}FQ-m$467_I?oKz+Y#e7-uNxt=#y6&R%Fq4$58DJi^IZTK)uDBc2$)jo`OeQu{Qw zK^iOPTL~;4^w$IBcHQY#IzQiV+h-eYtD)@I)VK8XTOyv+t_!Nq`V#H)WQ4v`0_aKP zG9PJND!F8n&=3FjoV$njqmVy=R>+^2KPkwv4+}lh((+$we}AtH`0EIi<}uH{KJSs< zpmBkT>PNPIgr2^Tw~YKPJ%ssPi`2txhjiKlrF!Rf4}pL8Ilv9bS0|v2_owx<^z?HOPa3a-RrdsZMK2CM zyYvu1b^v3>D<A=39Kh3MN$c)S>v3;sp`Ww^T+t#1pa+%lVcfJ_Q9&$NqZA=Ur$#9jtvePF6F*pMWG^Z|kw_ zEg!!(zwG^EdXTT-K(SvzL1*CU9emuSb{t+0_RG_*Trd*+jRUId94$V5OM@H8p*Y@i zXwOC=d<#(OXGMJ{Y^kwF8H~G?)NV+j^HXO^I!D#iQ(nx zU^gS3yhuJh8*Y1r^tHJ>7`{(ySI^CEztt=~{o5kT#e3ruZGqG-y#m?d*TcpH#0#3Q@~hYCYI(pW~6QNkD0xqYdgw?1xd%nQz=9P^$BL^yL{|4|eB2`|<8Xc}xY0eR>Ld+kQ7$ z_qg8JF#f~{Yu}lZb!T^h{yw0z&u;3O`g7i1v1m)OGH<$A0qCayB?x%EKkC}>x>s#p zt=|99^Jjl+Wju3Q zdipaEPm+6zvX7A5dfK=Tr>0U5(YNdH@%pcBpP_SJo}HjR3;B8kD9vNe?N3rWJ7VZh ztNyH-SbF+%5KpQHZU6nG*BWQ6bFNg*@&4}o#jr=g-(x^Y-qjAbFzVgl^E+idZI{pJ z<@xY>*DQYm+rXzd-=?6m^_X9ESBuN~zFy+B?%UyHbipa;p94zswBx7V`+b40lDeF2 zINrLSiIXK-{siVCo-`i#2c>-DGtEmo<|^}pUA<4u($imr^yKzZr@<3GZHKYn+AU(A zeLm{lRX9c1wg4hgJ}nZ-eB49vp)^~o&ieZlK-m7yZ$kD z_RoSpVdo_EBiFJ;WDjCKWnZ2};PY*u)UJc$UM4>$`)XftT@{aFkJZ)E(_e{r(tfL} zuIseVJ1RB#&D(O6bJ5Nb{sg4?!F#MSjW4D~nXas>Vk7(sNO~8si*BU#wDEYGDD#RV z!k>V|r@ul8?Spy$8T$-&*BvWR{x1O|_fd=&WxsxZ8T`EklyU1@x~1L;Gi% zXWcnEpElQ33CcVj{X8c1FG|6#T&MkC{sgqW*VBHv)42EZcjY|Q?mQi-r!SRf;H@pf zo?xdU7ep`bhR^Tz%X0(jZ4*!`Z|}>?zt**2963l)?-6LiUI+a~pah<-2S2dR5lV;8 zXxB%P^5!Rl~y#DO=zo7o#{D*uPvOAhddt*}${kk)!hnwx3b2h8nO=;}ZNqTPT z#j_#&Z&>z5J(+J^=Fv~%lGxh9X$hl_^AWSr?>o1q#=GEU|(PcYkud5=68OP z#KXnOu=hZG%WftGc1g*cj_hbO^GSxCh~Td$eotc0B@OuQmWM?62ClEayC?gU+%`OX zHT;>JP2}{2K*aVz5`Uhv+}>?2le31WLwtyudN*D!|g&oPv`a{1BG3WC}(_U zW-_B%8qxeb%Db*8f23aoJ0TKd&2pmra1?Z@2*WSOO2NN)-;3MboJ{9*8t4NVhzBIQ zqQSSWerObuvWW>pvKbF&a{oJ@A-~j~%-==6sGdx_p-go<2fqWUJWRWs zgZ z)eoh`34T#e9$_yQ8IOM#=?c3qVJ}4aA@4bR&t8PzlUew#2litt5f*k$S}w*jl(YCw zz9@I`dp4)L8~#Mb^hY@Yg?&`@e!TqJ^}~B0sg0R@Gw`)?01rplK@Gw0gE?wLIZhtR z$GK5>|0niOWe^2H_}A=ic<6bGqyL`%6kbna(DKey1JWJZpWOi{GVvfx@c` z5BWCk+Wpk%ofEBdbCb+F+LE7YB3|Xtcm1Aqr+w`3mBA*jj9{%pzf(cySo@)udk6!MPTn>it|?O(x2lziwjf|6BojDZP&0Z`qD|C{fnM(XSuE%hT?@hTV9YbzWU9 zGJhrWnvs1+A-~_UT&TS0FZ<`4)$twCPNa62e`?|xt2{3YOV57(?CpPQ*1mKS_>lN4 z{yrG+1uES1_DbL2aJxvYuXWG9XeaVHUgD!ieC%sacI&u)mVXcP^CSS&K{{exD~&Jg ze8p3~V#EC5vs`OD;pEYuZ%X`A)Sxc-68jkTsXedic7J-jWnai&cVbS^(UfLB4j_Sl!IDBck89Iw_>LwKdg2X1 z7Z;)ze-&+NOnPLaR?yuLs^8_7mOqo`pq9oT=Y1XN++vb(;oT)lJBzjS+nXVt7>6nN zO-`j#eB9MeM$AV|K;IN7+8YI912w-wys|&9vO7-Ljn@L@kpPt1Sz*U9)Q?O*3@4O( z>l#^hQr9A$n0F}{vuLu|FIUU+pWFY!$N8G9CGyn{D2*?%mfmQfxiU{XEq^9L{*vPP zx46lEEMSahKPvNdEOQ~9RzPXo_0RT@9fSFleR;M4e{F%%Ii>fDT~GcOKJAW!(aVG3 z<8@GP5B@p;#XL_zcAf73$Mp9bz+WezH2($1@2t-7voep_-N&?F4_&}WSD;khMTbB6 zhS&RmRHZ+-Y|7UT)(z>PqBJ2d)6Yf4t4aUU+(C#{&e7v+rdN|Oq?ZVk(hIEVO8Rbv z#=ic4lzv-3!cM9d;u8d#4I(?KVq-_8?Cl$Sg0EgcY5wykwi5GSY3cLXZJ$9s8T@4d zrFzJJvhc9a8JoZTwUiv?TqfS~XVMq(#5#h4vF+b~U-z1FWDn(BrV&d8eL7Ic%M^4^ zo4Qxm<~AW8$#s=>R-g3-eHu_&ui;)k<3%t+4zW8=M;lL)qYMUEhVef=eK=?leELhX zecBzbHRc9?nLueAWbZJnr=97_IB0)7i?%$aagI0(>e=8g2Pn<&-iOO=!f;hu{m5>4 z#;|_i?&*e6 z9}blEHMoDmanDx$tn;w&`)z2Wb|C170VR2U=4BW5^LfSJN$G!1HVE`Xfnpzqf+hF0 zpna4e_kXI&b%Q}a1SpLYbGz*Q5cOB~a+clpc_Z@W0ZRH(eM~#re~5n12=I3cP^yQL z*f!t$*tB;(nqGgfqNkc_`7_BwJh6X3LDu1x4}JcX^z2HBST~LW{b-=nKJ&jRBzeL- zV)OF@6~ ziFf|X_+q~v?C}}YZwG((0;>ZFir;F!-{+iLGw+T`Ig0&lqUD$UPSA(s$f7!PGUz_r z`|?&*eWbTCUe~wIKkkT3&wZ%%r#|y%*0#*&_q)Jf0Z^*Hk|r%^9d29`Ra3qH%H59e4qh&rdjHwqzmGB*{7nT)^R0hMebPVcHSYA1(V5Erpl$&F4d$5p6b5lCNDWy6^X~A5Jb#->Uk5Yh~FkdRNySbHLc+KuNAkIhVE7r*(4gNWHX~QZ9|yBcLw?O7-Wuqjou_1s7F&zN0c4?W*OH07tQlM0S zg==PgO#V}h38IyBO(*;5J<7cRcGpLC`(I3iKNCq0qOkD|Wbb4? zOc_7zo?F=EGpKJuIeq|?_CLMs!9R3u|BUUwI%X;JSUa{E^vH-N)kERZo6qRR>%b4A zEqyai?y~Hp-a>pyzAmbF9QQhqqHXxTse^3+{hL5(om%|h^5bTD#{PJ?ylcN)?Dbo_ zFxP^!O~ z?=B(fdVz88mb%WV$+m)i8&Ga9wPKc{IYjy$vsa$c*I(JzyMygSdAtXd+O_A$?O&l> z5|wssx4#GVT}bDBU}Ycy%W(V${h{pb+;)SnJwR#Q;V<0zJ@_n8#=*aTy#8-?OM63h zO9d4)?b-A#gAZKiW*47-_PZyp$Y8}?kFOm;b}2uR`hAzZ-IDIjwO=2(GLx-c=j>d0Z6DU-^?4WA=?qR!-!<)ln&G=- zcVc`-6ZSO>VZo2^KSXN$CLP(|^xxHb+nVpd57oQrZz^5X5A5qc5n;h!DvwX?tU_X* z>!Ix#yj|B4bf}Mj(hmNley?x3r0T*|ePAB~egoMSeP@k$68*rD%lWeMk8;pZUv#X#{;85-J$?(>16{T2*0@)X z<)D8HdelcR#4GB@zf19XzWc*24fIrQ-2MjiPVhnHZql<{*cHN#XrZVdphtWM=oMk` z8Q-6O#}E6Wc_IvC{dxVqFo4skc15IyZt_9L{3cTS9%mYM4dvmUgE(p;f1-Vd_%P#X z_ z`sWR}V?^HU77xswGB+;o(Y(j<3iBS%d!kR?lWCXc%}u)`Z(g!VXwc5jTb}n+pS%UV z_jkKv=wE8ERFw>tj{cd!(ot@(w9^$bSn`8ENpLByc>0v?NVshC2eqeL2QVg?WU$l@ z@va0CxNf*R;48U!{+@ytZ)amezte~|$`ZH)eWlQQ$92AMeEBB^Oz(8}Xyy$4PJbm^ z8`+oR_iCZ{MO{Aq)facf@XV_k+BdTfB1l*;A4wp0t&bBI{r;vbRP1gD+ZP~Xz@I38 zDSs)|Gf9DkuDR&eHr~n)C$Dd96pC`Jj_(kZtjHDlQ#W4h<}dmM0Ph$UGZ6+$HLX{g z_E}!&g6{Bzrv37ac7dZVRH}k6(N3g=pYzhMKlf?x2KRljW*C!xr*_@lGFYmC_)`5j z4TVFOaj^MVwz3gf-`W5d^(NZ4@tGffU8eYvRli?&?C>o2H_`l^Ne ziS|mtqCvS(NcXCI+HYsIk&f6%ls0VKH(ibk@*@ty?Y2+58wDYQr8w{_m76o>+*dwN z*AK2AGq#^{F<2MNV5uqMiE=f{v&lDyeEy`RE9J@=sRoEA#u*9*Yt5tuvFGKRXZRZ`8}rSWSU8IVhkA%lPnPB79KDCQRm7I)}{4SlbAQM1!hKx~9~VjQL50#o78#V>#iPtWdx zIQo7YUM|tM>u^4!PcJ;4#+so#ngb<%@;`f?9HdQNynAKe3d%-7^n6O+qZFdAcQsxM z@YfP3#tjNOD=j_dV+)r}`fXRXvQZar87y6gc=dqP!i zYv@V6!jy5sZa)g@t-)U#U`3z-#(}RH^r#zdcIP9z?KAp%SKCW_|!yb^b#)&6-r@~{p16rh+dDCk<9cFL!1Zl@wbr)wy zljP6*q5<#w{DvLu7lSQ%jFY8U220}*?+PHnfV)yR>ssoX+JUzHEqR*1PGo&RcQa6| z|0$S1@7F`R){_=w19BCG<}R!+=tlr0dAInnJn_R`ZcrmTR2%wmIM0!K&c))tv)1$67#uMncp3jW2b(IC)K;>%d?aof6Bal z+8uZ8#v6o;4+l!?mEdJr#(q!ByIp}M%6crG4F>%Xpj3bElt)QEGYxvmDfcyBbmSd;Uh$oFN?As;6k=wsj;UcK#Az!xwrT*YA zzVC?7Yg~L?Ekjv%#IjpJKL#l6pUr&b_mjGCBo$tN(aYs_+e>)7pgtD--3FB8)}iyh zyo_l(4LPfdGJZzSXL$bX&(q_<-|axDo$-0hRN!oQ<7&KM3`>MQe~U4w$4eh1RI6Dalfq6$}kuJfN&1)b=}m+*Rz zzP*IE<DWoyrwvxvK>M_V$Uj$3I-h+?@r?fWfpQLHw><6lKfCgT7x|hBl%QzB zwl96=g$El|MZTB_$4=6?qj z&ENk3=7+MElb;5EuLGs=#h-uk?|NYMFT)>SI?}qhk(2eX43;(^p0uBp^7>&?T(0$m zr`?KN>s*l~ZE@5G)3;ZmT~AByH5Acb`ENmAr; zr)99T1o5f^3Ake}(=kFFrJdDh&w;K8D6RjrtMmfjzuj?%y?z_im!mw^0VO%hef7o9 zbnU>!;*`3bBldfq2mM;0G{2t-_WV`X)^FW+;{5f>d2vhj0_a}_O7-BM+I+Vz92?60 zOVbkAi=bZ#j95Pe3_0ryUD}T$%D4!FB`LkYti`K+{Bxz{sNAkx7t~)yzFq-J^Z2Aa ze+UKY$cuMZfqpem+P}^@uz<=_GcFYKDd!f^uRFrm0nx7?r176Pvpenv^O(3QZ{7PZXYN(^l)vxNX-t~GiL$F@u(TWTq;VwwRF|K1|M9oI zZTgIlkSDf+eiu*z_sX-RchQEPb?U{DP1rUN?f^>jN^r;^+UGN#U~NU7aI$wnza1#a zS;d!J3j;Sz9hdB{AMEu%Ey7@_JoqJueX81Fj4x$B|Gf{sJ^)JdxOCB>deQdZ-5-Mb z9`N@eP--vE9%J^J!;bf=;fh{@i|qw{2~d)k0*8a&q8`d#U-%>N_c2hCCyI}4J*9h% zi_hk}75#}go984!eIL^K6j&EXaPZy}K3%&bU&L*VZ-pxlq9 z54)6Ur%Q7^ZNL8=27gC@Qh5d%?5N1hpUILUT>i8>A4OlD;q{=I78!Y;=GDoom!^?* zL;V?Zv*yN;vEb2=!QcfdZda-4*TW&tRv@6e! zzZFNxV9+#FY2O3y8Qyp2=w&dZ>xpnLU?O|{?C<*uUP^|c3k(NylMo+t!hp=%1;5__ zRMH_st@k$VZRu>5%D$Vdw;Og(5)9ht-v6PKKJ4`rzUx)^&=B?{a|4}|$>2|53c@0O z8ar>e4gG|%Z;Wd*Uq(JP#ti$z8lBS>LoPS??aNUZ!fBa2>`CPYSas7thjfI2pD+v( zhJR$Jc+KEyZ5Qq9%eqxKH8Q_j2BX~78M;1=nY&DTlDOlwZ7^)Bl?p>Bkq@9%uD#g} z=KatxB>Y6wkH~K?7z8H6092FV!q$JDu90@d(2*FT$GgyC_$0GB*?>!!~ZfDe^7yBltvm z9uXFF0yB`V+FtM-O_Wm)o=$J!_$-UZV?Zqn2C)jiRG)@4*QN~|w9P|%@QZjb0BetS zBif6<5C6U}@FN3G)1WaSlb7ptB7J->pg3F;-}i!!4B593&(0? zkf<3C87!K}`ms$fR-1qC(}Q7XIgtOZ;XOH^GwD1cp7K3+=sPBz7vUn&K16;H?l^>h z&jo&k;UeY7j9)mEBN-N&<98i|4+6L{RnE8Ej zsAi&NuxQUtv2RlUOa4+j#VTZ{xb@HM6t{9a#TD@(JH<(6jxk2I$55TjY~|j(K7*?b{^X z{Qs!?_BflW_y1j?A#pI6Tu&1klQi!4*=v|FGnlKHap#aUC5)7Gp{*36nnI-8QPNFJ zN=b1}$R*MgMNyy0U8xSbpv&j??7iM=pLN#h^L?G)ZZx(3nD?x+pS9Ps?$`HvZtv`A zqs-si+UI%2I*&9@eYg0fYD_cFkxi_k)T0~ea#>%;_IQv|+*l&{Z&oVGcjo#QJllCa< ztxnq|r|GGM@f1aUr1+It7d12Ure^0Cw@Up6eKPWSYH0qsn45f?&lMcxevBJ-a+?;? zDl7YVt?hI1vG6CgFWDn^AMt63UnRWf;50oWk6&ngaM^|+u7n<<+>p~d_GYTLu078c z^*EFYXrIX8em6k%?@#0R_qP+y)~^Hl)reOzP_(1ubQRpQ+vlc#{8|0&c9x4V z+pt;>{(~mQO{UZ2@mc4gU+Zl5cU-Kq%~R|Qf1>|1ovTxp=!SW7OHrq=eeDFucLE0U zH?HGjadd&T`E+inw1aNe2J-EJb%6wB9ScA3Y34w^SuJH9vyp9hSBw)ye@Om{HhDyO zDKEZg z-}yzVq3u~Co2S?f9>n;ZoP56{!5k-lt(+Tm+Af{{_F7HPM8qozDD|8EuhQszoyDuG zq11<1rbC_q#khi;37u=u{)%CqXZVlO4n{sMQ1y&7-$U~+hV_Jgy?|1=);xpmL^LY? zJXi|!O9M*%U)dE`;hf|6o=QHrS#QXv0;Ta;*_1xiuQdK=%;UuTx*znE#xDbNzB{06 z(dPK9k}@ujW_=*v7bwkhxB(;U_kVA@l!WGa~9-t zfnt15&II-%8G<$!@NXR!Hjd1Od=5}5FWHYbc$fEou3Tk5$9caJX}wkJdw=LR94M{7 ze382OYh6pqxUX=duJrHmED!R7fYLampvuB+x;FB_?^|zZYp;KBu@*K@aUlFj?H9% zj)H!ZfD*7tUme$t@!uXS`YugrCpw22R+H+(lYr37cXPP=b zb4MJ%&~_pw%&?jiUfzYf#ku>6uMf`pqZl?3>3=g&Zs(_rru*v*b6xS@%OATH@mdd* z#sww6Jza?vMZMg6W$%0K`MM=W8+nr+%Qt%F?6+gic{fFT3^y`x@QLQ=FNdmJ7t_4&Qp}yC3j&Q&HoC`yJ@Q^ z{g~5!TC;hIcR^1nJmSrpJfiYEZyNb}o!XvFgMN1dn*s?uSw}X|xnEkYtM-dB?~goP zLfZ+a?QTGy4!s@%)(GnP*Z|iipPwqWZ{cvIA4_2OKyEfr(x*6nF7aM^^p3rAdY01e zwqW-{eil$FpWZhnpVN&AJ7<0JRd;1P7|mut{yw184r(J3$bju8vw&7p%9+!2(b)Y6 zXC_c8XV=WVY%8@(eBE1$w<#HMJ0DtJA}wd0bDUx=K`hnj9oTuyUu?uuk*B#rb}=in}_dooE*+ml+w-fZOaY1b}wCL)#UQ9 z^69Mq3+Rs^9Ulcs{a@Ou^@4Y;-pdhrxehI#PSYiz&xd|*1I4~NIo)khK{Q}5829(yJ2QF@T%I7C`)s)_Y!uWX3(o)0@!qEyasUjLub zzdwt3JqMKf2hYuS?6t=s>bj}ZaviC^(E9FT&qKdAfKs`3H{S8BZZvqVT6&vo#qd!( zo2U2!{7Ly2Xz=5ID1P*KQEa&A65zsaueocV{f!R0g z;`z69T3G!2kb4g(rKjhU1X@=#pXGVVdU@pWE1!1BX}SL2Jd}+=9!d<2h5YFUR_1rf zW}imyz5KsFr!&`U%RXCkVJe$z(op8~;OBmubz)X>XzlrV-~4WHcL6evo@9=;;ihCZ zrPeFSUkylOFK_>@X4@ZAAfE}$0A{ndt3SLw&^d)Qta|3ir!#u-bMoH^!#KiUZ^*+< z`~&Nj$ef<6*UqVvFKCm5_enNi#4_}Aq!<6)=1C-T-bONbC}YHTfyDc;=mM{&ay{bH z;2)?76z@|JE|B!n%!j^XVN_p^t_<)H5dWxb{yXssEIC7@i*O@-Y@UE3Pv_a2n+LON z_XF<%;RwEl1~>6J___YRIL9r1?}u=OJDs})Uq$P~-GOA}JJQ$a3Ase@1`uC=F#R<1 zvC|=qEttLI*B?%SKhY20Ez9NK@grVz-u`K_i?w%l8oS0Uek<_ZQeikr(N7rcqHs8` zLXCBBYHC^r+jh-kzl~a#!>n6pCgiX?&28ZLY-U~-o_YcDMd-<( zFD)M)_}YAOxIv?ra+vkGLZAV314-U`uL%TSjR5g&>_uaC%A4f)|!>sLDKe&C@sSA3t( z`BHWA5x)$!>l1oz&PRDK;J?#xcgud$r2}|6O~UWQv(U`PU%79Z|js*I`pWUXXlRN*p%b(?@e6ZSq+`;_4e-KB(!w@_V|1kc0@hFakqd5{ULo*-2(;zw1 z?jc!{a%4|xiT}Eb&MQyDv?ul9pYb$4v+-a+ z7vuLjP^c!5Ap7T*$9?`)fuB}?(M`FJI%qeh8svq4(_iO@fA<;RjNABNQY&SDrIq9P zw8*d82v6jP=``&hX?v$n>br(h9D0ycuoijGp4BRr}oHCzoVXq&E z^)_kV;kxMv_~@FtPw8}j+G)N=+4pADLcBzIGo6ROdO_FN;%1M{-=~~AjC@}vbe!yT z9^f>7L3>j55kFDh$eD1@p2PgyZ@zjCH=L&->b?1ytEy9Zv7U;bH;Qs4)}x}iV&-4t z!u`U2)e)t9Mn2EEF!(+5KYKk}v}00v;rHEJ@@lzun(xlnd&K%Fizff^N*)J?g_Aoo(I_7t>i&$hQSn2b%ETO>gSj zd%NhSy{ql|#$R`1ZvKyUB~a8ua&G-`9@#&Nt21D2rx?2(;$j_ao<=kHliJUsC(^$2 zX$gT_#!ib;+Ot@@f4TzxM7bg7vC5N9qFf(S>U-qnCA7XfueZ&iUkjjAt~n0{=Qu;x z&mwP^r1C%^IE`OGkAr^K09`-=HlfNAT{ExO$PDrz`Rh2Fr$Iv*^(of6(*2lQ%>|!t zl>LB4wmqq<;7e-HvWMi*KDzZd-yaLjzsT!fXnIDmtD#?Opww@cUhp=pOIi2xRs1=Y z1nAcWD8>ooJY$_}c9rM;k<)fC%I5!egq~ttK~5GwoW>#647r6p-sEC2tUcsA0HuB` zcSOBosP8Ui9O+cg$jggb&N@NA&OoWW9J{e9oqMvLC`C`__14*VH_GN|^njjHxi8xB zl6l^S9z$Jkb=mf$y2D>xAi;%h*KWkGy!bgz^WpE#ce?2X=`aW=&2ua}07b72?e+G< z*V*l*C1zx^B*+g0it#x)@2dYR?Y|$@-fBK)fHJS@5ysPy+UvM3x1aK93kGz5@(WUdOM!eJpj2-ky7M^k!2DI39j@0z z*?(_i^EA@oFKnLUG41ZC_ZCL8RLG}=hsTfP4sWsB zm(cN2$SWn>k6eGi)H;Gp9hr3$wk+T^Vb0- zADrvyEFYp+0rVRXuIGv7m(e+aa=mZue7Eyn<(!u{{79gb?@?c^`Be9ReR@ly=aZFo zFh0zll-$mb-S78lCT+JzqEgPB&L6_W>B+uc zTc-1$Reqe?VgIN7Up$Q|2VbLkfQ$25L)#_i^>z&6bv;mO=e0RQ-=X;ZGtNuh0R3(P zO8vCOdofJ9MU^gL=X-91{8*q=o{CcLAs!~|Oopas<5IkIN9J*g@1Al9+T>1y;YoliEOflO%!-Ru_Yg{IvGl;*cF=W;Ob z@W&|apo`rK`N_b_KmyAyFr4v=Eq+X|HGgLU59`}3?9uKsdHDF4WxWAilTz@O9(mLBmR@OeJFx6<0X#av$6e0Ht~H){}ECV&>1r%#lj@bcgXYq0x9(fJNU66@`&*68f_}4s zlAhTu?%b#IpZ~r5hq;K?`#`B335QE|$g~h5YM4sXi1L@jvSRmj6ANzb-qJ|6nB9_N1PMKWV+Eq^R09 zpOL$8U(*@=lzo}RFndzcym-z10}uH8rX9v(dCEA%dH?x!M27xGJh()`x-do5bGS!ABzx=cw=r{np6{w%_I z4k+cH<{2Z-Ls$Gd`}5Fm6;N6)H!iv2jINm%ZC}wr87H^3c^a?5pOg;+uk!GIQ%k%` znO7x**^`pmUGJ`1hjeW>9l!oIMj2nXvUwUWAv_5l9T9Ut=l2tRr0l;(-oAvk^O4u1 zP=8VE6)08$l=|tY`%hB8QaH76dCg0e@kArG9P%rH()g_C?#B-5n#VlCc39!<#;{i* zzXB-r4}3q|`dw|$B9CAB^kYu@Kd1hj&R3j zu7f!(pOM#x(DZcK_M|o-ep3HX-0Z{`K7RkMx)1AgoE*?MBAiV?aZZSw?5mf*r}Q)* z)xOjDPZy~iQTPFUv#AC>TR3P23R zF+=H(+z#uXi)}|ZJAhI>Dn9W}ZD##kZhRo;>0%zt{xkbB9|n0ng>>ew%=PG=*$uMU z@dXQiy02Ov_UdDudM8|#!alA$aatof#>QjW7T5;Zo*jJtiA`>A5?eL+tC;sj3%M?w z4^b_N-Cyd7x^y#sXW~7OzWXDYnK?ct3EvCyaCmsh{C5M$dcxg{qXvK86u5hH{1YBW zX2;J*&&x<-wR%QfKEsvHtW}GNX|QjT3cDt0@Sl$F3G4$t1l}70dvhK@wN#w%NBCZ# zmdd|FydLXZzOdh-;k^OA(q-a%LLP3x$Fcb};`ct#uOGgj0qo1s=BtSJ_?>twn)wL+ zkk*BLr*HV4KRX2_@6kV|F5E*!M6@Zua+^jY`ks?sqDi|5o% z@J4bV2PD1*eVv{h&W|Dc9et<0cBuX?}5bcvg}

I>eB$WM`9=_p@Fe>;DWFNXLXJe|2np8(=V*BV;-((<2$#3!-P zPVfHQ?S;QG`11$T)sh$Ch;kt8$1qVIMZHRAdmE*_v0)7OG|%DtrG0pLzfr^=@hcPl zfp)pi1urmZ2R+_d+kh zn-P2$kC2D`o=@R6#P7Lm*Arj;xa=+XXCgh}R?}C!cjxhR9-RmNRv!3{_?-c@JlOlm z=kmfXj9YOtxc$O^0hc$R59wj?tuBMTn3wUM_(_`i2>uU!C+ozf%oCNw@BKM%YI6Z^ z-zI~{^gr#)2tE_^5%KT}eeqqPZ`lxp57dTn_tKFZ{csDukl+dZMSCs{mlO;+uRI~s zp36sn#uNI8^Mul_4)S{*qVzYPOE{Q+{pP(Q#rMxTdUWF5Ozf9fuO*()AjnJOtn4wT zzVf-vW1(ZNX9aj~ficpaM~QVtf%M+f=9$Aj?@Q}<9h*9Wb(H;4Mpc4a%+I9oT>V}Q z_>4ts_y6G@qTD;x+FnPbF@g2e0}@C)p^6`uMnSJyz(zqm6F%^k>ctbUuDyGAPS|{_ zD&)la!DT^z?p?dhdqwE^gW2i8U%TyfA(7v8_zUxI%)T4wysWuC-MOAJ4t6?jb3V?$ z6nfPFO8M?-*y|ggW-(U7=jYDOCu#Qm_AZ216G)I?^!>h^&t*qGzmwu^YGm617W29b zgL?Ywog&^2-M;rzTzk9T@Ym7y`hPU!MZF-WWH+|r&pV5HS|55!=Nw!c79571hVok1 zc3wV3eG~Onsz(Xy*Z$#SFI-=IU7rD=`<~Qsi}e%{FHsN8=-zYy_l)~%EA`LmJk)79 zi?Z#xWFsG>a#-BI`XOIga>KdH+vbFwKNj=%w>tsgFHZns1Hb+<5kE~0+W`)v0alo#!CyMN{WTw(THr1nf(RCu(U+q1tv zJzMgKYOR5ypCD(+%J(Q;TAf%lqsE2G`SDI+JRwmJ$sZd%nEZLoeWl~dy1mnVCC#=s zMnf*^k?Onm3F1}%Q|_(32Ku!P*OUERmCDONbISOgF2)^PtSw7`d>fz`$B?t&*ZXNa z0X|b@yyp-X@p{!oA^zME`;+=b`hqKrCnUWue&ihGgWEiBd0g3#3g-!laS46&!ppMh zUV49duJ=1_uOqL2QoJb&QLHo4Hv=fOFP7aPt>u^NSKX1Q@H4xzE|BjEl*)DXJB^R~ zjGvZ}!Nm5;zHWzz^H1t;D1?CC4dF1L=zqzXUGoph2lE=X`SD79Z_m0zz6Vh1AJ~iE z`*m%Sxl(hb(tbJ}?*{ZlgoBPplj2c4%0uH;>#6wjWl7MpH&CwErrjs4-;J}DZEB#* zJKBWtgu=#=*1r7Na%w+=JfRfmDYY-jiGv0It>SsPsnD+vP|WMdY2Dvu*=cw(N;yvx z$I>954y+9%C@M`Lp0oKFKPc@|eqse65%d5e11kI7?FIihwWC5$H|jbAw5-29%AsPI8M+dLspczB-pYv}$A zlO|NHQ`kDgaLA7UO7mjBWiP|}y`j?Ip8xr6`PAEhJ__-=9w_GXrt|h_+FzfM@_oX+ zP3?6yF4oSr=Q0NVngR(*yY->-kJk9QvXU;bVLYMW_{DqM3)Lw+>ruxOPR}hn9rrl* zSBP{N3zX|a<+IeU#FzuS8cMs=%(mxpBm9YV2XdC~eN@>0aem)Jd6k!&px;EG)Gisf z?WcPNj6c73cpT)5fYP|!)9}pXtW#vuWH3iP`jDE1S`De++{{{DqKp`QVi#@E032JF$bxisNi-$H38TCuwz zFZQv-x;g#4^^t|Aef*r}r^Co>Upj019-oMSf*W7&6bEtoR`JBNO(PjgsajU=2@~ygIon+{vUVa1T&0+h;&`_#%R%>6^|$+x$SQ}#Pj*dvf%4r~l0@N}Jh*ylF3Y?zpG zJ#z{0Z(Ecc&}s8tyQAE>bl7rxWR%?JPd-32m30jw1v5LIkh~D2=m-?Fdkm{k7=(X?TtCetllmJ|voM~Jv<^L`+jHOg#Qdnd+KHEu z9ztMI`N}55>wTcy-mR$dq)%h!eEN_wA3Oi^s?hr2bbjPKUA7@Tb^@jG zVA*%K?a;NQv^-ybfHE#<#y)`j_Hcjxx=+yg7xP&Yes0uh`?3S!d%+15;SdZ@e|Wp=q9GKK||;iFaczE1|T z#ECCa^}FV8EX)?)?-i;q>1oLcy@_8{Z&mSqtquwKG`vrPzKD+@;sv`b3&2;(7kUW) z_`R;MpCf)3-x2bu?6o@GUaRv?AH{x93XkXMzR)`p`t;){_#iABzh|+N0eXu1;=M=* z$O|5g#AmT?E&c%clP&zgP1}K*`S?Y?1@n>HnGyO6OyzckT4!;8#PjK5UK4O_Hs^m- zg`R@XB=q*?aCrtK9tT;=X_?d{n;pC4+&$~Ph__$xsSq!Q-^F)qzD_#3^l*pyd$RF8 z@<*|tM{$er$iFpO-G%qUpLlQN@cfU@gyjF9UXhME;6$0k>a#52%U!>(BMs3qIPd(3j$8=_%r?K`uKV zzZY=y^9AX-VEpmiujSfmiz)GUPS+}>cKZc9_Uu$%ktR9 zgz6g;b_oCAHO+>6LSE>1NM17^p@)WWUPieP<--u=NqiUSO?ut(aZ3GR?O}Im-T?kR z!DG@Or{VX#f|oQ9azMJ5&MJS)AV+qWNGsAyd=L6-!_ck{=kH5~aU?rOmi?!z@w;FA zK7zmZjQmUXjOxaW?0H^!N;Qb5wDHe)N*g&(>BaaUPf5&EDpUI4vDRhNCOuR4qO0y> zw~Jp*lz2+h@%tsg_obDt*{BEFZeBa?`yy5p{GI+AW3Pt{#_u(Q?~SZacKG~F?r;C& znUO3z_&cp)jIhTqb?|$&;Ct)7wz9!zPtAO8sD0j&zb>%(IW$JF9%&rzf6rg$b64+t zaBwq^!f%TFz6Et&D%Ou`AiP>Yf~bQjdwd?VCSIMToL`8u=T%i9FZ`3!v%d2|pO;4A z(JOk|>A=ODj>iJJNI#Kp!cE^bl2U)-<5Z)nonJgWr{i$VJ~t}X#ievB*_TCjL#(Ib z*N;Vctj!hD>H!H#+nxJ`>@=HpcjK5SPyBTw`~0rR@A^T1M)wo)4k(D5vA_aC=5E!T7n24##}%UyGVPwJd<@id*4ep;bx@4j(&%Svr+ zUKtll4C5(D;gwxj`J_+#;Kk7;gIn0;iu-eJ4?wIpUd}(HiFVX<4)1%0?gt-s%HzLG z+1Ki7^OW51C+aUb6B=~=!KZyTbMv{<7^R(PWZN@p3V%|*b6$qEKCZ5RL|z}H^r8?V zuMeUAoY#j~#H%?_TEFri)v3NmKRW7ae^tBP<6`aX`x=|UpXe{hIcvr5M|A#k#h)vPAcGJ^lW@ zb%Xr@7fWFsAm14ntPh%ZI@x11uD@XD17rFq?QS=lr{4+wr17BZ*28oze6M*vxW1Au z&c}n!)*oFqPpMyc{7N5bMCU|nPH(u~+g0Hyb+qjnCBdJR@9ufqXq|MBd0^ryrTy#> zX3t3KkKDg(qj6;6`ht&Y)KbRD&d>GtfPRTU7my%3Z9mydD=a(y*>3@5eLQmeCTf3# z4nSiFM{0Km_8U$4j`}X87fD85-$TQ5T3$4pr<4vorF1Fou+i(&O3Vq1+n(2Ov1Y6n zR z(!2`yyPM}Fb}Hp1@_Z;CJ)>A3=+_r0o#&DG92GwwbJi{e^i0HS5K!tj*^a8qea6}M zA05$3SLWfZSr+8;fKvMsu|?TeH@qQ~%NJJGp^zu4b~w!7!QUkR+ET zFH}#>-WQq%J*9O;|D^Ptx@PW#Cw2=PFWmw8JAqQZyJBm>-qsnny??{S+>XcPcOjgq zK&iYGrEa6~#9v%TQPU;TdK5aIh-P;~KLZ#(e=uJ}g|%mqh8L=5Q!S7WImGyGnwrBJR{7K_^ z|L6fneTLb-+&W5GXXtG6l;*;pR6Z?!McH>X+vfc|NNERK|6lfuv|69PqicuEd;IE$ zwM)+OA!yHN4)m1vk36?sKc%I-h(C=BGRNwhMKWoX1c#c}%qnQ`- zOMp_px#*%ZH2(aDoVRw`KP*MOUI$9$x;W+W|LA_xoXU{l$~`0P!+1*4yuW1Cr&L~Y z&3g{gmGdvH9gnkKfPN)Fxjm@$INcBQ3*B3GOMC1SS`ca zvzH+MGEi#IxSg39v^_mg?Wdi#*8%+%gtHtd&5NfD+O?nhhrh;OmecG1=RT>>_9fcp zDXoN_(m3l$%dV95d&SrH*P!1jpfnHIpP2mzwex)4G<1J6^8P5aop(NudjtBt1(eo> z_g>fZzqqF&Lm8Jxv(=D)6DW;8ix#F3f2&;ECFlK$({|}?#A`iJg3=z7HRew4KWd_O zkFq}4hOLF*J3uL2TpJG2zM*9&Jy)skk>BGGn(r~TJ)?C9PpU6z$CAk&xb?&;`RBB} zM4k_l9;OBiif9|SLYlOmRXpf{nv8u+G{L@;6g?X;Kjhy7O8w@F)+eZ(O(EX;*ZssOV9ik=)>-~=9ynk zolIj7JhgZBQv-W3o=Q0!-92HCqdR_Y!_lw9od`FBJBcIlCLV1@7Cp8lw5+jyGx7X&S@^j_;z`w{($9Dwwfx9;|FWWiQAeFm4X&gxp&3e*UviWT4jo+cC zux~c`LV2i;sxoUgwTzY9J96Y7uI*Rg| z#wuG+fA-X*on4L&1@9vzo7J+O49{zAkM=;MH&E~00lpS_!L%s zcnmlO`AO+#@f$t_KO{e&+kyF6yoVj04hWxk99DYK_bl|P;S})t^m%wZtngb50uN;X z_b+%Df|p?oVF$jZ=W-ADMnfStjH5A#Bk?jc^C3Gj?aDLwl3KyhWpP)a5j};@h5A!bVLZY<&J_gpJQRVPncQLBhsP=y!?GlV}+mkDb%ERy(kLMWws# z1zPL1MA*m=_vhbu>zBT=-o-Z^X?ioeGx$B)q7M=_T=>0a@O^f_FTeG&3(cfMetqS>CL4VrwyMFbRes|R?x1|qM28QwW!i5;X)DHT~ZrcIG@I}o2K7Z}9 z2Z~|>C@=6&nRyArXOw|ce8HWdx?DXR= zW9^B3bx4bRBxl1DH_}0K^I6kENl&-q_=$;84eP_2MuRf(a6>45b3*P@4nR4dkVl%H zq50=@<3FH_a-4`*Ndr~OaEIr?6GPf03=AbgP|qsL@#XL*)my(wgz#4`Iri?+p7z0c zOU&qP8ZYS@BGG~}BCrSRO_hkoNT_6;cb;n6F@>R(;Ri-jVo z9xqmu zq|yZ~j_6vRIRrVY97u`@BW#HHk}jTQ2WbN7JvF#^}eNkY-^4F3-?`P*KaPC7-m>TIv{l7^5b+s$a>U+eNHFjPSaCk zaa<9t8&LG~NY!~imVj{D0Ht!~8N7-% zI<1ReHYpoyk+;{O?V!{08PMB7zs^7@A6%c-p?YL3pdQktaRy1ovG$Pf1Qg>Ra+cNG z`wR6)<`jC5($2TA2^$^ZuMUuaUudLt|8jBD%}TmNzTq62E>6ci&g*TY?XFZWDe6x9 zBj@?v9qHZ!DD`6!QLf?-=;_d}A5bcX)_B*lcXhbGLhxzN8032aB`EtikIJ>R)X+sa zI2Fs1AlMTq#+Bquv*$-z#c%8+L%$TDm=BP%?4Be#aP_lkz$n(9w{bD&^`SSyNe4>v zoahz4qdtx3QhS~YDD^#>r9wUpD77!zsvjQtAN{S<`WJaUQtMwI=+_r0ZTx3@8i-{!uILG&Ux9Qbk^M_2xX91=9&Np%oaKovg?Puiilk=5= za6B%^fquC_sekY`%b^2T=2KL++~(8$5l$XZ8fWo?pf2-9g5Q;VkGvj*rc31gduaL8 zY{JG8=-CuV;N3Xk6Q9?W|IFww$1>3#Sg&a%Zvf=x0;Tez#b)f){mb?@nm=ZYO`zps zIcy;0?*>ZaLH84t_UUY8i>DVD9wzBQl4)!Z!0)T5~-e{=@P|8La&>FQaf1o_G5I==cVXw4KB`6<{e$wD9BF) zO650d^@FeL+Jwq)=Dd~`wvKWwN$`W_md#wH;>rU0e-P*$@a z<@?dGKb>%?M3xq|VVPUuPg*xGi!X*@Cr`YxAK-kxG8y6A1{CYWrZc}8jSCEOKwn-5 zu_MjD;C>NTE1=&F{q6!v>FvMxl`nNI%{<-9_{UK>St^Ie?n>v5}t5QCl zr>C>>62+!M&uKuh&P&dLmnWGAeabT*oYn`88PM-upj1BHannf8jkJ80607tp@nME# zr2cPfr4e+oxAk1;xLk+!w@%BMW)n7MB7Rc;x7;#Rm((h^%G33f`CqI}*tj45q;{TN zxSNPwSeFXb(`mcwH2+*|7WA79l-ecj)Kts^vXZd_T@q7_cTzde``u_^ZMABt1FNGB2QU2ZOvGvp|w|sa6;XDeI@;&YDmD~O?#g&8H{D5w!|NvQK09lKy+3TdHhMa2 z2Q{`7-+vnz1thSDYyNdZrjN@TtX$NPWD_>tgnZMWzw8OK|Im#uP8{$TWhfUTwPVX5 z_bO1T@18)P4}8Wf^GQ+Wx2@R=kbfB{%`2DA{Nqn&$Y{N3E zq=@0)tzSHIQrB);Uh~19YANk?(6G#F5SHdEB`2DmM*anq_S$K^b(-%^{Y9}i5U~Broi1uHA5W~ZKIl|Wr{moyo3Qa7^pwgc zzwpcaeZnB6T}oi@Kz=w^rG0US5jLc8$doFNPn1E@~>m92=+HlUR6TD_=eeHz`b zvSUY_vLE1dyc^IzKsX-)#rZCBX6OGx=NYU=9e=vmcF6AlRt6HpEUZQAJy;J>^UrCz zMCvcJ-a4-jA0a-U0HuB`;rCiw=t6ngwa%aIJk zSl);*#nUHfaH#XT;~5j~NQGPcXCdXMh9O>A(74DmG+XS#&*8Wvj-M9`pY|-{V z+FWO3F>7{srXO4WSf}0zIWVL}_YzwMf?gNtCDJzy#JLO}jv>+|gSClT-e~aBY&K`* znFm&$$z<1CyK>oV(69Heo*;;L8uamJqnyDlekX#OxykwXikO!O0X}PLGIm1XB6s-$y;Cdd&%B!Fp%Cr+QfXUjGM6wn3kFg&rb36~Z5- zBliaa+;uS26Q9rX^>iM8FNj@!xLE=J-P`}q30)fGj9g~sN)F|ZX`LkX0+c^;$DbP1 zY0&}br)98uBTm*G(I$^I{9tU{%8~g97vYeh9?g8bKtIp`dIs?Kg3w09vECK~GM~4H z<3v1!{y>pGcKi^YAe@PKx|DRJ{4~|kwj!Oq!hjNfX97hy&`;>?M>qkLH%ce#du1Y@ zM7a~?3g0u^P3u9u@?`V!_9sM1ON{c@BGxS%&gFg@#jM|L;@e10P@X-6|1Qe08wQUi z4a4t1KahxcW_L#nIY&IXsjalj&nr)^I`QQ8{TWYgALq#(yC%3!`J|O1n${FZaO}&O zrM@YRuD|E1hK9YbX}y+sa$O)_Bj}Gc>{aF~`|;J*lhSTv`N7|5g>$4muIY&1rEy1g z)vT?$cHztySA9K5IgixG9!ClNss+DmtoYBDK4av=g{8~$Y(pH@Yw8FpL#_d^YS5o` zAxy~|(=!_$%T_LQO|;jKYC*ns(4XtW<+KhusLJyj$RgsU!Qbh>j`sLjq=&kmX*@80 z`U^vJ`}^E`tUaH+1mBa^UCTz*JLt3SOF0>5rvn#@vG+Yidenh`f@OEQ>0FBSRQ&p4 zb?7D1s~+40?nOEOYkkrAdPAi1tI%=1W}iQHK|fJ$$hp5tN4ogSI!9me=MzME6!|U6 z8|le*>a-qKdw1Tfj&1Go$fM)bFo(H1U@6X_?`2SqtB z(|hJraiMvAyPY+Erz+-nf2J}2fF{;aq&O4Mf*!m_H$J_4}blm#^{M%mHqTKEEe)t0!6z< z&XRZbQh6DE!Obhrss@E)!VDY9;T0F1AbyrPpg&tq=j8%=bLiIsD1}#Cbc*uNdX6di z=d|5*TK}Bpdq8iAcqITY1`=@o%X<%AmmS|qX$M<`@#LiZ;|9B|??fr>S>*LdZI@a> zud9Jl`Si#BOa{WN^UdFvTfVnOI5fnw9;v_eFS?z0CDv13?V0m@Z^ISQ+5)BV62HjM z`rTbl>x)jynP&6kIzUg+4wG~4_bom~daC~QNo^<~QHRvWGyywuG^?*AODCJYL-`zAGG#}PM z>2IC)f0RMi!+_Fwi(hd358*-dgnqq%b%6v%!`9#Ww6=j;#!ge`E0Oa*rF5oG2J~cn zKLseIi}vPX?Em^tEA40G?R98)QLHz@Nd-#v#eMmNy_8M==5ty>!$va^KWSXRlCRpT zdnQbo{=gF+n{UmmAPlN$_wV!lMq ztwY*x)XVqcQm5krr|B7G8#Xc!KdIkLIB}#*_kVoLwxLT0D(3-{Y@Xb;@F%s`$NJ@! z`Mj5Q%e**lfW1Dz#d@$2kRJt<=9}8j(Yt*bGjBZoJ&d31f&56In8%Z|(e_co*Qih3e_Nop3siyaD>%2$b3vW*OeHe($XG50USumsk95f_}FGrS&>j>Zf1v zer!cgWt|~`jf4EnK&c*Sr-q!;HFNppWV(`nF=2*{B!ATpjM_~7gZY%#MZQ79Micpm zHM#w4{XU&TD>M0#sv+yYzr0L>ezyRnbSYbUiY}7XR|=|CoAv2lSf?l-66*X5L2a68QR+@SZ~>``*R7 z@Vhkc2(%bX^{8C=gHH2LW7DAD-9Twv$L|-jelM@}7pHng**v)!&{N8Xl3RA2)D80l zz^&>%k}>wZnfJn<)Zb3ovz_{B>#6wj;`c$n`+-t>Uc9358Ps=me=PF(gEap!LvXy# zJ`4Ii0hH?P)`z!Uz_bH*M31jCFsy%=4f#dDXdrTh^QzYD0m#h* zO6{QcjRG2%Ptk8)yizqt)`HD}{6j!#JQ3C7uI;*Z%sgk;OzDprvAK|c5Gb{0hnswe zafnv&_2FUYR}7TO3yU62{q6FX>8Y)ZC!F?U0sRq#^C(d2H~rtOTZek2mQSbU%xOD8 z=lY=ELZDne@4JTXL9-r}KjE@@a*x5ERL%nLm6`nV^5hx+{ps>J;-s-2~AI@ju7^L<9y4~Sx~L+%ZrRB!oxHP-JH-`_f2 z4|xmmS_`}gNN~%}KYpP54|ctJcI4N3=)5YHt%2OzK&jm=TmSAcYA4M3yLxY4Yq)XuwE@{hXK>Y}W-j$EPi z53%e$$Zr5j>x!lKJ&*f2jLORXgFE8>RvIsuA=o^*O$bkFKTF3X6aVE;*J=MP-&dLWG7JSSKb}kSBzgOex0Ed z`t1Tr>plD&(r|OVE>Wp}(d=W$e*%=CWNKs6u%Gofo^OV>yUxc;yP?RZK&f0ORDD!q z{O5`vpY4Hudx6sWL{Zv68i$w$Kp)Ol(lhe?fY5TSvCk3C7eHwoqWR5ni1k$b`KABG z%i9;^K9dIh-FPo}O+sE1>5+kO`*390aAyI*R}#Dz!HXfes#^;e8FMqi z<5LXT+4++Q-WuX1(v8y7oQyQuBH{r(5`;Sy zBTx4p`27u8JRIT|TIKgs@%?ljjtGzP#p0RWjQF@HoYrfP^=HjZ%VV|s^Y4@Z1#ip`Hxqi{yWany zuO}bvOg{gf;HxpXiKoVSUNBfFc#fo>W82rG{v3A5yp8*N7>HX?!1WNkHv{^P>Ca5Nm34jvFR?4+ z^P!g;DAGv_rjJ!mXTm_{R4QsUlwkl;2TnU zQ>tp3X9zchIe8FwFB-s+L0(h*dqw^Q^|1J}lZJAC#xRb4pav`(jQ2zE{lUEcw(@Yd zZP0FbsDC!%FY)wVsXy=1^Ul-T_Gdi3ZJeif=BnU)c8bOyX&jP0`_7fRad(3$J^wq+ z-gmU5B%WS#_^SydNT`{2#8>i2{)<_=3+;1u)@x&^Jw6iSnOc&+&$EB?9eXvQ=%u-% zY~Bp_7u+Wl<6nXFzG%t#UA|+M-I@W)d?eN$7t$AA4%SbiFDxJ)O@-M10&_aqTi7LBg>Izt&mKQ#D3ko35OP zYHzzmd6vqV@p;peKI8DGeP5;fjziPCjl=bhfLj4S2 zy{l;Wm-X~q`yKiFXRH^Cb&96Yvp$f3?@RnZ_A9s5vCA=k9nXYZBgngg{``xU6#Fdu za-Uvk*Bkyi&Tel+eoOVppLESHI+xq8OYIK*6#05pX!(o^vu7uTSM*7X>P&O$D&DSA3+OcfDCK+c#clWaJR@(pp!?^;ZF^mo z7|UZTMeCw}!ud}1JWUL{2J&rz68Nt>ci5+$F~j>w+2@I72@q@p6yq&&#tmO5)*H7f zd7E8MNO_ z`z4Yd^y=?UPmOhjen~)STvYbS1ls>TsU+RjQnYHjoMy2GE;A9G%dwGP`*+1G96 zu>J+~9tbB9D7Ay0bKe~DX$dADElN3$;gpZ2F?0YLLwI5wL{87}jpls;+6zA3$v<}( zPp_&aX#L@Khs=Ljd!-&Z)id&Wqgvn7p;tek)Nh_C^R3pkBj&_dy?;N3^?`g}pfnCC z^sgd2x25KS+b>Fc9r^fE)ics^7TPX3ZwE6GuN!f&_F=71?pFE(LCy~?tXo0woBt=OV=lw%I!YKes zm7j#k`uFfhx(zbiX#VecZ=6_WaTkGkV%Qy&K_A?jO1r9w2|~ z_SZd_9J>BuFg6(SBY{#oZ%n93_cGr{8}lC}*!Ko;v94kE?4)tsO*5{ccGp^oR?juH zh`9fg&h=1`F*Z-n13jg7;?T3Lc2fIk&QlMCjR%KAegse|hn_dbtssBq^Y1wi61a9&N}>XOPmw?2k@MWpx;EGR6d8!{BS4Q`SO}~{N4Sn7G}>*8b_9NuZ(_^ zr78WU^ZGCu>3ADZ0@nI7ns-CKh#r_*xnJUwrRVt$}BFLAfM@tp3SJp0QHKTly| zUBD8f4ca>(e=o2akRainJ%@c|*`KwY_ugoGorb^8v3YvaATQQ?$yu^K`Y7*LTtk)m z7sKv?{8XSc4hh`1;wyd+;>1?vl%7t<^BTJw`rQMR+G}^?2E;>r*j$iIP|8^pGax@5 zD5cApk6XgdgI4kDijlVS(s+Sl6wqfNUe5!iezSB?rO$O1clhRK8xITRi)dN4J-dhC zPg<9KT@QPSa&J!g&BFjU)G7`X%v%tf%6~*K?uYgFtECq4_Vy{emSOmHOwr z{dAU|QMNt1`OvdEkbv_rW}LkK_oq^nad{6`47qtgsXaUMQfwK|2Tuzn-(Bnx$Uh2{ z#s#I1+;8$-`T6+JahB6|-g&#^EIkAI0>o=6P^y2U+YhI4@^5qA)9>n}>{E8J?b$sA ze@%b{otMqqrCZyS^IO^b(foC1wh(fQfl@nB_)8_?`^?B4dEj@Kvfk5zErR^xKxzDv zu;@49-&oI1WuD`XcwQBne@@5OQDOG%r1HYgWt;cOOsuZdBd6uX`MBU|q~kL{35xc< zwb!Sa1{r2wstKf!*(D}uj&(FN_& z`U6RJwe8ux0e{l?MT@Sw-lt_wxMSB7$x8d#$>!<327eMnUzkVyqJ`aKiZ-iu-s9Oz z5L^M2`suQtD${)0HDzrFy^%7Xj%6=H{uQ8<@5}ctCjP#g-v<=B?j3o(4b8uRz8vAa z3Y6Nj?2IV~dH+B>_0ak4`ObGu3oV~fHczhvdP@0gG@e`nJxj|;&&b=CP(3x9r}sMa zl*U=!*B|^Idd4d4pwsk>T+h&a*Vt<4w)i9dktdD^|KmEf7Fb<3Hi5xQa?5& zJDbY2^^}*rZ>Rl3Kz|$htp!T$#M;I`yyw%bi-c5OVC3sIq4^$V+p~KY;Yt0pmhb}2 z|BQde`K9&Hj}pLoqC&?+GtVp6&-7=g z_PbiJ4UpdmtOF!)Z8&sJH>~*ODgC?Cely&jozzZp{;3syv@*VSTF#ue^IMP(TY=I% zr)1_?tWRjSEBWp`|D2A?{}*p(TadStMq~A{6PEwM^lWzVwptm_UE7CUv*W7`C&>Pl z#cRm#%B)x#?Ko;}fbD_F%s=qdoaVRn=58;;?>+7Jn)M{X-GyCNsi4Ny&!%#|%mYFG zizT+VcPO7i@E?e`VBQWod6WnT=mrv>hw~az5RUjAZf`1nPva=~GQ?Zq{EZCd_iV`L z0LhNhcZD~PsGPxy29lwrm3`QCV{_kZaX6g~?zAZOnV-_w_8t$G?BA8n&;Kt)c*MW3 z>?RTK$O>lx>}U!5L|&mMP*e02e4esi&`-$0EqF>sPxjT9=F^w+awZ`@!~-$eI1?L* z`1R$yibvrVyb!XV#qCfbeFPszq<<;Wks%)i-$zSCIY|ZYM(Cd&nw}c$GWAA!`g8ev z2}A5liQffJ!z=Ou{)jiRA^Pm{hC8xgZ!MF3Zq7Eo%))n(e-wY~yMy504J7}X^#BcF z?<ueH-VY_I~0!fIe!k%|7Lx;Tcjf$f3w~Tz8RHQ%PsQP z=IQj|zuVvI4>_S<9^U73H2SmJX*-S`T9(Jw_W$mFcP8XnU*wAj2l+wyV3k9``|^u) z66pdrm51jRTs`>nFZwf2tF!Mv`dlu1Yn*9dEsOjARD2Kd_lxo_$`9NLBEO(FrSs~k zt?sDN7kVZXfG1Lb_y7gZ#h=Ia7itrx?*<>~_gv&R{4WAhI%wuY%g(%>iF6W(^kUFQ z>(BGGN-pY$_+98LFvqsLW!cZ0jqgyow0MRw1)Qg|vjF960M|qCRuY68$bf=JqanV6 z4`V3$Qhcm>IS=s@cC?s?H+VnaDDkf=z5^uwmBmAPc@WpnKais_gqQPkLy>NS@qQTM zp~y45FT0k%7rYtIn7_o6`QYl*>gSawa|zkA+Vf{TnLV5*6Ln3HCo@^&k2K%VMh@NV zOIx}2{*4)T+4~xnl*E(i27l82T|$@J$)44+jm?MOU&vDM-U3QUF}{hy?=ivmZll97 z-`-9?pZsO?NZVeB_1Z|c_YW_Ie00#?q30*kI#w4NnCNQpk)uPNeMq%qmdr$X6!|UUN&bvizB=kF>vF?$iyQS+ z)_FSF>o@ffPHic?k8>%!YlrRc{Z>ai{rKwyn-7au(w|$OY?4OGE!hC=Ds~2>wXy@@il8!6utc~pZ*hG3r z^=QrI`E(B2vOlp?Syys84~slqLetY}zDFKjXg&mVu?~0zPhd@|53b#Vh)-wI38t!c zh8o%JlpFq}cx2!IJlV-Gk9|JWP$_3l;}_185&aSc?;V^^ya4N|`14%NkRHu}qJ1ML z%ikmTN~e|b8F~Fv^RETMxe_R)i}AqFcW_U?dcRfV`5@)18G^(59<*oG5qgS#jhvR9 zOMlHd^QYf7P}zrTYoEVp2Y;gfB&W3>$}ZZure4)7<(z)J&68;hf1>{-r)3}0I5PI9 z6Rt#MUA_ft1^G6>T0jCedm-(+zinE)jSpKdy&7@};r>eQS$c@>2|xbXZzV3JJ&Uz@ zGBm`q9?^c2BT#uD)gwPYZ!gAUTrS?35v<^VIogY7TJ8vic z0q5pBLBGyGsh!Yz$Iv+0G^qS_ywZL;?T-R_7lhLlD2=oHb3CH`RL|!)ZI_(pyJp+7 zngBh;_>P==o5yU?OBR+6?|H9BvBT5Xwr6!C{7K`9;$vCA>i+aI?ekmb*!`9zM&s*5 z$PWTaz^*+_?X`JhPM6+H`W}fS+dP@x@F3na+z zS~qnh+w&;?-g&2^VX}(jea#DD^A+{DXBfN_{2&Vpuxl`v9eW zW$Tag0@Tiz=Q$gv^)I0JgMJx6dA#w(TgNcYDz9_2&hsw|`sD$|yo{U)`Df|=?S_eW z@5qT&=6~@l8}j{uQv2d6xQEU=ZH>LI?07w;e~)E3kk185>5_2upQd`(m|qcl=2yC+p`*h@T75H@xo6I=>L@aI7ULh zQ9!BvEV9mp{AqcKeB2sZA0lr*rSu}roYsfP%XO%p0euY8;|8EKt}F5mr15UoKc9zR z5BWl%I=I}+W$E(FGV~8+O0sb?n=%x^VWXtE9qd`yU$g|FR^SQ&NO0`SnWaAek>Nl2YTg=pzX@%~O@Z8f zKxuwkbo>1Wef|gBjfY=;UFba}S{l0@@^=BnIw(1dD@{1yE1Kzl@Ve5`N`KVC-cPy{ z{-pX)yt)+YSz-5tJ8cIeZ+Ao6L5)p?e$&GBJXX!S-)H<Zxd-9I@{bLKCG-mJ1u7c{T_sKFEF^yU^MpLd;;y+ zzqS5pHcw^&;-}_=(WK6xg`UBo{2HUD&69Zm{-pUs_LSQ`)!BEq{C4jp1qy$*4Vwk| z*+8jZ@xC$n98b@%`rx!&JMA9=`W)ytA1JL)v>$LPpc^&%FWlEuy?3IuZO>{R{7LQ0 zi@R#kxHXx~U@ceg+i%4lg#4pGseZaI8&2h{X#V&SgDzF-Lp*y3@(%-LXftmM@ro}m zy7sa|N_~i&PcG>}pLW?inMV+iG=I0&g*C%mZ~aKI+v~KQa9VHw?)KApIeQH0_zF;( zudFG(&FeEB9p889BmI?i{q{Cb=4JSk#-H3?!tTDCy01=A_%&^8p3GD5cNvhN?Ab2F z>#&{#Wj@xLJr21ifl__<+?hw~`qmSpj0at8G31{BO28^TSxRA6zbPi<}6vswjz(mI%N!4PUEN)p?DHnWOSuATOqT9`d6Nza4{Lq5m7 zA?mmw@_mx>S+@!3Zz4V30m|!A{U67AL7B=kbhEc0zZTdONKkfP%zj<-(7w~RUn}FD z=rDU$QaN+Ia0}h5Sg!mN=lx1#^(c6*5z&u$y*xDkqS!ioU_DSCms{sUN=*Bv)s*>P z{66cIr6`6Kf4{fHqI6 z)^7Z-nXHZLi{$l7(%6!lx>VWqOfvW(otc%YtOG}_3$Q(qvC1`%%s%&43U~WEDet?m z6=`2Su=~~CY~ZG|6Sen}S)$3-9@mS@Wy7D~McF(ky!ZFU_khIry3<@fe;|pS>o(}> z3DuLpS7Ka_hI^XzB-!?uxI2a071{@YpHwC;4;TC$Oa{EeG zq;vZxKlcXT2t27Vz4`ltDcsJ?IN?wIPBIT)>kCZe=+A&Vn@H_FLI8Un&_b+%#?qIrD{F{7{9>Mh4n?1bO?GI-1@=>=R z4<}xP3nbo=W<4T42#55KCNnqPUdw{L8N|y26nY3=m-vnw@iUP%p`$-yp7vT$ih-bvpqaXLjMEn#zj6O(Lrc ze4~eY@qB5QitnO65WkD-Cs5=AnGYO3sBA%Mf3|vhX2WCeXEQQ3Mi$4A&R!8eQC@OG z%N_Ckc)lY%!BeDqWrZi|n*lxT_i3zu=JB%+zLUdF2Iwim_l3NzZyM(>HqK#|{i(@0 z%;H<6=kR)QM=*UY9@-N^Um)d&rH4p&;!Rm@;xA6S@!ebI5r6ES>E?sqi4Vo)^Lajg z6Led@6Yq?_FJN=Y8r8FN`t$f-hTqHZ9TATGy*!j}yf4Y+-w}L918(78_@nO#{v+*~ zu1LKgle^Okz|R7ID;9jY_u3`M?Z*}NU9F7gNHQPN4vML8JC z!|@Kb^{~Pf{58R|^Fz)vjLT_2KahBC+~2i-iKlk<$*~j8D^KlG;;DW3XFRnJIZthG ztKfWYkrg9NlgELk9fezN8=E`zHN)Olw8SKyS{L}M0VH6r{Z!^l@V6TK%Icf!`);k* z|Bt*cfsUf+!fin$BFdlvqo5373kVqYovr}cNC-(FAs|aw4XZ&AQ4t%IO;95OA|eJ+ zS!9Wb2#U@K2)IGmK|u!;L`5CN1qJcl?)s{yrbgeH*MBs6ULOu$s^?bMt?kyW<<|8L zwDqQ{pqKQkqMd6`dGda0d{1oDFy_YZ9J<=;6y@>$+Q9Fz`|mmBDc*4Oohbu*DeK71 z?D?bEXAB}8k+U3rF4u4*&@+sO!MWju91pt_$#~CB_Or3XSac!GCt!c4{ur3#4GwTF)0A?UZRKQ3s<%`8n>Dr1`!_&5sUFhPGPjdIuFlQtRIQ=xPc~t0(ANQqenG*B2XnS~v>a1~ zD5sp4iDorH9}SEI61ZNULjB!(PAluWPRmoX?I3C+ohyL^d_UU?m;QcCUGP;ODC9l` zx&4XdZ!Gj4_j;g@0ZRQLSMNaUO6`_7kFf338Y6#F|MQKm@f~k3#+4!C z3aMJw(+DWWB?_iDS+&s~H`V=DXM8#zH=U*DTuwAWc{B|zm*S{qRGy|=m?d45bx7y_ zd72@emOx3qu=4kPr)!(c1C^>Bb2MuX`W8TG{3yE6lg7W*l}OXNOc`&T>RI8JXK?#; zu~y)(HBjoe>2KTwz2{$W|9e~TcMnkLy=L&Of;D=P|F=(S<_uwN@Vf=xY}=pHFua%a z&!RG2_UZ1nb7xoS)yMV^$H~%dJGJhJC)J;2N5X1-|KjrcJ%jDWXhEU_=o5gFyteFz zycO1M`2G>5oO@|u+o^R%JTYEVFtf(X@9Nr&bAt+6#VT?lnn6Hn4DrNxPeG%5SF&?r z!@It7^lfE4a(Zswug4*sPC%(1*w=pY4?_2(|FXm1F}R&M*I&YuFRC9J7wZE4;(?O< zG>Tf&yyIrm&Z4C5w|A<4hT5q~^`1Yx58V@LvbndhBF|z%?9_xlO4%*$Go1GQ+Fw4V z;e*#I?WHbDMtO7vO7VQ{yd|xdhcB0;agjI+wNn%Gc$00vxj*8i?bjM#Dec;+{0x8m zE2(y!j`AN2l-4KQ5057Mg_$iUU0RW0-%G;D+OiDLX9A^m%}(g$yoR|Ae!9IqFXd#d z9j-I@^&UuP5Kxk5vDJE%W7^X3HTFcRc9gAHPtf-QN^)2GIg;$~qUqS@yck8FZ^^Pi zpAD48Bj3YI){uPRe%~&~?;OIHFTwhf)Ap&c9Hc)Gcw>Mc*JbT@dyM{v(st^#?e!M^ za}#@gt3T+abujnZtk=0X-%?Fkw~1waK;I82wL^b{wRA2E_i~rR?;N6SJGH)eFV}E!Ms3F;1SK zr+di!JrDGwfs!1|-8%gjp1-14W!!YL;h-M{6ziZAWG`0VscUEHI-I;nW!$XJMu2`K zP-h~f4=_iKzU36O7+WT<2 zeW{)8&uJ3kN%JFj{--BA-c9@7yzEqlB41iK)R!V`JGGfePXgEBYP5eej`*zJQJMcW zWs^ZT4JfrIW5p&~$26bC?UeOMH+ul|Q-PBF^nM#n_auxr)2pe-vnXbOehN^U#|u=dO6#p!uh$mvav{B=wB_J*@HYb}trtAh;5qVlYd-%1 zyRli|Zw^rGUzowGM$ozPbaMmZDn;(rW)FjYHc;B<>UntKhiEVAI&JvlpVZzd1*h#L z!nRX;6nskUg0-IYCfbX?g!Y}Bj<=d^r}hN+l;#2HCr8r$k-7cwLS{(6eH`?2L-SWO zd5{?YnkxOlX?Z%$pI@H`{+le@xw#6pq;7p z=bTTcdaKiTPa$91fl|A7U-9;@dTwUD!ddKod!LDuCEIptFC(7VFQZ`2>d%UGZ}Ezu zpAQ}xY=1%rr=AA=3g8t$0?Uq>Er?qgyZLrypRy%e47#O2Y5ri0SxxpC=JP>6WuEG0 z&wzdjP#RaX12632@o2vzSWk93u4uNMS|QSt)=^y5_nbj{QRUJ<-(H>re=h)~bw1xNz&I|nbdBHvWab{wh8g1eyjZ!L-+5Pb`LqKU*+m-1L$7^ zN_wmJp}N09F5RSze^ItSr;UgwUGJ$K;?GIaLyXgVchEg#=E?jDNO?BiY-a-wKrU)})8lKZoj3$J>8Ce@^wYcaX0S zfKq=ijIDaoW2}t*e)5nzlzDhvwgdD#fs&k$8C#3w%VS%AiaFL>k@Mlp-Qarn>${N7 zyFjU37d^3+_E)U+CATtvaB2_f*WW`r?*k=0%l*T;E131#Q0*bzVUL?q`=d{Vzdo;) zi_>~H?T+S0RN$Y>JDPWW-i;|59eb`mV_xRG7&1QkFkpa`M@sZl5s#Lg)~`D|d&8m_ zeQQ^Cc6-{{?T^N@d529)6Nd6=%29G$WgV0s)`=fzPmag$$uN-VjCep{Smf3Df%b!O z%I|S-5Yz$RX@lQ8A`CvrQPL#;+vRIaN@BY@Rb5{&Ek4))NlO5|j`$*88>E}SQmhA# zq_Pq@ojVEiKri0YeN>wH(0K^%*a_cfA|0S1!s2^^FO-WR%16+3;olVp`BS^|Fnz}| z1gMn`2UvJ-AN&{L48#YLp}+%OuSvQ7jc%6VRk^7t?9>BK9It#bnO#cDe!tqbROWlS z*L8aubms(4~Q%zQfxY%BxtEOGiddPe1vwZXz5MC7^y$58^vykRs~Q zN^hp92c@1wy-@vGbQEuH?PU5V>O-j?qZ8;*K6bf_eDvhMYbY0YHyE~cbSC|4^z zP5BO`Z(0XePt1TJ2)>h#dSrq6Z=OA>xbj1 z`GS9-$R`e=QaRcV&tP!%E9eS=UZD7nA>soCzq#Pw=z;Hx@)h*G z_>mZ;sDqNe?!se?3`(X^~Y2@e9FkVW9r4_+HUoM7tC15apqX za!~5et?*Czvka}W!8h?`b&I_sKUuu}u11*hY1Qj{2z!BKz;v_ue3H!_r(KJ3DHP=a zRLhBp`bRmrb9j2GO1T*bO9n@lJUf@etnw%X8bB&n>pknk4cwmW2g9nqcn^cG5&d{r z7zV9C*bCG|_VzzyLt8mXA0g+3tro&PulC5`S7zpzp0I57iA9&JJ_^B_wW1pVE3v60vTfrioz{2ck34a0=tVlbbaEto79(;=WpkPr<11itW>zge0yOnx~Vb_6PEO?0g(rf?v)l~22 zAG`0vY2PaO3%@@|nHIA=i1ku8nl+0HylN|D{+MiWMvUHhj4h zoWJnpuG4s`oCvqys`2WhJjMg1dhoj4r}Xqk-|SoU(qPsazgs{GZ3BdF1xgFf#k;DK zoIf>i>4MCDELM(33N5Kj*3%d$}MEW}kJ%n5D`O3wMeqHpBcHmQz zFS(ard`;H|t(>~=ez$Fi&BIXMA-&IaY65`fZw=<7XB?m4!1I{#MlNy4DlpAYvb23yXb(n>7h}*Sh>1wFr*`% zG#(kFhth^}v8gBjcP_3Ct_K(EgnY$^=C9%>n-1#Q5wj!xqKrq8tTX7l03|&urjzOL z%Q`7oQVy!Z?GJ%@FlQ_L`9pBI1Pq3fkUy!tEc_siE-W^msCcEnJC`rc#?1)U75w!E zN^&XpNR7`uEM~!uyyDE@`Lxl6rGP#gDCIAI+Cc7*$I#>Kc_}B0WvQU=0hHvtYe4KF zkCrfXQH8w?6#c9L>jwHXpqRH%(0lCg)97BIjvbwrOLwG`4wMe07I??e_znjFs(f*l zp2jkeP9{(qk7kxVPvv4g#mfB1X?qF3Kd9}xC-}<(O6B5v_ZM-nt@P&)y}(}%P+AW$ z4$US5x)PNy;mZlBf0>-IKHzU8P|TAlXk1n6yl(8@@>%3f>5Bf+#x@ulf_P#+Pr>R_ zKicZi7Tn#t-Ax_rbsA3A#CB{o5b?x3kb*|%`~q%pSua}Ye*wo<{Si-^j}=tDp31ZJ z@kKSNss{4mZ)66yvq&}o>Er^X{-7;gv>yH4d4C8_FZ}+X*54rTHy9}CJ?pPOO9${u zbbNQpr(Yim{zd>L`Dv`Fx>whxn>!74Sg<^cWWzu|94N{8qTL(FaM^m!g~+AbL7xYd z)_b(~-ynU-F!i4Q&iEc&?@s%>Umu0?7z-5Zy%b#A_$&_erzI%sb#68q^kaaM+||0j z@R`Rj)vUu!Lh8@ic;wgbKsxzAsota3y#DV0JRX%)|GN|XjRQ)MKK6J?>yb|DU1N8F zF#{;cvx#i#B^btJDD#eJHUaea16@D@?}uN~MdRjkgemgcZ9BFS`!y9ULjIp+P?~Kn zpw+YYMffjKwqvXNKrfA(GgpoFLGD%!nHS#!`g?&A7}K`zr+EK=^mnygPewsJ0F>r` z=d0cFJ<7B64+cAx6H}3|8B&Gg&w}n(o$`1q?O8Rs@9^M*^0aaPAc!6UO6{z0M=BY( zm=A3T2d@{n!#=1KTn`a!8q%2#l;m0Z@UnDZ(>fti)3N+4i|=x9zHT!U-+2Kjm5cAK zEob!H6Pu#@jvHvN|661diBc3!)7j+-9 z*JGW#+}GLOx8r2Z*=*1k0Oj#9>0X-O)~9>wT7(|-oCEqtfKvT(hi%sT=n(nhw0%B` zbRGjr_3kg5NrryDf5-aEeKnTE?gWnHSe?bzxm#FOSn z?h1b#rg|tz2MEsf`EdJ#RIijHmu)cg4Du(9N3rLA*+v((l;k+=Twi(?{1pOa`BJ^Y zlOASnlXS>&EU)G7nfudAkllLy_0v>x04V z%w-!4Z2+J0zTuhUyO3V#8`f_Gf3E?hc3o&WR4P$NQ_kh}X7J|)N^*iq}0@+qaM} zFr-Q2gL`I=2&VbW`@d@{e1^Zj89cr_pLe_sKDPp;bp{rZaz?javylp)PRlbQ#Icp6 zhiH}_VkSrjc1tRM;nrWUoFD^vGC27&JCk<;b|x{TE8PC-n!117n$CtSPTDamuNxbF zYs2mJTXtpDZkim;Qo6tqNC##WqwVM>nVIHBef!0;HMKryyY*}r)_PstB~{3Qjdi+d zemtkA=^c+J5bxaycn>6d0CU#$Q%)zAXFJ#LXAeEH@3$?f%sTxtAMf+K zz%B)Rl6{QzeVfl@R&k^0Coz>x?t5hCwBM82uOCM)o9;=%x%4#9C*V8jwgV0RolIt$ zW4!oUA{^@o{*w_e3Fp}pU*b&*Z;=mC5AkrIfq1L%J-b}QcM&f(gQp`Le2|^O zx-Q>zJLGKmi&>iWep*@Ox2>uheR$YPa zRW+ZBu!o6H=XN{G(s_JgPvI8)0~s88WFb9aM?v-m+`cH2$4}2h`Uo?i1{C%atS6^; zrQ+N_zDwz7<|7>C7~Oc7>`|ojj`Ah@iCHu0NkTXlbOz#S2x|!Y#COE|9N2H59{nf}(QXP6_KNqy(GtEV(qY-$ z-fH#$ZeLTbFXxl>2Mz%LuoLOs8)4*!>_{~08O$+vAjiTX9KGWGu>Z-i%%+rfW&d_N zk)wZRCvueAiA=mTa6V>^mEj=AGN1dV&(qz>x4v3=)dPQNC(;h_E(4mdV$2zjyT`$T z`4ewvJ*4*<%eD25ig+*SPuf#=eeLnxe`~c_yZSJ<9M4F#=XqD+y`&$qI=6l1@xOZS zgotBl%Kk@PJ1q2Uf%F+m-}agJ4z9k%=8J#6x;>vMADUj_?ZaF zu;<%XA%Buyw&{a8=DHX?MJ*M5&FT3Rr+oVLtHIyRK*28sjh8+lJD3v%^Upn;61;v+ z3d=R17wyZ1FaaC<*zaUe&Kkb-eZXFZ|LpVvI?Y~(7xPXjz2c=0yy-DkRG!*%`7O$P zshNEaq$>E6=E=FX}{I%^LL`&MEz6d3yzni`a9F`-sNSkQRI@-a`Efp+_q?6QhE^;cf9A(au=pn znRBqz@!}T5Q{}wz`wKTzOKPHA(A~=3 z$BaQd(XS{t@o_($H)!S`KXP)6(*L4E>_nt^tpCRE>HL(bI%@W~#Xlc@e+X{Ze!VvM zs|OVQ-sIDAoZ~VNI;)P&qgWl#*9D4kmx9H^x_qgZ?EZ)I{@`prAHnJ)Uk!kweN*uK zrHl^^ZM%w=h$lhruw7q}!vWJn z>UGLFlLo9Y2%7-KxJ1Fitnsu@y4t)5P*cvC#4u6`ttS>JLGiXrU;S&&w>Jf2Er4R2 zH-nFrUq}1Ehb|T+9aZeKqFFQ0HwRt;B#7z%<|SQYW11^4k_DkK>=dLG9XlN`JqlJ@^|7lHFNJU9)UEQ%)9d+leG1p3n;^m@|E(U(dB1>Ln=SU%*Zz0r4a~vbF02^IRD{xs4UQ zC)BZw(3^mI0I?_J+k|7xsa7|C(Pf3(+H;)w^cjqtOEiN&08u zrFHM>nxFj1Hb1S5f8pz&!Q)s2>xp!-fRa98-1G>y4kr|MWAglfSaW!;Ok;N9Lck>sTSWlxYMEt&t&ST$X_J>=Q zeiUQdiA+E|Xl@HH^%AuwbKV~&g1>u!^0@Lz5|vAPQm-GarHn_;$G>}#&V9f@ zd1~H`<$vIMov)m|f5XY#VYipd@m&t#>pj8!*00}>?@R_ta=zgGQDiS?I(nH@C#2rP z?GM4}Y3u={V*n+&tHre-J+iiWBBZjShlGEjt=j*lAf2f|iJ#c+3u#_uKE~II9vOZ; zNZ+Fmg*ujz@)z5sDQ>%!{4tFApP~*+5B7K2WyCXT1OY3-p&q zz~2#|G*3PM*@f%a%r$N198H{RuLE0TbTR0opkD`+)@SlQo^i;-qSv2(@2&h`2gF7i zdkpl2KuIrWh2{3^M(&Qt)lG)m`){1AjqOL@ad6Ud*79l#j?ji zKMyGBXJ380VY^2g^>)=!m#G)sN3pq}e*!3_=ew>q-D}qH#w*XCzDe1?b>3c_%Cq_4 zZ$U`@yq_FAa8cKMCAn_neEeGo{+(mLPFGRK5HlDb~tR3CI&@1b@g zl75{&`Xb#6Vx7e5pp5U)>^bCX8BmI+Ev0og{<`$-KwkiVtANscEIs*Vvdg?k+x9o! zqUd$i*^8iG4wUpWqiv+H=e$}OkDRtozrF(LtOQEy81W>zL)C;NCI01MKrBoJ?oyLBA6y=~J=gf4!g^&1wJr-k!=if%dkY z$VSAI#!brsoc1}5M@Nzr``D(oW0_YGPnySZdtB>%>F+bY2L5&crFQ14JEa=4UKg|s z(L*+YejBhn(1gQ7f7Z1P9jQcB$J!0qX3)I_l-7Gd)}>5+Db#M* z3;MT#lKv9=;WCZ!*QLKt5^lLj?Z{-EZRZ)#-T_MaI~$e0AH}BjKd0l7Q@QIr-Y(?p zU0@WDAbo!&T7NN@`I@IF^Ud(*{lVoKa4fS2=}7bN!dA1(Fl$-AdNXBRF`B&(`VWB8 zck}0Nr}K(EO@&FFr#f9X_3IxZo!vl54{;qCN%!OW)=>=(>{XbVI@P+vz+VY`;pE8pj4g(Tg`jIt*7+$)e zb^na{LzFVVbz1LE%hP#(|0_GRqX9d#T~}z@b^YJ}^yl}xaeJ>a$t?e}iM5Az=)%5y zZg%6>&$MB$jsAG!=#QH-tCYM=IBE#n{*T)5_qlQSopB`lujN0lG6r6VXJ3>(azm?> z&iK6z`@#F|fUae_;QL*;9YuT>{2q_@f*$W}JFY~~B_N$d&i`{rpXly0-M=*mwO_OB z#X2Oht9qLrlM)&CKa9Pkbkl+e;0`@AE~zl=#9vPS|r9oseD{P^90Ty*}=X-Os#{%I(zpbmhO> zc7&q-I&DAv70OxIt5H6!_OeRkFVG%7H2oK*CZaq= zIig$*QNPKo#nwB!*J=p9HVMArpGf#o66tBeZcXGfljkc+gn>kF<$s#UXAfRJZ4efA zWfR5kncUA7*?DQ^L;1ImpcJX))#jz~<$ADt zzO36Mg7UfODSD=)vb)Xaa0csQKHC+0OG=m9*&%Z3S;%iTN3!>`{9|2--^mV9Gao7!t6b-cu;34<_2hIu#1njr_YA+2 z-C)}<7LVJ#Ig87SMzGgwf%J35_muA!WrMF?Xz!qR^+LJ`3wt;(!em!xm1kFkW5s(x z4-|H8?i~I-FTP9W)tdPb|CT*p4^eJtj|UNU1F2tG_1qg_1{CGNkl%xS_;)q&{k{nI z<0$+o8KPZ_c8>O$`@h-AeSNgceSfQ++|}eyY1^OK$!+6yaw{4H?Bt55e9h-74(9*H z6Sw@LrONGrs%vg2#QM_qM_=OgZ<~I_&-Q z;CWJn{hb?;j?`XQ!@Ms&#-8Jw%Z+Pn+u?Dt7B=5i5Ko%tx}F+C>&hF?3|ZNthO*vX z+g`^L=}7DC>8p#${;Zgvdn*^nH~kg_!^bh)dV!LGlzcaz<{qz0S z*?N&*7w5y>Jj0sQesdRgJnOOCSJbGf?0eL;&$)|!C+(LsZ}RIlI^X=~_soUMXK;B& z+I9mqz^CZH6f_?HLfB7~{ytev@D~jf{hor{@v-$@<@3MNUNqZIt|{^-^>?jO_pdyK zhZ{b#c~-XVC&(i6X0W=TuLqR+k$s<4K?^)K`Lb~!b)Qlm@kfdmb&Sw!cC zkC1uR4d<0}Mb6KYHNy8B2htILv6h>^!}z{i*-vmgtcURBeDL@XY5SdO0`8>#u4Of& z@$X-9Ut=@ymkyNb*L7&cF;Ahp`;|Y;%e3uaEi!Vb+#K{NKrwz&kXiOUrwgC2Ix^KB zUpbl1T7bSKQ0OxhbjM!(y@z|;j+~9Hi*(unCB1G#x$jT#cI~aI=;cn^wO?cpP-<--V->tLFf8{^Ud(}d8vPyIbx~ES2v)ff4UFWJmE3ul=)b?SnYEB&cS&< zO2c=$10{XJvg0JH4LbMstx8z@n!dspSPjDFAqg3dQUX#0s3s9R4%OP9GVAMj^$1$`b$)Zot(5DQe@g=3VW&G z{uh3^luZ8%zkLR$7e1fC^%ucJZJ-B>c_ z!%DN&^Xbtn7xV*x(zxmMw%twTVm{9GWT)*VI9~YjCAgjW^&vb1+9N=zowZ( zJ3xOYP##wb*U@@p^{E;+9Ur~U6fvZ*1T5I1Ldb`RTjk*>$@1 z2%QXgqP@}|V%YtlpBfs^m^+H>x{9b-N2>Q|)n=1H{{T>u6X}6{nPVlkZet*wDL}EG zK*8L#+vz@g>!4lf_rC|h-$OvD9`b&2|MU5CCMW#*qsZ4& zKxv)9S_d=8FN<$TpOF3H$3Q<9DCs?g-?rZGF}k0l8(EW-@vp9JC-*qwNqXzV^d+=z zbF*njU55qBU8nO7=k@Re_*(#!*7>S`wQ(2kf7Gsn_Z!`89_Z(X=Fig0|JVCDg3HDE zxbh_UTL=u%LrU~s59jr;2>d-0%IBsxj`%z*a>&E28}+pJzd2b8_B7}h10{VoC%3}K zTrT|!>|2+BzhyvaUGe;zt6uXMRWqB;?VqfS)6Lkkpf3bUa@T9!?@<1>qH<5SRpgn| zb)pEi6zMz%l-3n}Rge6lYenSf;E~!T)NjLIpHTI>=fU3^pd`<@ozCNJy1urqt)jm) zU@w6FMW7_lVlQ^4`&h5J?z_Y^)lSao`mSGJj&xQ7rFGn0m%T;fW`yYvtEwVjYO@uf zUkQ}j3){Po?oYFhUY=0&rSR)LSiVGr_*0Vf+tVprQ>dxAId#2s}5#88@ z*~al7yC<;%(|=LT&de$uaemwz&%;_5yiWwC<9!A&oo)X(>z8X*#xd(ws?<(+--fmC z-RO=v?#`@f#OmsO9uj_l#CPMB^Y;mem%wg4Ui*qES>VSj_yQ6?XUWO^w3p&ozwvwH zuRk6Kzdj7{<2W)A2GVgH&3wf7?0kvuHfL`fc;fqyU+Bu|G{H|tgcI2uvc7q4ws;@U z?L$68SlFEuiQh$e!EQtN5fbO%1wHxssritrQ$)?K{9N`8$vi!y6YE@ceZjQV$?%(# z0zQ&Bx>FJE&iHwI{7%O)H0$Zc-bp*VJ#7@|={+wm@J042mX+CHguNmk0se=X&uL*N zf$wPIdjj$Mh%}@NKRFfAPJ}%JUC&~jb0<2>zNb9w2u6r=`)E&ej^ARRmgg;G0@K-+ zH|S}X%D=M;ml;^hGTg*}U}2Y>JFiQjvm z{<3&DH=82^3i|}32j|1+$*6bs8~=DVx67!4@6hj>`H-D~g$C>;j^aDQK7zi>?KyHl z2lVE!R})5VNEj*j6ZMGpNA=tHh=S7;!<+Xuh*;;4!8 z6Zyw`Du-pJIbd{O^asQfb{XW)i1%NS9+3PsY3AbvvH|~-Kcg=%+}-GJwbQtY>@-gN znVrT7Zl}?@Nx)9yIV)#m(F-IfXd8V{cYVEU_wBQ$uqlD}w4;${>uas>URv+*?VdsV zcsEvU^vckYOzbCHWaJpCEa*i#(!9}i^0!l-{D&&UP8l(XN%JOJ5A9^{n+Uz-dWoNe z{N?(Jd@_Zsm8Gno)wbt@VqRM*5YN?R5A1i1IQ#qj=TJM1GJ$xpO-Isx2Y>8x;6dkl zNVs~>WdT0Szij=!0^Un{Yi@<%-{|~x(-Pv->3qeni}ept{(@iPFLvr-_=hqY+3kb# z?XuUYMEjEFaYcHeX~$5K`=ZX*QJmGEU$2aMs}76=62vZh?u^H`zWB;pYUU{Sz_hdP zQxp9_Y8Uwzi_dzzrhB19eU$l1b^9D?RitxmAU&z(MB%HSwr{(E1o{&Q#Us8GIF4`{avg#}4;(VTSBg$RugNyp7*Yj>{q_Ka?yjaNL z2H;o7UkY-6V&0pttN%)}ZKuS^n%j07H4*PRpb3ewUwX9sP2)b@sNNG+m(>8B8z|Z- z1>FlXj(NDHbi-1YXVKuV9#E=37TcHZ>3ig^vDNC=Q2L*n)dGEOpw!Otj^)w4a@QVc zSmT!RA>)zLc3lVQ)CEd%H)+ZZl-~b%enR4(QV3suO5-WTbJ=zp^}(lTcNCmCvdcM) zW2L`ucnkPz3Ka5}g6=JTy5H8iceJsxULMUFg8o*ZRBqlEexq~Z*7KvX4(+o288t>c zNnW$e(?Sm^{c?!~f22}ckC3AjaQPFOTindT=O1N90sS zZ`KC%@taN`9ANv`vdCzH+ZOaGKr#MOFn4oZDo^t%n`6sME3Bon zcKi>mBT(q|6ioUllg=5pOYJx2fo`^5%*h(F_MqQri}%ySwr2KqRlG){YG=aPPHuD>GN=1-8ta5~;(cJa(51rGoo>)a+`selXRPdJtl-hN{k@YlR8QG|6?C~D9pHGX7 z7J9pZJ`*VQ+l8yPl3vizv?FSv=vj4H8t5~C(m4HIqM!UgWSdK5H!1pj6zdN9bf9$3 z!+S%G_icSCSbjRMzi{QXq%RO>&gUIHkguLVu?|DQh_fST{%7rI)KJPL{QL!%i*r7+ z!QbsbsU8+u_3&Z&H4QhX+4E9P)|vGJeScs;FE^HSyR^k)EQnhfTRC1iU*6L8XLK9l zN%<%`o^#q`nCIPg$13tO#I9`Ok4%ZKS zO5?4zyw)?|)482naC+g(7pa_0&e#C(Hw;)FXo7XGs(IsCQ9EV)tIcvjHy9}CFX=~4 zf5`KMc$fStxr@F|V&>8V5LT#5CR z{`ppC@=RlS$k#}qB$r}GCv4{VD~wa-Rk0y<8q)e%M2E3QJQ{fwF3wTUGdMj5AO8Ao zaJzP~QOMUFz<^xRSX5V<$IXm?&%3{oB446ye@0^vPplVF@Z0(8%P{`B^yh#1oDpp- zP@1O}mK{lU*VcW=Rh4nYX+8M$JCV*fpw!=!eyn8Ld7JYw^_*4s{nn{G3y$Zq@3)!& zKBe^+BQEhLPwu&G(L?=N$~mN_4#x*qh@D12zt(b(eOSh8{6u~Z55z0?SvPc;o?pKQ z`7(eK7;k%M|DoQ5LG>m?EAz1i>|PMw2b9{2w_iN1qnMBP2BkkZ9XI{@B&2gcFl65N zkSQnrQ06O6+h;_GorWY2{C&=x)j1ox9G{z!zDJ)5UoHi=Prp6|@jD0S6*%?0dF2 zS#vf6^fQ5yp5 zVJ=T>iC4-qD#T7h;>T5F;NB6f^!LY}K)&Vy<@JJX-;n>7J52?6haWl}mGkHXVGbKg|u;6m{CG_V|yAieB(vL7?;_{Q~C`fXH* zKO<=z)5g9zpO0f&>E92&82MQWl=SP|BNJEhep}R9*>`fWXFxCPE~NQU?da`vzBS)G zDppHrFV4rKXOUhZP}1vihF`az^Z75>M+mQ-1eudP>iwu|ZB4sDU75c} z+jbf+A)Yj@{F4)s6d-?2Ww9{jx;S}uN{ z=T%)xdh?qezqVJ-CA72s8Ertk8bE^9cXT4ZStV+Z5dMC6@OY%zb{gBjpVZ%3ZZxf5 zo6p52%6)6C*=wK|b_}wdAAA+f$ND^9vHkJ7%KWb>+k|+VfzmvnU{rlN|6-jeZ5E>U zgxep2^XJ!JM>=l;rT&up#b(;Cnq!`@=dX zrd-A}%hkX+vMC#_lXp`w>N-Tw<;z68r%=kt#3$k$Gw z)ULITFMq1@a`{EcUle->^gDo({EU6J<7qBG|3msjaC>pFcag6TfHwjO{L|^abipAzuf9(mKO|ozwPte5N_q(jiK{N3#8(KLC{U zLD!YP(|KC+Ap@DK?R;l+0b{Orx*ncLT7b;0|1pa?UzbpI7?NBiK9 zXl@FAPvGbkbU>Q+Y33vB>%850nC!hQ?Jp}GVSyQJ{WIS!-_b6fRed76$?$`nK-ZDe z3A;h^)6|g`mGWD3Vau-`{}G$f*|tOEb~c?s4;1!=415|uP55z2;`Cm;{}VdRe1v}- z+iy-H>;aQGpCNv$M0zP~*G}_EWwSn-zoK6<%B?t+MVrraB7MgBFgkJ6I?TGZXE^4J5ub z>%s5d3?62gK!k-IrW^jMHi~wL-zgvF;j6LL5wEZZk1y=Vj2`e;Ccd8z`!Iw>y5!Ht z`pz-YZ#r^2!hI+oCelOLEy^nycB7)d;JsUXN4$^cc4TDFsF{y}?-Yt~p!}@W4Pj?U z?TphWAf0YJEXt1|O#PD6b>sG(_x0fIb1V4vp6+dD!g??7Po6X z412+Yf-m?D%R+vLU(I~%dJ*kQ)IZ`2KURWYBa_{Cpj^aTF3-~kGoKAKA;z@-zfI%y{a!BoU=85> zkeef(4)`IvNGnX{ejNWde^wtxewz2U+DTRoLT=B zyfx~OC$`d$NjDxh?0s$P7s*aC8T3~L;^mmz-M~)qcoo{Fee7* zmGcJ9>p_&eNJmxE({eQa;J9yp`emw;DBj@v;>ye)XpeQFZnEUY%-I)B_J1ys>1>0ehA}!V# z+8~~kkAfv{o$?qDw|V*8w+T!tXHtCP*$tp?2^4b83|{`zT3yR-xo7(Rj&`|ovN-!Z zxRAF}dftcUedjUeW>4zeq_uJmqobX^=y%s4U4qz4W4`bhuY5J`)yq2Ca+d$>bl&RM zMfpu;h!@JF3<4$QE>lrh4`}qyC%eT-$dtctY?=}?@rs9^Y&7o zGom#BO6^mNYjN76`RQC>^V3RsI$y891?e;dO7-XRjWo-}oO+eM{S2vg*3%3q^a~1F z_a7Rj+pUSQ%DIndb}Q(c0)^g0L4F^hxlLNVX2`e_3;HHNpL_;NyR*Ur|Z{d#lcs|E0CAVJX^bpNP!(j0HAD(lP6+qE-31OBX9gFi7IQZO%j zlUUbO&ucmDx8chdRW7v!f1QESI97e?M_WB!OMmI6$ld4=J4va(8;54oy}{;+Qv=nX zV^oNpB$74ZOtroTAkQ>q+zh||g4>zXa`Edr80!QS^8pGL#y>^-fj!NMK)Db;8R+AH zLa(Qw_t=^>$Y1H-U+Jt}`}Ho!S3FRXXUwvXwceN1eK6t67qwj{g1;o7m?u$C^1D@1 zd^&GuUBTZBprrS>pT7KKz4&yqMW4kc-s>m?e<^Cztnn= ztsil+6qXA5?m(%(7Y=&*50Ca%f8VjGSxn4lI9Z%+Cz*zL5)?PB`hlm=9FBH&Ds{P= z4#q|TrT(X_Uw2YxcTIe))y+xDJV0j|pdSX5`nz_a`ARyU^5gHfw9u9FK5bbh=m!HO zeb?Rk^BuZ2_O`a)jc%^2hcsh7K;IuI=7AJk(e&!~bj|VvUq?Ad)0p)HeQ%(c_n5&m zM@fF>PR@D0V#Sd2Z({u?8}Y>Y4F&l=+f{2}CggHt)t3+dzlCAsW+B&*n?8UNe- zR{9>L5dQd}%85SUuOCpFS4Jhzp>u(Mv956&==%c2It2w+y)(eHGdG{ox0`ZWe*<_1 zv|ON6-o=rZ(f+vG?C)19bJPC?dYBaC1D%Ihd&m+bN6-m|lQ+n8K?9hj3f zXLo}BKA<$u(ad`jHS=QF3##9d7&Z>{6M&NZEZkrDb6qPm&tqS&%!_NY@u0s8D2=zf zmTO1oK5TR6_N+3$4ZnQ`w=<`5BGjK1*fk+HWxyAh2lx~|ou(JCle`xRN%i1Q{D{ue z|EayI({a;jI}2A&R_$jr+n<$z{E2l}3bKhEX}#5ae`|lGy|_c{BqjZN=9S-nhf}rXU^N%Lr7;DP?8hA z1ixtyVfH`OF8bfv&Qv+5v6;x%e4to&H-qiU6nKn92VC7|r6_uN6E+LW`(F%F{EGxZtK7R;b4oc-^rp%r| z`tyKNf7iUd$ls{-sOy8_%1^ajhtFrQ9_c*ZlgQTxKfw#486Ra5o+Co9-(&?VRtfTxDIVgKa1I2I!^r9=~t$Ru4Nw7tr+0 zw(o1^WbJJ`$yJCKvfgv4>R!p^+(*RNj!f9ru#fAMd< zi|*w)bXUK_cQsMg-CD5KpkD`+<{i0~{aVBry78^DV%JbN#7l8)7FZ)kExt!R45+ zqYrLp&g;S1_^z>C$k+QoNiMlse@Oa^`55Ya#ckV3zK3{{T%P#lOtJ$t__|cd{Qia>(GD{eZ*$0Irb zA6%Y)fBiYFcQxL;@$&}FPb$w}=N-+vKJUg9jgGBXpD{0UUJMzd9Sj(xtsrIN-cLvM zomwfK)jU!Ar{c+7S=0Nk+u!Q(1ZEWr`N6S}HRGr?2R7m8?t*Xz9HMoCqa?gHV32k& z9(2GzG0?IMo*Kl#Acb*y+h7cQ(DxeEs`T8bo=NQfR*%f@;!9!^E5Fp`lk1aMm)WDf zxG*b`-A87wC*JFf_(|;7cjgXg*rtAf%vnvZZUkO2)K87`TpfU>es9!58`HxUk$Q~kb= zZT-pJ4g7RvCVPpOrEvqC+u%5_f%qNePT$kahw7X2nasnY+*zPKaJnSqTR2GT0fR(g z_|${P7luiO2xsBDS!i!PdDsgi10?G>!c)jkG0-d8t!UqZKT&R({5w=$Ry$rL!a!j_ zMFw|Px7mX4oyYgQfqtNwk7zHk@hJCzT;Tm3@<14xY6#nWitmYjkjV|(QnFd5Io)^} z`Spo*BkDWQUMxPS9asiWsmKQzcv;PW49l$Fsa;s;74Z{z{k@pQMm%(CNy3qy-0*IC zPd2^bkeXNZM)`|)ED)cUTNX3@Y4#hR&A;pJ#Zd#2As3e$_+10CY#3%CUq+ywE&k|t zi|;H^&p=_&M+RpWoo#?7$^i}s8$d2-;yv1{=>MYqk|9|FaliMSUT6n7{JX-Sj||AH zbn@~0SK!|(@_~GMd!gL>bNQFpk2@Gm?$6_E{WuB(F>h}k7LNCX;Tt*jGsm^N2Ick2 z%c1{g*Pk-){&_KZkLEp=SCIF3-rTgjCsNAf%}co~Z+@c18U2^HAn*CSC)4s4cI|Ry z{*`~b!PwqEGZ@>;4aPP#3M}wG1pclPd{Q@Q{_P~)zwv=__ZCmGH^8i)C4;g0pqCbS zT;rZT;qiGUROz~BC`%7~kEW~vgRw}wm(t?~2z4G`Iwn3h_`)v9@m)E@s}%Sy+p?1k zEUvn9{#R4F+XhYi=kPC#RTV4JL99pccP+vM#fjt2dW`sjYrH?|%0^6#z0gnr^pYYc z9T+?pGVvA*L02N4Jkeitffj@(f+T8#Q*=l$jNj2}5;zK~m6*_>^ejqzZHZrJ(Pn&cB^1p@V9geW0&0 zawRFiMIUz;7uA&hg|W^iwBb+qqWKD(Gqg zMSrBAb-+feQ?>m0Gx19QYhud{Vc;Z9ykoz6VWUSI=)K`^w0bdr1KVIsY}AVMDZSPk z?xKs3N$-m3+lpNdemF$h3-n?l>k9l{cpyPIzPdtL7z%$uH@G~t5Q8xxpUh;R|Ah{Y zSx@ONtUGOIHFyRzH&Bv;=|7*Q3)jqNQ%$8j-3}MJ!*AEY<3n}(Ky)qeDc94n4x--G zjaTRO?yNjDdt|hG@0BlpLVGE>gB|sdP7LsRAVI~GgXkc$wSZMp2RodPV-3L9 zgFs0x743TZTV3n7=G#ljxwhjli_GZ7ZUKD)P>k~wv>e15iz_d$+b_pE9f)lYZd&em#lskzFd;!4)Nl! zJe|giu=_{H(DFQg?CY;|&766X0atna&Y`L8Sg#%43q65?#$)yU9&MtzVpc(^Kj-bU zJ<{m_l;$f*sT22+q3$6vp**V8d-&}$czkd^9_iqZ0i|{pH~^;YR`?7*y!xk1I^Q_%8edw88BfSByfAl3SXo-0gCu_ozL7xhg z#`jHQM!xUy-c+X5g19b9|EtTof<6T(jnn=f(c*xH^ZAODZ%QHj@>JVrH}IDZ6!T*W zx?jBW16_O6^b`}L$cgGK4fNfCl6=W6Gl&c?tw+_*oXWxQ^H(zE63H@=uUO);2`VYh+4 zKTwjpGt0F1c>c8c=Z(3@*HEAYg;O`5(~XLI-x=GXtBllsGTci;Eucgi|Zbv6j}gMrdK{LCEl6xfp`)>zWcwY z`E>6ZH-25VsdBKfz3o_U4B|=s%++|(3Er-~Rh4;;n~ebdNTA&RuJX|Z5Hm~mBC1hH zXEab+kMzEpNC(xd=f5LA%OW2fB3VAd_W-4OXD@t8^D*nD=NM(4+T1o6n}B$dUgs-Z zv|iUD7LRRoZFNO|Xr_p|gdBC)S z(r>G?`#?VlD9z(sH&^`v<5=nUqsid!fzbT9+IN0c7wuDBPY$T0LHqTiJ(KPAGESDxri1<|pwvE# z4)!I(%lU7NTs3o4@I1~)wH@mfAf6x6@9+8Z7}u{;z@E| z8<71Y>d&WNf!{f}LmcZ#^&a2yj5!bIdXFRrC~Ek6d9Xeo{x}vqZaS4`e|Nm1H-q)a zfMdPaQO*?u+fdPasfbj9uULc2K{!RB=5%WzVsbA&K-Qi zyb8A}`zv+XR?u$)O7c1;ci3+9Kh-f?_;NQ`E;*Hht`LJUNneV!96K8ikwdB7iXp30 zLqVtY?lgaX{auuQF;J49c}btTnCr%`I}h&gP>B3|5A^Q?uLqitRF=-0n)8mz!zz!u&O#Z`ANYJhM(Sc8_DcRGY)$RVN&=BExZqM`)V~2j&5mEQvIA%EpsudS(&*Wo>k93564%tg-*3*Vf9~eddlG)4| z=937=R7u=UbF^TGjBgYNhp zXmn>!6mD)FeOEWuVdnb1PnPS(8d*G zv-PAf)7&EdN$?Yk_!^MtKi)W+{((?#<-iKZoy7KCJIo0UZ?O(-Eid)!N*CAQK8Y|GBrV=ZW=| zN`ZKmeU&!u!h;p-^iuZiJBF?IsQQvv7rGhgR1T!)`g+MJozZrG=RN5m7ZOE)PON`L z2I8%V%%JrieM$Wa?GkPKAO3SIdp%8*M})f{XnK!>puQ+8LvzdKC-_@X(<|XML zTutW=|Kgm0Sl6qFc!F;V23_={mP@$$r^E++(zzb#G(FKi#Qv*Pf7S&oR<`}jE_YrG zvG)1)>-Y;zYS*o=G^jkg45kz9*D32n4QL%{u>Kib zF5%B}g3HAfVkaeiH~)cyWRGV(gOu~T;io5kkG|x*KZx}?u@5J;v+GQI3yV!7M&UF3 zb>Uz>o#sztHF$w(ZlLIoX0Y?tGakQrk;>OhX=mZDYXsMyW;@o3MtYJwOA0vbDE;%- zwZY#2pp=i?^%-{` zTAdM3$a@O!2XQKKIcK`4j!0f`$G1yywwAtyAfW#Z7EIfRi<_9c#rRo*3^bm|uA!od@&LIgjG= z$~v@jIo|~7GzCiSy6AWgoxjF@KxxbQ=HRal@JgTwmID;?0_q0!mG#Id)&g{`fs%aT z`cffppOXGel##3@=vx7$`pfU%lP-p`p8wAIkl^}rx}NOU+o3!dQ0njJ5BAyV(VF?k zkDMH1>;0T8I>fP-B+mltt%mBb%IWy$*E@ngRFo#>1@t<9>6rZ`eD8r%y+C7e;Ik7@ zf}**7ssAzVh(_v{L=ygZD~&f4&uP6o)hGOVJTjC96nZuV{n_pV9;1C!{*G5On5<`L zT3eO?`b40ZCs8n92UfkU(%;=-&l`iw#jhtJofP1WK!W^Z+sILFA9LbZOKI2DZ9A#1 zpqKLD>$L1GlArvXKydy2^YxGl{<;CB{!qKu4}Nr$(syv(9sFeirFlo}gtzFTdh6U; zk~05m%F;of0TlB`GnjM}ohPy$RbD%lFHZY|#(Ho@v_3#-|J{FGnUA>L^%};c`XS1O ztS9KRfFa`;xyO36R%=BscfPNdjdXegB|Zz5t%iQ)z1dz*;$$w?3-mcasXr9ge~=vI z{>RQ2sB+>qRtOe66YY^YN+(v*bqA@sa^B=-{miC-F`tmXIwYLPD)xAnPk~{d(HKUv&#Ov zQ@QJWd>@MP7zUKq6qR05+#%hUgq=l>t-vRnNfs%e*+;J7%Q!}yf{SDW*QuL5$+fHgM;)(Tk3U=++ zzZ}zyRk=Mg)$z}HxrDdAtJ)3v^>N^DJTRoc=hE~x=R0M+ApH4laJ@TiXAx`y_bK`t+(+`o zdP@Hs{0#6n6DY~uO#?Q0(9ZmdUhsFz!O(X0F!-Adl;nI-CN1D(k}C z9FAien}c*-0ZQY8<$#Ep_FNkV*z56}EY-G?T8((pdUEd8>A&bk}N0Hyq~I%!ipMsnjnYX06;*`IF1=7W9_Q0fmZW9D&PYi1e_ zwp7ZqI$Hqxr+`wuSNvqtL6m2xJ>HX`UkH@OmEykr&iv=fn82OX*4fhu@ zbYGWsLa(Z_kN3~dJC=aIr9f%@>}*u}evk34cmJASAV=4p3&x8(hCad`nucBDf>C$-wzhtKK=S~q_YAjt+Q)?Y~P6fr`jWguYXGI zolw}w=^@&hBDXAY>_GF`spLMPFP~Vq_Ix6$qXxmQ8i+Iv{NJ0ElbpM&T-Lbfy(jTJO7SO*5 ztN|o2UKvDsd93N^@pomu>2y6yV{hU65G0zUUl-go)trZyH-#b8Q zJz0DHw?dEhhMy$vCGbvW0pDBk~>1=gfl)P*n3FlePDT@35SPL|1+P0+Z4I$yuCQ% z)31MMF+!WJK&ii5=PnF$`cRys=u6dY$69+3Pm;R@wG!cQS}Xl~68D0?eL!iQ&s*hb zI&WinUSTCv?;6{WbPfP72NFC#=){Si+|2?}q zYfx@MW-j?3w~S?1B(uBCr&SlmbJ?8xf%%~e>%FT})%C6fHt%qH|IWWAzzzU(-p-&$ z*bw1({@zIBeu+L#2(}}!?UE7^Kf(SEw~G;Bplx@Ss?cZfus4pQoj!vdhz|NTz)nDs z&p7tkEpMH?=wCM;&q(Gd{0Rv=8j&BeS0ZblLH~!l zcY(91djH3FZVjmp#wDg4lNh4L{cbOexiZcSb8#Q{DPbxVl^n_~s&NgWaY;xTNhCU_ z2qC6ORO$#NsZLQzs{gb1dar%fSx4X3`R&g{{rAhud)7YB+Ur^OXFY2@>#6%oD(s>V zPlLVJ8WB##_Ylr;fiEEIhA>drX$gBEvga{&kxy&}KR%Qrl@l+&M8pRYpWJRF1@D1m zm!%nxyCYk2WZL2*Ws%-glq=aYnf6`Z340>E*MJO|pU%JI1!_Qs{9UHJ46~Bj)8J3+ zNs)h)iwkx_XYk%DeiwY<`vqN)U!)`KuQU-(=6oe4aKAyF6VZMHF^hjJu8 zSZ05IuQ%QcegpY1+jX73{CD9;>oRs@|BFAZkM3}${G)baH;|p!(aZVMI?DZNjkz9t9J>rd+ejXzSnlfKDw^z3=l&#WkMFB^s5O~@H+$vchl z{)WKsroERo@<7VKrv_Q~i}Rm*TkF2-K`*Vl-1n?GpkH|J-tLdwlf$Y9zDEOPCrf@T zC%@-^Z-1cKQN6%8e~{f-Iqz573JdvJ;*%ZgW!#@hkNZ}OFaF8!^H30YeJuMY{&PF)yr@|BMh4==E?-9X+l?`vOyzt8? zJNyffKvp{NJ^IUTd-3ZP@g0#bd3`bSSvntMTr=Oaj?zBEKkpFSJ~gYHsv_MR1Nm_M zQjhKfjxyTk4Oai=KSwgbR~67pdI7fZo!77~IepdjmErb>;BxWnB0tf{pEM4-4^Kbo zaU1HcOR*vPE-_AtaV#QGp4@)myitGZd5)+Me_CQZr0Bkc1$3_4d{q7Rm0#ZreReJ6 zOXQb=WBLp%%QSX*yiU^F z;IA%FYS%d#Pkit3)|;?poG{@cAz@1crWak+WehHNuM3df1_)yjU{poWqydZ{AtA^o*3^b zShV-fWxBT6xX|QVWuGs~vJ)c_&wQlu`O}I+ zxk&qi1wG=v^mvm7RQxM4(<(ocj22i;LEix=<-;}lW74nnnSaRfe(w;upc&{HP->sP z#bZzE8r$tUI-s?(zjTLXC)Or3y(0E9oxiKSYPDlTjIz&OpS1veOP~b#b#JA8X!GVH zhb7xwft$dMnXbfrXaV6GTysYe-z=%J;Cy>UHQeYw*`OgfKvZET_v67 zX>+A|n)iv8d#=8o+Me8_h4|Bw+6DXUCESljiYe*6QS!Fu2YY-5 z?8Jtm-X(cy{!KN>-&FmMTl)^{s+@;Qw(P_PA)b(DC|Kxi_m}RDI#j>yig+gET27|3 z1km>ZO5=<7$o}tj?Z|-@n;J4pp5|n&t@Uma;tBblf_dBS^?S6<4=$@cwW+l};bcv1 zmuE84NdZdhO)a|~jT0}wJM{CtwUl#TO>C#v1?hAHN^*43@dG5cuK45NTUixD?7+K% zJ{2g{pQC>)+5MQ0{dp|7ecJEuF7VeADAjx01n&lqHe*cL4fC#5#`y*;4fL6z@mM=Q z-4ByJe~f7G{Kl+Js+CzSh#?VkV9LhQt(_Hwc?Y9HBO z8QXOS6#pgRkJrKDeE4#RT7Ow6h-|4q@TW8WPq99_`sX!!fvMg=hs5vFp9^)(RiO2jgc=I=xoJC#@D>jrE%=u~MIi=-zq9%sCwKXbAPpq~g7`xg|9GVV3hjDs63n=A8*eK|SY@(k`r znq?<89ehgT^@Y{Zbl!IAJ3q(tsj9TINHz)dQ-PBHr7*7?`S~-S^NRk=VfoXV5*n}Q zv3leW#(b`R`;o&-wsAN!;4T3+w}+54{i`cuf)(?Ch?fq$gpJa21XKFbGxbAghc zcE*CKyF6|(#@Jq>zvAbpBby2OIY6nu7mjES`_A%NA@c4l(9Z^z2NLjoSf9~vufDyI zz5edk=OI5Y1Eqdj)U(u4vt8%a%d++tIT>Tmf_^1X8qb`rRX^(P*5}@Rd{TOd{5c== zOM#O9C3f9Kvhy>hvC(lM`yC5FzX&MF6I#`pvpm{eWIyn8BV}BQVhch498ems^ZPcW z`Lb+Xijqgys7iWLBf4+Vh z_3baK>yX~2rLn(RS?RZtY&qyx0Ht}%`R4;4{%i7Quit9yMdWJ@undqO_OlW+ zZyNr>TDDitB}7~Pv{r*&(yN~C75A&z-;MJU!Rvr4FNeGY{?-Czx%|6__JL1z|K0Ao z%5MH5EIYCF;8Pl3#<-S{e)qHNGB3OnA0kJ-0{TLrTz`}Mm0@u{&lkj@sMG@h}QQRI)lSjTJo^{^HEZ39a4 zbX;b)bLh8Mzg>I4-(jG%E_UBE{#us*#vdIfpL{}Dzqe;z&>sLw>!-qA3xC($D?7e+ z{L{OY{gu|1KdpU;C+RMuKnez%vG=ltXleZh9n z?+E4dP~|&LpdN~AoVVXzc7nfMKuPW?`l&R@J@*+WN>#weq*@v zku>fQXHo29@OK1Q6G-4&aNQexdCPa7P3F&~}sT)v&~!3#-JZ zu`f?|tJY#{D!Z?7(#8kBOJJl%cxUA6xb_AO*T!|gxfxqV*6czibw-{}mD z1HZyv4|JNK7YP2yZcQ^DVgEzj-?R&?CcfL0#dXyWoiEv${bE?*XP|tvfWJ4>9_J&Z zFYNV5J<7kUq%ZtKQTcg4snYMym0j7h^XRFP%>6ixOk{@Jtbs4W?^(~p;O~%MD)YO- z?vCuYxIK_aANl%Qd#$cKzOdiXGVuL0ZlCo*Dl0R5aAEw;E^Kt!!PhT8mck0}%boe% z*)E8e&JK0lSM!U>2y2Plf8H*Hb5ig=kJn|DgJwJo{_uny z9`Unn@=w+G+@8kyotDPwV}ZhMN<&!K0g`=`X-7x)amHsg>wOxxcdLVRDLwONvUhB` zcHH()Hl?$BVqRIgbu#)%VKTR0Is?AFYWouT5$z?7+x<;Ky6$uye+|+Rc5ZIrH>^8P z-v=xJx`AGxu)h=bcB}{ZhJUe-ME#+D$S%#ahf4sR3+1{dz?YeCQGV3_%<#@0?0nk; z=h`0V&iQ^go!h7OhJ9pxrQF0g!P0qrDtEIzT*eQa>F136j+wvzoxPY>{Eq%1@=xD2 z`Lpt!iS&SEXK1$b#R!XX6!G2NQ65={hwn@FiQGOC{>gd@x-8@eVPRLt5H85(-xKz7 zWIt!xHD~qVekEJ>;_YoE_;QJK1K;QQ%0#;*^$R(-4ev4Z3G04O{!6YUw{-%&q^HR4GMMbTzMFq&;lBIXh`{$q zQW;{&`A)pQQTly;?$;jnRMn5mmhNZySK&W*v-E0$zY2kPMW2@`<<%MvXyI{XS^lZ` z&uwj=zaSaKd};v80}U|lh03{bz;)O1ZkBx%|GBlb4_O`b5}&^F6VK>uW3N|_J*xVJ zX=bfMDnry)yDt4YRQ20l$2zYk%D-G7y;a!` z(({g)U9Hs4UzGhrr@EOZ{Q+shZpj5x^`@7KinP@CsN?G$HC$q0lse^Rt z0!9C);K_$4()?~d=av0YyZb@m_gg97#6hHGC)a>8q)FqFcTOhl2N{pQg*9(+ve*!R zYGOX4-(xekA4mRFz4?`IpA9*~T63U0znk}786Lgs*H!krVk|qaI}uOne_F?lR4!`` zkK8v{at9|1-(E^;?-bRq$0D63K&hVGUyq`D__J4(Z+q;FF7vNx(X0{Z8;8bY-)|>B zq~EFR~=rYnYFHKS_4;C$&G~AR@${n)Kb4f7~j@GtFAp zaK6KzZ>8^1)bPi%;CLF-dBR#ppfo=O{Cl2tDf6_0G0=Aaigkez44gY{eAV-3uYLOU zIOJ;@uqKco|E+rtd)#l`^~Y^hN3hO;_oO)MV}-NvUTW9wI`Ln7V(&ipYTx)l!Rt*g zDXc)B0Tk;N3g-QC@swUbyYSINdMoovW6Msi2jWTdX2G;l(9?U`D&uvmWhd7S@g(_- zWtXLUHpmIk{w_*<0dIp z4vA!4K-d*1wa=K2=f1=^p`I_f(&J$G{Z<`cT*y~QxGa5yN#$mMsU7KZG<6cQwuSB!{pw9tH z_3jwZXD8J=KPMTiU$WaD!f!9Z{oU?5z7hR%3Uly8z*bd zhJZc~DAjwx^DkZ0wa#v{iUvC4cD8)7FX#mgDI zo$Ryb+`RIRO*Jh&DgXQ(HubcA{Vwo#4^SF+t8HmPa$UCJhqSbEUZ;U&CpR4Nq;?%K z?7m-k{z#51o_Y_zodu6Cnx#J<2|k5hnS#|8^*8*b8V8y7D0rv}lIJ6CUS7n@#iuFd=?r^33vMrV^{w{%!vy4O zB2XGXwIMS<_qglRK@-~N68mnPEd2bbLuIjiW&AzO8} z__r_L9ylOaZq+)o>7dUCN_xfo8ACqSwKt55N0XHKy|(2~?U~Sc&M8xAU2K>WEp4IH zdz9r*?P;`-wViKIj(%rTLG&GWic(YkK*6>=uB2Auu3EvRdbU-A?vy z#{DsWDe{?pIqNy3vnV7zEk9}Fam>^9?+sGRGu-($xSfUHK7-TKLj0*o<7Z*zXxzW` zFR)`-hVp*{D2<=7Q!f#p#tF^+>B>D*O)WdQ*AP!y_xpXXT*I_J`!hy;+exu!Xu?*2 z{$-#ff9ALSl-A*&3^;S&?~Rmo+#T!%(60eX>jzi&hHsNSpV6)>DeI$ZY$fPl1j_y4 zgAWh>&ADj1_3qbKA)VDgN#3aTYz6YWXg;bQ%>H;5Zo3X{pML!%@V6Ey)kDjz=ME8{ zm(x##UoOG@$bSCTfxlOP4j{ppIUDKzpG;%my-k^K?VfA*>xKCKdSK;1dSBM*MSe() z$9+PXr=2#(`3UwZzP|x@3y>gZ$d87dF~3(lxIFF3b$06^BE+AXR4(TIj3(Re(#rhq zV6P)Tn}E_h7O|oFdCDJeXTkXkznulQYrFZguQ#>Z|K3D-yaSZ-Ul?;O-B)UuYn&dZ z?5{Kq@uw#3tMT)7=J$Fja%=c{DTxpIlEd<+_BQyG){QM4`)K@}>V0a6D_&Vw)nUA& z&`~4AljZ*O$7YWkf1l@kYmmw?7fjmU(7>^i!2ijOVfu ztMKJ_YaaQ!6B|BuP^n7WIPd*J-r)yZcJv=iq2HF^leA= z^2bwQCzAqyK3!3+qW(lVp&UiMQTf+uTCL;bja=+-(%eQ3_MjY{Y22>pdxXgz!?Z7` z0)E_h?*&qMoBp!8<9Ew017WQPGYx)({RknQX3kJDUaFIREEF{2rXHQ2CBKo!gh(*aP+sX|OAU z-N;-~UrIR$dnqgbqCQZ57nJm`JsuPA}|N5)pO_ zI}wBh9o2_sJo()@9~q*afMow-{!aXxsP%04k z@dk1HAMHd=7QJ5LAGH&?k^CuzYbP>8<4;W>LBaM>A9@N-O`AAx?AX7x6G;I5HGz1p zp+Av+c}0mvar=g_9)b6CVj{Npoiseg#R4yr$lqQ`AGZqzKhYjbn_*h|1N>wIoQ<~+LdSg)_ut$ z-_p9E=*K-Dc)T4x{PAF=u1tDQtOoqn$AEun-Rf@E`bnJ`+oX>qDEhm$mOkM|#ES$H zZxF?aet|AXXBWR_QB^cwB}Y=l)t1mie0qiQ?5tNsHK!=1gnVj zL_ZMi+jxEI^A~wNgzR(wch-YdkiXl2QvUMhUi?INcT8Vfx@8MR57)#x&oA_0()hw| zszB#?zZ-q&@#}84+9UsbBkMels5cRxexLt)ggD2h+BIDH@)Yf(Hp)dB&zzSI(7BJ8 zaUa$lSKaF0oa~MeJCSmTPY^rtV=9*d;~em{%KExN*m@jw{1kc{F`rx)NY7t+D%pw5 zH#P)+)5Unse-8hAgEZezRKM=T_iqJC{5am;PIenELqt3ka=&~n&_@F+07(j3pLT;6 z{isOMZ-qZUNPHMy4!b;q^A~=+U_F3cy_jFGgL0?~6yp;GFWoocuvIR_lRx|Vrh4G7 zK2Ykn7baE_=fAJMez^hoYX}tcE(N`9-u}*`P55%x{7)MwlkVh!U*8fcP z-XOiql98>H{f}tNpHfrAs|qBD-RGuq$-msaFm~&~uQ$W@n*#&$k@xklR+7F@GtO1- zQ0l>czqO|qbFh}+uN6=pe?HkH>^;=;FyYI)#WhZ}0e|g*Lf)dFtK$9Vxn19Urp$kh zLhMAuJWBDBAGwbFLOA&O_Fz7*d_7=bwd_QMTxn#te9TN;GjBFg?FC{OGYIJEz(Kal zEIRa=IG^&nvR@tkJSMk?{}(%$;Q1(mbpn6!KxzKxb`8dRe+6s3$H|;54)mRYlAfRa zoKEM9us;`Ef8n=JyZH-_7ydjQ%x9!!C(;-BljJ(np2d0R<`d(;9cbA_nq;I%O9Fit zppaiF=-$1I)(>Zn*2;T4MX@_=&XPf&0+hzx9Dg$1*Ka;o-``hP@Yf3{^#@i^`k-#Q zKX{EP`|3?uD(HIx<@M&=ODE{OvT;s5(pt}Qvc{|%=v_c*esC_EPWHH?-Ons}xqQg@ zVsG5_>uE?Q6DZ}+mG~L#sePIvm&dYn&}W45>8pDS$@5I78SrzZzels~pzi^c#?MEe zsRw)bVmrrXUoHr@Jk@@bg?wcL#X6aSj;I54p29r0<5BER!#}rE3g6{mUoHqYf5GF6 zU+<0d`v9f(;vChR-!rbU_AIzu!XKB^^z8E45Bxn2l-7SaIpsdpwdFr<-FCLO;{Uue z>ks+1C9NCYie<%K`l`pp^gEc4Nt3Vwn#|4lj|StovKA z0iYiWl;)$_SwH#p9Anv7IiP>!WYyR}&<_Dh^U<$En*YS7ad$ICo_DZ8pdSnr`Y;Nf z{%};$e{LQtp7x@#T$INsptL^HmX7?$qkYx)aO$qWeL9@1k>yWmB;pBu7zJHZ9)jHC zQ~kL(Ejy7Bh$rcn`28%g#un8%W!)bc;!jCxFM)ecL;P3Rm9y;jTf6bXAFrkUMI{)) z@=%WVhn6STN4DkXEKA~d4$hEJnH)0?zn4L9<(3t0iFSEB2Zd) zII7S2Q1?Fc;a8oitNw8sSo6%aHT64}pFRP#RyjzxCsX zA9&`MTFUv9@aMna{vKiZQ+gQb$?NbLW9eLOk3EfdlvVA9?e+)1{s_`}3@DAe+)uPS z)|dX~KBeDAutz~Z4k-6`+!KG{%jOpqd!&E5AF1|8;rGAbdhqLR5Avj44U=nEPs>(od#1@u#a<$(lj$`&!6eWlcc-SX7fG<^R_pfpZMb}8!k z`A@g&;)s|#=3-BS{$-$4E=5a!IIpvPeN%Qn+b>xD zqys+BfPMu~s=uP4ao_0PNlDj#Ft{g^AF0Q8bPkvn{)#cx3g!#-+Z7{?|EnQjr*VC$WNwUS^tH<&n2}# zBL%hq=_~|F>zoVMjd+#X=gp+CJD{w?W5V7C3Lbauj@MCa5%_x^SQAL#JJIL_@kvjP zYLDb#i_IT2Z3$4WcfaAMufVw9vAF#HUitPC-h31~o-IRpEC)*cy=kSNFfN72tyeyO zFMz)_Kxy3aPwMr#&L-5@TW}~t*(a$JVkaW4!`&VFkY5(#Inp^~eQUQoSAoCPKxtf( z?m4>p_c*--{?>-_ncsQA7rJ)V@Wb0wDHpr)b@=T?9Vga-zfC|1a!<^h$m_45O~^R^ z3J6~ZO6^6vknoqT(RD>n{d}v^UK+4M&~F4vdg%NM8xQdGv{H(E7Q@zq{xzUf@4P(C z_oo$k$@zcTiTG|=VCcdA9d;u2`a}5Z&ER^sFGt$rGvH6@E!3Yh-?|EZdEMhS&Y$fa zq^wgLuq~i}6Ic^S@Y>-gwsJqb72=eBWLKWoLhMAO^@H<^AB=riZJ|aEg00m*MpaW`xPGAa;@9m23q;jMK?3(eYj##noL^~NtD?CpXB{))pAEe-}aO1TKb3Np|zK2Jvh zmT^~?{Mfo$qR~k>Ja(9#)zC(r=n(+vO4l*e5lHJzM&0W}aM#t=! z!gjxL;0|XM!Cwk9?6fw=r=p#7W8|FsnRm$12=(HRmkYinLlpD-lrPheWrI?FZj>{n zZ)_iBd<6c;aKSVL>xpm?koYsdSAeiEVDO4C%B3KKr5hGyje4+##&dmlR_nT+yE`6E zD*^>^K)nB&PvUlol+uqPRcd8a}!Js>A&20xhry?P0gL3 ze0J8M`~OjcksHWhAs^@j=-T%*%BdiTslgvBN5(L^Jp0v>R*O^KRokvPW4E=Smb)bcl z^|J()8$;7G4MC!F+fo-6fF8^*eQ>j?5-*gZJ`|eX>N`Cw;`UWM+*98mxsYm zVRLIf;ABo#3-q-^##gcCElyU=+Mv1>@dEup+q~{&x?s&zq!*W?q$@q{ zMzA`_S6!eOZ;arC#rrYtUVQ_qdf=}rEFx`z33+*#9%~>Pn10S zbq+2%rwxr#;DoT6<7&K@bJjB#)bwxv8|L1{aDMfNSsNaX+l1yAUCu$SMK$d1LOgN zkxqywwa=*~FOY)*GoE^ZY6R;5`i{VBfdqL=M`B~}Ur-Nr<-yL#Pcl$y_x_&GQ@h@6 z^xH^fypFaUi->i*kbmhjt0L3r;13L5gU3(%itR-3mjskH+;V!oy5nEdA5y?y7oa5X zN`~rJf8)hodvUOC$X73*ygqs+;e^N6a_!G+Kk3h$_?<&Cb0M4tl;pvJwnr~|a!kcz zKV?3$Yap$$bfnW0D9vM9ms2>fKC+wAuAQtq=(9uP#r|2IHl+AfKZ=|j#d?4~3n5yc4jxdfWe3xxi`D1JkT^DJSb}ITm>Y@gzCfS9j|*Oq*V!i9RpRx;VikbH`bZMfxG0 zRPX-uJtSX$bM);y?r9rhz+tys`XikOf$}=8Vl!%=r<&G|sMT1x$fP670sSbTG%oGF z<}KZJeIJv_oik*;IS}-NfD)h1a@+T!U7uFg{a0Qu zH3aIWk% zgOR(Cp46{%CTvA~tJ`x3eAALjPpx-F*`bxRjulL80&Um1-9=otQ+K2g}xDG)6)8m9! zX=i?YBJwpGD6MY`?oZmUJHMIT{+lL)tqYtuS$p<4=$`~i^R4MPGlz~_u6<>QazMTT zdjj;6LgR7$_2}r!K43614e5z}77F_E4hcs)szIS6#9*W*;uH8s z)gZl_+gNY@SM|bveLC{@)Y8g1rij^oJ@vgr;URy zRfz)?W?fz-(={5cG?IQhATw z|0nY2E2YTSPWBw=7Xc-`Y2nSwNH66kKPENzDEkQEA6O5TL&7f?iGSkEzC7_f@>Kwo zJy znz2=&Uk{Y#2W~jFo|Gad4`%;QL7{y)!{aT>3elQQn7q6j$U3oYBeyh%ZuOMHAK)L_57!Qp$&hV532@nk!%C#Ujs_@$GT?FMJE4}a}eRq(`x-~LcX>F zrFG8Qjn0xx>uGF=rz!m*ifsn{8^DnDyXi14rr6}`ElB6hP(JgjWMKUCs{2*;*JI(9 zXYl-IzyH03e4)c=w;)UqbHJxD9?Vw87rXOj`2A1K-`n78H&D{Axt{M`m3il6NBK?+ zSLBdJ>>beW0!r<$Fs)%ZX1sQfN>tieEZYwHoj@tQ*uQp_VOk;Cqt&XTw6g|m2k74g zO8s{4g@?(Jm(w^2{-r@R+%oRUam z>N~@K`}DD;E><_QNp`<(U09#PXXg7FCbI_z)_ri`lz3*=hO;flf{q*+qzHHXs!@w+#b(^>W--I#fO=OPz-axpc~Y|v?G za1es9uy4^^-2SKw>WBEzjK>WW_8Am^CV4n*}EW2 zb|AdHp#N3|AA(P}u)`AdoXYJknuzuy>J#Cd9_;Ln)U!Ko=)u#o>`Fv96ZSkv|3Y{4 zM}&o)ir`b&y%c~i;zu(cQC{8*gflr(diN%LR^g$zp3JcFtJEfgm(!W<+@2)~;k$cq zdz4RmaC@Pf@EwsJeTP!fG%6nxeWF|hAKiI8vV-CEkj3eQ{fw}K(K5LmP(!r8uP`2v zy^i@^YS$);@}~C4!${ZLi-(1M3)TCNetPoy^Y@GTal52a{doJH+?T&6I~dJ)L_D&W zF~d0nfJ6T$JDKOVvw{DpolJSMlX?Ggb~5jCJDDR50{Y>3X3m1nWwDzc+p8~fR{ZMo z@^0&5Dw9mIlhG0H1|UIftFb;$;o%Wq|I~7XwLi~)4%o>!KrhMhdB^_x)|210daoN> z4P>_kzDIv`wdAJj@LrYUV-HW+d9k2x$U3?-=*s~mxn^{aPfzOk73cl`NLwZm1Q7^2$(sGi0`6}G?MzCC_S^85^ z-&IjQ2E^yRsGDkurt10BC`+Fr+Lxq<%o{W1I>tY9UXhQ(*IP^Nfj(t-onn8zUx8;p zYYUX%V#31rJ?>!_8#HQ=p*TX1x9ntYMFi0=DCm0g=5IXSlBZt(BQrs9G!$pq$%y?8 zNpJ0Y`S@XvyD4>~*1Dp%ZeX2D5%eTOizi@L#ab%;sG4G9LA*9L#}fTBN9(4S8ZgWUJF>Qbd3;HZg{wYKKbI*2F68w$R*p*8JO8IQZR z(*NxCBfnnP{2(cVfYP`W+vpeC=P>n<#kEfyeme_ppPF^9y$$%3<`wT_Ph8NoSOor;CAiTTcA8z11kav z^8GK7{@KYd+!t~&|2aCuPDYAXxG@12{L_W|B?I51zrxR7aJkseU%2vTaC+g&brZL# z<=GDTZ4Z?C!>QLgFGV|3?a9M0m*Dj5_6JKtr;P`nQvJG0j(*3JH)=!Pz-xvu(LPKv zcLwVK`hh@cUSXYA9QEXti@E#9CIgrl&w0F5))DmGfI?oQVBy1?_`KpB*29t;IT>S} zK;H!@%?}S%kABso9a~tlO1%_o9mUC_Ssdt-fD#m@9jEgMPZ|4~O%=U-6zdGaM4;3z zVyn7oJ~ACCRa54_h!8s&sXyfZIgK18n$LgdTx)PU^Xthdj}%}ekl?~svuGSNA2okh zzFl_(U#UQ8oc~wZak;=>cc8THXOpixOF2TJmUcIbuO7+G}0RJOkR@K&jpfvi5xK$@!w< ztACBjQs&KeY%u7D0fqj?2)f@-^SF)Ulpm}2_C&HFpdSj9=G&ZC>X5?{^C_Bh~sF4*v3h((jJ)*N~jtipGidF6I1KOUq7X6yizi z4&N>1-skzt?yTs~9Bc&WM*^jBDfU}G^@o%Ed~tC541XL9?hjYKJnu!m?gL8g+SQ{O zjh}{oaB)XVf6U36hTY$#`Z1zfb~2A4J!v07`)kMRbWZBv%fB7JQ<=vav(cb`2q?|( zg_d6bmS{z98p|F4{ewVhe(>ebqVpZ*qv|oQd_9Z-f8&7CxTGz(@G?1UHugzW{X~Nh z$10T&pCI7aNb`lP!^7==!R<4WJ%aB)3Y5}wYIh!^^1SaqWrt8IP+s&``1=-WyLRI{ zQ-C#r1iqPLPwQ;<>WOJdy%h(Gt=I(6O$?2fTSnXIVTOITKSLRp!d*`X_80l*{rclb z=Lz7=K!UtF(WD169&blwJr@2v9b7JceUkY>O`8mq#us<*H^?E2uQ=^9?DyNL;BPum zlCzv!{hxc>#<|Z~amu*VG{mur*dH)H^X}b)bnZy->g%&+AYV@brG8zwsXx_w#NGAd zYTTj7$>H1G2G4&E%dyHcNKaa?xEif_-J`k5ujclOioU?E+^SiQRc0eSX`Ijbq%rA3 z{Dyks7iAobvK*_-LOe;2;vRJ)&WncJQ)0J2*lnL$h+`G8A4_bzz8p^ZD^~k2yXzH= zJ&SUD2PlmPrX!x%QGNG)`O6sQ#P251!K(QPKL?cNl?&U}Z1Ut(xz+vt%pt+|570dV z3qZdRD3#0Uo>RWkeH)g|bdPc=>)Y_49N?PoR1vC2!}Q-Yk-(l2?~rMA_V z_v)$GHFmNbs}vxD*mtC$`-P#K_;~$&ys|EiWlKQ+JWv{Ui*7!Cgva|A*pVy+e=C8~ zIMMX@7N4#~l-$3$N<&2-S)VNf{R=>8UFDvA`>(pT%2tnEWH9 zXFjStc;)+hxbm6WK3_z>)&NTb3H&J^`;ouUeVJ9DTMd-t&)Da;(mDWgUGO*`zPu#O zHAF(K{q70?#~rFqPKy_?##@sRyO@sww{*2fijup0A#-V2oWWu6~BvOE*@5L}+&*F*4l{m<8f%I9|EYbQ|B zgZbYr^%>88w+EH^))`_aBh_E*@(ZPz`MLZ|WnB8_^A}v6etj46wFfB8@1{dsw{e}= z?o6efRb#tB{~l24?^DZ%I9w{_}d4R*6+U0x12`vEuqXS|NML#+|Fpd zLXL4R=MU%ofE^I&H?;9HPA9#1Z8tW{J*r>Vsmbinq#sMw@7$T62Vc>S@mzL-zm3j3 z?2Y3n{IXc~GD)Csg>&-FK-UECn*tjF8N2nSy0h+0Phdy)|JwaT*La+B@5F!iGWd1T zt*~Z39eCKyIBKnc;7|BP@!>nFU5_&!@qu2%v+_glpSr8D_fi6Gh{+m^8~i!>#_6?@yMPPKnz|DCyIClZ=*Oraz4r-|)_0PbF$qQO zLVTx4N5mHxulU<>@$U<}0J7^C(zR#z!;z_M?eh13kF1LPZHC{Pr&GCILk$=B?TYw7 zVUHs0vV?t-md5FX9fB9>dPO;)eNeu*KN{pi6ZO=Q$EW(5@>BIa!($TA4n_S4`p(>5 zqFf@kCrcCG59D7n9x7LE$0N!UzYBhd50g&vr_u|djNOx`wJ3(Gkfszemw*AjCvA&a@-<}eCK!P-y?e` z)4qu8m(2E28R-Z+DN!!MUdqvr$IBncQP}%<2l4nDd*eOIMN`Ttr!W6q1A6~Ae>%PP z?aBVf?S%GT&Q54Aw-d^35LkabtnueMAi+uB&ma^HSFlywPwkJgucEcrpKlcjh$8BcugaWqJZtgH7@_Q^X~>zdN|UbVn? z9a|QBZOJFW@sMFLy;IpIZ*6nE<=4f&_zg%$uJ`wx zr#{T{~p|%dVd5Mx-P3Dw5vN*?jL_UCTUs=bM9SDEge1R(`7@z9c^v&8N8<@|B@{Wds%_V+JEyOQ`5hL&mKlOe^|6o_&5q`Y~ z>yPZ$Lrs)=G*D{aXA7I}^Jsgfe)u^nYt18^%)y+XuLTtSiGne)3+X&ffnncp_3cya zj!U(XuK_^OUMV={=QdssyMEbM3*PN*o%c7%NC3JG^szvxoz1^yozKHgJh6G;hgqy1 zem8*xvpNXh4iw`)1y7HvU*ut9wlvcl^ildlG^-2x7@(NXC>Yc69N7h$D}gpj{e|Do zqDL9{^^u-59=I;j&-4w7e#~zFvs*6q>#q^Yqj_k#pGDNM+joGi)m zr_%)SqVV1e<<=&WQd)R)Zb&jeM6jc@F{YuUHRItCxWpgpjd}c(0BV{ zI?qxOYr;ncc>N6MUy91^1jPL6{VjT3VqwEhwhS&*7{J2+VczC&loD;k9_16RW z$^c6J&zo@S9Wl%)^%uTeAm!UgA?$HbZJ$}-F9#^iWAm48JELpO+?%wftrfY|Y1s+& zM?AIu+y`<_^uM=}Qh!mbC+K?tC4P3F$e{C&vy!eKp;b`i5c~33Z=}-)D9tN<(!TqW z{CPA#=bUj$8JEJZ2Z?`5A=FMtT5lHIRF?8*KI*w9`}G%Yzg77RFP>ZR3t*qmfhhm` zfnq&R!Ga1qzSrILx@@iaMzW%pYR(3M{%)Yu?j2v>N9Eaj?6VsWHc`fxMwXq>5X2LD zBMNSAG3WRhjd;ug@31eg4-F%TG3s*Nu$>eF0D!cYWt4p3$8SR-<3cz~J>XZG=At`q@B9 z4srb6jqW8M{OqG6*YvdX_$C=0{1^}V$)WLBcG(jiZ~G=7$!{4f@A{Qn|R2 zYJI0`?P;A;*h*=iwL|QLB)P8X)^mq+{yBBu$*x>(cfQp^{OL&RQTN=BxBm^FcKf?s zc`3s3r<0F*klM@qImdVDZo_>@ih2)5eKr;J(}7YwFw-8?+o)^@Jq48d!>aZxY5f=VZKpxw9LhLoe|~rx={y6J^iu9W4SUeb${}{! zi`{nZ2(c5A%J19oh_1a)ZraYO`j^_4 zKb?i4^}y|NjrT3#<7#d!!LX!@Tw-#e6ji!0x*mx8}lK&hSO ze>;QjAEH}6&TY#H(O)kE{fj_JpOvpw!9Hw3rZV3;Ejyu=h$qSAo1e@+;L!@((?Ndq z{@EzD0`xBcC4Hph*kU^WQmpo__S>hu{%2R7@awBl9$%qo&=}6zxS=KZK+9yJN1=yRUONp&N?Xq{>*82g!ZS+gW#clrPqS!<^0DD z1WNjlylwkQuV_A3{~W)){^!>>BVTU-YXS|38f)0K(Bo766FF_`X}6dk)U-E&m4O6$ z*;lFm6&Zfv$|>`MU3t*%yb{T_fiEvmTKBUbM!e(kIXexRQg5_!Kgb>IEzo;_Wq<~p z`keMt&8N8T=dnLtzs(uZb^xXM$k}euryloHba1;{KkIxVCyTNC>1;$lf2 z?R(??=LDtx?CQPk_xE?f-)^8ZziWvlX`lIJkryP|iqKi`JSr_>&ZvxvX7+u0ki+sP*0OC^8QVEAXnGrSJhu-SB*FqkIdueGGWh7i z!&+Co@5=M{k@_BCVVB~?cSU`YeN30x*L>CB%`W(EH~u{@zANle=s28aJZ{)6Frb#k zjKjGxzGQaS?l%tHLFrt4?C!0jHw4lxI9R6j2#QZgZg3O`{KI-MLET@cycH8 zL1`De(RdEH;71AZDP5BvXDae7z9;Hmgpr>d&=cQgJ6({*Os~LXCu4qxrE&W#Vb|it zdpFRVj`B%{{R-NLhVo=+e{RtZ1$Jde$qm-DKYFkZj#3>QaoyRcE!K|PzA&9V>VNy% znvbTjFV3%Qv28W-w=*62>cNrJwkCgGgnfc9&=KE;7n}8!M81*V0+E05zANm{P;Znk z-jCJ#6k*X%MgK-VbHLATr0)-uA8*fiPj)FL-x{z0@vQuad}VMtVdp~jJElLcMC3Pz z{3?C=`iM`P3qM1MC+u6OUd(hTKPFOr+-BV7^-~6$L2jUyO^5%T)tk#O0v^wfp|9n37lE4kluCL;>XKXA8FkuY5wdUY^{H)fL=~7 zXTxbv{uuqfg$FX26TfqaxAYy?<9&s|?<}MCF^_4X_f4FlPYK-bTpsk2e&h5HPnKfl z>wXz*_Tgg;yM*J)ISRY_ z;Rs9rP!8#dd{WR^cQ)yn{^RG!`_sui;SxDnrR z0Ht#Vg%#eS{pNw=Nb^%UM6S2Xr)b9&k)G7f96vuN?yvPL`{{Pui(jvVbRvN_0|{FG zuyrTS8>@C6;jgcxb0@}^!(PV+#|wYG6C5wnx{s=9AYayBlRLUS=5fb|yIFpX_>V1_ z=%-CUEyfuNx|_9rQrAkfnAf3R2PW!^lQp;Q_i`ehC|3%`{^tJPqZyL;fCiQw7bk1V z#Clkizd-ukQRj)$Of%HAJIjTPFQPq)aZI#xisvl1);JGgJXe1oUg$Gwa)va~4=Gqs z`z)OoFweE`SN1)^Z)d^%J^c0(98Y7lz+Ws-8Yf&Uqju>U-R4#H?r7z_cztU>zb@iQ z?S=aR^6vP3=E3rc{-%y)Z%_yEr25MrJWtf$xsY{rZP4Eal-hmHSKa9z4V>du*T;6p zrEud(d>EXC-QR=j!LP?4Uv~n9d_cj1ig(euhTVqV?xJ$eJj${!YJhlEfdoY*eh}qy zHe~#)54zidQor47o})M4U;Td65d7T%l-il&P|vgI@AmzysP$m4-tG23zupM>Y7CU> zFXzdg;+)8TRsXHAX2@4_ppYkxpy|iSe6OB^vEPrvtv|KiTY|sgKxrJDpY15}IG4re zO}aSLvU}iU{VY43euyWv&)meovm(2qIsy9sm=N^69B0)@Oy!MwQ_KhX6yliWJpD0+g_s(Uy`Fc^Cko7}*(02ezzII{CF6oip=to0Bl zi)8$RG>{^mkV7fBdrKU}Gaq$-+pgZ#ZacFZFZ}(4;CUs&^5>I)a*^bv`PWw1?a_A9 zvg$|GFI_dOy~ZP+BwxEvbs)by@K2_uXRjaq^W_rUZzEU|@|6h`>lX_8lYHOk+VnXS zUhJ(a_X@OO$)HaGO6{}o;Q1pSx1q_K-B^)(TH2o9yC9vk(DYnW%hP>&y((p|DToR= zf7liDsX(d!MNRzV9kNrs_QL6->OJ#~!sau$-W{wP(s2Q$al)08v{~2O*U|;AI~6%3 z{ClT^(+hvzECqfz)Mn`jcLz%45+A#Y+O?_is;G=FcGr#Mk{jt{0HyZgn_Yw2nfa*l z(v=^VvcO+9P^_0IIO2ntQta~Q^TMx(;Qkl>corOwu0{fXeSwnRhE3U00QI~; zBH&EzZDOk`eL)_D#71MsYeLn92 ze`A3Xu*`^WJO$@U>@I(JfOW5i`8!<{I0A$Z0;TqO&XS}zb!~^S4iCK#I1lvq0;PJ;yjgUQu=y0% zdGUXKyjJJw(a6^WKxtml4s;}YDf3bLk==2^ZvWHRL*Q==P?D1iCX5j0$^6QAW;Z>% z{lTw44E`nnB{?hS_sNFc_Fr@A*XpDAu}`w>bRI)Isa@x7xbKL^OQ-#F8+2FJV^Nl! z&N#%A*WqK6$qxP&V_)VrMP3TOodvfS`{g+v{JDV=c;k}j9(Lo&xkDMx?6xzz^%ub= zg0Y!EX`YV!{2H&$%6)zJv=c5%uWpjj!H&m4pAVGUXQB2yjT0@s2?sJ8D|*vLmYvQN z#FP3T`=vJKzo+Y1`(d0cmQ4cvWMF9^fn?uv_0P*q1z%4ArS_CPVgSi6=YJdY^oNxd zxu?Emr!xcbr2J{mRv`aYjQejciQhRyvnLUr4wUrsW8NFT4ddB=XS@!UuOmbJ`AGe} zkj)^w67z{r_E*C1N5SP8{x}iLr``VN*Jq*Lo&`$lKhyt=mibuk>ffpUAzHK9pq~Sj z`jNx^+edT{+N}N!eye4B98~i+7wOCcO6^nXf9kwxfBdw&?wAk$mI5XD<&uZw7x$kp z+*Bj6Q;2?I0qBP7bKz1*`4e`u=o+a_!w=obT}_B49`pFikY4w>`a;#Asa z{SZ4Hsl45*Ht!(+v2^WByFZol1$OTf48L7V;}zw|?s@76_B_g?04UAxRYtyWQs?uu z+CIbAYXtLYcfZlEF9Uzefl|BX_aYhZ3)?F77ykGn)hm6-udhHlF94amwd>8J5B`Yp^XkiytHIyy&~nK+a91hjXc@8X_wOE8?iXuk+39RT zJV}p|ziikU-DlX(KXH$;-`~=*(?A%I`1N% zA@WNT<6$B7w;l95fRdhe%)^h6{9-;=f4_ex_}c}PpmvEZ2ze6om|48A>gR1;uZ+@^_E@Aug z*;JAYgKl@R=&?0sZ5q&(nOf0fow=WnwH=vRIt4oS@A4_*=fg7?e@}Kk<}TYB5$?d> zTYh%pK-UQ8%H#Ms`dOXu9`u&o2-4k$-^or#GavDtc>bM9iR@0}82-8hexChYJoo!j zyECWvhQ>F0;|BaL`R#c(_3Vz+vkBZjAUA=>&q+kS5_wqodl7av?gW%aJm}&%9YcKj zT{9o?J^Zc#Eqf(=--9_$>RXh9z$E@1;?ul! z`ULEenu&b3XT(jFSMw9tE#`xGlyB2+WwH7l5fk9i_s~yz-lRty3px*H>4Eojk}t=SS8C(^HG$uAv}50T94{nYdg1iNzc8T2Mx_?fY$t7c4%K1QMtxp`Fzb+8Z^gG1X{(8se`R#-6RnuBp z`=?@EC+P!RwF*A=Xk7 z`)~F*c5V6Ws_&Op0DqA{sk~$B)%)6`8TTp7ZmR5?#aQjN65@&apdhyoGv5CT?#CAW zv>N!7^2hdGqWct#$5&3#qdTpBEc%a>Kkg?0>uhO#N*@Y;9V78!a1eGslG~A?zZLCY z=tsmjL*LB*<-&E5tt|NgWVZWXxbs+W zdHVJGNLb`sn%|w}mL2!FvsaXFd#sz)-%N5^n2^Y1KCwWlTncKZQT|REH#gL>Ychjq~R7yRyIM2=V75<~1Vs4Q`F|kN*O@KzsFIf81@1a%=|_^E?He z2R}aPaT_;iyc=iPjdHR$)&%sefnt85VD{wUr2jMR(W)x*Q3KW#^eup5-lpKH-Z7+C z>tnQ+a+bWw$)ZE-grxe5z5jZ{j(aB^ygQ)OyZwFEaO)v>{&QIVd|DxY(s=FsVT`ax zyZZXuHsG%JyYsExa~uxKpHEltDYY~Ab+=y7*_~r!eKX<} z`{CA>olsn8y!nwQ>HJ*MO=Gq^(9Dvkf6?wbwrF_6NV-8Tm>EO7)O$*emmW$QY%+N3(d)i*=|Z z*KO|IM)PWIxgVfl`O|(oOGJ7}K&jkZg+V6*+ zlXf9q8c-TP*^+(lT5@?XpLXRzyY*+cJj1U)sohdZ`1K5wM>bHb=O~!>>nmS*+%j6IRN<@43x(C%vL`iH^$wF6U{HS4<6?oY#`_d0j2T9H7r_;gL&r>3fudU(ZE4!+}B%O2LRlkCOaS zM8_Y?{i?_zk^h&Sko(C#WY^*@PX9sw{J0xjE}{N>q<&k}{(50I9zu^Tgun0NI~S9ObnXR85aauZ_=H|6xIfsP|Lpho`@z^~prj8m??d3P+bH@8yYqwH z{Q30QoZLUym(5_F?O0y^;FtRH8uwHV?*QR zw_i&85C5ZHF}U9C*WV-H?@^$nuVc40BYiUT!olg;tq1#jJ_i1#042HS!Uy$^lb^rZ zboF9mYoCdeHDKdG?*>ZxGk;`T8h6(k2lgr}^%rAPe-;tq&qrSWJy(X-e`dX__tV?e z)B5$tk*~=>Ne`A&Z>Z3>ex{7`PRmYc65>hw0Wr6=`-#SRW8J@_nAZJv`@7xw!G8Ok zhVl^S5~ca0u-C%hbyw8%@efoS$HaasC+}+62|bJW(mKcW}Z-$>g>3dXyetkB|aUM{bAMTl4 z@`NGp(i7^ZaSs1Mn+q%rB&cTEqZRA8YquZSAFt;lKQ98Max0v4(nt0wId>$k%VyI0 zj@GFi*#gin0ZQX_wSljENcu?QLeWl2e`pY5CnT+J3*Gzae1Ty$kkCNcuc{VeCnV|l ze7D_1_k(<9$jMa|`NeK~xzgjHUwoL+C)KKO>Co2H`Qs6B>0`|sV zq%XLv|1SIEZg}ge!1)@^j$dC6zE%RIdSAQxu2(%8Gsd&;L&mcepnm}<$rGEiQfU4& zpR2DQv|BE#kgwH1sUP_kImwUV+!|Rk9_yjp1Kh%<+@t+pc0&F~=zb;l__$AYA5K*C zFU>4Fp>^O>l9wEg({wLk>rx{dJly6_oyGUmjeKbY2Ha>#^&u}|S zCtb68QC;6gS^j)pL%fiAOe;?NjVoP$_Q&hZD33RQl0GZXRf^;gW4-yXdY^Xq`c`Q^ zr4;=77NqkgP@J=)U`x}FXr{4HRrk@uZ)d@BT{X59>1+c^<7a+_7sxJ`KT7|*^7DfS zjO+$V>waHU-IB~{TxXFsP8naKnHTiCfYP|64ZR6|d|&COtT&zPZP331l;lC@#|7W( z8ug;0>@G@wx4$2^9qH@<-UuWpJoC{8WItM22iVsuzKieg1WN6qVD%$(Kb_C?w4umZ z;mb?X_b7!c-(KvF^TxsDxtp)$-7@!RZq?lCDHqC~wRnzX!17BBU67X1!E$6{(rF#|LF_#VobLal?p@$)s^0(cEte*jIv9*n zPOd{@#{Iq*!VzF zfcI^z?`Y<)BR?2lBN64};_vg)IQ~b&2)ri)0n>c4Wda;##B;|i8{&C5F^~^4Ible_ z1V4#99V!>Y{py}Qs2|Btss8vu^e>Sa(~pl8mN5B{z& zbaDpD-Q-I{*eB{q@Qrk0QejY)0z)0tuLcx`L}Vaie$VG(bM7ed+oqD;k-o^UsQ)C^ zw{yqShs(RzXA4HQDixc~8kO6;#+U3uIi_3R;rt=YP(NhYVfc+&A`DrsfaZ22IqWe; zt;_=%{Ci}GVLH(1Eetg9To{Uw;Ra7n(2M*D{uP5QQQpFEOYlMW?wa2rLlU!nj2G#^ z;OPxfZ{oX&y#0?vKB--a_$CTNjl3TGIq}O4r$o3Xe@=!S+yG5H2YP_wJ7kd2;=}vX zYR|~T_j>T}y@K*3100j@dI*bh*Tnl&)T^i`iFZcFZ0~6q zl$iM_n+d*=4>FA5@kBndcz9BXPN07DFEda;N1%_EZ@Q7)zoI`k@ESjWhb;q`{ya<$cetS%!akrT5as3`YWj7vYcTW2 z+pX^V*9~U2U&&x*J2#k#x+5^5e}l@+_?6>e{BJtenb5ECH*2>%$sPzi4>Fk1@mx}f zUC*9B;dPw+>E>2va@gRYcmc;c4m_6>b9Q&1W8Qqa-um_fLxV3E)KV-3>ITG|fKsyQsh@_NLp3M4QOG$2^)3btK^sVp)e zCMwbf1UI<&VBcGp?n+b?{WzOasJ|`fb6w3bX;S zzsvkb$bz&|pnmADc9uh#NIbte@ZR@(EKRI_G;Stj%0=8QY%ffS1!htHqPj@ScPH1%q(Mhmt|*MOp?k_3>QpM_uQB z!^h44VMC3E$QP+V=1&@TobiREPaHF5&Q%rp5`H~M-=ptGSOzn9B0V90DY)XXS{JE2 zuZ@FUO~7AApwQDO=;*kb*SoKW%hCflSqzH-eH&n)|9J+P4hhC>{HxQ{PKx1YW6Myh zHR4I_j31P{=l3&?4HcCI!g{PJ=$iqhajx|&CmF>04E?2qrN?oy@E2UAahRg|_2x*Y z1u&35Eum664q$6X6glAxd)!ppOG~8F3Mj@WBRKpREnqW#Kt%1g;r4emf8oXp=F{#1 zy=FPq>45x6)+K=pxn|3$+?Z;y%kEelR{H36C z{u|qM=R3P6wEcOQWyoWa(G3xuKtBN}_xHD+p#u~ZzS;l!qXU?bmnIo4NOT7MFrYL) ziu^Qtwb%3I;zdtB-rE{qIaw-;1APWi%tI(>8gOdMo_Ko1ElHOCXOfX)q%NRO2TJ55C+iOSG@vwp@EDG}G!Hjal1I79Q1#?Y< z(Q8C5*(=WoYd!RCPOCtjgPuoguj1!yo^G<7wDg&Z@7DATfmv75@SA7f>GafztRMlkn9SWB^Ya;)|Lo>l%&Ni=clA zD37b-*ePyUH?pR(zY=Y8J<`EuBAvOReCFqr{g{`h@0>2pvx(BlW`TYVP|`p1TE@PH zdN`@*yAC!R^e+RYeiZT2JvadRKeYcK*AHdMGMJf%`~~EEUe05S#RVy<{Iokx+m$aG zTLAtR0wp;=r+UrZs6UlYyXn~-H~o4Z_*)K?%6r4~0kobxgY1?%wo~-vMr;x2mjb1B z#?H;$<<(YP>eHcJq_VD2k1YoM5@1ar!TjA1VqCcf+UGLx^%_tb|KNDE!`H9W++lnE z7pxD4U++@=5N9>m3h?(jFwh^g6^ZYDtD6R7xbGcL) zJz2R3i-j1>NbxS7t3em>7(X^j8UMoHZw#)72(}9Ry$zJ+f38s_sxb4hC%cHsGyHlF z=F_jQ27jA?l3rf$(Mw*P?MdG>sqSb+pJ*FmFe9x;Mw$B-=E>)_O24fYVlX4=FWQ_B z#?ZQyan9q6Vt8%0o!Kv!btsRGKxy2({CmzRU7KJmY?KITFY7_S0eCBrASP!f8B}`S zDni3@yYkxZIOf;iLwYc)IcO;z-sSj%7r1C}Pq!BvgV&^}jw`J^YG zuBo(_dTa~Qc^@e2H{Tsyu4{SxTuJacO8Dz%!Tllp_7c3GV^>esLJVf4?{dR4Bj2ob zNISE){-Uw1D93HU>wyLw9CBVagT6|NT(aL@?C}|49_+o69m)299Z58`g*W~x*ZuX! z)49FK+U|_5`TuI&qy+ZNfCJWVd{x17kzW>| zGxMjRe5kz4u&~cqD(n(q_faK-zbAVHlTMuH_hs<*)d=6E?{Iq?5e9nF*|x3pi-Y4D zYDfG#oj7WuoyYNW_~+ob<^bA_uon^h<%#wt?4Z!DJfeMd$+FQ%PKd6c_V{-PdwvDcOvzkXb<9P7`& zJF7qV0s4SsC!!fYcOQRk`)fI^o{a} zcT?cIjxL{`@v_62k5&BgF6$hb`P!Fdo!1oSL@Ea2dA3jc)jQ2l*G~6Q)&Zg|y-(bTIb@-SN_-X^EmO*8UijTj)$i@@?}R^p37%hT*1DspH%Z^l z?LC3k8F5}&(i^F$?3YWp`dTobk=Fb$9`#ltP=C2S%AfG&t-5Vy=?PiZh3V#N5)fj( zDav1j>3#ku7ij;=weO}Df29UrI7I`lXpau0BhBZXGqfM+f=6Q>Szgg&!>+!4>-g8K@>_nV+UN!K(@U79bUh&fPCHH1C zWu2p~wO=6SozlG3bL8MW-DB7z*KVfF&!Vl1h(tP~Ur@4qovQ!2t+j>(?6NpJcIR1s zy&Cd!b0A;hFW=iu#0Bxcg`DRV?O)WlXg3r&>(8lJ$Dwt<;QkQ){6(rCgCCpq9_m;{ zl4sg;4~Yvi)pgtO`3!Dn_W8UGrCt+Q1xVnSS^5IW7xPy{{mAZmg=U>&Z3u>>^)!C5 zi{U@GMJuIUH?sOw1H_ZYP0hS$%yf}iOWEhH$7+K<8YtQ;1>ZdM3fT*o8mHPm>sWHC zerPmi=h|1Nub(M36?!Q2N*yAEH@2e)gxEXHU?wOfYSL)&tq>b)!nO%0fH%Zgl$<9(8mBJId3}H z@EFHBKkQ)XW1P%>y~iS*ra(#l_{vrOnac@UH?k{trSDM+;n#a`yN(EPtRlt0)@wBfFdn7fzaP_6&{MnV)e!VqkSnCRu*6-@{`jsxY z+G(`wTb1*}O<5bzcLWN3l7az;K{Wyn`8ZjOrQf$hyjy?-j&=R0TuyWQyi$SZ^jG-n zp=x=y$9Fmag`P*jIe#@Y&cz$Q;vYA4&WP3pD7Uj?l|Rz8i1xIvS4NrV)M5Y5O+C`DCn23w zU}Ydd)K?=&-`%j9HcncE=r75jO9{}6zu4|YbUw`d6@NeK4zALGV*WwFoHMy3U-Avt zy+11YQuys!Z7(jQlMa;h-NJf($o>N7PlNk|T|LWgf6!PD@RtRY`dO5(7M-&+F0?xk zt?0YamYql@;z{kZVE+-i2-aa-0Q|QiU&24%F7ZJrgfA!5@u3&^%LYpNE@r zdVRp3IM*VTXa2qtzvwx;$LY1p=CD?vte5Fri}@>l`=BAu}-^-p{yCbi1nz9bohK&M!4p8cU+%da_VQ2{@I@d)6%Ajok0w{AM_6ZWmxp!4_~RM823u01hbgl_>T+ z=yQSc_+Ij&p}+9^S>*Np|K>isaP^nqervZ~+h5n1iSk$gl+^QoO9Yz({^kOu z^^h;0>_g+b`73_AqIuwNK2R#pg5iV21@Y?q)^2;TF9#QbzgK}b0ttF{ssGtEQ=W^! z*K0s&KQ-pYr^t@pbRZe4w9hEZPGlM4N%DX@8e$u6d-BI`mGz}awgmJ`ft7#+Wqbay zjpU25&R$e@%6987d^sWM3r0?Cjw^nB1*# zpj3Ywj`l6Vv@Z-tLmia)=GE8B-voc}0Ht;IIW^mp{x+9>8{-uDS%n(91h1_&)=rViSXBVi%QSh z3jVeMCGbbRe;qT!bkJC;S9)Z(9_+Vk<6v(Xb|Pc;J*Ay|$i-4xJ>ALuT`KGKKnwZ@ ze+UgbB0J4FYK)(IZ`KsySYUH*C-FlZ=z-+#BG$Wdd+MA-oO4gWd1x2n2~20JE4N!+ zd0sbWy2TiV^Y^p5@pIbu#e=>JM<2or=n?P5^KRe+s0mEQcarcvncFX%N0_d2H_u_u zNal7MgJJJ63-N?K1JP;bPkb+xhv|Gf_jjVCPyC(P*8R-3y@O8y^#q+N4yMlPWZrm>DC&6z5r}v1k zQmz{8P)ft!MN%TZ-;r%Py?A=#wkSu2@}T7!&HRaQ;QRcXy$Az^{e&BKF=a&iNaNoT z_5;og9`>YjBs+(3uIuSv279W{`TZaJU9iu`tk&iAt_;)-R%seIdGs0vi(Z)DNyQBv*yv)9M0?&Otk!}y(zxLp{ z@LMA6Av}UUgXjN&bl$EuiSktVcZqxet^9Qdf1>>%evaT1Na>k&HM4~MMK8!PQNO*w zH^StvLoN1V6&ggZS!i7{n|Xz~7VIis?tB8Nxoq6Luq4uxI&i z>_nPxUfc0sw-fp1O8!K?;r>K+#svI{h-;V!OSbfz z8xZf7z;|QxncsOm*)ANcFQ{Juij9*N1i!c7tu3i~xCnETz z@ACbR!fRt4pe)a*RsksLgM$9j**|*oM!k^tTIWuRp5D;9&rj?_I1ry8s?A@terNtv zN1}Gi)2@CP@F!9^z@PZ*>zkK<=GB_|$Bufmj-sd6vd(XbeBCT!QLCS|n9lo{j>50A z+9Q8$cYRW074iK_KoO>(yTabfUd?%BhrHpgFH7?U`egX!8LX$<)weZkKZHb$`IF{L zj;PD0b?4?mIsa@*xBP&ZM5M@7Rp@0o(fB<&*STrrrur|(TXruz9<#n9=*!_d1g_iH zi+QA`^!M=3nFN<-_~jB@o(?A3RTJ@U)Wv$@$0pb zP930-qZAC>Q?Bi_z3&{{KJBje+LaR#)_J37 zkWNFO)Q{MOnIz{E42}CYWk0Y{*y)wTcRAExcOcvdDD}S;*^UB|*M^FJOsPNnJNG5eQf4)_58kFy~l1pim?2Nq<~LJo@rg1J~1?ZuKttAe%tuvR8!8sIaycG#{-34NWl#$%|ySg6e3^j>DPX} z8`4PtO7r4%KSu8q-KWUpQn-9x2Yvu734bI5g9&hCD0&a}lZFuRBm`*RBT> zf28vw+%7YCoVMFO!5X*y z044cS@Ocu+7xUtG^Fh#c$>`T;;mFNnD} zek0noIooWd z<)WUqyZY_=UKGUrKxzDQp1ZJ>x9isGeH6|Re{XOn;@aa(G;MMQ%kAc4@fHFLix`^}Hx`DEO=42iaP60~$9;e5AEcRtIMX!ru zkAr?PP?9e>w~o)J^tk;~DZJ+petWUoZ-e96uZJhW_f+6bfqV?VQ0hZ34;KG9#A)E` zd7vae9XBtf{vNZf{l*!6t^FcS*3z;QnSpp!fCTRAhLgRju?#k>lhWU#*fXG;4wUMh zuNRmX8dO#K!`0Udo&|r;0j2tLo@;(c=kq^RzqZS#{dSfM{^kLtbsO$?;g3g0PNM~*)!k!^!Jc+@%HpVzdjr3ybP4)9UCf*rgrTsEca3a`}%~c z7tBFAbAi%&i2IWobU%xxdD^93=ol=Q?6$M;*BOHO47YvehRpxwBVVrq1Nn%aJ^2qB zALy2`>JyqO<4Ua%e)0ro-_kV}{SJ<__OUrxqGc!YCgKI!wdNa{{=Jv| z_EC*xUnMH@zlQ7$(60o_`v`x#F#mIRR>nWO=UD9a_lOWX5sA<8#|G`twaa(C(A3{Z z86Rqe*ojE;dRkt#aZdo(>x#QwuSWT=4Xp=$Z=&(s7p1J1J1l=9?;xHmC(~9gMSm!M zz0ThF7iuRW&HoDLJCA#PE6UdV;j-Jhztt=TPiLF^RT|rXa{K@&$-$WFF{izrbthwn z4$KbTSMzjY8$tg*uqKcoH*w%Ly05{wXRJqv+}#Aa_khxTOsg8PnAcyvx=w4q|7}J( zTYyq~iD|d%JoL!o_alRbtNFmERPWl`J#uwzhq2$$NRdldUk~{Z{A~wHdO=KeAKCT2 zMP}b^l9ctj_96a6BsqWiw(Gys&CjupO8)HDyWR0tV>^(q-9Twvadph0b$!Er)Z0?I z52iKy2=u#vQvM3u{V)&r+@Q?IoNOoPKL$$uFXykrhMrZF^4e~Dv0I)IY!CAFDX=<_ zz>#-}&TAOIn_`u5I);5>zR%4J5k@oPzbW-l$@zJk(TYO&8jzb`ai?!|XMg%~-aoI`Tj93R5hU!;CQ zoY_71WH-G?b`a%p1Ss`C({7QU@b@V7P=_4?{b8U4JAe3ii&x8AO&(8mr5^0(?@J`` z6;N8Q%Ne@e@bhl`A{D(S{P}xuJ%m4Bk;X+z->-jd@}X%*f%16tOVfqCosoe?aC%o; zzR>!_f3WNOCgA_+Vj1%PRQCDSJ6gNg_N-4H+VpD@OBvo|(Uxsp*-ggpdB)6KI=gZt zyDQU<+$$$c`OKW8Fe z2n+izrw9Wzfn8t^Blt+--_a2Eh~gnkipweJj%`Ig54zIJ3v?11K;V%(Xx*c>4P7#|1<5; zN{RGE`x5mg@|6JpPu;;6z9Y(0ig-v^~>IiFr=O*96F3^ec^8kGrOyB=o zT{-=v&VZd5wd@KP8?kfar;RD!1tUr>Xz3Bu!x35gwd#T)l{8U-x*p1s4)<(XC{UF)FnfapnUvJ#1GY|RijeL8Q z{EKoE<>0~hT(ARd)RWaW43Uqaz4%aXqF)f7wAt{{eMitPt1I=SAzXlT-T1yw@C~GT zGUedwC`bD44|zAzzbx2Kf-V>N^JJmiMSTG&|J56<2AI72ZI)_m|&ORuoY>s57 zXtv8#yw8E%Vf9}8z2q0mEME=rHiO?hq;IvK9z4ApvY258dYs(anDMAwP4oeo2qPU~ z-{^63JJ|94IlZu7)CM5Fcs`Jai`Y(a{&k0Y|Lb;&yRT%YxSQK44sR4#51nt8n5IeV zSz5|_pX)hMzuxuz&PUi|cyEGar#KGJD+JzWKbW{lFPL@Vw>4Wwut9<6G=L7W^sX#C zkCfh*-{$h>t^aJRCwj1Tj?#S1`da#-NT*^TUUr9DHD6xu{zohI=x_NQ;PC?MBN3pl z6o}_)+5+cvmS-t?tJ4Z!4|*v*(=Qc&{HHPxusff&tCvSu=XuM6Pmxawo~YIk_t^V7 zTIJ5k9F{$&sBdXryu#V9(MpG{o6gK;~B57UVhI`BQk=|&y#?> z3G_DurE+n0Cx2ERL%?0?sNCb*-Z~#9=9yIypWsm4D081n(?-Wz?TWv4TKmp|UbJs| zZ|*mGjBEZD-5#>eC)#mkq$BOC#mrww=P`|+&k<7Z_R7<*i+)-K=?OG~{oHh3(e(3G zRO@`<_Xnw74OXo4ePTW(>XF`gc4izVzduE3Cv2ZjyY(RI*=gjKep3E&7Jozg#gWE+ zi?x*Xv*y+{W3{Y67M7vd!}oMS330em&d{{^|jx_LQ4j5B_vK zuil{O%PAYKP#wC_8qG>@BZ@pXiE>^WU;o_F=LQUE1(#kC>T@a zWvX}MS0gf{AH|w4G_5I6jAsHVkQtIaU_(K%fzFM1XJJzP@0DV|?%hIE<(ZvYzb zXY<#+{M^$KrQe2o-*-Tt#%DwPSxN1}v%v5l`Cs<;qUpEf*&YnH14`}5dE#%Xzg%O6 zby3lGqbxhcwumRyyKDCxaSyDzk6>3%w%gzB$LoN6bp}fF0L}mF2;E#!Se;_&jhw7G z>j?TzK&f1`O&XoATS^NT2i1GtBbg3*29)}PdqSLXZpQfismM>e!j~_S{4n`UL^|DpQoqe#pSp+Sr_pb3RpuR0 z*8Dm-G@j#;c}Hk}>`MLJZn^mN6r_`Sh4ji9_dA+Dwf^k(+wj|UaJ~EWH1OvFO8wSd z>hgN)JcHf-5L|!u^OphsdH|(*_vbx?`DRqNBGc!4BAra2B$r(64jXc*DD6A!)}O|D zfxjG}RKJdCb$w<#%bC{Ox(A1oF_sPb{y?!VLcxM{703^WxdPi=nfJG2y+PjxDE0UJ zR{M{7eTF-a=dzW0uq&7RdS9f|4=By6Jf7#@)-_|_V?$$Q-_Y(prQP-!VfnKf1wJLc zmEYgIcj8(1qV~$T*@6uO{cxZJ{y)yr`4{8Inkw_#80I!#XxcDfSs;PaSMN7nTVdG0 ztA5(*vAaMw6e!K7XD&>9PuI*1mrBa{-8$B~=3vAV^Kv7-1M|slH^#W~?wq1W+N}q_ zemBw?0+hhh_7>c?M)RXm(hFnW5$-yJUAa^=@$8q&2;_GpP~s=2>tw12#?SWzmrMBR zN#COs!XN*F<7pxOtfcwvhS8&Tdp*WR*1=dsPK3{=B^{`nSfE%pqF_OGQTg##v|5r##Sz`qdP15e2nGKY7*j!bx8`cTicw1eQ~>xdVd7;6M@x$1i5F{ zVtmkw|2~Lt+e@&Vh_LqACL>=`J-O@dIpEa_cQlQzQdQCC>oE`L9|wwk3<|Ct@Hgr6 z{HN#z;r9oL593R=+u0N_G8HK0-|=jwuxCD~jAKsr1n8dxN_x3#?OM85#bX@c{UBt0 zBHVfi&R_WbR^p#Hvn#JP%b(R;C$9bsL>eK2obw>XT8*{Jmk={UNwqG|NtL4$4!KgHGp~d|jJ1gghUV z59#kOf_@fI+BeKwcE?Y;<{@=riC@t_>#&zVKNA>O&&tbrY%%SRdH6goczzrHd?h%4 z_VtO`;O}LiG~bl`OBKKVVpqPrf_%*bO7PnIhdzY7F8*EFECfv^y(!XZhGA zH6CVCyCpp&o-G93GN2^S{9l~^#+w&cV(P?MgM#%JtuuQS^m#x@F8Ky_Ci_(5=T2Aj z0%zF$PnGkFkj`SDq(^%CZlw7`!r)26-@GYA4%)5vB}iu}P|}yQrLN^-y%esv?){j(>iA9nx73l*-$+dyR2!?MmacU46-} zzN>}UDN6Ik2{Ye4scR?5%~!WOL)OnWAzxd7Qawy4^Fkq)^IDmZ@_Y~Un}JvC57cj@ z@-irG%a`!lnY!<5zdX^9G#~O;6KKHfBjg`?f^qSPIv&{_9~|rheE&nBw2pbPdR@`3 zi@!X#fxqoQN$zUD&ZPULjAHqyYq8I7KLUR{fn|UOe0OxY?xWqmOLvVdvhm?#e18{E z(qCR1_ASYI%fjc2JFgSc(T#mw@**tVP`zY zoH%}-Jh3wmyW=>LT?)6Sz;jw=(~O^|GoItS!ahjrg!jq8c0Qg&>pA}((kFWv`WpT4 zJ};ifJJ*$;%dZ3eNUb)>G!gE~!#K+9eU zVLFam(fpxYEIXcL9?z4^?IPxjd?dnN0e;NhQ21ve45WJH{?inGh24#?`ysmzv%abb zz68I(d%AOes2t7jjl^>*H#5KFS4uN}!mfs8u!k3(dT8M(p5_EP0iI2~Q%ZIB!8 z=Q$$mL)fxU5${ELpnTs^@oV08@xwa-O81F4;xe0nl0 z`!~~$ZD}T+BOhdz%KHt%BA=`mFSnEUP9eT4>~*L<%O`Pc1qzPgf~&R5({=X8^R zektbV>9mrXv~*SFB)d;yPK~)cUkKl zl|V10=iJ@z2XF4&?6h&y-7G%vJ^CwPr*l1?-xPT7U-Ks2pJx10dWY->l?I*Am!x>7 z6WY=_Q1e$*_XgRW4`|l9?+xI$8jv8r+MjeUl6g)f-lF5LqixSW%HsPKfHi;w%+ugB z-Ba|!zKL($sLZeGS@YNOpcnN)!JI{-aW4d&7YNqx!k@2R7vRJA%Vz#G>mCzP-;!SM zT)UCxx%ZHP3{auZ^U|(SpSRwzXa^} z4D7>S1NIY6@KqNmwHIyFa~v})o~REBvdxXw>HM*}k7QS#+3oM)#|xIbcH4{n{6(W2V}Vk;*1E-f?{&5-HM-H1 z4CP#3OG|DvL_A5JIZB*A&(BxB5U;F@*j;b%>vtfXMnI{Zc{*I6akGliUYyFhh~0H; zzkVmuX$%zdje^c)AJVvD{>~}=J^b-Dczp2dO^{9uPy+W;ZaNQGq;`(>+e=e0)(R-e zPp7Xvoll^j=lVEB&d0E3pl=QodZ-cn-oIAYj*wcg?p8}rDer>C@1p7z^kJMh;YDAhZ=FM2P@-J(1%ZohqY1b@Vk`4jpw1-RcxbA10RWL&XV ze}1tdsdYknV!mSpjrC#vxajU*4wp}LT!{mJ{eVIbqM+~jJ#^n*=8Bq!My6T%G$-r8 zx_~|%DAjvG?IUy!?XeTh2PP+moMY+=`XrzXFU8ThKI1~B)uDcq#r(4yB1m$=@yVMc z2eS-4tBTUD?T;%7NGA~}jeqU|M}LAIQi=ta=hc@J$>6U$@J1j(;p9%=kexVPE3o=T zW&EqbQb3mql=2a?)k%8RH8QTGfj<{e%Afo5yK(PDh`wuAp4pWz8p{BGy+X?~fBsw= z|IGFotDG~a#d?6gCopt8GFHBhD*A-ocCE2Yq>}{{^9c&JZ#!G87ZjD>I=gzSU(W`A zeSv{-%$;z{2jA#?fAo5#zej}F=}7Ix_t)d%eC+?uJRn$q@$3Cj9s__~yLiKEa&G6SPmQj~@~d zbEje#)FQ-AM{3uNhIS#lX48*xsSr76Z`_Qu{D}<#e`0-vf(2uiaDA8lRP;!@@+JIv zquO4EfxmlzkwAj{Q##$#zNy@ho$uYEtZOu~{E3YKy|n(~o9?D~zfG_7TeY%E|Fb{- zjYK-5fKt28e{--X&*GO$_kzFCKxzGj-^29t*inyWmr~}p_RoclK|1#XCA~*mwCV-u z^QRQO)yZ-|e;-hq7dsZ6qH*&Y8Q<;pzp=>IgFvYsG+(cSI^S{XsqK|E<);|Kj? z=mow?N_mDqK1h5}3ikB^yXEpI^0f>ott%GZ-$P@0J&rGHbIVX={hC>JI#0!sNS zh#vpB*K_LJQ08aKcpJ;6fc^iRcPaX3G@AqZML?;Y zal1A1d7`rZS&s?3y7`DF%{wNz7ScZ6ZFFout$v7p_6q3d0j2f2m?PJbJ*N4KP|7p> z@h`aE!*8F#@%;J%@RtV^`+yX5JkY%y({|D|TFc}@=k)<1{esnfZH{zu|V{ybD!-)(OB6MF;kB)R2#{`IZ8=Z8|wE4J(wqJP@UpI={z zbXEbS@%Cbi`Xv~De4V1dIM|z@e+wwd7q;uiW4QmP_|J#fEth=c>ph^sd5&NSuxL}RuZ^y`3<{5cZm`9jx>lZOwqP~>i%5PxDJa@YJ`#gKZio4>W-?_HqO z&RkW0r}6I^k!S0{-zK1>H;mo;_b$LFa;;LkhqD;<9os zDE#%a;CAh>{E6*EdXm1xW^VbO`VpUZNd1y1!*6H7>Dlc^8ruc_J^?y_1bN?Xg?$e> z!jbe+dgWxhLAM7e@iW6Y?gEz+?#8y|uJk=h!EXNi`d;w&DNxFXc`vT{*i*qapK7}< zKsuiRrFQMOe2LaIJlDp#gni)e3!pgfNWs$&E!^cbPxfCJq||#f+YkB!K&k!mam5%` zj<;3jD|YKI{CTQc4+p{DAz*nR0Y7&!)|db`QO3XU`+IPD5$rI&|0PiB@BVf#litIB zN;|W^pBnD?7u=5=rlG>D4dpre!w(OyHvHyfjm!XQJT)_8W;7YgeHAd6J4Bsj*RDZH z=buYs$5$6>tr{h>2j^@$^0zCInc2yUm?!v=9#1n>Y z8lHPVZy8R-b9&1_ES|j;H|L8%-ILf$g=6n(|3M;q^qUKlzPXUZ4bJ=t_9p(=!D^rFl^KC+>^i!SYCvIRWp3Y2mUNR75*&4qc$)YN`k?d$X7?j z(N+@YCr^B*8!xv^5e90&2`S(oc-4J-sR$`!Qe<3nrV1W z^EwwpzC#8;BcJ$gVSIKfGu&@A{v#Rm$cHBAlX-a$72!0{r848R{knVq zANjmOeHf=~G7rE3*+}tSpx~4E)68FYv_Is}nU3c`$&iX0Dv5Fs?_F#Z`FSd!^P=Ta zM|SjlE$T1OKFnl%qJBiXif1o8@M?dyrwjXd{QIxoJSL8vNheQXD?9P@3q^ks?LCeg z7(FN26~5yV2B9Kd(H=xt(4+iCzJ)_AY8NJd)E>?DaSr*40eS-YH0j9T&UAFO!Nm-J zR+k#PSc|i74zI&d?_{|3(^TiC9&e$1rSdc5`|v$sxJKV!)8}Z^2TN19!z{O`7twwN zCbK)&Ecj*lYpKEQPvl2SWzW7my3!Of(ST!uZIC-R{uwIY&(gB3LNvp(0yH@N9YPbrV zR9;4otPMP|uqG+)&KcxD%FMPuN>OZ`AqIQW#?9Ui!@q)pT2u#J>>eD72r<|zi+UuO zQ}W^$ULI68YV9tx*qvZ#)`d@v!JovZXVo`fdtJr=aH7AmvERkIn5qimN%iY_t@2rK z{@sb)w*1sfIr!YpTIh*HymCMS|2I{I0c-KMYatiz2=FKV+B&YqVclg67-Q0{dgd=% zhZyWh{XMtqTsnC9c+>lqJ(8$we7CR;K-5Gk(u7<4p%*Re(9g5Hld|9(W7Ui32bBOsA3Kn*oYiyX)JncSp!{^^$7?9)+vEpF$!Cy2`jPn%y;msR=^J<1X>!4oP8vcT1 zaC&~d0n%v*tPCW0bMv!w5taEXemPI7mifCAD9NRQ7p9U!JoAc(s!BhyyWnNFA8D)! z_-hFia*BfaFMYV*%O03HdSLHFMGiJ(F`#b&l=Q*ey~n@x`pg+j=mqJqpl=G4`mOK! zr*N^CN4+53ZvP8)tR=N4|I~j(e=q*=&z@fA*IS_+TLZQwJLjReaVyF9bokK&Q9Za|@DQ*h$*4WK9cRf9dd{V0MZAe}^DH6Vfe!4lN2j~N$K zst4lij+=J-Lj+3(U(W!g@xk{{g_C;Txt1+kopdoV9&@sumcibWh$ppc=k|v$=)MJm zF8$p<$*F1n(1$r$3Uh%z9Vqo9&pi<*yq@f> zV|Q0+t;{=G+LpT+NT(N2(p&Sti6cYsQY}vve%jEQuXD2ItOw|`fRdc>{P5-1Ud`Ni zYpL}22-XwynLsIjG1XEFy!^4MXW4CMcJ&wg@v@Px-atuzDa?D23{ks$bZ^derIdr7 zb{&ywtPj!|2$b4k-shD+(>2fT^Er2Xtc&$0PS%+91${rDG!O7U`w(5=;5m8WgE!vM z%iukSXq)XU)L>82uP1Doc}}PAU(DL`TSsYpqetOiWFyw~IG^FlPj?4N&!DJw_2dZ4 zU~e>MK$FI?IoS?s*Coy#-Lt8cwcf(XI#~vLLl94_r%*6|arzp%psD)7TAgB*_R^3I z2L0VYNxyMlJZM~q!R35Oyysw7&WB$v5+6pAY$(zn1(ftGHm1xXquw>mcS$+u;$*`> zKO88@m%QpX&^$G7F8vNG2Elgo=hsIdosmGXZbU)%fUV+U;NoA8ya)W<3k;e673qOL zyK+!tW5C~dpwzAl)~1m@SYu1fU#DZN^+liKbR<$7g5@k^LF(}`}IB*`FaW{$w6n~ zD#EhBUq#ezk5>4KC~0)ITHH zvqQmR}>A)Z8X93Ft38L$EAbD1#@cy7(r}PKA^3!hpX_mp> zD)1?_PuBD}T@=#ZSkMZb=iy{gmSe4zh$qb(o4?eY+Naw%aQCe;zYSmR2J1aqh{2xJ z|MGLn(uK#E{{_!G!moEVy>RC_vYayvYV5|#M>%ca8mk_vM z`G3{$&ac0R{Jam8+u04LVQ7?7O{sThh{2w;ZrXhFx&4r5#lL<{g24QJ2$aTmbKg)i zZ|?s-WIxph`VWB8d^0=kvT*^Gagp#gWgc#~U576xg5{Fk@xiZeL%y~HuiUPS-x29Y z;BOD`79c_EnSBd&AJszSs=F1vAd>9_-N!&_JaXloU+480_b5J>uFN;>$``-B3+e0z zO8Z%PO|oEkrxkyB+8dAlvm>uh0(MEm%V^rI(PxHKd#pQK*t7c9#eI_5uUY5YEPbsj zOFOfz`PG>_Vk4 zlZQ9ygy&6xvB2j1JbH`HaI_W2pHJw*pU(mxES^7C`D97>P9okX!;YXc5BnJ2BYm>} z<#sYiN7yA$KDmRY4xn!X)PWs=h@aUC;pV_L%q-TuuqSDj%%A&E&RQDiM7iTV*>7m( zuPeuVAo0Z=Ss~vVknAE%a?6gY8@uhb#_RRr-PzBxD>thBG8|x)1)VPm`4#1pfcPjk zVMh`p(v63`M;FkcoXFnnJl(@J@5SzH^ZKRBZ@4#&HIM2%<@OV4tjCnh6PNBv8)9%`bmC9r>d6aA3ms^ z2Ndbhcg^;bDe6_!X9{c4X9@j-qpYNKp5Gso^cbFx%;0&`v0wAM$Rb ze}VY(jNPTVq8(+zE(-ipe3NhSJq`9cEzl2#3Ob~9J(V3*Q^zZdpH!tTZg{tA2HJ&=wMRetx5^!F-da)(;q zB7S+4=NqCO3H}n9;a6;YEtHD}x`wLULO4$;A5nhedcb}V=@Fk?ejw}<`4IWdfE{HP zGfx{#$mIFR%i`a80Qn(DU7GRp^@7|1T}&2#PWDU2YfTejd_Mvx%9HGXOfnxFdA-{M z-&6P!d@?*|{dhcb;AO_w`g6Wt>yLIjkUw|d1-bzo8J_$4BmCbv_F7zSNxy&9PN+QD z34L}YJE70GozR9m19n1UovfT@{aE!!ck2li|5$u`i^*)F^_c#U?1Wn3`AyRMGbN6B z-O*1^9h`&!QeaY$jThVoPp<>Mgw&zgl_;=l-@7f z_ovr)Px<;)7i3#@7yNZ=YyU>*m6ZbVTuob?@aEDrVF4e=M`0TUX^GkXY;7ktj#f zwZzZ7kj!^(-Tifc>J+lBCf1cjy;T#j=sfqKS1#(lr*@D>aAwsPe_g{$|3=VD<(5}* z8QF&!%WCuMD)kqBJp|8VBCLxj9Z0WAfX}FiKj~tQYveq)J^k6QS4MtBzZ31icw9AN zu~!>4FSc>)?MgjFS&qF#y@~h~jXO%4NXHnzEvwW+q~+MFD$*70jecZ__@!2iVd-E2)F)%+gXI=*y|3YC&ncT=HB+F#e6M-t*s}-?5POBYXLCuzEnrG1wgKWCM@xrs8~wzKSnx+0#`-+fQq zw#Tb|zqV(CE%hz^os+dC=h>+{D4 zM>|DX^C3>w%;tG0zn*|}(tr}=6=sqCQn>h+C0oiU^QxvS5rio~soppAzk$yAIgI_G zGm2hNhb4hN87Pep+-}ul%*Q@e_DjP*-zoKHN+EoGJ~&>4Whc}~rslV{&w_?48 ze?Hvx0`;7&U+)S2GJ(?kqi}w{xER&bLDCZqO56Rx?s(e^{AB}60|`8{4sL~fQO8@m z?bB}l0(L_E!JpLbWA4wT^MS^LS6eD}CNUv)LelyKw_`hLY$#S$#=r2}OK|{&6e!kOu zUi|HB2>2TtTAu7!$?tTxv7%pPkTOm;wd{l*Ks;%jc23!{SND9}WcKAjY0CK5*s>EE ziFndH^>ox9UwS=n-b9`sTPx#OsADf_ok&~cIOH`ycMY7=9EE)40LA*S5j^|HVx3=1 zTwUq6(d-`3j{!>UTFXwEsB1Hg3uV*`hNIZMpdSqs>!1`YeCZbBqG03qzjN*~x zYM;)+TXyR1K0j^m-DHqrFR6#v35j)c<1+{A{NrV>Pfkx!=# z1@qR9|AY63pSvjXthKd&^*G{5{V2!#J2}ufGv|pLKWw9%M{LC=f!+g@^yH;Uv+2Cv z6&+DUh1dy6dR;;DMW1qcM(dry^=^N>wbwrF>o1d09!~*7)=^%5ci-8YVwCmPfMc(z zh$pqP+>bA=rgNHxK}9WPe6PWt0R59dsUH>o^eo+L=eg24U-)uD(!Y!pY_?Ck_2<{8 zAz#yhl3q9ATDEa+xty}jSI2Vf^$g-k^YGlUU+w-6<#P4q%M9@MJWyI^;OjOq zH~$znSaoz>Bg9Tfo_BPLIN;TAuKs^@e6ZJV{rZb2$CrW9ygz2h!#llNTVsK@ow6Sn z#a;saY@pQtT5pQ~OV^BMmL9G2zsL|fAxRGM^#b#Ir;A9Q*&WBOcDwfLb5V}lfYN-^ zwA*p6AF=77G83(RA5KOG^+3M`SPn?w+MJ#{*LIgbv2O7mBG)xok8dL8kk`B*{LADEBDsQalg zY&qyx0HyJ0LhpS?csrx@K&iZl((X8Ix4lGIc0zB1&r(1FZZERmus^LCvVXf0bgO{U zc$DX8O!qkrHzv3xlySO7h@Ft6C&%0yzmdkV9kc=Qfnt|rw_L)PpHjXlN8zpy2F{J~ zVhBIIU_C3svJ={X@|5&sZBN8_ujg`Xx9`t)Qs&bQL+peked)21HIG~EOp?cxf-}TU zNE-igR?Rwwc*Q@TUWf8n50vy>Ek0*C`24fj$J>qIZ!=J8*Y3gPNX~CG^a-YnE0Ijt zg}sM(QoEQ_bC1{u`d_tEh+yv{Umt|#FTc+#WRFI(oIeWsDEe6q<^{bED9L3<=FPwH zdiOO|;XRDKSSOMGwcy3?X~t2D1vUpVHhbrvjR$4Mv8UIs{Q1_5&aiV} zuxHRg*9rC^?GbJR?8wm*&;A-j`v(2G@bmU3yWlyH>})jiC!WU#`^U+Phy8(|i${DB zPGmC=x(38uN??)gR#$Ep+s*nO_wSUzxZfi@XFxhuVkYYo-vg2z2)B1gKsrF-7mEDo z@b@Vw2N&qlIa+p4cusaSCVgfi=#n`4LcdSmg+`Q&Ok)?@Z=V>wK7|cB)pGv!X5Be` zp;8WXj6*YiRK6x^^xd=D>c<`H&OUwY$-><6smz&B>)A*dlh4?fs^|@^b z-g^?*pdar4bISY__y>c&N4t9Pc$$cZuqaQmQ+mcQzng=6d5~`hPy-5kC_lm;JDTJ#4CB4d0)$0Nnw}TEm1bN z_CM}KJRxT&=vjG`{2wGYef#atS}W%Znpt*Ibr4U;84Bk0$^6dixm007z4$v6dDh61 zi!~9iGLXRMyN~Q97FBOv;>B7@|EtABKNaii(*79h_A}OPu7Ul2C-PGpD7BX#VkTYB zv>z*uoZ7RdHU4n2$Pj-@A@bUNB);T?bIN+8T{&oXUTnAjX{;{Fqajer-^Cw){>-c0 zZKz^uy+>MhQVkGK8vlIlexmymry1wEE-LaY!m@{mMm(v#@N*^RbM^e7-Tc`tPy6xi zK)xCQrE!=05xGY4*BJZ>Jxa)XdK?||3f*(Ol$PBNhThZJ1o2{kQoR>+8e!baWc(^B z{mA}0Z7lzw))XkorCp|6^8IhyeTKV^8LTh)^_D1)R>13l2KbHhnEa>cJ$B`i{r=Ym zjAQ_XzD7aEz?d(*{3y=aUfy-q-B{L7yG$tAF%p3Ade@Amlg>v7;O0Z41P;%Aq@?;snmOo5IZSJPUh?^ zA^hK|_cPe-w|+eh{JDUVe!Z&k8QOn$81w0$6}`vqJTCn5l;#!0nO!;W*Lxse*+6L> zrSP?3UwWCbKt3Z=k)MrOPta!qC2%b7M|OP1?+W&*cI8AC66gh#^cU^9r?>O{#%rKm z_XdCcfMT7Af_WuJk)MrvN1va6GS*s8;$-z$AJF#&O7p|q)z9qX}iw9P2nmUGIAmmiE zAbl6;X86};UE8Vy8+^P}F2V3`4aI!SZPU>;Q3+N$QPLH`Kbx$A1Q9ytu@3WkS0p;(m=NMQ^p+uI;uLjg16^+t)tg)t>FY`R_Ypt@Tb$*3`0-x;HeQ)^Q5i zMV4Oj;>~sID(f~eHtWH!k48EV0ww*kU;fQBj&)hQ<NzK zT*u(?FI@essQj+^^|2_2aX@KaoL9bZ3*_}?<(y;q{U}(@+qFjzcU@zV;%_M2c!B*Q z6hnxeRG=SuKFjN~mBg)4bE~;ui2jL$CgZQyy;?)N_t4%^%||W!cRl6o)yWaf&OWrw60i~_sW_gws*SP?bCjG&!RkL z10{XJyeA_sV*j%fPG%_MW;6C2=wARz>)sK&YX8FJHEXD}&lvVR=yQS6_{Z;2+EtYE zX}j`FV=scgmw=M~89ncp^OV0~{ic^v{iZjxsZY@Tp z4<5(D_p2&>k5UMCeCMMJSR$ywUPfRJP?9fN!kx#sU-2VDLgc(%`7#&jyaJT;qRZZ1 zBwx&5@vpnh2Y>GZB{`U2$U#rl1|`$3A8G9`a2}=@U-vx36@Magg+KT*&U?q8gQa1`MJ49{ByhxzTN~%?b_3# z?K8UOHuSphl=ZrRozzOillB9)^@{(%%O4lN-fFL%`Sn%E*V{m;e)+ohHL|a^8vLyR zit`2(jCQv*=YP~v)pPLSj}O89&#%9Obk+hTy>(*W-^IE6;`ej94*b0bl;*`7Zr!;< zXDR(hKlcAo_a5L;747@*0VzQcmmVO>QjG|>^dRL7kc0$CvZ;jXQjLHZ6ch`(SP;Py zihzh35T&RXR1gu_RZvihK|~NiLq|nj#KJ4e`+v@vd(O_z>hIg{n3v$WxVSTWo;mYO zulGET(aJhQn=pGyQn@a=dl21UXPy*K3u|}nmb15^-v*#GuhKqBe-P)MDk%M}-SwWx z$4jB@yu-4m^d9t-_8UEezC5b?H#Zqwa`Ql?{cOVCg}fgqjkDYhR?#{NUH8$(avOIHA zeLr*fab=w^mVFGNoj_@RQG#4?SUKNsYb zc{#J!Z~nc#uP=f;w{0|LduRB4<=?(GjqU#FmFvbwrLcPpYXrY1vOBMP^?cp?dvkuz z9`Myx_2kLoiswkYGqZPkqc?X8o{g}J)nA8PcVHJ_56+t)9-U@B0`YxsJN(`j*nyR7 zs=m1W(ge7>utf)6EDszmN)K#Mmf+pX_<5RXqY9zRgS?_S|fg#P`x9P!r-agF$DCa-2)3U@Ogy*I6QKMl9VUrU9Y z8+@ZQ?sf`2`XL;IE7G0#ONsS{PTKu}o6CFQPvy52rsMlSErT8Hlh=H7?R3uH+ndS` zI$vLWV3V6=7}xl0Nn>a3dG>~%zJ*@7!au?x|C;f5@jLN~8lHM{TIxM1Y|^)oav@~Fp<*RMB=YCF`lI&KL+CcP}J94xDg-XlX1ST$Pe}V z;=3X|$hm|5c{(GV3W0v07fAd&Q|`qZdHC93jzpW#jK|{7!G7E2Ls5Q*^7k&F2J{03 zUycppa#KceEEvI2@aX&_;r?elxp!`QztaDdCwB$$@EKDxcf{jW@8cL#r`H+k0h&0SQ{t(+6-VeNlag1;I- z0++F$;55g}y)C`?YrE%sG;7~Qte4jbh8L(5e@f@hZ3^$g?)=gIc=>YZRSPKPpUKnF zzDa8H-)&u$_3t=q{ni100?E04!no~Z=lz|pZX41@nP0_P>p54#pOo(t0Z?{vz_xcz^sWx>qOqpPgHj#^3ZsyXk3n9vEfuu4?iKYgYgXO8Pua=VwlJ zYT$oIUAMDaUhK|yqAYu2ji8^XhlZXp*IdRl<2tN~O~dBnqWp{f;>yAJY5PY1O7~=b zQhi#(TFUxV3+q0-dXSga`--pXNA_t<{%5ehaj|AL_W=XCn7@g3MT%e4;(MvyE}XFQ z%2_`v_5hk#JUOACtUp%3_ZEpr^0=WdBC_m)P|LV)necl)UTzJh- z!tXfhrkj4TH~+Vv53vaNI-saeR-8-i?xP) z98fA}+KgdzKYwvBe=>zXz1_fcDSzwM97XfD$+_oTBr;u#XrzE{J@5CdQlmyLQ_py5$;*bp}fP zSpJd;;#~V#Wk1%zIzqk^P%77s2Fr*aa*6C$+O6+h5U(46Vthx=lD*#$AJdFqY1!$r zU;pgIPh;H?uXv!;ewy|%{B+;!jvXo1JcEnXws>+q;ZKZ%$eBBR9G&+t9&bx!yz8*e z@iS9^j70(o@&}#|@OC1Mmwxfv>t4{SH&Dzc$T?;8*M}|{J?-UtKu<)x`T@oGiJYfa z+;!CF*{ZL1U7Mk_*KJuJ$oB<`@hdqUKmM1_ftpXtu=!>Zh z{z1}%{Dt%6q<)&UI%J&NF!sr|DCYs~=0oJ|nc9zKAU!gHQu|Wa>@?YFHp@%d^ZBx& zUmj3OZ^w-0exLKoM-twdmZOY!b(RD9p+ITfhSf}`aqIj$2X?(GHLU&(fcy}kR9bT5$PWfe{q(Xb8FU|r*SsiN$@dsG5b}e7Qa+Tl7({kTG=5J}X#UwP zFOk>V(D|6%dK-CoQod431oUA@kI_KseL3N-%b)qKhM#zr{_s7SdPyDiE zO^+C*-;7}%$PW+qS1`i!txt3Db)wL8`QPV*6mQZj%Hqk5f}Ya4n|t66Y6s0n80dEsQ0o8un~z*N=Syyee)&MDABbL1M@#MzApVZ$vzU)Ee z)40BOUsr2Amy1Qdz7$%{v@o8WG%l#^TCUU?67+i(*a%2a zuxb3~KELb!hj;AFV`BZnd`%l^lOZ<)DCI+;VaLN0SE*n8_oJ=#PE*Vq&+dTy{Xi*Q za>s6?{SIxp@8`JTO8?i6-3j@-fztZY{!eeE^J^~|cIVY|(M{MC$lnF54>lWKA5dzS3Z`f@PR^%g=$LSO;P*m)Dp1Pbb5E??tMi}#z31h; zh}Xm6@$*jZ^PnnQN?N=gi&qC{i#%4pmg+OWj z+WmMA?T?ukzQ-!#kXB(lIcfbxs~feH_?VP^)vAT%U!?uJs^>iDw*V;i$;j!+?eeKl zGcUS1p{#$#u%{qDA1Ia2z?#>D{T8*|z4-ZHFI}S8(}>q1pqy^=Tfd`gdB#12m6Z0= zetmcb;VcG9;|c%7M~(9Z#u1zy%K3te-!2KB92E@nk?LRWb)L(ZHs(* z^<>XO{!O6RHzud^svTrElAb`0x?aFoq49#A*Enc$yWDghwbv^**4kCEr*)oyi*>Z@ zi7kacDLn7Y>u&dH-u&Siym*7vzhbivoXrALY_Q$?b)-~*p>y{&&6+mg<$$u*F zrkQ{L#Qw3Go{`pDxjY!-kX6v{G|vVM@>GbZ^%#rM}y5 zUm{J<(0qtuMbPgJpaV!y^1%73j5`}E?V!W5C-yqzrTI#%XN+Ozur%8TucW2fH~ z`;_Xq=i;Z!2E^+fpwupLyX>(>{VV(Zj(4HoCZIIVI=5oz7rZ_5*98nUT&1Lj`u13U#l>loYar;`??>@7=Gl>oUn2osh(>5wm`qF zKxut~^PbG#yD9TqC;I^M9|EO*vuJSaW}mi#;npI1dxLNh% zSwrrqk;aCVAGkU1roQa^%{T3@L%bD!9=#jmsndaDA>&Bb>hj-vGSkY#+5|>cpq}j{ zcsRsU;=Gdt$Rz@WJDyE6JhGnnJ;(#%yq`YI=o}`c_kq2aK3tCY2u7|xaTMS4i0=Xg zpQgW%7bxWV;yeA=@R|31e#MFY?8)^_f0*%3U-lfCzuBLh#D4Df$=Pn7K;EAM{rYhv z{z31%h+$D1Je*Y`9pWL^gJX0b&d0eUk@s>xCvtl{&4eBaJbkl+dTZtbw+B3>RZ0AN zf>&bM^XkKS6{|$J0+GHJFDRA!ce?Q%xXF%|Wj%d{0aNTRsQpd5G|UB!6=8?Yp|1Ok=Ih2l-HxjC4!}pY3nb$FM7A zJjC}f%S%%?{H4L38{$v-$>oGw$6BYee$W4${CtNL)JKu;h__W96keNOEmx=q zR4Q%#hg5`qO-!vX>9q7rj5KlV(F>qV2y6rOAF=H0>1k$0th)+E#f_XCp%aCy9kfA8_f3VDd7eZkLOC`c@6%n zXS24|HoL0z&SCwGXL}C+j^I!Ik;B`a+2H;3#e2cOalx$tSq{pR_>OoFdsrt1;QK%= zm%AyRA^MV@n(+udMEodThSkG4&7gltu>6_wH0S|#fADu&u?g~oI^y^0 z!S{}bw8K9Cud8P#rj57GUzo3*9&5bP0`irD{><@-Yw!5J?+?6@T^;=TJQ(kDpZD>7$X)M?(GCPnX(=kJzsk=|evk<~;VT z&!6+v=P}X7FTI;|fzeV{m{5|tL@t_Q*^49B>^4ZL)$D(|Razp-#-q}y*2h4rC za#p**)r)+6GjyJ2cU>)@i+U>d%Y?q9kN5YN={$z<_^%EtFAdBWnkM#Jq;x5{r?Ihq zYw)hhe!buBd|9;LjS)|&90r^x$qs^prsr!^K4FZ-t8v1gNLO-tJFYg?MU5w*tc%(& z*LLIAge#&o1xoQNJhb<;Py02NE{3h6lu!HRtQo>-4wTB-!X@w0{eS zuN_d7bHf?GkM^<5n+ygh=YgBCSjb-o{Ofi%PU%;iVLTzJf7iZw<^!aQ%CofF?%FSB ztq`xaKuJ%|8^|=SaA+J>URp!G4N$bhRN8N|Czt4I-!l9v|`AFe8o}5GN zlKGT<{j*zd+w%x$9e|?!Hk`jM;`@-A)e&hUJqVP>6Rfb}9-UQvzVZ7b zhg){3xYz*J8S;IBQoH1@*ZhR9u-3`?3qKfa@y|>#n()U#Ud&VE{@vW)>vm{SqjibO zdT~3}1^(iJVw_D*(>{{<^Yu3<_1$IZEh;Fy8{iqU?WB*Nk7%gW_g0oYt#0rj#uem@ z&Mc&HK{3(Tid8#*c6n?;o=^{jR|QDG?E{+U@ymXnjzO=UKq>$BAD%<@Tni{!a(@gv z$6>d8_Ch$lffAhRe)b^R3HAI(%5C}y#ji`5*Y_mo zmkgBp2XED;=b&fVx4ZqI-yoov50H~x)#aqG@YtMPh4}+5KC~%D3%30spAD48b%9@N z@qWeoNV3wtxWepdN$IkppoHfAe+=s0wL)EG{t)>+-l648V` z_`Qu%Iigohm>crxKrufir}NVS;+dEi_`RppzsT!D==jY3I5HFZWdWu3vmh&n;)i)h z=={iT{fm5_8X7;1ge7!K&QS9^5Y-Mkq6l=cD z#h7JJD-Zs}Iu$vC_r>q;rJO@`v0;!O4V31$`{Sq5d4>A>n)FO*Ypq{#v6k#c$a{cN z`Skq$EwvNII@k*_N_~%<;i)sBq# zP}lrMfBT7TK7D9?hTJ?4e;&s#C#jjNBQRMA}ntwM#zp+5EK1@!24zAc(M=33y zy8U^;c<4777*<~B=E!*!ozg$ zKFHq>l={DKN_=borhG=;&dcS2g0Q*Yp@s2;q;V^2y#EzCCw*zGLqCLcd^|ioorll8 zR~-rjVN$<4+_WjAGAs#TahEqFJ;_04wN??U#TLi@4E+cUMl zwcD@Efnp1QQoH0>X`Ekm>8&y<)wTA&xmXi67xMFg(l~_k-^_XH;jnq?Jjg!~=SJzJ`Zyw_Hc=FSLD$vg~QSgmjV8v*_?`8Z&?1m8#@})8=?0pf5)_D}Z8u zo1DcDo}>F+8hqD#QjbV=QFriuP~mFR1V#r{d}DBVV)hz)zFra%OklXm=bE(9wWse&{Fln=#Wj34Z%2WqfA0 zK1ANWNcEC5i?Vn^A3@I=Kmtd017p8~9@Z{wU23!Wf)=ZRQn`-Ko>q=&+l={U1ttHY z*%rue1vUT@u;HI=p?T`l^n9Tk%VEK%b{J1cibq`Yfx>=X*`J%STaPZTKaFii;_d=U z`Cjs7!V+DJGcJ;Cq~v=mwgd7zfzm$S{g*X5O6A2^FZU_sI`VOWl&=&*(6F?vf;hj zcL}0iFGe4w6L0M}YHfiXK*a0K-5wpkC&OS=H%{cp?u_5NSpGEQ@h}iQ82?=&{+aK! z9_&njp8N!hsK*I>30z)F1jci8CL_Eg{0_8;Wc@&RfxcnkF%Ze{JtF*R##1Qdfn)&8 zB*vV;_XQz}emCW5zt=<}M4579gj^rI7y1b|!XZK&_t%f3-wij=o6e@M($m^iNntd`2ge@un@$u>)DH&S`@sNwm%e8ncm4(O zBt4%ohGS2|P5Ef%bL&k0Jqp+StY3Ur5DD>K5XFc{cE~sHp&nTo?DzY|Zk+T+Dl6Pm z>4sa#aGiM!z%SA-CDh=VC^v$rNafZHkMuN); z5l{FlQsbA-T90a6b>OKSUT>@AARf@SFcI3sQKWw+Z~yD&q8~uKECL{Y zzheOZt}ra-$M-eFziWLDc>y1Z7bm)B(%L;yvrglNXU^V=HdGNiXwePggmHz#KjM>9O4;)ehQ2}ydKvpB@ zudv$}zx(!oLkl)Z>B>Yic!4yHNz6wIPaD674jh_~N*J^|K(;$D)2xjvF@V2`piWx=06+-_pXMzv_{lNSCr-_!Q|7hxCvqhUJUAL{Q9qanfBm z3c<9GwQ$!6{zSPUr+JWw^}4am?$?r;w4hC|5-h_!(eNjboc_$^$9*MxUj5JT*-Tl; zYG*Bk)`Gv4;rY(1bwG&Mt-wY_)d&7CY!%EbnvL^<#fPU8k zMSo3B=QVTb;FBvognn&-QaNO4Pt$>tSYvAO zlX6jGE9>HL8akPew^1Y<){@--|^G0Q1-Wl-*v$XI>pNf2;wH)-}V80)Wtet;AIdB-zJ0SedK&hWD z-rkiC%$TO)n_A;kE>=6tu-KLGPvE*TOKdP}O2278|00W@rb*@2&?w^k3(W`3A`Esz zyrgmYadQKq;Qe1>hcr^+SKA^Cc7;D_JW(?0h9guTO7j4c-T2urXFU+F+y5qAyh&>s z+@=pi809c1WMx(=Tl3+@|g#8;&POQ zWV_|eetPzXeq({s_}X)0H`+Lgy*{(YGil0rK9R*kzE8M6$BpG^++(cd&5aKw%FqI8 z0^}3J{S~HZqW(FQbg>`5Nb6r{JqqYa(C=noO(20M^Ee$y7*ntE^zGf5G_Ijny;(Bk z@_eDvhXvv%NqCd_dQuZ2&Mw1 zelAGBT;D?3Fmzgk!4&wD^gLH{DiLgOFj>s=xme^IK%xDL{rP(u^m7B%c_aV1>g8VAviirTeA!Td!jFSWxAi%Ik8hrW8O*lGtu^C9y5 z3)RzpKQ;#Ox(O(a>(;$meKEz)c*=er7ioW6I_VkE$MJ}3w*jSguz36ROZ5`teCp&O zN;#`-85Wxef6~0Fu+mirc|G!~2WcJb7Rcv^hga*%o9Tj#zcHjV0rIy3rFFNW+J}Gp z*X3VmxwhL**!MRH={O50jbDmK*85I(zBJ)zub(ol^;|A?gJoFE3x8rAl$`!iZ_@$l z<0A&2awdkYOWgtasX(y~PEK#f8)oX>GoPl6C{ouIW5Ni7QoH1Ad~}yj+j56%#Pe0d z=Bbg^BQ+oHf`0b`rSYJ*>aeOz3oNejVt3WxjDy_``Fns;d+i_nC>^w6#*2ST`{Gdu zS(>$9c0b}Lt<&bW_+c&TU)j$)ra`~yKxurIJ1K(<(YaPOUR1M|LI`Qg9)SGAK&gDP zw!5jn%`uKP)Ktn@beLf=X+GmxQSBgIBxe}zJ!X47SuLNDmg~^|!S4Japg)52mksn6pvFE9-?)27&NYk_Z%W0e}>MhoHoai_Qw;E$#>F9T<87@^1sh{slSNjZ41N{X@rZ{Ql@z z)&lQ2q*#Q(m+-sPZJ66@3)sm#aP zTZYBvKwfIEyB_ZUrLMV+dURZ=4|d0c0evpQnFo~Gr5WW9lAh*M_U-O`==TCpn&0}{ zRr{Xm19hO+3{&=3Tx`vO{xbtbq3x30eAg_(;IoLIG~e9z&4KkGOqBfvrO!jZLZDP1 zwA@)Y>)H{+aN)H|zY_U=qm-`{LO@@FaFzn4@{(71lOPC3DeKqv`-jNdL3MpT$}%kW zBJ_*`8sHzWkC#s}L|j_sB~m@r^jr?TUI$9! znm2rI#?O1Sr?O7uVk;rP3MkE|1Jho?`tJJ1VfEH-{9Z;luK=Zd;1?)44Myaj%Dmt1 zK9_^Nif~o~rSXLK(c{KGtZ`y@N2&D>k)}&%Inyk{;2P*D<-7mKmhbcO>2IghqyPOl zBvj96_6GEO6DZ}MX%I=%>G(u``%-IP)*_tsKxzH#+~#O;Zl=7FE)L7E*jw-?jmz_D zJ!o8r^KafC3+NjVukGRSbN=*NC8n9fo`Fg`(as_aZi7D=p6m6e?){)#kGt2UD&vB- z7Gdx`c#zty!V5!azG>Vun%hGe7qnvULf#LQ%C-0R` z?`>%i4UGZz7UjYbyZyWU^!yO|Z3Rm8&;QvE|0O+*$Nsn=v|X}0t_vC#`{~1XwBPk1fCV z8{}WvkC%2suTO!}ys^OhC5X3|2m$P`cwc*hysw3n#<%`_^LI@%(^&M?*WUi>%YE6M z<<_k1&?*szm%1`DmKN`;19ubui}RX#;(c$9B@AvL*&Uv`wtl6JTl=uH*M+`qjQdVqz~khIa<7@zTBOJ_kQtx@m&#qAH)Z8B_cfWUAPN` z8>l5A+$457o$jH3xhHsNDbS-o5N^T0(qM4xCGd~xxFH7=d=cW;EbMvfhga50D)i@tqijyeHy1TGKV*BUvcm|CV!}cVi=9$Y4QSvAv8ba zHGD50Nc)MO(`f(ms zA>2&-4kW$IbS#H_7wJOjWrjoPapbV^pd9)WInUCnFQQzFa*TM8zTALYu-uy86ZJ*# z7%3hT44Tv(S*+D>9p1m~dhn!9q_dC5#lE(rTN>Ac?maR6dl3#3Zc#sgWKix4vZMIu zRq$8R4~F_gd=XD?3d%S1v-CN^507oK9Po5d581$cJ0=(OCT6F!k3L7MlSe-5FgWxao404g`w``X-=n`AOpNQA z;`hqZ`!l~U)!9+!9i9g>EFKDfP4`4Xt_d(I=+8a1)oH!(K+dw;Zck-3gTK>XLBkhf z94f7&dO8e0;`6lVefXF3cx4~Bi_Q3H*1lUE=ppIDTIJEX@%%@ZKKM;Hi?_tZI$QH! zk>652xPQI&8=tq<$`_+OnywtcIPGM}(J&$2r& z(5(21^r#oq)44G~`;W%scPR5ur?t;s1M*V2F7BRT_`5XLRcb-M+TnUSu3t^-MyBEQ zAC&cj$mhwS^~mo0Q?t&MHin*3Inx#lKI-#7b7I^tr#mR?wk@psFV-_fJn1umin-tU zv_`aV5_hdqKASPI4RTh$`3g`om%#X~+FD7Cwu{f&o=TMvVfjbE(=7Z$qhGxv)qm+7Ucb;RnzS}J?0lgpM0JLq7k4 zl6$Tiny#!DbY+>4&jCvFTW%oOxEHraLfHHv3-Z}O35vhkN%x7EPZOm+L|(2#=T&yw zCCyrI%7ubr9fzE*gXQU5e5v*icI%PG20_2UK&k)p9$x;n&s)CA%tkN7Tk9rVtV6`> zJyQEfUIY3NgmW`cnm=f+SE;`(I=^5}aYt)?hl{nhcv^YzR}Dx|JSLv%k+E?V-%L5* z5H##|Bjly=OVNuJclxxSuWXlfN3=4&Zeu%s9)xofP+oU?Jcll1onnkbDl6@LD>fYR zqkvMo#J+Dw?UG4wKCAHhV#5r(N$nsT|LSJy_W3v@w12qxJiF0|*BD?`AOQ>v{j+&^ z>C{{M^(eA&t0(Nw;)Yv z=XKll=vIVtA5bbUcQ$D9y3d>T`?9n}3D$Zi7wcgecAFgT&oyud^$&Dg!;?R$=b$>U ziIATJl-h|n#}1mO&ftbrL+epAyAATU18V^Z_>;tb7LdVGs>= z2mZJRD79xvzhrFod5zkj`U0&Bo6mXWe3;$xVt-tI zKlFP5D2)r8$1d#lY4;d>@g_wx~C zsRvov1xodH{Hl8~4=9OJ#-C315ab^QN)VV!VR>&V({-ar{;U4l{q;g>zh$?8f==Pa^+-2=EnPPNc?m5W63Y5yH`^Y%D_hkG$_sqk?t^GyrFM&M| z`K3T9|2nk&4~=``jVD=|Z?<8DkY56n%FE9yo6vnl#zP0fLhFOwbg?^M3Ft3Czhyv4 zpOROTPSSqI(Lv2tG*|lfmJyHVrSDM)jxfV+(tGb`9=hMkoA9xJ&lO6$Yj=DWunfDc zLj0uu-M{g1w4dG|mHlF;#nV~|f6_c)MbqmIUW)OQ{e3Vmb49dQfYN-dS3M zr}Z}ErSWIU+$+)UUej3_Pq-|@ZtLJrY9|hk`DC-tJYP`1i87vO#$Jc~TA;Mf&JC&* zk=@oM<&^#*CXA<51O5pD!!FRhtl)`+&NuCzf3chIcH0+?y@mL!2TJRFQ8zzH^M^}h z{c{8Kdj}}-e6+9U%+<9?#zuN;CI9U9w*h@4!a)Vqr2T-!JC7LWd-ypPHQ(QbzfC}C zpUYYJ=vgW+m&Sgh-ErM}h}Zi-DIWse4}d44sRoqnkFV|Oxdr-d1xopsKko%vue){U zm9yq`Ro0W6gc){|+n2OXdnx~n$G%}VX*@*ViM-xQ?J@a_V%rQg=-JLeljb=|&);mE zmok_J&6R$-Hv0(j9|OgCEpqxR71Mo-=A-sU7k}Kd1N!X*O6ANG_scq6^OWv=6uS`4 zCqOAZOEw+dj(jisblDC4J_AbYJ%JA@9P~L2Ceod^DdjrWGVHb|Jbvr1{^J)OzXJ7M z){CF-d!gTcpfp}ey7q+~KFzqzj?QOE`*bAPjC~IIeLyMywD0!5fpT5;?a~*}?<=6x z9t7Tgy8_dUYYBdjQ~I$Ob^!8+fYLb2_1~?Pn0Cx$7Af=8+F^#>q+$C~%OQApX z`wRY|Dc=&``#b&=@y_^n`-g^0dYU|~b!q(f!oTMe@^I4OAE*g;B71#Yt>*6#o&UL} z?lIg0#c!VS~}_GOPX zxX|f?JU8c;4i?`KhjMT@e}T3Zh!5VNEd|TcXNAWi;+GQo*Ax4FQ*6>Nak#A!~eu{htTHj4&aj#6>eBifiHtyp^ufKF!gzHAQB7H=;PGnuz)atq>Q+(IW z`P94M*5H2y+<(VUEfIPMe@K_YY)0(Kjni+-;o<)bEF1tke*;kO@VmwLgPVANydB8p z{sqs_pNsM*(hYi2x|!ut*n?B~hhFhrAs@`IE+*j{zq{~VkuNNpm)|cCufL107yd@wG*0o?YktBPc;nOA;}ULS1B2hAF9vyv4gSJk)mlIJ3Lmc&$eEnMVr74t+ZyN9 z!0*yJnD^zcPWno2*;IdSmn4g4#>F~W^SUVbljgVH!OM>Oyd#<&s@kws*t$23Y0RfG z@Jb*-;PqF?zFVp8i$*>k44vOPEWI7jPoxhy^F7Jyb?w}vm!0}8CTt#XIpjq;)`OeC zwZjX3M@e}r{rGFA&Gquy)_FTIt`_-0-{to>D`-Hohxk3_p8B85VVK%ueq-_ zSWgiRi{~oxP1;8{?^)4I3#A>Ee2-zZ@PXPuDP7nj8;X70KG+Y+K0@T{v{E}jAp~@> zk6jnxiF!}Y*v%EFe43B_b)wMvV1Irj+6A#rAnHA-7c?YJ`#z!JUHo~!I1lOM38#sA zOitGW`=~ve-RbqU_xDrmsw6P6UM<$KB!5ZM>IZz2{i9e`5&iq~C1>z`x3pY+Fr%xV|7SWoMo-Rr~smE6;q_>C`C>vpI? ztg`Ra&ax-h3jRbpLr!PR%zZws!s3aoYt|0ihZX((b?_&FvqeMNzeRsrQF>vlXI%?- zOQ7gq4Ck6}zV-2+iza9>sI>S_ zk?X0p^DgMu7AVF~re^=3<>7-vua@YsZZ);<*`*CulF3i^a0e{0}V-D1~>d zUQ6TLsPU-x5IAj*>+I!Ul*Lo*$`#VYIEI{4p4I5S1oJ8T_15mtuLn?!4-9APsm8vq z@zhuP&B)7HX!(r1oT>hpsfVTw2TJ|B$y;)KTJq4HZN`M!ucL``PssNLig^S%J<}gK z>nnU|%MtCyTi;G^SYfTtY2MTo&Ufk!`FNlNg|}~~bLr;OuFU(* zL?|Za?b5u;vEv@JT4~QB&-c*wC1_7B8R1I#XWCgW-F80m`DUn|8tVuBa)Dx8 zPfmB?uj_pNo5~HDIVM%%O?0(*is|qtjSJjUk8k1W*|~=@o^Y`g$fp9OcAn4U;^-KB z-73mFHS%*->bZn8gyRNE^Zw%dt~GdW#-r|U+RgXK>${o{8C(%<08kni_*eUAAJ*g> z#wzI&6UI{%^8xxyT)E}6Z)lzmQP1~8vn+&@4V3cF8-Gs})66UCwkYE)yYmOT>1nrI z+xI8dw+10y#C(^W-iB?y^LdSZk4fE?@vdEa;!$ic!WjaT+9fuB>dz>jS1a@W$ou!u zau(2sA{-A;Dle{=8h%FS91Z?o#jtWV4DvSurT!u7yL7>uC|1@PB0q-|T5s*ntL*v< z+LN1w_(}byh@B;@meQhNG5-B0@blUpBOJZhMA-x3$= z$woo`CSW5Vf%}spj0Xz_DdUi6HX3qcfRdgi6Gn>pQEBnRBdPT^GEmB=lI9KQ9+10QRJ?9Oe`}qMi`~G+L4FcY8ea## zoPR<04jM2ae_d~-{>6mZlauP1clCRIpVnso1FiR~_ismA_T(lYJZT=_{B{GK*T|&{ zW54@TX?N|mpBlRr;p79u*KL*=7pN=qD!ctyq~#@?XL=j-yB#RiqlH&xig9^<_t0|o zzt&S-r;Rjz1z|keI}opFKq=qzlHNR^YtIagiEh);T36>{?ZbGA()i4I`BIu!#oxB* zwY?2XsXq$mDN6Gr*ZM7Ve$c$ftcp?}?D8Ttb`R3yKA>3FB&T=7BR=$hXZ6r^B4-#+ zQL68b2J=4E`RCMe-Ni32_ak0jpj58&#;)E;dK&j&y{FXo$ooyH-JuX7EuX}2ggzW< zTlVB0#P3o&k-ucZ9-a^07RtE5{y5|zg!2ec8kcL{D)V%W8Rx+Q%6KA%Jq-EjKxv%p zY~Y~s`Ir17yZuq*=^2_2T9`dKDc>D8oE7(gsO8gsJ8y5@#%_JkES}<%$Ooz4H1BWK z2A$p9WOO%W{L&;UlTCnz+k;?s2JuRN%0{D~at$)ZbM|@tR8BFf4 z^kcCRuVYI3QwRZlA;Nh+JiKxhmXn?5ANr)8UE5OW$68qSZ2bB7OlC&7&xtYA4f2;k^D7FOg+5nWwXJGKd#D_id z=eC=B3{}>%I|Klj=j^4{=n^h8XQ)wKt$&-iBHCu4G=FzI z@Zm4I_oJIP<)jT#+Uph!5zzebC(Ylr&TmjVZ`!?UtCSb}_mIDbaNY+>@h`lq+J8`w zN^5*=x4vs^3-sFxl=?qM8!vcS`}>Bq*B?OsLtrByLE+3R-r(_L9hCV)sQh@6CTN zh{t;%ZD(+Kpx`B0zbA(BwTL&u`A~hhKf(9#2scm@?*5SL2TWnrHoK~AE=mTEL+Anh zMEDx?q3P$;&#!oC+f98re<9n=za#icbgbO8TXrCs+oe0#hozm~l6razct7ovxV+%g zc!hrWo%H8CioW^T^s;bI(stW8KV0=q2*27vy?yB)*$wJWQlJcw#M~pU6+rf62QK z{aW(?^odPlCconage$^#rsI1+N^ipq*t%Q#gGZ8r{7d0-f@h=&w}`h$=VV1rq(cI} z3%6hVF64#(MCKUw*5!vMr?Wc7vljXi-%c|gr|>7@FZ`vm%9GvnFP$B(d|yfBP3i1R zog2^8`8t*T_=E8X`+KSUJCyF+eirh>;{S>KQPPFMP37n=!_eJ=3`Tp!yA$>aIgy_k z{QE-Q1$QA(@W_Z4WtPXwg*;Fb@|pZQUgXF3;LWTOzXSb1XBOfGWI(D1$BbJ%Q^oJX zKf)3IiKnEQ50H371}&=AxEwbAy}IMyo1ew{8PB*(UM@aBe5srznhAk)@WU>jWoJx; zlfm1Qfk8PlIFU|NzfIoZp)6)xCJ|FPi!GQ>PfivyoLkpGFTaQv;^7ebD*Bh?@c2+X zI3H>NcME=2iTv;iy%8>@ubF>i;TGvg$Fxj;qMj7y!VM%IlS!}a zkjr_ibD*b&_Zr+@p+Dl~7|g#@I0WB=TkxE`1NrZQC&dPV?>Lxp?sMKh-6f6jJef7e}ij#`oa z-VAI1jlapW#%tF@zIxD~Y0u4-{o7k_x0`I;^J>0kW32K0<&dut^ryYJ=e#d4Z_)No ze#%zv`RZehyDCGzX3(FzUB_cS(~Qy4Y-K$%#&Xk`!F;X^`YYJ7m+Y^Y{D9w-eW%Fh zsiE^DyW_fm9tFLs0HyRS%ogYJoC#LCL(KMih~0T=RRr7ySPp2wOUJ+TIrsE??D!S& z%DQ*({wJ|NDeVIV_C0h^_wJc6l?~ckj z<2Kg%q_j>aG>t2$O80K1on3qP9kF5aR8c-^E8&vUb;m+6P7anUE*5RwZ(IxhBt45y zzf1em9Sl>fms#bQi`BN)UqyMY3;zUxKhKGC&Gvaja{m1Pna72eYrFGXyYqm6F4CbM z(nBCQoe$qg_k7`8UZ|dt*IT>k66()k@sS!pPpLignmk4G_fyKb68r6hy?PsE@ub8$ zffNtNeP;qb@6^X{|FdIrtKRVF#98g|)rg-21s%Wp{%`Cs+MTD`FE36gMqQfuNcG-Z zwJF`xmQTk+-e{21rme^~9IDR-wjum+-!@>D~@uW(cT}%6T=6>T2rT$&)_Dl=2=O&f2*oI5QzD#M|Ph`Km*lS+`x(oR- z8z{9eB}b1P(MvXc|Kq1Ax3Ww*|2!Uxw=o01%jN9X%g*Vn!{kE`l^eyn$o~8}mOZ!L z_+1)L6kT@mgs)`NWnWaBID~bO{b|{jeW@P!UG%%;^xTv6v+mW`yH++%Q0$ttwZ0?t zklL5^hTSr4f>9q@DEDr)w0Kf+2+tAJ=X1{*@X@tO%DBK`@uWIKUi63LEG}qA=X=bj z?Dv5pEia+{v}W<7x+8vKoJY=w>W@3AYsIhrXZUP&pR!4qJvT9rAb*@sVqW=D_UFhV zO&6)2P!ysV7GkwtNEa#JR~)NHJO<mvSzY{g z!d|*)EFSS12b93wY4#CcVY3~NKlxO))gPGe{ce^3!BIe|-F1F&_iwtnBGa}X6XQ27 zMhi8N9}1Mf-1qe#s1;v0p_jrR>&^N=&@FkupRU$xPx-vR)Oa>#P6un;&);=tNf7D> zl-ddH@;u@dEbH~=;j^keqLwTf@_m6)zH5fvan1kX@5Q;Fgqk40Hy@$>ck?Ox`koCvbAXbbC9nF3XR~w-?W{FY`ps4muWN*s zv!FeZ*WMj-=jhsFhJBzq$~li%mJ9iT;d*LMpLtD@vF=ogDT4SGn$Qo{7pcqUkRRr54(rp;*Te8hJIs#(mdQV==Cjs(+)=7kA;>q zyYbU3p45ZTQ>=p;&hZaC-qIy3vw4-`;+hQ?sbo}9hBm2guo^voI8Nhd}U#-gYKpBUK-<& zDbVjOpwv%0KJ8wOs9h{wN~w7_cIczU3MBA$_~BmETXp@@ZhvIAd}QT`f z*Bb4v`ILD*S`0;=1xo#Ufn(empYd~m4Gz5zP-79#!$b2=v+TLOh48Kd5)?U$_xikZ zdwer@SfXN2st0=>aw~w6o+T+Ce&f>`PT9~=@1d-pb!CN+e*xGCNDy5$o$j~EZ(Z}V zESECgZE5kOmO?%%=#TRXOn2FzyI%&qUIa?(<@f&j`*B_C)+(dYbE=)*$mi3cu1f_YRInvO7+N}euDO$oQ6T@Kb8I47|Whp5&YEv z5_l#}-9+hP7}DIOtfSa%=Ob@-FAM5He??jL+}^15yrt5*Pt|_>)*~I?21@&zdX?9|(=~I!?wm63us=@TfNbnXDR(k8@37ZXh`5PArQT(JTw0)7_5v7?5;=J&4(!V zo~ekYZ2?OA;cWZDuXO*o`*N36^C;uNChUF4Zw5-~68Gk0*l*MtD)F;BKC@f@qQdOC zN$qFJ-7ipk_BVEuBAq{k_M3L=U)107UbY5#FL9ML?T+a0o^G1#X48&6SG8(k3UeG@ z^2zS1@!T%VmvP`9v}Zh5Isn^pWWC{L9O*oIwer_JQg?U)OFB&EqsT7NSBK~s+MAiT zyQTMnd{4;3Uy1M!)bL*G0lD7bi6A^W#;KW4JV%zuQQ}{WyX@Ic#WfQD)-Dpavy;d^ z9%onxf&HLWN&Gv+ztPMGZVwGB4MQbuML0lB*d6M_<>|aX_a_kgS^6eGE}b2`D)HIV zkGR?U7uFA1STmJ98MpD*=W3?#bN6-ou;=za`t1HkA@3L8Q^KM2Hp3%cggLu@A|B`M zML0lBxRGwo{@kBG1^$7=%i!PZ%a-l*u@;$P2yz@dr$P zO;hD}ZyLUbcnCg_CgL5;Z*K1fZc0zhe3E#2?iKm1ychXxl|Lbu$j&_X;-u--)7i6G z^*1lQ19qBbrt|Lx;2x{!OUDb$U@1N(67PZYC*anA;=NxE_NZnj7VA)msGYTKtA(yJts>mhg_g4aUFo=p8n4>SL(WaE3# zN9aZRn{ti;9Lb)J8K1p5a07`KVy6EOB0PjI;wkc3e9y0>gOy*Xw<2F^LQicdFE=y6 zXK9;-`i%D?o>~_4%48-FW~+!NFdzC7uSGK+;)$5I_r^nSO_W=qUj~oYhnYyHES?Wv z2>D=m{CmO;6g-!fkoO7%e`yucRq$y_g6V92k9aLjjOU1lnQq5uj%4S@bbH2deoxyW z-0d95k@zd-d*ZX0`SQ{*xQF8XjsJ+JvgEfnTm4UYDpwFs<>X)SR8E4Y(k{5}={IAl zY0`R-f7khM^pYc)b?5YXfZdPxCOCsUmCpFRdhor;Q*nIr-w9o=%D3)6G+%p1S?gGB zATRAJx=uZQSPwiuxZa*NgIJ^B_o#p+vkGum4EM+G+j!Vln3-N_)50`mT`nQwb(ZpS zcr*{9F@gD93oHjDDEcu_;?ow-D|dELLMR`DI=IS^a{_Au3G!zL=pLf&bygjk*jZT* z>SfI{Ye2qQ(4Tp4vA4qLjvrm#%;H1v*WE3ChDd)Y9)(5KNzcjkFYHNaV8w^~Yi7;c z#r&XdFg)+TPISLW&Cgmjx~{U7?)-JMb$(OmcX`ksw+r$Q_vfW_rY}c6K9%B4{_Ky3 zuS9$tz}i598P8r5z_df1KiLh>?zmR7?im&HNh#etjyTe@)oqW|zqg8&&paCKt$R&H zyhQ%f`-N9$lfO&EPL(K+qJ0qMoAfMt?LAsYDl!(Je%D2P!}lkjiEujlo@>0C}NpLWYxP~ zf22Y{7yE&t9k0R_GyX3~c=~JTxl391aN2CI?XHtWSv-{%&`;EV!?|GaQJ;S+9rJ7y zr_9r1ES^ep_>3gNT{N^q*-5IXN*K4ov; z>Utq+A!hp~SDgTjZh+b-FSpWXBf=y8b9 zvp~^)lhe6))d#w>{=red#*ekmo10>6h{Ye80e@0|>pFd+ME5Lt>im-PqnY?V7t6MI zD!t)P^k?LB$Gv;n=P5eVvzB+5WzWhK^SZ-$DpEN!dG4m%;%-X$jJ#iw$~%23pm#Sv zsA&u+?PGE~l(76Q<|kY%hV_6vIyy}{mzaOu<)Xfq{XR-h=-CSx)*r=|X1TUoK7%}! zq0m!quk&*c`n-Xqcdr;ZNU;N(!V(~#3l!sJ!#VBA*L3ZpQOSMY%?R7~PK10WP|Ck^ zy(bs*Y~9r-jMv)-@)Tr7L!!g*bb&m1w)dyO(KZyUx_k?Mo9{mxUoe~77J&G-1{ zU12;GsXk2VImEb6*5H4XJ#VW&(jx^Z<)8oH1&W_xCEx`|*gVzlI3yL}qyxo#fSkE| zuimU{g%fsOIqPTT-uEUf4f1ZFRNpoKfPMOq6sax4*SN&lw1nhXAGi z!@0Q9N4j|oIVM$!Ulbbz`N2SGe(SH=>P?<5m%u%Pk(M(l-V~#NJ`C}i3Y7ARy>#;t zpa1i$oNxCJu;%MrOlLPjemt-ikYM3G&b>b8us*G>`7%>k2W!tfkQ)h<>Mif5jo&?e zt@SxB=48VmKLRM$MacQbZPPy2`OjrPpB@GMZUP3|dGCm;?kM7VI(sVPo^X3UQvGuj zwa58$Z>%ydw>$o{Uyt$-uW>+W92vOmvm#y}H1$4Uhh@)aEc{99S=whWZo@f{fA4(y z7R2igpww@An!dMC*BlM1EqSk-GA?Lg@ljZ_Dmb_)_k94-l*AGS=X=4ra=C#aDPQFR@~{+ju*f^y>inaFH9)Lf2J@VJuG;efK zHazj0a!xRsc_BXyD9v+nr;iIz|4^EID7)=^bF(#-e5h^N^LZTpq;g&S z_Q&7TImmzWy0;c)&qvz#U9oWEQC%xB+D|oIBA@3-`9mof(B~i>=K`g58_py4^7F)@ z^~mo0DDrw6s%MmC&u208l*S?M$8&zwy(61FKcYdZG7gEc?D;$mf71NOUBgA=-Fks` zn=5q*>&F&Aeqp%3h5GPa7)O?U|F8)9Jp&Z`o#cG;nt9aDvzj+FtFZGTk0-+07rX7! zbBNbkpw#Xb&p)wSXE|G5Sa)ie!c*yP@l;-dKWUvIF!}-7SKIeTQ4(F?E0qV5Y{v>A z{{m2Y@9b8c?t3)MUZ(dBD=$kRzZBRANZ^{EPyEMAq+MDDyOW8Le9-LQD;lb&{rSUc==T~>oHron^iy}z z_|tsKz8zcx{oVvh^)GPWIa)6_&Brzj8&A9r`8R-4JJF%mPlg?m(j4#F?f>kLlh+|$ z?*OIognvceZe5$-bEWG{udwmiTae!no-P}gJH$FlT_rsoY(3=P21?_)nD3q=9^Ah= zJp=ki#OvMgba6hohvosJ$SnCUs$Da?_Zvio@l>Sp={Vn1oYN_-d58UW;yt8C2~aw( z;TTt)?Af)OId;yz>0$l!`;gxal;*buOK z>E_Aka#_}SNG=v@+4K1T{-k+MQHMs~Q28{T(&81`PtUDf5$$83)KBMC-ek?Zn+;qJLHNBz z{}oW`AM#q>NA0}%lzsl$OV5CQ81Xs=l+wjtuv*5<<^YHpT^x}kjijsL_Fg}FvwB7&EGYAj|hck@O9i4!H&Nd-*Iz! zBCc)y@qlA~w40^PUj4w9Yg5^YKL+l4el)&YAkt0fE5Z@!hIF9x3pJP~@+FboaBJIT zXLC|m-t~s*vA#T9M_+a(Kuwd{7L|5naH&vc^t|Tvw`A^P|`{g{o$CBYsd>7#g z|9Z&?ca z{l2jqCs8_@zk5W!0$Doici)<0^sNgk{`ywLN5l`| zmnizvz5XANnZnfZNGF#FKUgnK{m5{giKLf_USJ7O(dg!=dk-qZI@d6AzCZWq2U2(m;>Uf1^gpAuH95n=U%zap%D zzzM6-*9A8ymhqI*Dgp_j7t}bU7jE>w_48b>br8aQEfH4RLcV&?A1AEts&n+%lnHE9 z@OMq~1PQA(@w+tf@eW>g+!r8vPy;I9(!m^(>~9SitH7T$;dSZrj{8b}H7wxtR}Sv9 zw>WG50&4x$pdb7iD3knYHm<4f1t^{=7Fwiw(iDUsw_4@k;0? zm6zg8J7Dlw`$IYSVRr*0%37GK5lj#9SK!ksCw-c6gTmd%lnqF`6BzpwcPLrPjVKFnoopPV?kzpC98gOvB)pF53PT-E#kQ-C(;H_!Ql<> z=~|Mp}uO=XBRy%w(;w7a^U|FrteWo3oiLI20x!no2{S6)` z^lJ>1`W05c#&Mr!%sh_=iTYfuL&OAGsoav+fZhb*P#0=GqJEIW-};(&X@gw5X86}v zg!M;FA>Rxr=~>)%IBm@C|K{^QivCaxowc*6r^cEioLHb}x5-&p>8gXe`Lq8Eh4}q{ z8dh^RSap;(@+&Q#*!p#4LpO56Y89Xlhgh5O3+UJ4J1v1yK9mg2{eljXmgYgIi@%W5 z8u4-gMf*)o@72$~;xm6P>ZXie9IOrGuLnxycg4fmH~^rPJ#pCH_$8pXL%ePQig64% zbMH*vpy!YO_=k~u^H?9eH^D#1GOTt3ey<;V?>#dAD<9kY!>Du9Jxr7*{yNPftagUH z)X%%yu3G0~#=@p!lr>J}VlkFswNCIS^<%{^zD4EJeAMxh-Eo24_S0bzO1nT$shoL! z-bV)*jpq^|&~$}BxEDGoL5nt)`>z$+8SXnquC5tQ+L}0j2uj+24rjL)M}y zYx5GVi$J(o9P1AGzCbaKA*a9B96E4!{=sTbUDe4NPjj(07GYJCKQSMm_wK2!=;A>t zF2%XmDE&h##uHl85)qy>&g%ShgN;6Ih;jE;{jhO4gM3e*826I1V9iW}xS00ViAO3b z<0ZTEoPgd7;q(Sd>Eik+`%_-7{lC~AUrYI8guvnvP6ANO1IbxDdpaHPGavN=WV;7K zBOkwnjw2)Y7aG5So`iTM106sEs>ROc#ez1>E|Y%$Cj`Vu+uhQNUw`PG4wUBiMYC4E zyuDv=s`lmIIwL_i3=vqMRNgk%#E2vS_C zp{P+oK~N8Zf}#>SqTo^#M3jgKi0H0>N)sYQK#D;H5kyxhVtv2ooVn-h>@4s9+w1(I z;XM}@cjoLfXP)Wxo(Cw^qg1mVY405#;BTnZhbWc``81%^o*nsdB^?}K)ys7IcDpiu z3BTP99>0V;AItqf&G&HgLG_n`c=ZNKz+U;02sGEp0i!G^HVi2Bx4HW(?(-J@U9wry z+sb@Xqw}ng9}1M_9iDcj$-tzsGTo}7a&WaR>kIk2fKofCnS_tO_di!|MNP|KI~Qvc zVpvV8f17UlnGVXD&mTqBo`sw5!Sy|g^+&wiKxsVTcq?nOQ@hV|;O6#Km42lO8vyyc zfl|HpH++lc(XKvM}*Q zx;V;w)P5!0`W{$cMY@GO&k5Gk{=8#20?q+S-(}6N_?_mxUr!HF@;y4lu$ol=w5jh+ zcJj~Ns?7WC>ltqTsqNrM#A^&ts_zGH9Q37AH+Y1HJ1FDwDr^+wM*}6u&pJ;BUd?&q z56XI-{r=rv{K8L9DPN7KScKKZh*<4F1kawBR^W9UjaYrp4!e()J$nH1lYr8A z-qCdw`FoL`?-P{qbsT#T@(%%}_wT-#q~7>jTo0ZQqjCB~7#5AE`) zUsgvexCuy^+$zS8dEk4=eT0?sz`@ah=+}JO=%q1WM&h`ziG=Cx2a6X zDAvKrnbhC?o>%i22mI6v?d-QNI>MO@l;%g$1%bs+P_Wky`khk|uNgpTzUlcr>Xg^F zhn_LXN`0?q5mu+epOk;Bjn^3#CQy1vIGrWl4Pi_9Q~-E|wyBCI|e z8b8POj&uN3GxnXfEA_~3eXu+3@jIV`e$NA?{$YE>!L6uA>N;5X{hwNI?Uu8d&~Fh? z`fkAuv;0oocz>k3GQN%tA*@Q{$m|;q(nUvmd z02+G1)hm$q0Hyt^!fHo|=;JW{aNu z87Q@9{`=ne!|5us!Chv_H0vU3F4oyHtoAniN#nu%7oPaa=@=XN_qIOWe}PihA!1pDKObx1frwGNx*+HSiPemfghkjduQu!>5Zcvi3Wp8(Gx#4l8eTimUApZeSYL`p{Y1$pe#+pkh zFZR>(Lxkf6%I)X5L+|j{?)u7j$$owCA)JqZ(tL%VL*nn1`TIYge^Na$G_VM(+o5M^ zAc1RiiK@(WUMB>aYw>124)A7T=}hU88`IzJIy05+dFRUe{_)BD9C1uMn^5j_tGS1} zfbYp-6$pBf* zOJmmUjOV}8_sw(FdxRd{;XfYd%^^qp49$2XK8|_*KTGHZJ?L1U$rnjTI1{GG%U?oaSjB83~__>%EE-jkjb3OzlT37%ArOvDRr zN|%k!9j>FzTx_CoY;;sAbDu7#bL>TYm-q}p2DK4^N!;_hsO` ze^2PI=p)Jx#rJZLS1$FaozBt+b(>JGzKfTq4I)29`iXLq#CZ%0;MS1eq8w0qnTGAk zi{HV!n3opJx6;M;1iuLBssjtfcY&1Nn(1fu|R+&6}($B2#&t>xWhw$D96nqE=+)TWO{5*t9>10I5;H#PR zhU>{SAYi`o4$I*P$@6Iu=b!xM%N*;UIdQE>w zJdx+|Uh?NEId-epUnA?uAqU1;`%b2qZ@4v1X##)cfdsBQ9z5lZJND3~0Sj_i@4$Oa zbGxnaR2jUl7Wloe;v1*E5y$Sicjabx@cxzF)f)FvpKdT&+1s{?`AhNdLy7rVP2_{fM{??K zoczw~-ZFO1kt-P%uYij&>pX{;k4yRPsWkEnuV?!HlkSb(EdC1j7iXOxsfzF_0SR2q zThY0|7w=5y=?Pu8tpGVuPNeWmgKzryvM1mB;dZNBaq%c?|5L2j%HcgQ?q{zlr$_MlzYY3{dPvT=Cl8^lZV>um_d=H-&rp8aCLo~t@<&B($hwlE4 zmoqv~80^n}IkT7V5v&&Us}B_UNlvrgny-IUc^h%8Hsl>Zsej0w^&ORKYv^9 z7{Bv&gi{A7rRPFlH8RMQe=m)Z&MW7j?B`!ygi{YF>MuF<$vfxp_|e69MU#Ja>x17J z1N|BRC4F2^zj_{eRxPr8h($OwBvGG&ZGY1R=WUIH`2LW5xC7D+fzrB>_D9Rtp{KgP zW4AuoZ6`F=82a4_6ypPO!tlcNv0v5{`i%fe?b*WYNIGBiR>tWURt>cbQ<-9V-~X3k zGe^oprF_~K?V3-yWq@T6kbl0H&2~4EHHUs_K+$iLGj8i^pLEd^GL^z#*((mqJ_y6G4Mn9gtqHH~7KPmiueCc}>g5TL0;dB8??R?a+k+kk^ zKBYt2PbcIVQ0k97Pb@o%pNqeL=nDP10i|;0`{wb>mY%`m&+yw_>3bA{-E!u4#zViP zP(34Oze)U2<9S)-!#h|4VU# z%YeLCCz09-Zh*%8{cN$1Bkj!}{LVgz-*BLq_mGnt7Bp5$pJ;8(^SM|kPb3ol34CK` zT=i;AX$ibcBjtQU>kyuZl%7{lY&zuBiu7Ed{qor#@o@vC`W|_1GwnZCYH>B=Ks99? z(!%1241_=CSH+0Zrpo+l~DTICN{@s0mEi@BRsKwLr#C&m2{rMyf4M;6zg(a ztZ~@kN%hO{8n(Y1c|iC-HiRc4=G7#SAK6*Vrz4g67k)pcjthn&Z`zHY-EyW` zJdv@`Q)-tAKdMUY()i7-oQ*3f0y{3XvKJBh+1b8A(Av~!)W1sIoK>26X_wSW<-fn%52;qrH`4sod;!70X z^-&+5L3%t3l-9wfFCYCWjkAiDk2C|}JO`BeX;y3EcB3BAqxLIy`-gDrQD7gNhwpd3 z!2i$|1EqdNt2CMR4V#U+<>jTLnWR6hz{j(hke?5ffW@w){f7=W-q(0aXKUY;{~lxU zMCQPQv~KEpEt+^6HI4Eax^FlO^0R@`_(kiIiv5o3AU)?ozj?qiK!WL>?A>1OEPjJN z3!v8`pp>4z=F4e*G@WP$wQf?{r7CP8bW z#D;n_-YwGkgWdY4u_e&&eW28Sn*0Rg_4qR*6n+9@uRwkkuqKco?$$UuKamzatL%ozeel3dDm`tmqUI9P#SNzKko3|b<=+Sv*RAMy|!PEUPn5v0jm2eZ1lwm+k0jx z>pg8O!)9;5pVU9Z-F^9>Q#Y1(%V#S4==Rq!?WL#2-h_S|fKq>zJG?cWW67gyqXx89 z#=9-qTabSTD3vq+)^Wt2F&@3XvfmNQ)>DkOdlg9Jwj|?$*KJ@77xZDw9*i35A)*M-MmHhqR=F`FP3x8g$#?M~D!sgILmImjr@NZHgh}}{kN5W zB?IxMzyAID_bI~P0hIccydU1L#LU-3ObD(IcH7VJ;}=|yqL^{P{k3>7I|DqJBwCv{ zNV&DL=s3jF7w7#xIh9>4y!q+_rIT6m@b;fiS{je&qydvSdR!bepg3=?r9&>A)iyp{ ztvl;%6w9X=yVtng>fWyGw~uGv-FQMbF6Zu!?DwC07QO&i~mi(mk2mADaDN;^#rWYw_TFDETkS1?lB(OeJ`^ixC@#m=USq ze~EC!_Y*nKqb=F@A#)=?+=%pWi1YyxKf=tXX@WO_^b!0Ok~; z`4M-|(LYB-UtmRg@NVRxJ#_s5hw|et*CEk?z-7&pU&hXv`{zvId$O%3QeiwWZ z;>(!%GD?Y;2W}lm-~0N7O?7{qp2_XZ>_&OYLirW>t|{?}LwbmG&|I9~5hK2fbk#(7 z;8O{GC|t8#FyQ_ywyNU%iMQRJ#oz1cJpV32pLzJ6TPeRJXMRV7LwcBQ;@^DmeXsi; ztqglO=OAa5-`?P5_2Ke`2$#~`^iMpT+4XwNu6GOE)_b^pBK_e{@RR(oAG5kI|Bm3t zFyYST@AUx)XCU1D*~Qy-jgD?clfvXGsEF;DC9?&-Oacm zIel}o>HisbOrHDL+}NBKa%Se_<;=>NotiTz`G%ai$t7~;C2Dwb=I5-)S&*8uu;(jZ zjcEUm@?^@9J(UyJ;>n!gJelmcz;_EbuR`g3PZ{n1-+ zI-^Imw_VD8$Zf1~A@%v@BhNF(Pb!L-$X!>%0S^Jr+JQ6&m29t+V35d z^P4TL_1e<#C#~=8n3_oIH4V;=K3%H0GOo5eF7rD@eu?>PC4@_me|96?uUY%jm_COb z%KY0A_Pj56{HR$xnMi~q&EHn{TfE<^t#9^n_Ged>^V3n*etLz_bXm2#8Qr6mw_cz7 z%u!|j{qN^{Md&BeQL2A=c`-j0F(1VKx@Q$7{iS+Tcx2IWr#`22<)7&OCTX3De8gD1 zr)uyo#m~3p#7|!BYkuC)?)*mj9)%Eo{M2$L))Q(#PYDWoCmZ)A(nCBa(T?!n9TqQ7 ztgnjlM!y&A{sR8AKa~ADyXO(?#xKI!4-)G;0*!dQuw@kHnHP&pPqBVqnFg0yY)z@B2Sf44)w)R@x+EH@y`=VTbMm==+Hmm*OV(nNx$hQEBe$a3p9)1P+SKewb zxma7PAEmC|d_+AY2j?q|pYZN)9d8I(M~;DfBcN37bLag|=WmbvnV)p)pH3;>B-xxb zfP5@a^cRM+ODnpc*gd`Vq`!|S=i|b+!xG$1)M0lZoQ6Qr50cYi@YMKg`}=oNd7w|( zuYZl9-<`m!K!W_}(^Sslj4L(N`e%PVu?fE46e!wna^{{ZFV5+!``LEeCA;GujWvUQ z&4E&V(YL-&<;7u~2l`fNm+YrYxa+J^dqtYrO_%V?i`{aj`fG!9Yzq|Q3Ua#MIQWB? znY_)^B3i%HSUZH%9w^3Xt{#W;g#d)&b#k1WM)FlUnPnliw#; zRQF)pE!P2_%)QW4YM1o4zB=J`+*_gkUs{fJKHC)Y4YKU1IKULsyR$BkPXLPknw*h~zdc0!MB_ku zq*7j@SXao$1Euv~NA-kVv|oSi^Qqk+-yJBmgL;{|#(vE8asDXWb|Sd`*)K0iNRJ*s zsh`$gSV;S!F~4`{cV|-Y`C`3`&3RP>>xpps0>wOpoSy!%oPVOv>}uIH81YNd~Q(I8Nv@wiZ^}9e!tQi`t<=y`RAUPN$3BJ zd#U$ChqTw3kk0~2^S`8rpBCr2G$nrj{(RbQz0F3vh6CmCwP6=iH&&MGwo%6AEm=Rv z4+Dzz8*=6*uiQ`V89k0BA@_LPW&WUPcLT-zlbr6~&ry9hFY=03&ObDB;OcSK{lzEQ*b+>T!yb1bnaM+BW-#G%`xd&J- z@LkTwGTnZq-3`B-1-GAe+d(aaCnMD(y-joKAIu%0=1P6AJO1=LMKeb8?wQ0i}eXKudaEPQ&PH*&}@Yy57CvEJ6bRtw=zn!oEUf1Kp>l~`A5)}Xts z`v$nbbjzN~Eclb^pJT(jo4jmY>X6T)(wS6GNV1c~lX)8cB*XGkc z68goTLMJs-LMiUUPM}g8fQlHwC^5L56yW#T}g4>Dk+n3<+ zl4kK_o`9ZWz1DC}y>!^C8OxC`*HzYcqpba_$Kg+^@7mHu>v(^w75}(ShklcRQv3@} z?Gtvv$}00XyXon7K8bLi0!rXpRf5JZF5@UjC|`aG1g8R}`E9|H!UB|QbzRDC|6q4K zVc*|0#Onp1ln>h8He?s`xM43lDr7%yI^<^nrG1FP?^e7`b_8g{yvHw!{m1AKdn(d; z>Ky zbrtp!v(={KQYK2Vz9 zx=y8hf%W+)rJabfcrt6@PijAhwHy?|`0L{DZ{LP~>wr>y(3jnF4(&uy-S=a6To+;S zWHv%isUGRicUa}r*U|KET300>qS?EU-vE@#q2BekO}zeTYJY2YeZv0uY!mc*4;UzC zdhK6#fk(nx7W=s1edxCpD9xu$yLGxTkGs@WnTN+(JeiN+Ps)ef{jYw@?az_D7^$9+ zWEA@V@*e`_@lwG|n%|nw4NAV-pI707nh)XC0ur#fAAC>sf$xu%47{hm!q4~M@%%sC zo@tsI-ZtpH11QZ`_`RlM`8-@250PY42v0`(?sK>PhxlKN?sGVQN;wA@em#=DXK2Pg zfqtI?C4J2C+4W-oD!hIraL$)U$M4*Qc4gG@i)IO{9B6ObZz5eW>BrTdBRG5d6;l2&f{~?X1e&#xM;*5P}b-WbKjzIn>uo949;Vn=9h4j3njFauIV}{=@ zN&1s2cE>Mv{n_ouBK|86??ixycb3ZR)}GaWW)Uv-*TAM_D?Zta^*jh4EZy0c;6u#+pa0iN32|Hx`xr_}kxB7jo^m{h`&u-JPv4rqSOpc5z01Z}x*- zEM6V|ZWqp1%VPL0kdAkL9$$Un*w4Ge9!yvKj_(TooF|^YcPDVP>=MCU*d6}xoraJn zzLjP?#80a|$^TKQ+DY6^e7g*z7yBIk$!*#{I+?)j#4Jx>2CZs)st8Yn6ZoF_T}}L+ z$iGXxJo7yhZXkW%wBz-Tcn>*U{N5A(y8@FrU#3S2+zH^prE)j%l}!F$Rxj=rye8sf zxeu01=#=MTJGxd|mlvPH20ioTyj25}dHU{h;X8tF=Ys!qjy|~Q`_3D5|69XkstRwQ8I&>bky8* zwsQI{pZk}jas6E)-I0&P`{VYL@Ou){-6O&g-xv0hASd#H^4pB}ImE+<-!)ZE#8ae? zkQeWP7N4&d?6n2rW%4ll34H?Zsg%%xYPbb|%?Ed329LMao1-s-&563PPx;S!a{eGo zvv`BXXAFB%|Bcsb9B$mSBm?%Bg#Jo>qIzb2M^p6ET&zajg=c@N*PC4&e0*&(*^e^I z)m1VVW1M=e0zJnA^MRzV`8^%T5dPDm9*J~L=X#IJw#P60JtW3@u%@Fla z?e8vkXd3@h|{7HnPI(m&R^r_mHE4DbZw;IDk(yM=qFo$|VR zdeR@-Fxaw}z<=&-&BMk1SzsMQ^OQSR=#6yG-c{v5f6I=G>5m#b5uZw-;kje!e4GF2 zJx@MdO0}QR)*81;@e-QmwQPOf>z*}n^XBC}Le6oOf|Qs)N#ne{<-30N=70U47gj~G zBAZ8vd3I@pE0CP44Eq<_)Fq#-PPpr^FX=IQn<-A5B;w73z< z{;B=@K18{y7#d#Wj~(g!`X=MXgFlpWT+tSjGuJ*6w^E{CQ$Y z=))m=e^U7)uYPA`e5V?)0?>dTYn<~InCHToRsQ+UbyyY1RRv1^3Loi2d_UtMJ5IrR z+AU|{&ufC$cOtBFNVh>x>33K1LAv+vN-P;zuBzx+#o7mw$|b&_>GxF^=X{H5JtF-0 z1?Qjrd>88$cZgU8&^3G9X|Km1?(fW0&cU`~qWsr^ywo20t4=2#tPjLARzupGtgWde| zJL^L4SfEH>a=Pj~L+#7ZS3PzU9w-_X=rCYO@Y$5U}4Ftw7+OReubxNw|}=^ADThGu0SbWeAVlp z@w(smpzZn3(yji7i#e_FVVh8Y`GYdgd-Wj?=rfnFkanpBJpkREW7Dxr*2&1{Z1=o zTo7ZOGwuw3V%$W|P4|ta{JQXlND=i1G`2!;Ws#zOTR^V9;t2QU8he|zn&-`NfEN&<>;C^_AO zwiSByH5KS0K3XWo?;IMl?r{+$sfCTd)Bd;QqCMK9`Xr5sor`{Z}ro>!>I3N zly?4~9~T6VL+qEc9*9>@pqL+%)0Y)N=XH(f{oGhd7yI!`MmVWJG0!4r{$0<}`I`T7 zUv&!PdjZP=38eFF#eZ%k4SKnNQhG*qI%n`Fi;~A`x1I1iGoarBU~M45*%Q;q?&ac& z>qmWa9~0%?{MmOG>kYZbfnq*LPR~O<_B!*9*zzT#PP4gnSNAtdEd$`dfdUaq7m+dF%Tr{d*_Y2l9h~(!9gut7yg! z&`_5$UuntuLjEqGSZ^Tb+5Pv^ddRGHJvXjxtDM7YXz{iC!JpLrn7nQ+?%LymaNEJ6 zsqcPgf9U51O8MaS_oQ~vzmy0oSCn~Gbcj7IX`buP9!`7}bBXqlGJmk&P7H#6cLT*b zmEkn)-0E-AO89nV-!=SpFnIi8e_S4J{z>Cfih+F?hWg_PJMXc_g_rPP{yrw*eJ-~3#<+#$b0_lFPvIy<6uV(C4LcXG~~tr zrFn7O;k><0{<`@4v2fE<&4>FDuLprr`P5F|{1uO%UPnonD2pff0Q^biWqP{{KH|9; z>$^V|(fHc#yx4w!I~MU82b9X0R;}WIsXgr1Rp~{ zQn_~2*g`x(#`#oYzle*4zyF}NOX1eP;Bi5ewa+#edP?)uO$Cp5yt;Nr-0(BKlyOgM zrbGTIpw!=*cDwc3>(>oi*45gF;bJY=WXMkiO6}m)&+njpnPJ9+tfEriqeJXzN$Kgz zzCt`6ou_ATy4dX>?ABZR?Zneak2yeTyi~ULL&OiwrSdtczEa;~*)+(%0F=h9Ih)s< za%wpv=&7#M+j?v|sfAN%RZFn8E&~& z`<3Sq&hw$+<-hX~-4kOz#ouqvgnoHIsa&%g^G{Mc(T)ZNCyQvDtg%@LXEv|`kihdp zqaV;-+rQ^7xc=F#4|dmgH8v0NnGdWQh+kpMU6h_Q5A4wESH+Iuzpv*)==CX3D!=)6 zE&7Azsr8S2{`V**tq0ISzwYcs$ZrDP3?wk`Q)DHlojeyc*xFw-f7ZKNJi)b)m)aNq zA0>D4`mm;-axZXOizm1Y{-p8}IjlA3+xpJ;R(KL|>}ANm0+iqj`6a;GK!UTC3M(+a?p;*(ve_?Z9_Y0cDD~t1yN9IR7B+i8w|NhvUh}T=dQa}Uzbbl3h z7QdeP(Cb~GH18Pu!rT*F&lkEX>miO1dswh<_;v)?wM*J-D=-PmtzteoqzU*GMG>ooQr^xF=M022J^?R(hC z>UQb%R8C)IyxWj%hTQu=slP4E`S??>zM^c$6N}Q6`JerJwzeRg4}jA8gs0UukJo%1 z-9Dsz+D(@a5f1;brb+7sj^8@Lo}E@xX_xHwM;h}Xyluc*K!Pz7YZvnRca8hXKZ4v= zpfvyUADnan{)&HGZZ{u3M!Y@&O6`1X{Z79ie(HXz-SuR<^Hh!PfPT9}^MUk>NB_;<+o1r@Y!%J5F4SBzwqk7;i;1rOSMq(SY~cJE zr5=7IkyUg2x~R;~?(7aa?0NZW7uMB%x}eUnZmduFJJ&7#sWaoTZ^_KlpobXT%;J%m ze2uaRcpuM^j+1M~!+^rA3ArTBXIR~d%U#26o5{;+(S`r+5#hp3{51MHO)I-`B%adt zZS-`*_v5;A{>}yQdv`8p$tN&llk$P+B-oKl#P6^#wp!>Z-ivr7b2)b!66O8w-9#7N{e{lJ@I}>3yKeTPUjGRN^j1aOX0u!#Cy0Y ze3Qo_cyNL*LwvaR3XYDwby+$)QDRq3&kt#AtU)xK+lzmP($84*8*y_gGmJ+xxRQ45 z?~r{s(+*#aK>8YLYCacuGs=6BAHH<(x{!Vj5kDahyLPuGaebt8GfK;+%>>^I>Ejc6 z!!6<|(vA2=W;$K$&A%u3IxLgBHNl$_;bp)s7~D*hJ5fFoksd-m0r>#8;O$X9_iZ+^ z>YUUJ)@=e=#ygn7`An74VgC#973rc2H_E}6(ANPyeL`P>S%?qZ4!AWS3-FjU;}JZo z0wo-dXl^HyN%M{&&XuIt*MbRYbN~XX7KQ*_U637pTYAIcHBg~ zD8G&1H3#IW9Gh-RchmmbGthG$zAMtf1HG6MU%}VX`||HFpbx0`;qQGw1|V>Hnl^@O<6!`(YC_YAYcz9VBw=Xze=!NndA<`duxP|_B@5gtjJo0dWYI$VY z{CC0o67h2PhraguJv4ulHYZ+MD;=eFw@7>ucHFF~z8$ z-3a+xfK`D6?$RSKIDL~-Yn)x5u8bE0_q0YpzH-2y@2q~r=`fB1)NO0&#ea^n=BK3~ zFO5%K3!{#Eb@QA=Ju4l!nB9FayW=VQwH^On*6#5K=#+nuM|%|DHabZ-qk zMf#94+t}CFUyu9w@hwC+$L|~xSS7ecd6v@CpZu-n)5lz>J*#y*lj2Q2;%%m<-zn<% z?Fd)sO-}QiE<0LtQkUk;vae=}(LRc(r$P@=-spFeXQaCtrfhkok+Of?+OlII>fH?p zm%!0!0-YmRZY-$RR?26z#S@d-72#7i_?^PujA)1WkKyOLqz8GmpYL|(d17AYK&+&7 zfxL|^$sSA8+4YlC|8R=-j*B(1%8!s2<%WJ=|9T&~hca*Rk!Kd4Rd|!(+xZGkmns%d ztTyzN!i#?L%dJ?y*sJWfhF{;+@WM^cV1MDSmjwIMLhQ+je4*&-&I|83*~Ko6l4H6n z_er*}`n4FOiv*E#yAt1P-ehWdTPgLSc?eIeTEJu5_2a~Ta#7jyu-mU_mOZ(~&`;EV zaxSd$E!i>aI(*veyK5>ufF>*!@{NEcfCQdLJ`g<38ChY~m9w0Brzt%hyFHl;uZGykprM`lGzCia@8)xhKS%v5EVB9+ zhj5w!MY~N-{f0r54@Jr=w7*{20{XQCihjw^Gkz4^r)=u^gK~a3{B}akKYQ(x{rI&( zyxIb#cEaT0n6LF%W!!2%yl~^Erb~P17Y~%iFL5m6l2ALvWFSm&fCp*`|0UKyt)I$yoa1Cru|L! zy-j;h>b<2^7=wH_pw#Yes`?V0E9Fl}``HCQbOnm>GC8@OuL7g}EUI%L_S3~~IkW38 z0qHRXD7BvjL$VG#J*$VeY4t>Zi?7PXGFT$yGl5dM_f&lK2d^XH!>kW!zbCl=@5PcJ zp9Yl1*QeLVFLnBS2j2W`aJ(|Vt;2diz9&$cKRDvb(RqIJe#b`2IN9zz)$dG3IH^D} zA15d57Z^X>98%6wAm0lp^<(;>&t5_KEdKKj_R0%gIfZzo1Eu~iKQS5m!XfipyYq(t zPpmh>3yga-pX0afq8Tan_ACqfJr0yW_e}cPsco+7UD+{()s}wHXhFCS+(Usvg`P*~KG0Rh zdWgEOU&pd1Hz3p>tI>_dXU204zVls>?+=vn&o%8aI;V?s>%skz-Fo|P_hWX$^E>ZG zdJF+d{dE4L8;OUy+IZCaXd;*!@`Hg=yX1K7!9A!C|EuR6{LW#B*S$coen(EuW28R{ z*CZ%>OU8ynJ_jh)Gs!vLwS?ADejob6{tInF&hdSO>Qes4g`P%A|6tedq~AFX;fx2~ z3?$%oajuRle7WN7%6z3>h&?%JJXsJt9_ z|BflC&6R#7%HoMV3xCo$WPFF^wEwW?+T)k$kbed!_3x5B>i^yG%X5g=^FV36$33)+ zc^xRogqE}L+OyDhVm88=7n+`P z+t)ed)XWn=>V0!jY!2k-0;TbbWBJQe9}2IJ^`80A@5N9(a~H%@JNRGf(E`XX1WMzV zwog2U`-DRHLiY3BZvNTz_Y&f@7bu0&M%z(vwc^EdF+I8T9%X zD9uv~mi~0fsZYrm{PpYotbJE5mSFM3*27;}paK8czQK&2Z(|>8-<FjVRv21?|d8KtOH8p-B|Ys zaqmh|-On5Tcs@8?!e5^V_7@RiPfl7#iHtl89!E=82(Q;}|F9A1D0orQI4iQ#B;o^C zG@b;dooK=~!QXp834DDwKe-Ak0)XWp%twYueK7>3^IMN($0&aJUyOs3(=i?Wgo*MfIdTj+t z?O1$9*$$M($!%Q==$=;dv2V9Y${+et`1Lk8U8;oGlauOE z?C9e@uQ|T1-A&2&SexnMckV!X>;y{d6RWP=`Uc(GG4$5CrAsRF)bQ7(g5wv#b|IY4 zfKof(cF7Azc|PdhDC-QN_T(ggdSRmlUQM5B+Aj|d&u;%<3Eq zR`U_>)kDXHziB*P$%iOb0Qt{>(mJ1cUj%=ht*jS>pDw|Ah95t>>se|&G7h@W8()FH z&N-S>J?FM$jgFB=Pn(-DHC+C_4A_MkyA08vc7wYIM~863AlM<{?#_QF;*?5ud?yPZoyJ_+vyQ4Ma| zN9FQ@z$Nq&`ogWHb2+yQ@@X82$g$z#UkAtE)Qh|0ggy*%Alz9*H4&~LiivOpitt5z zQrT?%{z1LI?Zy5&rGHxc1z}h#3FSnD*OiCo6Y&?{6DZ{HeGk%=cmtaG2)9V@p6so4 zr>2ig>&3b(sr2m~r+R_lk&Jvo{^Tbk--SQrJ61j-y=cB{2Imv$5J-RXy$%Cx7gAZ3 z4sTcP@OBCh_fV+3Nx(TO^iSso<%SA3km9%ctA~cT2M;ccwD)dOb~)J5dgSg5X5u(DYA4HMX+c*e@*uV+sL_>Z3Uwx+T++Hwj9s zGm*}{`Fjn&3!;|};*kSLgfKHaO}P88r5{YaQfV^`TP?zO+@d_796CfiL^`^7J*|iE z2EboL23ta>t&i*!1ik;Cco*PzACL%PrhbADW$7v6hu`zy7V#AFqF&@fFDv~KU%$xL zbe`X%@ExXp5AuRwruBthz$lS^2*(Y#)`!bcI-B{^Ubxe_p}n_+8{Zk<2ZS`dzXoy5 zB&fYR5aIU+W&_3hq5mhs)}~d9hW?|3t;$5$+IB6%);3PqTGcSH5WGy|kF*iu+xy4& z&U%~wuKn6vosGrsCP;*>k$7Jr@VlP2pDw5!GjrL~lSi|`f%i038D>pT#6YNW;P>25 z4rso-oRiN_i*~avf%nwG^|vMrrSQIL;P>nsa!&C9=HtDr@AID>)&Pmd5auI=m-o)N zl0NOW^WBC%rW#i3rZH%>%CKhCF z4ftbC=hMXShO~`mrrl)aGymD{K?lFHJiaf=rL)$Qb|;3>7GbLr z^cCq!&MU8!qXRYO<9FH}u$RDh#dqv31XaOzY6GSGE4cFAS6)ZW8MT)rQiCgpM-9BF zr=omG?aTBM?M``prU}iiN_nYg5w@!1dm=x{sjvN!4$zrT4dpJvG~ zSIfdeUdRTR-F&bcKaDw{UkhMqAVJ)dhfjOi!AU<2y3ora_?SQYT6P#;luz%e?d-ufWWl;@sZLFhJWzKZaE8X&#HtFwxo72GGgCVuhukW z)b!UJ%EnSND?e!{V?I(na$V?2?dNrJ0exfWC)!8R@6u~dU^Evd$|&t%EV~o_ngFHz zi|u+*v=jc2g|%?o`QUsAzuv0;;-FtMplG+rng3xG+UPMKb)zo)@Pf;k{dOYUbO{d6 z?`(;9bpVR~keqSLml45zOWWVx{wYm4Kpt<6pW4Eo)c@taaZ;p9L#4h)veuAq1C-jO zxwqY^G5%V;kj!qngg<^!)1@8sYagm-{$ppv0(|l7*%A8n2UY_T@D29%Gy7EkF3BQ% z^Pju1PLN|jslC=x=YQ?>RqJ+lg_GT^@ro&?ceTdbPWY1`Zopz(IO>Qm_Wr#K6zc<& z$1mrXkU_T}TUWgCc*o#_;5yxu1^FzX80V2wFH@I@cLz%4 zsqluIh+uS2nZ`4Iicu~!?r3`>Bp%@;0Ht&F~^Z2wP&F zOW$=p)|iOZ#(BL(6_xQsTZ^!j4n3uIg5AE64!*{wY^mL@lro-ZZ4tIo;7`nt4d>6s z#jjT@G|znaY6yY9C*+fXVt!1{*g+rsO$S4bj&qkXE(rgidvO0?cl;8;dO<%IP%bYW zzW9+0vl#|vzEunvRbi=+PXkKrXYR~-H#7cP?T`Nb_A}i6NZokJK)iYbrSx`;PNjnY z`G$eKpOtj6n-Agl4>v*|4tB?p_Vb}H!oLeBwM+cMfZeqJ^K%nrohZs8Z1sabF&`)A zj$a@7+9}47QaaO5;cvJ}<(B-}9ruKv55eKt_csvf;RZ_MYi)ZSnpb^628DBnE93IU zOc3VohCi|HLr%x5kwm;QuOLiO`ak>g@NnxRz z?bbhy-GlVV0ZR47_4o=g-Yx$1tWnT!4p1r=x^u~HC)@qb{iQFAWDfjpf}U&{_IeWU zrE+avu;loD?qN#yS>Z>wfr?#;pZ=C((MVdEj!7QqKPQ_ByzHMzRN>--AGDomM~c2+eOz zJ8mzv_iFm}aWK?gzWbfeAYQXWVFcVj{gvd@70b3iE{T>Jhc16>{?J&Wps7rWzDjlBTGWxq*_O>nQ7=QEWcs7XYPk59^hMbw&M_kos<~ z9%*bL!g&!W^*hr$AIHTTA^Ti*$H{i{&#phsB5W;2{G|0BP8@%!cC|Z7rYiYhcmG{u zOAyXdpfsP(`7-{DQ=3Hm#pmlQ`4`PzfxHJO<$HYVvuNkFvr0Ys_xmw>DMIQb}H3(MEB5b_|e^UJ$PJWjUX z4!(hK)&Qk?6uWZL_k5g1#Q5O!{P)Y}ThMPUP)g6d_!nWIS&LJ~ga3Ye_BQle4-AZ3 zHOHQbUvonvWpl0bLtLymTL<}ffKq+Ay5y^iJRkD<6np&Mg?^iXQhVm|T!F#XzIR#Y zvA9?q+W`6ZfKvP%S!K&G^Yucew4ae|Bjh&$s{;ufPu;zZ#v$gTq>J79{_mHU_Ynaf z@Kzwfk%_0hPIFyxXIEvtE|zV9+y}t20e_ALbBqg!jHjm3zStk1eaJtki3FG0gTgY6 z{-k!-nD_sxtiOccE(Nz|_S=__pyyU#IUvFG(y=8OpTAdA%8T7}v0Gju&4aer;)!ev z@I<1hEq<-(TjLV)QrWzhUvH}2p3KJP9{0Etlb9JRPiJm8o-&%ki@Q5OF#T$Rph5H72gx-M?8QZrcZrfeIgtAc=J2; z5{ax*%B4rv^-Q!3Hu3O9JdplziEKHU89F;8kv(EOzaky_De)w}0XNJf;w#cAkk9=4 z-~si3p5%|e7j7Zn+2VJRB_r;R#G;qkdodTJ2FT^LC(4U-mL@53Kc6GB?1o3E?+{ ze&YPUCJeYBUn$?sc#z&EZt8(^_lVCm%8Oaf4x#)uL^_M|r3tr44-r1n%YpJB$`k2T z+b}PG5_;tJM)^m)eIow7xqifZD9pc7ZuD1a%-B?}k_v-BqoBX2e-xi7?N`x1luwFh zcjK9whWLr{Eij4IF`gmdd+h4V!*c%=1r*Vw)G|n~+@HBSu6w*on2^=?n^qbRl;j8Trl%C3-2)w6X z0)};Zh5F0uUG`gV!R23@#P7e~+Na=RBdl>{OZY1j_-?_5a$kE{h5wXnx+$AA4!oxg z5SO)na0}i`<9TiDffByFv48A3cOo7%Oud+}j&%-7loR2fygAz4 zMdy3|q=C)W%gQ=!6>Fa~65)ybCnulxo9~Ni9&UGjWOu#J@2re?iTR>buJubd9znUT zrqqW>>zrOy_!sFz&P}&x(M3Cj|J(Z=V*Tn4#7~qPa&CCD{L5Zn!|pXY|A$!yjks8Q ztA02_{T0@~mG~sn<9GQE)DKx_xDE26J*omXfv;07x`40HFxgi|nQz*yN1D|x)8Y`X(2s^d<|FlgfeXOM zFqm2&8bQ7ZP%2La6MB5^)y$cJdJeFPHJ-T>{-p4%i?NOJD1DD4?XJJrO&9z9N*v=?Uxu6~Cdkc<7e^4AckRKfJe(rzf3XQpYdhjwhsche8OyTub>w z{vs@%Mi1yI<~_zopPxYE>moI@VRyYef+a)06rePYjJz{joFBZ^ny+)Q@at`Gx`eN% z>Ms@gy$+P-D{()ZDRgR$=ViUnZluL?F~w*>Ck^sX0;PU>VRmGJmu0`2Uh|uwRy)i6 zWil7!CjiCxmz?^mBQ|<{F-xjGKXnk3#)ZqLHsR|~F3_VZy76dMiu1-MA-fSskC8x0&w_);4`ZIAo{Oy#!qbrYhs{m;9me=YT{pE~&g|v8 z-FCw79F6oC1C;s)U!UhM^7d>;cP70j$+)oBQG(kgzw=&%Gae|j9-v{~ofl|90xo-vK-w3j&)ToAXuF|d{qzb3_{k39uN3fe z9>MLr-F7K_J&US;cog|I87P%cSL03vWVn)^o^EB{5yd7#UI$9$?B&B%zjNxw#%!(b zN`G6$GOY6i{E2-baz-tvc*3dW8W&}hQsw~>>@mnc4wS|{dF?J>{_sD0emDGl4=$hf z>(LaX<3gYW<^|rqnkA0?oRMYSV`ToWceQvL3*bT0=W?li#6!tVf4x`B&LQL7ry&0v zP%3A7`K4q?Ip#M#<*It0PHW4s&NJ{Q?H_qcj;48zaewfVrpo$YJCjCv;wMBi+>Y zy|N!*zkLa>pB}FmR0_9z=6?`eKK;%Y5wAr+sk}rO=ZrOj$L{H??Ef{kJsx}s;j98m z<=XdHqY_MSp7{Nhd0mwC!G;!3VkzAkEdPk^yP$R{v4S#gjkOHxEDMdF{@ipr zmtIh3c;WX~lzTwxSUina;7{r|vk#`y{7*LwbR1Q9?Doem9)z^cQg6f8Q!SsbBAnNN<$(l+!=8SZ@_`#j zEt>isZaoT|JAyi4*N39gb2S2f4=9Zb{FmKFo#u(if=p$wwZcmhV#@%&vXg`6y-F)0pK${%v4o zAVKWT^TY>&A>N|Ozwp}m&~o+;^x6QF=2gC)jcHux|7*v{53eZgL=0OG`FDX5xEtNN zpW^o^-LJS$>BsD@^VzNM5g|McIeudf7e*tl~)&K8P@p({-l1|^W^*IsU8{6 zA0hqUcK(C*F;H4h-f{HnZ;@>OtLr@)+ktrP1WM_WQ|d!8o-h9W>D|z;04R-L+^?=b z?9D4V>C%{1Gn9JUjO~H^KH$wjf`cVKBtv%XsJy(DtE|67vCkm47bxYsf5EfJ_Ygjw z-S*6GeX#HEbHwW)ur`pum$ZlW$9_soz1V8FGQW*s`yqD#DAhk#$+25eABw-c9D;sd z0Ht;}>5k=l_j!>OkwfBKGL%X^-UuA7CHnl?M ztA$e%xgD5h@yv{k)`p|r9PVbomOutf0I#Vl-0fiBq$}*^bmQ+mK-$*U%%?jL;nB6A zoWFzb65ou=b>T?Leju z5;zYhMfex`2)Br5D)dMLLN8wm_)9`Bpxy&=Nzk(=M+f`~J{|GOIDZZCAs&%tK0t=> zh|k2|r?Lm?+}dFF+b-5;<&bd=tEF+C)AnR$N(J=w6^%kXpi#BR1Qz89fnik3x4dr!c>(2JvpZ#v4KC|^h~H<0*dTwb^{ zxLXtX*O&c0{ifsJ&rD}24Qqe$*P|}B=CN&GwpruiJgK8;y!=^qnc$!D!TfHa&_jGL zmD>+XhTW#;5U#Krq`|)r@2{b!S)Xpk_bD9H{uJ4JGQ*?%GI?ozdRuNYoxcV@@6q1i z8H(S5f{*s!><~%(G_xJ5n#sSD(^U z`V3~C!uuBA(V(~B8D4{@$L+@TL3u;CzAWh72MD`H4aN6>ln-V+-|frg3Lx)*TLUtn zuyaJ_Uo_(pd^_UF-Dx}*2BDoA%74!r!cpb#xkqrGY3yD6cU|Z$@(KEm>d$`{;rIqX z9`D@)@jHa$5^8AN1FHgrZo7>nY6XF z_m5_inU3F0ka&7S@xDUfch`|KpLyA;Nl#5(F^2UEyr-2xw>4f7tIp-bV(0cii9q zsI#Er(Sgejxr5L7`7*6_JrQpyJtOz;D)j1KjW{vvmHwzyIASYf3`cG^*hVr`{jVr`XA>7 zUNLxcRju;D#q8!^s6C}h2$w)_zWg1G*NcC>N|gVG&`&B){$riadObfRU0zHB=i37M z(_h`K^y3VARfJOwD8)~I)%CMi>rp1@#f4GIJk4%7(=2-kBE3o>TmpW7sp-C`tiwiH=U{Jz zyhvAa>LVKzIt35W?tV?t%(v{Wi~5~ned7+qPvi$V{cYnZezRJyd-sWY%Kly}>s)ai z_>g<4t@h@2_><~8=RuvFMg+!hl=ZketTyBwKnZr-luY+E zn)~a;&-1dkPY`L@Q;J2zr2W#ojV;Lzg{S5XZRVG-`VlS`!|Fl40q_%eyhJh@N}5kIpyV$6Fuat;Z_kPrK`C_S^Y3(622}%3t)CeJe1ZQS%NPW^0HyO#jzhQ8{WU3j@)~QA8nok z|5e$4wmW~Y-#;Wmza*d>57!*x<(lV#>nih{@cUaSohbyrvj@WI36#opM5hPDy&J{f z?xsM$ETA<0jO_E|L9f<(!Li!Il9cgh6U&}bD*Q?1THjFNJFjl8+=cGT+Z&(xooNUs z6DZ9exP2<)y<6p7MKTxU(}7aERM^2s^}%H#@G@mkpHiPn!P~KTqf`=r<53=4a$|Ol@|= zsjV@H3O6e4XB6uX`2j$woE4nEN7xxI{(K(<{q6=z^Nut3?-ci3761CnVCXj_R8QB? z+e)zO#lF!n=r;{0fj{>O_3x|ZkNNc$H*-ioXtd!p9Payo()=NB_n4Dj-7w#q+}pZ` ziHmh)BOpH-D3!DP?n#HeCT+Y{FJ-<`&*JHgfYsV$m!I z@*{y_y^x%ocV*7|%PaLE{Qh0;hv}QP$07FGGtIK6bT8s}?RKfTGJmk&KiJjte(3io zP#SOKoxk^6um0w5gJQSJ3%GJfzCQ^0hk(+0h;;8p@wbEHpx?tlX?*5+wAQa!e<^ro?UZ&Y#^UKshCgZjMLYQF4yX3Z*wK$? zJCt^*j>Xf{;ZG``IaME}e)_-MPw+V8p8y8NFM3v-+c>vuJZky0JMRd;J(KFQp+MN} zV6Z>G^GU-uJySSn(*BbB&S%Aa{l$Op)Kk#!X`s{(6da#&{j5t(hkh>srE=!3rJr%? zGe23?H6v5u`?O%sKz<=mD%YM@8(rY#EUt^PJ|AbLjMtm*vDJuS({eE*M^veTE^HlesZDRe? z{<%A~9?e2Hvw>3ij7xiw_B*ZE9{a@RQeci_1cqx>pR|e@rQ1I+<-1A85G*Z4A61Ll2yL!G1y%qx{a6HlRN6NqJ zgRk`p6x$D!<_V7Gqkebh)=KL1$iBx}11SO;9W3*}y%Q*vPt$%3n{;v1keb7-{Y5U8 z#Fj#S6;Nt-{a;+6`E)_|BmOVl)_ts8tUFr<`B#Bb{(8E$M*sf9AZ6Sd$(BQY1yE|Q z`8dRUU;KQL*P!1@V90#Tcz+%2cf1b$Rs*Gc&t7!LFJ51LZ}u-6GnIXWt~TqRX7Tja zAUtVZiH+uD_9GiQW>!r-6yVwrzO@y-nD3!Cg&YNl8PfuZqZq~UDF2>kfkbfH} zjn7hID(^G>X@9m;=3@@F7V`N(slPhga=H=T_0dkOgMRM1+7mw z8)w{no3h{EoP7v+UePqIB-{jJ_x}A8rHirOxJMZm*d4dpA5VM)y|x0S`Ltuo0qXx^ z$G!Jgmz$OObQ7EHncuk$;d}y=`oF6k&JbTqGtM*oqTCnWm~Dsr$3Uq+iml&?{9Pya z(|rp4b^xXEi$3r0Hq?i`$~f6!Gd;sEFTv%y3fl$!J_pL}#NcTWOfwpwwb>#4!*0m$ z0S4AJw7m1r(Rmc3SVsr!V{kFM=lT53&k#-lP|A1hr`t<0%{2K_Q)!o~u)UDq2b9JI zo}Tjs@A0gX4|dmI!auJOoDbpWpVSXijKU8u*q_D@AU(bWO8P{u%Ky{pGwgC!eps3J z*JB4Ee;6pW6LIsdQvDs}zFW z^wii9=yw!Y8%S{e&<1Mf&8PU+KaWAL<3OoCT&;G5){_l>botC;-$(dwyucFyUf|iA zHSNvUGk*X2E*E>f=HY|Y7ALbygF63odWx_+*P8KIHUoBM6>hq`Xh%j5HZA_n?SDRy z#MYG`eAkQ#3E+V^A(sGtQYX0Eanw7*&48U*N}Ff8xW^^3|D^WWU87_Id)~dwJ146v zes9OpYMfm^Ikj7`JvIk;e22P0t~*EK?P=x{&-PvHNdI7e?P3D#VF`X!JmeBM3j2G+ z12gTqElcFQoO+3zM`rQ&AWz5l&0uJIk7E)?ng*NvnnOK#crPb$yIZq`9Q?Z>?-Txd zDBr<*mV)o5;`g2$1usrZ=WgOlnRe(N0blQ(RIW!B9^&5dOC>sAs(csW;}&LFT5A_>#X>S_W~0+ zAFLnJkB*m_-;wg$bo-Fb|1Djak`I)BrX90;p|>v5Go6iZeXc`|cU`<3OicyfDw*>T z`}g4Pchv78zLZW}KarmJF7YZ&J9|xBoX^%;$RVA5BAtPn;P*j}%9r_F!Os-=Cen|1 za!n2TW0Q1dX7Ae~KFB8rkO4KIPq>A=K;)NC=otuqLb=ne<{pMWPjAGhH`gx*@BQMt zcrU^!6yHzh<+Li~B)!bpPS4C>o?8enFO!EScxt{r+|Bx+{0n^p`uCdq!8AALh;ru;dW-U&!TGH%g&w`wJ;rgUr!#~3i~I5WLg-aB zi+`8w)tTSdfO=oN&&GS8uy;rNJTqO|i}2vjjd+W6p!l2L_4VfEZ7+C|tC7wkAM_0N z%yfDp@IBJUv=jJ?kQey|)Pb>(7yL+(FNM%g*b5~2&-T!hf_QmE{D3~7CiL&m`;FJ` z=H=)H;A^u-@f|HuwQRN@y36>|G;Gt{r1P^hZ z;KC*Wp5S~l=0WzCJlpQy@6G$zcj}jYx^<7LDJJm*Tftv>AVFNa358zYyblg+e(@fb z9e7U_A;1%Cj`z|yHu8&A$Gv&+59m8;^<@s(A9bKN!rfGU&;Q;wuGLYeZ|XynUq7B| z@l*Iu@z#D-HTaX}`6i#rJnvF1-m-Va#R7JGgnTso6BHg6_jD!6(lzsYGo9jY;XAOko07`lm7P#pi-jpr1 z+kI9_S+|U_+BdQOEA*w$6b|Y~=a}6_7k5bEPljI~)ch0s61AbH)P9biJBrrJOw-2O zm35kbzr5TI{ptXv`WHL;IPq#+1`+a<(!PYRr&Jz{5Gx2$el25g;XbmP);gI7yozf^;!F@vrhe<^WROT?|wW!v-Ww{ zUhlfS>s^<3y%h9b>jJwd?JlLihnoAhk%%YyBLyAL^ge9I>tbKWuv#v6Ap@j38IO?L z6v+Q`pku)moEY5#;mXZTg{)#w@Pr}gzmtK}I3#wGzJx#YIlzOm;$HM05A zKL(k8_zW_dsI>xp3Q*D`jr$nbh`7FgZp}9BPdQn-`JFb1C&}y7!Q*JZU3Wy^G}H8V z%*onV9LF@)7U>9qAdN@1+-2Xm+=G9bGi+qMsmF2hR;Ha`d&HL@{LAa)KS_U_4VC_9 zT|eu91Udqx{(kkXPXC>KWd{D@fkH3QgJ)`!9o^ORL&IuxQ0%apvreFo1B&?v1tUBE zNcZ1$9YQAtZ#L&OoUCzxKfkJoPvH4!GTonT*twKc<~hOZ6aM2^Xn>udBtJu{kNFhx z^M7Z5-+z3!u>_P~B2dz=4L?st|638OlxOgIh&sL}A)RhOX?~PlZS+sPJRR!2u~z$$ z*Pe`Yx&y^Lkb?QIOy7a}D=PbC>-%Uuz~4Bar1zxetUX}2ZCo?tMAbC^bp~4SO$B`x zP}Y0Ok2vFUC;YJf=WWU6Ji{QPh2}KSrvs&aq}6_o{LB=wAKVP2lL?giQRe!(!hTCV z*Ky;=>7L-PKQKTpO&T?zdssri`LAA}?+271wQm;r|1jj4-CP&qzekwsRDBUanpe%6 z_Y>VStoxCBu&L7j!p(cI`XHXvk62#^oy*a52Se()0IU5r_B>wwI6Bhew4=pKnc8g z$Hcs<_~msj7#j_g#!cJ)`NU@k{g7Kzk-Ik2PVgbblje=?f{FV2r~VXw{>E@dw6Q=* ze{mZ6%T@iJyPuWytl;%swLd(JbRGff#U~zq{xUPF(c4p$bB0#?L$LieSMg^Q!X5=v z6M>ZklZ1vpa6SCHdheW#JqEh*KuMnEbzHEC`u$wwulWS{a{>d}neo2(&nry^e=~s6{GI(W>wwF>aLyg|?n+n2>1Z|u^izS- zJf|@7VWEGj_dnDz{rNqGcw!x!f{shCl3rju#cy9R4g5U^l-ilYo3z`d<>&@@H!1Bp zf=vhg(?Cftw>8W>g7tazo)N3^MKkRLpGA6-{DD1y{(~xat&W?)$`{{$G}sDSf06j7 zs9yW?_`pj*NuS{7S?mAVboA5~%6L@A^yl{?;z{$4aqSk-exq(a`Ev(8p3x2lJD?X!@t*+5BeUHaL3`$_-QLQch8>*z0ct=4<6 zeC7uD<(mWkJ^@PY!u!BGzuB)|Xf`3T?__fyhLd$?b3y+mP|`yjRol@07Dl~~Q0Dy! z>=n?@14{CGT!~~_m-?+RyVkOP%D#5+{`~yQGlad0bY2Ha;2pA=+L`f0D(7|UoBsUf zBZ4&E=6-iG?aSbty_#OIQAltQre7uet50DlXC(mc-XyWjVBWuMZ<@Rf>vC`r_*x8<%6s}(i9(+xf7`21$6{2CRe2TIU)Y|mtw+8W~av3)=gyd3xnjPhIRL)Pd zV5>mC8Yqp^k(WLecKOA>F8m(&+X9r@b-~(QC7Jfafi<%qX{PAA&Di^(cLOE4R5*Lh zHM^!?pR>J=vM$w_tp)x1z<3Tvh0kf7i0a{oo0RpX$N+zSQoEj8>Z;f$DgN@@fP7)V z(tL8n`NbrnO+aZr?R-YJ zXT*I4R{L$y^grw4rd2t(8RhXYP=eIXm3}07ravW>b+;Qo9&I)F&`f`RlKx_QrGVD; zjT7)iwQp~|9(I7woj_@xYJ2Q7+1naVQQelF zP>RM)8a5+Oq$%@F>-xkYq;nW3jnf6^kF4SC)6uku%Efy7{5w0dBR)H`rDe(3y2_g+ z5_3~ovgeOQ2fyvcrZhP^xk+{$`$;#`ni`~B{@&e% zqiGK%^3xITV>oJUfGv3ZWvM(Y?6S!IsbGCxi#J!Nuw#>{g1$>eei9L{Bm4QSR-3-< z4t|9HH`Cq;-y{1kO@HXSF-Acq!k$i)i<)0wxft<;J)T*fC=aSf<9APYj)HH~E=tgK zXFoYwzI$qK3LC%n-tlYC!ftJuNEduC5f}9vv|JjmzgNNUSiz4k-!@`4A5_X&3%=d5wALsAhmY>XD)Z=^yOvNWh-`D%}xDL@K@d! z&$wsIxKH_wlz??y(m{-;98l7i-PJEckM5`5i)^#Fuc4Xgi}IJ|7uty-bWY+neV?JC zSq_}7aC3d30{E2nY56_O#(Q;%g0GvvXBdzm^|>wIa{ZLnm!)#1pRDTbR`aKs z>tEHtUx<&-grC#5@OepmJ+mG2pTo`bPE|oK@=3wDHM6`fEkZvp_PvrntNOmx{8^vR zi24%ek3)UsQsLcaPT33ebL1DExZ=8JF#arUTyYm&v4aI`mT)(@v}|=!Kl2plwe- zvQL_|#`Gr_ zjd)W3i;8MPc9ZR1pOU#h(i}%PStP3u`X)dL+{0GVJb|XZP z(i^w7C)rmU>$vBY_1_2<3HpXWN$xUT?h5-k|M9`9JhLi4eg5PcgHNHyP%v^!>2+M5 zY1Z3W(d5r-ZwmhI2HpZB2n{b!_N2xW=oikKT+#yk$w}=qcl3YgJY#VAo2;CN^V(aW z{8|CU_(DO?ea8>-dS`8weVcl$CFo;-VjQGk=%9~rzKPc5O5t}7R>!~K*X7i9)*9)z z14`p2_s?M50Hogg6>j={Zi{$APoN-Me;D@F0q2dZ_rKukFL2+xJ^1SYl*Y}}8g8=Z zHlE)U{mg1TSd~j&I|PW<8GK6ffV@X8ec)pHds^5K^Ak>HW5#<5bmA{GDc;p1eQ1Bz zuwRW))_<+?X}$isfWJ7P)LuOOv+2BMHGQAGo-)3Nv96$x4a}eIN?97mj7Ob6Sm)Df zJBtT@2|!6s*cL85E2_7M>LK|4F12@^GnNGYo&rkqmF!0nH`w#{-F4{P^g(9-Hptvr ztQ+X>0ZQ#K>O@I8&-m-tt9pIa)6_dSSvQsp`hh@64z~XKx$Sn_p8U+YA?fD)i<8B$ z?x61nl=MMu!MxRWX1tG6_UEHn3g~+Q#kv6nxgTBQeQQPUiDErKp9+-p5M%zQZTszo zLlf>)`d@vE^M0>A4e9g*O7$?kWP3VSb5VDkR#DNf>#=muX8|R7UhwLzCtUpX8D+oR z#xg*k36$D}t?WqMe}Vp}>jhTjpw<2td^{=N#J6=mvyFUfT5q73$LqoOV;9i5A$?(6 z^_O6M{@w@a^aYA}H3iv2TS%Vaz6k&P-FSK3AN&mf)&dgrtNCIj#)HLwKHI?=(FOq} z{l&Of-gsTmUKv-cwimB`Fwz+Ul;%0!%#Adk&Zp%%x-Z&aud`Zz!OMC7_M(~o0UVK2fO3$Z zns;2SyX4n-EtT_PF{VGcQHUVPYxjdslfQJY?(eCdqF>ix!$Ch1D2*%m)rQl#DB~Pf zHAP-Wuo0lY4=BmOoCaBBACG%%O5=A9!S{Fndbi%r?nn9$0Ht-C=~q^7{Tq25y!@2% zO(_K5&Wa|U7GNhPwWr))3h7+_^qehcXI53}uTjwBt$#g)vC$~UF+d4+{#=>PhZ>JM zf42plo`3(ddJb7*4}-DsKxur4oT=Zlbah3ifo(e|dO;X_1oV#qB{|6FamKw>R|DkI zIM6=|tPCV@zC60%f4rS}?Guon$AMBiiyB+KG}D~R9GU5=-t%wwqd+@{C%~T*DCxVo zPrQ7}?lg9wJ1XN?@N!A*x08_0lR!!T^weu8&b6ujuS3~n&`$wM-_6Ub|2^7E@z2Ms z&EqsS75SP8l=eF!+dO*NWqV}Xx(9|24mj^V4fM|es{jcK8&3Jum9HOTo!49GxBsV| zSi;S{u+HvmU1aM-&w#IIfwJ6sVR` z9*j5%yzd0_61~&@Bc^@{BHETuAE-ydSCc zZk11K@vO_iCCJyOK&jlklVkt1JJ0^OrsgY8v0C`u06L(!6yYsEvENL=?B%Bl?Vi*Z ze&{}Il>fdq9sGP7^ecc;e{kydNw)pf?kSx)SlJhC6JRGMmAB6yARVwQh3|3*4X_iF z=BZOJ*C2gqr(S=RifBBtIv=xMe=CvSj|0oo{Q~(xcG7XfyFN-%=I<>{JFyQCPg)Pr zjvl1_V&lAf7iAoaHtodLBA&F)P;jvp>{MDeQ09L&wi@(nfYNxy*Lz?uR0h9uhzNQf zC$(EWDtiy#c^@eC_uM(xb^9xBA82*Gz(2j<>s@W1*802Gz7F|X50vHs=MIh{d7aqw zdhI)6m3j#N9wIe=8<5UsU>J~~eaN zQ}=H}On-8RP$W`&GVK42^}+n1ioP4owt;>(@D5**7FL;0^7`1I^AG)&uIRf>*>=$F z0!r;=-tZlt+O;;i9@$?RA41p;(C-9F`aHKsG~P!kZd`L7+76cMPdW{@DxY+VHdx zMZVNyg`htGl-gPDAICmJw=Vv5MQi;}GyTaOLH;ED%+{vNWz=6$*&kc)51)a*<3Oq3 zCLi6tkJp1|qEdh10siEq`AS~zXR0vcb7W8<>525p>io!h{ys;(P5@vZ)ZtJFzdzy%8v(jfplChuSST35ay(9IR9<0X5&DBRy*G6>bKC%jbqO>C68Sd<53=PIM*lv=>mnpmm{9P z7lvON!k$>X2QpDEKr&b|jvc(yiPNzpj`_(Ph2atzHX8X@hIHNHJ0e|#^Aiyd-x2)L z{K|+g_@{I={h{v~1~|P_c~}@AIn#Jp1CqfRQImEKI;{s=U$1rl@Vir3e94aSOL>yEH697H*h-HJgces?SR z5q#&1dhdwxQ0hmEWx98v3KzSx?Jo{&{Og@PnBlkWwp3=QA*Z^-abOAzN5PLURHJe> z_^^reMR@_KydNIi;Nih%mETiQ&Qker??xUNok_g^WT9N#qMSszi1Lc(26Jv-`3QqK z?&wRjlg^w!vwX#Sfuda{!H_nU=eL@u&lDb?%9k6^iSqaT&flwYA)e=ZM;iN<+~92p zNn_0_ZHcPX1^M>id$%a%Lha7@UM%RsfudcC^2*11r}!NPezP;cZze|#VUd4N7UV-u z&;iL{QPUqXtn1>AJaYQMo~-)kSBI~fk;!Jvd7#=9XFC6#+BeUyQhwt5)b5P(e=Y-t z&PbmeyFFldI28QAA=@ViYv7j*E_F6E;%7YBKYrZ@=~6p0Kv{~mmQ2uH^-ga>dG4(KS}KXEKK^~n;W{#D0vH<7{Mp}%r0cZfTd zi)`wfm_4cSry`Kxv}fup`;*$j-%{30Vq!zt_*pU-YzF$uzIcXXxzL$oU+v+!&paq- z{OlZHPOw5iU%?kIw2AAYi^YBU$HIjJOhXkO&*xaK9O$e1;??Q@{0}bUUe~eN=J)x} zVdjEES~VOgY5k z1%KeF1do9KeFlR06!O`?{2}fZ5127;J!eQa{Rne8tan(cHA{*9x!N z%iwno5$3`D`gkvmo2+9W+Q_kS#}}pj;#u9$4qom`@{v-uUVjb2cVnQCqZG{lvnE~4 zRIrSmlgdVaIBNv@yMR);9KG|_uOL6wh56v~C$)DCxO^fnvPZgCQBmT zp~LhvrN2k97|^!@N^+uczeVB#+8>nzI@asGHPUGVl*%)-`w{&h(O+H6YrWqF+pg7q z)DHZ01`7R$g6z$&cDbB-cR$`DV8fz4=sN(VaWi!6H9E-ND820K58R>XS#^RQH~sn4 zSVyGO2`K5`5uQ2UlH)afd9=yEv=hLcOvf9ox)&=?M z3Y7W-cSN!Ezj5Fq4*VqorSZXW)4tzbTA9@9KeXu)pwGvHJ^?87Gz#XeONYZDGAQ@2 zKda?wwf;g_68P&6l=7E*$HN77ZEdA_2OsUsr2a*e9ZiG5RK%0yVATC_>s{ItvEN5c zX{T)5HaFJ+dLW*d7f{d>lS2*{^!s(Mg)99p!Za96K|E=_Amq=nFw_p%=)dvfQLysN zzuv=G8uHaAFn^(M_djOWdeYM0k-HT`nMjrn`YfPW-=JXb>}$vE+Faeh?G|O;QIBPS zJ`*VEt=y5M@m|$?thP_9^*~FJ;I9`@lGpi3`)Q-!t8YyIsf>TYA5is|gCVA4x!y=m z(yybgjHiPdPF*g2qV(GvKmPRvfBk^cd~-~~dsOen<5l>yS`Sv`i_fv#aPTR~7j5-Q zD$l}4&R*HxF5tqEfuPR;igiK?UL6`k8`F#4Yjt&;>UhS+9H1Wxl;-cbE0Rc`cQ2~- z*|9$Z=0}4-e-BU^kGOu8`pKPHp9dO>4hH=Yprl6@-26Qm?7EAxy;!Y>VC!8qT+vK} z!F!QEN$wUbA0pP5R5=lBdcJjM{&}nU`?ureZt|DcA?!Ys$3$Q)AVKK-(??vaSKn2x z<$(uOM}qEgpjgMI;Pe%LoUwZ=gO3E}Pjif% z4mn>`2Xw6VBh7Ry_ZaxB1|*0&^eBzfOZ5p^1!X>FeO@&l-=6@K=Bc);O?A1eTV(AH zkn_Q|GpQZvDFoe*N`W5^R_9|O>8|=UbVM<(@@6 zN#FG}sQHb{QR3cy&pw&1%mW&+r$PS=P+Bi{ZoDcC%1bKk<=@xm)qeCG_?roo*0ZAC zX-Rsk-mG`12fgdC8K8e2D9xvLW*qqM=plLF?**XL&NQRn8aLDKSM+kL1`Jl~FT^w$ zoEuo4&Ly-D%N_W(SLAg)(_nB8;z{y_RsVw=Z#U9Uv_&cN_b@ga^e+RY^<;OG20|{W z2Wf-PpMN{EIv=w-{(0@MAYb!MEBjT}$A{qLpsHVMrenF4fqZJo zA0D*lPk3KIj(%rSaV{CcV(*taaOkE_M3{>~p;i`UOAJcDm9*2WdJJVV$*@V5vkwZnpmgT=*5(F&h8 zx_#1`IQUxzl;o#(T$?Xl&aOkq(djxw6^lt;Dab@mv_tHL)zAlwjTNzhEOviFd z5l@=u7zW<__5ZFO@(%K~BCuRMAKG=pG5x8dluIaE&VSI}1xo96kxM4fet<_;?26y9 zu{HVPwHF{?dw`Ohuw7nRma)Zj;I-F4<@`iD(_ru;#H$4)C>XlvO}m@*a_oMxmtyeQ z)-)LW0QAzlO8au%5xetKI$_&3Enr@?2J~xz(meI*Qd)0y8Yi>6DD@W-U@$1@XYAtn zbuMj;?ns078aF*|2QCuV&ME7=!OM9`9#aZ8UhZ1!Mht(?)lTM=?)?P0~c#-0e{H39D{G3kFtTO~Jm!x(?tXSLq11u zb4jNOIdMzr`#$KwHf z`yCVOux_#Vy$xHhn`!Pu*x4TMnfZI4AD^r5ZWD)aH(&xV5f~3l0rmiPXQA0`-rM=I zNUtm2!+uBDb(wZtajbHuF-wl`jWe{G&rWp#eXMC`Wtd&uAJ2|GJ^$#_cf`Y5@GP?1~Tw3>^w9P#_we3qv?+u`5-$GBTRNvj!gw!&Nl1L%JmyDCvgecP0hMe zcHlUXZ^SDAJ;mepB?!C4chdOxJPF)xV}~feBsh$Uhhru2Ug1xRgZ)!7|BkR*BEILB z8c`T?6Vl07>WT8ZWreo>v*%LT?Yr-bTvFMhuw~_gX_-I z6ZzJ9f9_CiGODEow{iCKo!hTTLQJU>gI8YSz7{}{*abW%M?+E)iloOSs@m}!nMp!ry zBYT~e>GM*mu7hK;h8e8)&d$|W7pAh;k5We=f7M2O(f&2j&J$oig?e!K>P@6a?%C*{ zQcqecx1XyIM`g`3`S%M%I{=cM68}z5l$*$pz%;g@#)9!xAA=*fr_)g`NY4hosofgi zp>z$Tc4i>icNs|SiOU5M7U>H*pok~zvz)?FS{DC~8}XS4_hcXH&-g5M`}!AdU*9Z? z-K%?|oSMP(Lm;n^-6gjV6MS|@zeRs?3OhFOU7$xPCo>;NSEQfclh@CAQH}z$nBHt_ z^zX&_c4TvO0<~=JNN$%XchCt(cEWy3*llV3xdXiMgLrz&9QfVOe;v<`4Pt#wU&w;z{GWW8T&au0m~F|4Nf{SPFhOz~M0UA{x_;rz%i~F^5XHS?0F`>kRLs*ayX% zdRQ6Ihx+10-gm<7()4+Gg*SK^S^pNMKjM`iv1F)TntBtnrC1= zS`+P3)QA2$x9kGcUs0WRwL1Uw+Qs^{4g3nZMnS{Th4U%8n0kMVa*n30X*Vg>wWNMj z@YEM%k2Ls&Xz!T21J=a^omg)VLAnI_eX?j>tVqujTAdI2?6hiuKhX~<_|1E|qXgsm zNm+-pdd@O0O}928wZ>f}U}o zeCkU5_N9*Bu6LLY?l@VBc@88C@q`{j!PHV?sJ*;G;6#57SLl5`n<85yB zK*tlowrfc*)l)F-v|1xQNglX&ouYFJ?UMUH@J5nif6>vj(`toyVtk@t!DAngypG}f z82pvb3VjBYh4cswm(Si zT~CsA;t89M zJW%TI?=_f34hubezUklJtC>Mx-z5&VgHw$vY-E57=|<QP^5aRb$y}-_{#(eJ)44_(dQ5G?(8XR zu19b(8%qU!+F!)0@GbTCDE*2!)vnfhdr3z+89)gfQznxhX*}vY)oT4&El;cQLRe2^ zs25Pu%eg(Lrzp?0Smo1e?+yM210{Lpt+LPKa+d6N%d7`d1J3340eydSP#XW7wYP7yYx?p1W!02^Wc~cU1L+I` zO6vvd77pA+{eiBr$aX37&EU_;`j2D5kAJHEG6ekH1C+oybLa)W?lvYdKwbwszN_gC zMFJy%l3v8;;jW(hD^F?`(9VW|{yv~of1!pwg#O-BNvS`Z>DX-q;)(SU3g*|TewNOo z=>yVbr5?gf$8N(BPa2O{<1c8w;^ga!{`Fv0ep>DC|Gs|aUw>MFot88nZCo6E0QzTj zWgcghPpjqPwdbPVo&rks{nVO01p3iHX&sY0Ff-m)Q}k=Az;PCnkqT*v2REzEoPo?biHIkSWA0Wv zaITu>8Kv<%hkEQWgdYb=?cRCoLb`w%jv4&*>j*X;^b>$m{@hzmo}qf+4i=>LN0e6O zg!T4fO6ps#$^p)bgWbvP4n*zq31WMykYO`f)U0S$qucJCL4t~7#Z)aBP zJ^1;U)NUz9Ui&oUYd26@=d(qRxMug(D?NI9y~oUTL{8Sjw9|SM@uYRW0()wq-MO`D z^|mMPH}Bmt$moLIr$PTRP|`p12Zfz+u|91!Tv+>qmlmgA`CCqr6V~hR zd8G3~V0vGEpG5cB8IMQNLqge1(B}cgehUS2@2Wuaeq-IcsMaT}wlk}8!fSsC`I-fk z_M7wST@;Sp)On-z^sLE2tL5Ug&q2QOfztk1>f?)K@0I;jtL@slUiTXKdjlwqkKwn+>f@%a zUw^OkhcMGl>vhDd1tiEnP~l7TqoUe}wOa31%f)M7fcz{3N^&=Q+9R|cx$<<4ZWB8z zdZhLA79pL*KuOn(KV5$*t?2XrcK-{s_jn8ZZ39*W669ywe>Ljevulw5ITmsV zz65m3fRbKrINWmIx1_?)r83QP2%M~g>DcXU#FO-WXYFnK(aws0UE>|__iZ;ITt zUJoB2oprzpK!Vi1X&)oK;;)B)TQ88tH_E!tvD;>pha}IkH>P6#?g+g9X%pz(K&ic4 zU0sFZ9VNS|wKpkxK?M5<^eAvm>bHFT8uL{D`K?vGAoy|9zg&WEXa4c5k4IZjE?a?; zoKK!s{wFS%wBo56mu%@{8gfi2kaIr)#5zb%ekpOG3js$v(`#JjuX%8Ok%9UW6P&ij9Y zuxYo1up^e!xq)P-V|-uOgJ`krimv8lb>i=}PNrRxL6^@!52W7>JEt$=x&NXeNjRS$ zkN63oN7&sB@4MrDH#U8m{(z62aZGn#)Zk%+P5y*Ek@%iKeAn5TMd?pLGPmz}KMCJY zU{&;Irl4zw^xFVCa%_z6k^Rim)9Kj>yOU)p{C8n@r21hZJDi)3cgwlEHsVwG;?|Ul zTld9t`-Z3EI6qnNQ~9Qvq^z#s2X;8iM1A_|(ePikM#(q%uQF~COTzca z&PX#J;m=Eyvv`mE#qQJ%cd7}#e0&<^F*KE@L*Fs%pFTr4A(iL1g0SxqbU-S9BR#T%P3K`@ zU*k;U_FL=ly}^iQ@-O&8do|xD@qYPjDzD!}UwIh*mae4n{#OaZv| zJU-b`aruS(Qhzh-*@Pddu9@t~Z(fhfUXj7+MLi2UJ1Q@|J1+PG{-=6pvf=vkHt18c z5D$Ek{gS3XPN2Id_aoLo*o}eDT!n9&;2)@ouxJlRuMp{x9T)dMDAETCJ1U0s$u7#^ zN90S$8>(NUU7YXDe>dax<6&oC#Ou%LmLVL~hrcI(Rhsc2z8mQ<@%xZ}WG8ie^%vRy zs-2YX&uZ^q*-7o?c2Y+h`|PChcuuuiK!W@&qYk=q$KIRs@PNro><=10OLkJtK`-gM z+8;R{SJc=8BRd`%&N6-9qkZ*3rd|?;_tJT({9V(&apfP5npv;V;qMoK1W9SomjhPy zeb+s9=N~SXGjvzi9U00w$L6NqCG@27zIY+8O`v^4<0*NA*QI>r&eQkWgFE_^bfbVdSA7_`J%ko)ZXu-XZ6kK522j5^kP1j|6{G`(*K-k-xRR zKW?dWpeK{sA5nHT*IyeTp6C}8ESS9bwB7k#truceCo1R9TAKdQME?=}isErQqAfp1 z_H%Vm?3P-Xb_Ta1JxMM(_cmN(|F86i+rgh$rxW$Bm&=vIS6tfSsX0lFtDF6slQ#>x z{`~9RYZv>jVx2&0X9<&TCBIbqGcLrGLp;4G%jt>n$HqUTN%_;_qv-x-XWoL6S+nd#6UGom5@WOXCVZr^EPp4Xf*5 z{(J_%o~72`o#3xNP_%Cfy8FIM=M{}-qq0sLyqxgoGx&3dDxX%@O&cO#O@Tr`py0UF z*H63LpXg6FWxu~^fIllKAD%W}?%?g(Q%V_Ef-e{U{As40R1@$i#xn|f?rAI5%hmO3 ztK*o}^|}z#|5J1zpN`0>#HU?%JfhxP8o{DK-wY`AqtuUHqJDIe+l5HwOq5pn41PTF zuLtYv$t{qtfj~(Pa=W@uGcH#icaOhaoz~N|lgdUsNq;f?jyO*Kv2*wXef{qdr3IWA z(4&KDQok*@+KkR$Cy)8P{fG>6yyN6uSS!S93l#bj1#NGJl08=fokvOOq^x7sW355o z1}Npvu(vQ?7sM!fvQ@ccwcfqkD!`fJjx>h zD78;Vo010iAX0YFg@?5^{%_Lb*m~RJylK7cVjH4*A3}p z0wulOdE&EI=^Xs#&STG1RL1U44~A0-8BdPZr7r8JK7%=Ju;G|fj%7=FkkU}`g=jbF~v?XczY6m z{nM)c5`4Kx`KBC&uq@=OCs2}0`L8&{{lA5Z{u#X9qo!v~kF+`-X{d? zR;%d+-_BGy=-`ZKj{_w+Va&%I$DUZX>ipmUJ!=r?9|B5xkKs?weRSV1qiSa><0fN+ zL4Pk$nx|gfwCn?yb8g6rhD~Av-L5(HEBU^?!Q<^X#qWsMo&&xf1WNtdbD?u-ruCb9IJA3nWqfGHhJ$_tQ0jl7 zgFYtvRL8Wp_k33?VEz}ZoRIjS6v9n^R=G$|S|`fgwC_Bfo6*->O9iaAjs*SvKxsWI z^|ocFpyr=Z!9)dHVO;8!aa^HX7wI1}OF0 z{Ca6*S3bG?rFnOESLR3cE$T~}xo`3q(v#X}?zm9$XLZMSa~6+p70_ND2K}QzvA$2i z{IYkPuxrUrK2f!W>JK-JJp%f1K&f3!pWOA3F0ZGz>;6ke={>!&I{pPKuLJ$%S#2-l zk*^6rsXWhr{~r18(I}-l^zG7W|J_G({0L3~#1*4*-Y~bUAqpng9p{AYG zbBHI^Uv7Td*BDodznwh~{$>Kjz6k}{$alB=&G=`%Jgvzyul)t^w-YG#V|6~iT3Uuh zeb}H%#WK^(eF{#N$X*2f0-!XnNfh#1|3THyZhZTk5B^>UO5?3_R29mfL!Uo< zt<2x8o*UKJ8%QS~D9I(~o7Xqe{7ApRwfOB67lOYJfs$UEd$#>AcITtN)S5nNsJZ{m z$?R+q=vM>9J}w0d8sB@`#TsX&Zm2Rqxfh@nTMYVlfYLlws~)n@<<^&5>7sB+Um(gz z)1TE_h$pW{8g{MC^$Wsc6gh8wA8!fLSqhZa3$%9i$c{EwKVV)(ncoJ#-XoPWrQo%{ zjdYd)YXJ$ucaJ6iDE|?=`Q_kiC9tfIPkxR?KbKG?RjG$C(@tsy=%w;>_O31L$JBMA z8!smcz~3sMB(EJGPo?`t^=jX7r=piz*RQROw;Edm{?-MSXMV;bv`(Az^Tp70w+77r z-UIyyK&jt`w%$wkl|A5+ht1>auOdDVK9 z#|EGzUs4y2qI>p?M;*tk&c}l1Qz~bj1GbSfqHP9B<5+6`6|zs&pV#^+>qIuT3G{BD z)UGqlbsKW9;=j%w8ek`N3*r+vO6CYXxv1_{`S`xN$yTERU-v#eGa{nsB zx*{A4L^!{bLf?t$n}(;3CbIoMwx@sbJpOjrBP{EV_yT*d_WH9i4)2pVPDhyh*=#f% zpNKI0EzOVP-#sJZ#e)xoa|ONlU0@r~A^q%Bq?^XkCc;3nGx&gvO7H(1_BYE!Ithp; z(&@$u$N#!<&e;?eryH`ANoGe=2XuLKZxZLTeh+*X(N6^*#Q~f z%@g?t3i}!1H!2V1D(Y3(DT(@K@w^=!5%nQZv=h<(@t&4djC6C6o@j4O@PYFC3;P$t zd+NEK?AwLZkgjIJ4o=h~?A&70UAc;JKz%uT`rGFS`x-5ax0|;_d8Bau zh+l(mDrckpHv*p~9~tORy?DA0_u}<%OD`VJ-IJs6cjU(V{A_#|DC~3!d*eOmnDV=Z zu;AO)kJCH)bJT!tpr;SM*O#NP1IinW@Id@Nl%snH$A9Qg>6PfWO8u*LLZM_QbmXt> zgpP1Kp}9?c^98XER8cb@_ml>E?PI>_w6czaDI@9yD{E ztt!exAO#bur5$lOzmHG(@qP8)l=|jiORyP;rV znUy8nTH?vRdtZ<9UoUpDp!4TnE?)cXNGAp;$rr~hKb2wbvIFOKozO|KyJAex)kZw2 zUFYRq{?_H(KJ4mu*PEI4XPm4f6YKOg#1rj+f{{`4unt7`(3HmS9Bk(PR4u>vMj-XY zv2?%Zd2;`pquyr`{Q9(1uk_Iy-T%DyI>=XDpj1zul4ZzF&-PZY1*65-8*h1+%B# zNB0&zeB|@CZ&p#x-8E+oK_3m2+C@R{Y$})5jnm7%{-<3U7l|_3v=eHActVa+aNLn> z+K&pM2~>w`c1aG!N*g}r4{nk8YsyLXZ3Dt?Z#_oj-n^u`1)%L{yG4qeB|yd z@tsR+pHzPdD{jP8P?yfj$!`>4Ukw51p_( zJ9Q@yqRq_tEGKJZ+6kp0o+NkqeZ_5QNjxRooIi82$N)PbDSw^@HEBGeL)kq(D65>q z3EqxIDrY@O)&u;d0;P40?COuwesCeVWvO*u8Q+7~Tm8ost9pUP(!pN_P@3NsYjnBgKuJ#IhMfP})Lstf-b?M;c+~w_t9ppl_M)+Y;BPQcnx_`7z3HUOd31ThMsGG(>>gV(2j~X@ zCA~H0m(m~e{JEpe^+!$?eEy{NM^UYg4_^Ba@HY}D$usUhW@Y)*bFFR4I$tw(59sd$ zigf@A9^H_tG0n}+KfU>PWxmps4F!D;P^_O)ko$2haIYTs=mo`ou`wG4`g?)${AklG zx_6l3KV$o@qrW^0etpTmJcE^kxtpZ+PAqus!@=JOprj8@FY_zaJJWyIshnf9S=8r) zZ`c0$3%*>`{N0ayJph#Ean9M-j_dV6kJ@j8=TlA3s=T%qFU0hxG{(q>pProCHtj2; z-+H!p_g_Dwd)prZ{b-;h&%EPeOS}2&;@4Zpg1_lN32Z+MCwUe%cKsilkN=nshBjC9-Fl{-kQ4Ew z`3k?+u1N2*uv!mZ`(*GpEiiv<$d4yoT7m9=tB%snBG?qrPX$Wz;=DTt()lv@Q}SO= z4rfn-{wbg&x7??)&XAnv>u&z-GuUy(w-3rcAH06%FXw~r4-)^BWbo;!@t#I`JOh;Y zG45g0I@2t5Yix1+^V*+9Ixhkxe!8yA+-29UI^4H@R!uo)+sO2%G!yY8{mj#O z(MME&iz~JNLY-IDVKYGgJW!f%hIDxFDA^6@_F<~sfYtHVYW-;}5B$9Vl=g`{6ZagX zaqPcg-|!Onn+25g&*v6bxdMHn`2DWE4E|mPO8RHPIVaAcR_?6G7aN-c`guU9osDU? zoZ3tNEA;%TjALP@Kc!a?PtqeZKbyN33Pid8-9HRNkPP}*PF8k4h|+Nb^$|2o(k zoDpp|P?9g+H=6x!&vU1jd9#Dl++XBm@hl(o?*b(~+1T%Jc6$2qv;#xU{b7U5*_kZ> z{ZgPb9yt}6kP1^yK=KaQbd^V?jc<%NL zWgV<7TM7ErK&f4X-Zb)z%h~t0_{B52D(g!v1NHK%X>A0>nH@e)pDXcOe}& zQ0hl~9n+W}srQ3e)pvuJyZ-ea#y$prTY!HlcmD%+&fCD>cA&J5l6%)1w9jljMdc6D zYQOc`cY?oNz*<0p$R`$Fru_%~d~0n*ep(%;t@c}=ozP+MC#}DPUU>Z*yHmFZZ7@-p zZ~FWx?MFOm-k~LwqH{X>lRrS|e>S!k^!tF4T=G6WKZI$9B~4qUT&&iE)pGIL3&GzZ zprpSQq&2C)w0G%PP?+x=GbamU2S9%iDCuX~z@Eat*zE!Oi&gmepGJl#NV^F9Gx*Hon}035bnsHBXgjI&vu4C7RKMxF;0Vw{62B)%8|a${S$Rj z-gjZ6b6)svLW6kL^6a-smzKw|xP}?CqRYgAt_?F*1=Hf#hb2!B7+nJIZC$zD#9Dmc z^kXIBF?PTaa?{j;IMY9sZjH6}JMnuGzTXX)2s^kqrY}lF?1+QCM?CnB=X7MJqv?-R zyvO&L_%4v_o(wwjPh_C@-Fz?TM0p54(hyJNOT5Q-H1S=rLfmal-pIcObWZUanAnnRg>Xw3wA<3$H9-6;3Jm% zIoc)iBT(4wiSh!HKPpXs$S%hAw)SELvTvH+{mt5EUryn6GUt(hcRJ|O*psjCUAF&c zFrs z?}+bHIdVTpu>Wg>@?t=;Gcx>5#R&Vr9pSJ5HeZZZ7D^u8q_8OVs_O@FF^01>n56{N$ z!mkw38SSwW=xhV<9faNe5q}VH*gx_oHM{1(0spF5&e-fH%zZ?IO0p9Z`=FA3ll@5I2D^9G?=_zLbtoH%?;4QrvlENP zdr9x}?3+gS6IIxKtj(l>EKZK+?rYA!%iw(#-|uYWj!P~_;@uBjKAdUVL-3#DgPzCw z>qVNWuQo$E((kF|d+fBkOWt#IRbJGcC;XBo#m}@#9^5v$(H0O3|aO>%+n7nX2Ab z3H*uq!Ogz>MNB^avCH}4*@;&#G*b4xqfNVq>Y%UYix(QPk?d5Ad+YB|&L#TnGpd4K zln({D{oKbhhNd>EWY!la3$zoH)&*K$+PIz1Xa2!{xqrC?Uk_6I(^)m`dBl3ZRGx14 zgVbK8Z>Ix|*8|Qo3c4_!VNIYOocSW=Yg$q56Iq=n1V1nFFPGrs`PYNj9**)5>rPU8 z;r_Y$)_Ff{((R@k;^bD>XEal8i1sDwk-qCK+m-y>Ej^de)OAJK&k8l|+r)Z@s85P_ zf1l53-9P_5=d7oXDeHOG%f(uM558Ti^&rNdrl=3m@AY8mpI6wOp6$_*w=`Gmg<_Zu z^mhTJ^7I({V5eyruyt8eUUIT%^Pa{=h$q?s1#OX4%Q54%_h;q&U6kohssZ9ja>-Mo zE3F?!efv_!Z%--b@0zl@psxp%`k&{`2kHLnf9OBJzdS<%?8Kz;!Fh7`OSC_)t9F}} zc4oC*2jAcQ`)wGDM0qp>O6!h=w|`A?-t$-M=~nr)+CHuCgEdCJNaZq~azKLI1rHoD z#})r_vC3!g_2A!Ly!N}nR}@g_BNR-n{Q}9vHpA?1oGit(TggVevOogEpA_qO zZu#;D68-g7T9}CeT^dl5^M!lvUTAlQbsN$mva7Q1-PQCbm4JAXd|?B;^Nsp*x|njl zo(1@mlH_3FqI<|MTT6 z!ZjX%hPJThp-;tI~6GOa|-6JNaE+#>2GB|9Xy|^T(YWPr-Q$&Kt7{b zKDEynI~mBwDD_^4Wq>{tD2-zU&&SYyx$&rW6~VVp|9Y@qEgeZP!Bo z*|}hUK7-GnT7SL4Uq4_7kRboPhv_~?!;fY)Wqb(qCne7x;zyIc7vpliwC{WLmsR;< zRbE@KzX9O;USN4CAHTJD+hv>Z=iEhOGL`YRk-1(t4D?cY8up~lVf2)ZRoZnu<^cT= zprkK(9kXe?E%W*Vd#f~4>Y)xB1p2{1Ne|)cL^k~#$RCQF5B?m8e>)4l{`}jSX4;7j z1)tKoY1Esej-%hIdU^2m?w_9Z`GYli=JO{t9Ql*R756K@o^@$$^aBAcmHl$-?Q;au zxeqAG!MyV6Vt>B)%kzHlmkX5ia_vBG(tC2w>}q+3LuuDx0sf?<^$_Q-CpOuQ&#@ND zICkUP%Y(?*LqJK-(pG(Y-sQYdc4>>|fqqG?wzJVlXADppR~$nsey5kq)sr#T6n{(q zcDbnjmb~_d!QX74G+)Wp?Oxf~VW*#aJ4@L|=n`NjCf3{OGmi2j&bZvV`3`NU`t(FS zf%fM9&Z9_AlApuge^=ZOQ~dp5JouXkl-4Jrn${xyEaBTLv&Y7p_q}nlwrm3E9|ubF zDsTFoU%Hqv9g9=?L-2CmUw&Gb^G|@kSwOLGLP1aUqjX+#Rdr9ji_Oe^5l+^eIYB=S zDCzTtUv+J_`_Q|O2JWv+0{v8=BzFsLsYCbc>yP^nWgcK-lR-ZPDD_)@{@kYDukW!u zZu*yJXn>uVG*0Jbhtj$HzqA*!K0a8JFV^M6bd=-MK&ihw7Uq5L;;$o=eXe?z*F&B` zI?nD~@~|KUre9|b>8_17ac)1TB!f$8Nw@iOfL8BbB2 zf3>O)TJL`^BVVrqrS@se|C~(@&pXq>w{OnL>X~+8a}iIPzlW!$(fsycg1gnqMn$Ga zzJhe-0VO@MpvOIbcmIZUIblsMdF`)(zxhB(9}EpIPj2^&~iXLfo{L|R$NM}J{ zxfH%SjQn>r?nh@L!G1LgZ@^P|~Nke^|G^UsY6oVyw59 zH^JX0KuKS6>>pm5g`UVRd#8J{qDRKDw?O|sP?~S%rnLOj<#6;H-1*J>n4~Yzl4EDK z1oTURQh#9Qrk!%Jg$-A=cK1`}{Z{u8H1;;qSq+rtN4dSSHrTZhbU?DucMmfsYs!{^ z{#~F9)pyW(K}}juj&H1tN0ICu5H1Hwy14??P?eLv6-!u+RcUI;B!PkTI zJxamqxT&$V;17zCCe6o;{XgSg^l9Cdc|Z&H0pe`{O6!WwOSib}hMN3Z7e&s8vvr_f z50v4x{dE7LA`Sy0seLarFDkZv-*1M+Fbpf zf?EUho}HlI1-unVz!JZudN3aA`!ZJLk~D4*2RB*{dhL68#X)k~j~LoA-% z7Hr$%tmHno#IZqNEWGycYq9K!5gW(66w(F1cL28GsNZ*Q>oRoO(_L_Yzbn(tshV!+ z%71qw9yzkojHfF%v`IvIZqNzCCr$7X2l`Hi{~)%b6A#mO#*?+=*XJ4gb=!*r8@K6X z8bMKVaW0q zhAqbLEE(VF&e1gZNoDa3pV<@kdlEOK>5#-iU%G4hu3HjWuZ0iaIignrr=K3r#_7*h zQ7#?%`y9a!9F&nGFmCV_&k|p(NB@*MCPy-8={9lI=^F1KJu)oH)jfF${t3C8n-um%wIvhx?@i_PSQ`Ag zMLMEf6SzTJPvM|Vv@`Mjc(#!I;oVjtjkk-l_|CdC?$GU3@acvj)ChzbkoeQ|M;P>o z@}l?pDVql)@IAr5_}wG;6~E*A6%aP*1fM_+zmtK_NyFVw2J5OnrPE9YW(Gg`3ZGP8 z+(BIiGkzz2dHY4V+eAG8$)LzEG&&D@VMs&=5k&~0 zy%`2~R~&dhkmJ=s934P%u%(Y%V+ZH-%E_kxpKUm4*5k7xbDqzcnUk0ELe7gRIWKi9 znKP?fiJaN-Mhf&_&dWKAbLOPv%uQMy6;|$FHJG~T|HHA?M(`&o2;S_v-`me^Jw5rm zQd7+f4Gl8MU}{oeywjekv+SNNGYWDyj$!xXcLSV5O~pni=2CiwK~d`N*eNj$?=cT% z@#y_b1+xskSH<_;(0P+Dxk5uXO}ML6Z)KybWzY*1s$xhwhVh7rKnY)Zj(J-zxIC9v zRrn*Sn=)aIHYXOLpqKJzGaNI;9`%m-vVn5&G|HUF2zp5|EZCGo8KZlEBN%J`k_yH z?UnI;(N3iD3@vE>rCBcid|IE#Tb<}u1)rikq=|0smZ=)kE}qRFRlUC1{yBMsX)tv& z;*0jG2fz7piJjblh3?pJLMczH8#Gqy!D>9OT`a_kdK2x2vRCloQT<@1{`b>ucr7f zWIH>X22(W=Pqc3e=1%X8i((w{rkv$uq2_^n(Y{3gpx;ARK1v&p{}D$YR{N2SXH>fz zD3z!C#AmPCwF%zMPpmn)xt^a8(3XHS?igAg8#sWXntB-D! zk@OS#DUvkY`5SNx8r+JZmPfF-$`Uv2oOF5|+iy3qmk-VX7^cv=l% z0ygwb>bHiTd{xnVtoMfw_}j7OEb!S{DnZ?#tM!Eem@>$@SW6Y@0x zD3xc__(zVrSnGExdZPN9;}$3D#yW$(J5cJk{D5B7b*n1vRxj?1VO>C<1eEy63lAZO z%*KsS>B>fRM1aARRBo+3t;B(=yA?gz>i8FEFeRnuz3E9ZNLi*o)fD++y`3eXJQ9J@ zMvHTN#_Ru?cGeC2B?Be-GH%6JG>Jc*r2)l!oPwTDmy$j)=C>)8W;a*H zqox4{Q<9#gm25@xM#BK6s2nU=mlNs8S6`siKDB+VUa)J+sdYv-xR$kf@Oj}3n-NfduY=^`+w!YYA^7Y9mr?yi7momxO$M+x}4~Z zbou}zfCSE}gHO=#ruPT+;(zOM!rJ(t1vu7{^t0SJ?z{#Ssbh_{)^*>fWI+7N$)xL;??ag_sr=pO}aNp zF=*&u8cf}bcw*g%f(zZ%X`OG|^^rGa#VGPD+H|Zn4DrNzCIy`p>t3bysXwazVzob5 zm1i2u;f!d*fztf_T>tE2WMIDb^TT;{6?taeLC6TCb01J@XO3&*u+MC(RG}K@pq2MS4(K-;D?` zm=fzn^qGXzZMq?ZzV&7Oq7+GQqfc5j5D8vyRm<}sl*eeG1ny>ocDX1#Zgitx6~ia1 zdI`8s zd4Xv!0&4*Y!ViB#2Xdoy2O6pYeOQ2Ft%|;Q?tz{4b;bW>d8V;h$j|#gX&log6#Qss ztAn+8*F1m^FX z_hLy8F%CGNR@P~)>LDR4AL%RrO8dpRSFQ!o|Oj@HY5b0hIJCt<{=CF6YvVF+*+ zsdo@hnjdKsy1&i)ZFpB@eK+{>l*TDN1-2aNybF~2dv3-nXQ)5uPx0?Ntu*-1wADZf z3NCb-<9#HCk zQ7hJvJhSQZV(X5J{L{0VKd*f)`1=qjwU_Db_aCrp-ZA%0%x^@rB;x>33G`*BO1Z?cv3ET3boy@)5Z&z!6SwExhj7TrvyUT9`rF6~1) z2Y^!j8U2sHRvqGn2N+D%LVN;x@mB{zTuIR=dp3?Ag?++4?PG{IlfIpF*X?NC! z(>W8_xkq0=`)JJsIDqCHjfGKHNkfhdZjS4H@f=;xHa(|@q1T%w+lzD8+a#OINsTb zzb}M8!6%~Wzh*uL-rIU8-=lQl26NJoFUs!$xG7xzJ-CT~bJ?=rPCfTdH`dQ2ya)qM zhLDF|#M83;QM|c-=yj3wvG`H5JY0^xZ^^TCcE9VbB0VWx?&@{8Rn5ml`Vy^S^k;18+rlmKC*-!iEAoTl-{b4W^EQceAQb$s zmx(=jJOTMY<-p=I9TWM`8TyOzDBg>58uDkQQ=Q2AXX!!ZXA99M&o$}6(`^y-^ojBe zLwa*WITYnvDX)f*7r%pdn3=)mnKb7)-8p~jU=LnSXZ7Iv2Y|#Ivh*STReh5<`f(ctIZ zjm+lq#LKes^)cZF3SJiL$xJ(50}sH!)zHD*pWt8R48eEA`(d1Cm)r+>^y0s3;Fr}= z!YLHLi}$_Ij`roe-s%0ge_>FoupjaP?=@fm$Ob?^5f2gnKK~O>tl^{ky8NR&G1IWt zM;9}!^$|C$b)ar&-BYY{UZI7auJ3)SFS>B`Q@+y%n-qFYJ2N@?IPc#{fqp}wsgTLu{fS?*j3r*OR#x{E`%eM7j5aaAN%?1 z;^!v`y(&XbslFVKsdI{WG3I(u6}!H1F{kq`&EChUg75^A(^vE4XJkl-uLFjcPv`41 z&gK^}b~&J?&3Z&Sk%QIE`OeRb!Nym&wXu12T&j(|zjZTzp^17y&VqL;eC0RJT-jvb zIQ2r)rZ$hO8vIG+zVNbAr^rBi*$q{eB`7?j#!=UI>3bAHP#5c(36XjRyl>Ju`G%jI zI-L`%tg|$-d1CSKCzY3iS+!`LI&Jl_sU6Bi)CVCa=JirL!Ow&9?FY*CzgcxN$WcK6OVmP@uSCEU#Yil zRuA&^fzo&LKktt9p#Q-@WO%wb%|FfNi8X|tVw^_K)L$|-qQ8w%+83wmWKPRxP;U(V zrUS+JfSmbLllJMJfUiV}mBUzD{B8kFoSMLW4^WI}$Y~j%)dnm&cPgX5ZAi-!qlsTr z$PWdIcAK2W<5jlkM*GUko~V!+ZUD?kvkhytgFmVN%fBn`s6VjovkBL)>Z+XIO0f-V z@dBl3Qa#c-wLh#|c7$S6m42ljYk_cD1I2iYoQZ!_+UnQL1-kTF%K6@!tR>`I0i}M0 z^JQVsLX6+JSoGtUlK3tMr}b8|4QsW*_oR7FZuxU$*kGHv!d6}xXGLGmil!a~bq4)J z`IFjt@9mFlLAI*ANvG-JJbvw=rxz&Aw$1G zfl~jVEm-+9g~ts#g^!n_&xi2*i@u!**HdFXp`YM=N%Qx@_1Attdh&}jo$47LUi9O$ z@c20$hXnOLh+jXTl<)b^ZlH^7e=o?6ucq<JOt z*M<9wvDf_uKu@W@` zb#{9tJzWtzF)1J7TKqv50~_WztEl*v|9&|ef%Lc=7#fEdV-IaQplg=F@TN+?QY(Td zRvP{ZEW^CoS#yWFin4xPGlC};@rpT2bvs;_iatHV>$}r_Ec)=&`gbo9 zVw#*F{O@4KvY&LecH+=q>J3)b>*}!4ke>vU<}2E%^9%I=?IL`glc~&)5^bK?c=(gn zO|vh{q4VIT-M)!6?fnKWR^8@_je|ca-PoOvtw#PGQ^sem2%ebKzk7eEx{=qv2wtf3 z^o(}=spf+-f0}(?;e$w*vOp6|gN>T^V)rb?L>ShR)^~I7TXE^MyUx-js2fO!M}Shl z!b%N3S}!Q*d7kcBx_0~U#QFo2 z_N)THbb6ikV25g*`PtE3u%|W_I z7a!{4+pleb?7(`?r2=(YZ@s1LoJ8(Ph-y_oaZ9- z)V}XU^M~2-WGTL)(oQ7UJh55u7Y`)xeOj5$ty@p=*N5k!*KDBF&IiYKHtz@BdcGjr zuk@SF=kL+hzwq`mE`lc}>6!QI8=FW^^C|xQ_ZPV$+7_U+9_wy+=Xu@TaqI)GW8>`m z7P(j_nG^Dk`oYx~S|x>c3^ zfaupJ)P5z}{0sNzVhf?)DquX2Am^`&pZI+{Ts`L{4zl-^`Oj_H%aB_Fl;%~w*wJt3 z+8etYZTq>mvOZXsErR@FpfrxuOhdUo^QQJURUW`U-A{Yhho?(WUkd$}1Et>&wKw+Z zS{(J$Hzg|b#zeLZ@~;4;@*<5xioZUrfPSw6rF!c&rXAL`M05S6w9;NX-@kng;j9Eo z`>=s7Tg-h}^FGoqBld5dmFpPxI>N~ZO6#9N>z+Z(!^78?qVM0s*Xx|FpK0t3=(iat z?W+~kY+aIR2dJI+HB(vFZ*23#*1@0DE^iw4!w%grk3rm-s;uibWN$(KU7(aM-Z~F{ zuWQEi-)bzar0^qZv9}@r4lp$D*Vws3;=W@|>2IS?PpN)U2tj={!dU~9>XCcNJv((x zn?mLDV`V)#`u0;wFEfOw$06bVV%S>f_a0D!z`WEYww~esqSrG#U82`B++R!tPfS{u z@_o7STU|>gn)Iu;D)qg(%@g|o5tI5cW6eVFw!Akh<75}}Lp}hM#)J7IYSaA`*13zK zx`)sCc-L9`64W;$UYmgBfdp*oTDo`BI*@s_k}l5Yanb4-Ue27B7maO2e0BoGxhZlc z?kd!nF~S_r_lsyJwn6?wpj2MmJ0GBVxH&BEt{TL1${!Ev+Y!zVpp*~%9FqCI(5?Du?Eh8$SD?!<}z;XS3fN@#i&_yRiL@e`?<0 z+hk_(8x}U_=h&AwW>zY(MjW*UK)feAPW<-{9BsZqGW)Av$DMV0r110SUw4i8-SS7r zn=QK}@1*hHiGRWE!*qw+1MJQc?&!Sv;L;9k;ga|}&wtR7+r3KdXxo<>k@)(8byGTm z_apR4=KgIyNe3RUIvw#IsCDG$;CrXweJboA!M@a9At!!^ovJ&98>k6)7ycbzJB|UQ zlhzjBhueUDwtcOR?3<@kt{*ofjg{%~&6}fgyRywUw$FdEX%}|a_}%l4oaqFXi z6bgTx!oNfLZ`rGPQ>25COXWO?A4I;0@P)f0=U;RcZlET3E|9nRR>FTfe76(A{Tn&K z>mgo^W9Px!L`&)1IL= zF&glPoUlx8=FhC8Q-)Ilg3xnpoMrsVxAQn^0zEDoyM1&5{4F5 zQSX^;XV1UHcw3rJ8ckY0rd!u*eAI!tLf@mmTHE9P%6KpRp7_NbU;4Gqt6zWh`ert- zgp0Mb$A5CX#3$k&_};Hg-F{_{=WkZlN$T0|vJe*WBxmsGBRCIC_7O_rcMeX+Z6ThJ zlpf;C1sne)J)1Y)H+9STi1k!aKE$|E%J<-iQDXmDJ?G$jJs{fgW%#(%={P^e&d;lm z8WlyVn07Jt(LC+!f>muAA5-Sp)$Q_A3Gy@s6%XG(v0VS1bh%7uZ()pm{!;8GN&6t| zx0#>#jo0R1cUiM~cKPStYq2W$&egzcfdp>X5GpVEMSH(#ReWEROR1d*RBuM*+IrOU z5l+iz^z&>rJw^J7^pMK0_uBTPC+@8epEpIneiR;_)B4~vT{OG>jz@k-^{8-6l6hY& zJ+nL7{Q(zq+MY%7ghV~0?@qJN*=p*2;?bw4lt1)I=jl>|M^vi|6zwTF0~_x<><@H5 zzo`59PRjmly$E|!q8^ezUxS(l{YGu`s*Gkz{fmBmS}iZNpkHlZ86bhgBQ0 zy9siMK&gKT97#3L9Tergnoi4gP_G01Xb5CI(s;wQZ`v`sSIk`RcYgm_czQZr=L+$J z>OoJ@u8}jpWq|HIH_w0E+E5u6M8CcgUao_BeT0()l**^kB8~2Kx1P#My>(h2f_ejl z(-0_u*Y^sYAGg*;i~k%zV<^@ED77yIFXVpX_cfjH=j=xPl>O4qHczN2{7Ly2{P3#7 zexG^F;jOO9zF?xm^|+wk4B<47)HAor`ci>_i|qV#Zl>I?==9t{P;Y^7+5pP|36dV( zPy1L_yA)@SZ~4!WJfV;`Eq~hv@Ysy9MOMyQBY<0hVm@FxGgr?l;&SG^UDBanJD^m~ zj^FagX|jVu<)wNFrQMBV4DxM(Qh&Rw`COW>SWi$7Z11o~oSv)hJ>xg5 zm6Wzh{?&}&35jtb`7`dgsSw3Noj?5h`PT*U>I#(R#o2q(KIHjF`yt`uR=30UEc*Nl z&-YlC2K@#CrF!IjZp4qebsv1SE)n+ybccKfP>j>bng3UPsz=pR-+QfWOJ)DL8S_9s z9VqEj5dXcH7i&y%KY8wJRth{UwD0RIzH1PctVJ#1%KU^ z=huw?jprrhkNM50%bC-19qvzK0}vrEP^`m{Gw^l_t-oMg9`4U+dOELvgP`9~ptRoS zao6$t8Qs$I%Yx9lB^RsC219-bP-;I57ED^t+fUY5X(yu3hw%K1zI>|whC#pEfl@#1 zn=@^z%||Pmd~h1S7qOoLpB(XXJJL;+ zb&WWiCo}>6qtr^SRbdvmKRn#RS`))T8hx<@?NxWV)x!dg?0eS&VH@YBKyu<2u)O$7sF4 zdWxTK;BJ??C<) zfBkzB`aK1d*4=!Q=YHciShG(LH}xoXN!vK=$AWqu!kGn>+B0jPSu5GEZ2XE2%6#)y znAM|4T^m9RTJviu z>&ZzrPv|9hs21|b@4;wn-p^W9SqF1EjtuHPe18EjqTR*3SSm*(8U45}ygo#qp5gv9 znDmb5`@HN@>buireOOOXwYyIBjJ|ydpNB{C zgrs&i@ac#zsNR}SQn9Zut>ubn>w!}HlJvoQv>vjB=)Ccrm3FW?dk^yKfYSVd^%+6_ ztmlHVuHm%aI?spqp&t~|r2dGnmv1ubQC%e;oQCJT9(@2kHvpyjo^SG?0_7_Il=AUV zrG0U_U#zi>2xk*en&$)_ZMj4@_We!lP2DDck{I1m7VA_9i-Te*qxzSFGBHSZu3;y!`+=@;8wUBb2J#-ZQzC-qP?9Fu83bZ{(C_1 zX(Hn{*IM00x)=flpCpa@7d(pqzGvWEejVZN3O%~9Rh3(PP`oWWJ10FnUNbywKG8}JdXKHqOrVHMSc#C+YhVx}l_UU+O0a9s=^y4jE2&lM+L+k>52UAtq2 zmok`jDy&=v=QTA$x>P|rit;7tY3X~BddbU)(5DBpU7=%3WRV+PdJIBiJGwEoz(z!q4!-SO+p+Du9#b>!!l#3pmFOmlPPcy`OAn|0Z zaEO0mp%3ATbYg-Rl*QYHJF6#`F9ZgFf-jQ`Hv`gkmi2v#kA+Mi!ebe1wQ08d zbI5tJxty@uL%bR*pT8IK0(){E)A)W|p7=19)yA~G+^ykzaroT_)PMmX@oWAUp3FUI zY|=l3T1qwGg zx&4WZ((^}s)IvE=($GF9QVIU90uluJb)bEt#h>@;`BR8b!+)-0uTP12zO-KINqBI- zU$a^Q)h>GIJc~$2X}+OV?Y$o7gg;i+PoiH}3ZK74KaLMi&lvk&3sJr#J!2-7{Y|&- z%_uTEn3~O#aUuOd9-G)w^xRKQa$nvD|7ggIrk~bVA*t+X*#(Zp5oLP?R@v z`mVZTAMxAjjY}#lZ@05ttd4!Iy%zk5euA9*zS=$J{aqJy={@~a)3!%(Bm7D2b?V7d zbWcvuJTP-4Vjf)s@-=~?+?mdy+r>Th#eYuN+4{2^CB5miL>glw928%eTn=0jzYit-HqknC&Q=Z@H>Y_tRdV@fKq)AtbX)cf505qRqLj#x7B2gAm11$ zeb;+i`UXFL9alvCk<)ySvCs82gPv0R(tMUX=;!ygU1^VtxtP;_GpIL5IIVzEyX0QD zOza<=R>p%a+n!F#NIkWs^-MnGrNN7HTCQ(JyxK&@Z_V`@s?71?zWO*ysSkY@k%%jg?;<_OlYzCm(sDm)#$5v2M0Kolfv4#!uwT^%nl% zx4MUQ-R$`Z7i-8;AfF1n4oHw#r3Cm&m%usb&d{qzq@H<=zoPMy`K)WEj6aiD7sz{n z(!N9Ri6gso%{-p-iE2M9k#&W9cc9dsc^}B6^Qni%Q;S_9qP^}0`81$3f6s0C64@QG zo`MLzM6~t&a(tIV^y3hzev#Mc{e_QPHI|O>Gl0^#oZZ{{Co~7@c*$wM;Y30l z3nPnUg?vAtq^CCGD;n>%F_+d=yV6ekhoIgc;S2yu^`+p@BgB6;pTJf2dLS2bUS6WD z?~)!AWDFa~1J(usrFKah{XX@Z<}~g}_1seQ=efee(;|2>Qn}XR+TO*}oM)_o4zH1i-siqc+JkFcjBm21z$x+isRfAC6sU6y}7F2bIU)Zeb_coX&SMLHjI z+74$$i+k7&!M^gRk8sE*CM9vC!`Upfqkx-?C$at|gh*W)&*w zQr+gsjE6sI9Yx#K?rDnOe|i4rViOTB11Pm;+}^KQUS7V=-iP60i4i=RQt(e;%-V0} z`=yaC4?(XfKq>!HUnxm;GOTv@cU{`YBFRXejN~t`MvI+(%{oH!sWL9F9>J55#xHq0 zkJC8hKh0x~zF$$t1=EoJPXncS4!g0^LO)A8{r31VIT7Q!>5zXCDD~4u;~yvJ{07b} zrN6Dt9)tYjKna2yucdu8uemStrBdIWjt4b10|7h%EE@`NY^#?qopqw8pjRGH8iyFu zUj6ox>2IHbe$R%|QT*kqKg{HN(i4|bWaI0Z`1&lMv`(v?e|!amxsQ{)?A08mCJ7o05+ADV>fZo%&mVcr5`+@h}>Z{dwcb z0=VH2TPiHawiE}CBOzzno{5G%36Lm%KWW+fU@;A2k?n6k=;vWw>OHYk0 zMS8pnl-f`2z^BLk#{E}TdwNO-Wjx<1!k&(_|BxS?Nb9DiUE4ahDE(OU^KhvhAkBjM za_F}LDD_8{y(i7!JfM>JorBZCYSQEAq z@~eQ-x`r#*?SiiT(z*AP=53XBBG%@~I^V{l6V%^Cyw(7v@edw$i8E3aPO=!@RUIh`i9J)QUA&jlpNYqNmP$$hn9(UhEa%KXpyIUPT~ zzb!Jn!W%w0%hR(=k}?lSVgbl+1j_R@)84PV>=PfM?h)+NISA-FWL#UoH=jjqfJkBT(ArJ z?E{tv66E!MtRgd=g{>Y@>XDljm_N|-2?tFoXCB|L@A$Pl%!{)IDC?2V?Rb8QaP|V_ za^W3{aXC|YuyJfRRa2flbg~`Zu+=A ze;-KZ{EVG&3;qz<6XJGwI>7(m+dbm^6$UvG9s@r_ecyt;^IPn9b*81T=C9Y9U*)xq z?90k2<6m>9*mjsKeaEJNkJ1U>71)Ihx@pXyn|_78pBWv&r|QV%3WdIK8*mdJ%la-$ z;b;Ig@X4}L@g696Sy~(D(Ut#Bc9AsmAwHF9E$ZjFu&1;{{0=?s?}Nuy%ftO?=^P7T zU&*$UgWrj#Ltm$-JM2e^ctEdU2c9pD@Lm(Y3+%woU324u9jB+Ud%M@D``hSl%=%ma zdNJgWozHFf?**NCJhyj3zCr#Xd?o99MrZDi;rqnHvfgXJLZBTVRSxOpMtZWYtUj4N zdVFOXctIjPGWd5Xz4-UjIMR1Hp9bF%c6)qkIBDQJ3cExoR~ND0#lJ7g0m=tc%7Xzn zh2PIKXtO?)UzR?CM<{q-wp}4nKDzN$&=3C~`ETI&&9LXR7wHfHYQkO;$`c(gvg{=_ zfm@U_dT+(c5bra%-q(rmc)+((zB5bl7l8Zk%0odG4~OjaSbFTu zq#xwn(2w|Cyq)WTaDc?~+OfFr_Qi+NnQ0yPC2qw;R?DT&8s=_m4KbOzcZ zgkuOkqLQ8(e$NYqXMM-$!EW7ky7jKpS?mt;`3~`7kZ;_JhbMSyDnCuc*V_wxU{xM& z;-gvNu|6CNp`V8GO!4Qx3q*Py?}zex8-7Rn7WU=tynY-tU;s$`G|hax!~Q3p+P1q3 z6aP`3+7-l8+k7#e+GfsEi@P~Ak6&rUD2%6OJbUwRdTwLasIN{uWZ(B^iAg-QM(}qf zkRYkWxI+J$F6S3tSvuFg$I|-Q7;2Au#d_xzA%7O%%suh3o&NP`p~1hdCW5ML#YJA0KP> zyi=@~N$ZydrX3o0>-8DW-H@uxqgzD14iX+-$evS0q>Hrw>g$tr)Nj@N291<+ip_1e z$Zvu4nSjYdu(labCEEGSKObl7T>;@;1vLGcJiPz*IohBu%4223OIn|0M(yLe)}}5o z6tA}PnTs`Kl^`$DL-NP@f`#V2Cfk+usOaZ6^8Cg5`hsTLbE+B{Kkqm9(Y|J4i;wny z|DCc<5NXdz(kH2LGvehGnmniC=lzLw@oNyjazKJ**{%XVcdEQix5N4uefuJ%7pV}- z#QK`pN0Zt!V;#&8!PR6Q|5;J4L}LbdMeZThwIG=;}sF@Qnc$C;qi02 zP8ZZ`K(Ts2QJ+j_$K0j5^}0=cyPf4?Nj7i0Hh-as@=DI&J1yxvSDd-8QeIgmr<6fTEu#XI_UnU+{dV^Qo8PcMj3lKS_V`8vQsVyj;iF_m?L@ z59xQ;?h)b~-|tGgM87|x>e&F{Gz5x%l$>iu4c|fS(xqXapfU8j8z`0QZwjZ()O~v& z-PY%dVXPZ|x4`IU+jGjqd(qF6Gw|Dxy?*Z#)6cM@nc+N{fXC*kp?a3JJSTlsv1}NHla=ME@39LEfTL2|J^N+74`$~73>#R50 z<7qAy{WwI@pS%Y3mI&uopqLMs&KGyn`9{lbQ5k#O&&A?cE6BG7O8vu`R}yI7p-9g& zJ74#7)~`72H#NqP9_c_Sy?x!EUa4#5jV>>?R>lRbSzE}r14{KhaA!Kz_bV42-dD1z z(%&|VdfX#@k3xuH?Ga8YP@3oD_Wg6CU%QI>qw|sWWRfAD0u=KWavJBZ-%jlWJ-OAC z^66$BtRJXv1xoeyz%>QnV` z2TJ|J>?bGD_&RYKJ3OtKy$;328reLx9Qc#QJ)A!~@QQc5SA_0^;$rpKAjl5}O5@hR z=*Q3cwO8-|@R1T#m3FsI)ct07y3pMj2xllzn)iD?Po{alXI*@YkG|E#Iwu!%dhcpb zABJ#l2a0tna?YOlC7p-09+e*){k`K(`%S5ykOr}~J*PXlLYmZ$?ww!yuKj-vV>R%*1$5Eqy>L$eRtWu`H=xV+y6=lgAGW`1pt4R|i;afd13+or zX2zn5zv|X9$_4cvVmG@F^5cP0d)+!`C)sIfcio=0*L70*qw2Ojr*ZHnwJ(;vF}~hY zQkfsc+V-5r!k<*mSg4%+cg~eNE7wJLu5}{P@j+mDpb6H!|5im;?Zi8+f6m(_1A5H@ z#sf__uyK^%FqgCL>uawc^PiL1Ly*e@O6Aiyw11u+*jMtoI*BS@zL{;$=@Iyo%4fm+ zLTV?fEv&t&d3)vjwA1sO8k>x89tTF`L)MttYY!zU=SAzWMq{~0NrdxMWIp6B7$xrgFaG}aY3Mf-DAhk--u%)`Gp|Yb zI!Q^FxCnbr()jHBs@HMep3WDCkF%nm2ZZOJ({{@>mldfM0=LhQaK0hW{V-e1SpLQ zl6D*fpY9Uak6Q-)UIR+?J-bwoJ-W4jn-XaU@fFA~2a0`hayG7X7xC<^C-QzhXX^|> zeFegK6)5FHQm^|yqIRMv%Zu~+?ks+q%~RWe_(}8Fyag-EvAiEEBvxKJO<6~2V%u|i zH_~5l)QStbK~}?NF1SZ&UmCJikbes(wJ)xn8|hqvx!iiHuQEPMU~fSFO`tUX)Y_~P z`>91WE_XU!(%9S3Z_P#Y9C!=yk$ch+(^<`x{wR{CCiO>s=jG5nEGFT)Z@khU{qyU) zQhA^lML(Vh_ZQUHB0Z?WSdThRHcYcVXEP%5{XNLP50vt~uxZ~vd3`tPM5O0B$gc;M z0}>Qwmird%glfO-->!d7%bAM>5T6f#Qa#FzFGKtjYaH29DKG#2_+=yX+XR%_YwtT< ze$xZyaJTuGV%O8;t;{-JmKWQcgE>`ms&&!m*lhKwGc#r;5_x5Fh`^FqTGKXc-8iN3 zJs!q7ZY((@HjU-fU$B1in2!8_@hdO{l+}#!Xg3D7VDaYhhWW{Gr*m`(!#ZvGLG7-L zzqbtx!A*vEtmCU!cHoAU7PW^Qkccnlx&D4H~2h#1^pP$&N0 z+a3OZ%)`E0_;|gwIf96w`bT_HK`1!}gFkPk;yd^*6K)_Kln*m}BnTni6!-%YA;mhF zKdTGgcSAY}H;{-F7p6C3eYSbHoRP*Jo3O9Kl2i{Tq^#+}2^Bwd<-b$BtnX&QP?Al6 z=m!4+#rL6)E1fNEMy7~f7vbPQ{W-W}fL#jNgpGf?c8BL8SIB^_q{*xhi;sxF{TSMchlxvBMfn=F~`Jcgde@f3YNO#JoWb-MR3HeMAp0c<*i1&ivLBta4yMhRzWx~)8z9;m^ z7x^mQgFsV9Mk4%tQJxS#DkoO>nm`XDvtg}PJquzx%_dJB>i`3hyZ%uk~fB8U)zx94E+yS75?-Mb^G7$IcZK%h+QE!C2 z$S;w;a2NIhAq(HpguM7}A5JVx>4$js=jer70|tO>0Loz>#9O4xZT$V)L*RcP@P8wW z92nDi;w3{E5es@(X!gUdd2ok5`@Z&{|FCB=6B{MguM%P87Klp|yuy#Ce(BH457z6} zX$0$Ie~$iO1MPua4Bl4?{hoBt^Sj?$YVn1!#|ANJAVCr-_JWxhSV{|yp@X(YQ(KOI zHnb2-eY*8X1Ml3iQ?Fo#c@Azt30p5nMZK|m8NSQG=>W|6z`HEMzZzIBq>pvLx}f$S zgCBS}(>A2Se-16=i~N=*zS;9yeChX@jNGN_g$;>Orwbox31wpJ31(%y68T6@%ixo- z`qg-TF={~X^*bU76>*TS9T~r6vFWq{X7*rj*HJEHYHk}g677|g zE=lK%AN^V_li_f!T^{-8o7(m9T7)OnTkFDo>vbSjX_uleFX8#8MG!_1tOa}TJ!zLu zDZR|!9M*TI6W^d755*FIB45bKi4lj$jzsMW3ZbGQb3^_Hpwv!S1UUX$-6(gSo=z9! zYCyk4pfs`1Tiuv0uE{kmHJ;Z+yUxYx+Jupt;7`;;avH`{uj}GMWzo-Zv4jZ1h?Kvs zhHukCLVy#}!rQ^8>(G1ptCvj}5#u&7uAm=XJs&1R5(iUeRs1HMiFDxJ zyR#&GCkrTzv+_Q>|CG)?ZFu+BuXPDOus}CGG=O|6P=Y|6A=Gcau&~Ddtt^}vLFeNe zLa;qhYCnV40-&{$lBl%14Q<0lBHp6Erq3)(zcN4vcm_|*dG%UlVY@DCjBuI(#dw6A zoKRuDr;GZ->yg_gj5LKmDZFWI`-+Y0;%}FlL%$Y4(T|doeYu@3=CPj3il{#d5k^`e zJgL7r?tSe;YL|*~JQ006A?ZPy1@&8@Upt^w-wX3M(Zz15oP!3Y+GD zFrrmb=6_E6_n_Vp;iLeidL8$CrNg>r@bVenk42v@;pyqTe0G9<9-uT2&s+W6J~A9y zs-(YHTjd~CUDg@$U4UX9NY2z7R)0-|$r?+~^{JxFtD--E93H=z2*XCwd{f(9?L05` z#tEf9xNQPn8uXOf&)nhYP$4ygVgY%~JtB9)i?aVJW#z-My< z8Ksh$SdZXh%_0mNN%b#oZL>nZVcjI8EA!jNQIF@P{GlL2hK+_pPiei!Iyh;J9CNpK zO+#gT)`$&&{1Bj&f7zomXdXU#_=DMt676*%F4mBFAwL)>&8sx`v6+6&x=N{rQeI+h z!pI=_lfYQhYBjp!<4XGyeLE4Jf6nV|wB<$3hoOkjoj|F+d#05?s%xMAaPx}$D=Ga$ z9X1T|cL1gGVtjaJhM&Jarc2`*dX;D!Hp+oNDgVyi@pB>do1Qvd*X`1!@<5W&_bVmw zT@KL`^}_pUr}Itc;}@s-=geOW8-;Yb7bwk-T(|gXz2|PT!r!J4?%J@sAfF4A>QVl< z49ss&_Eq|$=<9=8KJP|2_W&hW^L#lfpXPy~yX&%|sYlNHvC&ZMQJ_2zxa+0Ybz@zZ z>&s`SD(zWIn=tY){7LP#_U@Q%G=HF{Zarnb+1MtGOoTrv9|C`TJdd|aXKzr}%ad%v z$OQP4(#_Yg({I$jfAz<%{#{s2zfAEE)IN)h~8!VZ zDE;nwB8%GjB0YHLwB9-`FEO@ZqlXYbX+AxB!TRs%qG|J_$dyVxie-}^Zvf+g1O=@+ z6T!%Oii!~GG+mtcV~-#{lY!Da?t?1x#6HP|Vkf*#fqqkg(z>c;VA#4C?e6x@C&=`H@WOf67w}1``Jqh=VKxzLkuYJLLI!m51V?!^my${3vbzo0HelAcN zFU3_FdP)ym`1y%BU-eho-Fhq!@=pV$aZlirz;Xe^BSePV2kV_A}=HX4uHP>5(A%hvGl@Iv?ry5>VRDvJA&q z+fH=zv{X+>vbE#+rVrt)0E+!saC<iG!gO`z0o#?=0b#=F)NN!(cl`8R;l zdII+Ci?V-kI^K0U4+!dSBVO+SrF9SM+!KFYR0LwD@rz+=px?VdX+L1v@{zP|b26PQ zUEZY3!=08Fr|B8P-h+M{fKtCwSpBBUnMF8wb%JtHOCnnb`Srj!Ac67i&7b(S)`#g} ziB}mfId2Ew$M>lLvL30Q;}G&o3 z{0r}oTx=us+XR&MH?`Sg9_M<}LF90MPRC2p>#4S9e`n}K;fcInd2fO51`j)a?_Edh zE$Ym6&pUEv$?Eou$F4Cyhu^88?dI7?Q{OA2&WUrKu4V4PGROXg(Gi+JRRfJ%!l|M91*SvkEU(b`+$d|2BdTDKYy|M z@IBSiSg(9on{k6`lIniG3I-d&u z4f2)rIogB@>X8)APkK`1UkB)`d{2~5qaAzf#RJn{q-9Y{A73iU8{BsJLAep-f_PAt zyod*(wR_VD@peOA6Z{$xzR;^Zn@_Q_UA`O z4}Q@%lXbuL_*)NMnZe@EJ`{hp1o$e%Yq6sBJlxmdyA(bT7j7oP0}>xaGoOI?UARR$ zih7;G+p#%WT%LFnCLQkAj4W>OXbk)r_+7-0cpc{FH4%;mp2s^OJvhG!ZlQ;eclTtL zcRH44$<64+-PAo;?>)UxZ}HydlfWGSdhi_sNc!>b3B5)9vv_(f_A;xTd$~Uk$2*Yo zQ^xe;?f}AP_?>tomOg?<;u`|@V2=NzVUZaPcE$apJdyHbSmg7I85a4R8x}cUKQxbf z&Wfp~N%NPS&!_J5yRZ23h_QMSGw{0w5>Mn-yqD$$?q07K`U}2WIxz6_?JQgN7Z_lV zQ)2O68jren^!?uNi`nzU*kS#Y3&FbDqX;_P*+tKeTMXNm1ji+z&AB6^k1t>B?O8nZa|2~a`r#+k_gj>Fa64Sr4C*%^ zfCQkZzciZ}*ZV?{40cd?8T^M*|D4X}U3R}#6XA(=jhqE1*ME7*oR6*r{aOH}dY$*) z@~{1dIbrm-QqGk%w+)LlhCk8IlQYmMb+2Dby1s7a?X{G1UQJjc_e#6#bp0o&-;8kT0;O~@yo2fdqV=fl zb@b&kyxn!$&bwGW=+^)!m$Qd+sb8_ymw(Yq<97~mHcuo8??rn-&OqDxbk4+jwkhf9 zRL|(wHN)5IV{D#CBj_o{Y2=jFUkjA;22T62==GG!1E~_!n?S#&z)<_51p;^fO#Oqo zQS+zLzBpaKi?I!hG)H(+{`r2Iagz3Fit?PS({zbGAHwTHOoU+(DLs8P)5%bv^{6~8 zr{yzxJ;U=|vw0$&kPl*fNKWsRsi*ycKjsdTRK4N1y~rM!)ZMV+)lRng^7Ue$Z&#(+=(qVec(RVy`h@qn(J{7itgr zWS|s3O*?&uF8CK}zB`-eIL$w&3?a zYRW!aEtU!SETEKsg|+&SVNmP&SlRz~N3Cag{~rB%f!a>=f_~XRvF>9!113N366yc? zK)=C22?~b2PUo>tHh3_nZKh&yrIpPS=?@RmcsHr<%U}8#-FmX>{fvnIp)ch70i|@Y z?%S~1`64@y?X>;W*Z}A^2q^Ur?$f_*M7=#5G5+*Iejreq-v*x;M+UNR?l`=hIo*GZ zK7Qfl(|P+c1o0XUlxMUAt%v3%Fwp2?}oys9x93i%wM)E@} z6BP_g{!TZ}(9QopH;-uNM?(G{pj6-4rmbuI+MhHsnp7hq|3*RnE})$6D{mpb@ywcZ zGO4Vxj^cD28N+fB&fSrE=2jZ}Uth-z>Z1{_`+!n?(5{YI=+{zdOLkN>W!>B9yd$WO zK{)pVcVTZTHV*WN^>e7fxW$|k^{G;THKOxsH7Vm`%xPWC}d4^5i{l-ecZ6@%9K ztVca}?7V+)Hb06s-$VO^LhpwWucv@g{C=ERYNKC!pxj3rzV4;;M-A8`ke>{^21t-w zVK&W=jt&3iq^qfNE;o7}p<1pV#rLNHB|QsAyh7{x9nGT@HI#O@rfpbcD*Q>~C4SF? z^}hJ;{hAK_9s^1csFrX{*N&U(ORB*Rr|U~W{c!~FBv7iiZetqVpKyR18VDa}#j+WY ze*!4Ya|+9M{JRV8owlD&>ycA`K|K%gdKxH|!`y8pXkB<+$0J=|x=CrzoaTdO8y1;` z@G1gLsPzZ&1%f96E#6cO-?;v7JP~a!``B!krnTz!TN}B*G0&U-v+YY{zv48!=aCNE zfl@wrA6fpZo;Paw@ONfUu=g7*F~h@VL;hu;v|er*GVxyXRd&^vMk@DLc4BiNKNl#~ z2j7;iU;BNg0hC{RD(zYH2A0C}!DaJAd;(wE2rMgk zywLa+zvg|qVQ};nNw;mV*qv_#S zXS=s-ra;#UFU~t%3wgo&h=-dXZ%{px*HD!Fpy>MtX}mzHIGrD9?0v)s86_LM z&A+ZB?#0sF#eUxA1L(N{DD{87yuwp{gIbrbn>SY0HJp~0puQ2|YywK{Qen;4pGR_C zqom8foqs`n3-tRCSQ1FU4Tf9pauMVCt&rOWydFqky!iG}D%a-oU%lr~V>@^Rv;#nC zyc=9~Zz*QJ4wk)F*^f(NJ0brGQ0i|zrh!kxJO}9Nt<1ygvX3DDF)$uT@YcS`>-?PO z8flox>9}AQzFz>8+5`4`nbJ($FCIQFkAA;O`W}Vgv>s{fQ|PxBD2?k1H}=ivxt3-$?L=h);H-NvD1$m0i1ic;f2|z(bpd?*!U{?-Tib&X>{o_q8@a#D{oo zn)wh9%=-RS!VUi3UbtL8%TUE3XQ_U zcikd95e|^Sza4H0_VLsNN-9P zi_dl^!uN{spoby!5%CdvN9JR|xA^q#xbEzcZ)0Ld-q(#KjIQ7Aw}oAKc=Hf{p`YMc z5g*Ko&)eer-N5UDJ72s9QaW<}ovL37%h>qElDH<|$NeDWM7e5*bP)O@+`ZlK9w>NU zMpss4Wy+W1-|EhP&jYV4D+BUCmH|FzI)ASL8F*$R#CN;GpFrdr6Td5Z5TB0Ua)|t+ z?@hCw?mRr({t?{QK%b-@JRC3F#2eGBM_?v*3w{>y(yX7U{46r*G#k@7e{m4LL;Nbv z?tr@xD0p4;9V`E4;rmq1!t7l6#CxF7$LPUmkLallvqZeRaK582jj^Q_Mt>&qfl%-s zEj_8+Jln15!67}en3+AXX+7AI#paWScyxqaBo8wu6V=Oz@{e$m;1=~ll*0n#TR`Mv z2AenHjSp+xmc@R%>a#96uOppOvv|9>1nJ<(;^7LuS^#pykK_7g^78r^;_nveAj%2c zUVM+zh5PHl+ogMYa(iyad-C^!_ZEPg@@JU!DEv9ri_6=3!7cO?d_IwXdr{6cq?0dH z?ks&odU>`!w?j3}$Bcci*6#UOCzH|KqhEnmKW1V$PE}Pvzw0Je~7QTF$dw zF3XwOr9{rG6w3$wm-AfCqMYZ`a%Oif-(XLVf0UW22;)<8dL z+?~Jp=L`C_JvYBpWB+9Po_dspFo zxzO*H{UKMSvL(*BdNOzDJ#}cESV_2reu7U!uRTk?|IBaY_>N?oN5;h)+v8LbPNmRy zjmAU&&@IE5l^fb}{O3gboKqRdOW_rc8cgfq`^@zRb$zU+!*%AMeJ^TRgeR?Q2d?<) zBfrM>lS$NfmGQIlb@XWGG2!E2x5M~pwmm12{#S?cK^yuLRnpH~;Z?Xn#)Xw0ljD@b!L8cbxBH-KQ49liG>gBp=-?+pWs@*(*|+(1(lN zYV-8s;ZMpx*DDKY9j|>>>lUMLQg}j5ZJwTxzYhKhxV@aN>*8B{R7Tl1tHs1TP}Fl# z56NH53lol0c`^Bf#}!^n^$4DxXfMcL?t)RYzkqY0mxuH)Kj|<%qn}TPm$T^0XSkj& z``olxZxZQ4kud7?rgqSJR9=$Pavi;%YW&<>5v>MLTJI0|me9GTyhrx`c2KqZR?EHz zG6DWXzeLX9!TEGfdS~y!4|S`o%(I>5U-a>l>WQg}UK9G=2o&uoIcLwmAnaKjQqHfs z|M7AbUS6u(JUtp(SdXZOrsJ1RM|H!R2`5Fg*NI$Qs|}RuZDIQ-*V6e9v%jrsj~}?0 z)Accp)j>En1Iq&mIKQ^Q>>p14%je)i<1whiZowb*fTEouXThwwbPtvF6h9v=3Hm(+ z6zw)S^M}5?SP$H{zV$oXM%ug!ON=hUXaM;fpcto-b9T0?z@OyJ8`G=KP@8|o#d_L2 zy?*c~)t9`bH4o|e*RRbwHDi!nzb!EuM>c|dbD&f{^P8Rf!Cz48?y?Kxyo%kaWZRxo z6Zn(rpSF1S1)dKqSt*~++rg#?rx~y+kRbQ)85;LkPx13iT0pPPKxsVTS$Nmye&d=nLhc!*=AKV4z{SxMO_t!P;aXk_Z^h@!#FV5yG&g)-Cq(>*9RNwPA-%tDU zWDOzrR@Kfcgg`uA_RO zYQ?LUznN*zzqnWv))n&IfztSz-$$}3VQArZZR~j>7i(zu7isV()!Y0&GY%p>)pOa- z^F7*f7M?B|^FY7bfMVW5&g?0}>D;7s(_9UuJ*&&oA>Rim#m}|wuTOOC$c+_Czi^E* zU#Y_~AfE-4=1*sjJ@YBuPe5i<;>#-gp0!vH$Y%m2@ch_Y^ee?bp6?08dP@r8&-_In zQF=C~>oB*RS9pPu_MD`4(BrLk2<4^t&sRGuXHM(8^L`~-J*EDevMGl3M`jHM#sCTU zId^kqeP%nQzpcpzK+X%4^3S;KUE+f_H9P8Sm2sBSbP4JM5zZi>RBt`i?l<{;=2QIr z-w>{db~{jl+_UGtp!>>c8Ej&rk}lP4p58Ec5bHnWbXR!!0FPgh?RPuRhiJ=Lc)J_J z?m)ao0HyI~(ht`j_4_j3ne$m0uf3jRi5czKosb_M>Cd(9ZsLENkGGyO?|0g-I8PU` zem(wmzvCg{6j#gz8|kz729bJzZnwIsWgIeJ&T94EaZaQo9uB^OYFa8MlUyL!8!I=kufJ z`Z4eN@O~`Po>NK0lYpNKwJxeZtE5W|n-00hfYSVduWMNE)pqbwO&4|jGpIj-cs&V} z_6?`)e`Kp)v+TAvRr=}Z%e9&h(dD12r^~kIv>19y`;>WKR{DhQQ3x*hc+Zzjzt zIHhZ8r{5kwre?&t+bqb>21@;()_yYam3{G7*S@@>(w-%-=OF()Q0i9--n)tB#n%39 zQLWEAuMcye-wQx#AA#HTvG)H?My$Kdh5S6A*k2=O-P#Ey8Gl_={4l5OSqys-`ppMQ z?Q7ntkLZ3+>-n#?FPhEMTZH&Y^FMAU-p$V!sQX+CA^$Q^YDZd6&o=K5z8KHMX}k1q zk6VNK62$9upj2;-N1M?)=J2Io$M(Z%Qn`TV5gwEw~vFbKY z?=|?7#&zz)XNlji%se@Gt$hxNi^Z~6Apa^*YCp9y<6hIX9P5OhGX9KV%OSr4D79yA zt@D`oV3^N;wOl)`?@rr6jpg$M)7}P3>$`a!=Fs{?z&whn+6}A8Rzdy^pwz$Tk6$g; zch4x}9;fw4V{amyw}4W4dDt^~i_TvcRlDnSoE+5Ofqtuj(sTRrT&uJaxrE&6C({@x~*6WiVWjyG#{fs_c!qd}vz9VC`4TzsqA1pqTW#9Vwp~^Tb zkp&?C0Z=M0?iJm3=@%a-JJr)^I}zgPZG)at{qyX|C;s=e4%-8}J1FNv64)llZv{%} z?fGSV38tCX0X>xzQC>DfehW|NqT*vaEiX>fQ)3?@UfY4vyd$aXGa9pA zUjpm9f5#Kr5#kADm)11z`EeCKP4}=NFQjgnexMt><=Jxswv6b&qv36bbMB1u1$wvT z?}^7_cJfin;C5M>CUZW)-u93O+PtBTc;AIBzAUwlF(ie%wH9pP zn`d6yRWp@+;*F^=CATB&6QyvwOEm?r1^#V*jrbnEBX~PDUniA)dtl^~hii3U=Qckx zpl*whK9&`|6^KV6(t+ZuS&#T`H=NJ!iuYZ>-{}T-8W3)`hr1b&&fOpCc=^~X7J1ml z&zikD@y#?g#Cp22FDI1$cxz#2_-_Yn1B4!eZ$x~noWtJ7ChY6Ne>c)tebZprC=b%R zJI}x6(1Un6n)Rgd-|vGyg}{K&FP+N?eTm;;@jtqD!uwQ?!akJX6Vdn2wBB{P^{!5w zr;!4=fJi5xtw##$ZkjtwPT_j56!{gIpQFf3+2>8g_kdD8$+vf-Ba$ z(wTLO+v`GKMNUiSdX>iSB7G#ZctgZf;^9CqH&6pIU;z5q_Suj=l>dF2%}#jf?H-&r za(OzpdskO{CyVoAmZe*VXuduRo|fPv(RVfTp>QnT*mA@}@O?B9KHhtkcpAd(;qB8q z;EiRe?u_3ODk&J@vFA> z<=-pcpMQ__;}`&HKw(!a={Ekm#NYW}csg&NeWKbw%G3G(v8VN^m2#R^3P@ntwLhNA zX0E^GQG0*H`dQ-XJOX)Xd|)*Gae|(=@B2HduDF+t4t_R-9K6qau^t)@{vP1sB z?%%Gc_24kpCG?&uKtFqaF82S*g?@M4;-~Ze)8@}?v135^{q$OC=N1S*C6`C1=5 z@3)-&J1XmhZrfc3^3uH1vK!9tnNZh<|NU{V&`YcjRtv??{nHI}o(%SKONQRlU$OSQ zN#t9_(C>kx6=NAa&m$3nlVKq)<451tD8jb9(wGykkxnLpOD`95O4Db3@3 zOPkSovP*;qA@WP;C#}~SmFxV<+X+H$KmzJ#l$+R*uNF!l>%KheJ-7U@?9F|jpLCDNkGxQku&Mq9;KM^YspH>u4T$S zt&Nx)@;3sd_~nmmy5DaUWXD&#xskH2T-QFwp8$VSxz3+ajd(gIOnc)s?EZ&~IX!0( z)N3G|nm{Rji#k6?=MSyN`F%U#`R=^Et_A&W0g8G-&ces4(murbfph_*x-XXy!PAk- z_krrUg*dPCyK=rV*1q5JW`rmDU2;nHk&Y?*T`pD|@^yfs{WhJ?-}c|zM+(nBr~O}0 zuZQ%g50oHSzqdGlctPPI{rl^g4WL*iKPf%6>(eMb^UZd?_{S5@&O>OnJuQa#N%h_MU?uIZSr*J| zMVwD>4f$JvQvZaD*bdJKh0%Vi2|Kzk> zI~`xUB6vEIo~|$6qx3Y7O{K>;?*F9kQHsQ{_DGjxpcogDQ`(m+{{7L8(61Lz8W(sE z#DC*wy=MIR>5LBcJcElhV=0i&0E+PzIrF+F9OuPhQX6~z#l@0XD&*6FV!lew)F*oW zs%s|gqQxx{-82)L&vLPvtTW`rJUcWmHU@b+t>JnGeo^W} z^yA&|e0SMAoo)zM%vZ_Drmi*Zo|sSZ?~iupifA67n3s{W@wwjwFJ0vYIqg@XueVb9 zBUPOH>w$P>0Wa_GasW!uww81JS2FX^qprC8wP!A_q01}WWgVpf^FnYiFh1nb zTkG;Yy4J=#FMeG_xgH3)K|pDoHG9GO?|D1;pFOV=WAk)!5I?MuhrmznpZT>L)gJCPp4fl_@a z^xgjj#qVP0?4qx?;q~2Vd+oGe(QKa1U6JwAZoZ$+wY$xM!8gkM&*}Ix`ur=JbP4fv z?nnHjdYk`#?6-dJn6x3uB{P(EB9Yw-`7x3HT+@1e>kpV0`~4EhzZUx#_raf3&U}?N z{fKs=`0q_{)=$TqDXO+Yx4fYP`w@aHhP_bKqqQ-@1^rHprD*+j@c2$b@jof&K1k8^3X z69)8q2q?`vf(a*ReyeH6ziN73v6JJpeTlX`Q|;tL>rdrDXf{vBjEMP2^LKAn@9*@& zYMJdG+Ife)9%u>ChW?}0ADT87D9@{Y$=K-Ee%kuO^Hm2&*vXj!`DcOBe8sYV$Udt0 z_{^s>l<`YLHWl(SfOPgqJh`*Zf2M0k={k_Js@;V|HVsnKf$_o@&5NH}9{AgS%vpWc z*kkzqnW;vs?+-5bR6QmzRyH@%mGU6XVNpb(K&4M zVa=5JQ5>5E`R9OAKJfF#e`9aMX}NwL;mig~@mNara7MH1}S!!nQc$&W%v{O)Z}EJe7ai?&}cq>Zf|9Msk+V6@xfm?Ac3*+3)toH zs{3OuHXm{?0i}G%Jdyq`>QV8p^DTgW3xQJma`w;(G5>S1@Og*xdgL_U7eT+JK)L>{ zJb!}t&=u9~zx=+xhw1ZCX?{%@)5Kcbu3Lrt= zk(QM2ZoY33zD^WrPfJ?Q(iYw8^It0KZqD*OhP{DwcoQhj>yWchA4uy`{88$y)A@tb z`K@N#(|R8YN#nt7CEh3g{I`2Iy_t}yl(Pi(4&+w@rTs>C)hEC38$0Rwy|pqwayvec zvIgP23zYhYV185D?;n(1X>+G|rCd9o|E)zh>w(hxQsL~T#Gj}>WZB82Qp$Q=Tm(-i z4*m&BmcMcbmFvm0U;MtZt`TkiAcE$d2!b62K60?*G`}`Kgv5XgVyJ*r})>wK8Aj~fKodVn3@FpocjhU?Mt-n zgt|Tv)C&;KCqQW&!U`&j`|pa%exCF8WjFNO2b9LU77wssOT)w}4?eBT18T87klzcG z#`Ae6-@A%wcM*;H<#eULjlTX#^_fC&8b24?5B)v^O7+j(bjJ?fz7Rp76n^LMf5>|e z@TiKm4fr4}R09SGMOi|G5D-J}oB-#_F%sppkXMO*Fzw<_-*MBZ9?#$U|&OFoWJx?q<3irn$ z?=44O>o>(Xxw!K0@2|I^V&J26cr#ynN-fpY1J3$)ertNfWnRMQuWpiWc9em7+I8zH30zzd@zJd%M>}c(3&3e8rA^z|TRrdC*rwJp3Y_B7ShQ zUeH^l2f`72EW?f8!D~x|Tl}uMdH&VSN1#qT2Bfn>)?e9uDSms#a&EW)#SR+%V2f|nT7+ww=@itq6BhkwE2 z65k=d-@_xD{qojxz41L!o{&ydAWEM`AhZjP`9f;>b45ymu0esapsf3TAK;5 zC4)V_!hG<%&{yQQ&DR^qEHjAH2JrT+{Xib>JfwRgxNW}Qz|iy;>8>IDMZD~M7v%xv z#61M@Lj1I0+%0%_#Ixf(-%&iiAK$=#C;M2M`4G>~LYt2_n7aj!P}tY<4ga6)X|;cE zPT#+kr)S#J`rxnZX??)$X}xk?aJ;$OigD0QPS5?%UDS;yx}MJ5Z?HS?y9E+YuLa&$ z4gT(~Gw6iZ-M!M#RgdJcn}hGE;SBQh#JpS@KN~}zqWe$j(y@IPhS|Il?mgLFAE<`! z3El}gmp@;*6e~LRr>n;e>izr8?eSP;_>u4E3dY}w9r>onIAYE&uaELgo+4HAUQeDYwy4L zTy{XOf_RDYC8cMe<9wR`(Dkl|=f)}d;C%h)N`w~;l*&udoA1#5Ft{HrbQ~P{`d{dJ zfYW)QX5WK*74#J4l$?RjYX&f1F8TAMHK1Q}pgbS@WZN09@9M2Pn>QI?$A^n`u+JG% z6Jp!ChoyYix)OWG|)_^CJCbggWpOq&2CFd7Z|EZR0H$H~dhrA0|0Z1^T(^}#W zTaR-dn_T|>FY5uJ_15V+UXZ8P4DpiE#b}xIl&%dfw{GX|hDv|bh{Z#`39velAnBGz zzxDEai>oW;GoD=wxkf;#J`_CuB$bzGW=B>^X+I-x&(!p6jBpZwQvPYbwSM*=!%sSj|Os8*4X|=_B(TpwT^ zhM1z^HZRW-GX~l2Ht;8{Pv?MEi5b0F2gqjwrTn${O#US+PftAI z4z*843tb%{pAM9O`KQphuJ5cW8Jkj-e!7Fr)9VcnQak96DNX*)9{#;>p2~x2Y1`9E zg+DQ#B&Vy%lgGV=X^vujTczD?X4}(BhCivDxKwf6A>HCZEmiGs#j~!EM?(Ua1%+>$ z_h5{@J9opCRg`wu`M8xKgl<4F9wBGJl4W%6)om^joKp6&oR&|Gbw@ZofKq$sd10B@ zmr&2)IBh4Kwu2f=fqp%KVjgHZ|Fe6mu6;qr_1f1|>aElI=Ty&to(BDT0p)U?I+gCB zu^x5*>++{(r0um-9!T>bPp?1XC&q{5WZg^e(lygMQc?IlyL}<=21<~Zl0^6VS}W$Y zm3kD*`av)QD4nPA{dCWZbS}F%@1=0s-)bxq`egy7{;2Sy-gFM4NsmeL3R%{^ThXcjDhnz)S%D<~?WHs@ZAzhU5ZX-4b@;N|h zy&x&0(qXT*)Vz4JzP-M~#UejP6mWByM3;o?cp$lD1i-lW;(?vH4t7U?k&D7BwA zHApPd`3C->h}Q!^XapnvX9iH}kE6@ogmd*;an%Q>?NX4ZcQ^DD`$6O^3Uu8| z=k81%O}PD_J0X7;P@0eVQ@^M4q}HR(JDlgAvw9nOJ1^xAX&%sLB3}0arScN^DU;5@ zSv#+4{}*mgOB#n1eV$I^5bG%}ev$KhzaR0M1(fRTlOszVqI0%?mG92ysk0Hz9H3Or zv~syGqkmA#%ilj<3eESRJ+1lBQ_4T>h3)&0e=Un?p6axGYHR`YTL_f)Ns=;S%lo*U z>Gn$h?sUAXu|)`HF;FTmTFu8kL;e-l`8nt5k`MjX0;P7zH- z^<)o1{xP7Go?2YrqgMR<2i5b{N$erWKMa)mO?OPU@4W_DX>9gkf2H4yi@0A2EuVDG z58*5WO6^j??C2f3*3q1Z*Hy;lk=NVMek{tir?mp%N%Ka}^inkM&olQe$}8n8iaiSX zM07~mwuEr04$?v25hAH__&*tf^g1>8k1O??aaSpZQ z`Djl(+-(Lfi*2`xkHYXm9^#mO9K0?mZm|t>O z|1|a#S47(el=3fU!vfsRy{9eM z(~y52SPn>#bnFW1r_K4p%#<+R$1{*y53CXNS9tZBBClai!*A}PC%WzSviq|}eR20-W&YlXy$bm^ zfzr5@y-y3ctq^>&c<J+XKnwvGI&s|Yl*kJZ$ZBz zU=)yGWAk%g>e1EcDRr+>uA8$xklP2WAM_Wve>&9%b31kRxUly6ZOH8fO5_byQCH6c5AQ**_kq&-XY4D@E+8L@Yu*^So}u$9r{f9EyIM9cihu5}2v{Ek4VBHKPWS50 z>Eqh($Y4{yF5UIkTl=!7AK&dNtdqhI{wH^1Rx%mgIgwyM3J4;}c;CZ*&yzESzo&B? z+}(>4A*wUDJAjBF-1xo*x6u-EEr6|A8rk!T&rM}%^+w#8@j(ikIpOtb52y8Hbt_yt zeP|Z+@FQFzs+iSp0O_e&kHDU6-)(O`S!YTQ{@xFih)BXfnQ7;%`F0Sq2IG4*(zrh& zR#`-vad1lnB`Y|Fc$1vv7U@6+tGK%ZM_&fqnZOM8V*c!AV^3tTPu72T(?`?$^7l-n zKlCNy+i;UH(YGI)mex1v`2IfJ{YGE5%QPFfGo2G<8un%8Ek#?e13{{CIwvfBD)i{b zzi;b>_dfA^ANzMscjr;qjfb0R$v4iQW= z>*>qhnDaxO{Y~AhC-J8~NP!`((+H2kwFqnrk&Y~j`|}7l&?Y(!;J>>;WIGFeJwS<| z#KTAYD4lpZq=D!s@)zaHFVaKk4>u8=3NJmd=~8bud;K-@akC2FUi;FcMCkfHKu?|< z`J@oIe2AYW%11E1mR>HQmncX5P_H2G2l|A6qzi-F1-CH3=7U=kL?OrtdGS4)ScBh1 z`H}LA6ADE+66H)ym)@NCGYjGF?Z?aQ7?dx{S6+`rI-(qj^5av>kw|}G7*WJGo9DMr zAPmHf6X}9fpATqh&p8++2RR1kT;Xs~F%Lei95E05Mr)LLpw+|=?Qfv?mkmcZa_!9=v zJV+P2JcxJ>$M=WApQ4wD4;#iFiYKb#d?61cLX>7cY%s?#!qk}mi7-{rVO+Jpl`vK1 z|3H`$6P`*|jII9)DlNRIN3X2!x-e;`y%A^qA`zzAL0+0D`HnB91M!C|UX$NGkKGjf zo@O%9#K5Ku-d`E~J^HcxzVjATOPyJ>#Yp>rxb?Hq&*20)#$Gr~L^yne!5!--pYa+d z;bu#J78lfm{_0~76vcv%lrBEcmNVXhox6W~aAHp;Eqsu_p7z9049u?zes}MLmrD6G zvp*QrN?D+48*%(({ml)w3i!TAe`(_4S-P1v6n1vM_4I;<%7LUd_Qm=lUeW|Pr|CJG z=q@rhuIecpxsfk`hw2$+hhGKyO5quKA1u{1|371*E6QUu^o$ASU*T6eE!0n*nZNqQ z(#k}sdBpiA%0K^XY?xs)Y2p$v9;Jh>?E}*$-g8DV1Qhwk#}z^S>91(}V1G#R*z~yz7en{(1bD< zHtO1oFV9T=q?uhF`Oj@^!c<+zOZ8S8k$%am#WpFOv8|k4Z@5^?Fv66mhxEJK8;=8C zR8K?W7kRpbrl->hRzMf+LIcE4xXD?#e9>v0zy4kq?G|?@F;P#&0=<+jd5@12d->~k{cDPNB>|=U zE6l9w)2;K(tuvJVA%Qi6{PjT5?~;>UtUyF+>!}ge-(Cm#=0M3`(t%-Q0MU9%o*3(_ zyhO7Wh*xW%)E{xex3$5>!qTNB_X-K1A7sskP8kjDyH&4Eg;l-SgR1Q#WrKYa3v)#EjuKVQL)w$^G<)Q)q+q!+E2g zJ{Od;#At%o5%Pn8qTeQG>lVN4^0I=5cK-hD5W8RIV%==QR3G@0`Xhhxx4U)!v}-pd zAI?;W)NO6TR2TS@%9+tE^@5j~8_qkrDgAr1h{ttmKiw7Kqyx(V3HXJUZ8oOd_gHgf zp+1p`1~LuuQhm>>6ZazOd(E)+g+V?QD2;nI9PC3EdH-%&_N-*jhqzch+pt+r_>?#lEf0gD^iU{d=rUm`Z^^F&GDz156%tfN%=z|I6X+{v|S45eG#vLKwoM$ zr)#r`S9yJsJzwWyt}w!sluwpnYwhIj&z|_Qd{}*mv>%hcM?nU3H}vZdl-kd8@$)~V zi}VlgX}m`@oDmyFn3BHh&wa}p4_*p4NZ~XeA|3ar1}QX_jd%?JO6|*fcP3pZYd!zg zdK=Jl5U=4tslB!i2w7J>mCg=pcLzg$2(UVkpm0hotrwV2VJCat%W^xeN1AQeY#9HL zCapguEn7nds;#Hw^I-(^8v~U3=?$+h0%{KK{q;X-BmifpS?c7#nRb$$Q$AQ za@P&trW-?-eg4RtGoy;Ys7q z=x2w2tZQ#}nf>(-*D32+9c{wYZSW`6BX;k;hiRRi47VjVR@$W`n=myM{-k;8dUKwt zE&r+4lRrf({bqtqn7SoAT{awj>=Iq1&(|YE*EQm7!qm<1CyfV}*FNwgtrM9Sjyu12 zS}G3|LgeGD(D6&8{hxZ!HJVLBylw?b-!0nl1+CL2Jw=y8exNs55k!VtPdn8+%`cN!c+U{%byST zLazsaQvb(3IYH}EgXgqA{8q29i%af<{CuF?&fndP#^uoqmfrhJCuMvc$L@#x9H2D6 zO?ti!8UC^!)qsM_Hf%N<{-k}9qLy!yfimkU`E``J&~F}48lROL^08@H$$W}S&%e8U zQQN_QzJNzSdju%eBfjo!zCWg3Sd+vSLVgKQnjaN4xt}gFDD2_i(^Bn^8if(2;N64* zecu`VpJJdTABsH;lA2i^{2qmVD}houd*zB`nuj+r4VQLQ){|q{a>%a$O7SpK zuKSg@OGXuC-r=;p4(N{|oX3Infdqjmb!q?oACm7*$GcA;K2HLr{6 z#!Jr2r&B#wL%%gZY22z6R58o7^(gZ{=jGF>o=-uMZ9r+AJ@4QHCw0$^%%eG-#wz`E zCz~*}5&oq9)}7pRuWpQdu+ux9feP`dl}(s>0sf@ZNp~I!=Kbn zxDMu_zW)ywrAYCn5S*5mNaq1+Kkc+0#js6Cj~9VbJUoZm5P|8Ud4WanB5E#Hj}=0G zGcX27Fk|pRx}c+2+cW3svITm*1eEGS-hypMs9iFjYQ@&hzsx_VZ3Rl>R@UNKoYK_9;&ny}#0Lx@^MK>yVe)&!Wz=XdYm0A2n>Pq-U&6n0gKV zqve`uotY2q?|p zV;gn<5Y@A#QeK?aqsa9PEic-CHB_bWq*k>3@#yD$GuZo4Sy=}M_GR}xkUqzAbx+1) z*P8R3TBfqK=Cw^bQ}}yd5B%PN%^4L-|6p(`u{(cH{3DC!aEQST)Vi_bpP5fG{3r8k z)o#Xj$pDYVvv>z?L%i?Fc`|RMvY$G?|6}KjG-jRpS(%FO_rmuC_U3LfP-E%6M#uqK z8sve*^Wfnk-VAb@;!p6OXgfkPAHfq5{2D5rR=jV;?}86i;O6pLCP(6dkZ*c2z`uds zOvGEHKhnvS&Ma{|ymVG|UFlbEneS%H>OInY>y!*u<&&qUvTxH_vr4bO=sN&@T9$}M zS4KuZMmN3~jL&3?NCksl6MDj66~gre)18N_=w*oSq=7dVOh-$e3@>qieHpFMev|3y z$IL?pF_Zh^eL5>RSgzwF-~WffBnEkrzJ~A*9?GE%{yjhPTm1eP`D^KukcoJT^zR3K z;ATqx2)+o*;&Q}a>2hvS?+hkUE=}+S06)O+y z8zyA&@;yQEFVZ;=zb7IdBAqE-Jid5u1mnqhaoIeaK!1+DZ1BW{8z^{3f+ytrZ{<|f zlVG`ibJoS`pQQI^b@xw9*mMH==OdmXeJNk8`o0Y1(j&^JQf`I3FN^c+;-PQi0It6V z6nrC(&>!jZ+<%GJdKiw{KZt)PKL_6f+I*ye{5|W>ta{&e71c8~Mk{nadXYw$f?#hz=AXC~o&bntgpQ1&3L zzdUip%1U`GGx%Q9d_jY&Nq8^K8>3s_eZpH%;kKv7{xH_Q(A^RvqFNcqmj_k@66AEb zTJz=qu<@Fmhen28U{4)iS;&UN#^PG-9Oeg1QzJwK}qd66IF%v(Jf7fSpCcp+jQRRelT`R;yf_cvZPdp=!F z-OlEyp6=%kYbOfm$r9 z&I8u20#*bPq}^Lv7?vveeOPDf!kS%PYaw3JI!fWfd3#WAYnOPv74=P&6RDgTAJ_lh z>thL1+8^kwoPTK-@&3E?JxYlvyM4O`=_0iwzGLqa@6+tb9%-TQz*^ge`ouoCl%CpW z7uM?hbL#nt$lJ3}JtLq0ss2R&6NmU+2_*34-$)k&o*}~_X|?V4i~rn`xggg7DDs1x zPd~g<>`xch`h@dzX$buq0Y$q_PG9LBv@f&wqf-~lS5VG9HMe=g*TP>-Ai%BBQKv){h}bFSyO~hLnrm|Je){+T90}j%;mVgN16|zdd9Hk(C&JmRL_=wGl|Ms zU2|W%xjl~KVouZ3X*r9sc~aw`rx=fr)2Kc1E8TyV4E}sHGK|OG67qwAVthx=yk)nT7Z%xkR_ zwd|qH8=J8{knanW#y!Tb_w7NkSL5eY&&d1t&~ypt8PG2aDAgCEN&0E8Veb2W*;<)5 zCNMYT#d?R7E;%3d6Bolr71Mkr^7u*mlZH{OKlB_3l=`vugWnMs@u~*1U12;aseg#x z`l;AIQuFWfm(M|nR}N6>AADc$6&Ka2?b+qma|rYs8J-V$)n4e_itDem&4{6i_Pnc`a_He$(2) zsAaDsaD+TZHkXBz=mWtSs(FQ4O?3ULU0TOqw~puS;W75wF{TQv8i$ zM;_O;A9uyw;BR5?8*s6>FrJi@E=R}J+(Gs4pE2*4j(FVxl={D;H#I5JwH$Nn?}B0| zFP6=K{Ov%gU)fvgRq8jf{t}uGPV1l3_9gOhk5v9BMgjdU#A_~4N|$+8-9`6#nAumc zyE4CR&+dl&eLyMSwO1xDp?t4>B(B@l3g0j>j3*_9mw(sGw5}iEJh0+g&oZFjy+CRH zaDLf~S1|s%(q`Yi@Z>2m4WI6w5Ps*DSq_A5@;iJZ2B0sTS5%Lf$u)#P-wobaoj zSNmo6xps5x^?ysu=w%z0dJ_Js0twt-O#ImEJM-!K1{)^Z`$gPeclI#kmI9^qx*4VV z9Of71zm=n`*Cj-}ULe(HGX%B_;VcJA5E!$A*1?Vv&%0tvWjqmY8qtAA|hkK&ibhtd&hXVe3)b>&svN zRzbfffMUOsocVo{#lD)VXXN=1+D|);pT-KH-)lhWyM;p@`%Ty4AN^1MJtOUVNx4`D zwi@y;0i}IWSA9S2_m`R6?Eb6)%6$oK*&4`i3is!!ckfqT;{x$XKI*5`qh@R^+rcYIrA-rvYJEVT~)r262~PHaXySn~Uu&p^NDfKqvJ{aEgOUan`T zJR28V5BX<-()=%aK%JiuzmmTP z@KenfC13vvq1P6mRR5ws?LqgPSSO!*DgAU5+YI>^fl~YFdis`kknbgb-=Wia_{)gb zD?n-fP|$z+?>v65#4G)Si*1GcHlWl$6wO{I3SKUle;C`gws;`PA-TU6yGb%!U2Tu=4o^R0loPp`$2Oglj-_lNE0?1cO-ptOEw?cZ7_jK3YFjO(0^BcsB2QV7MANnaSj3*`e>wfOd9lSWa5`JHo)B6540@w?b)={*P1F0W#nF)HeQs14f(?(v- zLdUz#`y*%R^51zq2ZHvGawzX+ANgV1AKl%o>54s>Z;wl7H*9@((|rxo*cW?_H(9?T znOUj&7j}tmZJM<$?&TDA&*qc0(l;ivkLRyCI)7C+$ft4C1oq-~dWJLD;ej0Sc&u~r z1K{>C_y-aXNHZU!J2OEuI&maBK&De89?hnTv0FbL-;)XZMb>LqDzlLF;b`+=`m&Se zF^9!H@gDKhL_Aa2bo2QczyAdfAg0sit2%A&$$3D15RT3Ff!huLWX8eLgMPPo3bp&f zodJYhqThP+^YEv8asAH2UeI$Q9fY1;nPmp((KL3d&C(<85vj1N1Ab2Lo;*Dd3B8d1 z#51vWW8O~T;d&JPd_g@eeYI4?5Ars@O1SY|UoZYWo5$0eyBSdMnu!0vzng*l7XDN{ zg&yKN;rVBMN92ngZW`w+Toj5&RRu$2f%i5c&yT5S16pj>|s$E_fN@ zcP$I))1QA|%jD>X+b7;<Zp=Tca3BC;RU99q1HE3^1Gat%7 zjv_x{*Q$?5AA#wRgMFvb{TZ>jZX11LHZNaK3;mETLSJE5N9gU(=J`}(0RNuKJ0Tv; z^_HP9e8&Ka?=Zw$e9tB1M0|yOKQ`8S2C*USmd8DLEBtwoe^hTcPXzw{f=^_%A8qhG zzxb{iPxz;Nv(nL*$=i#G1DRz;=z{^g{5+D)>(?L=Z|Ec9W8k|-@jIo1^*zDI5%Dz! z^7n#IB=|AnJ%in%L(r>0lvkmraO3-z1|b}v;K}$9PGJuJooLyb`4GRxN|!@JxSQ+} znXfgKPow34XEc&oKl>p^{w+5f!Le{S+(Tfm3-1~H5iiG*_lyFL`=9I?t@`EU=)aYx zQ;F;u9sDbv&Oy%8NoXGA>D*z(Ow*)wgOmO_OZ9|%mo9(1>RoImez!p4>2$*T*x>J; zBMm>N^WvSSb@}cFmL7ahe+{+A!PW6z3eU0=l;5EAH`7x+w%rFyj2fykkQei~YH$-2 zbpH5P@A9?Ne%n8R46g;>(_e}9`g9cD*9iV@RBCuh_gMSCo$T-PpJVLx@bZwC^bCAn zGr-4p+HcBy-03_i@^SVRLH+43=j)3V@f|U5j0t|%bG9nZ860b8ryu{>W%G2ZLSB4_ zoCSl@zxEn*`uCdIjqQBqVlnpqml(H-{HNcG)(@cdTI(tK^#*6-(10GzBcO?LSr2Z4 z!ddg^UU>c}^Es#a7y0;Ho{yUQl~+L#s`~2V>2kvFWl77X@9Z#8vD1}e@8>s#FOiR? z^P_cpb*=vXgy(vt+V+yTSQq;|ut*Q7op3*Ug7Q7dzi{G%&6M@ij$u3}sinf&38&?y4o@IW#H%vg1g^#p2hWq04!)7XYl8Gh1WM^$xUD+nd$FF|cb=Zjpx<@jdPbMKNvyjT*FJ>P@~N@wp(e(z~culDH>2RvGtP{(R^R{dxhV_EWp@mWy6r`@x5%RvTjT1uZeUz@rP~y8^}d ziJWZSpkH~vGNZdvA6yZiYf#fu3>1?Qp42~b`(DwDXa~5FJwM@M^%#SE4`3~z2|o^` zdmSzNq|r(}iVEZDNcpGD`)mf(36%JG9jE0p1?kWeSQAKKoVrWQJBn)_r?FIgKMg45 zulwf*>3p8`lzczk8~P0gO5=Hd>Wb4|&Ags}kZO0Lr#+v~f|OS`}2=NeikDg8q|))(^qfKvWNXH6nKt*7ME(+&MHfl_*M{zSCN zBRj9G7ew9;%JtIuykBGeq2EBD)DHSysJhbYGx;HPGQ!%IY{(A)O8HP!H&K-9lJAcO zLBAZJG!Mux+H-`;Spr>X9lqYo^}rj(~pCfnuIZPM7!nuXW>Oqw`m^(d~IY7t`5D$WH)D<;<9JO%q>4Z$%$ zX+A31$2g<(o6hsyS^127+$z>rd30QC9O5+|D2>aV~g>Qs>E>LRcJzFPj z{KvG{k)~&8yQ{H@h}UGGSjQn}L7Q20uFu?ft=dLehfZKOL4FcYT2CH(>+`VhrIq}7 zk15da7NAtF`MI#4%=WW}GTx03xcH-NJpE?hZ zJUpo#pif5LuY~HUu{)vP&Tu__4|*=>f%3H)wK+N6zE{H%qm9eEAin}A&EpED_IgkE zne^6alk9s~EHT=!z8muSz-xd6(akRH@x-4>vt`mw7KlyGOb`t1082Mr;A(7Xqd6*`;IOh<&b- zKbN@}`Yi!UFyljb@7-h9i4`cPM??|*-PB$r!rp1KVBEeA^Tqxh^?)1HHQ@5Lo$UK|z1(~;sA zwZ%TSU-I+*NXL<(=@PVOgp88+x#qo|b_Fx4-dp#;xuMEFY)|$$((wtPv@V?USQEN; zbmD*Jz4TyK=zX4a0C6ScR{^DZ>n^ys)vK8oAE!1@%1h+y6QS{Q+OKHrN$9seTu{ z!L^bH{OQY1H|Iy@yzzuG|8v?-IL(L1$62BIr`h(5oD&+J+39?U$se>es7V?B>hRUqixUVg>Zj`XAIi6=-uzfm+wdn zD=*JOegjZi{|tPdF8V*UU2@v)I!zaiZG?WCfO7s8T{F+C%`p4FE0yyMk@tV{_ssEp zA;Q@lo-Up*ex&}^dWw{GKJxkyT3(#CFHvj@^xF=U`rCpni_YuX*SGw3e`Q@+Cu+`K zg8Zw%7$Cv#7xKQ+wXr6@?wYXj@-pPM0_z9;`Ch#KYo0Dfd8L1keE%pkU1HcaeE$`o zG!J)Mc1A5e`#B{aB2UlI@SK)Ur|nV{dkyh=6DZBc3fBI3kf&!-8>L)F+dQ2&;7@|Q zw1#CEcdP5P|CV$K=srYf2e1Z^Ab4+3be7V;U+(-1+B5nP`bq1Kmrft3$+V$`Wrr3` zRo2g%+dQ3j;V(8Azrd3HCv~Gf@n2fyD7>I%Hcw|if_8z}vs^L~0SzP}GBjq4=7V#&{|4nV(mfKq$5@_;$7(l(K4 zlikX=$9cL$I-UsakD}Ro(C-7FRL-87`zP_X%_oN``4`RJhkOxGieKJ)U%q3HdqUg6 z$lHlfJ)O3Lm%rXFowjsz?#H>ca_gjPbb7qr+@)Dd6NqDVFvzo7UQW}tPg}p^{5$>F z&txqm_x&_>)yXE^o~WL}9x!QBN4vnTP#b2YE^Eb6YXNKxWE}IlL0;!>!JD%AQjjBl zlx9829Le4icc-u?zPkO1uYT#tK06q7pi7lr%%U}2m4@GY1HoHbkq&oXj!d|LbPQea zku>v3O678bx5DsULwr9CJRr#Z1^>wUj_^-B5Y7_|`nP@;{2!ki;bm|n9*vc*Io-KC zI)x+gyiBrqt1U&?b2Y_TWy%M8w^8HoJor*(h+-cNR&%xYYrFEd$rJ#I(3c@XbJq_bWA`$2zvkNjJDF`$9>#5=O;<-?*J zrm%%%UTsY!K zoZFoK;K3>RN9AK@%r6`2R?gL2vQh=%8NK_qBnL%i-TOfa3dk zLs7mEuCSjZ>?#Sq7TI$$yRTbE=MKuvq5l^&xp(Q^OA~Sz=Pt?3&wViWp?rvQ!?jrsY18`&90u{c@N0uJ_riUH(>{Ru$rD9r-Js))CIrin>0?(|Qs5MGHMO zt>9p_lX}svm%7(%Vz7II@9CsP(4NxWczj^01=F30Ms|@`_Ig$1ejXV24;kA}EZw{X)SAoB(KsntWdhP>sZ zQ_8>m3ac*YtnsS+b3ZXV-7PVrn{7|&TKE&~FFEt(w*Shjy+82y4cE1|^O=ivvw2$a z@K+va!uP+f(T#Mn6aDV>Ve6A({Y=brgZWO~dpvk4{y3#Qb2(nGcR{a)K#@-5Oj`K_ zm9vdk(gAmsXIGCkfP5TKlpk^yzR=p-uQpAp?pD?{otMu@+X*RONtMf8KBHJ8q(>Xz zRX~FLUl%;D8#`ytcyv%J<(|2AtTE)81EqDb_GQZ)(X|Jfepc5Vr<_k|WAh`fgFmUf z7&F&=tZU0n!>pB*@)B?Jw3@-6l<$R}UBW)V=gNM(izPz7DNwYBa#kDT> z_pjp=S9zf!q4l%|Rsa&@U-O&Bv_JQbe{*0h<-ABEo2S(Z@}i$0XS9C?jYF(^=DyU$ zIE;(M+xC=N!r#?E)8EV~=6YJ^&mOD4M>#ha`91j3`YL@g@_ne#^mN`{M_S)Q`;~y+ z7U|FqDAgl(%uB+4MahrroW`#s;?)Hxm6w7lnIC&yN9dl_2L>wjJtoYalC&S;sW|>y zDlg{a+%9}^<$G7Ihz5l;DgTzAe_V`1I+XanNjKe>+NqQYS zz6{-CVcnnqjxsK|-0i&ccBwbwmkyNLANM;|h(~Yn#f$5Ha_9RIeW71Jpfvsr+V5qp zOS~Srq2F+zRNn*FUQK+m3%M5?cE}DrU!>_Q6Y|4=(zrbL+pFk)`7Cqd-$&_h<5?Eu zhlYojKSMj?)y##!=jtf+A&&Kj{6L^ok67zEwEuWl?uIKDl~vl^dMq3A1Ar0~+*{^* zG;`|t6zApBX}>ZEiVXou<@(I>n@CT$nVu(T2?7sO|Zdpb(K{fsnz zq4^hO^R%WSeqz0soc!LQY;y~`dRV!>8S=LPrTM0GAH{FV`nA*b5a;E38uYsrD6JPP z^&O;j4eKfS`Pg*mHv=fv&&k=R#Rs&WW!)P+EUZ36n(tCOPM-|uwhB)JYb{VpH$#8ofX=#}`FO*c zvG)2S7wg4lLVhJsTF**)u5M()cB?>%_-i|D6r4Xz^8M z=(@1h#opJO1%FaL__IBSy@pwB%j(K}EP>qz`TK!V{0eHXCtesc`>`F$ILqn2TIBUM zG~Z*`Z0I)+D9z)v)HGTjw0PJR!s^2u$j=2z<=Xe{bULqv`=3hVcMg&Fe^PppSEuod ze0&y~E>Sj5YYFrZYj>lF@0gs-r1pa(Ti86U#qcN1`;A8~5%0!)Jl87qJ(?|q{34(f ze`EbCyScwGyAYAbPx>B(5P5n!^%t6+8p}t#9tTR}3Ad-$E4ndu@rU0w?WBxf64`^0 ze+XC|NZ=awCEW*Fm+DdD#IXA3v|V}_-(L=t*Js*oc}dsEdd#RVR33ICwiNP@0;TvD z{W_4w^Q{+N^*C?mizok_*V`3{*JD7b-R)j>3Z<5{tarDH>kSXr?B^MENZF@#j;}?**V#&is9RbRXeIr!JPS-A`#J znzMC~Uk{WZr_RD1Uaj1*oO0`e=VbWrjly_Z(mdR^`NOxd9&%0@mpd)jPRpmpo<)S7 z14{c#Nyo0BbYXwJ-s7zO)Y$U~X9G~2yCG-PpSRL{6ZJi`{yA-5oY#kq&~GzPnoqkI z4ZNsZuYKyhZP9EK2Z`*_oetnR&nXF}Kq0IzN~23iNvwD7BN4J!F+<7kRx6tq)GiwPy3Q ze9%*Bm;7rw(7fY;w@P)rqqEWuwy=3xXwWrDAEV;h|DZn9SI!~1*c%AvO`w!dZ0>gI z|E%YX(hf$RE>b$vmz>rkr{mpdwgd6n36$nDoR3tPR(r-q^ zO7nidIqx^jeeExYDESx9iXeXwDChgSR%l;d>87;TF7^TBKLkqiqn6*)r2fcyO8&l$ zkD%Wnpfv7r8`-}=PxYQLr|qEg{vp!x658(mcY9w)f;_ZWs15jb(V_Zh9?W15pXu`O znK#neHRrZ{68l&h?BH}_Jat+ETL4>wPtyZ#9ms%P!8hp1-M$o##M{!WN4V42i}|yg zjXlwe&1p8aL8aQMEd8U6$=~jWy{oh7HgAXf%i#Wn9WSjfcMHA|@m@xLUxWUovMbH! z{hr{*AUszx5S&~^bhfTN~8z!BT?uBq+>Ih`OtUGRn-B9P##3O zX-ID$^wivtPiGy!S~>N-SNnkHBGO6lmGE7kcn^IkUAf(~RD>tWQ&11CkI+x#VB-gqzNm!+rR zT@@i+D17U^mdVivG=Rh(;`(Lr-$glN{kc0IXaEKOi2U72m)4x9lgVy%m%r6LH-n|- zoF6~y6!OJ`_|y>fN#qyohCQdGH`NEtd_;L7J-!dnBkXYzect-r5A*>w=*2RbX*KVv zPDr=?qF!ggE?@@A1=7v0>Lt=sq`OErB^^mGE4^M8;VSxw^v%oW`f39>63^=O*XZe# z&Awhk6*i$i_*wAJg5P=9ybh0eZB~5AUkG1K!+VhrNrUkFKrV0d#|CjX@vJRAYTZH5 zJDaz|H}~h|elX%E^4+794@%b|)`M{K5g)(ML+B~uIgr}{ObwP7E4>DY`~n)lB-jTV z3w=F^2gCR5_~5;;cP4mf#51$ftIr4?-=yIj{X-FdxCKAWfZSi$75krfYB_~9{#Kq^ zRpP1b`zxN>KF(9S)HKLb6Z6zcn*A6LH~m@HHqR{hy4D=~9!Kj}iKlim#ASc2&)=nM zft2qKPnyca@0OVV274Zu1bwC}YB!vgmhKX|vVx3f^6Zy05+tcW_=L-ojc6-S` zA7i(RVt+&AKm8tEC-*z#yYqEOb>0{0d{L^Grm7C>Q9yT@zUgVoL8}NPh_&_)O!tU} zcDu)aPO{I5B=Q%UXiv#m(EE{qt{r2~RGC&$*Zg5`iO}=DvQHfOdSYlk zMBdJa`irr7Y6;=-%lqn}xHtXZa~?0WTt~j%7MdX@c4ka;<<;efJGq^rP2jwAz?* zU$U}a;q?CHfZiJ6bOMTY*mO=lH{WYmynv*z`rZce?SWD|ugx1l_CH#WeE!C{E_=Mm z#Tv1;kZ%VR<4|&Peuj1a_EIs`cjx@Q4$!Y7P-+Js`Qp+ycE1u@ADow$Nc$DFJ~;K) z1@UqNrSIm~??QG>4?S}Dx|;p%{(y`1W?doQ3n=v~{vJJl(OF*gi=S;uSN11cF;q;g zJN!xGo}z@?KJ*%NtN0I|u3_bxLB1PMDxXCoe?E+Shz*+uI7^qv^Di{tqimj9GV~Pl z7II2pT^LQ4Y zK;^qceojNugFfkW-0Hl4=#6;w4Ub>au(f2j$E0;E?y96qEK7%cpKyQLO<&;LnUSFE zZ$(~Sr20i6IFDaH=$8SM`jx<^+b{5H=Buvg8Tq&;R8QyqdnWW729(Ej$Fo268jZL1 z{i7&ZnWr+A1^J;sb>3n08e4zt-JO*FD4z9){1BkjPMoQeLFa6~`^NWb$A(IOYHS{}6e*8(ME8Z(qdvBUj65dmY8bAYQq^tAGS- z-RCrKTuj~3n=WO(*({8wCe?RtM=n6u+s>|}wAW7cq{X}pK2AUUJkMs3{ z(E9GQf6&5sYGU1w)MMYar1r%cCr2seCC=ulO+viHIvP1=?3?)p&8N+Bc07z{F%j}N z0j2Pa)n2PTqhJ0#e8JHAps^{4R~}GWpNOBo<%?oIhZ%YOQ}w(B`aKMk>XBs+z}0eM z`{-Tc75h+bHWl)-fMOkuoR)p4f;(FO_Tb8!l=WTRwkLKc{7LZ zqJ4gm_8-9S4sAapZ?8+^yBwU3&otYf*i3v+YJa$$u5wRIe)r1ZN7sqFpYm$fys=eSf9ou~fW8Rf3!>w_(a(0I^#qKavr>a@H>**vwEp{F!1 z@J}hDG2f8mu{)9ngr4uG{nTZUe+nq|f9~(4^`s5B; z;q9r^+eG##f6GD36n;9sFK5 zzV6xi$8IVgxs}aRdjbBWainq0j!C*^UJG`vYuG&X8OT2el#0M!-?kjXfye=&FQ~wv+mPFFaA|0u3*}5DlY2>DCy#K9n5LIJ8kDR=0&`A1Eq1R zw&#VFx?x(H_-usIel}u0$nOgG_fykVSeNpI+fUj7`JF&%epJ}|_djVJ%shx+SxHZ) z>Eg6LI8D!h{ubi37buNe+eg1c_UG!F6F`+eRL|zAy$yfT`e5PJYfL_!X@9kpQa+uQ zv&iEowF9J?(|q8(oMj!#^5M>38H(B$BnYZ;_{XYT$BLs8toQ8)g(!8mGgYjD#+{<8&D&lW6B<-c#}3Aqk9c#ii4 z2$u{EY33siqLZN?ey}?o?}1u64$${x@Bi5O{U2XX!NL9>T<$Ln6q%pZgnsjSLLU0~ zg~6Mih&SE~B7z1tOJUY$Y$A_vC-e6SV$*e)?w&5Vnd<^I%5mfkl zks#mK>#1UWWE_8NE?>?X=!Vw0C z;FgFhmZ71KvS854%?U4*4x0Hyi+mUP3OA)+NV%}F9wTwtgaB zLf>p|;ON8tFa$P$>thT8=5Q253?c?`eZ+S~I`@aX_%2YypZsa&Lj)I&F!Zz#?mx3p zZU^$;i5Ox{-@b>NK@T7FB0|Wul#RU}62AkBfPzRudUJh6xFUYghtlPygiWho@0raF zpS`B&=@)YFFNipT=;KqqTY&VSa%sg=bAy10aNUZ&hR|1}t5RR7{8`^IMsoe`9K+kQ z{-gPO&nS*$cu6xK&p3|0Ash=3{|VvgXNsGKrL6iee;EJn)ZyHp2J`{R(9{1yn8`kT zSpVAzGw=QtVdh;{zT81oT;{ZV^? zt0G=W2Sk!GN6>+(l{a5k{iE;$Xf#H!p7OvdKmu2tj^coMIXgc5XXhI_QTToZpfvF) z)C=eWI_ps<;*k%uLes_Rz%`(Y{1Out>AOh<1J8PmTg)b^sh#dz@1P+Mk&aS66utQl z9Tcx)Qe-PB=^6RP+7(DQ4o(NI0bNW`qVYXxpd20bCr!jpnmYo;bwRMxe9&ydOcUrS zwKQBd5P!S_s$l_j(jd$F< zI`3B+BOMcflAeWo`q05c^MdYwzyeGn^cxA3+Oy?3(M8^(sYP9{*z94g@w){^wtWC+ z2;Pf+f}Ba`PWyGw>`N0r|8O94;dcvYVoyUY>uCd&+Oxbn?)}{BOPSsMzIti4AvH^k zCOX$azBy1z&w1vB?!G;gp5Lb`^*!=_Q!Ss@Bb=5%30(E>r44cGs)*~94eA)%uu}_o zklLlE?{v`xd;BS;g*WHrvlSE(`6}guYuS4=9<-j4Cv>%io&$hlJW5XMVksj~c3;l3 zjER2L5;KxnJIHqhO68Nysq~T8IDcFG>`U$Jewq90&e}u16HqD_N!zlIlEIH8|H6r- zlya8HIzYZ7Pzo

itVd&tppa8F{}V=|LelZ9nU=&d{$*xSsB`V_y>i!ZhG_vX}_C zPUisuU59=>fl@s>Gi4tPdcEGBN$E_I?HPl7H=xu`6g>VU9bB_kEZc?ETW8~!fZiS9 z^Z<%+1v&Fue<27uamu*PdAcMcoD^UTkYM44KWP4di?)lW|BJkwg_ci^r9!VPpfnCK zDmA1H)pJY#+}!0l*oRfrA%Dm9X|@5ae@!Vm?pK{LK#>r2fcUpeQbbWzNSTPV;Xl;xz&& zmFtCvp4~<9qsK@JOP67g9}X1rL2^bO)@t6{mHh^KsA2&Ot-kT&x2d4f&}+DIW?m#(v;6zG!gqY|TuipKfat zW+ua*+<&~+?m=B!w`Iu-Z=@*m{zRKFb0hpoa;(Rair69iF6#|c|$Ho z|Ce#H>Te3-bqi2xC(hqpmfDvY8Q0Y8*EOtt$%FjOKxzD$f3}4fPvmtep7IiDx&-$( zxLT3=^K=PK7cGo1Bh9;vy57pn2uz!JPfpJ;!o{sfk2`>3{hOTmBhztkEudbU>|(b; zemYPB->Vf~)isxSMB!&;y)N>3e`r2Lu^9;9cAzxBXf|aitt(m!`^D97Mw$<5{yD8j zPW=V+yOAFE0HyxHJ?mO(KX;q!SsGf9M*YFe!RQUS8Dt;B5R7 z&F+VOJAq|^1lGmZuAC1_eX;RwCf2*GpXs2&EXXYb%JZBrCVuSoY&$(S<+<_fTKvu- z-8Ss>5Z+7a(tg4BFY8)V?Zi%f`ZB4#BFX0eZ-kk`Z6j$uZSJ6d(n6V6C9t^&XC6@M zAM%f%qWQbQ``gg@L*)If(|ic+--Cvo7KNvauXi&t6q!cbG8?W`)_dxO5oVA)5U2%MA?R&9z=Ncfdo;%o{eVQS@P-fF!Wjq z431mbm$xVUtn(8lDM~wW`S%eXfqriQrE(vb{QPgaf9nU`*A5(G@1t2_bVKr^kY5Ru z`mv(bGvDy~MogGk^~>R5#Gd7lUjbD21GG!#`15LI+~c&o1oX!c&f`F7o|^R1n6iw& zF0TDer~PddTLt}|07~s-)WQn8yvB5T=t3)LJ&q*1M!b#^Iu6m;lL%)$P@1o>x2`4w z%XR30>pr)=|INiZvjWJk14`*>oTzkIH%xzYFjnesNU|PV4f&^lQonMkP2*C`dTqoj z`5w*IKz=Py`tF9!b%|hAtm7r;;}>WBbU=R^@p=X*)d&B7zNh`^e~1B&XQAJApw#ZV zr_84V-x=*|E#I#ag4(d>ApbH@g4{13yw9uMY%F==g(PKM(84CnY=nnvf*#q#S)Xx( zz-zBkh41Bj@e)Cg}AdP+CXfhMkys(BoHS-LxJn zg#2cp)E>Z4$UkF!X$$mw2^a+=$X+(FG~>=Q%Dg}Fb%x@}hah3*Rp?g}NKkX~x|6z= z!!Jfv%gZ*%y#kcRXL;W>5kx6<91?l_q<+{8A>wwvc>D$Q*ATDQ!{g`4t1kALRU+8s zkKdcnj|Q67Bjw-H=Q6O5m()M3Uvbu66JZ(Q>;OuT*0CS@F-pak8|y-5UW%MwU;WgOyk9v;y5A%OirY23rEt+s~t z$JWw~>9v$~Q|IH>NXutvyA*l-E3Wp_Jed7gJfL@jJfK`!^F3FyXhfAVZdRXWBNgGUQT#$>2pWe!hMJ{0ZI-O;0#)qBG<>0K2kJ zpX^*|Y+gERFe|!yR09}_nbnhhx^)u$LpTLJxIBGFvmU%B{>x-jux%=SPvhtU3Vwvj z&tW~mCxHI+9qY3cKZ_qA4AW@hyTV{eAB2+*?8^cjVxPRfT3{N5OX?e#*{YVplHd){Axhrd3F>Wr*5*|e_Tv5w#6yHD3?6B{kWcvC=GXLLCM{yl4~R!@8mneK zaQlQFKuWiTrX7a`X`Dy$w2~hbj;WSr=SyE6?jez`N;-RBXy;IP`dHr)>B{=!JN=pU z-sWdyb2srPo}aYglRdrN%zO9M?QbNW(9L93VQqn%O=#&`c|)rVwl3q>r!wwv^ZHO* zd&5oq6ssOBgWKlQ2sh$Q`Dyt(i+I~Sn}J9Nk^azw_*qYw)qURp%PRfN^|E>X zK8SMZ7W^ntZh;gpi*^%_@clwhk^Wgc9X=N6hu;g}ru@*%$4B{M-n*PA(g*oW<@wPm zzdSPK_5rM>Wr-`Be{XOO_a}Hrg>V}{VIanX_)|IFW;Q1WvcYeG9v<+y4h8kF^r3X- zC=58^JEA;MdhSZ9yenzp0Ct`A4CMN69|#^9(wPCZfk-D9;yHx(5--UL&ohXJ%YeQ? zNI!({8UVe3wxJxPw@7~jZiaZchQJ@vhmON*)-#+V8OZ5bYxuMe%8o!e9>&|>>qhY3 ziC1Lh&jiR5|A!kY!tbg<9XtKU{ZBlhMb~|P<=@H^szQc!-uNq?&>Ng5l+z@*50l4J zOsfPWNZbAPD_-}BPpK8MVee&k44CKoKB|Vc43_I&(=KW^H#@}#0el8FFDgveT z>E+kV^n0xq?vTn$O0dVb72r=AFGYX0Uz~GKQr2&s>lx{IuN3s*5abC(hrG8O?ei=7 zy~Z`>K1efV+#PS9i>m^EF+u<9ErSv!z36TA96;pbXDPkt%TcyL5;1O;^tCR;EBSf7$gdjEQ`CEMCcU}+Pp?0I@izrShqF%j-2&fW zhwBK@HczM(z9*GK&ttp4@iNbl3->k8VI4!l%dyx0U3f3G6UOt$zw#QDM@6MJNLJRF zJK5*0#X6(N7y3-Xk3a9ywW=%1etV{lQm*4{!#ed4o=6{Zx~ot9i7yk-c{b5*aWR*@ zzaiFfq;}Agk@K6bF>@blx3XRp`TQ=lK14oGlhT<~4d`N>Ud+oyIiMdeb-tO-p<3(3 z#dUtbc|D4(J-aXLJWT_hAzA`Z^h@MSI(Ee&uaQkd(q&!k_KS&fECMY2A8VY!|*eUC)VPji6s+U`-%F`{Mrs-hIOjKKf$HMF?3$7; zu?_2VgPziOB5832+7~pRyjo%X10tX?OMo_ofCO&u=Ht3{)Li%dS!s78*E2MJk+;{O z@r%5?goYPxSVxR2D1NMaX&Pr)Psz70J-H&XF62(X54Smoh(UZyVMb1Ao%ETHf%7s6vTpQP{+Thg+=KtLAnO~H4un`*v`5S>!zcQwDnP;fJ^YsZeA0kbc z()cb1=kudT!wW6f0eu3(p9qxJHMBp5Z$Nvd*4w|oy;k*f8o$Yi*A$@q-A}erJ7_(1 zmHypn{}6fqC+lIZFWn6NUII$%WEO8g^E`gX{z12g@&=wu`0!r&{{<;;{*SsI(T&G89on)hTdB8=!gxZ``18`QhiQIfU3jaGL!7oRk(cYx z_AHv+j(FV>9>1s;9{5t%o-((FTiN?JT+HcwC5qjNaP9(1?OFcz-r^jbdQL3z_^IX7 zY5ltg`ppGOehakBILTZwR10j2(k8|Jj$mwf&`3H{aprF3z%m`wad7yt^LchqAAkY5dy z;&Z*>PX{)s;!lJo4}rh{BuAl-+8%SzJi|G#nf*`**u{Q2v3?f z&KP{~7{(!i%Y08n@EjLcEAanN_bp&HRqy{>xr|&I42?`ViD^iT`!#!E?k;m?%rFQC z(IhfTD5;}_a+`|CB}a&)8dQ{YPVN;NB=;JXaw(2fLYM!$_xh}T)>)_i&w2K5YWnWS z<1_2*ckT7A`@7z?-u3ElfWI|BY5%Cubr;zwsbBq(} zIrk{?d|mbq=+^_KanN(*!LLydCGVi|UGVolP|ANn#vRu&ZK|Pn%TVN=7|XHFM#Pik z$oM~Zlx5s;$t||~ZSk}-yK*acT=G|T3Y!9U3a2Q~an1LBxNaGp%Rc-?)=j^sGQ;Y2 z>?PP4tZKn{=`;tn;ppy!a569zn22-P9dX{6;dg{rbwF4k-upV^_XLh)hcNW~sk!62 zb+PCx&HBW@VOJM+WZ;-iR^pB4ftyv zdDxf2(UZo}h5U%~^K^b&GoB*wL+8KEusFZZl9{<%JQLrKM7hwpbAFy2zias2CBlLq zft~nw$u7bCKB1|-SPHv=1Ks)Wq((B|)A{(uh8e&)@UH35s=?Oki zKE$v2T}L2&o=!J*rd_R{7tKg#TW=bbe5{HS_AA}^x#q-l9#7akXk8J;cjBDw6 z7t#RqnurG!`4Z>WHNhY1neu0vMbNo<^Stybl!p)LNOm12-{N~kPB!w9{R_VM$qBy; zPS~}Gas&!`EraKeh7Hq?Nb?MS9=mG>&ldv$xfdh+@YoXj{jo;X+dixKrK+NZGp0RMs?AJWsr@7?%! zE`e{Y2j|ld6zAEsEc9FO?E(6LZXo5~wA1)j)U)7A)JJdrec^9I>&Fs|XBq4ZY9d{a zC{JMrprliT_ddaQCR;kqFnmFLasJ;0yOeB&Ux(lqsAUHGUwH-J@hRm%_6O(B(bK3W z`mgey==r$PljqZy%~9~9A?(Y-@7dfwVnHt+jsyz(3bIEqzn7iE-)lg!x8VMu`r$h$ zSF#V#jEC$1OuLH(17Nq&AHNIw0X$6h1^*X+BHyM=j{isP1S*rAz$brYC-4ck6Uc2C zkS`Y+8K*~*w{nk8`P^HvcDXrcQ{C2mQznsQC(z3LLDM8T)c3{ABCqSiap#Kq=dwO{ zZ-Q%(HSd?k?-c^?*^n*gy^bd3XAEi4$GYd;d`$zO-SrjC#pV+Ul;o}WroViq=N&(O zrRU--=D>RsXd)_$u;5S9`)D_AJL+ZajD=ZeMbF#F(g$3J_>#O5x%J2Wx`XVg^6qSF zl>;Y>verN45l>pr~k8A>d4owp2@!aW3L|kdPSZAtrAcwm;4L6N$xd0YDHP) z&dKba@6tl-1Vnw%cT*t_i#{H*^ufu=%07H^%b!RM&{qq@Gw*$OC!K0tsj_;$ zIo7%_raI_Fx)jXY-;>VIn2&l7L-^$>tuKr(*{p|XtDHpt5$%q?>A3BAYG-A$=9fQk zt)j=ayIu{S&*1#|^&8Fd(ljw1)k2uS_3AAvyuRx7uT5Vc7>D@lI@YwBu@_g)SF`l<;cS}V+ zb69?5TKq*k$9Sp-!(sH2Qp$K{cigqx&g|B^UvG_kJp~l3x*wQc!V zy_x9WCYjG^*$Iesg)}ai=jB`v(7_u$!_gd%;+XkQ0(%OYBM+T3Bemx24 zBm<@Ot)uV;+Q*%_?}yu8i&xGYx3!&K3ew2{O7nD~_Bow1$T(8#(Sfnnx`varvFrr8 zBc3FeYk&42xqK~Mmo%lSB8N0&X`t^0l=^$#fkt%C?&tg-qF}i$igf{fSD;jGu9X|M z;`~~1?a%z%@}S1jkuN7uns2q89j8phW9Z=keJjd|k8X7ZE6<<{W#S%>ukeGX8P2bZP2Kxei%@aU-a^8&+>NW zi&yH;5#mooT6Z+eKDSxdU>_39r`>as_UrvVVHKE6ZYeLSF|G6*-g){k3c&2 z110%$+#6pWM|&yxb18Y??;)Thhxk79k-U_C(_M$Y$WY{vMr;)59{@`2MO)@vf&8iW zIom(~`ykR84V2~;?UTkY^Y%$=p5S(7zy9ov6IzI!fTZtnT)bho*FEv)BgdA9>Idzn zHxA`79w^D5o>r^B_iDy1!i8$TjR~<6Ky(A*-TlP5{gS`O^ieQ20VuW4oT6Vz-i{S0`;g?JBe56_aL?(r%SJ>xCv5!z(=b!AaA0~spSwLx=cQ-%xsIJY~(QsSJ z07Wm{#PTQd4B|=pkiy66AMmm#$DJBJtE)2q)nQXX|1?mNdz^hYliZ^jM;i7ha;x2X zusfbr?CB9(VIX z{6^UuKmB?>^0fdc?IYwhjru}o#_xA!C~~=jJq!95fb#t3h$O!!=1s9pm3`3|_8jQv z0HyMDzI8MCe=;BSoLwY)9`v(;a{aaZNa}mm8Gfic_gg3#!tKRiv51H4Efpwl*+}lpZCof{qX6_J%jbv+MSl2z&nU1 z>7fgUCY;vY71N%2x|~zdo3>=Hfc{mWJic6sA$??}(MQ+{rkpQm#8!ZQB~X%I+;=Vb zNY`#Q?t`pXO!BqedhqM3z~366H2$!MUM78rv47j4nX+Dq3$YWB*2Q^mH6rR2P7Ehe94d}{%`l4NaaPJ41b&t zo>%PG-&*8n9k3FRAm^IT$PU*{-q2=LSL9^7dOpAY7QX*BP#Ry{Bg-zKami@cCzO3y z`*L}><8^R(MzQta?>(S6he5%4RmV}gzT0pUr}{I9VH-gIE>P;X1W^PD!MGpA>WuL*t<*rJw&_g;Hb$6&h`xYB!H4)h!bJ!RyBLwK$fqX->7^oH zA`BGvD#DIL>jpmn;FrRh@d$ezcLuvRZQJ1~BfGJAI~$xITfQsX(6Qy%yHdMwJCE6^ z+^;C=L?!yswcQY?lj%oxyEOk?O zyQrBAy9-f10#QzsPvel@*BeCsQ6BWWX`k|wpzDP8Bgz$YRFBWqH9Sd(?~3;V6S*Bx zqwc)C==h3JY?{ay9fRTVMZVMcdtnzP%GZPPknC_yw7Dj+?+o$X4A|df^7uX=*=3ma z4|9+%`S+mI>B(RwSo~zLVb@YiKHY`?ZqecUZp0Vyi2uF?W%?F8m5TnC&hzn+s2@>o zqFl)C%y_<4+Lt?x^VdS~+l}Yrq6lYkeyE%{zd)A3a_ar~!L$t-jP7h0(C}UOE$NMX z(R-8Lox%N=Xk8gwLF*N2C;a!WmfsQ{2H%A}@E+-sJqq{lfiT(enDk`FVxk-TxU+fK z0c1c;gnRP$RDTtE@9b3Lxt_2`66qk{%>;jP&^b&x^2^ znWLoVgI|vuksoRYCchfOKKLy;BiaE_&{6rB{!zXGJ>`eng^95EP7nAcf&Y-9y^xN; z93FOwas!`k#JB8m`tt7&Lp<^yV)9G&JKPShA0JQm^yR-h`g8R41Kj|$o8I^x>00(Y zga1!Lk z4Xour9}kQI5_q02{jTo*sltPA9Zs^&UGvvz*12rK$Blt_zy7)VfbMR#?3%dCy5$Fe zzYf?5#ezO25HIg+`?Ab^Vf2{e6PcpFX=~jJTOIV09*z4wxbDfP4mfYO>^eAE8%r+} ziFj24={XENuRA_#<)wPJSmnoG$5{Ir*MnZl-@J!6ZNzdW^t`cHe@pddrTBd3?-1{Q zRe!26QGQjeTv>m(n@yyBvRk^If2Cri)o=J)`|E*f_`GPBH(AMPtVjU;in-TB!<>%=>S3}~fSmJs@(f(^ApMqZs zvR!+~o@g~~8%I^P`Wq)}WSu`2{ao4)ayRHr`ZtHM-~5fDFS5Iyi(sOC2z`&>oA~ih zdu{iBroA|L0cp1aB|Ub;!biyuw|NixRb5`EYg%2)9<&bPT?aJ4xJOMhmk1v!_nn5X z-w^X0|E%45@auKKS3RIK9~EpkL+!d%#+ry zG;{Z)CCA%!lzAo2I>%3an6D}58+sUihDg62%xC!ew_rZQ*VC)DKiLxos?Yg_AX8O+nuZD8@qy=GDr*q?v<(rE)2(Tc7p?%;$eqPPW@#B3L5IBMB(Y4|&h} zX}{TgdMonazu&G?z~3yOG`{$c)&E>~tsdNJTK#*i{Fr3qxHJ{?IY3E%iGSkYNiX|h zZq%w(u3$SkQrM({z8g@;+Y~IQcJ7$hGdVY{;Y{^hZIci?9jPDf`g|qbcWU0$bemG1 z|Nc1G9r;QJO7o6$=#ON_Vkl@^tA4)XZ0Z^Ox)bU207~oW!gFwpc<)TH|>&8Ot;jI+RBFQCwKP%yvW9fx!+->`rAQyD*FST^W;0;P3)yD`;{ zV>td_m0Ke$e;!kjKWV+`sy*Y3&c+_P-#fimu)c>B#(hA4FHiz!%V%j^>bqdo#ka38OW(rDT3U8GLl95uxA7yA-t}t7+Ae>5cwie`hs-`zl|9<=vI(R#&v?E6WS#yR>@`159P z{sMM7_kd5SziSt+2z!Q-Uq6H^FRA$(hJ1|$3Oxq}IE3vfI87 z^rL}NJIg=MmU>y*`Zrh8hKeL75@iE69P}fBQoS$T@D=$%Ht$#MtjMh~mj3*H#FOTg zL#ADj`FqLBb$Q@#6i_OcaizL`?$yklx;o0b%C21C*B?MS4+4dLih_l89wh%u=A)KN z`29AxAK8@$HOrsJ81N~L*X+}a?{Gd@b45S#&+7}W1wR}jto@zw_+8Q~M!GN4y)0X2 zH5uElouZFy9%83+L*Tm=zZ$e1dbb-CdGMdEhjAh2?;izU6M<4aL>hL7=FiFMxy*Pr z0rYO5w61cuX#0$=O(#Kesd_JR9D5A(j{~Lh%s-h=_ddI?7UtCcSkcple~vJCJhR)6 z!f)4VdQTuUikab3%oqt4U~3mx8D8wB&72cQ0xoP&4L?G_S*~l$l}{4nT&L% z0Ht+Rk;l*rn@`Ele@}zIXMj@sjB^d$!}-k5F1C7@hID2E1M5cj@rgdV_sQH}aVX<_ zM2MY^)E~~xS$hrRpSwmGC&F)^!Q*xKa!+x^%SU<40ZQ|k6XO*<8?jfKs{S9Im`a_np~w!}T?KD)+0juR0!s4$YgrHRwExw9tFa}>*DJuXKmzWk?dv{uSH9X+Sr<28FN1D5P?GmO=6xW> z@9`~^ejCY_f_@oLYA;1iOVNJ6`INjrvT)Z`QvWhI53$pc-bapZMB`Fs*_ZC$-O4&A z!}Du*UoFD&=kW&rko^D7tIaj06&ZTIs!G3&W~)H?njC}w9sl+Rbl;`%xXXvspS^PN z>#O;yP%Yt}r*K0?XgZ}cYkD*#IKkuUy_4QQY0y6WGbr`LkNbwFwT7kz)Z zU0(MjGAsEYLD9E{ukVrCt&swI3+cQKi~x-KjF)@aL4X9MC%MJ=8afS_Sfc9 zT>5Lfa)|x?xJ}5{W?*35q4~F!ru@-yn=6S^L)OI~fF1>4-N#EmyJBa3=k*!)pfwt; zj4yWEX9V*hy$^wsKFeS6W;!QF+WFcyCMoh@`0LH!{$N)>;n%l-zmI{EKG`{==Pxur zkfV<-_bB@0x@;@xcL1e&I5hsGm+Y_Up3GaEN`H?DvD1;({qD03X?`%D|DK(Ww2pHO z@|9(pX;IKtsXzPe+TJ{-u}@I`yMU4$Y5EmoZHUpz&JyR-aG>y4{&aQ+?1FMh*8BQk zwfU#C4CWi@SpC_3-C6rD(`U@>pUimfny~VPNBa9?Q&^exW0$_MDw)kL^=-oijgwjD zUA4d5{(B-jT%%ltv?EC@<=Sx->gFb~KNhWiq1EIB9^aG5kpbO6O<)pBuXXCJiIqDC z+xh&3{g6?rGjC1ib`1yceepfAznO20>Mz1y%(@itpNjMmw(M_GxZO!bd~Z$?rxW%( z!oJ6ca&QY2-_79kjs*Ul>7Bt>XQV6m6XA~dU3^Di68AGRB8|TK{uq|oujbV@O4EPsDaKZCntaJ%j8J*5}NUl-NKp7#Mc^C z&tQGO`t1C>sKzPMCuY`CWC-??GnxGT>CbM6^7=M1#`YaYbd0_P96L^0roAW2q7ks+$ zKE4;;_e4Gr7JhHY9>&;&9rH5y%M?sk zl>3u<4*;k0bMul(_NeLc8zcH2pcQ?u1WrU>f?7w{wmrt<%E~b zT#)?rpj_*`fJx>F`129;QhNUCQ%`&2`xG3h`-YQAav-hO6D&P<8Kif8fS<_uPn@Up zXd)e{`cV)6+|Mz7F9jGFpK-}hKth`ys7=&l1w^0mM7F_PD7 z8V6q^mGxwdB^L{QlO*SJ`wdf%uq$L;7_Ph*oWJn(x54r3>jNsHJcRr!l}p~ST;X4* zn)h-Ed!}pgo3N`#D<~K}x5{zd-Dh0gquSlU=d!iFj6^2$84Z-iUG0PX*LB~K#)psh z9ccOUFv-X;y&>pZ0L6GgLH5Ag-*{c!j_#{7ySGKh<2kMK-Hi}W$Ojb6nP2}$FEh4- zXSK296;5VX-{{vHBc0|zX`i5|Y?bxg|N2bzTudDn5BerRA>SFntH<8Pe?%|HEyg6;(@oEp<_gK!Plwi4B z>ty-!NkTk{Pqy{U$6nt?dfIhnVm{|&9V~x7cOssUn<>ceo7+wobzE+u?9Vo`{Q0y; zJn6eduisDdlJ)>i@Vk_Kkbl4aI)J~#(ERapw#K&LqYh>L5XW@TcLGKN3AjCzqYZf; zI<5E_bApG{3QT|oIpX=>Dn#2=KF8h zUD=z*{CYC-)g37HBhTsYz9G9u!{fPnj=vF00eu&s+;1-x()n@2UD%qYA?wCe(5C^V zaW{X>i_{-bp277He*H=OQwrhFx9WJ-75sGrO7d>e;mmc^Z;eMiA7NMiw7*_S=Zt7s zK(W4}pmWMt><81iZ)v=uR}SU`eGi~iZvN73=p3WzLB5)@?ucR;pw9$W0TRRq>{jjD z4FuQ2KVR=sz9|cSJsbJy36$zR@7^=-d$n=KdaRtXzO~P1FQk(Ll==hr!)5+n^5-1- zfWLk~xjmV780NjV^_6mow(NxNLOf}lANSGYn=sBtu;6;P+mGzmgT3)nV*`*cS7`n= zRA2Cw*ZpK0M@G36r61XqBQ-V<>D&#J=G(aYj`?8U5UbQf6dMHk!9Z!6oO(hC0@ z=YH(g!%*bwUZAuNH}xoP<687p?G$^MILn_;F5*f3T}$l@yTJdzeXGO3-+e%#$Dtq_ zUWV)j-lYpB_NwE&{dLuFq%#UA&F_w`HAx?G|L*Ij&914eL2bhXH^#w|Kfn4A z_#9boBmIazzlpU=aHC-l-3EUf?J=U$g-chy@N2cxWgnsJCH z_8}-}+Krn({|EZtBj9g5@CG13(QP-=y$0rvWJ6^h`}gOg3E=BFpfnEpkG}AS&MpqS z`0&=u5Wi-Rf&N*bB-i=-|M9Et-mq^|sUe+|d#+lr$3g!DP?BFFlMm4S?Z$l;gPSRO z@8--6`iVekoG84~lkSf)pOWtnPlCUxK&juR^mUQFvUB~nQ?}Jr*8NS{B+yR*O6}VD zN(|le@tfgK@}`h^`YF&)21@;}!I$^`ckJ-(&C`DUY2<5WXt`)LB3>qaa=q)zF07)g zR~oQqKtByAjV~#S?x`$7GS1u8OW7^YfIlB$CnV|hxjm@q&#q;N{^doU0c}38Hjv<_gAZ3> zrvJ5K^Iu}W{uY9-ML=mkHS&DpPf!nYgjOM5 z1t5W^)wFAv7B^wvZ4=Uzc2lE`f{h| z7t-s0pS@}O#0pBi$5{S+Rv@0lr>jLj8n1nZe}V6md(pxluY<>zaNAklrr>yX^?Y{Q zi~V@3QI4B{F+hTyeWsr9`aW3u$lR_O%K4DC>~+w+2b9K_fxAsv7l3{}ur!ch z*_1!7>RLhMh+lszrOXcv*c#Bi1(f8F4f#DTz<%l*Wxpeitp)u$pg2cCL2h^KCb#Rg zw=42X_~$%=*SB`p(;9ml{JjH|=07cd#djoU@%<`EUMEVs@{8T}`M=YTHliHg2TJW) z^7p3R7ZC3FqG`ePV7FW}_5t`46Ke>cz7BLEtZc}*Yi}K(F(1I;T5(ICIKv54G;b8V#G-y5j>~a9&^Js{_vcC*fQa0~mBt|(WaWKXf%bT63B+re|7&qh6HqCS8uoqxx&3jx1HPT1Wz`FmkU zV$q3s8OTotz5{e*@-W#IXvV{YpBcQ@6ngPpUnbj^|KQ?&)Gp}GbUFnq$`AFOE$UNX zD*wJF>H+oc6ZsV7m&V)iE23R>;`Jl^1&R8lc4XQEWD7c_{V|bV8c&z(W!4+o_}5TQ z!oJCe^6`n^yYv3oKzvv9%Vf5H!52ThGB$&^w_jlQ@-E89C-M(;r*po4%i#I>7Ui1{ zbOWgzsnn_5vtSp3@3$1+1v->^5cT3fd`D9PvtY7nd$5v(|-{B z{JbdIC(57t4d+kro6Vxyt*O>7Bb%LUG5esie-`XTdSLuSxqSuyJ|FjB#_+mhO%MJZ zVb|h@f1T=C{C6sEo{qq59u{^kn&1cJsPzJUPx#Y8nCy>CZT~9>lYNi*T{>21qOTuE z2T<6ph~HfUVW%?ZhBACU&h3?(^U$E&Y4s=0o-jKucV_Oa-2B{UbD!&;`+S#ca%Xob zl{+Wd{51WS`$F!r+_~Lz=cRq-9$o(*HCU-kj&1h;mBGq>Zm<&9C}6N61PDpMFdf_M zywv8zg?FB?Ej5@W-yMPWDtdv7K6$9z<1Cgd+ zRYOs<*O zysm_MNBVcCC=318)&|n8puav4FMq|@6JAf5>Z6`$#4I}gx|Q`E(Y~bo`TwYT#OvO< z@Id>P@fKe^UW*We6}h}?93=;thM$r*8e8p{$BPOvSP8JHxxe@x4lCSctbW7aM_L=4 z)eu1v;N5w9XG0;lOIe`UZJ*%_@Y48UaAvce*-g){i;YiF{!)K%eb)UWIv};9e%m){ zD~g(UtKEtEu8MLc$SaH|gR02lbr>TQ#zN5|>XFi0{r-$SSm&1f!79YzMCzn~y% z_0mzVw)dSSTbo2F2Q6YPhxE4~p48v@fn;;aFBP&dtqpnyP%4-23tH~7%B3{kb8v*+ z&ZGr0MGb%9Z8u(Uf3VxG?e-(P@%(x$%J&YSm}iXO)#k5~1A1~?e@Rt%###>I8X%tN zj}&yg@23rS^MZ~TrQV}0M|SlQj~3_RF)tY70d+&uZvELU7tJzQX$bBl`6cqlWML>+ z@`jfr+L=!iV09n?zgXOK#8M|@K57iQc%bP26x?v@Yvjnod`kY{LsRhA3@D8+Q{VXg zTkxrsxO~bu~J#>Dz?)xS8%o86EV@|v`!R4|HR#Nc0G{3v&oH^soD|_~Z;iUCaz z-KfwW^mhWK14Q#G9M*h3L(@>Jr?R2aFzk6Hc$|;04Awd$JqetP7M|9%ary)E-)t2! zZ;FQ7DU?s&!M8ruweJl_Pcce+iD3-%9f8t3J*h?}E^ZESOk{t3WKR)nU;a!$z7l~# zexl&c(gO;;=Fi1;5uwJCkWMmCk_VkER`kD;m(Nncp9?6p!~EKJ(m}OK&6=->>}Sne zCYdjTrGY*jDAsipjK6CsT{sa}J@$**naVn+CF=tEu0UyBrOhh$Ca(uqL#2I&KTk{i z8!51ENT)k6&~IJmze*GaBqd)DVw~y$KBalnzv9PZUN_nMEvwi$UfXP?ZPWR|e1A_d^?HBfA0127L}ts$bIqGQV(7HROq5Jwe|KD9!J~ z?t4XJVgoLC!zlc6DQS7W5ArntD7BZ!=cmvHqj{BCyds~48mu6?0lr@n$>4pSVJNR& z$QpjRNcCfU({gOn-w4qo@wu~a^DQtiEct^+_U0qMK9FZiyB{dY6XVKU-t6`1Bai*w zCd*pSnq;J*9|Za#K&d^s-M0I7WiM2Y^z4FKY4pcV3oL@4K~QoXUmr zomd{|M**esY+iTfDZb8W-BOVY!j}hw%hUck=RxrI2vBODziwK!-m4{iw_$)I!P2jq zWaQ9jH0U1!N_q|Mz-3U=?D$pcfkC?lPEjESE7JZ7oBl9e*t2!s#uxIhSIRTgU`3YC zUR*={FaElNOY^=~N*VJD0M8^=l z{-dCu0+iZy+}XVwdH=h)u`*tVI<}GafwVujl4GJiwaMh@R%IO*6XMuL%7^RCtdB4b zmb~0L5#{j&P-@q{F577yYj3od>WUmVkKuI5>9UHy@<#JIm2#B-{R-QsU zX+7o|pGA5pcX3{HV1InED~C))zMck3_2532Z0rL~n>}%bYPcT$0Zgg=Q3??u1}oBf zTKi-p$sxG-BY51kt1qxyo{?+@%HuhpG@cbcR-YVh-Fisd*zZndo{nKNLH{gJnvZ_1 zbvqq|tw_!K&Z;5f=Pc0Y1EuyEeP0gA<>pgd7vY3Eeg^jGdHVLp&*zb^*+6Mt$*(w! z42sz*S61e~Juc-bj>!D_3*c`(P|{E2pQy4|*KV5hr+-gwuw1SsTaIm3BAzr(#NAe5 z1@$9(p3Gs=yg@%O%dyQ8lR(p?{@1+8pC_xIrOC5kNue;#09o^~G^8g&HyPi>!e<(KgJRP*;T_*)8;z(4py7>JUipfb`6 zO$)!?)pA*e?<@yO{nmMPAUTxI&o!?0SLRK-2koOm3|6FluEp#f=vzbd$#%=r?l|bz zUqyMW1xoWn)EA|EyuC#BRrFF0%dyRyh*uj(5VdGLjq_WLi{Mm;I8p31(5(*8i@!Y0 z{yd{=F5`^jNu?g_kJqo`>u&%hy?#;YQd|F~Km7akPyqhc0HyvC|Mbkyz^7kXcl`T& zt^0R!WUmKR%x_HS=8jv{taZs z_W>Cgl9^J6=1I!@*O0vn`prN|&N2=2HDfwz5U2FNSoR+1HvuL2)48?br*z(i%V(0_ zmniEp)nG*$m!5D=B1fv`qs|ZiemfHeD<2|%(z>yz#-U4`Pv6hVg{BVX1-%a_jq`=` z{j}~kpOV)Tg}crPp2zIY(|&y`%3~W)YM=3EYg~cev|_RKTYLGVYh%IR$3SWQz#Spc z@4o$yhUgh~g8n051dxC`{4v7$eM?+#`U&{j1C-_?(*V|I3==mGQuM+N*)GuU21;`4 zxW`}kTG#UF!uhXD-f_>T;I9xU^;>@KclA9aVc(+2b+I<(`3SZb>Ffha^HI?k@4*nu ztzI1Au$f-?a#rxZT8w$({jVGa?GG4K&7-}`Hq(65Ua9V6U0N^b*I|A)mXmaI!r@cG zV5%MCxnwY0XoYYaU~~5Pu=htl|7)W4yR&reh{ofR*t797_q08k$m-LrBtNfAU^_bO zuJmP#1UCG9{e9W_oncVZk;il4`v({glloROAG{~WGCZ8fIvComL^$Z#g>;4C6-(lD z!hl6fVo@Kpes=ovoe@8Qqi{q-$Er2su?)hJf*lqK10gM)-Oz9J-o&}W&;#lCM7~A3 zf}a%rU189rrNBTXjsN}^hBF2mbON1@m)&37`|s2m?g6_9ouYjJfF_qJN5Fk zMpqEuCCarEPoIhJ0I6Qg)1;%iqFj{nqU}1<-_D+H+z@10I;V?u;(I_c0Mg6{21Tn- zZtg%i29=-nJIa&t@#oiM|G(GCwi)hyhKuin@?#pTRYSU>T@asU^1`5IgTh}t>PHw7 zks;6Y(vMyoHZ%kEit>`aW7v6}_&9?Z!qjzR#rHB;Kk7ztccruD1|$2CZ)y(PHDy?45G&2 zy>Or;46ZCgD!ixTcV@pigZgIz(SB0;^Y2Cu;YbdKC>2c;4v1d3i_aI;1K%^>YdL%z zy#evr0A~KavL8nc=)WT&;|uk5t8a67G)4FdXKv2K;t*QT9T z%$P$XzxiyUbzz-Z5R#o%GxG;clhzZaomR@qMJYE$KgjOKdlNhXJFR&6cmB6?)7h_d z_EPL`YsdCu4*5L|Jf#s9`cp~I=zi^s@4N*~7fk$Ul5(Dc2JkY7M>2%@R09(19QIZz zAG`VZmGX^SD*JjZY|BCA@cl?&)j)czVeV8ME?zI{W&nQN``tYe)c5bZ>YZ`v(teq+J(t&+bOYkwjNsaz*gBRh&aymV2i z`KWphyX$Ma^%s6TwLHUJUrXbhkz>nF>keK3nzX(yc(&RpUF&#cL^oG=%N~!DwX!ap z5_%?q^uFN9vb4`#ZuZl+AMaFb<4Y~@C(gA?dMfu_3uu49kiV{P88W_z{w>ylQoQ&Z zo+Lg^Nw;2!>p5y8e>63jkKmgEj;>?KLGjA3Yu`0by?C;THDA<2JgHsJ%Za3Y1@ofB zKlKQ_=g^Sdf^c1+RDZ7BBgrwm-*906h0>3rSsl>d3Kac`g3f`T345LY9etYGA7YWO z`atP@L8TXe;N!$!=nrlKeH>7Rp${4H3_bXV%DiHC|37@aL-05e{x~n?+sKM_-n}6* zCbhFjbDxy|uISUkpZ|i>3qOCs@if*5{51xOd60tRK74~N4mF>6h0pNE-Qe`>^6A%` zfWM|dssFkAzDwsp%_myn(|-Ngn;#-rbMQ9>SQ|)?|G{v&=(%-5;~Axgv+jZ4Nnzt+ zEf8)El*Y5jA*;@LomF3t?0nx4Cgf<7%$FTvrzPfjdVi`$Cia0{#dRU4-FlC<91Gw%MjPHwaph_S;_lO~){%Tn3HvT$3#IcYhpA|NlV4S0&$5&NZ z$2nLk|A3YTl;qaJPlwX_fj`RlX?H%d-_E*%k#0a~ocABh-?=B~duE{ZGqH40>8I-!6}*}d ze6g*jvmT(&0ZQ$~|MKT_-pA0Gu54}HSHj6!vnYAMt7@9(d!CzRi^Jr5Wo3 z`hGy^yZIGof5+Ej$#s?T47Jme<|E1Rs(K#gpD&kSc~G+)iVr~kgx-#Vs}Ifp71LbF z&tn6@-`zk-Pn0+33Y`ml^pAN24w(BBuD-n^QhT*SPo_M`B}iQxWVU(Ol<{_Y2c zv`_Q*tIE7-x4+wMXZG_q3i%oX6#8fix|^SSRCgTO-mBrkL5e=BRfuCDssCwRwtr0y z99P#kw6u*fKZM`^)cP9@{vHBK?eo-U9S))&ohqh!uv?xH);`T7@EHXpaI|~ss;)gw z=Hl-&OaISbH?{8J8xML(E-372*b$~ZS2y)JhqC|BkUb3gM?&Md&Kwl?LzH|!dKCOU z4wS}0?tsNm^UbUpa-Mzy=pO@?0}|vdx!;hl{~PDq-Qep7AK4v0?dC6n zO$A@C10{W3Vd-r@>F(URMGI~i6ny`oJBd9F`saX>oHeyeWRch1_u`g1PxVn8J9o0| zv}XK8dWQXz+t?5IvP(#Rm8|_APTg&YSwDAH);Uc>91BT$jb9f|De`KkjDfeBGEdvh zUxa0+H4l7B*pCAxA+|OEELm_8ES=R@-N|dK5LD2mCDoO7aUEbJ(zBGR^_3c2jok zTq7;VLd!$b%fGyi>JRI`(s<7y%5p5UEHqxhJv$G3`OoV3^3Tsl!S!c*+d{W1#}Xlje8af5;u-1h4zUZ!f|1XMdbn3;xyt%K!;h zuc<}nH9j`vR@E_S`0Y$8FZ!h2{ugj8AL{s7ktf1$pTYGWzC5qC>kq&P26RoF+o7L-tyz!co?U;{ zKL2?>gY&1c55ebVpfp}<7cXt$<>}5*)<<^vwBO(V&hgHcfSpJ*$tKS%cjmk9PG?J- zF8}qTq21VXHGcA!`#6EkJv02(J>Mp>qijW`(epbop4&FuF60y~hwfgOvOP6{{XXcU z#xLB}8RwKcb2`iJBEhn|FdaP%O~iMSfQih!g}8M`IC5e9cLucVMG)3HTHpWjr&n5S zI-P>^;3@cC2ROPB_8eXDdphEEVPBmvo@9Q`x}|Wi1AbhBFCZ-!HSa-PH;2 zJ8-0O9{Bv}_n!N{I~)sjV}@By++AthK43&T>ILzIgB>QqKsT^R@CBrE`{wO;gHgVM z&WC&#iSiNeMY*K%bepN=i2C;kdQoqwtVde?<+C%>`T6n|-FZFs7Uc#0dwn{GUBB2$DP5Ro=Q(d58gg*g?+1 z;8%TaIx|z6+4P$iEL^sxR}shIBQV4b>6yR3-Jjc4HR;RaIr?#QBkV_5*j>00)_}f#{5#pA98fMA()ZjAeg<CkxW{T=7Mp2NS@?i@Rq z>2f@G@38j`uaV=Cd|d`%Cs2}?{N110=hfC#ncwb0f9pJ!Nk$D#=p*h#yh=a=KFEJv zcWs$?Xhq8$c8B!4MgyBz*F@m=n85q^w@d%%^_>~J^Uo%^ zJJoi2qTFMVt|(s$ntnOl1Iq2Gd4Vwp-g8K`&c%yzt`c~kzb@XdyFcjpY2}H!MaN&a zw9cmp{j8)1Gacvp63@jy*|?eIABe|mW}OQZ>nSO{l^KNc|PRXoE+;cmTu0RbBK` z{xXh<_81LnsXxTGdH6@KX52cou?|TwSs#S!{0Af z$1}U-DaIk8mzUZ#*YCnED>%LI`3xSH?6#K(RvYD12Pnoh3cBC;@;Ki=+Hr@{A0n*& ze+%M?@ri-~eSuc;`^9$auP*Xc4=Bb(BY(>y#W>+8ruB6A`U$n(Zv%g=fucWB(7bon zeTMu&%xh)YnQ^lAmOq^)h*uRz;P2_6dt@dqzb@@kJ!QOZ#p;8uAyBk$3g+E(@T9I8 z*Sz0eOWE&ez#4#_L?H8#^5HsuyWgvQW$Yi7yuUmlU&Mn?Nj_uCza;-)D-DzJi^@1y zH^fduDi>eJ#+PV*xKfx?`(xYVpxtpII9~YUL~y(a%U?<}l#4WPx+?AYjoYius$t1- zoXqb1#(upy(rE>h+Dl%?^5kE`XRJ8CSI+O&vFtQjBA!$a(z)L~Nwtul7J`f6V{sZ)E>q-tT`|$zPOZr_m1aB>6=;Z(8#E9rnsI;7>=aV}#sH z+4W6xo%A~2uia+%!F!bRQg-j<@#_rbm<$whs1bBTe&%%<7spKKqsX6iSx3-!0?O^; z#qD%o-_3?SbF89gx7%Jc)*0y}0Hyxm8Rj56_R+<=&zy*Kl7NzY=8PSG6xCDm?JNcS zbpuM{%b*TD3U$q>zdPft^(-fg3bE6W>fK*9f%dD+^Jld}DRk}zpg-O zK8lPxbbv<`#I{pmLezH-#4_^kL>49=+g!vf6{o(J|0E>E-qc@nsF#YIWN_U z-39uAKxy4<+9SA){g7GBL&o`jpmzbK@ueW@#3irW)V$sjGQRW&{Q#iUKI7{d>u~e= z-(8Q{t9LELpN`Z%ee0k4&Z{}se>)|yfu%>}Xe-r=SyBLcoh6S3smPn->C;{bn4&Fy2r>Qb9ZDDKtB^Gwa>^V z?|iRoY@_?o_ksNePS)P?r!x)lq;b%B({D$0_YZwKb)bVA(z=i+=|WM^PX)^3MB~>s zc(v)*UdrqnxYvu5HDqqkPXUVk1PZ!`R=!Anl(NRmd!(k)-{V5;G;TzEg8Wa0ll^q` z?CYwXFQ>?n_SdOT;`@_;Qn~DWX5?Pz%fGQb&P(zTr4Surry=%r=;gR$!>?nU4RyU@ zR~`&spC#3+!9tkx?UGHw@%;MJJOkP@KuO=~I`GVH>VHNIHGkoz7uX->pSP~~Rc^Iq*E-F;xn_AAZ|rQgP|=RrRkD9JaY_xvIJ1griI|NZ{( z0{EK?l*Tjmd%xAXcB3J{l>EJ7FM>aDE>oO0pr0L0hh5P<6}p~WOV6J07WIvYUVh`iV84YlA1wg=OTdai0`s1JzK)Am`cYJfKb^{fc&;_u>3$pY zDX#sa@Y}VNZ{oo2_@Xfn&w%zeur`oj+)HWidfoS4yQpPhin8z2fh_^uTR^G){9O)` zABp9(?3mkL+3#;|*=f9qc#=HG@4s*4OFcBUu`<6mv+OihBc3GBYZtD(OyeMJ%gnE@ z>{m5p%Rs*ZD2<=4!4=5f-n{w6JKg^hJigfN?{@1if~^F9 zuK}fU;p>johJAIqx=B;kDrHfGRmV+QRI;Wq5*72`pe&P|)Uejg{Xy@_?KTp56$p>H<0K} zZNKnSLf3w2=Fe?E!vFX1#ZIs@m$0G$qmQ5 zfW8ecH?jkoZ~C7Q-%rE&aeP#b}ed6~F{<|ZSqZ=sB z%@=m%_61)f-FTo!@TKJ2C+ZdTB-#tv87%z5Fc^Ye$%~?V0(@)6W6_KEqTbT@`Te^D z-)Zc6@?QiO8XkUrV7G^o_((&23xoX?M(Y?R@b!$bBby&m1x>o+H>Vmt#gc)xxM z_2bJ#yFi%oVdjV8ndlaD_^$9v^h0Ih_mW1~P%!!Twt`-F9zv|Fa?X8qiNsy1?Qe-ZJH?hn6{RlMetWOz$f3ox+{Lew=?T2dX<3R6VWb3 ze2Sje`zoF1HSZZK9U?c2_9(S4kz&E@?PtB>TxW25314nj>pk3cL2x|HvJ(;IA-(t2 ze2x4pn9ojS-z0pwIe6V;KYvjuJt5c2<@V)9x<_WlL!)YyzfsXsIV?SA4aAq)y|31X zbiRG%+_WXRKPdNJ+UN5Iq$Bj^B3=5~|NF1vez}s@8;Nod{amzf;&a*d*`!w~dOi8X zBU^R3ob9h$!*4HA`!kA67vpdo%2k9ZSn$pFzw6qhr!U>QqNZ}LC6)=jMm@w6?VEx{ zr4r~qUSqp@m)dXZhS-Tn{e9ke2c0_}XGm;*r9VV52hzC(D343yZ=v!upOUZlTftvl zplAmabbs~n^Tg+WLoXH!{%!+GQ_Q#0^$k**aF<($H&vVV! zUS|AG2Ju2}FoHCt+MYKX@(*Zt0HysMZpYO8bK2Nzs*Im@&)@jWH-Q#ftq|@6l;#i5q$pJ^0gs zQad}fyak1~0xJOt zq62n>euYo_RlSI+YBD{ZKHlx`!~r*5t0b{9AFtBLG;`z z$91jdg9oern5ozwwqZ%2>j9MdpJUr2mvndR7qb?Ad#AOo;bbjYGU&SkrT(WGaxbE^()YoBRNb$(KW}CrolKxKF0Fie zKAqDu_pgde&ayi$X)Fu;Wdo&p&?XF}_7Yv3`)r~9JS05|zX!qOqvYj+-YAbgKuMlw zX}QN~T%zr{%2~=e47>GUcl^{WJCUcrrzC%Be{Ow8XYa0?bo|L2%kG+!b!GiPKN={F zOZf-i`c!utX3Ae@S^h9NS%(mR9%7wK?_H0l(0%*I=hv?BY8PePwQmpM0)GR6Qa^J4 zvhR1Vmi%eYFNWxfUjV!I5Pp3S(zypHt#9)#6;gjN9!GO!eu%g1M1~@s1dh?w&v>=| z#tmjsA#%vwARGd$9*7uU(?@dhe?$%mS1ypp56X&VCo&58lH`}%l(%UAcv9xTuYQlV z^rW0DmfZ{b;XtWf2kwV(mk(LT4FmmsK#3nV?3wkDTT5PFFarGL0i|)UyP;3k%&oc8 ziasRTvJ)AJctUSS!IU*C=>7!F@I$v%(Yu9zE9!lDjEAzy1L7^&n8< zCvrwM`EM;&J&OHt_aX527*Ntn#ntvKuO-!n*Fv&*LE8BAXHZ5&uGh^$D@cR&wmfLKd);ZV<-Kv(mtcu zBcLA-l={2&+47y#K8;5`j~#wHliCA)=ii=h?Y0-c{^KJ3+g9JXNmp-gN4hLg2rQ$RlxD9ItFJ%ro5Q8e@(?Wv%j29(?H69dVg zmGR`MeyJRmKaXb+PpWr+Y#&-bn2);dx4T}k+g>8rbnrI=D8r;|y0^xBN`AhzJ0ImE zL(75EJneaF%oSZb@ZIGKHzzCdU=#K%=;s3^`I_HoytpfpbSDqlF^)h?B**`Qr>MJ}jg*@-MhJSl&U zCys3PYH^G5zyB#zkFp5#F9D@?mUGQ#2X(E;aO7D^8Lz{aBZKR~?l>R8Jm7B$P+D(B zx-Zkdq4wrq?5EmIFWmXv6=K)76#Oj%O8WBn(UoYtHYbddzrQ5Baj+mHe=Cr$LqMs1 zi|RdoS@#@zYSPfh#s>T8rUQK|LH{ODl9Nrpe(d45FSp-3DAy6?MNky~TfD$u_Ml-f(-2fGgP@nv{sv5haQk$mDTxfsh%$U;_l=?tu`9RQUw4E%UQ7Mb$PwFzd>sHv z<>LBs0oe_k7C@o*JMIVlXFy4w_bk7i;+ap$%b%Zvzk|T*fCSNhJhZQv=Og>;fWzSH z81VW4pW61<7wT+SgM?a-ja2q68n7dvI|?ixh}YWm%V>mMos{|Z-)?6S>^S)P0x0#{ zf)iWl-me?#Uz@%@U72sgpO1puwO{`d=@bDaeU`8K0^094o?ja(^Q~QZNnH0u@5It;oqB6x<&KtLER!!E z!*_vNN7&zq^nh9dYy94+m#4iUzMl*`!ekzwr664(*)^GVjoEnb2GX+8v~%hzz7ycn z%@DJ-&B;3;8&EB2m{H?hvzSYe^1zx z5&vyhKG}9<7ub8fh;kd}M7l|A>J)l*h;SO>XYg`s2ESU_-SK-m5MlcM(rJyTWg%TZ z(36Sp1Ib>`YU@%|VnZ!1S(d2J3XwXB}^fLb*>5 zEpKkOn2vTP>KEU42!2KWL_Sj3l;_`TJnQu=cE{bfROn6l=j|K)ph)!JjyxX?(5}Qd zV%blEf3jDc+>k!>BGPdQKC{_$qj^<8IA8oO_!0FW_!jNd$;Z2Mg5ONuo~vb{+_Je} ztP3K4z<9hDc9nDt(ky4up9*@RefGq6fR0|E0}6XnvU4=s*NuU6&GGIq!oI-oW;(*o zQ`n<=l>CbRQC;wja-jA^R`c|)FXzJnzASsoY(8FY=*Qo?26Bu>Soj0;Aglp>{r*pO zng_?T(f_!e=83%fLG+Q?b=;=N;OE?gwprh=Em-V??2^rF0az;>dgb0F8!|2`Sa2U zmjgxx-p5~dpY!G)UbFqskG&N?QYn@^R~GbD0`W9g>IR)#pqIRUGy;6J0Ltb0PNlEB zo`vamb={C@*)eglWb3@ISl7$tvh?Ls-lDG_e`j(vXRv*z*2y{-BGS1&P%dm}6y#I7 zZ!%b3w7*WMi0@YdO6fU&sejtbe=hm^!~|b);8V0WBWT>WRn&OnZRJ=eRs-)jFzdc` zp*IxYq4zw0HCMMj@NHY=oM3ZnpI>}W)FZ{qzxxF`*ZowV{qJvVY_)%$UcjH1SjUL+ zrT6@NTEvtKuh;oQ(f>wR_PU~-T*p6X{GV(1OVZ*$iQMttF-3o2e;sR24-x))Mjk&5 zeY)NB#Qsigl!s`i6m(qr2>s!)x>kSVWbszN68gVth)>}2jl#X&Yn>EQIzE$@mA1_`GtbMQXkMgYsGpl%6_@n z>kk@>MZRtWRs|B|_nc1WiQ&IUDld9vci+Z-{_2CT=0Hi`RTOjEwajg-faa)nF>#hZ zuV#oRji2VZbvMq#iFuim)n&JXz9~=|Cro=G&Gft-q3E0Iu!f)~k;{CRqTG)k6XMTH+J|;O`O0ivbNp|e(+zHC z_S=iS{$PJzv6r64TB5$&0j2yql8R1x`HC&{KEGC=ZwnOj1O@#^-}_nD=-9&9&Z@tb z7|Twx4dMy8f`YB9ypMTIyQY}tmGJ9N%D2Ip&Hd{L*4~Is&z&4JF|SduaK?w^A9R;- zKCQU+q3!bN*D(-iDd1D8KTlS|SKgw2(XNNr^|9_jFv;8rjDbEGD2*@9i=z&C9puGy zO@~g({1?MIf<6H#&F|yNT&8m_#^YAymuS`r^qql{+{5ov;J+*T40h)SyZujNiQq3O zl+WgEUf3*(yO{X2U+?zD3BR6-d^v$qz2~jI?^~~LEF(D*K)9$GQQZ|H;rK3kxn{LT93uMyU@I8 zJ|(~JodN#(0Ht}laL1=)=VzE>T<&Pycf-lrvrN!u10}u2yxAvq;M`Yy$o^Rm&}RXq z{+_pVA(hK9e(o}O{b08q!tW2k<9r0`3I2KmCAlsk`P@(Fw>6aZ63KdjJ_jg`^S+l$ zEr8rw^5>B4_V>QX*C3!&ZfyRIv|jnV{_lgwx3~O~bFyZZon}A8llnvcnrHTV-KO8a zCdJg>HOo$OAkvfM*49O>u-~eM$`b=X?*fW-H3d&S`-E|S^?&0Y8@u&482K6w6naex zE}QblRb7ia{=wQunkeUu8nC-Te-BV<*98L$$d2PD0?bpG6Y$|~(M(z4SWhIo?P>U(zXMZ{C> zRKg#Zq;^Xw*p)-Vk003Yjs8{PtcFVcV6uGr7djRwg0wula_dBMN9i#EM>L_xZef_n){vN>|0)JzGl6>YG zJB0E#)wpOoQkloX?|;GVQ)6S1&N!e{5Ak(Q(796cQTv14a?EjmwM?wE2P?CEJMzlQWbw7Np zV9CR2ihjPSwSVPCJgI*cUML`Yy>YZ`j47qG&uGh^*W-vMjo0ycEyet2-wrjn-tCSr z5h4D(Bz;%P&zW2ProGs$_we~t^EV0QI1MQ2>k5Y^oYvi`i+@U8+(9`H7iaBTPDMPa z-kGNi&6{+}^XNNwDDz(on+*CXKxusOyy*Iz%EeF+s(#qRmy@M-WTX)GI3FA@BE(Kp z=JU_Q5C1duHy!0T11QO#&erScykC5Fe1li7RmSV^%QLvWgj=3@cLv7`SAOw?*eB&9 zU(W)idh*nMjQs2x2h}!ZD)Nin{Q33gkk0d=>9L+Gw(0!m(DjkMdCafRMmlps(<@lr z@b_Z2?+my8g3c=tXMTMy_BwX>ZSdwru9o&Nl{f_eQFyPu|P9_W_})+{Txw|f^I8CUN#50()2T?!^WU(S zT?GC-KxsYZsj~H)uI)2CO;l0F&sg>n=obT}d0PAQnOD79KAD@$KdR*&X z`0`8ey2Eb&v)?|KqCA!XrTuru69>t@>?XrtFHMmL!yT7G`@?di^9oQZw}P|dzr{FF z@_Mk9;BO01(kJ_$>hp!puHAC-uH!Ci|C^I_w(K<5B3@OX0j{HW>+Jh^lPY)0vd(Al z*R3o&&DTLM_1pY@&8Xj+C-&6+l^FIK=vM=!^@{7YBfC+a>bk>zd$BuSzXAT%0HyvH zv%T6@UHgC3eFu0{Mfd&{MItp+0|Zz?fDnqIckWP9AdqYl0-*;fMi7jG3JSVbP%J?~ z5fzsrAOZ%EF76^oM?yzMz7+)#QCG2mDBu6wJMY|`oz>repZkH}eRy~?chB58)9X9u zoN@18osj)qQu=IgX1 zWgR7fy$AWVz*;~8_uCWpcr;_aQm$D@|F9ZzYk*RE7R8MF&lOJ3@Y5xD+~e2RLBEYa zshwZ^;z_aoQd8O2jtjBpCDo(+SKkx&qHD^y&Te~VKYs5cUYmhZ{GA)0{6*IyjdoX^ z$HlNskpBQE_tUk@9-;g*p6?YNha>Fqyrc(x$FK7OsA*o~v-C*w_rz9bh}Y}dMjQV7 zl=CRz-_I0WAHwf9gY~qVe|GD;U*F1;LpunR*7-VJe0#s{Ej_cw!X|x`b<-y7Bghv4 zrSagp=TBeMHRHO~(JhtnSv`xVxf}kZ@u1`Wio_Fh_{WcaI6@is#IWs<-vyNBV-XEb z(mh0OW4-5sl7A6w2jq7Gs{;+#*JV1&*|qPd?e<4|5TAWOY21@LAcOXqy~YN_2_;>k zES~1a@F%s`2`}f1eY`8hBmSq$wZ`@%UI&0uJ)3aP9=hkue6Ia?;t=#Z43ySUv`#CG zevF&cS}5bJ@cW10`HJ22jAX~5*yq3!K!T~u{}l6p z1f`$0-{0D8C;kJyd_bu_#BEwpf|;+$P??(V_QJCtKZ7?pGp96HFYlAQTl1==YDBAu zo-!kIMjVkRzX%X0BPg*GYQFhny$Vh?aP^|*{fMBq`SFSKE`OK8j!e9#-+TQ)P|I$` zWA|JU~w-^4%-q2LfbO;fA~y>FyHw)eVL;g`Pb*p{*+1mVrZj-_--ev{dK?q;xUV z)QA9h%sH5Bi#mgec!FTZdLmtfzn<_X{P*I9Jl_EEk_=lKpVho5zeMCR-Qs(K=q283 z_}vB6GPyhv87CPG*y$PUnSmI#yWA%8=_U(px)PJ0TL-E{n??}xFTf%nwV4z>o=H{-pukmqPQj0lqh zr`^mi+k(52NGp!y4-rF^~V;!CDX$ z`b7r(xqi5K$>ZAj_ziaqR2LHBZ7&3s#`ntuD+I!e+`IIw$F+^ttA30PS&$P86+%DZ zpS&;5DC^bvffIEBBFZ{2AST1$2NLAv%FFt>RB5`V&O>mCx5+v-9`&}=A#~nvYVdaFI-6NKWX6C#l}Ewu8>v< zNU*q41}*$Lj0Nf+LpDrnLCyh`;-_ueKo>8Y&y`vrvm3vN5W=KrzezoAc!&MF2x-Cj z7hw@5Z$myvzvo}>bI#*62o+1xL+V3)$j1XkeKOLe$@g^7s8J@F)~l>6JjJj$$Tt9r zew3W~bH^GN`(4R{(suJ*vj~$kbTS`N56Mw9s0SS!$uXt^r<4tpD2p)J82+SkUASrl zZP=L4zo$P^+v^0xt0_?GZ#N!aw(Ppezvj@d4N%I5f|C!Q)?GQq#i3n7%4ZA6w**T4 zW}!3t2#sG1;%b7@--f@DCDkt@1dA})8sUlY9XY)*=V=4eXH1oUQ~GJU2SCEF55f5! z8DiK{(sOG5ZNjkSwKr7J0qNKoDAn7-nq=tQx4SUrnJ))h_1hGq33x}ycLIv>7CFyU z$%Mh=!dBM2hKo6DjteyFq8Ntoq;Wytt=rdmw5`-_h7ddLAF#H!&>U$ICdWZfsXn;$ z@5tb1!&<2$3$mjwwMlUQ>I&8O2-XAPqynXKZEg_p*J^+C&yOSRl~2E( zhIrip6!Rr==4PGxUia3YIkNTd$<};`i*;n_kRJ>b^G9+zA8Sq*glt=#;>=R#)9siO z@)^X5@NUcX#e?Bd>kA`L;gh{FY)AElErSX~ZoKY@Hva4tK`5vsNUmwC1 z(QXHp1QN`;@dC{s4sZNwv+FjcT*tFq$PEQb@hkekNd`l_#sS@ZO1ZXsKsWqxR&cqF z3^8me)qtdz|*|IrnE8+v7Zm&w!6XcvtMuX z5U)FdV%?9N`3Il*O6ONNsuw-mjh}rzM?=5-P(6JI?xuB(L(47>ogN=Df4B?sV}R1S zRMGUO4tcZ}czbQP{glgtvHmg^;oKdnXW_4P^?Fj)7dWmv`2fICV;crD(zCE5W=K1-^{JQliIUmd>$7ZUij^c zn(yJ(+hBi@Yy#pn87PgDkF_aJ>&Xj^_Onh%xt<952Z7RfH(*#+Q}fSmzv9;)LO7Fv zQa(hr{qq2gL$2gHk^Oe!Vd(cLP#O>VraVeSOP8^sQ&MTKE3ro)?*bMF8t_W_&-E)C zzwqb%!R5tnx&#bcZVio}KlP|zFZgD}k^kO3!MgCv6r+vnCm{b4P|Eimb9_Y}SLdH< z3~q4;tBc<`q*;W?XYpRDf4*DYr#+15KKm1ISL$s&i!eD2{^W6;>xFl9zW$l4^wUw6 zVauuTC(S$DPeyLmwLD`>|K^ZE+PT*PYuP|AnM!Dl_XR(k|-Y&$3yBE+zHke?5f>VrEl@4xo- z_AThQ7$~i0X%#1L!v%`!MP<=!A>^ec_nM)>;x zD2*pr)8GEkwZa%`uzyw3Glsnn`Axv8K!V(}N5wkrwKp(ouO0O3Uc_fJ@KzwfvkS`o zO7j4+>s+auzR5ns_qPD0@SN{w+{E~KjdRL+a`@{n!Qq8p--G>W7Gd&Z z=qdf~+Og}R?i>BfxyW^sl=EN#!sJf)ivk+3>&$u&GwxB}pR2SJl`O*K4#>;%zxgF^ zWaeu};x!-7?}C1Nfzo=9`{EBj>HOmF1f{%0u-%Z~1C+*txz1NUqjuhSuKj+$-Fmc- zM?gCOl-i}`P0oGEm3a6!e-H4#_WaBPppYdXU%TL-3$lGM+jufNfcC|Ggy#e+-_}kwk7- zs#`aHUjMExmYm5;INJrhmTvsL-~|cZlf@4bhW9!{j&XDW>7G8#cu4-l=f;!B`3b9& z_?nHbe0D<-A8SRYa$%tGjX02e$P#2=Fb|?rSQ5e-jn!V7cTGW&Wy#%=w!jW zO2K=e)*Wv66MQS{dm>!$?f!xvVjQx(Cpwjx*Mg1diSMO@N0Z9k6kpAFEFPH9GZF8T zS-G?BvS)qp@9V$3{q*Lv~q6YokhAECE!r?JluM(pnRTsq2^lM%b)+}5%gT%O_)#K$3i5-&ead=GLG zZ^;bCjrY0YJ3t2X0lngVCVS?MV^6=4BMcNmZ=t{70p%;h;eoI7ti+oMv z=A2#^1{#qsRQ^nTrSfLFMY-^b?;xG29GUsQ*NJpa0^~|QEw2>!=n6&_~Lic zhx4JJpWu^4;=5Kp33nFanaLjg`SQSbh%aX>_TIV)`jUUsKwI}rHr7a>R=pt)zS3d% z*Tj3cML1sMx0Q}*obQx|@ZIo7yeiFnvSBz6{Jow+k3hPbVlLt7{6XAJhV0Duns5*MpLkl;+eMeVsywYS#M3(ZS3IqwoTn9WTY#q}=5^9I zHsR4fzSVsVCO2p^{ZVWGh$l>*HO}nJQ$#BZB=DYi-sg!s`QE+b-^gco1>VzNBdl?s z821XKA6)|$obu!vHF45VRzJvJnl&z}i1#!m5KqGKVuwAs2EUUmJ4*95`n`oUj*ftI zDdCI4OH3q#Ro{HFYvWS&BBQ3(eq;&AR|xp?C67Dj;m&KnJ|gz}OG7_tyj}SC&8IxB z4aYA#y0%yLp_*9hNFqJNcjz+(iLc_K3N6aYXa4!{$CXk!BCqzxl_EbQ5kKj>h2?5d z{u$ey531)PVncXZQu)k(w+8W%yvDiev&uTS-F5fy$G^ej?Ml`b0%WF zrxo;+%BS|}+A|)valr%;m8E(~lHDwK9rzRVkevR?Q@`=BS3avXdfnHv{;__*zA(ZdT6}G(-Qr#lz-mNxBZ6vdtYfk9X9t@?Y2wNtO4TH2q@Yq za^_dQO!dLM_`$EN+g7p++cktgF+LzCGcWWu8?-BB044nXL2f^c^LCA)UlX9{C&*d2 zI$7+~T>J8w0R5T+%L55oWXF=hRO24aZ*NoDrC8P!a?OBJKDhg5(?zci;{x$3x4sDv+K=akj>121@B!a3=kd?lStn0|S_7U%6Os)&uhWfKvbNFZZ#} z<2&BdySHTy6XOk2j23WGA@2l=@h>@3o=W$5Sk2OHzMP$F%`drFymenoFZdJVdU7r< zDvNSW7XSwDW7tp6G=!55ED0oVH1>%3`<1$IH~e}OoPQe2fL@tEX?_(ES^P(jX3*Mc zfmN(SaIx_DCBfnO^(=&w0~GTta`w6Tm7To#ncz_RX$R{K`MyA@zDNC@K|F)rM*n_; zwNAsuDzR+H_W{cNT(PQ4z%RM>`?=xvE3*C+rLf1l!Tusxf27BwKna|!rl0gMvZHX< z-VAH}&VNs110X2QflK2opW}`5y2~(xSUbgGxr{7e4UEGzrE$6I1qqgT&# zv+gV5VqMuF$mas3eAn(eN%sy_^$u`!ZmV1z-_|m0Hw6Bq^*YW+qSBJFu8Goq+Ff4? zKOchYLj)TN{qlfP{WH&>YAJNQp-BU4J&B98V7Ehl1W@j$-4Fc7W4_J}tw+NkKO89K zL+%6J1H6>r@?tlBcH1StJ`(!f0hHQL^BkMzH7-`#tjw$I_P62d8QecqvJBgab!M?n zNNVR#e2T`c=2J~s|BPd!5Ue||Om!7EGTFHla%dp)9_>DqGY$L3a5#)Hw8VY^B2C*@z^ z(qYCp(%5p|tjssBe!CQ$e|GyZzy1i~LKG^pwhlJAL|cUAxQJsI07v=VRGa$WH@S01~(_KTYEa z*5b&NZNDr1ZFC4vOKKEhR)MSPwEO6A%;Whe3I%|~s|?3Qc0 zdTQ(i==UP943MDPsCGVGa~XVU^+9mt@f8ox@r21uO#$JJbvw+h2gsa$Ky6-K|m>}H{(y!PH&#%9V zaApIgahPeK^?K=#UWb0mfVF@G>>0;uI^bxh~vM(21w zcq=IN)^59NzrHVqes2S%`Gc1A5S<%0pKHH9{|@w93Y6*td+@=H9?kUxjYB?A#vyjo zGu-w%Uoo^A!Ine66+mfUCTGqkWXQRhVVEgJDc3RVUC0*#YXS*&ENw)Fc8u`koi!8Nz;lxGHDCbz(vJH^m2b9(o3*Y+blFr^v`0?Q)xS;?d0*s zE2j-ZkM#I!D&@=(_WFzbJ^B*!m><-%4}sNy1W{$PcTsr8{Pr7V9uUR6klPHDzRQ06 z^k?$N?=J~nKeOLnhdW-9>X)IJ&2+J^=SN77JwOQ_IeU7gt{K}F8C{fhsn`(1c2fJP zRl0@ltuap4pKYn+dz8h~+J%6m`Ix)jxMQ^6VO$hYLFuO}g&4Mz%BS~?|2>*_@O7zw zXa3pEcfYG&~FivReJFH?VHK9`hpNa6Rl!R6C_IV*yG2Z7SOBjUX^tDt8iW!@1H zV%Sa^Pvo9FkMWsy?Z-Xg)_1Ahp_K6JhmjsffYQ2+uh#ZknEBdur3{sYJ6;N$dxu)) zLH@t8Pj)oGLt964yQfe8C-%pqX>4V!ODk$!O6BVN62XIDtepAih*mR>mYuQ|oEJ8T z;eC5xTVN;f7dms^$QmIh5cb2eyFosQBk|2R&j)VH{*;hQgnT#7XLvk?+f!Pe#Q7hw zUGY2gVDKk+a2Ed!@0s`>koZ}{YnSS`k zP!~U|H2_$QF!X)soM7oOf5$P}7A|Buw7I%Wbm&P_d^;5N7-}Yjrx$Dv3 z@r}dxEnZnBPyc73p9AssBHcxLQ~GmW9DbL0Oq%hykdA-Bb25KV5cvcod67<>ADM!3 zkb-hA;?IhMisOJ8TeE){rd z;~?)1=x_3*mS(_CUIz5V_gp~1k8+6g7VjZH3gNneE}$1k{y8ryo9k!sqI#np5#<2s zH7Zaad3q%=&(QCxAE}weZu_~*Z9jh~;vxJA`DFI+mQPzRC7xSd!|wY5p^wPtEFOMj zZ|DKHumhGG(ANx?^lxDhyjGz+XioN;acjk^={$X>^g;fJ@4-LWV>9DBvo8*sy zm$STS+PND}dJ@VHOHW@l*1B)m{Mnsrjnhg(zI?!6PRAOWH&4I&feBxXu+GVwKf3}v zwGxn*#&cRy{v!PXjs8DO%uwbHv6lO0_=^sNmp@@jDaM`ZI5+%xX7D)I?tZ9d&693{ zegerE@%p4Qe4OjJ_V-YT^@LW?^9CS6;SYY|5A~kyt2br!?N#J4f3LVlhZr>mGiuOYFF+)-RcNO zv}02KO>oX3`zCI_o)MgXcIV&Wm$Tq<9k3@>3;K$5C1=s-wRFFc`CO^{>+Q}@Bdm5R z7J5qSQEW^m?wO(sBW}X)93n&PiAnwL1*FQ_0^mztvfEv4YY+)U(;{`t^ng zrwLFh_ujXDC*HI<5V@$>$%_rKCnowe`bw#iChr$hQDW{lmG! zR%92&_gC$w-F*0`#|3`9HR9C{D8_5#%r86lxQ9KNx8>^>`YQD(-r}jXg+HnPOSn`3 z9tqi_k=BVx(r*01Z?A*PX9Q~x{TNVcC%nHsa8ft7W1>}_b`0wP`Hn!T-X{DRv6Yu= zU&)aE-CjM?nBWPbqtm2vcEK!X<`q7huTXuro1S*h@%i;GNXPC#F&-hOv(2V+9(L)K zPj-DY+^TO}EYsqtCBdK6Z{|O>?=a7YkD1cnIzo7A()=NzX7OVlm&t=|p!BzP<7dBI zCnH`dKxy2QFuS7Q6+09??YD#BmQSg?8=A2m&~GwOY9}UD8}O1RVZaJKmgeiUL?As* zi>G!M-b(Fm{;GQ^ABt}|6uq|>t0no;v?PnCb|>D8@iIBx<+pyXyPkZp{IXg}Od3Da zPwiPR$PWfe<6U#U;<{L?@cxorlzBjFmInC&K&c7IiH#h{rUjK{FG!w{7L#a65k}d-saNwpUSxq`}sZ$;S2{#?ODR;=Ss1^wj&UJK1li-A=sYh*ez#w zAYOSusa-1CeH*PW;k-q#p5ez&?Z@ouISTrX21?@>@3D`+*ZFI8UD*D(AY47wbQuHv z#sj7Pq2SkQCp_#P*9&u&by0ZXP1#t;-vgA&8DA$d-`}j%2M4~uW@{U!mW@kCM1 zZ-u*56kAYJAnSZ&~Mg16CRAziLm$i?^ z#nLQ$VsFEr1Vu$}e&KO7qN9zShg3e{0z5t=LjoM~P!|Avg~xje83IJKpQjYW(#%0lVchTz_gixB&Vs0!r&r zaifouo^CofzvQGc-VNocN#iBg&yTpToB9xLx=7`ZQo?Tkps^)L$L&C=oH@!IHrIQI z;@#IeFTur_WlwA?{7LgF?dS;F*EY(_kW}j&2^VW)*%Mm}e^UOVw&>ycky zhj@8_(zq_=%R~D;S`Xu*nf6Ni8PC>3egm*1kRWhAt3yJ_evZBR9%1p+K0r9t0^t>P zDnmRV(_U{)CI2c}Jhe@b4_W^--(OPBJ=twv?2ZTR&mX*q*Jhy9zBpbjBtD(Fj#)V* zUF_vUs68>MycE@3{xQ{uzuHH)A3wW#euVVc29)Lj%hH}8zPvFm__Ccc&a$hg{qflj z=(iIn%>xSR-iviNSM4iQk2JOm;p_(11QIw0#(k-4PU9$eaizT2JqMw&J^21!ptP>h zCFbFyXm-?dhj#0q-F(p4KInG{D79yKhwq~G0^?Xo&v8nB+bG1ISZVktC>q)A8{R)G z%~sOWVRL;xk{!VJ4+5qBmiCi3^WjPo$E zJ3?LuGLB?7Of#Rh9Eoqm-2#)?1IDu!cFlfC;lFzkE)#Oyz|(=-`i_u;KjNjC-xqwN z++O%zcf3#KXz`Dna0|@fypuMG+LIrpzwei!DBvaNqh(X>5PxdmfG^9+*krA$xCM zc59XvTL#-xJ{pOl2chzu)w+?rHoz>6!ZQimz@ZzT0!JjIHoE z@dN3S&*jNC;CFIs#zVX{&Z|QDc#&_!|1y6kx5;xWDeRx6^Y@gF+@FvKlK!SY4ZN=S zOzvht4Vc@5zn6H7C%>R)DBg?m;&N$4YZY9ikF4)Lta?-T#&{f+bt$l~R{UT^-M_+IAk#Fyf{ zLghW#4Kv@5%HncGK!=b6YCso$cZ+a=q=(7Z+XH)o#6vT~rSf3zV!aAI9PsZ&KEDNf zcG*H6g^i}wt?wI%SE z3uHhMf8woGYHu)hkuGQOyWr~y`2z7C=oRiv&O1FX@(1?SM)l$8CirbG*u9%6%8`gK z(#hSI%X@R+Pq^_Nmv94#&$o6At*>ny#N`Y7bJXC@#dpN_h(Bl6$5Xjn->h7OGlXOA zP>#fxGrGI`ZqMtRmqY(gYw+ld$ur{ep3i$BuOM%F-iv8@FQpdCn~{1$-pphTPu|OU z3-Vq`%bV4sL9^_kSJj?dB=O{S{}oSeH|NRaH45l}Em zY2N;D zKm(E!=)9xB3q4xh(u@CWcbw+eBk=uOfYQ8Eb60*?=dZ85{UecIr4@b2xuD0(bUxt; z!=BWCmG#>2&%H_OPxMK<^D@6)7W#>Ns{}WJbLgSdo&x_JYyX&-s^oh;YkgCcXDJ{2 zZ+&#!<1oy}RZ{nx?dE%gbze~h=qJTLq1k9Ur)56se8=uQ(C+$;Ul-{o(nDTXeyGWR zb=Eq%#Up#w^{^=G+^eXs0x4Ro^&DD{?pdy6kNv+Z<;8A#Y8FpU?8A!sOW}b>_MU6T z)1N5oVgLL*$=6ldF2ak7CgQ>|SGK0^j(*P_M@^yitA0(&Kyl2*Y z-%MFIup2-7`A{GFbpVQX)X;O@-BjP_|2O$$i!|04znee<(Kxto14`>6uHWA|=JD!l z>QAKssA$)@SaXXfM?)F&5#tJSEKTk5p+_q))C^-YN$DARZq$$9*IoPlrv&KN5-8=9qv%$j#~a_RdZ$O2a_%NR#Gad6KbQ6; zyF0@t(+#{TpFRBX#0}7gLxj~Xw!nKSy!`ZTr;+cW=S#wEuchx%2zKkAUvCBd+5@G0 z_Z?YG=ZcK>dWpI}8fDpYYZvOzTXFs=>)dy7{LZ0L2v1H5Z&uaa#P`Pe=HPu*`|-1v zp5eDk!TAurzu@xX*E=Ge@_1f~bg3gTVq04nuctJfao}8HXl@Fx1uWnV!zunu0 zW&fw6W%tzlnHF$#$aMos{k!{I>rEcb=x)<0DLltEj6uFDP^y3K%dc$FwHZb`ctPRs z##!^MF7PM%dvX@88u1IMV+?q=Dm;PMu-Es4%Znpyf5G`+H~%!2h}& z{Lf1K;=uLYqd`>InERtnFJ`-3DNRYB|p*ZjV?>V=q zw!7JgPamL|=NirzD!h$!QTIpf)_1$(EWe%u{rUl=`e52Ub``s?&YX*_towerSo5&k z3AMcRM>qq3()iOoxg_-u#C~~ycN2xj+0U{-#X`|F1KHA!_`wNf0TlLeH7C1KA=?JT`j(!q(MPMq2BET&xuv z4f*jvX?*6pckO16cXdLk@6ythb;VeA7v%2_^;fvJ7WEIMW8*q$f%R%G<_NLpCaqsP zF5h=R*NU#>`9u5dZa(5Q4k*^K$;r>{M=$U-_^P6E9-@+E&+T6Llky?oowJ+f9ZPb1 zXR7tjzMkQgm;8=uc?r*7U_XUNC;a)5TL11xdOQjg>#yWo+PgW8%iGdC;6bO-e#Wr} zAnyW7-}SAZPv<$Gp=;|0G`03OxL6FE0QpCN(tL&6518@G+!dXot^E`(7R@F?eiBd` ze|jB`Q&c{U3Cm?=+!JNpyZ8|Ng^bV4_gCsZ9=q*J1e*-~1n*56*Ev$372~>px_qkT z%x?Vb`qM0XZjU2&b_ww8)My<#>G-Cdv43&Paf~y{;0+rD_1|#t=&k4AChR9&e3etzYh(ru0YQ-|Hc@A4ZTC zPwsi>Db1%(KXx1OHO!s!=1Mye6T*{|>XFu}+d-XwPQBOa>W{P3_`QI56#%9AChn0m z>;`_U>>t_Rud>^(ya@f?21@-czyEIL*dhHsPqg+IxmY{)666;HrTFDE%)OCmla|e? zQH&|;?5)@g$iD)V#v%MXe2E!PH~hS52+w0C_#JPpe(_h_3B;@#*K^tfS1wnzL6S|2j~b$N7isq5i>@v!HZ`G9mS0HsoLXi||^} z`17xM>2~+S?WSjBh&?x`YrwHj4w2oYzp-yP2ZC<`D+39lA}-DT8WK8t`- zyIWBCLE0CMrF)xyDX)yPV%dDiF9b^EEdSBrbPn5l+d37g+OV3tKAs6*5fixbZ#0FGLN$x-U@`X5-80(0(Kv-1ABw-LBEYasT?}*EJ5|% z8223Rs*JPZ*lNgc07~OQy8MsEkp^9Hf4tH^#IiMzUk{YhCBMe~g}OHDulBWL*jmW1 z14{KwvRC)9vVP{Uxvm&~y_NJJ&Fqes?AQ1Aksh0XRe%I8E%q26e_jXo8hfDEE}*oJ zw{F|76`0n5`jyoWDf9kV=7szgU~wS9(iPRu=;roq^dO~t#<0zh`!FCc{`&Nm7%HE} z<4U>aMY9~-CPyTOeUDh=+c3qScYCrWO$ZrEm^{8+_+!iEvOvw2VyY1O_gtG%E zm9yO!9{fYsd?s_?3bmi%kL#rLBF)0Dw^BPt{_NMkzvBh%4)B6k6>44W~QneJdvthx!c7!dW9QEJeIM>wF+wz`R^9bpc^|~ z*7?0Qq9Z>aKe82mZ;S6WgS!Q=Df{#GowvRGdS~`>*J*csy%FJQj9vWb#UYK_LNBc| zw}|}fw?@3Q{)|}k|@1Y0rlgb=$lsVvroQS93ExEcf zgO-wdxjV}k+;w7^Q$2&fZ}B)p{Dr-z6dsPnr%7SA*T0|sr8Bb9L;rf=_f(GVH0YI% z_xPQ7DV%o%Udvf0|6TB2=y%O{1h0XPd6{;Aigjn{xBN82u@ClzdL%>dB=9DZxIdvk z@sy0uXo4TYg#JMKebNt`emilgJO570p3D?yB7J*sH#KAC`$F)3&O%P`X55Gu6Y&@E z6e!XG@f7hQo{o|FEoTUQdcm%n(6b8!5_ts^N|p~ zL&R6e0V#b={?Pg?ZolpMES}!?;X4dS$3jgtyy89dav>i1;2BjG>8O@l*dc44gYOLD zSk#9j@o+Tb@%H6NyclEiwfRfn#~g;g#Xy(%4v_Wd{sgbbA<_-srSf2Y@BCo!u@Jtu zpA{a3PQ#A@ydA%PFn{lb92>&@kAqwAdBpF6r<41?*|SPXs~CS(c{+wYt9^gP)7i&) zIw_3<>s4+eLFg&P!Ti7H#sm7|x~|cVK`v`Q#{9vNXN}v+LtgUd&0TfI<64)N@@J{L z*Z}E!8oS*ZpNM^#a?_j*>f^y2=)Ump%0|Aaqo3LgL1_2<{c`fO>Whmx9AS5`KEB=~4#aM*=Ga^jSQu3f+TH)j02=uBSv>>&&8j zN%4z}exJ^ZJFbuQc6;*y&APvR4AMiylbnTH=Wp>OIRChCY{&?f5lAokE7!W8sSnb(1n@QUi$JIb<=B?)C9r+Gi>3Q17TGHzxTuXX=1pJ9Jtv>s(=#P=5)l zZ~DpOGVCngldPP7YGHHTAi&cR`bq1<>ngu?(&Jh*;QW@`TPy4B&8+<|vCdvH5dV}% ztNJ~fIZ#Sa+6nvfooe`gb)ZNe!};J3Gj#s?+TRB%&Pl~WPpO>w;tS}!)#+bLRE@8% ztQ$13&L7u?KWV+s_1Nw&JeqM`-;5Zmedc1Z)_G?~sK4AV_kQKkP8$3E*Zv;S80c3A zDB34-t}Ff{#m_juJ@*Esyx2X*6n;5V+ugd*uO3ip2erA&r+dUX?BI6(>aU}zdd5M& z)*G4B>%G6rJ89OqgNt=wZ6V(cC_%xBXXyOsx`(6t zZ0M-;@6A~|2%@9Yq3L(c-~>`SKgx3zwpPc!SzpL z9T83^pp<{k+G~yTvBq@wQVKW6HoXtuf>3wrhjO7U|YKl&QVnP#o;a54MsQh50nScigIHs^nSy)Qm67$}X) z^AFDandcuZ49oLgO>4$-Am0xt<=-*=1K8P12;3LL#q6$Y`1Sq>XAn@VqmlEB$>TJ- zv3poZdo9+}2Ev~-Zyf$)+94i4O&w2M?fR$YpWSxCuMa`I@_^DfQuBV;Lf57m`>`tT zuo26J{0N{}UnJ)rp1x$i&UpM$N_}@&_N<1R0-7e}d&2$&bROQ#`K>qMcMehPcDRQD zYX*MLKlzZ4hezY`;CWT}lNW1x)A}fAZMo;_YBBpU1V=e){#Xh}TS@G_K8k_Q)RHov~r^h}2=$ zIt>@=VcD}94}VhqD=aqqq{q>@7g@v|V6B&#VzgnL5BYIGX`QH`)yhMD!;qK4%k4Rw?#rk?X=t)+(`@0dd4-NmJe09sBN@5Y4ibfk5#;ZKj*O!>gi4XgcTxb0bRzj^i7 zBc*hvs7F{looPrHX-8^jZ@$)6ng7|%Kf8Kr>}BZp22dJ@ z6n$0csK>kO?4X}~PGvkF&t8H2>p-bL^1t2ttgh8Gcx&ptPxaU=$iE7#3?%T^>rZ?l z*5U{q1y#oL_V;sUJ*zhnFKL}&YM)wI zMFL+!LceXm;y?mNvr)h6xo;e-*{aM#!Q*6CGMfjvcYxCTPn&$^ z4&7~Zn|I%C-5bfpx>!7&1@I^J(@US8P33Ioogef`@1vZj4xd*UoDY8eErhcKD9w)| zk2NHof1z>jsCqsmmMw(*BA_&mbiC8jXb0(W6<7K{hwc1ZjBwrtO8qVD^BMDgkJ4|3 zU;l!~6L$9l?Dj{RWzT90;wP2+{Ad14_nb~%zUKBv`YZNL+gkRlK7>ChABs+n{8M*5 z`SfpfTC4XHw_?j7zY!>vYk%rd8qd$Zt!AU%q4u-hh5SmOG#-rHH;(rEJ5W2AR9m_C zsSzuL{0gA7Uhb=M>^ELs=$y9{Z<74y+p|^BZw*jd?}=QtVW&sSHI5!fDD^Kk#GVzr z8{q0O?Krj9+o^o+vt2%e(I>z3QFaru;@+V6XhC5!cQsvSOi-K`Sn0) z+{*8@GT*EH(Ldi_+imCHN4z!zrT(_f?zo$o*3#(S)$@bVY!l?YKxsVTJ@oy5b@Sf5 z=T&}r6#D@3R4~j(T3<@&`xDi_BIBa(-<10BPtSAg)<3)LpnZQ^k&Yh$rE;I&rS=WX zWgH7C+glk=gkO(>`%U}hdOP&n1C$`La!Jzj=C?lFx^b-1zSLtoAh;VSjVI#v`81}j zNU1tuLtmx8jbS?>zYACkNRZQ@?S7q~L#nN;e}><02B%B-=_%z8sS<^lfr&M^GZhMCcHwc=DP7p+& zRQ_HNUo3+zz3@Jj8&KJp#N+cU{4ELSM_;F&Gl?6}7?1*g$sCD*ViFaqLf$fbl*n2< zS5`0YO$9+n=+^`Od%{2TV?rMwok!J-hsN(Fh7f+BhlcOEMLKoi@{|t!8sGhF?u)(H zpFfT{K4M}zCuVGifgWLaMG$zrY4Dd0OhbM_Uy6rjKG54D!lbY--+FDU!{y|^(>&J{ z6W?SD>px+_@+Y#D1)?N&6XZ((r42mo$RjY|IVnRK z2s*3*9*q&qrwWk3b!XJa9&=yio<_=mC;Wj~@PN+#Kq&%xl>$l&O9h`-Jmqnj6y7FQ ze7IQPLf4Y;Ck^Ogql)OF8uPjK6HT#zQ3iTS>6U*yj|d@sjES^r@YQZU1Plw6LwM3e z)75M~U5INw>H>=W{IfgIEf4)#0Ht(s^^Ky9sxoDZ?fJG#@WQ97i?vbR6#k@gt=;s? za$PIGp!|xPT3Li4Q_R)bA}qzipD1tSG!1*X9zD5z!l*b)j*BsCLtV5FqW;qFxrfqd zp(pJ%fAn`Xl#SG;R`}Hro>V@IX4X5cYb}z$`E_P-rQXIf5g)N&CZ$VZpO1dvXktDGOkBC&b~WOYp?D5_1^wrl$@Etum0n z9ea)zTI)s4JalInCi)Tnb0n(`xfq~GS8}rM^;ghEAbf-JM*Pmfe!CQII}see@Y5x@ zeERje(7Opxik~)p!WmsFn7eYzq1p|UgG$b^i1fbM@YJZmBj{K{xjF;?&XTKgbgMQ6{()cs~QVZI6=LJ^L({6b7 z>t9Rg*9s`rzk&Tu?9%yb)qscn@WO3h)OMl`^m_y-_3wrEtlp=)&!7GHy+K1+2mEe= zE88M0rQyBkFUaY5yY^`h+jz0@O^^4r2!dR!r$t!m41ZF&&s~}EwQk;%U!`lv!SeQy zXFxGdAZLD+nB%&6&*g;XN;@BA>D>|jr17=8w2ut-n9pgYAG2GoHOsINGFTJia|*`Y zHe8rUc zpCg2@B=sv3+Ry*iqdAR?2;HExt7j_o>j@0xgR6%7-gC&me^0p%&i6_z9r2m~l-f!2 zpttLpu_YdSEXOjq$;G-dC*+3!rG9hGva+vx*uh_`={Ke`sh*HzXO;o^-ax7S%&*`3 zQ;(NMXQzHmQ|47oSSIANfYNu1{%rpVZ(ry_&fsyY-S#Z}jmF^gj9}T&Zy-?2$I0nz zAc0FiwVm3vmWaM`2m07@7U?R9?diir4k0CSYOEJ0L6L(IlalJKGZeyj=DdU zab5W1tl;=*tRKP=>s(ShU$}G_jYC}j?gNg45Wm4dshs8io=NL&$N0v3a5)Pjw0DMhOZ0i5E8u?!OnvXw6AU*B^O7+42+(hbEjDwg-4U~iIjo3)Yj|NKp z^n}AX?|ZZq)b{$;IV6We_ zKb{za^vDNF>zD}#C(=Ciav_~$sGuC&jbURUe>YGnpN>Oy&w>bar4C-(kKaAe?_Qu( z|NQ%YrVAZRqSF^jdu{i?VFVk8aK;0r^$GvxrPN+~|F?0Zl+F}_-S$kg2ulxyri<&# zujvAUTw@2dywbkd&xi2Jb?zoLeiNbJB%sv)&B}?Sdh0j7tQvNX3^6Putt0&(2Hmc9 z`~v%7JUV`TGUD|xP#T}PCS~Kok?WvcazVdWfzmucyVT-s58FL#?~c_2t$hP7*2y9) zJqv$Q{2bl;Q+s`=;QpqyGn9FFON+2H1^%RR;my61=I@QCzTkK@J)~WF9P&>ACGfdi zKk2T>ZCZW3g)(l9U{65sNubofZ*6{z4qpGO4UqZusfgD!ptK&Dw_)iQm{-Ls=@J!U zSV$UQ=cE=H2fF^v7xVe`=a3#VfKs`R>vEpjYvZ8e2Thgzqd4|FeCqndKc9cIq2C)oslFGqP5Z>dl6H9yE=yF_dt%sY zkbfO0jjxM-e~2#hGoLH9J|F)0MQZ;^g9wYTG#7gE<#^NKE|_yO(-xRF$tmqwCH5xd z-9RZ_a$l`R^A7X5q#X3Nn}7D>7v6X&bUZO1@j3u34kR!MQjw2W8t1(IVQXKK|D4Vi zKyEuwn#Z}{YWSUQy!I^^p%|=7VQ)eH1EAEN6^-onjqa^5?Z!z1hg$plT&!~lVMz)v z@=(8X9`EH@^T$8rREY2GY_FRxhJNdTQa_e|V}~zvmpR`|ROat(+1rp`2@L5U-lB5W zx2dvz)`Bg8{0gA7kKkK${!5)-P^ucpi(>CUekm|y+!hujeYH$9q62-(7c?qw&0H z@LIjtrjgBZtyzYJ)*w8oJ-bk9%u1@a#@+lU6hmThVTUK>D}@jsEUiO$;yesFpIuPy zSF@eav>i%$ao7ycem}hd`fUo;^Gwg)J`Xd_ogR0F^bZ>$|2|OKCplsovNhkU<=Srl zV7Hvv_2<`7F*PsZCzVhCpBLyHi}Bp55?8{{zu;+koYP1pdL7iQtxC5V_)% zadI^K5ON;@qXYiDkNyBXwem{-MX@cA+X|H0Ph2GM)D<+``Ook7+imA}AU$>irFt7V zwJ*)%R(5J}WP7GE&uJ7wSc-su0@pJGH}d*k*h*O^vRfbQw$~AC5A@m(6z9pvS=i#i zuXN2g-@34cGTx01AuLJ$#%ER|LYCXO@%$U5J+r(2ps{_>uP9VcZRF9q3?%S<_rM;VRU-oc`yWx(Z5pvdkUI>N=2ZzZFVH#T8pOb;&y;q;Za=26 zBM9dxP#X8NnK6JagmW4e`EF6lb!^!EnA#57tG6-i6X^FTP#U-TYSG2H=Ieq1ik|lS z2YY(@^}jRh^;v*NcZ}NNM_$@G>SOJX!1~y1y z6PA1)*{yXVJGV9M+}4kwk1(jj6t~51L-@`l9uD!546|7;#tJu(_-PMSTAutxkFK1L zMD`&yRXy((M zqff-I8~9x!o%VX6&KjFf zcf=RzCeokM$1FZir*MNt&3kbFKA<-h-&6c)_?^lh&lka$6Y&b9k8xNhI~(!VV2Esq za3f!+oR|i&o=pS)5b+TC=g8uExHCBt&r35NFVKzO1s}?r#Yz`zIHd~l=L(yTtui|{ zla-!XV_}miPL^s|u50-JF*ru~!oLrLSpAUR7Vi#j3dhW!{y^e$nf`pxNATN7&V294 z<|uewS~mAT3h~fHe3bZ6e2rV0qmz*jR{cW$Q2Ln$tyZBNhmGi0rZh zdc2p#?lhjKGnrwA@Af-HJd-%TZXpcq)dN2;J`4FI;)m}f!0i+9fLr8`3vQMHex4}5 zFckKSNKas-_zsYXaxU5lQLmMHF4DP8AEdLB^PDU6KN$qmj7RY2auI)t=f`=l@F(7Tg+9IccfT3P+p*RC@x4Ld0Sb2xe=iJ~MUH^n zFpmGDVX+}|n$@}LJiWbt#nao%d3whh1=bN~Y5XY#G{7({)_bXM$cbu?v4^Gin#9v< ziT7m#zk5$S@AKq8ep}C)okp`kf%o)Rs9~}4f!}jF*3i5WJ?AcecF8d22)w7iQmye{ z3A~raiAC$vKlhm1E@k^#a$GFR8uyF&pfsP%pD?8q`(Mu)1&@RO>G@Bn^#)n6`M;`sz7l?Re+Z|x6Pg1<;00q2K3^TFlH`=hM* z@SmGn>$&24H6(v8m!@^?qDjl<)F`IRN9tMY&LW&!1O6fln;RF*@e8hQ47{hm!sl;D z=|%p+pZ7}nL;j+y{q~B`LrPE6upfUNx_%q(I6pW%yXzf(y)yI@^|d7222_cd=g}%0 zYE-LXiI93L)~7`J3nXv;e)pZBe4v5#gIllA{M>Fn*st%^kPfwgQo1-7MsL?OW9Bfl zjM*Blq_jOqHU(^F>KO^GxNyOK380q=dza~A^^65Z2 z)&`39f}GyQ^~L_|wdcdsfqwBo(H@esXm|Sqy35S>6s28?WwDU250v7U|G>@QpSo0j zii6dKd_AD3kL2uJ)l2JtIG3iTXSnTz-S#ZlpT^>#UjtwnAc6Np3hgVg>*KshL+C|A zC-afg(^+BM&mR8v+8cIg0{xl-MSDX|Z)@ic-8F9oE&SF}*3qNcZIDj@O64=^;Y&Wm zPrVS-?z(9B?QU>+vD@xymch&xh@Z6nr*#;z6YXbJWnImFc=qa%##%wYhk#Oj$a$dq z2Hi37r)H-<8)g~4GR0`3(;D(4f#rY%&JWh_*S(Y1xPDtYh>7xR{!9xRZ6G%QD8|d= z%%A!Dr#c(|`Ic2Q@vMd4O`r*HTezJ-sh@7q^x_teYkK=VzRxl&-aQxVYVq{i!=D(Z zk&}I)7x$VsSq*D#jmNlH8{6x!9S}}BP>e^($uGWaS8wj){)X1Lk&Csq(l-VEBydi> z{aanzv$E0dmC@EXmH*z-;^}pT2QmI3r~k5g{yl&0 zSaHul=(vtSzB5paU&+}hB9;1g^HKLN|M~S|yY-^4Te9dpT6sf+lVh> zKI(YMZhZ*9oCU|vujfL)VL)lz>i%@t9*<_&Rhg#tw=ot^?{@f;(j~v&K{Ct;p5>Kk zU&2q9;BpH?l1*LVV{N2Tgm%BA)gm2;? zWxUjkc z^B%-&JW$H_+=ZhKd9+5EWD=>jvK|t{?uGm~pftaoy6q=AZ;5&vTt2UUeF!cu8oLkr zO#n*cFwRHoZEVa|4O#!ZAMy_XrFPfZbjcc&>uW!rp9uXP1WM!2n=g+!rt{ZVYJ6=! z|0Y4d=YZ0@IC9&v*L7`e%SYcTnW5}Iv}Thb{|r!SUm_0oSgdPRkH&QFrCa+VTrA$& zFM9<3q;lae^91#q2aJnU>xT5V;kGYoxppC(CxOy9D=+0e7y{9%Deb4j;^{pBf71Aq z-yb!>*zqnA(yu%Q`Nx4${c}BiipD+WbM4D#xale74{7e#pF+H*0HyT;ZdlsE$92K& zuKn@nRD|<1P?}d2JAOjkf1;kR4!^xt%ZuG~nFjry1xoWV*9#43zG*zJIA#6Je*a)s z&*!1v3qZBqbuBXt>Le@uirsm!UoSv7Gl5b+re*D<`feCzyeC2F-(%Qx$j<;u^)~<4 z-%sgU{$JI*bk!5Z2j+3KU2GVB@K%I)A<)+85Vm5=^~Y1*WqT=uego$Jg4xr z?Dh}#l$-=dobk6|I}jhWtA~DgW~C`(dx{V1o~jK0aJA z;M&>Z>CJ&ZvHwfX3!9d#^>`bPE#a*&P`Ov6C3_w6Zve&qDmh(R>@nS&TWU@2v~Ehh z4SyX)iZ^}IemnRk^qU8i`lFoL4Sw>tjDusTPG!Hp33Ee!F0eR|zAekq(z_@mkF|Jui{Vd#*Kc01 zg{MnGQ)T=a8N$<({6!ucPUj%Z=i1Nv!|flW_QTLT?0tmb`H|iF5Mdb>+sG3x=>Iug z$UvB}dOg&s)Z0duVX;E^kouJ~bIa3yfN}Ek7N*pPILoluyYMIW{mHqw=2YzCT?hU2 z3h1{ED2>Z!WsV}Akom+a^&yt6g#0R?wC_~#W;E3!b3dTC(!bkXht@2^VrvneRBxA7 z(CA(!^XTV!W!<|{2v1LH=h=)+bibha6e;@_cE@$$mutKAA-J9Q>+6vo8-UXKgzIw; z@$j#camf47Zxc{j=Sx|Ch}Id*=i0YtP(<4WJ*D)H{O-?^%xf$YJ@b$j_ zsm-+;Z%O2QfF-T@IrWjv8INrXU{j97A6flqTJchIu?}~|0$c&mFsc3EBpb8 z2W8j=d-9#moOf_Ong7m`!9#$XrW=~^(Dyjv`(BE#@dzFY@kvbH%W3f*e3d0auYiA( z=g>S=@eeogWsJ{if*(UXBH9zCf1Q~5TI&dG3l#4=bGHxvEuM#y9jHI~K>ba6;{ezCSw|>5tzXNDnVi@Jyt1 zGWlE!kS`ASv-m84tsV>AZPJYgd6#3@r+WreYq%SFb_s8SCo!C z{d$4#B)$g}`jbAU-LtZS*OHBN01AGN3*{kKqz_P(k4RD8fb`uqo4)CF_wN}j-6Zyj z_rgEiZeianlZWdDx`2W=JgOP>{?f)yD(0U~c?%q9ii)37Sf8VArP%%^PNcatYnv}erD5567E`Uc)phcwh0k44~p z`M~ccPbfFhTXVv<*~)pu9@aWW3CLFn_;WUE`IW~XXIP%=WXbWLD_P@PG43iC@K><) z@b@0>EN1D&-B*8}7Cf%8KOVXT@hJ(c3M9yFG4!OzoBI8^{?8;^`~v=SO4#cp!Sl%o zYd=h^Gm3EOy9tjSJ>_9_K5Kt5rd{y8<&_MjrIbE!gJ_&3B?C(gC(`>5#> z?t0ag%6EI=`SprC;xKnYE4pwK6u$2?&X*YrPn#9KNci)n;B>LSUTiOZn#E6xN4#zg z#P7&2b^oJldvCgD&i>{W&&vFn4D*Whx7v^|74XM?y@mJ`eMYX-8atRM7yM`4D(4Q! zi*|;b=J{%^)bZ6LH&#;Cxtd!1JF$Kzm9v5|BTznl=X9x_&?ghDdK``Lq;}Vt^u9PB zct**;@Y}QC@)`boGC1EOEPIT#pr?o@IfqZnIIHv5JCyaYxUk!$U_Ha1F9)yt#)KK( zVkSd1MnI{*b?N)}>YCX=T>EorO`zW(pwv&B_iPv4|MG8bCl0sxA*Pr&+u{jz zfRflrDybGpMFU7&oHF@qq3h7{`rXDdZbxAp>_yQjMK<@ z;m)6YXqP@#+9gMr?XIQ;hi7*@5fNg~OG?lD`xw^4uY-HpkziUH(o-r=zBUp2J?=#V z&TpC5Updd#o-xRG28wwBInDib(>!4{x}XHVbFh0)rC;xY?<51I@232cN&K+dpZYHj z>!g&=c*~wwH~5pv%d9%lH12V8JBq>mwB7oyu|$NE1eE&Q=+|Ae&kDZzl__U-+lhcZ zukO%Og2MHm(D>6_*=wlGZ|(N)e!T|*=mnI_bS>QhuBRQzn%sC`T)gzoSZ2Ga@TvbOyi!s21>n+WxXMv4HWZva>Cw@ac=8M z*@p>#-XXP*hGy1!Qx5d31|;yEE>Gi$0^^>Ka@M*K|Ji=~(huJs2$bfB>*hXU+)vQJ zSeR1AyOmgf$PWOD`6oGjk?W459@#$^8k{cSr)O|GXt#X&^}&eObfDDV`p!81A9-H_ z9Yyi{KPX5<)KvmTKw0h(5d(z#mFT?>x~uDVz3iGY z_S2u5Z9 zPRFHyJ{0K;14{Ds?~5Cd++*2qRQx%{;oxsFP=c6a+sk}Lt^Svuo|zcVk`C}JbU&hJW+jc_tAf6;&7si-=xe5nf)qi&@TR+Fi+SztOW5Uz( zf0ajaL2i89;&E}d9+8tJ*mgoUA)eIEHXPf%9Q~+9SiO$|{b-;hFY)v7rRT;uRHyUU z&B)j7z@UDK)j$0+=?k{f)6uQWWAW@3&`$zNdWN#aSCgFl+AH+bRP?Q}tPu1QfKokp z{}{Jg*DQn3U&GcNw}O5=P#S++N5%?0ZMdJ^v7jFZl%VK>dUTJF^{8@)^Lf*0JvfUO z?$1k-CyE+&AiKxE%%4+v(CIkuG@cgb&r4dTu2|fM>`cl?{;XPl{z&iQ1*Y8%l=O88 zeNP2QuW$OLJfchOk0_nyFY@_T9#<(rb}#rdfRf%+EA&i+U3_`XE6(|J)~*Bk{m54l zP|APN+>Jl#EO*u<{ZzK1Cu(B*^LhmFr1i=q%l_1~+i8EDGM+VJ4}yLQFgOls-tl+8 zgMJj=&K?5&!+#NPVlUET@`sgAd-?arrALv0$HMbxOq)XIS6${l(D}+ZAH$}Cei~5h z15)tt)gO_6SBg8KWF_< zV^5(xHUOo3#INZ7yI%Bboe59`|6CV##}(bK=YqfIfYSQ*rb-*hFM|2RWQ57P^FaSB@B$zKTX>f^ukQZOj%UTl z&qAOif0oAHw$sO2RGyZdo@MV3TV%A(c>(k<0;P51fRfr@>6*FyP}(X?Uoao^3xJaT z^NeNpZ@rIF%G2q3GxG6MYPZBeKz|ARy$q}eBq;i53hC>Nb7Q<-1isz{RtfTH`8hMl z&BWcYsiFJ!T4&pz*E^t>^5?F;;(Og7ZQVCNbyN23JKFxdUPU}$mOkX{P_80jl5d1c&Jb^rcAW4WQH?3VyCk`#^g> z?fBBYjqLM0oUAo_9rPtYsXrKx&oKR&m`}yq{V(H;Xsdt{+>r3;(?0E|s#nH!QrEXF z*m4lA0A3x87;|$~T2~ePwOy{W`8F!dPDqkJgO!d^Aq9wcx#c)+d!#YN{-h%jdpf{GQYdnTcBSDl%Rd%`)M6#JppAM=Uk3-R`1T` zK_4>Y2TJ48Yy0L1ySad}pXzj8iM(7?x%EBpw;m|1-)EirL1X-N#oOh+5B@d*C4FSz z{mKV?WtUE!abMF3Ve;n(px+3T#=+QcYyHaGSy3NleviC7L+6Lc+lv}+Gx*yEl=fw; z`!5Yke#sA$U$%h$BcKE&&vdNB_&yL*ekZ#MlgzfS6818}o<>XOzmvU1y+ezdIqge#`gqY;F~G=7Ue^JXDs`xae^PDUn0VS-(EajCejCzod?ziH*{^VWv@9NW0U1yOk{!>&p%dcz9PzLY^VWBm zcR%8niTX?9?M}6K(~{WmmFrqgz7Tdm!#r$En@Nwe=^kczo8Be($b=nFCin$P_BECr zkQ@AX;n!$3!U3Qg`D8#%qbA>) z$G(|AwZ+=iIlR5LPv`uc7WqRyMycf>%1P8K`hop@v^T9A?2hudz0zFdL-6Yd-+p0# z6`l^abIW6oKD+OcXY=!Tx&0vWgYs*g$MZ$ycest&;Su)q;qQh06xls}{uw=2!5`Ht zpd))J%Ra0o=rtvtUz8*0-6DPQ9w_KUzKp&+eX^s{%tzQ&8T}Bxo})jX`xiSfkcW$g z;{7m=WanhrRc-Fi$B8DO6LwR65gyFxh5sgRKE4Cg@|ihZO&D6xw;-SXpW5uc8F$Z! zEqJ`(iGren=><<_6g-u7UcrpCN(D2MH9Q4R7ra>TOh&=1)X&aKo%D~|NnK2KQjz*o zDh7L!+{3QC=R%3GgMgELj52mhHoUY@lflpE2QvQrFHN`%2 z#p^@F`XmH}C(<-`$G_7m9-5IQg^n*qMmuQcT@xE5@_kE3HHtJT8B`bP2W}o{I z^rD=Ip4)-Zbrv5y$rQa?XFGfu(zzm-okrbowN2*vU3EXz>G`@S+fGW9zg&+e$p0{}o{H~(VxL~<6QyxN zn>_*h#mQZi{pone<8D2)%SJ#^j}$B&n0l7ZXT?ugbGDLl-n#{JgT5h9@J+#@RSBeD zvhF4PP8Z`kCyTZ3xod!U()j9XwUWj`X4+wHQO-F!wJUHs&PU$PB>v4DMO+V|@uFB0 zlt)vb7!N7fe#M02XrI3+`bekxI;VP~$jejJFU28Ww*$pILqW@5P5ei#T|a&^g!RPl z7O?*88ibnzrE$Vl`P5-w@zOt!PJd~jZ8v0*kwETjJd0x2A{_=)=OgWc+?d03alv)? zokKQjfpBY}RDVY=YO}@XPe`iyecN&PS7zANeeV1xVDtc>3|L_S`JrWg4* zcz#HFPR~aM^ltc0E>Pmfe?{Z3ef~?|?0K?Lu5I6IkpQm z36B(KGkN`^(S>V$K;IuI$ytT&26R99=IfsReQ26;&ZC8GCv`pIxqt+VZe6)u*9Mvg zQsR|yBAVrct{+gW%P1IlAa%EozgF$voyxmT+qKhp0et}SH4G@V&-fPgzVP`?v&j3H zB2P35^QWYagNCK)ZK=$+&c~O*;Li(`dCWY7Ep3VI?>)L@8zxPTG`j6*i&Dki>j{{0j^uiH3Z}Z#6_zMH7f3Y|=8iY3i zrS;L#f%*G=TEg6c-+vUVjPsF?*J}G5gLG~NO27XwZw}q#yzce$j~t6q`k&k3dQ-FQ zq{bq>7$Cu~zhCw<=?71r{dm&niasR9wv)OQ^g{nl!Q$)l$UfEoXVE=(R(wB-Y@8@m z?#0pAc;stBc>b7qF93girrgGf+mMdfcaii~+z-<^a=tFI@(kX`$FmjC??C?U1xoX@ z@zc(;KCNDt{`u_%1C->3)iviH^cmI-qv^^x7;WG4cQ@im>&By{*Kg3R z*J1a|J0Cxtm5cNF-9WzP0wsCZ^=QHSx|aG}`&xf8Wxu0~?N8}Z#FNUU(Dx(xP3X1i z_1CVBxA#RjSw}V*^bZ52b#cre6L#uaUGreGTN#(?vim{*08kpw>Kct{JmVK0D*ec* zej=bhh;$wTO7mvnpfT^F-&VYyeG2${1SsjfjiE!uJuVfm2b&819tW!Opf-svIG#~Y zv2$z9rh)!3pd{b0QID>odf?~vrT0YXRE~7ok6i2t@b@H8l0S`GE+zSMA6@_Qcx^>a zj$=ijpAM8^aov|;-&mc6=Fh4AEOI$g>R%>Hww=^0FevF!w1QI~l6@R)cieG_BEK}U z?WATRo-|%-7f$(z)~SE(&)VrY_%zaa1}MoPCB|pukKB0R+pN{<{Yy^AiOAcFT7R>_ z-yERydr49+y8n|u6<+W2z{vAJss75UC(*g|@uq!1Q)S+aV$Xv9IiNJ(YA<>gB7YUH z2XofW0{RQc*9X8VKmyA?$A4zmwFCFwuAE2d$>xJ@AyDc^N%4!m@UbO79el0b7$&U` zh*D<@K>u=hynSas{obc}%mwvfW&Vq@{VBbKcv3ywW&5!^2i9Xw>tPY{wHPSL6V|{SrH36%6wu3oLT z`iy5jt#`wsZpuDTi!eJWc|1GeCp)PT=Eg;PW!!bXZd?lfmII~oEWG#WuXO9R(O8ks z+_s(6GQ<=6{uGq#h%Qvdi5OM_`Zs`*{4z;9ZR$}>|C1HJ@8q<7u0Xz40wp=JWc@QQ z@$x(e`rj(>w;EUvNDvs7Nb7g&QSEFZm$Rh#jlSemeu-jhIV0NJKy`g<=@qZdRP0w` z!|bFae%wc5e?k5#-jB~a$d?Z&_4j?pE~5VMlX07sdQYXFX6_$1S=g zaTnchL;l)csIQzqt84pHdJplW@ecP1lxM$p$k|= ziLi6%!NcS)$$Bs7$nNNtJ9f?e{D&l*U&rrc?_trE{Y|{1NMFlh>)xWLQ!-D7+$YR2 z?JfF=-+_j}6#iZD{o>v{Z2MnIM>vb!G-OrTl=CxK^G6dOpYwYf;^nc~YY+V49+}1l zS&omy_cHkJ!p_8x?`q=v_%4-~W<6a|F7Ol88ucUWi>O?&_O8c=Asr(Lb~hp{ z((lE;OLj#apZeUmavIY0q;fw&8)45CC+I|drGg)kzf|5HW`ZB1JM4M{J&?-pCr&BD#pr>-N=u15uMLl^%dO#zKx#p(!*!Eo-dwuQ1l-!nS?B;umURX9v z)MpAa?}&^Ihx|x{lHHz*G z@q0d}E6e5mI5m&A&nw06K(ZUMJ}2ypijg1N{s-Z|vjd73^r#mN*an3Bj4ng>3^{k`s1U#G5@%o z(8j;=r?ip#Q<`#3aQ|kqRYJiq1wD`4`MRDzD(0Q{7T@!?c0%G@#ifXE#@qMxM?T~H z{M_2-4`W%u_nPMQ+UrZPF1RT8yEpHF6TUJ!))af*fY5vX$snsT=&Ar~1mk^u%jTUz z99QHMr|TG}@@&BNgK;_da|QYI&gk&7uPm>3mEpT`S=-=y(%$y9_0AXLy|k|IepvjK z&uhBpcr0JhBhQ`-cDMI=MSGU?n}+ek z>$+juUH#hJ?%$lPx=fV&72s3UBL!#mkEMP2P3FE*b){WLuJ4fYZKe>hzVSTp!@+q! z68gpZ_@0!%!0y3xUiM(>+I2rPSI*gXvHh615$`G>0k?-S!)K!G@r3^zZ{I&H=tcXc z-~A)@|3H2W-rMlo^sf{u2>RsJ>ZJbouCWL^E?GTw@&!pXRQCB-jWZyEBhIpSaZ-{ z3l#G_1!fnUwUiv3ZFNx1ApCtV%(-+>GZn4>V~-xf4;pvPja&M_I%L=@uYfq zbIB$1eA?|Bwmf!C3uQcOXZuqU@{kzs=`#r}f5G{yKh%5Q;#n)C(;6u8>3x0gCZFc6 zO$Svj4wILhjT0`GfOOgbrSYunNB1FJ+@BxXt|ON}rSF+3L_97@?Utei^mgE{BQU5> zH3AI+)NehjzJ9o8HD!OOfh})$Ks>2kb3ZrM`%=Ze$m#s&G=Ex{osd{Z5PSUmT&a04 z_Rq>bYvg*$(0Xv1zkuEq<=71vtOu=N<4I~S`^58e9^|ggLNwHLxhf>PTO@r&ppjZWk7S4QsTJ3}N7oLTc3u^KuShQV%L7X5 zIPZA{U+UThz8(u5KO>+2Ld(x?$X+A1>YagAD@SEeraYa6JUhk34n`-_>fxpo}>G$|+O270O z=CHd>)ekzKkDT!t&BlPg@j$6vyR+x)*0qVVXe%~e>3=QQ&7i*pD9!KfFJ7<@=MjHV z*6+^qSBP|O1xmpE8yV(~^nRt@ozAxbeJm0f2bAQSGm8f9M}IG`^Z!o!dlZ`h{w4t> zxo6*(Pty68=GhlKck@+Y>#^HFKM^Rk&yrenABpBR6$TeMmY1aOQ3}rM;dbzM2e2xT zVASZBHKuJnH{^o5z}MYCY5m|be%bBw-%cCW-wjao(2f(zy>P_Dd*OIwFz$ zS7e)8-_4Zzi(>bJ-T+E`dhfbO$+5aCCG(z#b-Mqr80x<2aRAz}UR zA<#bpl=6}CNar6hzBEzl&&3`F{S=_I?kMX02ia3tk7{r3biQ>uE;)^-h51vG^lqiC zHj=&$_8a9hzBnzHDE2tY|0$p(hp=x0bkD$-Yf~FF?{Dv?aIz%ZPN)d+r2J{##67;U z%TIONzIKRG?@s5hj`Mu!+&?(9X{%HP0*l@w1U`%L(`3GGM!yqql6 ztI3&dC-frtl-ARpgQIDmYs1Hfe`?x8+4t?ro&)^?ptMe%^}^e9UzO?4b8D(L%pnFfHdL_yZ>}Aj|0oDc*%=)k+tsg8u4IPwo{LR@y(7ghb+S9C)QKY}N zPAaPP-iR#%{bFF4UQsjc7Y~(_zRtN^_bT{%4Jg6b2jfVu?=DY1ozBxPwiJxL4wUNM zF#X?IuMM}-kDQlF3DS83D6IpgEIs=*`kz)#^O#e)AfPV?f9rr!xs(q3oz^QWdX#<8 zDn@D7P1p+1uK`N)*y^I3?{)5P=!`DS-$dEK_NTNO@g#jubc6JLE9wr{hFGe;0gi07~_sJ$-vM=C0N3{LFUuEBeR=>^;!02TJ*KwOD%8 zXB;CnWtC zYNu&*OtGLZpmaLe}3fqY6D=fFg=CwY_%~BK>4$U90~%!r}ls8GvwpQrP<$rpW~y z(JW5}U-%vw7+7?kG>*1`OR9DI^BvK`P@^|n@l5HU?!PIHWXQn7icgMoEJKBtGFbb! zze&I4*9`uCQzr81;bAhU;EqMI5D!QO6{fcC)_I8MPsi^F(?NF2K%jRf-UI1-mOFw* zg0J5AU7+|5(x>v_4pl@s07W^7awEg1Yt3f~3^0C#fz4MUUN5AR#t+iZ7VS!4FQkKd zwZ98Pr#SFO`O?gX%H1+_m@VpGU{Ch@v#&kfE-91E%ua3gQnV@-IeeW;I zud!KBmxF&M+J~q=Vfdr83mSi|@;Zj^lc9$7eJ!0`WOaL+#F6X3|B<`+wEEO$6$T)`T_qUAH=8r@ee)H+vRctA7R)+h7`1Ue)WUbhO8HW{iRN=Cm(#Hv{=J!qR|eGZJ--M8 z>4djsh}0eqb?Wp%dN5Gwhp;e6@%Mp&he!|T2Nw6`@yP*=WJVWpebR!*2Nng~jzaQfD=ScPt+#qf+caW7mfWH^~`3Lf_YdA;m z2>d?me==CTV$7kv8g9$)+9woyB_jAge5-_yV~!d@V?!uw05-;Y;1=qsN6*mV<|jj#{6 zSU>yw+k#IW&7r*y0om)R`rCGpg`4y}({r21Pc+_N7W}<<#+MuQ;ul@B_fJe# zF0klq3urY!FQw;gbK-zcYy9~W^O|&2E>>-8FLbISo+KcZ?VEFe4t6vcUiM8L_)`Rl}rn7p`Y=f1iC=IE721Z>-3rx%OJj3ocoUAny3sHA?y!hH3 zaiMNuo;_Z2GPgYr*F!wfe<@h{Ywq_L&pK52La{#hYXnrs3B%NnCwC7UcN>7dAyBH{ zqM{}zkU#Yz!hc`k(ir?T0g7>-g0H>&755A6Q??K&3xT?>@TGyZJU2A{Um^jvwR zJx_A7Caf9gQQgG4Rv*;po^D&Mnc(Int21J zTg4Ec;O;&@uk#t^fzM;Qa!@UnwF6yypu}g<=n}e^bLjL|f$>dkIhB(+Hx%rEbUFhi zd6#twl=Ajcc3#;0&=K^VfYP{REd7EEgX2vV&zFu5)T#Z}*}NIhyMVv0KuP}e_gVGy zIny5)`0EA~>j(e3mg9AhrB$!jl<+KXZ5GCo=7JN zcmrbTI`Uzr^rOfPilzCKJ{izc zkxm*=T5ozTA4dkvIkY|+9jnOYk*|-`^m-$mOrW&hGmIMB71B&%O1ua7f z_VfDNJFM$(uNN#bqdUt5{VhOA?kVc}!rMAC&)NTwr5rr!%<@1#2q?*Cg{3}nWISt2 zr!NQeR_4t%tPkk>{Y5<2gGYRR%itkHX`eByFX;1uQhO=f@+-A#>#6v4$MxWEAW-O; zC|Gy$C+~qz)u6*=8>|dKyi0%t`L%AR17Oxu@$$U0aZqD}k)NA^(l`>e^0DQ*G4{9n ztIup_>xDR33+4s=NTAft{Qi{ryj+Y1ia}0uHU#uTfl`0Sf4vDD8kJR5rd*JRDuD$5al=_ zygc16kKL+k=KN65Q<>lE+WP}z5l`y3?pp0=J#9JWYpuwGk=MJ*=QyM@9w@`xl@HPZ zBI~L>MK9&lpu_n*?X(^yB0~mHTCW%*E;+3mx141k*~!-vCl%m(tefq>&3gXB4b&$ zW1IPiC(UEt_a35)w{Oe5y4KokTaVAldf5gm&m*2BFBKYbKj_9?OP;%GehQP`6J=7E z!HP6qm#iB6wa=jAg3;BPa=}a@dkE<~0+i(WqJ#OXeb#G#j540N!wgpBc%L68gCiV7 zKOf)a;B-8Te0-7eO-VXkAB7vNNP5Mx@x%Cf+P@${kYGwq*}v@+X0Q?_hiDI37xag&QzKs& zht@;n^&T3}#hyfdW&@@1Ol!A%7wOMVF1xK`Ek$l^8RpnVl0V}cy?#>H&aAxSwy5e# zyKZ6|tjt7uQoo(lZ2+Zb%(!o1|I^C;rc=G5W*e+LgY+c*r)#R)l#@69TAIIIS@%0V z5b1RMbl#8VAYab{rG8YBd4pKTX<>5DT+q)0N|4{v4)&T0KQ=W_unY!OfbZ$_0@eVTcK?pPP4|HasjZ5ASe zq-S5X%opI=Z1XdRNi$KPh+p3JYEG#`cK!4DnI-D zrwgXVz1Tl&KipY*0sS?kvl1xPU)k0Pw9e`L*_?W9)0KI%6o0OSD|9}J zyq$&CyYqR)hkShi3|miUuf2Qt;m4GH-#F$6{d%CZ4syMB=vQ8UgGMOhggeZ!4WgS6 z|J}$+%nH+i;81xt^87jN@1gY&&^K6&XxjTgX&20U-~=8FPnpQF)76RiW4iJa#zb@6W@8h_H|1# z*){D(Bux4!uXO`Qjyl(8c zd9MD|ZunhbBKYdX(RP3#(i435;OFG?GD7KWyO(sl&%*bBnh1m6Qt{m+d=Kw!I|A5^ z*pcyK``j$;(!G*s3v~zB%U3Ot$@WXZnZwq4KfPH!{J8s1M{@l!qqL6ZL{H@ohQ& zc?P`Z{~$lh$;{;LN0x9qwO;k&l|3Vzo_diZ`5QEtKan)!%w)WCNU%E{=% z%S)7>8(~*p)HA}i{R+bVzKEC0>X?Q+Lj+wqGf$On+<~x>$G^7(g1;dh%qgpK}eXw%zmlmu^+y7T~GW)rm%%tmr`i3Hn zKhnHk7&~;O?q8totn}jDw!?ReO0tu=2JxhIQQ5YKzw~)WOiE3Dag2RV!XjgXZ8@eI z;#~$L$nSEM<}dEP^y6`r2e8_~_w-kyEvHq*`zxg1lL{B=ML)hk9%B0{@_%q&N60JE z`m}J;!xu4)yP&f9;-8INZYdx6O0&=ZUWj~2d_Hz6)!c8Q$K6wruOgS@rFx|gIo0z7 z9lJzZ422l12j2SPpza^>^!&?5X4v)-78zZLUmf(90NtmYUXd9N91ptUKzi0a7U~saN0gY<3-*dLd!Ft*96~9fTDdJ z^iuRu3HEub#)v142L*$we$UTkMRiy9Ihx!1YmE@^VjzM0*xKbjwU%Rl_D*d(EK@{ADW^(;==2_ZjJF9sQ=CXGx@w0 z%6uEcVnN>wDCP?ax|=>lc7|hrx%8VWDp&Y8@2osE+p){N$e+~z;?E`@)7^*nEdF`+ zaNBW(MMi@0wV-bWl;i^UT~$x|iZ5E;=IFKkZAT{-nUQ7Nd60;wKE|o}rF>j+cMGcr zXZee=9lNwdYLa|b_}LHS_{)0SO8x!w{XMi@YpgZ+y9p@G)2=>~KlXV|dGKvo2;z4R zK|7gVcrSgo=-V-ed~EdT+c%{4wjDQdvSiy%CJFJR`KWB?Eu}u=s+U`=(!1L75hrV5 z+sX7mJgMGG=DbT66xRPF@XN4PVe?o!(02t2xx@@skDab-mD)YsZL!;yH#u1o+p$Y0 z#FOOmMOl~lb!{Gr*L$ie@=IOT0rVY#LXM#zzql9<6wb%*93qz|Lgz83?L}jqk$xAT zG{48U{OR1Wm*5>!(-`>t%Xx+5kkImUD(?pLZb+v)P^^i>cQ!}qOnBq z*Apn#ffST3j;r|jHW~b-03|SvyCFxO1Lv7j!PrQk)Nf}syl$6ne7Ez*Wn+?Ud76{y zEDiL%fzmipe9?Z*Z#?~V*@L?~ggQjiIz_x*k;YX@A)u!toot|VUPhZ4MRGxxM;0#s zwxx1Dt|Q9;eHKvqZqcWE=9AoNo+oKx>lHXzG|L3N2PlmbXI|ch3)!@&a_fJQ&bQ^& z|8kJ8p+KoT-SZcbJ&)(6zH|R*syJ?IW82B}4KJ7c-ZxOWcnihRBi0Y} zgMh*E^v_DXc_&@?XgcKmQJ2P5qO8lV2Yr8_)IR+M?{D;xdq~Spvg0DE^Xrf)@#gmZ#JCHu7;kluxJYv4HMHzJ>tBI-Y{AS8pYIU9aiz?TB)&?w`+} zRIesyVRkZdJ$&;a?2769ZD>7&+sR1dlIx~}LQhoj7pF!#o`sf6KrcYOjRs2X!ZWxv z9P^ZP2rHKxK|cy8^lubA8e=+|#<^tad-T)4U++%KWeoCl8&F*rv(xM8;-wsA+-+q$ zb{U6w(z?TYUT1OyWZA(sQ1q>h*e#$h1WNT3J99Ffhb^IHz{9n|)&Y^`PpyYrk#!brk+sNfzHN8mrl=4lS1@!UYZvs$~dyMCP+X6nztN%qleuna?v5DaC zE}&GNtmHn}{rPg0`g4cb$w={Bxee(avSxI?<44ueQFNG{j5IF!*G~|R(CaAc{>bYu zG=EOZ#d&|f8|8RUSiO7pz4a8yOXa#gaz6hV;O`NjR1coSYc}crrX>(uWjZej_<}G#`J@$0{b!QT|1RGyZ8seJFNaM~X<_9*y!0(dEqAkhE8-*jV|xuM!COfH`a zy2pV+&riX^AD^c4YO_pxvn!Q(I+{%b{bN9}uRy_)<>SOS@n5kU3+|iq>^QH7=_rqn zfs(v$-BZb$UlQ0+<2G9l%*nEBJDFDzPm+5k^(cKy_n+C4&I+WCIXx*<48IgcK> zU0moq7SI57 z%b(Nil+Wly_B)-3uE#X?2GV&GD9Is{-d#$1jT%$WziUP}MW5V_Ed%{> zpj4i&;;yt#wd{bx@40YVe=CsAN}vp9F8|`383$K^v2{SHyp584nx{)|d++5-I@#xr zIGN5?gZ?d`v>#B|r2ApyPqhngz}A3%El?gOc4d;|FYBrJ`$8kFcd5LH^Jw-q^0ft6 z4@lq|QkUeH%{RW&=Ti0Fp0?~A(7g++8jPoX|Lc5m?Aarsajk~R{%uQ!0@M7Um->5A zt%vBGPK>#(Qpfqo*HxkUbG{CL5BzNe%K6(noc5=!=Qmw`PgnM_^`PGX6z9VzxS?%< zsYl7C8TTvYUen0u+tB=lJ9d%u@P#vf{lvB_E}wO3pHXZR%40K7T34~|=dVY3 z1{D2uU-FS6kSh?%~{Z61XkG1a>Rf$=zy)DW~f96~d=CoXPBVYS~ zQoD}bUZ(N<#pf&XuAA)v{a#=c&;)+k%V@}7x$opStec+l$Y3>F$*&UgSk4BHA za65~ik~y6h$dY*2<^$n?un&WOomWygon%KxsnLV?e#BGloU}}4k&%5%+C6U^x?*$> zb}LafelDJifmhzSEVXA@VEu?*TiW-YhMy-Unyb zrn8eL%!m9$S>>6^?Zb|ya(^qA!#~mNUifY*5MhRNHK4Fl^Y#W^2JCRe?|3ihM7e5$ zKcGKY9-8@(9agPJ`c9uzGm}l4NYBsso$Rrq?kTH!kK4oZ^>sSZ1&VZpU7g><9_YB} z{*DD6wqU;bc#uyIkH>&y7nWikqpO;Qb_#p1yev*f#}h5Pu{eY^plzp=%}gcY>?=LC zofhSSHc#>WvJ8AjM6z#}BnDS-W6@Jyrw&Szx(>@iyqdd$0rdO+*H&1W|1SEMH}h5I#nAe(=W!QazzQ9sB(6ZItC!~d7?za-M3 za<%+k?abrfBYQf{d|U`?Kss(}y%%qp~zBK=}fk0Kv} z{~VTN8vY&5We2~cXGku$GaD!P71)R8H;}`B--Y;O$7tEjzAX3+ewWuH_z?BY1US z!+&KbcbMDB#k30Q`(M=fQx8aR^s|RceV*rwGwzr;`ETvy{^FdEYtNzsKG&j^52pP& z+P?pme>UhizCF^pG?<=i=aw>`r`?(7SDzhXpJ%pyrjAe&k+Xw#J0f3F zJlD^gzw`0?QOfH+$H?VEbsgbU&KCJ`p*$qLK}qK(bPuHUMBD9yhhyx09?`y}^+&OG z^lM(8Vfy`lUS19@7tPjJU5@+-q~N4up9_6-#jlT}!Jk;)N_@I^-A?_;yq>6iTV*}x zbY14Wom~Mw-9W)N1>+aYKkD<-Ep+wfB!}78iS{AR*9oL}fzR3>MmtMU)^jocmz`Yv zi0BI$XQP2qF3$7kv>%CnQ;##GN#mKer3UGXtS9_F7NPeP>)XFxuU35fbXG1JtB>+% z1Qg{&!Rnuv(ETsgbBVG~<_@!ytBv>su8slH@1G-ffQ`XdEKusVrS*S2?$ca>ALw0E+R@jCWDP zGkTeM9CvR^Wj>0w?c}aSJgNWj^D~yG=UU1*@$ZkH*MYxypd`PzcYRFu?ABB9{k;|V zYX_9ZdGE1H%6!J0!^3KBX{FRdj4f9tAf6cCDCqfNAnEP4P1*T5yD&`7ayGsM^fpMR zEl_G_v+`ZEFJ5fgA^lh7GtIV>^B{j}yLL~ajsNNcLicgC?yMu|djh5LMGKs|QP(OT znHKw9C)-aaC+lF_k#;jB!tQ3PV27=(&-8m@+buZkKIoDR^|;a zE1N3gM6Ba|YD_rP5cwn45ftL~!ns2Zp51hrvVMr%uaLSQ)D7t*0!cS39)9n#<6uX%wECuwvfYN;BIvM>f#@!Q2J-8jWvs9#$1`KOw z#s}7Y&7tkZ>A9Q8=dsXwaItjomjRT<>sc|seMsf<-@Xqw3;D_gO7eBekJ;;e+Uhr| zr#?7PX=hDXHt2JJQv2lNlKI}Nt~;ErZ=LqPs4zP@p-&<1qK-Yg!&hwGZ{$(dRZiPk zK<|t4$OlU8#l`x*=hLj4yefss1(D7Vq3tuuwv)Ra=}Et{(aq?7fOF&={Q&THH&Bv8 zEP2;;bF0#7PmWa1)n>ARpdSI0)E4*UtJwG#iQhj0Z~X!kcsWgzl&9$tT{+QtY}~*#4w$MLeO$ zF@xqkXol&I=(RLu9IVT31brb;=y50*h~G}<8Z&Iy1x^LTh zeo*FHSC~I3PRIX$t@&BB&(aD%&vG*uy9Fq%Q`v>fzCCC7jI^Ce@(|@HppQkq#sQ`E z-`Y3#oX4!!EI}D3B9{l%^qlfJ0sP$ol-e~rb}R1Z2y{}~r<>gd`iVfP{@P!*?iAW* z{c>BUPC`1j1EqC;*^MVRQF`SmXF0EjJHg*wKxsbGh7A_?@l^b|%zMD!^T11h1o2O; z`&suta=7G^QT@Zt8{Z4M2Y`}XSMt_AI_JvT4Em{`N4Xb*F$47X0j2r&c-0&_ubTJn zq8Di+J5-)`K5tG&I`;#m^&gwCcdyU*^18|!er&1qzsT1C&iY?rm(X}xm_I2=9*lqC ziX%Slls;(pdZy?ZI@|uF9!CD8@2=~1|9)K?Xl~>sDCHUXc~$9qW(sTy(s=|Z^}muY z+mQW>B}bN*KWL}&e9)g%5%`q$NnFM+WQV(^XV<<1Rew_L!tCUv{2NQ(_4~A=yEiPK zuiDo+Z!eF7zbAlFy-&HgI;{h&r{d@7>EQ1i*PpPr5S>iGJK9xUij>gn+G3g2A(k*>uoTI?DVrO4%Rww>He#FO-VFU@yJO~D$aq{P{tP* zn+y7RKxv$){pST6u-|`Nkw2aHBWH4t^ZDIbdg1=0BzeAUVi)qa`v-mb(!OEk=`6i~ zJ|E@304V8gGVX4ET*vEjn*W@a=SyJZAW%B5VqAG|RkkU1bjkFQ53r{A-2$VxZ6~)M z@1^ltdvV1Xy>$2`*HwG<)=+oZRw3k$~f49Ee8E-K&d}?7kz8WJ@h=-E=)iF3g}-2O7gWU>W@>X zzj&qooY#ZXcD4lkEd@&DX?%5>^bC#6_3dTKc?zLkRlHmt>3A*mXDW%v z>rZO$6fdA}LOJdLO8vI|ud@#6+8*;@iLSKk7Hl)s5-v>r3cQ?KZBes@}bPU8jiPf#9T0HyvutDv*SG}9y6lY_(Lx=%rW zAiO;NHRm4mX=mtsYwd_7(U#1eEe0=w19Lm(R#RNqSF|PWg1+KL5^+^Kj6P zGqx(71^xK5hU@xx*z8tYhyS@Kjcu+wsmYppDQxte@6Jt+@5$bI;HS$!`7nuP9^a60 zJTVb=Z{3-ddqanv7~^5`56It(a0i4FIr@8W471lv0$ooa{Pykcg>ahv-ts%v2=BGt zc%RHs6YudomVw_h@w*2o!s!Sn!|pEy^gy!9v-~Lb#`pY!PoS^|BRj`G+Z-I+uxmGN z_cWp-FPFS__&&-(OF&o$b_Fu{RZQgm6yti>_MzO59m>tN6GeHFy&#?0r+;ad5Sz6+ zoxPty6?K!yUn>888Nw`^jo;CeEW1S5!}**Ee|d3uZ;1E;QI2J4h>!Yk1GQ9cXWL7J zMSZ2A98gboeIZPCfR-Q2si=29%Ejnzmycz?yBYOCc5K`}6ZK8@jiz=WZ?^~wOktBZ zT`}dZFEbf=SG#TK$W-pf?io>UqWnaA>k(=%DC(8IubB^(GshHe=hiyiwlB5p+?r(Z z-@U+MpdV-e-9QG^L>TSTkNP6}S1UbXFItTEB5b50-=h7Bc8)L;@kRehX6CJHmwcPW zx{~>E;a%CxJmkE<4|+;|6VPVJT z&tW_I+;|o{_}vYA$lW>oy#drfC+tZLl)GKtqCQY=cKIi>me0OFzE(~jwqsEDJ1@L8kGI#i za`?DV9q~#;d?g(!H_M-62mCJVUMGpL65r-ad@r5lpSbaX!&m3={?#v!=Svg6i}5U* znZxsjrFq=WJGL($haT$7+v{mjUwsiD$be*LY4LewKL5QKXxmkaFzBgVxt~g5e~NOZ z@kKKqe-3XSlHWwD-;Pr1g^745H+LT%zX(YDS?w$jVMDwZi1IMfk>CF8X7d7qwgdTh zgdM1Xu(1Es27*6P4)~6p-{CyIcLYcOu>Z+U^tQ9py#KhJXr%rWOEvyf0TNjEIexrx z?%qMiCbPSO@9CEUTaI}F?_I&)OKx4cT{mV==yk=j$+=fzWC2gY`sA>&|egc$BGKc4v0T?`SGCBb%SQx*NJ+I4yISOye;Xi zy?n<_jO)L9zprwBMYr|QSA@qaO>Xj?&xkreJ3wh+?XxE6YXL>r3~s*n zZN4r#2hMYeeJN?52^?!BA5Wum`lec`Zd0WnIn}qh?0XZ1zDz0?|MX{0`?Lhpg|E6# z?DQN;Ko|NvG0utckTU7|=(S@QC)D$)|9<U5t*gHAS=V&u_EgUGBrrGV zn*uKc5?J>LSV6BkUb}5O(I%jm#^ped19Xn)pt+E`!k$MsSxlInsMKys^kTYy-g-_e z`ckLm8PFSnzs5jOpA=-hn!cfn`v5}6U8nkm$n|Z~JZy62aQ@Tm^XbiyKWSW=a^3;l zw|x%Wi+T(|E4kR)B1(Ot_=5& z*8=oy!sGFMoK5C|?NiEqhmCAMf~^ow%HM$63j*XnfR4YH9#!r;tQ+P}QOt+*nd-+! zeNX2bO?%`GieC)p<5{HhUugSuh1rQp`E$o!R+aH=|Npm7)gJZT0Vw8q3Ql>p8_qLp zSK4wvCv!TUIUgrFfxkzAV!oiD>)AtePVs>no;AM>vHd4nWd6Q(crfBg`72)0hxF^M z&t&gf*4J+ToGgcR0evn|$T1Y`bHOv4bz_J><&nJHuzminpzjHk+L^cJ_LX|snW|Sb zY17B{7tYCAG9C1ZK&c;X-DBFHnCk9ZlNC86hB46h0M-T)Od2rsLZ-cFs&>?SAfj0} z&~*>ei@!Ea|J1b0`TuhtCkdsH43y@hMbTMg-#z%%kq?vNS{jduGID!eNzR~n0X+rj zqyeShJzoV#zBa4xtJcbSr$($7=u?3bpHbuP+oPW=>#E-1FB2%Qk8X;h@x}ERSqwH% z)(>^V>_nx0^n2yov9Ch=OQGYu)A1#8xksuW%27b~AYVCuk-u@rR?zy-l;>4>Fq&n7 zJ{u^FFAvn2M(5nD$GJcD@+lYR<(Y?kT@RFi-FFqq6XxR$-jl_Dk7a%MA6h@4ShrG; z+Y26|3mcPFd(UXr7xei+Nlp&rt`qAV=j9n%?~#{F`P4%|?~i;907~Qhrpkk9T$;rF zH&({)93t2Egz_0>+ldas_k{k2f{CL#mSMUouXB9P*DGG|cMDKjPkXD~_?_-=-zVng zN3-p9w?#(!!6Bd@0TlWh3KsW|B|B~NDQ&BqPmO0otsgXPI8Z7#cjYn~&#Y>=Oj$RE z+ldC-rx9onco*dvP~_yuoY%wM;O`!w)UL;Fzv*XQ4{r7Rk@N8-(s5Vqw+8ro z5GeMOD7du6@vn62b#hy!AI01L6dyo5shtH5G^6#yl%8AsyRHozuP1~4exNMRXYQo) z{Zq_)W-e9QXXJ87X#OIvzfk?B({WG>vlEr{<@v4J(ERQ;j~pFT#(Agt3%3)M@?SP< z%BFK>T$+mdo(B~BNE9q#@0`_(>wLep>UTFPdX3h$o#@Q)_Ofr?=Jh)BExY5Hb-BuV zI*vUC`WZlJJUjF&gFR14xWCWGLH`6$s=uO!b?N@qY32zj)jyEabIAd{2BRdjvIo&!_ z8DFBq{3%NECv$Dx#m7NSy+7&SAFt;iKXZW>1oIdF(4g}e4_3TA>$BkNIbana!E0~S zA$t(hBf%ver5+;hN1<|76nh@uF9wQp1{8FEbN>$9^VC?;_e4HFNaHGf(y6?wvH9R{ zB~X$-OCKG+PA`l4apNtMN3lBi-2!sZu>j#$VJmK|yup9lh;`e1< z1%D+#X&=EDv5M9Y-4@4xe@}{XE~p864fL-ArEw``Z_zeg_$v?9+eC-?Qhb^`ksKk8tHrll8t?hcYo54l z<7HC6B+B--KgD+tPwEe4?^QnNW2V{W^XfiVTecSTZvmz8Y~RjXNRMeg-aJKKaxTxW zLppB*s{u`TrGe06R=ixmGfvJ0!Ji~wYj+HHpwKC%__gMK|wYA@bHUsuEa zUp-|V*ND9f`uBiR{Y^=8ksa4@^MW?j4}S^8V1JG{-O7mt)r6Q6e%lQ67`S2OE6WxsTq-9Noho|^c)Lv|pm-Tc*9q*JCQF9ye5D7%J%Nd^L+c5@W_VA>-Fdtuo8Gii zeJ`(@ZEwbZ@5au2e&@-zC#J9kQ(LS(+8~|NGsLs)V-oTG415oCng`)5j>4|UexJ$t z`x^YP9{fAU5;?sasP*J_8oQCdF#9*bPiLgp0m#5tGSW|Dmf2fYGSW?AmL1`XNhl{# z9^!jIhWMKJj*4mcep{rQ0PMi}-50;}@tNuD?T1d)-jddvtyy^4(|6A4#a6B`pES;2 zobYcb{3)XR$eu;B9+a!F8zQ@!>((BfKea_K{yV+5v?Jq$pUUuh=J^CYZG&2$74>J^ zx258HKn+NCW}F`REJk^Kjrw6~dLrC|h59Q@;otF!^np~aliD8ZROd(Jx75Sq_0L4Q zqFo8Zd&;-DSlIXm+LvExZ}dC26U>I4RyO~h2DI&zve{+bqv}84>J9n~?kDs%_%$Ru zKh1iSdMSk6WKAV~mWA}d5Ak6|7wzAV@)35bMtA;uOe(kIT%Cq?*&Fdh`x5D+95o=- zr&a&0)%PjvaGM!>J%h5iU06mA|6Tz0lcT^l@yGr2i7$!62l>99 zqbMIX0PhEKB)c@LJXYqR|K{>`Uq>l7>hGHQFr=3fwCCgRk)B(r2L`*j-FPqf&`>|c zqFthXX}q!Q`SyDm|89Sd!XC~KzO`Zey>|%5;u}CG-jDd7?BqPJHLCxQ+sSSJD}RdH zxj)5}YlHq2#X6~yW?t>m&(qZU5E#D1amt7IqF1LT+3(X{vux0m@!1}E*C zx@H_3AAC>i-k_aab-ceU_#nu{uJy3IeO6m{ZIUBz9`A;NY_v_hQCaq&NjRXr9=!ITflqaA zVU9*TfoAZDCu#rp9MPNC0)L{vUXC!qzPF-@&*J~h--}ev^hu}vFY5pDr>LFXHkYr< z!upZZ^qlrT&Gs`}59N4Ousq9tSoD>yt@K{>rnjN8Khwgt9}a2nJg(=r2EqH~SrEw|0_YI^6wVsOKe~Ja)&46M& zrC|Hf2mC&*#JnHupkj9zxjscL&p4!W4Nz(?+S$uCo-^e_BAWGd21@f^V0*y>U3TS=X0y*|^m!57t8bk!)9f!{5lg?vwhJwR!G zH<~0J@p;={F>A|*UM9vZPL{`#K%WVe=3DLN z8#m+T!Tsth<6s<10evr^G=BPz23FAdd%bz~1%D{>U*zL;==>MMQjty?P@4aYF~jK` z;W<+8>EKV)tF#W6?4JIs=R`D?h5Qu(CHc(1^kX^?5j!U@>e_)!$N?4^DPFTdKL#lE zhoW!C9P$-!>Gb6QZ?1j+fJH`%*&NV&fkK}`!LlAnzvygw@yp#m?rpDUIax=R3;KRQ zp+BIYYwMUUdL?d19*o}}+FEW5*U z^-~zRTrQQf$yvmDhR}Ec{d(l9KT!I;N3j7&XCP4M-zZo*B9Z*Y zyG{RpWy<&x`FV)Y@x^8PQyh%+BzZzR{P{wik1yrrN7{M)4FP{Q0K@cP=Eln->isIQ zww>HC#FOTSNiDvm^V`R==)$O`EVNvlpZ9Pkzi4bY_!|L~<(HePeBv`Kf2Q%u`I*S; zU23shbVdQCb;sAYY^HnbJDLZ5T#CFD6J{qTwU@$~zkUKSs^aCy(a6_LKuLe* zE}J9PjYrE#u5-T5xf%RT1xo9jeHVX5eihDi_+zr$7c}70&hK|=x`=7?{0e|-agL01+-}p~D2Wt8KXrrtH zny`C8Zvdt7I`NYeztA|ik?hZWj_2vna*14jCbb9RETB&YfA<5Wb(LqvB;gn1sG=`$ z+Fl}`-_`ni5d1v~l*YT_=Vrczd8M(^Z(U(_a#BBvE&hqdGwb|zRYh)f+FkRL@HYb}^`o+CUmo%q=DlmvQ#>-V2x}$xh04fre~NosOYN3E6#053 zR6f(f{3%NNzVTy{))1fk{+P-Z!{Wcl<#|;OiL~BBqg_Dz0do!O;qi-R=hv<_26$CP?B4VCQiJ96~964?BxB*_}QFo0R8*n z`D05)9`IQwjF*g7`a^8Q`j^o1jI!O!`@+iKdc*NnPhdx8RSRp&QELrM0Ja1&j>0fSOXOiXk7~}E(I=8X*MZ&iZY}zk z!k)gf_K-DAlemK&+SlL)HNtQT@x^zvo}6xTPkaa8GZ1FokzNn{-i;eNypqhrw!@(` z{GQ69JH1h(Q_E!JGX?QMuNvz3|0Z3(-~-4IpA2j?^C3eK3umQSUOI1`Cw|Z5?*;!< zP8OX86yLSKBi;wgl^fb1>=*eKzl(5B81{IO9?~U44W3>m3_`LH1{zt+^yl;D7!TWi zx-bJm7Z<5lZvqFKu)yJUcCKn$>nrfU(omAC=6&y@Leqr zzawk_DgDNl#a#|B&voFttQY7}&tg0f{hKN6mHL}yKvzekhwo7NY3Abv8bBt($Ul{* zHIALmfuWq>6Tk1v;f}K26z}2CY^z8Qxc3p zI*U)+VHe8NHYh?mOw_0Nz9`pRjI)FJcZvscB*PEt^cdXj) zGpurHZ$^|4QVw*rwZkRAxawFT%2q62j(8HEC7))} zL2v8%?%$?QPuYF2s6s1KymQazg6~5FYA)=A8gzhbCk|t3qX;ijSU8J=CKhJaC z=b3ZQt^e!(p6}H7J})otInVu^=X}n-zR#zo*`Adxv3!q404;&ig7OO8H*aC~q1>>HOK^`n#3>DEtks;03<$H=LyQ-_*=ux6&R` zL$s4pK3%L6>&^CMF!Jj=l7Ey@CPb=D2?-GSwSCIo(2hG>*NkvSH6#R0|mj+{krMiUX1 zKgzt(`TWRfz9&GD(Lib5VXXW7GhfkjckUjzVKfu-ZA*+6B6>pJ3zYh!!p8@k*NYa{ zui50DA;AZewQe?HX(0Sb_0Oo(@RF{*^Yy^p+Aan36zJyxRs|B|*4SRo&#Z<2b_zkbg~N6* zpr_*d*+4PhF`fPEQ9H=Y6D;+Wiv*h4grz?4Cqc9^kT#C2`DQ3FARU5PKq>$H&)<{p z(~i)^FBN}M#@E$Z2IMn=QhlG`d4}{XGV`yb2q@0;&uRU0<}aZ4MS2VXO7%8+@<+J% z#kkU57vf@W)(`UifztT1=+`YYFLs+7{og75d-&sWsU0vw2)ld+`wPDv3?5HJgb@Fr2P195(rxf3)+NbV z`{}AgpnbQ>6Z0pvSNiD&Y#8K+1FHZDJU=!;`&m?}gwiFTkHGgw0;O?zAmLiNNQaph zzkIILcc&#jWl*Au1i_=bg3lntk!w zeb7@{N8yH(7@br6=6FbZJs$G+0;K~U`H{_zT{gtcaMLBYf6&6;YMX1SDifo`3HgWxF;@`h;i1V&L95$d=EEW)N=hW;x!K_&8seLU%km^JX@x$ zwr7~VK4*#1#_J=Hp9_@gZQkI-uXXm@)(V|YWGds&R?L9>V?b#fqScI8M(ec1fcC^G z-_2^N zF-`kl9!CcB>4?`1pw!>axVkbOEVoX&?N|ES@aONr_0M^IcpUmY0hHDmJX6UqqVdXC zwG#h`SH>^l>#5dM%h)0sq==z99&mwsucjC-ovhP|GIKdHQMBJ8%s6SCT< z?ZiJlF7R#-j-STzpx+#zv@R8Bw}=en8RidaKNkMDJUBe(I2UY_TcpuF8 z0rTnB$~t=swg_^|fYQ9!GKivOzjw`~>#w)>_qkYOwixoy0;TxnAK!5b{a-}L`0PKB zUjmfN#Z8r{ocYZIZ{H|{Was1gr3mL4pfq2}KYR08=($%J_k`ar1&<@0*V}yP_Z(18 z&+o_6I=gXq39e5#t$+V^eRtW0y;dPzr2fb?IY7i)%W$W9fl`AI!jjbPMpvmu1P1N$ zNY57$ua|&w`?5H2h%PoYFFO1~sSmZ;YRInvO7+Ol?lKLDm1O*!=lfddw+<+kYpv^g zBCc2yz_ZGD!g)OkuYb@qssA=LV+GJ}Jy2Q?;e@&)+z?K%Kd19Xr|B8NHbB3PKq);v z@hea0nmLV2jZ(&~)!D0%e+?*&%O^B#0Ry8npAC+mQ$3xwFHZeMu+50qc3>SK!PPVN zf1(?oAAb3@>r_HyC}ByO=M?CkLS2i@f2(R_^^o)ox134!l2i%kTcOuBpuBE+W!5V+ zzFzIkNK?mI;rBzj=l^XCpp>ppIna$cjQO;~yd{-k+v?TBCLg0JP{e%*I_hB7{D8bVl-=2cqz`_GY~ zZ2zng9;VEz8i&2^9XwugvA3b$KA_aUyYm{-{)6iqvdmUn$p@$7L8tX7g6)TX?*gUy zgYjs4?2~BGik{)tKeZk?Z3hGTd(f{CD8a&Q9?C!SIg+TW|EawJG&T+R=F zG>z2Ehwjtj*qwF1|LPNMtH;3|&yfu3a6>q73*M68!Pxwzc(yC~?9SvnV!6Nk9>DJS zUN??{@0AZZO@tTA!`UF*30$5DH<08lp3tKSTs~dsnFKzDVn~U$+cooHB0Pa{?52B% z(m&xJ{G%H2;Bl$pLQe2X=-9pWUBkms6POCOFnlE5BR(2__or|C@v%5htT*Hnfx@tlNVl$>7qk}T=yve`_QMcZCepkkUajAM$UZ;0aNF z+!ye#O7RPkts~YcA)JK#T ziodxTenYH>Rka?x*OI{#gWIcoN2Dj!-+?m^>^i+I9sHvV*7mKtQyMk{4{28>^vqzj zEK5uoTtA!trML^z`R{_?q-B8D2RV^%g7+liOS~p?^=a%97+6}6jqd;rpj#MV%EIqJ z;+0wT;PyUv4`hA7|5VahOGA5u^63}lN~FJVd%$l^Vf}`8`aC5G<%r6IY4zlJKgt)C zZyH3di!UR}T^i@(B@aY9HJs~3yeO;vx;PZ>A<%ain_xbd`f@{Q?fUcf`%Zb@t#^GE`H%9nuKqvpwER2;v@$>f z&ylegbpP~PZ-0F95qn?F`dQ*>wS~Mi{`EAu`?xQv(a%Q0*0J`!FBdB|EJb~~^+@66 zJ-_dqZ^Acs9G>+05Ze%nB}5%&S;&_IRs<5{_enhCGk6J7#xqXW0i3RL6!WxP(645( zo<&vHobW}rEFV+;OdnRK_&xpA!(PX&g!j_?Ec*1UYkn!g-*Y5VIwEzcyB)mFy8PV*t4i}F|n;fZj` z=|7f0yeaD`{dJY9(62gBlpAtdyhV4_cAeW+?xpNwFnfRETKKB~G@L+Kj^s{y?t zfl|I3{g|BjBf+Y|23={zf-i+U=BBQ)iFh}mYjc9mGU7U>}7xgvZDv_Q|t1&x=% zdZE}KYlzek<(!;Gn-Rb3hINkgCZ#=V!0JQ30Z{563aZoxZ}BhAvAH3CBTx#@d-Z|e zX#K7v&!dIk4qgF$I5^+ucDki6~^L`}?;oJ2J=>Ijy%&%bCmOX)S=BqFp4XYw1^q zeg0#gM8EslD3*@jE%16-d$`3pA-VlD4e+?8eE->(Zx6NkPL?>!W*y+~HlS4hTv?M3 z`Phth5B-rnfQj_8#Ef*-5%NQU()gw5&K4(ic7M;^>$|1dyj|`u-sWkg!k<)cUGt9| z^%-CHd+^?;dIyh_jUKk%-QZ7(Utaw#R3E;Y^31!dV{E=X7wgD6L%s`8^qj;0iG;CDlJIKAO&B7yWhp3%6VchZn&Z;uQmw#s%!+vBSR0 z#gIpL=obf+;!$+NU`m(h@mqe6X{wCtTCg6Fj|EEQ#Xqtdoj2f*GXHZre{foF1A06Z z=?xU)HF5@~_M&_+FN%I&Jr@xbVpvK_mq7goslPpKURYXkeCl4%FELb4ZQU?BH)lO+ zzv*@+qr}6U*`+Qo?#GIF^s0Q}x+6Kl_;7>}=g8efE-#?(7ZwSAg zm%c|KI4x&R{RQ+i#A`56tf!E(*bvKs_>gnCqQ4jbe^PqRoImKeZZtkNd&$Yx_Id;t zYi#qh`oNzw-wAX{d>0qByOj2`0n3DZ7Eo%hJwMH%@tJkb#QC{Z>3e1fj@#>O=+{3~ z&j~jq6#VT)*nJ`24=Aux$54f(r)Qn@gGzHrLNZkisM@L;O4p4Elj0r{~&slDcgTg~@H zSxUaUY@Svw{7Lms%N+5(uI)2-e$)$!BW#}5UGOKRn`iNx$IvdR=i8m8=fB@BIV&## z{T`&py+CQ4T=>f$lrA$K?f1d9E+O-WagZMmtPCW`zp5TL@NAwVlgb1A~5u;^J;4wmYN8EQhg76_&&Asfrn$ii@x4o$LC_LZJyQx z@F$f|BXSJQ$L=t%O1(-c*G|s~1@s3I&O<=4ZcfhA1G9;Li1W2q;&%?=kL#p*VtREv zo_HAHPXS8%GOo#Q9niUfz1qq+E6V0+O@==yAGG)cTHjr`h@J|{I4hDFke>vU%3(p> z?`i)ChB%$3i}XDT;h!(p!Fq-tUa+3w=bxJI(~yqSfl_~KbbW3+?{Bq^%6!vlc+T6; z$DrSQptSDo_N+Rmd$+Gm|7Fh*rJS{9k3)VIP%3BsnBjc>XY7el&LKv#Cm=r)D9rfBpq8Qom`Pmu#%;KZJi?GPs;Y*gUOy z2(LWQgpWr2$jgggHQ?g54NJ|1d_=Lo{1#`wBz}pRo(GhE#c6sv9iKTZ*G|KWuz6Zb zkseaHuz2n6=Jb54-aiv#^RyPipOo+H(X4NMev`J*G*;=4oc0d^eG$T046Fzwh_DPU zn|$~OB9(Eu^Zfe{zP|)msW`lZ@oU6A2wQA)i%EztsdmC?d2w3bHMR=z+5nXLqaI)GTd!*;XkMHXt?W}qu@@n~ z8Yq<)*Zv3ToX1|1pk7Vs|H5C_56-`Uz6Rl}14{cO#$8otJu7bv-O%!bF1P=h)*!^N zlvK`)hHIDm_~%N$-oA`@6#%97oGzjFwGJg@ef>+zjefO7xWFH@Y~ z->cMz@W+E{{)Ic9Q1yHj`n?8}_8%%g-BlQJEdBE~o1ot|pakCJa%+5=bs{}RY0s+L zJgqJ8P@~vmUgTNYf6t|5hPowZNcDAme=D$Tad^w8|M4pyFI@)fis6=*;BppfSW29S zp=h!#e^UQvJ*8jY-$c6a1WN5v{-PE%-yHwjluA=3DfUr{&X`zkvP@B2);J=6`qG@(uBZ*Zn+XPOBtkUezFkrzQ0t zFRj1+w9eNxR0Ff&r%Q1C3+M-+-+Mr5U*>@^FMW*qr>=iG?N^+Z>rkGSG_LF5+W!Ic zY@pPme_ziqd0O+HpXmQ#Lo%yV`MEb;5BFwIZcq1Y*w!7qi&l*1MoVBDcJ&oEPp?@u zmb*Q@z!QPn=F@<;bl3xbK$Z$Oka!t+Z_#k?&F=jDU+}x$z4qc=Q`35|6rx+5?a__P z6(Kz0Ygzn)!#&_%d`J8)Q1HnZmy3>p9VEClfic0~q2;0%KC0Mt>{qeumd_%unsm53 zvu;UW1353k751tG|4Q(_G=%R*dSu4)@B4u^ze>2FXVW<70VE!nW(II$NnF2glDWLr8<-4UOE0*4@pQ{fgd0eFp6|b-XAJU7 z@S3y~E=Rl%i+A!mcs_lRk1UP1OG%8tKAB`l#uJbY)5S9+2XpnU9Dc@mshXytwhuzX0(f9*-5? z*Ld&8dn&({Khpowu?N53eqT>!(TVPZzLZ~9`K$rCd?o&x@Grg>&*;+lE*1MgZ%veE zf!(+sO%vG5&uyD_ez7PwB0N#=gu6K1xE?}29`!~^H$(g`{Gt4c^df$f6<-m5mdQ@E zo&S;N8N_2}8s}ksti+S0vge;@K@`n&?%zOsT^YRnSb_I~M@7ffcsK};cw3fR_|ruG z#ewf6$~)e>mGCtWukZcSnQ10({e?94%&GgIIn`05JHn%Uw(M?IOGmqg-$i^ip+D?R z#il}k#GlGh5Z}*>_oAFoI#_n-zQub#(1maqP!r)IUUvE;URoB)K_8?OkhUYObn*iQ zPs-*)W%J(!zs#S_63yqGe*AsWFpk9A(#(hKWO1HdU+y+Ck-wST%@7Wi1Cpi#nXnT! zwm)|Zds%|N=B>EYe_exI|o9#h6H|6D98?0OVDk967RTtq!Dk8n*mXWLyksf+r}e|9?#uNJ;9(ot$h zj43PTW8R~#kNo@d9x=Za`ic5W>KEU`ei_`OQ4i@U)|rIf^g1g4N3oAlODWgkmlvrW zr%wiS(f>puT&X;9UP{qx58NAZRu}Ch7i-MikZ%Z-Aot}2VQ~GZewFkCnb2W3!rcHU z>IFG3ot%4++9l3&Etz!{r{ygCb*f-JL+xpa_Lt%pUFX*C|Hthh1oS4zx28a8eR-L+ zzRce%>l{w|2dC>XE=EHw>v<690uuP$?h|@+zhTQNPP^Uay;wgRS++ebF^-bj35z#X zcy{W^CG&@~=;H6u7t?H>)-8B1^+)dB_muY=HFnJQJklq4yhJ=0XXB*^JN&i?PxOQ2 z%zfiSI=@l*>3a@8n4*lAy0ey$ZvzzVH#ui6uR`Y=tp2E>J#OS;5v&#DTLVSEMow4M z=?gyoT5ac@=3n^rPi@bfrDs5Ihj?`dit&i){BzJ3KK9)6XXb9{VfU|=m=R<1v~Gnz zDId661>!kpaCE^kYD&A4s^E zwu8>GJw?w|N`KTcgr_C76MN@8P36Vf&pof)yXka4R}0~3N%8mJFqrPQv!0`l$34OA zeE8#JwS2}P9lHUg{=r{n3!T^Ulevxh`xHH$h8KSQ3yxoPo2S(idW!KRIr;whtc%aB z@5+>XZ^mLF9|x53A@9z2X z8tVo9l7LcuD5$rL__&@;C#T1@Q04&*Y{o^A)qJ4bx+;~aZRdU+yYBoLB20gYUhjXc6$?*^$<7f1Nm&AG@j4x`vIM& zx9nF|F7^7?5Bl{7O8Lj<#r4henN5{(kJEN3pbtPe1A)@Gz}xSYooJUzf8TO2^qT;b z#vuuZDxcTcx_x&gHq2JmUv6by$d3g|0268hZ+l;#h)_3kauwF$4c)tl7`=^sWxJ_jhp&%fh~lPG6} z$~s^8^RZw(ou*5K&C?nUJ*9O%pkI(UsU@g0sU_1Hy$X~`%Gt){<_b4 zZG5AQTixs)$d3a`?F;L)eS^ z<_AjkFED1!ulj_k_iU{&Ycgwy-z}g6LQlf|98hZKwQ7^dUhT;r%U}2PZA>cfw2~0V zWHdYUAN?b@ zzcNqlYV))ifw74}{;orBj z?PrzO%tcUz7K&f1NhgCA~pZVY7DF^3+#$H3bHUgz}H~+)m@1gkpFY_y%wx0q0b)?5u zpj3~H6AzuzwYt0?3qBX*bl)kUZ$miSfl__wJ+RJT0l+DropkC1!o@tVdaAcRJp6 z+MWgUU5M9ipwzw?)2{qdw}unj$nXz-=ioHo1Nt6(XCF{rm$K|>9W~EmhT0e33;DN0 z{kdCr|CGw7`TVM^qx}2n8E$_h)o0Q>p#L4u=bd7EOxZN2A2elL@1L&quxsDk^VBML zA~Pecxneome3h1*_cKrMZF+$B5CcAt4*9Me$)1vRUVd(OxPkP&3g0$*^=VHm>tQ}S zyR&DGJht@6V?E%X;k&{O^a_1|e&LS8_u)3W;5#wEjvQG$+=dvZCg zD;s1Qni}7W$M^PB{=Nv`^8+=!H`3UbH^1@4&2PZo(Q4?a@>>j%E(ttdBbE5%3%9@o z@SPH%KaluSn@lUgpTaKC{uJn)3^_$VN(b6Qp?`@yK7YZ>(aeYJ3|V}W%p`mVNa@9S zJ0ksx({q;jTrJW$0sNHW-}!fwkdLAqbmQOmi+n?TwKz8S`Ym&=@0iMFv-h*6oJwUY zuO9aaJB9BP4}`GxEco#=kH47z}od$lSDMJ|xdEmCZ1ph~n>Ac9v$Q1luJd zK9D897xs=;r*pT;dvRy*_ky>f!A-~YE&s%SvXIL0iNXe-{=6=o=gTF?`7`xqYA>Dybx5Amk*XoVy6^NMl`q;wQ^fGmE`&@6VJ`LxgAcpuUy zANfu7?eEIPEv5mtG5D@u(L?ZV=)I*6<%7keS&Q#S12vH!uy2(as;{MAtt_^({q{3S z-)G@_eHd{ZD(?uuodYaF{un^Y4|5VScc<`|#q+msvD?y*ju%>}Wiifw>%--)>x1_| z2K4sL@#1pC(^u#VB>k;h1g`b+??(;e=m!$d$Ept% z2k`e=Hh4a8M-Rk%pwNeSJ!bbaerQggoNW64i6)cgPn;i>^JLEKoV=VlIdhY9<|ST{ zGe5CR&VqOiPtH?0%X6Mi&RN*&OpU(H|52XKHU9^mjsf+`2|elD{*~k2@)_Qlzm1#q zuzhcy^|Qp&84Gz=u|KUr(h)uS``I@QIC-0WUdH;_KiFQUYzO%=#s2cPM1JKfyuEL3 zQQUCWqxd~FsQvA6RC&CY#y{@1!%q7On>{jn)$`fR9ptZ#ceZ zhSTwn)Aa_;UJqylJ*9bk;l``K@cFmoG#)F zELOR=vXmAXav!Cb zw~KWmY5gq_eUk2LtZmNAeh-<)Uyb-&0~G$r8F=NTv%ZpDw{x0*;m=ot=kYF^rz6%) zMLJRZto04!gSB))f!j`Zo(!$*^*@o0()?;_VwFlvo1a~`==oZ9K68I9?R#FU^B0=% zPtM%rL|W&)VMU8gy2~zCT&#t|^V3a z^IrlUB{fnUxMfAA2sOD%gT?Mo|m69l7xQvWicdE_3S_VtIq6(qD&)_uai zpDwr_X{-stX$F+~P2QRCy)JwFOG$W#M)8-??nYA?=}G4p16TXn*e9sOQ&caq#}-Lzrmq zEHPTJ=m7ctKrtR6C)@e;K41QT?XK>l2eSJ3-2$43cZ53uDD}tId2#>NKUw92{et;K znr_=uLIKu9KW~1f&aO{=9<#W_q}tFIoCzY49IhD@)tmBn+lkIs17js%~ z19}&P(-kPym$DB>5x?AgE(1O-vlP*^7@*XT`Dgb#P2+3xU~OG{KE%bsZ+E45lh=UW z4dKKBrF_s{i+v8+T2ZO*Zq^<0Vtyy(d*Q6fbY9MSO8;C@9Q2F_iungQ3wOQrCE};* z>9k#PT0SFKPw1Bc6yt4jvi{yJKI7T=VHr2}Qugm#hwyZyeDEwtq;hSYpXsR7zs4av zoeBt-AbW9>^OsHjB}1=tpj037+xzHTN{Y!tY8o;QNr8MCQ0i}UcYPT^{Qgwx=)0v{g1|VL;{w99Lb<{sR z(l%r~KM?X>pj3}MM^4f@kvYEp@+SL!8ZOq14TAh&pjdw+C$}GCUeCIxjM6_i?T^Br z{{@$8m(9}|3O%KI>wRxP-HKcvH9rB}r#q&ni zt67&qo}NZICEuNqD+`emjEQ4gKy1iuFZuvY+O^?=$voeQD{FDN1|RGK8li&2x(O-$Uyf+2+Kf zywWZ?9oGf)@z8GqP+AWu*l^EhK8=x?%x{h>=Yy(;@N}g1z(`wY-m`jnl$UVF6T$7E z#vVX=JOY&Zhlqmhbnf)++uq1}uZ=Q3Ys?;m{KG(LouTN$?;ldSG#N1at)G?gStNT1 z@)LoQKDARjenb9_(7MzXWnDP@{wTO#34i<|=|P%>TOUHtZ#&C}fIbQ7u@flm|G8V; z{)?_HYFl?k>Vr(IlUZVhhfRjO4=BaM;!k*YcNoyr7|9yrckVBVO@VtOP#RAZ_8ome zH|V;BH=Z97%)8Kfv#F4u1C;8mzx5w9zpc9Ni=)W{mHn}Jo2TEWWof_k)Ml zKEp!hInyBb7*J|ojFa#0#=2tYe${ly&j1$pE81`CCerxxGC7|YZh4W~9g305wx^Vb z_(}6W?bkLh^5WoasI;FhHWTu*fYQ2t!j?lc-}IX8?g^zGbUH5%=uaY?*`eY2o8Pn@ z#rA)7JYUSyc^UDO)?f0^&AF)i`(N16;6$dqkH*Eiv3Zcs2g>8f%?l6vjJ|gr`@MX! zy}!uCbT%LIPXncK0bl=|l6?K?SKBM|fEH{4-kmbkKF7(kXr(j z^mI?zPImf=%yGe4Wk0}qx`f+KNbNsq7SNx8e$N7>_S66Ee2QO*+6i+y-i@&BDXoT{ zQh((2?LMqquWPkc_TQszp3X}6Q`gzGNb@{HJ!Sk-*XHT0fIq4Ibg#I3KMzkUQrbb6 z&C_`S{%QgV{6F*|9$<;iADoUuoaRG7UxoO*2$af;v47rN>Noj#H+Y;Cez^{AU!3c? z2Kuc7O5;{;59_H(EBjx#R%s_f?J1Rqe-o_xO8?9Iu$;y(*q_sOHyZwx0Hyi6n>~6K^+DycJI_C-?b)l)?=_&*UPt^f{vhtBDyeqYdHvf2 z{ay!3{j@eX>jz!yXdYpX4Jn_SA-@G!7D&MD8@WxsRO#Ev+zP$60oC!m_1fF4gw|~| zwjJTT0hGosuWs{@y*BG9{c)rp`t1Np{ZZk_9%qp6sY<#;us0$97Eo%JW~}>N+^eJ7 zbNTn{pVNA~3-Q_ul=|De*hQb~2KCYtSB+BYLtVBT@_T^NeADLkN3cCfHxtJe~KtADp$4u0i5f8*MQwPnqlhcvAwKlBpmAR`bj)-R`Ck%S>)QMR3 zu}Qc2OvuNJQ%BW{4$n3ZQk}-GmahmjGlqwJKe$eiDSEx$so@i z#IrE%yS$CxiI1R}51sS3ka!ptith`akXH*iOUfm!#bZI*&F^6InuQin)UPoLSER_5PX%x z!hT9DmlHf2!CN>Snr^3_>TvPF?|QT3H{WS8VM`+G7IEWLS2v_<5%^Q9yCB>)9GQq$ zSA^3Y=`PZ(2jq~R{?KqW^YM%H75?Jc9Z_T%=BnPXw*o!nGfK9_}szYT#Y?;ii1y`IW-U%WWQoe}nIloW)bP2mXoYL9wJt2e&5T zA@Vhu|1RtkQM@dkOB49ZP3OP+!ISt4zKs>$m#}BFNa&HucJ82O3cgd6fp9W7Po}c4 z2PEESA{@BM9*Rk4X>n^R_;jf}{u2-nL&Q(G5e}8pnWmYXn=@I57k@o}WM4Y3Z?~tj zp?8;Sx#g`iZXfB@Og6?Mz+{0>lf}aqd>@;C(ucnfARTNT3*7l4ebnDGdA&NC%Bq?L z+5JK zk&g6T>-VO`_fIs1%oYp#;Vby@X+%&@jTaQJ!-@i)*1sv`$SIT+NM9!IT7>1 zl;4$o0jKM=0sSU~69seu2@;mwMRv5UXRor4nZ*9 zJ{l5QPc%@pqvV{hG3zMtX2_82xZ}z>n8uFFbxVZP3Mi##;XAi1(}g`NG5+IX;qQ+I z*ITzkJ&B0{{n`Vo0tws+UB4x}ceEfjp{0`VQLHWG+5x3<)J8S(Yf_kCJXdG zsUOJu=1xk_|FLsZlKvEKz(C?UPLy&l_}c6n^Ir#d^V=2$bqO^NytR9{f?# zGyHN^QsbT^D3S)0#@YG329{;KJ~UM7Q3LyakW}~+^DA<$TKM9Jygf52*y{sa%*|3D z?*U5nf%6O4|JJ>i!TAt={;B0G1L-jfD2?l)&z>yOJ?$2)nfLn;dz@p5(Sl+oK}gl_P+hP`_zi(l4hkdsXS1N)!pXl zWW%2n|Dv@Cr+og0Zt3AZ*;_e>*2UqtAfWd}I5|M6oVg#r^SrJtTi>vw}f{dw-HBgXR)N;?t$_(jSe3c-2#^g_QOK&jun zbo86A(Vmt5JbW1R8xEA#KUu2<#0x4iH&%btrFMrTqrxtq!Rc9@jX*dffl_%Xd|?Nj z!~QSN2dU$we|mf-=}$2V=(izWV}Me7;F;Nqcx0a~u3xiB52ai;2(hOl)mv6~(M4Wf zqT4tw*Q%a(K)*YI(t5~|9uv*+%jI#u>Rr$;7buOhxSclZKF~7CzQ5D;g7C-X!RcAd z)0qf8rE$4`>|>{Ot-v#S@zXt(^Y@W9PiF%BN#JifoYtXzE5?p5-%**zHDKc)cpori zeaX79ueq|mRGp27{JlUa-*c-@C|>stu1DdwpTX%8etHJC6XE*{4lkhJk9a){ z$Bd@?D=d4JSBBK12O$3-Py)`Ub(?QWf8G&Zd#2iZa-N=#AR(p!rG7g1r?PZ!-YZ?( ze7G`BDc8-I0r^Qlu?|j7cf!?g`80FbdP8XW3@?7g`-J$sy&pIQFT{S3>HIxM*jcZp z`Y212++eLho8_a>0nhy=w49GtQlv%^dph$%^>iP!<23V%|+ z$?xYdPuTtGQReR*Y@W^w@F%59?mOl7`izBdKE1dd3z@$^5BcT5>wpBgYj)9kvS!{3 zu~RA6;kOe~zd@f2e;-{f*DIjc2B0(#$QivtW14khs=czV*vz)4^Ah~s03p5_78Q~LGDS$`YQ z*CIXzKq);vnLqucYpYh%QzvA8yAJX%hx#jg;)1yz^53mvO8H}k;Bb8+B7~TDzAw*aN~(|csXizwHs z9ZwhA1o_QCsXg;-OD)UzYjwZTX}W~pz67UBs68F2-Ubps3Lt*}EAu~feiYE(K>GWD z60nI$?^66qa=piCK4>;iXSbvv{`4l7qkFW7?meQYy)v$A5Mob9DrW^{Zl?L4b#Seu z?mLNKJE7DrpfukM9GXfzYTR2AJiZQpT&I@LaNFzPep6$6px<7g^!w%s&2d7pzOtxp)El6|^%lkJ^Fezx3B_OrpYqg;#R*b3V?g zl~X5CBN{;6>GRX(N0CvhPm2v(9l45Twm&3P=r}%w&0I3%%@+>#Vo#i}Q0KMJ<3RY( zK?v*4i71B|&kwqPmnTD4Al}oyto5FVTNe7^wux)P9mfeOcXq&c+i`iVBS)hZ+--m@ zfidj9GV5P#^HPHC*38F%K4ehKa+BdG3rU}6XU(oR?E0Q8@vDio){{Y~KVqisyXM+h z_8?h1JH8t6%7nf`Pc7Ca%vl7d)^Ye=JjbF~jy6FrmJ_EIC9w6^cA|ff^FvM$;cR*Q zPV-=k$YUFz!h0eDT7;Gwy@JCfBAsSFy_ zUp$CnBK_3wi*OMR6ZtOksXGWjLXUV}{+A0kkPLtE_$4v(IADiske==oya#dXu#%pX zPZq&$k?@avqVJivxTRi7W?j$B>w4zeWEhmfcbWJOkiNsiNBLrTDp$fFmR0XI;QN=-VQ39*O@s%xAMSh+K9KY=M=5*OXR;rkqw^VA8Jw6$;~jIA z;Y%`9W)a^$@v!Y?@wpl4b)6b-xG7yleXuYS;S?brel_00P?`8{alY{Mf!hmz6o2cz zAutJqPQ=p?@e=ZI3x6U%1cA_iKO*E=@m!sa?*oZwXB{(~E{KqQ`0qr#v*f?df*Yub z_egI+dy``h`rJ1R z|9NHgp~{7PDfWP_9OSDM`*SUx{Jqbe-+R&M?=qP5J!&9&ggpRP2dG!!`{H}j@1CJc zPx_3EZauUSNy@@;cYCA1GW<*F8K^Pi3?INn^;8a2McWf2v0!y=as0fq2VL}OR?8h_ zryu{>=|XOVy-_9ft63ag!2_E<#z3?57fh~(UeW|eXzJP1_-mhGUBKDFPCx!*W1DCp z(org(fukGgpoC@MrE17RgeX_lLc{f6If*t>T;_uMS0M}PF348}igH6vqiNsEX9LFB z#3aHt%vKBWs|zG39N6o3ojXq|>Ef~pS)zQ2{4o7lgbd5$|LTIeX4n5ZJOMOmLR!>y zsJI|6y3{9@BERZ|>gjDWxdF zdiSl$hE^M!uone?QhAwhIC~qlOBWgp9MeK+KU*?4ler zn}DJ{G@UD3h>L{+A@x1n_C@MX%}<71&dQk5#ZQP~Ezy3Hh(B-CS)ca(=SQ35*0jeD z+-s;|Ezu9s@0KA;enI7ag;?lx;mY}fdUM3J1+WH?An$rJAB=^)Ys@^X=;^e)IMvf> zx`Sw7m-PI~TLKpenbnnoc?ro*i_ol2h zf^9 z>Fp9h1akf;{j}3^?X(_gOot-ffKs`3&(!E5;G++$!F+eH*r1o0vSDcn> zr|A+AVpvP+r`tm0@`On?# z@OwdC(lfB()J30vMBk@I^kvGynzj!6+kl>kaC!r!_A~$N*T;N@c{SYmmdbprjl=LX zmV|ITKxw?hFNld8QFP|R>y&oBl}*@73Dwize8ii$(7U9F2Ttn)-I)gcGD7wI@tG&~ z`smoo*yh!KPzdr(SsLWifl@j1bHkv2bs)fLeRn!ObJ>KwtkC#ne3QDxCJY5{v^(9% z48Px0$Di5IuP;!{=g8?Qd;WyaSpQY6#E1JS;}GWtr~4tC{y?d{&RzXVz{lE9e_PRG zuhVd`W{&I80E9CHD2+or)9?GpXP6rdZ>R_GqCyCJ(mIU0^*k~NWcvGygLKaN>3}{M z`gwuUxSZX%=}Yv}YCq<*d^+u?1Nu> zp|IvbN|$`|f{`=IJT?6K5IkPe*hqvkDl|MJ< zqX#^H+~+^msLEA!)0KMLl-&XOJAvha1e^$GxjQQ3Pv_|pZaE9i_keyE^tu};)}zVE z4QF0zxbo+IYX9Dt=Q#2 z0{Lmc2q1xHVlx;Tc-foc9lt5zZ8#)Sl<>8$;`+ z<~j1!{~TdYYOjlypa1i+sYlb19y5Sq-JP68abtGl0=UY`KAzL^8UFZ1${$lR_Bixg z0F=^GJKvu!n&?nt+11b159!CAfP5ZMn!o41Rgd;JJDVrat19!q$PmL?_2Hku^Iici zP|-pS-a2cSG@GzD8{tUv;*5_Lng^!Mr}W$1Ib0EKK2Xy0blRV^9%&sR`AM1o)n;=c zKMyFa3ujLoEe^bwe*D7Czu>s_Dm;lyfy###A^W$1#? zE8e)j?YZcX@yim(F9k~N5^H!rjeAZ%Kt~nJDD6`C{e#-Rgq!cd{cVIz*vp5W(muLh z+e7CPtP22Kik{Bblb=I4%Yf2)t7~CdlL&5hoTrraYp3Nb{PsFHU7VNC7Z9(PfYSaL zCoV>z8&pGj*8?yq)tq0x!B=A%z+=KSI^!uX?(Cby8 zRNp;!{zmPKwVvEYsSn{B*bOdc0sS?Evk@qdmxdgmak=>f)ct99*z0`3<+FAOVNY)7 zzxz;JuvPl`@H*1tO`ud>*x=_r)eUnRcQje)|DxDd$iD%U=9`*z(O}Q(CcNIZi_$JN zVA~+S9Vm?_ycKWzmM)^bJcv|cVB?3L60n?UJAImU(zuZ_?s3}gI&GI+HeqiU6qM?b z(L9~>v`#)pEB$l?+X4BVKxw?RcYT+0I)7dIgi@#N?jFSJ5Kt=D+R&-r>H)eor`&6k znOtr)vJABs@*e=@@!!$Uk_y$USugwlX?tP%NE_|ux z5hA)hHh z{+U{yV9-$TC5e})Sr5K13?F6+w+J_h4K<%HQdkx9c`u2XtkCt>iu^kLJQ^ZH) z8@?yP6+Bd`r`Goui1Jb#KOXN?US9X(cQS})#hc2Hh50}~&;WmOJmiajLf$XJ5%1IZ zcWnP@?9r+8lucvSs?;bCH^liF3?yzqI1H%4FyD$4{vF~unw$2Eu2cAvBEKl!7T-24 z1Nx_Pr1E8z^OM4zfqaA84-~vSBb%*kzx_7u1A5giCxutG>KCn1?%Z5VL|22Kzh%xtsK| z3_bn`x5N+R@+1E%p5U^y3Pb*Jo}llqc!EC86WrURm?t>RiV+=(0ur$Nav$jI$S23Y z8erHL;#xmTJi(rjuT<>MzhnGoKG(o!nm^WkG)pUfPb+?2d)#vs-b>*XmV3F3-~C9L zBVWBRF!+LaDgb36Uk+HM_`BX^dEfcC^Ezez>~#Iu>A1MqpidO^lg3Zp#XG<874^|O zo!FAenilI%f2G>{YBlg)T2Jz~@_(VTWl;^&zUyrBuDDpNeg3l={7LJpg|VO0Md3Z) z%Q`lqo-)5|Y487uak~hYJ` z*2BgAnP_L|cgrw`(V*9ZQ?}n|wn^8yJolCR6}W( zoTiJ@eWrje^0^U@uqM)poO_ovF4DC)vz=&Uw+mdXB@^wC8~&tqp@KJ#(mr-=(?F4C zw_jYWnavZd4}TJP4VRfN=5s))f8pnY)UMKZ!r#9M&cEt5PcYKbN7JNry@XohXuloj zoJ7CF#cJDzNE*VQG|!*0?)Q_rxS&(?TU;#s_T@@^mxI%O%z1ffjPP#)ih4-Sg8x(# z=Q`92oWswD;QVu{r)Kj6TR>0Iu91@+S@f;X|MkH0-n?w3-@MiCf1AUfXt&AvMx!b} z>ILR8C$eZAoDUJUVZUbZC#6enaw46NvL1CD^6%GoXZ>bCzXkE?0hH=X?z}!9>HanE zo~n9toMITKJ&T5XYoL^#g|%CM?=xDQTD@s}*AN3}Eg|0uD33#GrhUcJ(}*hd_OlK2 z>jD(xEpq102~a!OBYo&t<7Q?3zol*1uLJx^>8X8i2c4^`{Z4+yLYLBhHfHT0-ySH& zG2~3>wS&%u7nu86CB>(5UOqcQzgvM)y5ygDOYojA=u$sSl1|(CfZhq=bOuW4vUglf zlSg1)`0Z29RXH8Mgx@X&xAV0_4Ess-Vbw>kzK08rt0?2^+Kf65>**F6ze97p7x8nE z!Uu3M2Kg9ZMIb@MAL9?&=N{DdEZlZNF1Pf}u=lY`rkxKzAA-ZvSS->Z0Vs{jjVn6) zc>AJVQpO=J76veIS8r=~st+`CHpm9ewAh zko$TPA(su5%9&;GK6h}lpI>M=MB!H?u-=eQ0agGKSo{NnTF=?f^a>e&CP6M47*Xsm z;bPhjpJv_ob)(Whgg?#-P8X-+7rM$0dSwEo@wK*bG4&7DN?0SMosSCP2}<=W-_!kj zU8`-*r@vF`dv$wVB^}{O<4=iqvNxn$hg)7GJtzdH>Eg8B2J|e%s}E4j=g65irP(o> zPn+}9eM-87-_8feFZ}Wn>`!BTq2C~&m@ko&xzkVj*bnCxBupKs@Bwtz5AywiQoE$R zk++t&^Zwe(_|y43U;x4y2$bqkvduprorB}|Z|A$l21CCwK&gIuXMVU}H;(ms@_?SE z%=ITb*KKgYcyKv$p6}uIx54Elg53-KCIO}SlXd>fJ?!mUp4v7ngtvYln|Yp=?thm1oeK>k5s9Uwvex@Tx!b;i7(q?2- z`b`8%{e!D^1zNYsGZUtUQm&o0X94|Tg!2ec8W$MT`@T){vH#A1PjLBkJ}wBid~&`@mK0*xPpsF|?|H7#=X~tOANM`G_ckWI*EHh0hns&=y`)b@gzyBV zcHU_7-9viOE3L9}{`7{-d45NbT5td z1eATXe}5fi9`u_Jyaq_%-todGKJAFf$LXTX1Dy7MPV2j7^90vIzxu^`URw9#23@=N zp1Y6K$p~K8rvq|NLvD4bzd);2exKj8uhG$?%pW?lg^>RbP|Cl6(Vg!5JiD=RK}IKq z@7JC!g8X8jR39GRc9!nFvJ7?CRMOLFx;P*AEP;N{g~qQSx8mDAEsgfW6I&?rqc&_Q z$K*h)?26jnA3XX)L%ef#v`D; z2$cGxqRGEjVw$UIr``jvQRa;;*z=HI0hHQv_rzMKe46*X*MHql%6fTIwjA;=0Hygu zUT(?(8ei|G4);yR^ReLm-D!Of=qsV$DxlO}XZQQ`OI>5;`uyjLo=(?ooR80(^_v=7 zgLu6Jl=@8=95sLFpwxG#>FKnc(AYZYw*e@vFBM%ZNBw5NwRwHzI!gI$Z1V&Q;7=-N z?y7T$pY1m90r*`H-tTZ4zkt3T;k*Kr)`i_G?%t1n)A>54+E0g@@4@vUg1rj;UIR+? zR%aAgpclRshI{fk(9G>%ba1->~29)MGU4MS@ecfB1c)_iwD*H}#*=ERZ1xn{2 zqTVagm|?Z^=^^d>7RbL2l+wlcNEi1BU$4{$r}1;z|2eHk0ew5-^+ss?ya%JPKYbY( zm@*AF{gu5YUokJ^63s;xW=f+Jz$TgJLG$Cq+u98#~cf{;6ubg4oK(qt#iF^ceDLz z=3{hY6@ShjwSnv{bv0X?w)l<~$IM$O-#XllnPM984+QVwgM;Ri0DDsj%=)HnYX+r>_zQaHsO~$?b$2NaxJ0bJ~ZY zKb`-!;=NkL11P?yiT8*Xolocfg`Pd3r%0c8RxY`yY;sWw8)atnA4%*6^LeHx$^-Nk z`~%WQGaur$aC<_?Pj7MguznZ35=xIvG)lko)6noY{MP85!L9JUB9YGGJ0d@Yzj!w0 z@zfokpY*Vf7att+*as>6-2E#eeU)?-dS<6GOCL9oj^|o#>Ab%==zTsn(YBAo(^sUA z2p{Rj#JTx2{vAKi5WInO{$8Bxr*rd`{h|xto4lUN&&3}Q{xZ0{mdTOq=veu6QRoT( zf~Vledqc!03HjRx`ebwT!cBI1H1qNIVPjv9euk~hWSgdV>V4f-j zB987QIh?}nPZjlIR=W5_c}lYFFsN6;@peM!g>;~NXz}^^=AYk<@bc1G^WisE z>YD&Q#Mh9w(=nB&*Yg=XKR!mf{2d>F(s$cddOBr*SA*~FL-_PN*Eb`Wry=YW342k( z4v{D~qI^)f=lp^!u1{Z)u1M!-;RZ6;MQWPG!(~9?Em-EWhkJQ@TX`V=-8~3$gE{)~ zp7;uy`TT{QBeQ!LKQyOLPB#7jM3YJLC(e(`c`|2qPF~KOoVm$4^AfMfnV(oDXF{Wi!+;RUXPvM%JEs4ASil?xP^Au{|T+CCL5B(|$JqdenJ*ZdC zJ-Fw!rIXl1>AfcL6guI(wB8Zj@%|#8>$}*xpI04i?;l!XY^XiX5$oqtcz*Nz_-4Id zx%jn1S)?2u5xUC4T@@&;+gs<410x4KQTEaP%KF2t_IRu^{8f>@``z_l`wC7@kKI?) z+dl8le{N;3vx#wYwPJs)SuzkA!<`z76PWG?ut z`_JLumk~Ukbvi$A+3OJ^{c9D+FM3bgLaZZ{)IIdh$BANo<$``fUvj$N89?{OS|b;A zf1$cv4n%&7?~uQu_(kG8Y3a{@!kss%^DR*xuSL2@`IpAS8ER~_{k8;g1$xFgf%U2rj-)q%W-mq=fF9sRTMosZqLF=q6r1m*tv&i1~6 zm=8++@>YNPz0Yegcw?1$q4W9|Zn{YEHe+V<6j~#mlAhj(t?&7?kKT)VIHHSk-nk>I z5BXL=(TL}=XT5u`IbPDKIHU2JeAgqr&ewMWAcr5yTHZT+WSR~ z;ZJI>3w|y~_Ba-rgwyiM`QtVrJOxo7=`+T(^5?Pd>D&&Inx3LRYy>?;{UE0+Ycidy zupaf?Ncigk!R6ZN`mJW)8{GnWO5h*)GV#M^nCp}mbkVQ!-02;K~o^zl?qB7d&V zpDnI`Qdz%kVDl83!k?56wFi7D&PkVkJKqfYH3v%Nv+SWIM|8n!2|m~4w0{qOJx5As z(#*wffqv0I(N2+*{WPD>o3Q_-{q@P)gX>ZF>7x2;gY;+*6ysNN`VSo2qifbov57st z36>Kk)m(gUi{! z-yd~`e)omyX`KsYWky8k9R}ETk1R2oFm{3b0HD-AY+QTI5?|5rI%6Mikg4#hQ*53> zU-*-NO{zxsr_mEApQ?-tn9Wn@0S{t)K+e3Jdye}2hfe%heoLG(F6hb_{HkjiW`m~QvsjxYLcTXp%&SeOdEP{e=KEMq z^Ia`xNeCwyDD9sV9+~@#RgZ{jtDOG`f83*n=d2xc-kzl*UfDpYfABBad(fw4nfY+N zy{^E;qF5T_`v9f&5H@K0AG$SeT~x+i$KYa-EFJP$KxrPQ9lx}K_Q~~TX;&RncwP-y z2IMn=V%|f}+%>ysTwp!U$5|y)-^1_!g2QuOkDQekGNF!i><^UmDVp2iN0jT*zt?df z^t&4LOJc8Zk4{wjv94?o2ycby9 zei~1nZSMDJpS?Eqp*C%l`R%_yUK$GhZUai=f;@|d*lf}1OZP`A^TyU}801HW`g33S zX@{;oNY{!VZ>;pw)kEwVN&Oh?LSG(sJVqg2IY24ji>kXWpZj!ghkm1h66D54)B2g) zyyyFBrGF3Ko|sgh>C>(ddq&c_2EQlMIv@CxUS3i})55=>F*v*kHU{6h3s|xEyB432 z&NW%*g~}Dbr@z8quT#Uz#dpR6rF<`VU=#5$tjBr(;IyAs^}GlA-3yfZzxHG9B;IPx zCRe6x>ZSCz4cIuyj|WQQU3O1r;uD(Bk`79L8~%E$(|mB6E~>u?h}WY)wSDn#{`l2h zH8PZOawnUo@G$&|^70o(orFDpfA5{H{&bgcCA4}>!lJMt8YCGXvpgS@+IYGUJVNtyb+z3FcvFU2Jby`8@Pn4wTl< z@~^6Ql(!RF>GSPYK);p1;(53h{Y68{hvk(!e^#e~!rN)(u)Jt&6~cK9DDC4#FP)-Ev<3NJUBy$JbNfzo&|XY>m4m-pN&I}Vkz&%1E37Hl=-*8-*SZoA=k)3_(^ulFg} zK>j75RIVc)VJ2^`BSTM*9cK&k#k_Bl`W!MdNdq{c5!$E{A& zQ)Al^ueX5G{I=-Z`}XVZPG!e58#Y#%_cvy5K%RG4nkLnUHuVg@u63mSqXQnL9}9mU zD7aj^m>=Q236$n>EXgJ8y_SCew*&g^1YQLsu+DL66U_C`-pcx}(|YSP-(A)P~f- z?|bjij`3Kx0e0l*XK=>=8SF`P=k6jP@jx`|=>dd%ejMB$-0L38-E{8XY1>ZpU7km>sA8*+U*__1vd4cqvw4q0! z&>!g_zGGxCOH31($zECd{mR`B_F@yh?GpQX)1I7<;PwRb59oaU_G#zq>>HiH`2u98 z!YXfvL({|hK0|tn{Ly-YuY~-je6`ZEwC+2(igJ>I_#$64*vH5W&99WRJCo1$NQYe= z^W_QbluXx|3#_ktH<^o1Mg$ohdNGX(F4aU}Z} z{|!%M?;YJ9{6~2rRfs3@_FwTt-sU`!OE(wuM8rHx8ebINv-Sr)VQS|8qwYK4qbT0@ zS1Cq{91uFn5d#FIgidHTv?LG+m(W5#szF5q7C9OQK$B7Yq>v*jS9Y}hI529K5c~eHw1srJ+l9VFQ>zZeT!Zg#ySMwQ^xhP z##0sWUeeR#m&8xVSkbgwkI?ld>X?c^UW`Xd2fv&9ZPCJhZOghJ-&xmHnSVBoc)ld* zZ+zL>Un+rcsszK!dhE;*IyYWx2K%O&GH-2ctvBBc`RJfO_mBf8d^+7~dE4W)tn}kQ z+aEs_!}mox3Z&Qm8as%8VLk=FE-mJ_WuULLUg7xjwPQZrSoYfxYo$9Et81MH7x^uX zt34ZIw)yn6NpurxOjvq~a_m5O<$wnK@DiO5GoOHRF6mm&U+j*5qgYuU0Zo)IDP8jX zjZXTs!reEWc%q0^-?+Ga9+ODF@(5STKh2YL57INg*7@zHi_ohf^c3w3IrCmU_qWU6 zzg4dl)tJI-Xk*#4s0x3gypq!yU-B&3fBp2QJAQ1ctiQIjcp{>G5apEoc|4sryL7U) zlD4^iKFycxu4ijjdm4}UiS~({c~xr_Vp`8Tw~fz<3p?*4*5@0*pD1_a^cSB_>%<3U zjX&||ZB{+yVvQ}HNPYN|)*ZA%Bk258zw;l&j3}*~ziGsrkgp9C<&B))GNZ`;!o&;r z93NOzS=Vf6@kCVF);-p>;7^J_zen0UXR=>8PZ;@rOCfxhL*(mlQhP;S?Uw6+s}91i z2fP(Xpf~ntw7zVt6aNy%d%FX2b%E0QkK^aobgt8URKAYg^&h+Ov+K`p`+2SX+3jzm zSYzZ{OQ2M5_1W`}`Me#f-?yXG5Uc!~Vl<&`0{H}>)GlQ$x%V@k?^_eB@g^5@T0D^! z@F#`Gwx1%t>ZylmVeE#maY!@BHwQ}nLwvJ6d(dwd{P@i7`f{ZH)cW2E>2ViOYR__i zdG46YlX0cO`VIZ9cHI=C1)J88?*x?UZO)|R?|lBkW4isgrjOO%aj`^;C(<7NL_bf? z`R7a1xd?-2(4vi!??HPO$S5tW{WQMksjlREmUJ`SpI5L*wfux19Fg(k*oVp9~WxL%uUmDxcbIsfVu{`!y-h&kdByp?l;xI>$y& zULeVuXK*pbx!*(h20K4Y~oDr{|-6O0_bhi^_5O3M2P*f*ce3_BCc&Syo|S#?nlD`5 z^=rPZQL2x^E2_gDg#5!msUBsGcO3Njt0n9^bh@3geqGbDXE6c(r26Ttw1UQi4&xlu zF=c%snvH|}_;7!lt28A3llc_<_&U;jm+BX39u>wDkYvWOQBG-QXWinSp zn*x;Lp;wvwHrLaso`<>i^=K;edkQG6d+V21ANJ{VP0oTJ(v|Ui+c0|;Qhm^;?waG% z%o{0hSLVfb``ak?81#D*DE1Y|nb$0HH!s)zXrY(vX?{+Uacmysp9f0i#nHOMn=Z|BwfYx%dmUP?wJ@HD)Gm!bn6dRA z>aE@MwA)^57Ek0Qq>BXcpG+rvK;~2M`v{Am*kYhmkGyvu{fg`9xkH%;*iFxX>t%%F z1r`GmI93j%_S#(U$**~MSK>T`P=Pxx|Q~&nPtynMYzAL zpQ_S+!1Vpq?w=c@^qWC@7R%wU2+)8RN`K?x&hlaTuncmq0j2eVozrK(=M(qvtMxt7 z@tK+~_Waq+hk$D(;^+ZYck`1@z5Vw#U1D2)gC`4{tje%Z^h zJAR2`??b;2fl`0uT-KO)DW*N&mP&bvVIM$#J5Xu|b$1K$XFe*Q#csQ6H-2Pw3Ht2- zO6zCaPr7IwCC}KmSNX^PivbGI{%Bk>h9<6#2vyWWGP z*4^8D-{mfB?~Uv024cYHn1|m5AH^@em(IWA$9Keedw)0nUhpW0hf?&uX6-&K+L^zn z;}+b$M=IpHhsvKxviMJ?Tpf{KYWlV1e4-u6JRk2#W`jCRpd!{8-xu;oPYwB!gWu~Q zoyZQ2W;~?l7f%v_>(QM|W<| zgCTwB*pOLGZa_Nd$gjpCJ%PkuFnKjs;g^{D5MSZFQh)eMZB1iu-~RKARxxhy&QjPb zPm=*0%16$tLAY1RAO0PomneTCK8Uvy`Ay5@T)rnqr_fXQM|wI%yzt(NH{6;)Q4ZX! zL;2UUA3r1FpUim}_0xI1TPNP5ya+k3&`Xp@V2;pByoX!FgVNQE2LpQWI}_mmvk*_M z2QOEr;TAj?;alz6#tL{0V*v`7_J+X@su}eZYq)*9W{E@Kx&c!FPeg zui^Ul=IG7fDEK{oxc&Wky|~yHJeA(ChXehDofP85nBUWZPNBEZOX!d967R*7C*F)1 zkGlqPHyglF@6S;i$iwYB2)_^JDEKs&Gmvj znddbAR09&Y_vd`>n|c4T8L!XRt$VY~pCz750_3If4%={%?$Mfh=j8?G?qxlK-_z&> zxHX?Ef%m0@zh|_$Rr9ZS@xV_jy(6vj(){NnYrJ(c1uQ8uW%DE7`<2n0!mV};lfzmpis z{1bSZ4Ef&Yyno^FiT8C?cn_^@p6}4Cdtt!9qT+Fj=fxXL1&@<1s)S*6n0M{V8ED*s%}Y2D9L4*sP0IX=7R z2b7nBzyDR#@5<0qq$@eS?xP*q15+^)_F%!PNa147n*tu@yjnhkKOrAz$MnZ z#6FAz@gx{u4@@8mT)j3*=YW7?aY zmbm!$)pfdSKi{{vZXIQvFR6v}67`9k@y8w{yI?mI_w4pNm3m}%ogmbw2%Qe%YE z3@DWs=S=NK;_n#-jw^(f>n4zI3Y6f?Tc2#8`hIyJLRweP0-lloch0{7>( zcrr=wC&s;ovs{JmU4edWS{44;ZSmE)SWSy3!}tqLO3$q6`w#kb<5=X;wo3hrwd|=N z!8Ivm4Swa^ZmsjdvRn{Kzg7+fjL#{WG z+Lzqx;~vmX&@&Mz#^>bBopp;Cw+8a*97^Q=Xm$x zV?K{TEB5vZ<&DvWLR}!A0+jS&4fE)p1iJs^==j#kKAin?L|qY1ci>g~v4!FMg>H~f z1xn+r@$Ci>KN0uPOZtjm?WH?L5 zY22ef(ql34w2ceNcPr;%BVT6-U7xUM zWKYw4)bX|bdSq{$9B}o8VjiGWKUtN%XME-{uy(z}?)~it`GG*O9!AdGksW_<=?49B zc3Wi}QjztC`~aZT?rI-?_Zv?ae;K7;v0JX~_D2ENAm}$ZTu<-OH0Y_vDSBS}{2K!O z#)s?4df$1}hU_LaF<rEn>faQ5nssc(FW?%5aP9?4>jl~Fjyvf7Y-7DAPr2tJj@+OAr zR~AqnCqKP-E!~T2q>Ft!#`)7v2V7&J-#DQ3-Q+ori!R+bc6MjGu=ewQ$Ugv-#!J}) z>rp>un2$(vTKg1S%x?ZgSv;AC5S~;Y#{d4{PF~-&Yt0)A?)z}H?61#HK)fCXN|0T- z1@7BwQC-Ogr|tUw2m+W4l;&fHuZ%fO_6MGz3r;R6ry`}Nw{6;YD4+Iu zM{57@DD-;_DE6VqnKkA4qb|*9w4XocQ$E;F&*{)_R=A$#d2M~5=h8E~QkC_Bx?%QI z#J(ea#yzXI!ACZp`pSGdHq4%i*vBAY$G*eH{=*KM2<#6l*OB%QQu}Cp(q{dO3bUso zl^5r-cj?^qb#jhBb=9jQocLaUZH(a^IYW3NB-flgLJYCfIErDXM0;O{8|KKOG1IRw70YxBe{becSUja((Jl)58 zh{hAwNBovSzt@0bUzVI%$1c-;hxw@MD0ce?yZI2br?LThO7r6QO7W+B?5Rst`b-#X zokQSaF3XoF43m3G2@eOQffa)8ph4Ywz4Yy&N<wG3?fig-ms1)u>--QGYtG(){3f8(PUOyfkJh0p zk@?k0O_cKtb=jMce+wu<*`cqJ-5$TO-}sx-KSVz72yN%>*4uz*XQOHVOpK#c{EiFrJLm|6Qt7!&vX(<+`vGaZR(of4c?W*$R}}v-qAB411c~j!x)$ z$hA+;ZP3pLl-Avn`+MHTI61%gLw4(*#@>T|+kw(}u%gMo%q{iw+^H3m_A|!f$$S8R zQvY{pM6+{fUo>TX*KT`ezg_we`h5hH+KCzK{ygF0>sd#X`WJcm46T2Wmos%766rin z^|uT0$_2{nk(E~+b$N~J!0YSEzEdpQ4f%aQX&$F-UGTQcZ|*+~RmOEOY!Br30;P7) zIcF=@_32=LLD#>Jq2GR>14wXbab=Bhr+QDi-S#u`@)=rQBKN1}yTNmsm!a|3S2O(c zNs#a~qo}6U8~=BuqVu}5)+^h^^?9ZX+i=T}eos&6$hd);1fCwwrmTi(aicNPrwOnj zka1+4;O@wg44}*^Jn{TpOB2~!TN_S$avR=j3GBg%m%sep(}^1rIhzE3?KtKp!`&6w z4Vc1F5Q;pI6GRqGxDz2SFo{h!>_|8rs)ChecC-m3Fdms_9p8IK{tLY%Q`k)6$t-;u254rA__T*S^rCo}`C0~sj}8jG zkRDb#h;&6hiS#CYOoJ##yMp-9nSWpCS+O&SL|qUrkPPLRhFH>)L5LIi4gcc%WROWS zAN=kYdIj^<{MnO={Diy*-?4~gc+W)ow`Zn5Es>2go=x3BEK23?52M_X9;TtEhfw|~ zUK@<{j8M>}`E1h;)RZgt25+Y1qt$A5}!So*pP4 zZf2C``YjQEYFEs9Qo_yKkA^}opeTQOH=Yg&=_sGjM+@r5iHgvB72@Mp;^h?nM0%yO zdFfqhFN^NQ^?OOkgV;p*Xx8g_cu(nNrh`Yw0V%!A_ZsxB*qeQK;kD-Pjv|9cW&-!J z2u@tC50_`X&E2*!U-#tU^g?} z3sL&=d>Dj$AHenV4+0M4NQQ$n;}M32ETUBgfB!!crY@g&s@ru#nA&c}RMUzB338U5 zyW+a^QTJkTL1!6JywY!S|GqBdvi{9lVzYTzMZq zam44|p5%R?{wO96%$Q<+kF@|%1OB9mng6q=-}8A-rKXOrJXkrH($*U2mxsS%KmvW; zci;G&LrOn6?CrkFLQH}+P!tP<6@va8SGs@hb55AJs%z1 zH=j5w9k|=>KrQl#Qs_V}%F??u;#C<)kTd7~1HL?({%5Y~XvK&BT-93GE)ni8kiHwl z5>IU_zqpwF_?1LBqMS$r$H2-9Cw-dPa+guk)9%D9;3|di9KdKGL7+&+kH|lDfzkfJ z*X~5A4D>1sl=7FYSxkCnaDqsop#Joi{d5uOP)-S#oSevFzAyN65%n|%ddl#|S9C!3 z__)5$9!RvxKmWb1MVJ!pid4?>_FoG4^lG2Hx$jaVWrH-%BI=3yBg!j%H!o=c5f69w z9X7RF*?d|!h`hc_`WsQSE=m>cw6su|z4*}YF0Hb05T>-%?(uYqu?#JUg(=Zq(C<-q zj{TJm7V!&CL(AE}zi=RxcT&Z{oLph8I#9It#*e+H9YDRce?ebpc=qej?a(h4DC!kC zGdr%r0fp<}AYo1DR~smmm*jnAH0C!Avn4C-ZZxX}`8c4c7vv0N*4vDHDENzG?6$ji zAYLykQLG{48v&(-JNM+c zi%7Hq4m7LZQ>N(Zi5EWSl7fEPT$t`+oa3zX_Z zR_XCXAgtt{meir1(ofg42vcp~PmG($xn}FEkI^p0EB*AfAJ>U?qdoML`iJcAOMXrl zCEoDe))%9~`e_FFc0eh9?6yT~=zs!05Lg($bBMg3mdoG&&p0yFpJo}1?Fc=@IM#6P zJ8lpU4HK%9m4g)a=MVPkZ4^s{e%*jlJ<>|VJ?qjYKNR(KMja&|YO*BACj-TJnVjC( zGjvePT)HS^%}cphpW#c$bNdJAe^qiqCf&}=tsXk zh@p+>lQLMga+qRj5Px&L5?Hu{(~m-!Aol zB0YgpJCW7*3K`OL81sN1l=2e!2BI`xpb(;1FND(@D6NOYPdh{h6!Mj5Y=3@~0sRI8 zZvqmS#6z~*|Jm9~9h82v5$g-NK|m?r-Sh4)#B`&$RBEQIhs3ackRJ$?)9u0K8&F=< z12oPs!j#niW#5o+gxZ(?vOycW^&#N$ARX@niuEaS=9NE88@c8Na08{ij$uO}KO895 z`^cI5>~zc<^NJ|--5F+BNY20c7rt}x&lUW|;3E*PkwB?jYiBPng`NSWzqQ}K*lTy~ z*4rRq>Mq3ZRv>|=@EcekJgr`EYPUTLxbDXH?*&TZ7dNX(7j$?G#*KOaBbwa<`O!dW zJP|)Skq*#YC+(oU{L@$#;`KOC8nTt|NVoMgJ`YT7|1^cl;)|PD(4C@ z|6b!sQw%~Uu(6Q8A1L)J{@%0B`%J>r!S>dAH5Y4Pn<(%A!kGXp1tf6BO(sJXWk=oK z|4J>Te`p#;n3Cdm>FXbf;FC#q1OHG7`;m_a<#va3vG!@khwJJ6t2q%eLBI|jN7_9= z8u|P|)$?KKHw7rQyD-c~Kj=;-w^xRtibo(n87S3v);f{u`^<}U!$V=EzYQl$N%imf z?=R7Mxk=RdSQ+=&k6)zqC^R4J_J11Fksgl%rFnq1;?*HEE})IggS z)h$0*X$Kp!ry&0fP%1Ab!A>9C_uZ7+Iw{%_2Kk9Z*hCq(Hn$85tqBj$|7fj! zyuRl-m3B9ty$bo|Kq)=lzt$EPKV5N2>v1F*$Cg3xy}wt^Iw-5rw!G`8Zi>uPB5lwhG~_21?_G&Ck7llJend>0-A%vtQrW zLceuDX`Gz#V(oL3f5vk~nZMf&&+hm$;L72OXd8f1d#&rwtS15?-D5z6@51<OYUd>KIZZp2djtlR>oOPEW*?~@K+H?;J;=23YXT>ILfH5 zC&yWag*HK68lR0{T9=4c=A&Nh;k4ZjZbmq71EqAUc%i`$uB#K_uYG-pbQ~$^Pcd?^ zt%%pVK&igRci#x&=(<#8eb8=t23*?^&IiDfKm&fi??$E>Jlxz^Wjt7wA!D`oAur{- z{zkdyEkkLc^{68AL;gLWRR5Nm`%Zbrcqafp3AKSX+b43zq5?fD7C znCG2IBQDmTs`R&YEW<+k!qYSFr*V5-+KDGR?e=$7%1aE}0r|Z^X+L0H{WEkSi1CmC zt0MTFgOlxqdlyj3KYzKGjDFg9YAWj*cI#ijwVQuX+XIyJOum>-O zQ<<~s;dS%-r?7ACt{>ZNR3~gC)a}T5EuS#PW8ECs5SU;YfHHsgB;tK%juzjh zBX=|LJCJw}n(?RxqZq=o-ZPeMT)(hCk^MPzSA*xbb^=eSJu|#(WJu}^(V-q+-HxB{ zKbXjQ0~?c=`Lp2P=y3Zx@%Nh02X594@4Lfa3g;^5o#_Xzyo5TdwWK=G_$gX0usfA) z-9pcm?wkkZPUYcRhNhqg@q%{snAW;RGV~Ta48a>=>8wm?dY(-Me@Vm>-y`0G$&Z`f z9q|?M@6LHDmj(aB&BGVp)zY}zFZf+>i}ykg;>{Sdr7;UdI*Rl|I#7H#&qnCg4fzN+ z>8F`bDtIEDxxt}Zy7Kod1^F$$kN1Mlq$A%*A2Xa)2-gig{6Zg*o+!T>t3Gx2#$B%Tg;1BrL_qG6AIg7_}Viw>mxF?mK!k$%MI;rRu5J*bCyeI4by z`F+yY5ndwyF6n=f=t)1!!uxo9KNorkgIJXyu79k;_v+fIWiy_kTUag z0o>wuO~?)A@`5kr7=iB$!~6fuu+-MuI#>T!c~T|Fu+*Nb8J60^4NGO#4X#%_rSV6a z|FKGw_qfKN|LxWXm*`CFOPNv4J{@G>~C`JxiotH1w0!-Lh6?-pKg8zlyS7T;GasS@@IoJG{5wyvwJ3L_O@; zBFe=qaaO+E0)JAzJN7<8^9PS%O7SP<;@HS97z^chIIQyHKzO3ukdv?1#TygcJmtdK z$k%(+@I-t>dQ?ET1UYM)&^bqQep~PtaM_!$*ez#~&x=FXL!vC6WHY3rC~xG<-P2&H z%kyaZknabkTf8AImS~;(Zw!B;e3LV)?`L1T7+tILz>le+=h?OP);hm4++X}FOHcXy zYi1;k{-ld?F?AbO8S>SDQa#GP`OXq74~DV}<980xOthCmUOFdmDyq&|7nf_K>{r>J z$BFOX7NUpgSX8wR?f;oi!JnVETRy8JUa>%VUFyT1>B1;u#8j=3)h=+c78bwccKDOZ z;fj$fKgnmq8usV?HK1P{P_*CV43wKe`zvkspKratmetO3v8ER9rWX8(_K=)W&-JGZ zqm28PH{YU^vul5@q&DcfMmALR5-9Zlz+%!|xVyTmwvi^W+yse14y`ZIFoo_UwfxBia?B&6||5kkb{ zm(czw^88c%#Uow~fx&X-pEvx-K!S0yL$}-AjOpR zv&hEzIU11hE;1R^*xFu zK)xkVst^7@KYj`Q(SJ4H1FklR7XwP|yr<+SI_IBb+}w4GH9z5E(P4(A#5j+B-}3cZ zx}e{Db}IW8k@wS*9`vQi$4jB*#qRhl;A+n!pgjmI0wi!3dfpERK4FMIKo-6${WdAG>*l=78AuwQTO_J2JQFR`8@^(*r;9N4$l zk1F$GXBbaPtl!Y*^y0VEMeRE0^{C^CNc9ZOKfCQ<H1YT0E)#@F$NK0~UWJzYGuBEiW1y2>k|y$B+Frcq{ShjQq z3MjQNnKx|{4K1G3MEH}&bt|4(@u^S$V#w*SkGPffkos&qu2^foY%2Uo z^A3NPy0qTY#8_CYqKuPc*c8a?K&cSx>4gLH;Y2I%dCJKD? z!q#Pot^kgK^_{DFWkSd{+&uiarzJPem2TJ9Peg6IDWH>U}-J^OLWjt@!uxU6? zN@@?h8&f}UX`Uzivqor2{}B29wDdiSQNZ;Q;)>fb}>adzub*TzT8pYkJj9+T9<&a+ml;Y z0`E6BL%(-{QvGv#e|^hmS_Y_fmr`$I!wgGFPo)bO&9z1?>*?b6DWbB zT(KLN*SPi|WsEX@iL(q#eFzUy|8P%(AL*Vbq77b*>lIdBK7jmopfrw*yWEG?iE<4? zYZdaXyhPfbh4z0Aizl@MdP?hAx!-?q!lxa}&-}An&Z5{Z=(ihK6-W?x;VIl(pWRz2 zXLiGjd^{0a9|Ep_;`Qta+CR#mwtviygg$SKakE-qydFQNK?*xEugIXj-XwPaO>yJ& z*E_JYBg^)@=U_+1W7&{Zx%twGgO3S5O*^~~+W#@ni}%8L`Q4rHdm=~TMR49h@I9A@ z`zrhcGhD$hAiGHw2Ga4<7dnF5A~W1G^zyH{5AJ;qJ)K^*;<= z#liNF7uW&v;`<^U5Fg?ZX~vV2#LwyXPvUOkftcn?UKMh9AI1ym4EZj=pqtxeL3}J; z3gSb&1vA|a3V%XQU<&^prJKpqIf3+uN4y1pKojYZ%6gpWcj%M7sqA=#l*t=z?8Z9% z)aAgs?J1%5e{_-GA|2W?gU#{K&{Wv5LO3iH;S0A22W}7aWFkHyp9Dhxs5Iy={3HMT zA|7z(AsvK$AmW8+=99|#29=VbkI08)_QjJ#@VHgHPlo<*`+R3CmxDsKE2rd zx>I(Y8`qmXFsEYS-XHg5v{-xF<9iSe)r&WV6?s3oRZsR;-IM#rZtKZjSxV3MJ-`b= z`G^(#lV1G0B0ScM+n?Hk@A=c&4`deUom1lbz0eK_H`0%IL8f{udLi9J`u5@PCBBU* zC*&#JO*j3{?RE7A9}DsJz`q};_2G7l((!vdkoYm?cSJmN;THCdMEMTZTOKZWZRMc9 zF47;os4u|(S%7pB`6GSb{0`}7mV-(IxE{pAG2avK#w>3m2J+v(=x^CGGJj`-xtxC> zuZOSog&X-T>=KZC-b?+m$Mk{Yu!*9x8h5hc^*D*f9Kbybx`lsX>6T4C(g$1Y4NO&Ylp2Xi~V|$Z}PZzUQOE988Q3QpYABD%m?aN z=f`hBI8r&w+4{{d)_M3sK|ScNYk$5=q(f=wA@ZM`EtYxco~fKtvo0<%%~Mr0X}K>7rRYoz{q-R3H3{-Z|*Xsd{}*`2l;rQq)*Osx6?hmMsm)LRr<|X%brmK_!Ip$IRp3Ap>wqk z!{agKe3#vILc8mr0arul*9cf1NZ>6qiglRV68@xiFn44} zx|hs+E-CQ~@^lj5Pin873H@k%?dSK=g~rb=4=M8WRNEJO^)~YHi<%E@kRA+pGtdC@ z9Pc|#U3JsThvh?C$RWWsG47?;`g`lX$GL`r=U=yjp6!7Wcz)eYdh*Abw{d6W{a%by2Y;|^1d z7QhlA-xny=zwFqwZ+v+r^F%IIhjoU0Dp2ZISi@Cs`LyZAIl^$>Oc%&^1B!7h zIkOiYH|#D^KlagOrJbm1@pQU|hvzN+h34n4)$wlR^*yxy*)1=T`wK0fQ5H|fjrfWA zJUO$?`?_^w99i)7HXZu)07~;s@50ZH`>vPs#=W3lZ=f_Dbk-jN9*dr!v@dqcOTg6! z;fQr7X`IZQb$mYUd*j~i^2)r?em`xmKhi9o&Isr$l{1sCp?|+){+8#Ht@RHsmSEX4 z^1z=|esdh&Q!XvK)rPXI>M7&FI&1*s2Lh#esy=NGjmwQEP+FOXJ8iBLX>1U}84Q%# zGr!3L#JnnWJP~=n6538g-oH!fMVduhJe{G?Q>sV$Ss#si%>CFKl=5kR{5cHa3 zbzsAKalWMB+s~2EZxm3h!;sVecdwJYyv%Q}oYRV9cS1fBDAvWushjJAn1_ev!?mw} zcR|0qfnq(AoXKw=IN;L_nyRabQXe9}KU*!I_aL0nK&c(nPWKV#&>TuRvs?cnZ$Crx z!NKl>eq({sxQE;Q+;DJXhrAX_`%=@gXEY`}e*W`bYF{c|ANP9P5Bo?8(OAgCFyXi6s;pjlQ zofv!Is7q^Y*a>Q=)Z1u_r!xiq$^i-5{=V`Pm+ADEQN|&W*W1v1xc2!s4e@y#DD`7` zH7b!^_Rmj$Q9Y}HwLithYKHN2r1_XTXeX$OlAiy5x`eiaQEWQm^(0VQm(uSmMeUiB zwsSW8Mv+s)bLqqvJdWSHcj?}Ms6PI6ddG4ru^QDpLN;_e{-Hogr^t6%U zZN$jp=`2C~q;kEY(JLE$nsLISdJkniq&=Gl`T4*iKmzkV7w&ALj3;8k>={Yrh1-iU zJr;ao$Ml0Y?njg7i*ONU|)KpL3AolGoE)IkKlo#7ZFFh=9aWcobyB$(unt=X`Sn0)A1JOyn{zG= z>zGn|Op=k$Z$ryj%$w+Z&P@B^794ed7IKoJ0D}& zGkOdDq;}BTuNSS;nj5&=!{&{4%XOswLi54yxXxkmbhaXXQaj-^?ooCc{om||!|KC3 zklzB7=5euo&e6FU!_Lz!J@cvmvp-IL7y9{ua=PU#JK|%;HPHiyD(hf1!+1K?;NO7w zc6}({>2avzx@+H$y=N+-S@x5pacfSKYGS`wwFe$~I}tjLbg&N)-bX+wJm=V|e-V$< zSVyU$j3=VmcF2DSl*(Dpfs=kjf28s_BQMvXdfLqgyZ-)}$Fd{HV`)KSi~(mGKlodm zn{DY_;>J71rLY<^U)h*CA&Hr(!WwhbngAQJ!0sE@*Cl%%e=m!@Q2n!xY}KBhN;PWI z5x*y}%$GjCq3Mc_;5T&Q=cIdy-#bCBBYQ5^V0t8SHy!Wd=l6vhs3o#Th3-2DBiI6vPF{siLv#_pl- zufjJ8wd>NAr{As=`0ENi;MVbd(#u#JsG5|_)0g6_nU9E%a3daC7knp~xo>)q{&i{H|E&h3#bhdq|EZqDO*$<6)e0kt&l_QTEGJiS*5{etOW=Ks8O zgbyU1f@VG{6zT_<%WrJ3KaaR zycDFPNI&ttBxVejkG2r;LcI0xd@)=13u)jD1k=Tgrr?X@De2%8=>TLvkv?SarJwP< zDE#%}=|=n#lfUpqPwsZ(z2H*_yD?f1mS_;fiirF|c@*V{^35#QYya6^i>ZG=_y-ET zg}z!k>pE)7$Niq`&5HD-e_BsA!+bh(Jr{^@kzX(NM0)q;`a7Y&(3^NIHH>B?y$}Cg z%it(@B|6->z0tl1IUp16-ps6DU-v*biXA38_MsV%Q^_w4Zb~Pze$#j7w4S_PuEcjJ zzKh8m&f#6cz7F0Co(%D0%_`-ecH-Tao$AAzs=Qq{b1Q!u{&>; z%8?Nhn|eB!(5oEML%7N5Igq-`rd!jZHFP~)Z*RH9 zx!~J`FX92rF63Z(#bqzH{<*F7ee-7`G>dxL4DuC%{y@GT zr?EJsM{S@~Uc6JzoVjkwOQh|R8o#=TS3{sw&Kz@|I7azSkH4X^-sNQVAYUIS<%729 zvuC+KUA4b%cYP+{YJhO!ff6`B87}gn;O{eS1jQNyrSS{9bF|XEa<);!ds8}lh$008WlyFP(xo(zAnQML& z`&NDSEYH8cQmy$A7mIv+9a>&A)(+vc2NnYo#7{d!`DYx#kiiF z-US}wrI}B`?@J{@zo|emPaW_We&*F1(v92r`^4)>be&m4PZv4ZgKl$73%YSd7%pYo6Je4l+C-o2Bn3`Wu{rha~ z??Y-R<;CtkL%@}Sa8kp=d*}W|U-RPYzoN`noMHB4q;acxE>SZt=Kfe|KkbiS?Df-j z_c87I)2#K8u}Dv8JtWX{{Vtz(eY0oFf7e?%7nR7;AwL=@)>Fvo=soR#FYk-FgP*_A zZOu=(SR2*@@*{y_-GQ7Yk4pEfoc8IY4ovDd=%?naC*(%}rSVH(%Xc_mAK#2g^_e8& zSuekaunKryc-XI{;I!v2uDFLkZk`GBi0^y>$d z;_v@PhXj`4s%T*k1b?v?p^H;wO!Jw3^2G<=uwe#rn!Trz*>Y{3xKb z9>ULk@%PHOHS%&6I_`;l9I2MiyP@AbK&gMvZSxqdqnJ;@pR>Lf`i%ir0n#|K-F-=g znVvw?_m5jD9|xXvX~jmaOYUD^Nza%to{H37kAGz$@!)jhT-z_o zI!fg0J!<^MLBH`psr-6}X~A|dw7rgeJTHBZLaT?7Z|Nh}UFb*f`R-C*&jb zoM%-w5%QCO(l|@6+3 z_jF*e9n?Jgs_t-^uXCCy>1j7zA}!b9=bmRkzqLTAUCMa$F}mNN-)Q%fb^BZE>ZTZ7 z?D{0+Ujs_xI%o0ceslRhI{4+H)_p?9^R#dA6y%=)iv1+RIcf1{KK;A){}JkrIIdpxzm@r)-SQc5%|bY{!^5i>b%oB+>5tJx4BM1>quu+72y&>jD1>c^{gMRaYQoHNaXM6*mpL)JGHjJkt_WkKI(T7I-%ImFG z@asei5U+(mX&rj}ORrIX%Z!26w@Q7e7{*hP{AE8mKe#^@+Rp#meD(J_DEVO^MIP{WypDfQa!3#eU#wwS5n&RYd`N_3jLM=gYz73)|91R zxU>iMm3n%vdhbJw#Z!3|{^WXFa?pMsf35B#*v)sl=@PlW(DE5=*^^m;_(}64c6toW zA6};c+D+-o{K5WscO}AE1C-!Yk6mp-dAMooR5cxjny=)%?7N_tjh zIgsA~l-3osrw437dKP?pZEsy8ioJn&y$zK5X-COHAN#bX<(8Iw*`@T;b;5WmQvauQ z-SVkRn`k6xxqPb+o1oujpcLMv=nB++ntYlgVf~T4bcwuNtL?-)&~FPcY`sqZ=(@OP z_g(0>6DZA_b8i2!IP>)W<++<4)fFC29gC;(0sKk%VA@aA*BkeJq=)r?=m0F)l?KK|wm%d|u z&q~*BtV*x9{-p9Z2DFx9~6AiJXt}lSo&A-MPHb%L~2y>39$R zN;#39BE3Yp7Ui*Xz-_N^mz2P~0Cr{`n^iO58FCCgOrDRW*Ti@AiUeO+G z@Y!;M&vr^@0}ZQY1CSn+?q=_4@yy)pC4&`7d>ezd(*E;w-afpEaQwZHUcG^Whl1a8 z6uouDe=g)Go|^GUe3w@Yvoqg|cm~UZDW|!)J)tr9z9#e$`6s@c&hz7D=tt>p^1F7! zo!y7=?*RoLi1;#`57i6ywD5ZX{xl&EH}R*QB6CNJ4)+AV4dFAy_n>eG<7w*AMd$@2 zz7^e}xS{No{%9Bba{Yu}@fmOf1&>JsZ)skC{(D|Oj>3M7;OhupPTny7yWszLM*dGc zozLHDeAB7dlQ0xNgSxO8}*Ph}>;^$zDgiaV>D3GB2xY&Cf-?3IFt&>*`#C zz4>FbRenk%U8HqThx6s*bgwf}5^L2}=GAdblt)LnKkfa2PhuKXQ5pBz-G{Kh4l2r3 zxo|x_#~!5f{^mVK0fk>s)#80b!=FHMX8gQ|&WYsZ=Y7eM&*MYOwPx{J#5$j(XI`#{ z_T|h+wV(0t&#!Jox&dt0+sgQW*f$pC&3GNt?Xb(6@XdX-QiiZjkTbzQz~bp-;=L%Z z_o)%9>te2M$ zewS@Ob;9TASM8HsG@z&+d{2LMvz;!Y|7nTuiFTBn$>u#&X(gXnM+0*wem8;6#|k%f zY33v9JvqGn<38}Q2@_h>{j#&N@947hj)gxdep%xk2YvdYHsxhT&#|DZt`~c zD+VNR)br7~ee?W9xczT??OEjYD71W5wD_(ypJu7kNF>W0ZBD$j@!u5d0qf z6>!ypI}RxNCvv{p<$2;y#2NR>{;ce)+HF50-%kkDGs?2())0D1^(fal>6B0ZeaN$o z0*O{X$;BF3_GIeA-%UUR0+*M%OlON)Vf}ku$khYh0wl=2Ig0l44j4Bq{FYDY5_x$E zO&14i0KMXYqWvXjeA+E^?iBY>g_bk>{g~bQ&a4SbkA!}a2&_Q zVp(IzHvvk(^6oo@ex=~gNj8IG2|y_y^zmyB@$t)!+r#Q@bI7*?l##$j>3@G|ha+>xD^eSzq>^+;LwDT>k{*YHtO%vlL^5=;9>zqqBmU(A4 zRqAa;)&}9U1xo!&;NW25U6@aP@tz`Y&qC{8O+({4GlTdp;W zr_%-Tlg3%@#r0^P+PLYZS*&snw64X|>3o%RSw4>LFE$>386`dc{d5T}XHk|tnN;X0 z&8Ksg7NdIw%oU*0%6KU@jHe@&7yXTTqTMa{dj+~9UheSt#do{_J^jBc=W6ZG-_sCI zI#5a%|I^!O9>@MSJ6@srXScjWSv;M=&{OJ<;jXC)IcD zh5j_|dCVZ7RZ`~RHN$v1!FFE1<>dOaWFIo4TIC-LS?fFe^O2wTP}3y?`t=1$?PUC? zFQ4{l?yKLIVR!t}58?C&76lSWyo7?U4+EjsAfVL$W#zP>bLQq#@aHc)&~FGZSYEW8 zIqx6vY2%{4&M4YdX_so+oTqARD8d;5l;(}`B@fX#$%pQqobhU`Qa)qYFvt%FO6wXq z(P?DoF_+H+3gLGSk7rTtALF2>)DCKabE90k z$q#9*)c2}kJRPZBiu3*|?oCk7iCp`9k2L?(c4-3AV_MOQ2YtCg)39;t z!;pU@+@Cp~;IIEX=^~964Am`rGLIvEQn@zQ6^+;W6J3;fKs=iQ`Dx+)+||9bpEGTF z|MMTH{JI#XLw+hyT6Y`Y>J?+(X$SGa_J{2QMVjxS@r%6vh1PdRm^~S>|3qqM2krS5 ze7;XdIz9=M#^v$v{7vQB9Dl0oeBt(Fq;cKO8@ACs?&dmQ1*JY*`~KZtzH1gwXEV}8 zTK9JAJ%4v?PPwhb=IxJL>*`#ri)Byd1^AQl-MkNyEv{Xx)$S~7pMr}ev00FR9w?y&p`e;pj3~XuZ`VHe4Bge z0Df>^nTy3(Je_CZPtp_Pd2YX3Z9nbhL*)IKTK^&qPxUt!@tOye($imM;%>5Q!1oP9 z;}>~55!$}kji3E~b3WqrN_hM{6EnW`vA=E_lod1F+CMeL=%C*M$S(#;{X08#g6098 z$uQxY>UrFlFrJQ7AG+3Ulj|}+=Z{y~3A^L#fNLT2TLhHGyDff*qxtksBmYV$>uz@Q z&wf6<4E?;oYCr;$-=iDjYvQ|wmb1v)Pqmya!S|N}iv+`4v!ROMYpC~u*v$vK>7rTo zWR^oeY2V4TKWp+)TJ}@cUs|wbkbey*%{!c<6W^wBf$^y84A(w>E4U)sn?MP&{PTZz zX~qH8;;J3)CTt}HUk6I<()h{l)pSqFACDHFQ(x&H8d^M^weTmcV|r`ef0(CBUToMr zZZ+iB0Hyv=I@8!=ziFWUugRh`Mp-5;o03sk792@zfC}C zUX}AvK-`znsKDFnx1rxwpwzFB3B6x9Pp;5pWnNs7y#x6zz)C=ZOMib)_q7@0vlhLT zcHVA(WWT(;3%#}hrFJ6s+yLzV(M9;7`Tp~Xqe;@b#i~c6#G}da@|?2xtV$8Z|K6h8_b5s+A$u@ChS7%{pVYE@4$%z zbK3Lwx(mN2@B_Zh748s>9z@tMcKwfTcJqVlmE2rE5r0j{ zr9p3j>FoBOGN#6Vn#w++>$HC-B8Iu`c?0|lq5*?E9cVZC0AC6InrdkK{O+rNp z@qL6x2mUqVA%cQgpGNm)3%|YaTJuFcL6m|)nJ#V^06~2FitrRYDE{UF|2im#qC8sh zPh^+!9xc^&d~Z%$?3LQijm+lPPmG~@*VK@b!eeqWWrOm9StFp>Hd6WIW` z`*ZXUL^=)Sc-LV5UJw)Lcg=Xb!#NUB!EkE+VgD0hq3QdjCj6^}h2lh5*mpI;!ahz| zI9xYKSa{xy5uM%v5@ffGIp~W2xx|HcAJDCZRP$$vupkZ)NgEsHg^Hff(mE{ec{dXq zvZlX0k2L@(hHwOu(>&-IXt1y1i}m}3E_hMHR~Yg)0ZRi3vUXp-;4_^wds=e*XNNUV zDhhdNz>yQx;wTMJjYpl3{`&*z&;dulx|m-qkVTn#ng791qVac(GBCRKdKQOXVga`t z+yvg(Ghh0=j|Jk}eAL4_=xqK>9efGMiGisU|J)<{Px!n>$FaSKvOySUO~A!ORLXb0 zQAFlCqU$qdLKBwX!Zi zs|J5J0tuWu6Mpisz$Y8$jZ+C<4Q(GFapL>6fl_#ZZ(cs`(>J+xy1!_s96+yc^)of$ zPn0*qX&QzxN3`))Kf=W-h7lG-yJ-C0uBjl@XjXs6{n=dz47g(X2ecYM(f*S2(=(r) z#D>9{eA?Kz->=kyesMt2{*u!XH<=EonU8wV#eR5^)<3DgAq@hqI$RO$4xs2?$myN> zBweU)te4DI55z^jaHWPvLoM^E2b97Ky!D4jm#s>B?X+1RB43~hU6`wC5f++2PicHM zztE-6eg3uQ3csJ4r1YDyEFSWWfpUMe;RibKXFUGOVfCRQC4neBXNig>jIit!IQb$tUJ&>s3>Quk?%lyPfC)(r9qKq)85ZdQe`5S=IRD=MmP>!}gZYzg>K1z8r`DRe zAfE`7`rC{bYoGJ!jn{RWR=J(h-?n57@*RNEc-MQ+8MH5Y$FP2^9pu{srFq=uvJ3N| zPQlMRIzqorKxux&iHzoZm3S9WLaP>sIdI6<&BJafj9SHyC;plaDw!6mb6S{Ko zc)-;M`aJ}c;P3~|BfdPkXXcrsnw;jkhVeQtCe@lhb1}yH@;|fz zKxw?>sWbVsOEWB*@2H{l(-m1i$cyzcsr>4{pT|a+rq2H&Z_lK9VuTcNz0EIwgAl(V zKrzoHr^or!QJ??VdwS#4L~GrIi?w8fA@2c7?I&Ni;qR4lW_N?oZn^|qL!sYjptNop zD0G0@rLB8b?>pJtT8H9d%`L)0Cj80s##eu%cGuiM3BO2sIOOjHO6i$9_&3_%oqci1 zhPG9eab#6C0`eon{bgP0WQ-%nQVIR<7=DxL3B}04Mj>AJgvT#$)6Y9x+W2TXDOgOY zf6*3U;cobo`akWS8}IjN`hP23)Ovd_;&nezDxX@h%(q?IsXup)+V-nUtfzCanwDXa zvG6C2L)O(lL+j;EW6SH)u!~T#AU_5u&HFFio=pdiOa|+F%KSF+10A9B)X2vZq3L3` z-we1OK)fCViuG4=Zk~2X93aUr;+9=Kqu4m;HxVespH+QjG35h2f5e9!#2OFzM}Wb3 zj^8nQD2*fi#<(>qtR78({KG)0J&82X$O|!% zun=s|G|$~DXng$u4SOcmQp#C4VL__z{%Nlsb7}h3#}nB|$7g|3eaPFkl@31t$HxdWA+MOat_e^PiWo>}p!Py6{t|J$F}RN5scdkOLjfztSmA6(as1N{YWpmj0ydl@Lr zr~Re@qQYY?)`}^gPxCmt{kz7NK)?(3XcBSqYrWiVxemBqg?{US()c?5 z@v@tI`l3%=Z*A(yB>hRUgGE?a0e{l^p!4)Q8-4m~?cX?ZzP+-aQ-{3<`Q<dkS_#G00j2)k-%}gI$7j_4N$mhhI>QJH(mI2`-@PC*!{rg!VhDM$)q3LP2yhJ_@$)9#N;L1UI>;OvTEHG=V!b7@8@4=Ig4VO5wEv_Qa)8| zwr3BoNB)ApFlh_)dmkv3v%HH%0%Xw1C@>9_^I&moE96lyG->^st*wBI-28tl>l#k> zF8pl+O5^gpBhMN0mFZ@Gn?LIlk=J)M|NPMJJz!-ZLC(Yd_L830$9mQW(CZ_hln>iF zb-2vSnMWP>IM{Z`e+ZQJMLCfe7b%A3L*(@+G(98FhtT%Z?l{E0zgI`Z4(&8;CY(}lNmC8))#LQG-tvKq9IBHFR4T0@B3Vse9 zb8Yu|{FnE2N#y6(n|1~tAqfT`@LjDV=K*a@g#ToY3~s-W6Tid#PrMAlFYvnY9iW!R zs+@oDl}G;S$m$u-T6~XqLcjb>&%H@p&t9FmKMi^i|HR}CtV&Ye3wKw%?*>f4`FZjE zj{JR=aEo{(vOiXy{j^(5d;U9XgK*k%x5j|NoxpzokO(0Y@Vz{h*Cf7=^dbJr8N*!K z>UON~Q*Tvny*!ou_A5QlcV(qcdv7`I@65=o0sRy475c-icj4g+9*o6TfgJHEjBA}o zo=9R_f7%lUf)4toY$~((BpB>khA89Q=~I+?=PyiLQ6cypvwYnZbaOelh2a&CC}%*ypUOxN<)1kJ zIb8F*f@dOlDS17(UgEvQYe~m@p_j<7V0=UM?8)VG`f$wa%~6Bf4>$2nOoK)rBL6n_ zK)qA-fSdH;23eqwU&Jq+W&U!`k)7R(HF}`Qz(&h^u)4*!zV4@dGj79(&PDkgDdd5A z8cUhH;aG*$-7SMJW;`r@kSGTNlbC78>5HDczI+C~??-$!AVd6e(^w5-SEx)n4Cn;I zHNznukclGwHBpaxq5k*czw7vJ6!=9aM0oh!FT#a8OQfIpKGO9d^vdkR%Slb-hsYP= z2XO;a;(Z46gF6R$)xmc}JT>8l9%RtOJRN*#Fpq!w0DNa45a0bD4V%0(aDA13l_zuy z@r1s*8c*me&J#M-AjlIE>rT= zfH(4XCh<=xL|NxqYau;RP85vuq>2kp|Ev2-0bTUdhR9z{ppn0oE6CA->)9hWt#nzA zMflHstn+3g_wzHs}P%D(9)Se0onvy)LT>icMdgKCxkl#CAsA{_h-%b zrJuh@<)_sCi1R4Ru}OF2Pa3D^l>O*quU0gHu1xt_>3??h`GDR7>BIx2^4xg!3OZ-> zrx!X#uGfX;&#v6HR@k(j;e2YVTx-1AX~Xcbr1s_Q%iRRdSiJp?x3i zyp*HN4(;&NRxSGv^mmN6^|^vOU;Pxh?+U>npERX?*|o{{z=Dc{6d zK<^9wQi0O%`BVCQ=hY0q5eYS{c{eAs-;dIePCuYDuJZc{3XB8tzbgCdk@q8seg(?Jh;zt@#> z%Wc>Q(2oR4?PYgd8#t7r^DLo!{`2yBH2Av_DCs@Lfp|JcoZfd}^;*rs^zt#F9}kq| z1ng*xtKP~f>vc`pSkT`9l=|(GTnFhr9`5KzlH)`f!^VL=4=AlqIAXszk9PLoaY!3F zud*vAv@pjeQvJn#`UssPPNs$7i6wOoM`IIF{*!=`-WnZs=}TQRJ#&Aloa_C&+x65i zyUv@z-!!0Dhoj(}q_OXLP4&9v2xVO(mQ4oz6rflSrC{9pU&tQ&x1!{$rnU_m|84>O z?LcWfF8J`s3a{z#I!QgJ5^Xs)xef8e`Zoogfk!s!+DYRaTp48@#eRFSr`Oq+pHq>q zJAf5{1o_J+(tQ^EQRJZA^z65@JHf~dpe&b+drZvNv;iF2Z=={y_v zinXuB$y&0zL4OZWS_jj71COFS4=DPCGvalk(D63%ekAp0;w*~Y2mT%eiv2?h`V;!l zdEk1VRe!EuOGRIbX7_`BHc(#2%sn{Ns~y|-UHhe~ytd1yX4wfnfb=BDzw{>Ar)V|0 zHZJ#$BCqZCKfC&;{eJrpGPD#Zjejp>wWIwGLwsJ-Tbbvyw;Y=+Ks>2_T{qP}!`s=# zSVez{3$qiF+LNc!%0F~%&Y#;=&qq3s0ww*%bflsMjCGXXm3AE+=Ga7%KerzEoi6y+ zN^;%%pRPaq?Q9{+aS2eGcR1_Jq;a}n7I|t?*BN5iBG4}eO7d(Kdx$Qe_ZaiWy-GdU zU7v`&T}$nVIJ4j1A4k5P0809qzv*Cdh+;fG_2PQF^D+DN_Z0Xm23`&%Fzv2(&#bm* z>4|%ka{@_h8R%XFO8S!Px=Ba9?q_D+)PL$Y#gS10dm8jBfKqw;Z+-EM*F(2$#-7bo z^uflg5cJD|(*BrvFO&J24(>_cGhRhJ9!YYCqS@_#0ez*(h^DOuO8gYPG932{c5knY zw@%Bk$uo%807y`DQ}ZgUWY2-yFPAmoYb{XH=Y4%!(tMg34mD~i=OAjbXF>lQP%4+s zt8c*iQkVl4`+VBfvz`Zk>w%J7(hPe-&Hd*Na9;rZI$%Q}LDVl_IT#QAclKq}{!oPc zYye8@m<5g-&v_Z0BYgDp>y>+Uy4&u58%&^GWX>7Qx4H`01Y1ET_)DC2|OanrtB;sZYo{oqrQFV1fl{-m4cKJ{BD z^=E&dQFI=|$BI-}Q*VS(Q*)12%vJ-k6d`j~%U()E0_`1#To=U%sWp9Cg z7f_o2#r8Tc#+A~a_wNRO?*JV@158I$7wLYpHybE=L1VTDbo+s_e!VHD4AUHR-QV;m zMZVMzvlEi!8SKjbw|x>xt`cXF_gks`Q9S$Y>;TH+U7$4HM)yr2dqQ(zv9i*S?DluN z`P0~Y;O`hvYM%uSE@{m3^N2^<7I~CL@n zsULBNQpR;aTly;P#s2tk80j1VO6`+1sYdIq=41bU&(L-jxqJz2XOYKK(>soQeE^hx zkKMMR0yAG13{l1vyXi&V&LlpFg@A52zWOt}xetSObH_+mc>2zq$yZ4 zZumVO*ad#2;P>e(&{_VmdV?;JqfdNC(23tu*bQ;_mQTn{=5$5u>9W-@7nlwmI~zKFruWY_c?w-D%ts(>%elN8|Q%;e0)4 zxXsG#!&c61z4eP2d{5YkX(F7&?ZB=A-(>H{{d^_CZ&(uNgNfgPS~AKV-(jHBfF6M& z9T7hXb~z#}zLx^K8I+f>(;_>f@z3Opf2LzU*29>!QF$iR-dJ$o3u&A_yD!Q~q$jYC zsqHsTNk#d>p6x3^4|I#)fm$lBw^r%A-8`9w?}N`cQLm^s@^{4jLWz15??t_f@1wpQ zqTbOCD1VyquuL}2GyoL8i+G}(`mw#&E&6rj9zn0z#rg5xC*o(|yFjv&GCyBlw7+zO z#rJ~#t<3h+JcZjIb%woZtwc^g7VVwvQ4O{=4gG?aHO!zu;b%;=1Iu1d$+u7) zJf5f*!9TU@>El*z-}FchyYf_r1xMquc)8v$>J9Bu^i#n&?tpJCPnx z10TXJ&WG|VRLWDlr}kmy(}VnK!%+X(+@5zm?B5nG4USp zYM~rG;E!daA0u5)4v#0wpNVn@U6X0NK>jnzOe&0jsw ze{#mlGTO8naq~bX@u3+8)t7@l3Ml1o>Sgho&snuzVC`EO%KWaiwcb)e;!pg!ckmLO z|E=1U*`HU~TbI!+zAFpnf>_YLR_w|Cm7tFaF`x!(h>Y4xSwC+(B`63-uJbb+hel5z0 zw?~h<;i-8I`?1;~`Ri$|lh(xhioxGa|4iKR zZ|R@s7JRn>f1=-0(Er2TbWi#XKQ?;xfi{XglWy5ziFM-WVE))u)#!ZgdvpLfwVASh z+ugbcO|&mjt`vRdWeq>mHA7*auiDMkwCwam`HOm?c*$)$(0N(&DXDeJf4ct#^s9LW zwB|sme{wsT?H}CLU_*5#`WYwdWZiq%1o5r}5^y`3K-Jc1@3+X+JJu7 z_WpCIe6ibJ9G0ELwct~XpA_W&CAV;Um{7TEcb`0<$0D6(KxsTHEPwS!SXbMxoac^Q zUQ6dDCyS-vcO(x1KF4zSp(2<7WFFZe{7koUAG90{X7NNsQ%Dk~TO9g!zunv%*=-fQgv;HORIvsrV2g>d9D!(`fcV5vWoi@*n zL@^iA$pA|7)Bn-Bb<`jDzGq2|(~-)hP&w#e1HhjfDD-;@`eSbU&|CON!Hi4KgNFZkF1gR`eyidU6ySf^>!grTK%lrYD_W zH6Qi7mtA>gcRx{M*Mq;|KuMkzzp>4j7xVjNL))iay&!TvB|eBVhh?WXF`Q4=$fxMs zU~T9abmnx*CQh@7j=AyRKBS3#(}>)proG#?y5!ipBTs4>R(%8 z`rr*nXFO1vj}_KGMg7mo=SQLKEOLD?G=GtoXJ|W%3bWIb)|EZOTA|;1Vii3k^7KOa zv^!r3=#x;6cLAmE7Cigm8eKc{+tsy-x`o+;=7atYpfq3c>~7$r`8!?j@@ieBKg6<| zL4PYyn%{Citvii%x9UoNXl&W(-GX@1{O?%)a~Gh8*uPg_%D0h1#Cm~R@3(=!sX(b* zoX_ked)GK)2mCi>e5lE82mKVFw4SByt}NEQOaGn$yK-V0@^vRrl4sgGr#8?y_7K_A z->Zj~XXNz|T7QxD2lqBL-gNNi0ZR37ar>3$b?r&xoNc&2uNk1936%5+%~Np!<;VVfc7v@%3o3LPlt4K2l((1<^GelmOrmKh$qcEeD_@Yj;COX-a&7fsh(qu{9X!me7GM8%mzyGy1ZZ1&L%Y$|;TG>(`kL9$9Cf@Td zWn777^FjY8P%2N~xm_oCd9pY~e{qD_=}Gg=E7w0r{%_1jJ@5Q?%d_DAK2JZOKZblQ z0RDNqE`2^1fxpGTpxpKNMyw|P*yf|obN>1ATnhdU0HyK6@y&0QnE$PQSG`r|4(mQh zlZ*~FJr4TiKuHdA|6!Lcp1C_V&)N^;@%mc+yp|!Jq%Uc6hrXs48rRxwa4GGxK6?`M zPXWa~Ck5F%&mHjc*KwuZ-=7A5g+NJP`t?FS+2xw|)0I>Bw5!iYF0Z9}CC&o+3h?(f zP|{x<@kh!qf5)ejUf4N8Sw~4?D?$G{P?EdFV|#z8v#m*2ZLOPS?PHr{p5B(7-YbYF z>AU%!=0E6K?yAb&KTcQnVY^xWyfz|U10aEO&D|$-&$?w-mmQd3-J{HZ?r8b*+5mcK zUgen`L;C?$=PsDFrj2#}gp;*pYe4@3P@4Z0p4b7q>dsA+c|e?Hr}sSKN%HgANxkVF zh0cLnZ=4aO?5oAF=Rm&}SO-YpK6zfqi37?w?X<1WM>-ybj?;GAXFy+v{1gGDdM~>5 z;5qUaZ`ffttaDYItUg;0`WJyxJLBtaoAi$tIE91@`cI(A4!1yY*oA97I6h2L60NNq(j^t?{l`quUHe{nlHNXD!)w&?6%V znQ-rSqy2QxKuO-)V80)|0nT;;rFxI++mY;6owb^NGXGayIzLC0P1&2E-vN~7Pq>%j ze_P)Tm7jL&T?@0*lh^0ZHl+FczvSM&-6+R>z`8&J&*-F8x@RdpgT^R&T}{hQZ!hSj z@iuOKH?r&GkD@Qx?GN_b*?utc4ltAnu*q4T<-^=?1CNXKbauX`8#6$7Pq z?N9l-4&$%yD0M#n%I@mDpxxCR>a+768&bWtzdwuL-21+q38`$sdmnDhIhw+b+*p6h z;tvwp{i~YQ8uxTho-I#DWUmXbJ-gX3&Tp{`0g@vQ5aCvQ3MYBIM^%7GnHS}LdW18LgC)9VLJVOI>=-K+M-BzEw9dNPx^ z-39sE;`S~{oX)bl5cW^Wcn{P>xDVbZ!k$Tlfx-^TC+Pdaeny0mUZMDIij|IO=aHSp z!@>@V^5d@9rsn>|Y3$-BcYe3+rxdn$5k0k&*>zjLSTT3KNH-DRN#OPmX(9|HdmYnW zW0T+`m_D~7>x*>zb7U@j59LVRPBR}thcE-bWbbqQ0mJYt4e6-$0XnjyGCxCpw?gcv zto-(4`9^yxOlPmZMo%|am~P2?vT^)9|6>Ng#9C_j-OX9j;S%9HGEOna`B3~u+eS@^9I ze$PcDsAGqSj zEN%}}C5sKam98nBK7iYQRRG_~S>~yyw>N{0FE{6)-GWa+PxbT=nTf8LtN1VT;X7nM z#qG=xCOavUKTV`Fn1|Ugyax)qC_zW|US>S1FBAQvI10O}|Itor*sZsh|6A>(DwCbm z@jtVZI?nB+rd}6ZM-}^`SC~09|8p&^`?}W=bMjpBrD=a@C)FSHlD<(epz`P5K)oxf zEPG%y>l^$Y=|MxSd6on3C4I@auH|X3^TY3+EEu0<`3*72s6mzkeFdPL-l~Uj9y2Lh zIoB2RA0_mBkuH4(=PJz)DteDyJu=e$xL~;>JJvi)l)to&S$O8T&%J)bvElmO$~sX^ zYn`eRK2#k@Q1JC$@_S)ErGI`xtkYZx{-pIR?a0idUXO8n;_X&e``~2u>!AwLsR|V3 zNYl`IP=XWi{~E7%21U-t>i6TlvV>*X>KP{27^K9+!1Kx)I_@^9#?*gSYVf zx%(^ojd9j_A2Ht-^YFGU8tu1>bQE#=7E`h81EkAg*X2yKF zrn2wU)bayW8}y<+DCqdM9@T?+j^%)|A8vR3#qPW+D$Gu*W-xyq(@#p4p$e$};iALr zq@?{gU(?u1O!NOc)9?~k;IAuC>YtwD4M{Jr``9NL z-#1kDZ+qG7?*Y9V(uoHOy_bSxW+x@-gLCS&rh68O4ZTOTOSW5{k;@6G{TVs3-Ol=;JW_y? z{3-1H_LtQE-ruxv%9qOiQJXM-W>Wj~|8edcIxkGe86H>dpd&xeC-Fg?+0~OB*1S9w z`IGv?#it*|c`)sD<@|2s<8&yWcI`p}dOz@&4wUNGRmVqiuy`e{z5b-|X}4S=pTCFZ z&%s>aZve0ckiehQ`!{d?)USW7aoinx?uj-KGC-FJl=R*FzTb%c-bGoTu-~rj=>-8j z3;az2iupAK@^%&~cWZ{(NlE?IW73BO6O6c4LhPL*7_qSYi#*5yD>c867wDcH}@BOIezC* z-|}ZR9`B|89_a8QrNixiQI71#n}G6| z2$cGJ!L1+eBXyClFNL=2$o0?Aa^}=2AvzGmS8x!jgCK+v1&H(*0Kxy6E>94n2_fPy_ z&I_BzTkB9J8Et&e1pNY_R4zqR%b)T3X6BE`ye!XJSLb9snFsU_1EqeXZJq8RIYElk zjxmb96leJ}dkFC)`Ld-&txt8op$nx|NT9q{xoe%Q)NHEY1v8L zi+EByb4>q~=8gPO^xeqinN&aYCA)H0v;3LO4d;^`c#+ztd2Y0vBA05i*`S{TtOz8S z+HED}&t>c*oKog1_Vf1uzW*RlYG-~=0{M40pVD6^imd;I?~B@vHxK18A1KWq3L7r@ z!0XvX<7Ty9O8rHy5322~0O>pe46FAN^&_ION0H8BK&c=35|`0@tP}I zTLP5id7yR|TCcmC+?nkdtn5>^4fAIfh4=)8FWvr&Zu+$v+D?%ZcE>-v`g}lN3cgkW zrTuqL-O0b|TEklwOdQ@z(XX3Zc2Z9vp1hv-$Ii{VmTzoaG*#qotYs(lB;rZs;+o!4 z*oCNeZg%r$S0B_Ye`d?Ur#%0=b-wTuU0u;%oR&Yc!tngD3z<70&(w8VyL{RmAA)vL zE5WB!@9sOZ$ZiSe;6wG#$mNUFPbh_dy8Z(CYUFDTP=dH$CeZrl&a%@JYvm|rP-0{sUvz_iUe&)@cm#$IdMAI-kDQW%?c*BqT zSi=0n{nPDCV;hjKjX-JLhTVU~A+Hu7GqAkMikz^&PP7T>YzB&RVHDh5W;@ycnMX*! z3|pUg3G^?A$K!rZ|HpZ_RIijmxgPS|aqQEUtH^#)LqXJ?aM{%W$VpnDBiHyF>gvnAOdnNR84>2CvHKA==CUkz?Z ze46W7;rhI4CshgY30$k|zpeA&e^oCJ=x-uFdw^2E9hyCe{KJ`gUARB_9iZO@lzP@3QRznQWh_1oU zq4Fh)?L&TwfzrG`uxaHxX210>$y3JLIJO`3?*gTAbDx`7mU%`_&wHV2qOxyMpS=V6 z13-zNxb}6wLwVLy#%a6bnEiUUH$RFB^Ji8C`6MVFv$!hr#EkKOc_c$wM+y2fI|zD7 z?iRIgNd502!(Vr2Mef=iH#K$$=^O=0_2;@Utqjwa7>0aJlzv;29R~dopj3bUD_YR} z$b3qFzsg?y*=;Wx`zt%Q<3T&O-K3j**>QT5`}cHqp{P^yL_LMQ)M#I&3F&>9S!(|7 z9JO}9Ho*3<-|ET3zTS9`c;pYsScJ;Xj>r2h96bzSfj!yE1{?Ulsev)*iq`6Mv1 zE+G?>-msfWKs=-){4M!}{hUY_NdCOI9a|#e0X+iwElb&lgM4VlWAO)m$jL|xN~!#Nfi#X}|72!!VL#Y|^yBY+;&+6}u1hl>;lGHMVa+f@zJ;BgmdxJ^KT%{~ zw(WSiT0^oy=R^8r|7OP5(%6#&YrOkl?Ig>t@Us@%Pqv5$J(Yt=XXRUjVdvL1iQ5G= zPUiVIEcg)!ezd-9u5%rN8 zYOf~hMcAhmBEAMcN@Qnd#;=F>WFN)te}Z8%Uz(b(i>LFI_+BRG%a_4Sug0VL@~~Uj zU53{`|88Qae=qVUW}Gs}@QM7uK2Y#aXc%)Ol}Tr{2mcYXY}Ejkwrh0SuEv?%p0qQ{ zsQ~tdgOILOe@Z{o5@A307xn%pc7-P2)P6btD2Kf$2Va&_elE1X@NzOw*PhFOeX8hJ zXgBozWn^7>EM)-78Re@1$*hO-f$zEpAdL6aF3jJ3nP?CAowirZ_Z|@*$a01^&$}=t zi@ztiu&_eouZO;x#T>u-s{TrJW;=gK@Fo1<^=EwyF_wsU&TPa7lKq!y2e(J01HWJw zke}uvJs<-Tf7~x&HZR9p2J-JZb2)l|KD-z9W=1yEH zt&|T#SlH`5Gzk6@b2vZ#Am5ttP`*thJGw4L!i|Qae+}dBJwrJ95OxDaSVNc%2VJf? z+}$=ZZ(v?7{Xe(atOe5-#OBS*o1a&Z_ekEO>3NT(md#s`S|)E{5>Hvv@)qT-%3GYC zx1{f)`*ybdTkYhoBs;moe`Y6lnA^!MX&u~`SPlN9{cSDnwfFVTlk#?FjGNBx6#N?~ z`4bcQsuKL&_sKlJ*SYkz`J1}tF?aAi#T#Ym!QJs*(zD~fc=&|wy7kjauN@p=ozpkT zXdo*G`gZd7_}}gxC;Z;R35{laIwOZU<=<(5yBuLLACvND`XMX+X=;^Ba_Co2j;Hmq z^ina;5%G!4(JJ?Z*S%)o-nLZ|m34zSYrRUWUtb;kuJ7(Dhjp{%9Z>J1i+uf5(ogBj z0lgx=UkO-4O3!!m_jE6ONuDFrto&9+I#q+|v9UGj+@g=4+bA1+Pk-6npRv2{6VOF_ ztOY)#`Yn9!71}4e?U^yFKIv@L7bk0Mo#z(&#Zq~@9^Xm+*>*fQe_6R^R(s^}qOE%~ zMfpqhUb(>uy7%d!hRq*da!%PFt!bT)uMR#%eNvG7|0w)-l&8IUg#G%fjq(ukp+3R{ zan7>Um>Kk3X~`4*v%|WFO{|w!<3AYxyV|VX{GYd%679Gt@+HZo{1u-b^7;$~EtgsC zk(0G&qWna=6iB~cJUsYqueNOBJ5}eZ{UP%6+fqNFPX_b`;O`n>9UwvbHa}y(%YU6E zXZg=g>m0EY^pYHLpB_MVqvlik>x(hquL)4}dkUtR=MM`E&E~2wInfC8je)`T>7I1& zbsy6HlhNNRE9*XX<){65e5CzdsvpWx6uTDrY6}$omx7%?Z?Vg()%Y$c{d_ZJ9jz&g z1${H1klz%{FDy%TEOe{*n-`*${pQ9t_vHe5bEI<}P|8Qqpj`iE{>}fB%8K@^rASD35MHNiQ#a;%PdE z_Ak+UdVoI$l-dP*c@z1oFrK0z$~YFw;z6$i#kfsDPveLEc->2p^M8MTm-sh03$v4x z+BK_iC-x!yO_g!X8D=MkY#Q*}^*#T}PW7M9Um_Um0~C5C1zjVe&p_^ep@+&dyL{Rm zZ-f5C`h!oQuTju5NlJ$m!*I{4Jhe#&a1PLzu6hqJeZR?Szpkn z0wsAp$GjK9d><(F@u(m8O9wiD1o=fz{m$#p-MWPOk^TB}fv+ckQa{VT>EX}y!U2NQJ_@sQ@9sU;g>?oI_Dg!-3LxR6P8rBVH}w!|c4phBT%*QmP z|Jj|dL|zXPAH-QecZ0tXz=l8q*V+4ir*>wngT12o4~%^NAl4uGXYJ36M}e>LK&d}$ znRw$qulBI9Fx@fi-0*17j{%0Q6VWMyhcA>-#%a6z;!&2J+&H8sjVsZvjQ73#wdyC& ze*eouIyV5Nc~$Pz1kwl1r}XC!H-f*(KuIofKlcR(?^?I4nW7Iiwfu=qLcHogg1`?M zBzLv`ubiHJd6*oW0J@1lvF=JiHhU}Cf0|F}mrFkQyBR3We_z;8&$u`J5?RLXRpfQ# z?XzU$r(OA?v0IU^`9P`Px;{Ncu#VV zUmVHt-*`Qr-q3Bq3+nv8 zGVc?0eXxz?Pi!{gN%NJ$2g(_GyGkq47UGi#TXf{S|(e@srL^fV5TgR=eYv#ug);$HUW$>)fL(%|w+blfk3?ySo!mCWllrZuU!-=%+8>#{tGS{V)Mu}O z{&k?F&ue}1*XaCpN$uy@m-E}fA6KX}O&b5SQ=br@ranxG}V7WX+E=99q(7y+i=6|``u`-Om zb}IE?pHF-Bps|DC?+{Sxw*?I@X-uP2Yn{o_j+}4%ExyI(ctHChun+1bl^Zl{N<0RqoKJ@1qg4D3J_-@`B_nrmQqa1|69o;9Z8ILeL66unGnE77(Uf|+kVdy3d zw8(JAq;qF*)PSB0)@?%J!SeOf`FjV_QS<3RzMZ0eMLor{N%KBFeeCl7?8YZLC5~;C z&W_!_rRr1X(s{YwO8QPuQnSOR>74R?eW92WM z8%TA*?@Z7I4WG!}Rm!8Ql-~mg`+!cA2Md;uX+U&eCJbdVIbVJt$!X1e2Jm+Bjff|H z7vIZbk3HFZ&vTh+Z0@ohGhW^W1Gwg*9f@|A%vNpaf6Iro?gt1=Mx5_q8!wIlnlei0ie(2I46_0m(@s*+A%i>73l}xo9T#p zWupADxFKI4hdpUL^|RUZw+7zz*3nEZcN)Rb-BQR6YFDP5I14^J10XMhVV)lmMmhyq zoZmk&Kr`tz802lr;dK6NIE)*}!*1kP7?zRY7I%;cdSPIuA?(TGe5QeqLKw7-N0T;OqFnGDVJIdH%e29qA0PPf4ddngjGMn_*8_)xZW!d~NFElB)qJD=Cxfw*4Tetp zTMfnx$7+!pjEMzPX@SQy7+X^J!4vZ`?zS#q)Qm?m7@J_e(6lRo1i4dEw(8nDw>;hA z=dsp-6Z2=k+foQKLGK90(<;Y4q8Gk0X5HB`Zk8y$r%zf6T2;IkNWtQ6Z+zn|+&pdH z__W;616kBTE(d)Suo{rSF;e@1JM>D*QWjidtO=4>P^cb^=W5$QEI=|VKm6y&6~MB= z?-_sDT#yeMjEMzqxm-@y{m!cy>q2YQi;1GG3B0Ip`2bP-C6vDsJ+Nzc0aCLTD5{{m zqJ!mDFlZ`m82R}`F?6C4c|DW~evkf&oKLm>L_2PV?@8ZvFNr_vW$|Aezj5FI)+!`D zmt`;(i}%t(lveJ-dfnNvW3<~-uz8!8pA-J9DbRyly###(4^3~H&JxjqY!!KN|cORsJ9Z%!6# z8H_bVJdr*Hi(}uQ1B1`TotyD_xiCYXt3lrYDB2qZ3$t%MjPeX93+w-Uy*t5QBVbU@ z!w}1KjCUc-0O%Uf#{i{`rlKVepVqnKzi*X`)*{~kSLH;c?K(7G z7AUnB(_mVgeAi2zN7Yvr79uYfsohcv_W6voJk|7?BVXNsQoR?q?y|@0Uz+|~)i&8y zzcI;Z0^0)gt$|`(qM+lpQ+}_v{a($`*!MC;F0~Ca7!!I0#p^V20uFM~!TxgiE{DkLJ+xg%-XB8iJ)pNk z`kjH2zNGzFlP+>J?)Q55T16jh$=ZXy6EG-WG|$Wx$N7S%zpABgax$l-k9I^nsUJl@ zIefb{9)*@m0 zD@xNOeK+8K^fRyf;Mh79?$1#AZ9CQj@#29}{S~%rP6h$yQ~DP`GVs?AD7DYs>(?FC zS-%I~Difco^xHO;!B`sN1?w-a!O{E9(?%gJ`90ZF(F)o#WjADJjUkWf-F50mdwrwSS z$(UDFvgV1LESe>OJ{c&8)B}tr@zOY21CK&fjaY{-AdOrSU!glds_DC2XE!xBl$5PrLB~ z`T*qXCZJSq`H8i@)jjVGe|*EN;mW+R6UzeqaG)eVS?U4OUn(qkpvA{I)`csatb=7R zc0Jqv$*zW;4~B6R$-U++VauVFwjPo|*jtrv{-tdcw!XP-~I z{oRdxjR8t}YyPImbZ~6;yX4}amogqTXCpvA8YszYZTs;@y;@~sXQHmM&R3I-1pO$W z)Slw{FZmR5UY!^JcjUxaVC9{k-1l>6C%+ylC%8G6V8MQ@E<50St3&u_SEY$EbC3n1luGQx>e=whtIsj(3y+m0CV|Rd0N#9-H`YavX^cxFrzbkrObeO@IR1dM= z)FVCF+`2mv*3NE6I#Yns`h=_H?^K?qV!mI|lkLvq?3RmNId3;!K)(~^;Q@;M84Au> z{~N8>8CO9bXs@g@M6OV@_f$X#2QpvEAW^I0TI(Tb7s+_PdKkdr11>kQn zP?Beboo=9c9LD$1c2+aYU`(p_xR?`SJw(l45I-W>0}6*eDAw!Zc9?+ZcEFt+S7<9=`W6bACQAdpK*c5 znSWS+Q5{!lmciI+@F~svxdWUn#>vW#%KAi8wgU7kff6{5jizI$Ge{FwVF|^;>*CW?}zh{9`e_zWEkz;K*@(vyUBA-{4On;BE4950= zPwBgXiO*ls*~4o*#jVDLUYz9V#hwTK>p%(0t$g+oQ(gz^4zbQz@ZTAG0fesrC4Fi4 z3A(69TYu{$wlrSRdpd*}j7j>7|H9>DDB&2e_``;=%DP5t%dy%9q$l-T&j&vg>)asj zT-XIVFM_@ZD1oQ%TyYVceZ%$8dXK!Fg~qerUN#{^F9FL-88i)f#u`sdiOmCqf!SuH zBek=FIvVLc=2NW5!GC`I+XDVx1&VV%6kO5xEX`L8hgVNtqm+w%dA1elyatrUvEuIc z3J0OPOQ>Az&TpgGHt_c*P--u6AC;x^F9YALGOM0?ey}Oq4ti4{(BIPdSMc`dxNH|w*VpnnTk z8AuSkILTMNgvvAW_7W*9A$;-1$O0bK;Mt=zXNOlBye`Q9Q#0;x{q$ZKiJiG-vwXq10{VhZeMJ9 zrqQ+4vE6S|)|YCA8H`E#nJcey6f-|Zh9{xz#s0j*Uj735LFDTYP}&zQyz&=ZY(fY0 zL;3vY+vi_79#ibZR^Rtt>Sy=5Sd8!R$Z;!EnXzc!phgN?_FJIRf4LL!SualS z3y-H6j}Pf;;LF33|hwZMlv4e$HmyD4xe zgmmLT_g8i{#J^d-wM4lCsoY~kp~lkt6@crWsk$hwu?BX=@>CM)3+V*9?N&R4NC-_g| zj*K>=JT$={9Kx*?^(uZ(;pHM6wu$;CK6pB0hiKT5rNfcgE#TJ&6!tG3kq_k00lTHc zD&J|aj}m;L+{n&}r*Xuh8PUCOrkxLk&F}eu zYB^Iqm~`V&&Ll2PdRq1{@vr&;IVwx2y|LiFn=-k5)fVJC00(Q2AzTcU%893k_f~m< z-v{AH>u@Gd-v`tN@GzN|aK1!20Lh-ubnJFMi~mk`OeUQV$V51Yo&BKqp7rnKu&ot3 z*FG^ko7?{_7yR^LMHe4@@gngt&gkf;QNC18j~i|*Eqks3yuEb5ceQMuUNQLe0kte1 z?<(*u^6SZDpKqENm-u@Qk5?s!x7XVTvfjqCGl%!9J_Gshu|Q$3#Sr!hMEWA1PJGw0 zzsdo>gZTH@V2(w(9BKH`jEC&Ac)te!E|iO~`|^o)C(6AacZBu;%Ao*!ctrZyynQtn zfvEySq6SL!86p-;~jV}rROZ4f{Ti$W`(ZLXw1^fDul=LBqo02b#~iOquYj5Wxb@i zHQx~PyRt!k;@aLQE=E@M(|=xnivnL_9Y~tz`8It2iLSlgu**9~n=9v{np*3#l@MQw zm)qhjo!@Fumt3b`X_X%*vwxmS)K_JsR~twW`0XOCC;0#DT$KIwgh=&asa}Z{hqXUh z75vo+^64L0TkKDi)P)=N_2_EgOROV^enGFJyZrXP*E23YZ_J)}D?gmPonA8LSJtQ$(@;(R?o>)ZLpMD}uJT|73-PE51|`W$xzl5Fg^ zo(Nlav|E3oT?zg~zo+!_mrtbgBma_iCgxdnQLdsNQ_%C^(ARYSTHOcx=jBVJ^$@zA z5YUA@i3!i2c^=$jY=<=JuE?cmCe{J2K|ImkDCperI?mB~Dk^fx5$0H|3gR2^Ti#!t z)BX3BXQ*7#SR>@8F|Z+!z;W;Q#s%EQQ~K?tDQ86M2^8ZC1x-8DqSvn)*P`7h)(yX# z;K>SeEGGIf{qD%Q`;gbQXw0BRr$&UGCyvE;+5knnqoDId+cjSE^-rn;A17-D`qn@p z?}cr$oGjXMxX}vnq<*XUj0=u)jfj_9`U)qDvh2iKB3=l@_Tzm1 z3+m5qezxm9QTuDMu3a*E#LwPh;(nuZ}=59#Sy+!yCv!?Q@O^7k^E$ z^eRr)+_DqvfOuluHiEZKCws5YjdOyvOK5$~zC7y${HlcmIkhge zL3-=2*PeMD7yX@8&V5C$*Gc7NeAo894;TP62JUJB38JDaivFkWE80)bUOx)xy};Kk z;e5I)-SCa>>Ga;Xd$ta?>|;$b4=w0`J`E`JI|_O_pF8dKPwDtow|W^&=nXtx66+26 zB%lPYUmvD(Cj$)qvq@OJCxWmKQ0Und^c_1O&R3NF{4W{&r2-`=%KrLiU7JIC)@K*P z+Gh#~`vRr*@@#?s9LA&4Z!dP+SwG}!q*NgIlZ`r04mro1?E6#szM=Nqv=E*Sq5(ij zUN7<04tSYi4&0%)Vh`2bvJ=ZhyqZ7)SK^Liy2qFvo$0CQ1<}j}x(uK+KVm;tJmb}N z8}s7QzevQW5NxmGp(BxBy*Go!2afk+9 zoGg~*f&OM-IUvER*}q?+`&!C&TGX?m(mtEA8$dS^DCzT2Up+s79k*{M)@`Jt{WjPj`fOMqsA@{|mblwPdKbHmhFylokuS3(b zuMbW_`uV`igZ#KIyY)@TLHqU*QaRI?BkzBq`HNgHx0{|C?^cw<6rfnAr=a7|AadOF z@P*|YmbsOF)Y7sOyB+bQ{^vY+2=Y^FtIVtH=Ffh;PX&MX042E_xFPkp*R#&J_dz`m z-t_-+Eaoqqf_1*`U6l1f=l|tcY)+SNd^$g;^s_Qf*9>zkCaw2qKV2ir^S`R^Mp^r8 z9@K**&uSR!6WT+@JRn-pKkc@cfIbW9+zpiF_2o0yp}&{@dgQ&}?>?Y3?~l843hg@? z!^&FqoS^-3xgY7w21zvzLPb7s06xzSE$KY*kFm7kQ(KWQjoCcV&j(6!x8Tkf;gHkw zwJzxyMCr7x*A*b0M}X2iyudtX?J@MacNKXS`95su_-FV0WE6W0{4D^=<&yUMJLvBY zWjwM!u0*Q8sN?M-@V6K!&BHw(9eqOgkafi9kF$&-`tnd`4MzVufH(?6XnOvANJ@7LihddOc=8`%R2YKe~z~ti>(K})ULT5 z$Dws(c-~v-4>6XV*gC|M@)x)Mm#=m02V-2RrPO;(%TDYC#FNfl1nm{*9Y+%1)Iu{$1VYy%S52$b~s{C&mc7=K;*de%$e?=7IT{$$>7 z;G@;ZdV^fbx=jc6GU(p~O8vp}_$Qz7dqu}3D)YwnY%}Oz14{evTJ5M6UTrj8XgObX zz}u3&0{X2$Nxl^Pcp2HHnfKe3Q_fvPTaLwEMLbE)7dKdcfa;wbG)&v6=r56vf2G?W z0{ZL77Z>Q7)(~NWyg#baI+5|Xn<@K8PRmYgyGfvFQa%bU%M|-@SCv?Qh;&?$_%JwQ zKJfPjP}1j%Ge=io{I#mr+3&ZJ@~Mu~JHX#gpfnF~kFN(i6;0ibv#ZzHm4kNU1@yO( zuf0I29-J$mJf&-fqnFX`m3G#W?FRiGpd<(5l6#%g`T2r+ivDT0Tq5tcq4gKg_kq9t zK&c)2AH4dA=w3>Husg4+$=*Ra2Y}LiGmv_e?4*5${&`jzZ|&BfeLd1{e|Qi1Is%ly zQL9oJ#*F2j&J&dL8ZqpB5FP|d@+|G-gRkhCVQx8Fbr2o-d{eFWLrCW^unLgC^L0y& z@t`woT#2+?Lf5_R%cY~>>ljd)ALVsfL+!sT{xZ^>8X}d|6{iEpv z-kc^bHaKluo2L@{GLwCOZ;qCoSzCnL1KY4K>2iy$dA+#3N5`K0JzWE59BRux%n$}z z-x1#x*oWO@8f+!8;}1M_?18Ic$2PtX>`nUMJFxdUoQN<`!|#@TPZEAl2KM6oEJVJ9 z-5Kl0e;4*t!d}U;#}eNW*oU3CtMY-jDZXj_DLRBXqfD7G~;0z z97Vbs;*0djKJYEWJnJmVF}pkH(A}$ z`iU^=L(~u1gEcW7rHOjVhP|8!i*z#BN^1UJtjOTyMAv_t?LHfHw2aByiTJ*V4;1!f zS|-o85AS^lYcAORrSRX$&XY=q9<&4MXWVZe+E1~_w`h;4%p_Os3_WPSJ&G`p z>Yv9K{Rs8*C++6M{M8@FPtRhGC;BEFxOxCH&C9C6ey?RJw-2n0?-YpdDRzxky(7O? zzZU&GiB&V6HsFtzm(5k#3#bpOwfeo?rFTr26;O~wq z)yw*{=^1Iiy*$J^H_zh@u;wFCpqKPN&*~cIy#A_l7tC7I&H6qk3-_m1HJDz(&ck$1 zq4}uuxqn{YstCR+0jmQE^1FOX_a5JC?9Y6s%p>gT%Xa4<4r~2LtiO~E^2zqze8%hU zS!PIj`E1rC_@4gCu+H68!Fwrx&a|tj9*pzpUvyCB5wW)SyF@+LMtY*%P>|o7TjRT= z^z%)Wb=RiWdCMAzC+dTO{66-^m-T<;bcL{XCfc#cmlV&mN8z6<{dL!x$X6|(C?5*4 ze%T+={Da>=E!8XiWOqJpw;x4W>+eFY2)>D#yxwbZZbK{mek=B4gq@LS-$r>}Mfb56 zzUfG9c|(R}Z$|IwNwfT^iS<_T9s1Ex?)y{T!Wj$h`1-*_%dXLk=IL#-KSVLHjumHq zNYjM8pMZj|G1%fMT4dpl`05&U4m}pSeFH zI4*Ot=GJ)M9Pxx4r69{ZE$racd-0tS_lMB@*_CHemc7Vz;8V(9ezmD|-hZ`mP^6xv zA91ppmjBJxh$qG;3c8lxgL~Qj!~R{`AYWa9LT*#A;I@%eE-%Cn9MYz}GQPKFZ9(4& zDD`*O55qL3rRFp``%8?a|8cVBmYrOC#48UZ;QOkZsy;npphKyLn26g;X#Wf79q|2* zKuLaj=+-A)%d38mZ|&!beinKA3{5Z6_Nm@08x>|JC)GpIkUiA@jEC;43+)ef<(Yjs z5vd#u~I(amS%kKlV}XA#NS!PfhB#TrQdAqMlo{TP^{e6e;sz zKxzEDb->cox;RfAnm@bcX;;q*+R3GY&&oi8;<3HI)IAr@I<{=+tn}NUKec4gOYJOh z5aq`L)yQomi*cM;axN$!TO z??xp`hWAkKS~zML2i{ze0({!pAX>7dusGPC@$85!1k5+`fR+@K!;l;oiAnf*8i zqcvC7U+l_jEzF;q1L+!2DeqMb<0Vz^cH3tZ8w0-bfKt8Z`vy~gH@4y9+bQ=c#j>%W z9|x55rNE>;@AL6i3%575E9WDPC-G05MOk)oH-S%Soq?YxGv7Ovd4My_PEJ}!VUxGL z|F1cJF#-9?2TI_3wIa2%LSqLi+@5G62qyuh_E`|Wd>h)Qx;|lFAB?pAr16_Lv)`^K zBVUgJ8v+Sj?-m{L7G79*Lj(PW(EAp&WOfVarU51SQgqpw(_UwfvDZbP7^$ph>6SmW zDTpVHo6*lWj(g1=xoRn4^5r(r-wu@Y-7hLuIHY^bb1)s1d6j)RZ?7ISHWmEc0hGY! z?fxa&OX=T_b0-)p07~HuL54U9y$&r~{h;`dL6}-DXnl*&pfLe_JDEouOu!ogAVY zF!iY$g+5>U4XPwfH3lloEdpsr+Re5BDY zE57QXjAO0C{HaNLfuqh%MSL71d#TIuT@KDLe`<1jIrqy7nul|{r*a|jBHve2$FWGu zGc=z4b%qDQ_gtW~Ph#338Lz)x_j7#c{5I13xqC?UN?(ey?BpIsdeXXE?3%lTd~x?E zsr*G+o+_XA;@KU?0{SB;k4J%${^F@+oQIF4dE?t9<$uBc_`U%AtprN_Z+DOJJH1*} z;~Apd=h?>cr}jAFNpjFNu)^CqYewcMx4D#l+n6l^{bHarPA9j1-dGndS-aRJNM|Wf z(kJ2;<^O^4uk`h$C&1s6z$!oj*U1}?do}Vho-is&(RU;5w;}f((4#QTrS%Z=DYZ^K)ef@I{(s>pr_NggY z{`U#T{x$t*E%G2WPC)C{{@-m&Mj<`pNukMP4_xy+5`A>1+l{ zdI8^$Gd!2H?y2k}G-ew?|1wZo|154|$d>}6VCpOSbu`-q`j>!G`z)BTk@oF9Mu#Y= z^-ufbtvx*?%CeK&g8WJ2X55lr#r@#L%DQmmdSs}67J2^Ecw52W8$fA3t!*z@r?Ve! zIyG$32xVT?hP?)QA5dzaTH1<$?xE}NE?kqNj7Rm^>!9BTl-kR!GglnfHD)ZdU#+y4 zNcU6KaWg8+pPDrOZ5fyfyY#Sq`^d{PRByGff7)wj8haDv_%=||2mQtSH+nV0qsT4Y z6gknD?Ew8Qpj3ZboFgx1=4-d=x6cvgPc3XdW=1Ui^=rH3xf|uN4=9aCj)A`)()m3w z>UoA}wg>ckfl@uVqtf2RI9B@QvLF1t3zX)~{2nypz2{1$|2e|!5|!6>`;q;A z`yR^U7*Lx36(3GTe>guw8ULJ?o!nu>lj_}hV)$#QclBQJXm$|vhk(+0h{u^Z#miqi zm3oL=A5`VMz5Wo;kAT0UK&jq;cyXKXLt6TL+RLA28V=+g&#RMHH&r9AHT7pN$XpOh zHgbxc+`$$dyY+6K&VD|Xd8+;LzHDXV$rCzNN@hP4G~IRNw?u9SQolPhOUcugqt+hS z2KG7r`uc=ZgYK?$X1UVF|GF4-uS%>8+!84cduTa$XboQ=88edec*>m@oy*Wv{)ke z0BS&g0=|dulARLwHpT%v~b?X5_~2KFdE{FaEnT$Payu9>GTvi!qnP8 z_CoKDz3 zk-eQ6kIK_TvLgzyizBlF^S!W(@?`R`6UcxR&!qEZvQ|I8_2}@PF6O>eW^+TT7qj2g z684U$M^RsbU$Uz-TEw zKFre~U!*eksp6OquR{5decQwjH&6J`^4F)-Kb3d4L9He|MD56M1DRAN9en*2X7S(2 zE{o@L01taa`QUeL0B?`05f;DuL_UJ$$ID>=>>RU^zNnWR9wxgjlaBndne{auVPPjG ze%G>jdtHV8(p<+;at!3p+Mpw?_7AX1NrioC7GoLZy7Hc=(;t zHRJh3y$QY$j?3ct|0>9*NiXaHshrJl(e)gCLpc7GeHBvb#s%kh3pD;n>oDg1fN@_`xxRII54#7yn;_ZA-GcX527k|; zlCo7Vn6`Y#l#N-Nz6YjcDEn(ot@Yyah*u3r;QKUz?twLXLJMVHZFhbguBSwq z1LuwZhw~+&dT8YOt2(c)1ir2SO65}gN%?X)%6)buJN9nnst^(lAR zD|dS})03v^U&?MhXx4sBRirEOOF?db=Hu(;m*IB~k(Xy^J=mWoiE+W3ENsg!GSm!^e>zj{MPlX>J zKI?Vg>ASG~{Vdi|j_1p^)>B*Hy=XTSEZ%%2t<&F3=bJx^x9B)oymfw6^m9@F^t&_e z%5z@k_0 z%ySf4Qup&cTU=|kM^4s`)dhV$plAma%)j!$uVnveXf#)Ztuxu1mj!gu-x`Le*U~&! zd+gVuj{&efK_AD&3drJUg2#AxdrRV?0%a-yI!?RHvk zC+pVPiA|OLrx?plt_k8*0TL8lRh9Y!X= z-rl#cEy*SGDSi9hX5g{n6JUJxRW}+$mdhjik$oY2_?^jFUw^-b(yaRJ(FFptk{kx#4^k9DV6s z-FINpxws=mUB&zEwb&fZI=) zD@5vgbWE5(IcYp{tm$d&|NcAfTNLAcXXH!hT@-X)`8%$R4WV{c_~F2u?@lV`5AFJ?smXdHokXCd&+~gI%=ZVB z{a}XRob=v zaWhiAPU3@D2>1Yj-uB&S%1)H0>yd*1ygfIpd??}sXjZiw-Qe!q6^y7ficzB65dTV_)0rV4rV%>;>o?}zQ zIzvhMDUG}yLi@YM^1{8Ke+G*uV-=h z==}Syx7JrVSy#)S+%&|K%5ClA?~pyFaSn8Sic;@2+3lde11Le9XV_P|Ic(OyR*~0H zYzhdc0%bYjNg(@q^HJsQ-`{Vgd=m$D+gU)r6ZyIeDEB{WUiB}~KWBiyxxgAgg5rJG z(fn^!|6f-1@1?8@cVII?cP~)VmweyGkl(b=pPh4Eaua1;IEHyZKMN?$i(NC_M=;)= zSMK$&JKhHLyOGX4K#9+Pm0our_`5&6T#{YIICAbj#O>K{?jJU8E&<(Apfs;4 zEPu6_-^P^sx`y5U_ayT5GEmYBoKMX$Gv~Y0#|#O7rQ0wBCoj=IhStJ+)3& z2>Ru~@cv*JWUBXQ*_ZPxkj_e=1o`WFlDsw_`}(dVcj!xz>r0{iHY&_cPSOjCu6dI7 zZ~3FNYrFE(z8?837amwNKadZ^(boM}}i} zhoYC)5A!D{&Buyo9#}=|-iH0|No5^6a`_ore-5?|{H+H{>o(f0+yCq9iUEBC^7Rr> z0#~Iq8Z+%7Y#M~V6frc7O0yt~@}(;QK@bsxpaLoesUo1j_oXIscMFn|_`)#8tjxB-;=913-Cv zz37iiRR8p+u+9Zpt$*Qrn5ztNpZvqnJPMlbkH|h|#=g@VavThT@K7jmT;0-_m&J#D>Mc?jz2)&L1rFO~vRYSUmP+!K}of6V6 zg|w_8E$&Y_4%Ki&k8rZU_JldUf#z6dwJ)mtiScv_(#U??v8lh6v%*` zI3HxKaO1lgV^Mt^=T;M6D?tygR5#Y>VvD!$JCw|MEcYj}HaouVdC!9h{5uTc2>z2h zj?MU~`o7UIiJUJ~4|4Q-Te^MniD9t6XWC^;0f-W8{!EhexG4>ZIy6Czc0Jvdjfm16V5?h9w^_P?ceh7{w-H}a9&g<_;F8*@PTC4 zPSYQ+NOuvBc=p5h^sGza_PoaRX^{?X*(Bo;>5XzK^2;sCt-yF5pV=avyMsTK$n@g#c^j0AwIZL@av}U7KUi;O z@C<)+a=UzEd-3mogZPSc7y9RgrZ10QCVOLkjW_0>a`JLLB8jJiuop@EF+wJ1McpgWBf^%hxw#Ua4Q>Xcco^v{_-^iW?iPAyi}Ca5?FGoPmj5pkr9^9@Z^z&x%^xOddHoVt_{sJ>#7j+OX7heqE z;kghG`i>sFre%Q#K9CtsvWI6NgWKJoyS>5<)PUl>u&?JD@sD_dZ~S~T^Izo&>h|=G zUyUbtobv=D?g;P%#k#IEKFXQ1<+vl`={4P6X#1FXuc(n=5>K$d@gndYa{9|pJLPee z=-u+d@1t2i{BD3Rz!NNk_Z0)bXLYsz}i^Qgf7-wp6r0Z1U(#rs*=KMj8z7d#%bzU~|Wy>1NE)6Z7Zex~uXRn~K_{W^_E z_ZHAonlCt4Hu=nxH~OB{DWCLZRJ5cg-P{kj9dAWE$!VOw^s>E<0XO#vKG(0soA=v_ zd6yKP_ti$UPFnKi&OP7luJFv-oBQt~zol_(zV~ag!&hz6ww8{XN_nw5&+t2Jh}X?P zX+2)6|0nS>jHirQj=9^;MES1-e^UJNOFjCPNAtZ(e2#aO^K@3rne}r4k2S8iXJnH=>O1+IX&m}a3zpI}MDEjrz#?UVoDAk9gU((+3Xi@JB zbIkcgskf0KJV7bn`FJ8`eDS3-eM-M#y?+R|d`kT=#VGuCBG{kb(G2O)94Oj1a>mxE zd&I$CS5wAI;g9Qr!?UVq1ZxTXoIt64$yxN68T&$UCPY(&FN%hY^W)}4i zacg3Ke8jG-bJt^S5l#nSNcprqP8%G5D(Ba0vUZSf4;14Ha=M$%rE*xvwj{#N@x0{)pF){F!HTGojGXI_{BJfZoIw()X)$~PvKmN*g%D!YHmInEBpfv8Wzxq4P$ExVO^*WZzXK*>Q zJ}$_Fep$e3K!UuJ!-y9}=F#pxSWDSojAp$d*9R!IXWBY_K4v^c-|qH>eqx2a?ktef~>N?uLhK_njTW>fv_-+{tVp+#`Te zJ9uuvrClDk|AiM1HtA}v?{Kl^Y!Kv!0m}mkayy(l=Wy%$AWt+`#^q6LFyvf7X`Y%_ z&bI^k{-u(hR?BB7Pf!|XZOwjfH^M9Wer!0><4&NI4+R&0KXu*cc^CA%8z{{?vTt?M zd7j-hUpUpLfijP4z_KAf5-5!a+f>~ClSg~^-QVXQDW|j(R`2nTFzxA$MR+#>3Gz48 zr*VP)T*c1PXyXS>8v~T|JXa-+c%}c)&Qb|{mxI-EZG9XWZo4Ga6J1r4CpZ=QOZlGv z?#g#O-sK%$DZ9>P-jBt_7`qqp6M#}X!B*a%=V8a!AAPEzkFs9Zgxv@E`+-t@$oV#x z*4@TD)3iz3#v$#CwfOlR;}FjH(C|Jy@YP|D#`rxkCGk54tK-4&&pD~(Wg^0V1Sr<) z$?5h@U+CcL-Yt}R6m8nmn+$)_cs^p;!!)iNM_bU#Zezjmi((Hz{$Zfhzq|T8bBxkO zCqAE1+UrR6AmkqcO8w^6h8JnRS*ZNw@Y7Q**Vf95_3`c$q=y?Q_PfZ*?=b@ZCwN?N z?d$ua(C;yz)K9zmjHCUkBd5-OHz7+|pJ-}vJ=yP=hH#z*O6`k(z=FRV?qCJ~fsh!W7KAPtJ5p>n|rus@h zW@j@X{{&DPmwN}s(>dQZIw4$LzpiQW1n0n?l%Bq?R;}m#k@j=Q`t>Zx&jw26MY@lu z=*KT}q2J>`Y2NtUmiDwRWjsZ%=RD|_3zX&^`R`5qmd5jixi0l@w@a=a!R?vf@g(B4 z6d1Bz_bVMoZqY>PA8N9NkbfE|_SeX{=g$%v)4ckLp6W{f5NYxRm%yLYZuu6pp?esO zr?@gtwV6D@#qcNf@4UY))OOH%du^?Mu$u3F$1_NeWk6{?S=z5E`gM))(j`Bnd_ISG zy$>t}B;fYLZh5Ih#xgg%E%2WH>dErpUI~=e`S`uSclUIyDL#Nn;|!8aWGf*5JW!ek z^uDFaJ1C!hm36mkUtU&0zk@)jozEWqBAs|WN*4oH$xz1E2_{eQUHFswm7JU2|Hk3Y zyMxZObvO614KX^H`y%9D21?^{yUsgtH|a5I=B{|=nf84WKj*aSbc`okQzF_7J-=^E?O_>tON( zx5A&)p1Xd$yExM}Et=T3ean!0q1HkEHK0`P{T*hI-8lW(URhaJjI}&I%SSjHfYSUS z#@G*V?Y-lvE5()lqb6)UBlOz>l+yFkFBNFM;??<~ z#~f07Op-Bd6XZ7o%K-`4jBR4vvt1e2*)8Woc zeL!hl-}U2jbbioSXRoS^udSYg@H_S+oCCn>Kmy|E|H|HoBxHEotcgFj!z)o!Q4&T9gml9dI znLS^qy*r-Wv0}%xUn?bX!rA9tAP0Y}D<@n$jrW2mM+7xaxQT~6^r3UqoM6?B|1O9w zECq7CI1(YtFxS$zJKh6{cxHU}D86S03c{EMH_aO~{SgErLD(`4j3u$BZ~x}gh!;Au zHQ&aLf1@Mf?-Krj^u3|BthO6x#<7R=W2xQZu5PeS#M|AThf4^(yv4W8$o^9n#HVwrE8A_DCLzj^4zIOl!W}BRx z2viOR)dZ2wE7DKZ9|T1~BqIWukzU?3RzrWDft$iJ3{7h3td`ylE>Gk2X=f@o*mfi2 z^6-6^5{?^gAJ8Ot7qUBhjLpT)i(Iqi$((|a@B?&Y31_!s5ZEy}5r-Jx6Ld;-6FGgv?UX_v|M7}bZj zBbEE`@EA}K%7|!Y)SI_6SO@*N0=>2aNgpG=f@tPe;vwRf5BWX9pU?+xK|CWu7@4W8 zI`HRAu1_`$>m~Q*ZX(L@dIC2CnglfHPw~|BM-bhJ$i@kqNKXyVPm{*iNK}G=cCRpLW{e`^Gi=vD=)%3#ZiaMId~U{#63{c!$4n zlurP?%|ZssH$tuqP+C~@)u~Sh*YflenTIS-#Dmi_{DEY!Kbv`=N$4j{blm;l_{8JZ zE$E)FZsr^~YK- zr-N&qUn)QDq+MCSZeq4KVnQt1C;Ck8@TbTCgTCI{ptjl0^3O+w7`7AjgMQEX_%9HJ zwW8l>wsVEG+CT|%o22T*CH*<4lo#vmytReC2y>&Y9#=?{^1*+4GadAAp&#Tdp|lgx ztPbSs0!4p8PG%67jQ52_u(DboBG~QFuK`f>PvrDhIE7r&!1(jyjF8c2WxO!QZe0HL4%YzrZ*iGG)U_douC zNKc!xP!#^cl-2Z9{WawZYt4WX_{*201EBiDIu*H|Euh#ipwwO)7be?N&kZ=7Im9GT z8e%lDYzg_UKryZ$XU?P5a1jBc2@ZbekZcmxTI0Rc?z(rb`^@9BZCzh(U%EMN@VNC_8{<&MpLI;aT08g?;}LS6i~5Z&;xE*VX6xm%1N3tMrSXKe zDSibVTo*rJAN;yH4;YwP&0NeL!CcDJ;Vx*5k*ZUl*VlCy>+DqM9I(g&Lmf z4EZ>qR6d5)N>v2Cde_nrIvN^sr#AqQj z0rF!0D&}SM+BW7hk)CaocFF2|#cH}luw>|&1(ez)->Y|1`*PIQb5<#bVj!|J>jwE= zK&jr=eDvho9&OV{?@c|U8pvwSxjiQCcV+%yx43a1etMRGJ{-cIuSn&Hy!stZd?y_!m6zB7E9n5ezVQBA-~t^kR)?iR zJ`E`4Uv9;!)c@J_mCx^$ajVsGW_A1$Fl?6zJ;nS}cN!OLU(v^Pl?!eD-W%cc0g8E` z?p*Wa`)J0Ce!SZk`t<`!TnCRoZLB}S83dHtYxj&Vh#-)p zTXy|LIXF`<#IT(-p76$h@-C(4^|8@B81ZrerS>Ji##U-yZ2xSXLCPNr!S5J?aE1cq zaoDy;ws@`=gT=$4-~B*oJfAf&d7Hy`$H5b<-$3QyeQVROT{iql?Y!@{hBWWj?@Qk3 zRMr_*(VH0Gj5>#9GImg{?P{4~?BT@J#NASXVS#%BX|bicJ+gfcE~!0v|NJwRzZ zpEq?Z9UMi!Qd0ULT@w^`yHq&+rp+X*-3L9Y1@y`J^$@jZ7=H$bXSE*-znn?sUDwDo zY&RbIN$rxWxBES6C-kT2=hG9pBHA9H*e@Zcao{_D`A*864oBWd#N7f zJTU!pkL$pksn0(+k~Nh5(aoa|!0iS~FJ%-QW$tC`gKfe^Bk-7 zL1R;q9*+Vgm{i@11GU$Ip}=WSY!*-&f7)zJ#!S9%XaApE)0SWTAjG_w+^m)L8B`uGWgWDzR>({fP*9xFC9<=*v z>~VNAGM*VcX@Gg58y8Drb0Gf&P|AlTt-e3($ZI|4kDn8VDdUi)Y%b&<2TJp!OJ&Et z?%=Qe$~-6hd0cS68Gbvj`kM#+76PSx%KSx7ob<5yb6pFc%2dWnO;|4E=L4nwpo(si>1n;4uv#A$LBC}{X?*P}KKv_> zd(`ErFAqvk#!Gcf!rIgDC)Fcwm%m={XuAF9tI|{+Ubi!{#h@dOQF{@K&iasZ5??A^`Yqdqi3OC9#F~$t;iZds05)SM>GWT0QbR@)4n(Kxw_sn{(G64)@aM^M_Sp%DAAlNm$zof6}%0}wN>{6tnO24CSmO@geSGT z=MG(wYjj1D2J-2ndtZsX!m!(H^_Pc#IY7y3!;6V(US}xz9)9@@F4y6YuY>(X8kR(^#ydI~;2mX??w>ySMdzn-Q<%<^6n(WOZ*NbfBbjh7T@j3-}`#tcPB@2exJ_mYx?6A-|x=dq)(2|JGDgV z9*AEGH#`>K4ZnB7d%>d;;fn7hazj7g!BE%H6z-3fD>eNQyc*(La6X3!7ijV@da%+X zb8i@#EBqzHKjKGnoR8t;2E1yga-Kp{#LFh)3;zsm218AkQ#rq7ZW{lt7f8p3c)q6c z_rhO3+=BPu1>dFt;zx3ZLAcbOFwBGWCxc*`{!qM)_ zrv@)-b3F8M;5%^~1wU*F(qHH)$^(^KgQk?CluNfrKT+O9ITPtC@)7YRo{DBXsVw%X zD?|4d%V6y*K3Mvb32Df`ZZLF|2!09lG0QjHQn<$Fs5~2(C(>2qgOi>4-_b+k2EgD| z1Cjr!W_dLHiFDPR?82P7o~)zk?9JLUzt1Qu^cC?C;U}@&hYtR4)kiRFb$=!gpLj4l zUoyB`;=jE0T=hFXo{Mr)P8i@yha6DwTI_-H!}UvJ`S)ed|E`?VxHT@7%D--YGO-xS z1Lm3%(KYc(_5aEdJgHIpQI4 zIlOmgaYJD(GT2D{Sp$P%n}q%uNN16b$Y;S96ZOQM#`#fAptsOdgIlBv9j`OO_ojoV zh~EXjNyvKWA4e@N%Ujvt!cCp(M& zpHqM8!pRF`vY*JFmz|qEKYKw+_LJRE_z*^5)Mmvp-rd#duk z$`dM2JfTxp;|ZPOJfU-U1jZd=U0WLGpVcoy^d8Teb#}{mCiZ2FXh=Mvfryv1j^Z5g z6Y)Nr_QQ+H4P$8{-a6U?hOLtDK2rL<+`CQ>duqu3<()Fj^OeTWlyM~?C*}oZ0{)DP zi&+1kAFq2MCHR~sRg6-QD+iRu6UK%8c`XtuFBqC&@>sZ7bMu^bY4|G-B(Qzh7w68m zs~7Xy!`^3=(u+RncSPX(BK<1`!ppf>K%~AoxbtNxe<&t4b6r7{6KPy(Tui}omwh?<7j<2&o_WFH%}9@mfpp2)s$Upjm>vzi zsIvm(Y`_}>{<4-y!r8`CTIrUOqdCbHx8)gVLfrigjX9e<_;&qZ@X4 zw1@SLvogy3E;58CB)+33k5R6TeUSg^`Bly23EhtT7Ui3qu`8cH=W)MM&b2f;!Q|<1 zu>_MRWDoUMkXY|KkN4qMm)}ynm$J@W&pd}N=8>Ykq0evwIr{fvTPXQpGsC|X;YsyR z`{I+A9O4{DaJ>z8{XNkC@XuS_-wS^}skXbd5wB>VbbjDmL<8c#UC|p}bsstWd2eud zwh*3>RNrIQ*4XUP=IZOrQA$2Ugz$uB#z0o1kFE}5pr%Sl)b#VNw=AYjYgY@qL z6zw88eLp`+`>fxVtnKMSDojf@Z_OhtX6+OxHgDXh>*0t$<=Y zLQeMUjl_G*(GOOXFnO_Dtc`i@s5$&e`IpmT0$u!;r5`K|@Tj?19o7``&46;be!Xu+ z#?OVGQPzFKUvCWF54L)~+V5xq{aOOA+I~_$9UPw3b=dIhQE+{aFb!L^gPu}3^KWiP z<*Z-^5y!7Mq;U;NHZl!cwS_-1UM6SW4Y!;|`%?7#SnZ)714{AW7qA-_Xa4FC<903< z!#Y475z(Y_=DT^=36I9;zUkk5N;wPV3CZpC{WYju8&A=vOStWIaCwPjoslkaK&kz7 zetntvg!ZeSyR#Oa_4?2i`kC`+xCz`tO49!GUVY!Jp3-kdv3STO0Hyu5tlhPK`HzoZ z0z9F9h@Z57ne)FPbgrHr_ndfTejCfWK|T{GwG+OwKYi$N(`x@Ky*es<^F}65CCz0j>SMHm7jP?Z!b3ZuzenrYxT|>*` zrEuGc;PCv8-bk0eK&hQ)iQoV1xcYu@6zc=|EMOHNL0+Yiw4d+ghN6S}>F~z|!R@E@ z_RMO!^hbOK0HuB|XT{w|P(Ia*5U+jy4T64;0p)a?8h^pzs`gn{)r&*S`6U-iW`iMr zH&AM?^D?>;Kl+LeK)1|G}p_xSQ9n`@*{v^{fC^s z2Dv9a?ko98)h2}+f*A_=VL+*U@g2UWz@zE3<6Y`G73=NUaD;OwP+AW;am%vrJ=$qw z2SDln!Y|js^)LMLBIm1qkHTHhFB>S<(a5>Ae|yc#Ul;v(uTju%EKnWK8~0Rq>!GA) z6dMisF+iyw%gM{y&-tKaP%t=MtmebDZ(r^~ye5UlFSbdoPd(aOZO$Kjvx{;8yTdeW zbwB(`;|bSq-(XyDYZK)>aBK)qNUgWV=e(7a^t{&T5)r}^66>|3pZC$@6hC9#rm8aT zi3z*k3@$GbYy#48B2ccMEw6k){aCpUA1_t!{|f*7ht>X1)$;Y2w#6DCMj{*!d6~KaEXBIBuXc z9?Z+W^>sRrPs^>Xzf|U%_00XUDexzK*S&h{yXdF)IK=)G7qeT|Gu-qP`)EA8s1Tlz zq$it|MTSSOlY2gu!gu&9V2! zRv*R0x-9=W#pDSsfV^BEhD3hpiA}wE@$0LHnEQ5Ithvb(ng@T3k}lw=RMHQB=9Jv@nMc!?H72X~gIJvh1Pog(M)>K7*c!;c0+jl{(_P%Oezr$nKT{3lM6WiawnF|5p!D5K8S%9LUa0p7 zS#7T)OrFqo=qZ(_aqs_0<3XQZ&I*ekZMA<0HEdN2`VzQ@oqUnfQ-6wn9W2~>B$Wr! zJ7CyqzY&k1|C~pc6nNb3dCOnjo}%m@HD&KW^j)CTKX3zhmu{mAwbgT#)_G;`A)I|c zX?|hz&{_pmLU%{Yr($e^K^vs-vboqrpU<_ z?f?(C(9ZK&EuU7~U90{yb^z(|0Z^K6=C~WsevV#ksk}(}Ly}SKAmj^xQa?gX9ftop>#)-fkj*pL-pt$poCH`e-|*#}NWC9#)J?65h` zCNMH~RQ`)iU6_$d&IFFcmon_pEC8P^vnzj3d^tmo_(BE}PsiXfebAZnNirRr&(woK zt`o;RxaoMG;ZN%fYzzJfcyw!_hs4h_kzu`M5jx@B07ZC3WHa zvau-$54@@dPVN>wGp!eX$9pZ674#`T`KT?CWyjxE?9+!6Ogmifr4Uo<6{M5k>zU~h z2Yyfj=WF#%;O?~|T?Hoc@O&a2fm#B1DfpcwK~JDY`DR@Ip9nr9zQ@FOf%F~Cc)+vT zfbY2l;yY`Tk#9&(4JdeZ6rS;!6Fp#OsV8?kd!c+FU5QU-*nc{J-(5g=55ymC!NVfn zn(5Ao2F@jijA%IR3<_-(zoou=X`%(&g}-DGC40(K{Y zA1Bfi`SUdV3wvDRdo-=r^hcCKDu0IC+XLkr@fPv$igH8dVQNpa#YMn96Y=yxZ}a=$ zGmZ+RpKeUx^Q|IX0_hd4KSNV__*y!TzYF_WaJzwC zpshFmt}7ki&*Uh6C%Z~Uems=U(|1D}iyFDR%(VF_Jpai~AGf3nYG-raxZcMtq27 zWV~nTY}Uy|s|O~-F4#$wx5^^lfRvs>-r#lKApB?W_jyPk!7n2on_++Kln5__r^hDn z|Ad_@p@-nFxzjmMwiNhsqYy7qKemE*+86IdzES*ndLy2ih_8r0^b~wKCi1fntDrx< zdV`{Bz2d16-Wd}YL`Ddv5MhM2_DYYcz#`0M89zxKqITqUiFvhHKalp@ za>oz-%oF?DGRJ3UQ+_Pab{h@*_XqtgIi! zn(-|Ud66IF&4E}P0&lE2aQ3^$KV&` zt#5MoZF`k@wmr=Ce%FrR^*`(TE+YLZK|5)^IPdwEC&^Bhex9`G?{klYewDAHXWL%- zeyRTauI!&!-8Zwk9^iLW<%($3v>8uXAVF@iwr4!v2#?SGK$5ag(4L8QNX*Y9fA;+Y zzVWy(()!U-htj^ZVxnCT>*pe!^kC;Lp!uC!U(YFJwqIPG@XJeZIg2pcMNv*9Jy~v! zuv=AF`)$_OfkZ!2i$_=!^^lwe6JpPM`0F;xesK8r+)Mopeai2!^ABouffBez?4f-Z zV}w*!X$Kpb_m$Rx2Pyx&73=Lqx%N9sN*~nMkD}qe4Jg_ha^_d7K>M>;*B1R97Yl#i zIym30u9H}=NA(b|`an@H$Z0!PxDo%7Yi zIaNlQ_L#U>Z*~Xd(|~1w1nza8e(cGqwD|G7yrHJOF#dCz$fgor8P-?C?e3 z>HGTmEVG^EVsR!ACemvPZ*yJ$Gh`FC~PZ*$nc{fl~Y8e)~<@zkGt*8?ajc zg7ZOREf7viptMgHJK-(j!(bmWI3KLmKda@_?`RGEl0x;o)Mb2ugX!l+Zt14*Ry&07 z^hEzcpNZX6@+XhBa!!+N*`1Yr@>XGvmjd$)u9n}?4*H=%(ByQpKScRAyWz(*oGp~| zUM*RB`0E6e^S#$${ahhE?i-E}H$eO#= z^T5`_3%6Vcr;EnYp6X`P{yK+S&%YO# zGH-0d`a*sXP>R31cq=-8yy?h~6`H7a@tU%JkQcl=Nza&SUYf5M_RZ@m{g~DC^g9M1 zyn#Szo|9L#6zz8#Ptnic2SdN%K&fBh_m(f@_n3%vIW88%T#z3Il=^qAN(Aw13tqiE zWPWj_9gH@4dPCt)st-~7PSSY7y^HGYPNhEz|DFh`98n12&!?qwME=6h_h5hF*CW;6 z2&BhIpj6-aJ=?44l*)>VN_y7(zj%87yN3~v#yD{KzLK8d$1gZN!|zwr_>DrmMgyhs zZuZ+#XuM=RMSmW6Ec6=(l*SvzJ!RVa_tbVRObp3~yCHu+P#Pz1&ALcD^`G?yrmV6q z70K>_{Cz;Fop7H%{tViQFO~eWnLNFF;ZLrAE0(?vfB)5UG2xf9;PM%6eRnD6|231R z_Yl%k>L2*HuAHy2c2~N&9?!*M*+j@s0!rgn_r;vu9&KRP*UKL7pp+M@?U@$B)05`g z{M@9WM}$(&!e8%^zDHjQzdcj);bEl5RG^feuHxCm*LsBRiyP8V;aS!(d3uk)pY&bl zm@0H%z44S$;%7ZQryv|RP^w49`U`(;ecwsapFS0C`P72u=XyRo3jH1n)zkT6&D}^B z^&D#W`5vsN)%vHIJiU$3Q~GXxzooxBPTX?al}FpV6+T*bHXZWwfztY}R%z-nkDadn ze&pmxX2enRF2WQ0NaXZw*T^oO z{yY+=tb5x{p57coK+_~W^Bv9theo?j`glHgz8QW$T{!ht3*qTOT^;f}HKzNOV85Yo z!t*=kA%I+`BNk1xn)y zejh*GX0iBGl2SgKm^{6w;ZGVDJlO6g;>l*{M?$J8O#x&!8vntB`-MXIE(nVv>Azse|rFmZV=od*(S2 z#eH<&CgvSdyh$?r_Dt$G$e-18vD%OM9jg$p^*{-7OJ@G&&^lIMSthxUvOeFOy#T>i zfKvU_{<70NXZ7c`1}tf(>}xk=FG79|P+I4+MOUVJ`vn~ooD{2!m!jB9kY5dy#xF}s zToUbP(XS7#g?=vsYXAxIo=wX~J6~LB&%z(S1ede$^Ii4#D)h<+O5^$5-R>g}Ex%m1 z|IJeG2dT%_LH;$Ml<&TV^*^M0KKMEQ;Ql@QajU9lxb;2QpVjn?46)}WeRt-@bd4F& zrUQu5d;L||>+`|&J^XR9>Ti>wh^D;_yb(y?t9g3~=GD#H6`!h{gQ#QL^Li8VQvc`P z)btOBmsFx+yc z=EHVGUiTZ@^+AoF z7vJ9rl=k1-9$bm~K;=KUK3L5^tM$Qp{rfwf$vXj_Nfed!8nq*4zO%{8;P!F4@b~7q{W$Ix=g`gb_la!9j%mMEI+?_DI?2F|!VXba zd>5D}^i05ag*zE?PP|WoTd`{+_!e3se#dw6;NRN~?}37M;ZEYbm@j+c`#?G$p1f<; z@MX3Xw%Jv7v#VhbettVDnMKrk*uS%MH}Ei0xIa42Zk*Fz8~UA7o5!Bo+*rgz=-&zF zz~QzF{ziA`*#ihS@gIzH4`|<=i>Y0J@JGz{SoOAk{<|i7!xkyp#TQ zgWV*gmqAaklL%NFcu>|Q~P0jb7!Mq2NPIjah z18QmPR^!QJ25%-B`Y{n7pbseGOa3(d5ptT7wbcnZ!vwzp@o@*@W5`o{jq>^;!V&Q& zeuwcp4TCOJ-#0quwcgzRSie3z9>3swc}Pd%kqCJM^F%m6;$axPw_CEf|3!Tu50rQr zhJOw5W6(p?s~ZL(UIXC2FGsTTWcVXqhk+W<-5>4HApV|c1jg_FfgIUjj&8U$pcm*G z@sD^KGxM~`|0+*Ix2Lr8YCMgdoTt&ILE!w)#uaYlyY|M$Jde2t36QYt23c%c^SV3BcyyxJGxc*}Ye|?MDesOpB z>mgElkypP%tS5kTy(Okn zd;OU{GOKO2LtLy0s|ERJpeT3bv>Ch?<9!vS{@Kj-tv39L^dV=Kb_1DKYsj|&it(%N&$;}+SC4}GKdb9}S_n@=^rMt6m#Wppd3IM5rMy`0 z|E!HCA{cd4#>0S;o?3^dU$_EY1a-wdGW@5z~0TBG~k<2O8#^Xyp0@Vf!t{w7aj z65dPgS^mA74mq@*H##PI?lkS>aewKoE93_QrEzlp&EL~JXV9%T&1u!o90zc*UMwE+ zgMeZlNzPR>{`}qHN?yEpxx=Z9BRiTrjsEZ_wS)FC9}|y3zj@`iF3P@W8kx1$FAhJRL)N{W66;30hHQ#W}KHY zR&dnuQXSR}^4)=AoK4OX+seL6?I&H=Uu&1byS94Iqt$wAeH@a4cx3{md0b$>%4av{ z`CQD-dOlr%2{PyzT@_^)G5$YvTJ>8M5-ms%hqW ziy=lEZbKkH94M`4u`}Cz4lPOFLQw5)N3x-i7wel+yQ_^kLVQF1DCI2tc|h>EC;a*l zTyL$GGmVWv1nvb&^Kh?mUSD5V{4-JE(RK*oX-NH_dwf5f8-1&hGGB?cyiPk3`i%if z<7;h6_E#Rwe|gvwhbt@d;s$IK9M;?gmQbBCq93 zZ#cBB)h2Cg`ImB^PWb(F34E7BfTxjz_fr4x)MuB({TfAo56FGcZ#+<1=bQWV%-tTh zPUp&Qt@P6|?0(3P14``#8@-7C!C)G5k$ejk!rAFPdg!f)q;%Zv4PB0N1+ zdmx%=PiY#`MXC?>T~E@uM^|uC6J>qE9>UX*=Bci%wp5Rdailt4vbyeVz1{sE;x!#8 z^$!I#?|q-wcdh8hJu{)-%B$$vck~5b-y7Uz?r(50X4+F)3V+i0rJ!zwUmf1+A9h{# z`w-<`j`k)`V=??m^Y_?{s=qt5cR$l=bxctD_ok*jr6=G|?B|h_+mW1n`1Z+%o0|KC zT&#&{Pw8>^s}3Y!_b$gh|JQ*%@_Eo}A@Ih4p4#s%*3f=j??X3Dt)Yxx>akqNJqeWN z53UjC&*A=_vkqzffg~f@e8?{VO8HO_eLt-;7*Elc&+yupP(Ifp#Oo=bG@sULI3}6( zFF0MoZzqD=Ppj>21X}|Ao(9$e5=DvyfX3l=@p=p25HUXZKPC z=bzPf-g>EeH{CghD-)zfXf&6PgssGcKOqfIcEnQ?b@?Iq$qS>pEUk8-o%LyfzMzyxhO)4KD z{B}@kKj_ofIv=9gdPHa|P+HgL=jZ9YyTV<{Ie}P{r?CnCr1f2cZ>Z__sw6U{K18t% zklzTD#)H~<(@sOtpF`RV{k8z5`QOIvPTEH|p2E6U#cIAsus5Ke7bxkOaX8k--1`1Q zy+I-U(Kg8M07~tP@0|hp4vkhd9F01K%>Ukm{C1!O`IB#<`y+k-%&vHFe`K{Dh1ye+ z`pvvWOKE;Z50!Y<2l@C)uGMY)s5+ zE4JSd&v^9P09)W3dpo$>0vSg-KRy3{jfU6WFZ_x3%}oEA@igV<$2Y|B_q4pr?MZZn z8~*87nsL7Us5m#Ci1Wt@u%iI~bk1JWA8!|qWY@#61JMKD6ZS&f@d!7O%ei59;%E}w zK$D-*o!d1in~3}Wg}(&o1-l;&gg@mwf@h#5u#aXvdtw${yQt|8*>5nA!snR4QR@zL z0#kv#aKC>d(*JMldC;*>&3N!V!5grPd=Tl=348^F<3>2dC+J+U%U`YUa!y_an9b`9r+;AQ-q6jq~o(j_+F83B7MaBG?vop zqv22XOa@;?!~@}(=huascrUbQwV)3C?-AuRjx9f-XRye}&~m`jMaV2@FzMwzIKVjd-g?!OO{`3Uj$%*m|{qlf9KQG)2 zD9Q%24J}UR&_5K3lLp%nlPvJs1UZAN5 z@Y7a`W2rFD$6zUd1cwgN}{BOg3suBRH&ka!XzUeb6wH@)0hkAKDb zP8(mni**`F@g4=rE zJz#x0llFB;qIKB&8tNV6V$I}re zPog^XmGmrFRPReVhrsuFOXGJA(I!tq%%4O$(eFR6e=V?2DB1W}GJvj-U1LtgVlSpDw}euHR9MXQb8&DD@8o zo6CRZVUJ|3D)(VxFds*YV|K_l5A~;w`Rp@~yR&`)nR*{>E7P7u1Nf85*%uq*S2(m0 z-;KNSnA(0eWzmqoJ=9;!z$fUOjA0q>W@SGm#^nFifj_xEjNU@)o%#B?=^vH#YOCi3 zwGf_!)V|n$@1@@_bA7CH#~?lG110cP8%6s}sJFrOJ^c18xc-G-K7;*5gxIqX{RQdk z9$T68G#FDLJH6S@I;z-=+AY)8|ujw)|^18 zd>VFWyz4u)I5wk;Qjcn~6v+1iO7j4I-bH`!Rr!8a`%UZpUn=xV1B!VyIqkPUN&Skx z-?zK2az4X)c;S}M;CiI74CvP%DCWoH%$l-}#=8frR;cn#eT<|@_m3(xsFYK`U?-!ljYvdO1-t7E?EetFHnk~?YEl0a6PYs^K{no zFJRANGU6wVUt%{7E5)=Ae!P%9AXTw9)`bm({BWQ&U$Iwd{gua^|9pdoSI3+4ZbQr+ z#|A-u7*MLW#yuSFEPY)=-N&xU21DKjl=9)gvDKe~U$5SWV!gc{f^dccrTJ$5JL7S# zKP2C+wi8zSG3);BM7$mbO5?hmRnM>YXfHI`;@HzlIY-&amUQwV0UV(OfUzHN#t8DQERUcoMZl>@=;- zJ#lpJvGG{97oeu6)$%d{dOZ-(PyFSoI*i6=KAo@mO-Q~^gw!OUH13I5_V76~e!+TL zZO^QZ=Oav>#6!?is_(vGtu__%yu)hyX*GVwIh|xiTsgQpHDAgn1LnY68Y%w42ZXTZ# zvaj|i^0Oj9D&6~}`^Qrxc-Lz*h9sZ>8 z#Dp1bh)2htA|GGRgd%f7^;|u+72W%R^IyUJSft65m<@kY|875=`?G_;F8cMexzO)% zV8}e@AMRTOw`bPt-#qBI5GeL>$!Xk25|5w1g)(onv&E2K0+iOvZM`3*^&aEIM`77*uwKrVLceE#Qa@cVe>&;u zF3kN~tMg*(@mr2~Z2{H-612J3Pxb;{r+fH+8Nj6ehJH#g?OD7Ic`03t^94-5c049S zId{>P14VvlWnE1(fQ0%H&4h(m4;EKce2N5W${@ z{7RrSp3iI5^hI9ZHPxPz_4Kqlj<<- zGuMtK9%~DIW7MX!gHdcXkX5S)Kj>x0#N@H;jjJvIWR{mtC>%B{k_y;|SHPZz14=pnF82xl`;9=|QF zDDKfz+llbgQw`5reb-ET7CWJ*wBG7{uGEJfZ=bU_HNTXhoLg%i!jq8Ke}9YF@A2vf zEN^uxv^3>-JO}F#0HCh=LM6x#_za1!z=OfcEen9O6=Wmt3?;Na` zmvGZlE!S@$d~^hwRL=5y4gUbIi+)@lZv2AFncwj?;PidZd_`8NLPiz`8 zPJRdSyMWR>b|Mye2b9vg!;(gO&HJ5#^F91}D}9ebuwMUm zL%%)1T0jEt>v!n(Wd7NG48eL@Z$I}zul+!&{+;{l$L~l_{VDqS!$GcyRsfXKGwHzl z9;OovvK~>!A&uDkkUs>J%CEmvw<~`WKkNB!tsZIY1L*f5up*Ek_K%9YJ$5=S+;QE# z$~tBpb{KL;fYNw(>#bLQ;qlAut*mQUEiYEbOMb^u=ywt*txpu(xwrx|UQbF<+Ic%W z2KkSG(!QbA`T?;{8?DU$qS$fBp8!hmFYxHBrsu!kA4%n1PXdFeu;^SV{yO`k?5f$- zyK6)Ps5xU{+QJwjx19M$6Aqo%;Ne2v-W_hdcMCVrE8IO0Zg&v!;@}qP62}byHHJJB zdI{p4a0m1>49oPzcgaAJrayuxLr(*q0=0Br|IWgn z4ey!wJq_uI-@QN)o`(1kVd`LoISZ%WmBGWI?@lLPYT0Uthe^DIe@b^ve?&bq>r*_h z7u8VCn2;0s00QXR(DL|R%D3;Pydw1O&A%@QWr8TC_2KW`SRA6MfjBN6NcVCVd!0bSc1-AE!79R|fB^1%CIw-1daWUh4H4#mDtk4ghsE2WF)qUm@U6 z`@Y6E9>bZhUW5>14g_foVmwuW1T&xQOb5{E*wC=aQKnw}XR8E>@CRbS6EB-NvAq%c zl@I7?ySSH#VjwI8`?Gpb$@)N3EEq-y^fUjuoVCIe`|z?J-=?N12YEW03*{o;qyf0U zX4P{Z7PmI1`i_L)i)XbCCecuoFKIz&$;;)6F&=n(WnyA=;uU`W6*FV4|KWGo;1=bp zT;O+p@Un4y?oHcUD;o`M%=lJ#o5ikjXwzx^aCu{8VW5sl924mw$|?EF$tz9=Zg=Sm<2B9t%|9RhK{K_S)qs9> zpj00U26p?yVZ8PgS0?y&^B}F*AQSmX^6v3xsr@tzCj6u<{D;5brRsSr^b`GwlrH(z zD(DyU@D0h5kmC@3dluXdhTonA`wPFE1^Wv>JT+acE$sLmb&yW8fTA5Hr@hn(pTlqgrQ#%;* z&bME%_}~p*nvm6pd^4aJSLn{Q`bD=%DHk?9*dSy9xB=uF1EuhsqaL98&`;kOuB^0! zbwUVxQvGv3cK;SW4xu5b^gRk8{BjmtUaXh1CWu#4pp<{yK;MZO)L>sy2s|~}9gvR& z-V7w*#2;3e2MMgk@7kwl3#3C!pwyoE^Ha}w-21#oUhUgCc-*SRS?s4Z^FUtf(C}gp zHKg(NHfzU2F+ywq(AJ9Shn8h6*ymXsMz&C!To1@x7 zt{qTH7kArR$Y4-Sy}aC{)IX~S_xz6b2&V&3>ZkJ`+(N`c5K2qocMewj+X&VX-{}Mt z{VzH5*Gvf<=nwA4toEDXmuq#r#GqdBz*z~vV&7+m^XKS;+NPq`vT%fI; z{RVH(T(>C%&sY`*`7Xe#ri=F%WjtZGSUxq@72(7K#dw>XF{4j=(e4%~X)mHiyJ4=Fmcc9cy=f8P^>e08UbYpEwOnocX;v(?tb1a4VH}`sv!|Lm%ju z1(fQN`GCR8L!j^O%kHC;3|2KhD? zD2-bq9c$@;w(+zr^7?QO^qT~f+Ie5}l`lLl{o?LEeU))!Tb2X)i9l&y>|M~C#xMHg zR1Mxov3ntZA5aP}cg;zf_ZtVa)r0xruM?^HcR#|J0F>%ccImhL4*ojyqPlUA9}kqu zZ|9-Z*ZwVIv}AUz%hO8u=Z@hA~hvO8tpxwnndKQuQ9dsE;~ zTDRc`v|H#$0@QJG9djS*5%`nVuOpA&Nf%zl>K(jl*gY!5u#r^GqV71Z8@MUVi~6s1 zdltdmNRO#NDSicy?zrtL;+w>)D9cJfPGL<__-u zjl+F;$oyu0^&nleY1n8k{7LhbynCk7K2T0ax{|b6$UN0*yYx81c>*Zq11p&iB3z*n zIjpB=F7%rZl-kJ?bsp6Z>eAz_r1bCq{`gGNgA|BhPa2AlDnKd!@?ZGrcZc`2S3ap* zYqEK;e$Jr{joYBhK=O-jVwX)cMx2H>wEa~#$Y|I z=DWt8L4=k8rSG~wbm5{Ut-3P5wHlt^@hrkw4h&g$Gb~7|`v}(S(Q^nV4=ByYrk|U5 z{SY0Vhkk2-wSWZqk1gBk(Ve~@dYSv}{Ab2i@;|f}fl_@q_vbVmL_U!al7Fip{{m22 zU%KMybDXy?*TH=HCFr*rDAl8gi)n%WRw}o;WZ3mxN-y$eecZYh`fUM9=QRpObp6`l z9(!u@*f%>X^PCRsWyo&?O6_OvhR45mXz%a^_o!In5 z3uV0^#w6^mgS@oe+f9m-r()`hK(&#aa+TL@uKYA5nW%sNGe zcnWj<+Il_Oigerol=A7);$6j+37}ODqzgAB@4G(A=T7K#AT%Gg z?)tS7(_j1Q{ZGkvJ9``Q`++wD39^$nMKCWJY-rJYjMARfWbZ(3A5bc1TJOPSm|MRO z_|5@Jd5JO!d%NLJng=-d=hM6+myT-;Xsfh?k?cLl?*dBo@8|C{ae-0MpV!y}{q_Q- zekJzC1sdb8RYO?T>wCEEuAD#rq`$q^;r*TAt%CtxQuYm+_RH*pH_d-Lg)NRPefiUp z-PkjWS3FQ{X&g^()*if)R!II9z_vIC&*1LNk&Z(=+hp$T&NW@xpU=MXRO@8??4jwFZfQx!{FZodd2VJeKIp>XI1dMJj6dY9^ZkRj++_Z z5xf))?)*gLzmNlJK*3)jJ@nQrGc%cgN9zVm4mM=vg&sn0I@ZSdN&$Vj9{AoSC;yHY zJd8}Fv&jo0Ltt6X!#~dI#SA-0vQtJ&a99Tn*$euo}HPnRgC(1+q@WLIU8K9F~(fuD!> zX1w6m(m4NS2IQ(`@c0ow$B2J!I!BcclPl6Ipck>0zJ2%oOm3j7tKjoMKPp!|y%Ymq zB0dy-%__&(4F6mnj;Kg;C)a^T-5(oe{X?<0PK*CTjUuHL*}+#fJxMw6&h zn_opb5MRbf-%Q~KQaTy@!H-0`0g3Nq$S*?rnc=0g$oA`RZhvnd#Iq0TQ^0M+U+{@E z@TBTxae2WT(%?=S#M|3e1NiSQ!T*7q4MaFV!3X*~LtcVcBzRh6VCw9V-m8astOg5M30ctVMIUqSl)+hU)2yeq$V6dOL0 zxuo}+cc{63Tm|o?@m~J!bzgYgr8c*2Trk``r)-E(M^X~ip3*JT^iY3}S zW#C@|=Z7zR`bpUz3!>hMa-geyayeb7dd|2>Ny&Gs^*zGmW!$O|Q#eDEPqVfHPK&jt!zx>Hp9x9Vp5HIrAp3ql;W(j}h@h-S4hx@`UPL z#b3fk+V95s&Jy^YgVpj9emhY-C_L-yarNP`JO7+%xvKh6zZyerH?9L|2zC=rtht&lBq;}q)Taoq!^>Y;~YnkH!E*4|CT;G9k znuY3VyZQ9@)V{PB{PJC;L&hPokZ%f<#v|@^p9(&O^$XL3`}gqI?Sso%1ZxicS^*{S zmZ?nrbOFCGy_EEWrqyIE;BE<&>-(`ewEt{8MIXP`(60?pYF`S9y+J&MLLFy?pAW(L zr?Ga>uRT!8r~Fgv&wI3SqsfG0jM5HTJul>UbU-+rfl~kOzc^Z499qMiFK{t?2v10i zo9Oqm4?argAMLt@8I`|bwf*!v9MF#erE=yq42{^X4+C;>(60+n8b{`D=_w3}75&A9 z@z5^;D3!y4SN{;>-J)NAPlA4ffl|HoB|iP7Cx2u2os;JcG3$*XMhhXyknatY#y7@A z*52G!uWy=?pj^n=l68Z8cc4_xY&RsI^LX{+dTp4pKV-fB^*}hOKrv6!oqm14TYr2F zmHKXHJ&hmeP#;h_|G2%vY2pF5()ZVEDC6CT5W`+lc+RG4H>15S`toUQp5u3n81&`FHars$eg;z-z>+{VFgp&!B%9$_HcIt1^)9Sb`{BfjIpLNYxALus#D78zr zvY#E}_cr`kUn$oy=6yDO;ZG_rmpJzb55&E=P``uoH7r$ znx0n2yMD(&=r;%`<@>R{{rA#&jH?@%3AbEJ{k|ST*yGkXCIhARvtaN=Y6n-{)$oVcZ&mhJnz9EV{~%DRXZ{N1i9bA!x1Yh~#do zlduUH(R!V6Pm4_%hcseSAnyi>bzXA%67JsR(QM1^ zZCvSRhuF{JVhzIXH>La`uYSi=g!3p+T3>Rdzqi1nY5MqjgTh-4e|@PWzRRJWWj(_k zPpI*;>Tf#qUJR7R*ZDbR_Ik7)v*-2d*xTGs;bNWG49G74O6v?;ZL`*S++Xx9yZdr# zNIjYf`FTKToRz<+8nxG_X~(@)gOKtv3-YspQai{EKkDy&r9;*=!cCXp_Qe*$6AF}T zZT5%)!FT;qY0s?o4;p(M@p=L%jhDWRY7PT(A@^Wd9rsur7x*2y&~H9aYCofr=YIY- z=Yhj-=Yz|&_4Ira`Yi-X6pRXrv|WkU0G+3V^2YT5m2fxvp-3v_?hi|gfgCpW(y(zG*HT4 z=fK~|fU5hSaemxxJFx`udJZU+vj!8N`<##GT@IyPiek?|ei=}jzfU{7hsx(PI#_v4 zH6=akF*oFw0;TZWjTaElOEc25yv`TcZ6`E~C$t=T)&>%=`!|StVJd$75^lar<(8u0 z*PlmxjsT@~#nNAwRAr9#uF2m#F@uTyWK)a|Vy=YzZlLtt;xD`Xte3X<^qwu>6bJ9y zyLz)1Apa6jnx`hrJp6^nar%ti^ZSALX;u z&XJ`3{>WZA(?WPc(m14dLDrAZv*PQ~I;7*#}%*i@AmWWO@y-nDE04S zJg6^PkZlZH1mYfKvN%{)P^;4()o1p54m)ubIUY z+75rxyu;sOpuyiiOy%=U<^Bb`>nP#(x54WSj=z1rxfAKJ3n=w}CBBa@P`(>a#gBL2 z;fiSQ0i|(>ufdU@b<=XjcQ-2I-B`8<@_T_&KRzb^{SS1_WG2Ka{fhl{sdo|1KA@DI zu61pGLwa7cJ>QhtM+(7i|L)hzpx=I=)J~KpHYVP&(Y#!x8ZeHw410Y5f6~08Xk;zA z-_v-CS}F4*yX|%O^+@V(NP!4;z*I!j4g#g$y}b`H!Qxhh*xim*T?Ng37!|i zAwCsZ%SmoH1nwf}uK`_Y+@9EOgyRtYgr2Z#m9OfN!c6n!m-PwOldfauJg5xBGZTC_ zA&2)Qrx}k|=!1MDea!cc9FD@ikT-{2n?15l`;>lcMAWR|QPtCt-{N~H5AMF;E%oF6 zy&|80f`>-DCzB5~TIebC5#JN<@x9Y2uqTCZTuJ!8a0^TUA4sIHNY6A@%OJ|_%YuI5 zJ<^p4d66Dz?DrnWzuTYe1W!?s7v-Axewz7YvQ=+(nD@j|CmX+d-JyYB_hWNr8;?i_ zk-j25(pZ*380($I`I6D%eFoR>w31%L*IT!io<#8D^6_04%DG5qk-j8v^0#hsGLx6q z5A}e-K2{gu7WG3Q@}2lkw~U$l&Gf_BY-5wz-{w7t-;1(&d{-*|Bk`WTZzhMuKNH^- z^-`28Ao19YOE=DAE<_M*PhsN9HU(G6#0fM!}xhX@ut$;p4khUb!B5;Qt9e zULJq%1#0=+?GSFD;KdQY?X?vzT{r%L0ycl;kU1YdkH-|E8wWX?Sk7~$ltqw-a@YLgOQ6OD3^MO0^2L8LS|Mfre^d5=dG43zr>D3~h-dlfW&+9F2 z&nv2B;9kdhJfpI?8}W!=AMib*`Z>)}t@k8)nspVp_(4;xsNK7kFw?VzSlzByfrxyYFIst#N z?i$!9D7rRe-9qexUIO_m0{)7p)~@2^&Wax=+FQ5KtbM{u5icqKN@L@QztPM0cH7uS z%DKrF*1Aw__`4cNQ2h99#yJk-+_L?12h#YTJ{kVJqH;hF`mdgKK0}lfX`JtCkVEI{ zeXCPX+_6KM--SP)3=Yr!yh)U+7SLacf7yxmh;Ntj!*wfW4pi2eyIJRQ8o{5a7v$u; z$F4WezA8OK;eB+nz9ZJtMEK;d^g^{CDgWqkU1F6F(@pCN_4q#)PfOZA8S(wZOPF?q z-%nE&avbVeJf#MBFO@Sbza5nqFJG?;USF|4zYDiM1m~aK`JHC*^u&1zQJ*Nf{&6+v zoQn3`wjCEwDCa6#SbRTGf24f(bv;CU7#~lU;PecCU)OH@g8hYGu7my6v-V+{BHu;+ zlha*i>>*Flff{3CMx`nHbPm=S@(!R>Z=F}&_Lavqf9~#D&6_Iib@=Hbr89*PVcC_6 zL3kn`$yv7hnxA#8dfvhs2dgOa?7zNz2J5L=JiX@7Q>uR@A5J^Q>#bJte1mJDUo23x zGe&y8-Vgj?Hqh$Nxmft+EI3{K`gI5=4k(pF=hGc1JoB8b+P~Y+KN>QbPdrc>zbvS7 zp3bwGkGhX#w|xn}|5MYY74*9aD78!4mXg(a@g)C!yH^coI)3Lcz_RBx5bwn}h@7S! zH}|{`6PDaC(6Vc0iqS+U0rI_oQhhi1BCg>N*O_-RmpSme2{iF<19uOg7^jibyr(?vE(7H69rJuU8WXPugrT#r(UDY2vE@S2L<{s93fs1ttJKuxTMPsQ5#|f0` zt#fwmFLdqIgRk}S)m8T8JA~NtlIE!i`){ZH_1N<{`$zw*OZ^Rn(9YuN^+9-2x@d)c zr=z@7e1Fsz`elXc$(moW%%f?o$3Oqsd%D#AlVlr+5(uJ?09>pm00K5Hr`0b~f zE@C}x9Q0JjS>EO!Kf0(zo-*#~zy?Ep7*P6dWbH~cuS!g*KW{{`GM;E>+4C9-f6_Vw zOZ^t-y)< zzTLZ4ofxgmQ(LeRkRJ(@((|FOK0oZy{vmd6Z-9QIfzr6Z_rWA;UtE8-{u2ItI=Fwg zpYLO!-&mlOfA@a;P#Nl<+Md}D&t5yBvGLGvLa3hS;~u1OxoM!HfznRcANSbP)2~m2 ze)j>Tae=EpjSJZ3%K8gyhgj=+T&%mr)0+%`Qh)2Xqy9+`Gw8}MWGmyBM9ZGn&G09c z3)j9K@A7j$)Lu*PN%HScms_CUOrX@S6sNuWm9C97o;FJR*@oQ;`P+fgxUSf9md>S_ z_vJKF+RxY!o}ScBM7x^5Pxa3@5L|xqvD={EG@vvd{zvgz?tp%G0mXg-IUUzNM)R>_ zU(rF-NM-*a#vFV zgU6BK+hI`akqhC>07~P?Bb~0;f^^wcPUoxbrb`672m0L$l;zw&K1!+b#0cxGYP$~aW>@V0Hyqk zb)Tbt#e6C&<6XP`pI?6f;XDYG+QBi~V~p_r&Gzm5`Xh+fT%eSH+HHf#ZmRi&+HHIk z@+CkC_GVv7_9@)Pc&Xy;N8242JcbBu07~;_N853~=#gdLUF=Bv{f(uFYg)Qx&+7@i zm*$(!E^#M4u3F7vfA2Ncy6=*U^|rl^G9Tf*0hHPacl?``m~Z(#jmJ(LVcpBg#d=xx zyq3YAw4Pw{@LBiRA8vbWptUb)in)4P_PiFupOh|~PqBJQqskpqmHOVo;^{4fKe=6= zoki;tC1=U9g}PoBemgJ4+Xx}Vo|n|WyVKX5pmJ?k2>90azP1`(xaCZaw=u3;g7jDl zl=O_uze@0g93k!5Gmv)!rTruAr7^dm-d4Q*jd0T?I6eLPvxwJPpg3PbPJh8s;&0?l zU9jQB{E+p?<&b{`D2*o`>T=oVG{0@!`Q6)+6?@zr*mICy36#>)yS3dX9xc&->-gVe zmHqy2TJw9S>@Jk*tf5(^wakHTf6D`0`w~dO8uB?X%f}H^9B*BmcqYjW%2Y@ z!{0SPf}&1mU)MEn^2~)bPv}zq&`)ueJ+GG_FNNp3`?Rs{HuB2HYi?I~Eq3oG2!Grf zJdTX9czQ2GPib8v;x$qK{sH4;d-)#9)05T<3irK0=eq7S##z@Y<aBW1ApP71VsB@%4n(UlT9B@l{{<8mZbF zkG6PvTi{Ph7wwCWpV#?*aTBEKxy7F=HP@M&~H}!`t^3`w*x5E z2jAiom6>K-4|!RhQXl^Qe&xUMTHXrSgNmiH5c6B}y#IWi#SY%{RsERh8Ek6l?HApN zy zvzd8I;^Kbn^zQTDM3cY!Pe zZXoezG~;2J9EsOpI5kZmzUu-CeVGWaAG@>0H_g{RiF7VbWu|wn2lP#2N1Q`@-7a`V z8h)qzFy-hv`EJIuDa~X{?)+Zl*MG@J!4qQ1@DC*Z0{XGK?;<}a-OSy~IFU{weSi*x&wv`v_m9it zdI^32@j{+SDg1Wqz1cjRUc#P{NEe|W>W2p2$9>?Pi1H=!$A|E}LZ58Td)SBa=2p_h zmBX5+&uf-G55J52E)(Tb$ipr8F(N$T$C$h+;#HW{@<+&va46m;f9jz44p7VG=^%I^ z#8)uWb6f%P4Jh~$-aIyNRM$_kG7DG_W0}6bNXJw*Z|X}dYEB;Ol#=lNCpGerZv~tO zmfoL#kN6<(?lm5K*98>(5eL2}_!BNgKguU_m#uCtdwo*j#aU#B$rv=;+)eOc@(~}Q zcRuV>ct8<8@l#A**9zpPD?7Ly&_umP`J`iKW_srj zt#CfCQiWW<9Q-KlILXDfu&)EAXCH^2b>H_;q+M z`SU(V_Q#z+4ST9^`$*PT_D6)CDsYSOR;9r2CC|R|y~kat+Oi`T3$1h1{O2U=TvRp4 zM+W@Gjz8uV!#_(e{`22Iz7X@uSm-CkZ_L(iWEZCM?lT$V`v$M4(SRTV^49{TaiFtC z)-K(*zvT_tdwVPEV$9l?67y9lAGlqS!bxpcbm*?wG10Acfw~B<0g%AAdLpe8H!hug zig@Ig2Hw+u3D*9Z7~j31fdJN*SleSnC(!dy+rz)`oO`(R|eN2H}sJ zrF5n**`0^@^~(_-p`UQm>s`Ay(fsqJ%O5_ww32deAexEtcm@1R^VUw^ZF-x|4H)DOUbM9yE6SHBH}tvU zmmAT3;L1~Jtvu(Hbg`?aUvCIK#d?@jAG}4c(fK0xTG!)qjwE9D5 z)x(lEs}t{L-`5#;%o}9!5lk_fFtmhx51?ol$?5O@!27!EhS?*B97|T#`8!+p$ajW6 zIp2TJ{lw!kj-yTJZ1s~|tb=9GscmR@t|^~`4{=#DrT!(bR*-KEl-AQ+7aJbb`RnrA zcTPY!ZGck!YZg^T>r~*q1-GB!x4Tk$86nuNf9;@O2cVSi{u!^(xF?UM5C^L({a9>> zJtxVZHhwLQ3nGmv(Fvtrv3uUm{EKEuKgpco6e4YO-Q`3_hxB#)|9kCd#;{nZ*-H zhd(j@Fr3e~qW#A*em*65Jpb31&)|9#e!DB?={!2o);d5o;@22R5P8dWRhjAZUahpd z0eepUATQPT(klvy?{A*Ns2VaKvp0UxSQf%@0>ylloQ~5QUZZoJ#s=g*Wxf)AJ6JyX z7k)kj_nUq_7x5Yh6zdM;H1BV8t++rZUUCoDZ%V%)? zv)hkp7Efdd;wP2sQzl=)c+V19aCr91S-A02(`6X+D*}pj6>=6D=g~By8H_GJ-uG~X zGXf~Z-*tQ^g=an$KOY+f{iXn=epBoI$)~#8u-m?>&|074Vy)N>ke>jQ`f110RX@_T z2dlQPzpSG&e~4qFAwL!ly*1Dvgb4j{-kv`XOp+U zH+EH1#@BY^=hur7&dopxO74H0&Y6_!{LlXQ`W7g5D^O}*qn5fc%L(C$Nb9>h=AV3@w@a=XqBoq5}rWkE_&wzX>P--Vw-FvDt*P{)SlI|U8tpl54 zu4Fb7@^gXJfdmQ1Dj)QC4O(U`<-RvMxNr~TW&y7V_|rZnyP0m|`tad5gv^ibh1`8W zDIeTxemjYLSMB}%{q^B~=vM-i`c41QMszOFc<91HDZS{0gUvR7(6onvQhks0)Z0P( zamG2e?n*l!&E`P<0if9TAg8nM30jvjAJyKi-F99JvFCIR!X@zO!%_c2>^=Pb`S1wz zdK4(lrzQK44rRRi*UzV=@sOdJ?RCs~h}VlisUDS_t8!j9ui+n+t*mP>_88>n110d^ zGmy$l;*hot$0jTHZFCFaiAeLtHLcEkM&+9CZ%XBzK5f68h1VYyZC2CsNknKlP%58e z(!ZqgY0xrPc2Mpe>SXamo`FB9KXNU*@ie#h@Jx)gZ_dTyEuP3C_zUTeytM6G@1(L{ z)hxuGQ$zSC@J?xVn70%EfOFi7q1O^%qkx_X3x1_}xcTf-_SGC=m+Rp25`KLMo`**< zH}qNxtN}FOV&V(XGpd}%1%7=QzW*#xS`Rt(-5Huclq;Vs{B#Mf4}SeQ=(hqW_3w^8 z-D$l%&A2MLhSIOt-QSF0&m){wz`**aR{FwhgHQeE{MeO{e*q}BXPp0J?6270w@}k1 zy!J)Yg3G7<^`4gyua|*R`@-$Tc@2#!g_O_LkY59o($lwkgfUMw7DUR+PMQ637H)dl z%?H)rt4NQnK&k$fE_{sE*}ppX#KDdIl>O8$>@~=53Qf<1oVC=RUAFxAp{gB}cD^H9 z3;8#JQhUu#yz{z8J2m8oBJY*TxGpY)CnB|5yj-j8e7NOIiZ_K|e;l$I z`fUM9^V_H=ub_P=hr!Fd%sQXQ#q7498be2=c@dsGe%UzTd*t6KWuMt@e``12wGeww zlAhYDE!XI*v%&XpR`~e(Eu`aKpj0kOV=uX=d#|DV8#gm#zWFxf_k`v{?0Y_qnXl=h ze03hT6Y{%4{Y6F;k$oQXcn6L#1D_-;e#( z^-szlBS!39#A_c=n)hpmZ@_%|A8aq@y#TLh8kLnEk5_LtgY0MY?Eb<{*FT=lM(%Ds z|JTXA8IN6CU>jf}=f~WY%x~tNa`-ktHPe__})CzHB)a z?!(WffnNas3-Emwh#%)+sPTro2t1lNge&x+>k&+UPpEn$9Kk=(`a*B$OZ*tke1u(_ ze)v5Ln91sIS~T;?{h8ncWwE4)Cig}rIa!ur5Tvq`^MmHXUd%&T;5CTv;(H=p1Rtd& z8~L5h!yz8bLSs4YDY%J0p&5@CsO7TOL<@SbRX=7JZU3y3_YNGk*)&q9VYTC9p8mNFUq4& zHtm-NxhClCJdp24k&e8%@( z!kx~;AC=4A?mzvl{>PxtUX)KwlpEML8koz=L)$!F4&FvM4iOGegj*c-v^(?-_+B;fp0)wZXlufacscsxy9M~YKSwXzUbwX(%rL7n z;>&#Ye8ocXs81Pduet z>vpz!I^JIq_`R@uBh6d-$q%096Nj^F1MfAB8pNt_R|87xf&Nb# z_&xl!I^VN9KM8*yGWyza-nzZr6L<7f)`8nu>jjrXPieiyzpdLQem`yMwN`w%Sggg966H%epW!QY z9@4p7gfbtpo9}k#-F`h1@e<{^0o(+xkMaz=CiHmgTIIuZ|3BQ9uI7VC_lEpKn)G`@ z^+|MoeY&w8SWTHnMO*f4gnrVxN!j=}XxwjZ6n>?g|Eg#0chpCCQa&8Xc%9CnV_iY5 z58=*hB>gFb@atc&zwp=Dg7wra-k{hYtc`dQ@N;UWyW-C)iF6nBN0d8KZ$Ygq{T}u{ znYaDAXGp%=%?D9FVvrufP0r$PKmLx-yT6ZD*14lBo>CL|lhWIN{Eja?n%}S}cs8V* ziT=j{e8h0s2b67cJ;<#-mM%f9g!JdM|1`i-Y|2K+&&})48z`@x|6B{8Dgd zC2QQl#iA{qQat>L_LrQAZ7$Hdkollz(>P7k)hou7A-Mf22TuLDrZha(&7{d3Mah1)I#=R+jxjCe7i82^wn_Q#*M>*jUMorWso zo*32z^4)<_KW3g&Ghh2+lzz++!c&s^BloI;Qq;eSp9l0nymX)h3nn+fc^% zLA)}6Vm?65*!w!uc)~Em{-|0$?e_1Q#Z$^ecv3s){eAR>a-Kif?T`F=7WB&liutPH zJXi04N6Vr6Mvq;iv}diD6Y|+WDgO$m^%8uCAC>bwv9{;oIS3~gD1m!MRoc&VIpg|n zdQTZ&hkvhTaQhN|z6bk@V);<404Vj-?&PQF9zn0MA6;I&1-s)V`{iW-;xz#%l^0ei zZ->cCyf!;SIrqodK*-+!6zd!0bo|!&xW~NL@3gM8OPwtH&_m%*Y6sb~x41ppSeo{? zZ>yBg_z<2Fyc05<9YK@=kMY7x50YaEiW1y3H?R^rGCZPW)+=xF&~wG@b~LE z8v5M`l-e_H7jcYng;*V>|FeHSV+_I>9~$1Ns9%Jgic?B^=3rwXKMp9hFNF)Q`@y5R zE)t*d9c8`1?m3|F^S!+4!%c|SWMDlYLF^}UPw8wBt)iS_Nbm-_e8JKi{o za(0DM-yuT2Hnc zzX&!J`rQqb^3U7s*S#KB|GDpPy*yj#9}?MZke?2e+86EBmx-@JOPzbBwN=VXw6(u; zJN$*Le~zC1;_T}iDCNceyyFgpb0<)0uZu?3qVqh&oBp)JFFk_mQTX*QxV;WHABvUx zsQvm~(C5~_>SLW|6LU>A-z(2uH=6(Ll2mQD`roK`>W7xfryALRp3*S!< z8}`oLCgQp}-VMKN%aaGqcz_lRR9lY{qD>43`v zkb4R!jXzC$J?_;t;`7fBXN?2jqyJJvcuG=#RC@0<)GisT`lqs$^<=x_0>Az+!e0Os z`^Mxn?Q3hj-|_BW-CQZxG3*h@&jm{B<^CIHg1=QU+hn z@6LmMPXML%TKi+i>$>JNjzXyWD^V6t>2dgz_E)qCGw=2A*X7lo*{u(LeLnPi5-9a! zx%2P(33^t1KGBj?9AB_7#?2oU5+fTdm zMvb|l-%_Bo&S%;&(wK2CqF62$7bW)d$f8ljU&XKjnodV-Q=WkvTWRE>0;Wkt$2GV57WA^$7jlB;2HUp)3>XAjIG!Gx`qYI&XDC3tH_6FoPg!=QhTZMJ7qUOr@+QHUC z{!L(gAc3zz4((GqjQURI+|HbFmWT;S-iXAjDmx_n7Q9fPi2|k0dl@H$Yrx^vafRK4KRRn8o!4e z=eZL~_2S)CyJUP7n)Ga=t8%Zny;jM8o?M zC;wd#QY^wj5BBW#tg2(GWw9-vw%qdR*L}GjSM_1Lk{Y~Pa$h?4=SMnGxZEI0ru98; zz@#sCQ+k@eufp$^9{sqXlCH=TW2N8xe;}PlPLV9?Wbn%MxL%NCd73t;5;oo7|yu4kX&D|Q1-cu-=LFD0v zXHc#f44@noPz);3I?GGZWMbx)95&$kNe>mxb24LBecM6kN%?8=tc0F~ z#;pOVmGFD9qL(Y18T^WCr{;1!$-ilUs8${~nDa<3Cn|k}-vvQL%j5D^{0rEDh&|mO zb{4RHlkV96^cE0MS|B_s&!zz$Vc;hM>E;7^ftm;h{`^2q$iZC%6zNOxpj4*E$-~)_ z&rGMUfTOEFZ&&K{=WY$i`lFqIn}{Hs@Bz11$QN>dyFe&eh4^duzDN&|K14_{^ZOS3 zE{H8eK$&PXOy@*;i+G4~sn!$738D+7gGm6JhWJJ1bA6}4?Lv4=#2@}$B0T6#1Qau# z`Ga}9978#h!5mY+sY8%Xc+ZA$w;-^Pp&iY5=sW+5VV$MR-)#Sv5>_t#e=w}`kQt*O z!iszQqz^pKZ(>^P&z!+-#qTCahIJa^y|f_6);;=#$Ms0e^(_A;)=&253MH%v|AyG1 zyAONZ`=)7>wEr$^u>ZB>YgiirgeF+r5t&!RWRQF$>QSExbsM&=KiCMM33KP_X1IEeS}HHh8> z@rwb9d?BZQd0kBO$)H$peX!d<*lj2LdNb(P1}MQ@L!KidPyCCw?Y^hGLimfb2rDfl z5BS%2>-9wRY-B7%wY2&l{#&fgg$&Kw7;S|>q;!kix}D0)P}tO3ELKQ3Pv^cqIU(g)d)~Z@oHREA_#C|8B3nwqO6+Ap(7XqJ1N0ahL2*JdRUa z22RS!x5||%#&WESfxE+>l<($-3cEHkrsLBoN_*XvwTFB+pwz!79Qu@2^kyg1j=OsB zJ%)9Fd{>|Z&i5D4#Z$&}{yJ-1%zt-S{Y)4BLKEWza{5Z<{igm^eART)FF9Q;|+kD{T`R9sJ+UvGVRInt-OXCUeB`?xN zUWvxkx{A`jH)9O)J%LiWcHDfo&%cRBps^D50EtfU6%VLI51Mt+`b z#dSjJLo(!3fMT3Y&hy8`UR_0^jkLRUw zL?PJk|1zN8IG_Zb9%w=Hl~-o0{fI1mi*YLdJ(cx^;Eg~rFC*uoDZ}0{^UwE1A8TI2 z#Td(k{3xJQkNCm{8abS*yLx#7`XN_*XrWkEg< zSPw{W{^Yz5Jep1xA*=UL#xL>A3AtRL6hG}uCECa~pHL!QHso`FQhUvbrRMv8>%2;1 z`G{8mP%4MshRta_=r)#Ye^lBfy9eANSbv052o&oF(|n>E2kwYS?Q0W z*igt114{Ll#SNwYsMKh8&nV-N@cU^=4w^^0x1-=zK^IDU5fcf08l!Nx$pu|R44g%ehG8Rezo4GNBj zep7)`{adhfGmR%4h5>}O%D66`O@RC)pjdw;XTr?GL>P1D(Gl-DN_}r(8P=Hyf71LR zZNOf-82f)bAQhbNcJohT#n5jGQ0o7q1~sR2@f$by{jRk0QS4^OPX>y0UUK$bHi_a_ zw4PRYRfDB=$2}Um1>uPO3~4-Aaz#TrnDZ|ubr)GoOv&G=N;<{#Yn`POF2I3&&@tlSHK(t4e{2d%&G*LBM+J?}#}vw#w?s*C7= zlsW$^FT%9_etI?(n*)^Amwxs1Cqo;qiSJ(i-~na4WZ!V*0|@6qptN29gBiv;kw=+t z+CSiJubqfu4@1AVfnxucoScv|CA%o?^Si7ImP|1h-4qM?XMj@sQrxdSt?REn@#D@j zH!uf&=g`L@tSrHMX}siquH`qn_wmAL-?KSNyVQo2K>mrK@0kwghPt%B@igTCJ#X@85q8s@xRnjGzJqh^*KxrSLc6g_snqvKi?Ff?@=`xn^8LHm#|tr>U|&yr_11pBVlO<6xse`A zfl|3Hi5&mE$J=9d%Z}@ZvikVl1Xs_n#}mQ%r?F-D&T62vZga-<)vLPe{vK0zf0=9T zoAdA(dlvF90i|-S{nC1!N4s}n&G%2~DV?iZrG&FAOREc}Jdn6fS5msIc^;g^=AN#O>a=zdd$iE7d@}czB{UB7) z`c81V{QdJ4yZOEj@mdd*#=DMt_S1N`)HuKtp^SIyS%j50;7@9|T)Xey{9o#k-TDxI z`IPE2X=c}7z_8BN(D<#d|MaIG*N%&G_fJ;|_ANpPD^huJO})qKaUCRHVp&gRAIR?b z#jkIMep`UjxSW|6o|)@Xu}c2gT|bLt9)#lsO5@#^Ub&hGspg}u*ZuwZz76`l1(f=g z^IcE=06jzZJGMi92T&THY5rf9{maX>#&#lJ?*OIsC8zt`>->DyxS1jC=PtKbxfoB6=s!F{fh`OtRwe3Uwr&L%1e0}jt##(lk$gB zBEmcf{%1TR#jwsj$Dewr!6YX)H1l`{`>ES|KX%LNiSy_k7*EwUz|O3<@$Bfu`5k+E z;C&)Tm0zPV@GO$~?_`)nGoK8gFci~^yIsBU9`ati*YIBOakL(6@XF3LcHEcAn$#Mw zE9p=MJK{75PO0z@e@uiczAL^X-V6Ee@Yfl7F!olzGdud70WTy!4ev8}d|nfLrWCvf zYTya2Qr{yS!3z@UAox;RAB68@*-Mk|t64vjwOIRP+0bq2+@Q_Pnf!NWKSt(((&sIQ zy9h`;6wP>C!rc$=@%Ui?lx7w%8!E7CEA>qqv3O#?yS zI>9?p{L}Y1-vd0PcF>db74NwoLVxjl4*$J=F7(XdNc@)DFa4tZp_z zJ5J8qIt{m1$Y*l{LcR0&_lolI-2#Ls+(0iG@-fnTC%#X78)&@3EmdoYk_nNGH5eS#2YB$L57?(<0%sH1-e9h1s1TC z_jFl#&o77%8Mf)y;pnKx9?oZm*{!-=`v)7O(F*x@iH~G_Ui0-)(K7w3boS-`_5o{?Fe z>O&8UkA!#-U&v5X6Y=mvFQS8(@5#T3l#eD-IWy5UjN_je%;9{c!Tfi@OA>r0iMRB> z@RZs#dUW((&Ql84u+DrlMKrAzkbqtJpFO&7UDv|6N&lUvbUoyybztXJ{ZDut>waJT zTkV@zLEw8-;D%e{`386|h374L?Ucvgqvz^5$A$-=bD|EXD&%VbFAsdTWMa%2Pw|$5 z_b%I-udE+;u+}lFL;li$KS#o)-+N5wx9YscVSD}R5_~@bcts$*vX84*^>SxrD;>Do z?z|@a`MNr;stLVBI!fuHz4Fy*4_ijW_y*mT^|E*?eQU#iLm)xI-s5x*sJ(H4jcRDy z?mRKVT1OG(OIm-_s@2E%T~jYou)DrvcfO}t=j7@mJt_s##kp|D*B*^dFWfaI!79i6 z=V*(kR1fmfI)?9brGprUUl~$f>Oj6OP^w1>dj^wX9n&!FK4qWD?)qc+~o>{g!xUbTQ$FZIpAA9jtco8u%0CfSjkg%=pryy+rm->Zt~a z>sdS{u^%awGw;Y0il6zY>&Jh8{xwFt96%|4uFktQd;TfsiesSPbwH_|zqRLJ+7G*b zOrQA6VwHW#HmoV+TL7hYIWqYf!vNQ!o3F3)lP>xZE*57QVrve6qCF&M*_q9Pk5i_c z0}8(%lk}iZhTndw{;q|7u|NsR24>SaAO|u4bSfSaU2wD35*OV$|hA`igs6B zf3%w}cH2+8?V!e5AwCZSrFO7*!o#2I>|DRCzE4J2hDx|tp~X`g3V%{N!IGELg-$ol zyJg!;Lo6PRDdx&&36O6O6#Wu89b2oO^7tOokAHA>h{ez3{*qZ6$R`4&cF=X~@Y6gW z3R9K-FVZrs(+>VbyGG6^XEvQDFW2)Y_VdAR`Rssr4FQVrGC7N`{-Fxf);%=+*v$Ok zix+8OsUzgmfTBM%oGHc6Q@$U6dDrF?CVh{7>1FYhy278d59)69C5`KhXJvVxXDZKSfucq_JWybl^@;V1(KOee5zf_=@N02k&>fCBfn{x4;(?b#zzGfWj4*3+I zR3D0VUx^Ffy-~_IIhOT+d{3aUC|gQa^YM!odhT{0e^*m?5^1BLdFv#AwLc%)+NcgtI`(Q-#0Hr z4>c?>3i3AqrTS7fC5HGMnz3M4T`AXg*WLX3XoNEsDCx=1Ihhwjh4#}oLVgTTYA3uu zx~YF~8RNlV;^1IZWw$XAFuF0;zM{!(zv`+ z(vQUNHQT|8=cnC@c-6y z>`tKEAN9U7f@xmPlcs z|AX|H0hH>yzi>OP(?%?z1Z}6x|6>uI+iv)kYL^+%xJV?e1N zE4%TTv%2dI<9x7ckgl1 z6+S<*o9~Y!UQYmP0SV6gJnQuG9oN|}*H1#P4WW9LKKH{#oxR(&-}}!^Qw%q!vjvbB z=lTQdpN>|wYAn{>#WUx4))a-Tw>|}br9iQtPEPO1>Obk)CEX5>9hjr=W0KfH$S(y- z^NTSHR}o*O_uJ(h~TS>*ubnZe3etJgq|7mqn0Y3>5qKhSM~}WWKNX zamX{!&kdC7pVQ&kjdrl&@5@>S{hkL({huRg+mlXS&inP1(C#K$S~>3H@6?P>88Yr(54J)8_!n>EA&vm&! z)wJ;M>ruzoYY@)Mq2ZO?(AYRP^Us)vzXJVU2TJ`)abDdob#CCjow9D)jJ*o^*ML&} zo39Wi)QhZwjh3iep*}E{MiE@HZ|f{;oB2J=HZ(lzZn<-Bv{kx%x66RN(w4`e2orH z+X4Ng_#L_P3y-c{SA~dz>OI6U%nSLgKxzFY_Lu&&K2Nv94t_L28MlVt&dcKr3W9Az zINO2IK!UQ`adh5|KT3MqE!TG2UBCVo6nPscrDvyw8HZ7C)p^z5-#-`!iT{k}qS({f zbp7PQk0md_&!kU33+@^>&%S9K4d9`8T6J0uZr(=W?wCPu+@gx zRGbTkya<>0Cz|olvOec0Kre|uGuC*%N@YjqEIu-)Q7V`J6aIyHo}G9u#^*xq`}D#4 z44{z9W{W$NjjggPla&^I`|$FY`?4L4ZcaTm7xIyUzmU!S5f4H$9_!qDJ}bU3f6|5d z>CB`vM5goKPl1PWFp0Yb56G3o9-wF}K7#OxPhy^zKMFfItJ1i<#cP3^jzx3(H9~KJ z;&+kWB0n?Pvy|+omi1xZ`{^l8hyM)lQ$#udE&D~8ynJ;DeAigTxOq`PFK(|#xP@FA z%1J-2zepc%CJ#3*6X_tZFWgxiy#?&)XU89y@NPeLVb9l#8ePa_tLJx2Ntlzx5^g;D zYrAvcfs9k^!C=y*1-uaQj3$zUnm{C6jh6kGck=Fe=jHBRaTd3pRZwfQNJe(_XE)@qCbB;*)tcXkacRB4?+F)NbROJz^gLEQ z@Sgs2Snf;kUJ6fp+Vds%_YbhMPy_na1YQ9oaQ}YWSzY>##&FT3;D=^zleE*jB`B3Q`IV0-0iS^!jE5YIkP*z@av*}w}bvtJ`@=|BiGFv-<|nP zQte)5AmJs(s z-LiPAJaVzl*14WW@F&gJiab}-`OrVMZ`|}@Gpqb_G5b86YYtAK)!yzJsry}VYx%5k%m!@^H@~IEu*S}yr|F8CR z%Gw^F{JVE=_J+HvDeY$*i$#1}0!4dBPS@1#-+8o>+TD&X{4V6&<#mvc1B&*ZoRJr^ z=-x!re#m=D`)PN*(r&&-uz2WqJy05N#17s3yUt&$>zv`|gVgTOr@}v{r23;Fq4^{L zML$Z;vWrLPoSFHk>%ZZrOK^FyyKZGae&N=?;B?U}dpaGFE>iocIrC`$)4W%yr!ww| zu-?nsdW!;~^@g5OJE-09#eDv=E7qD1aj{6oAm0-x<%4-$GfWt`R3nzuUPL7E4wpE!OG@o=gW5w)!{ z&g#O_AfFDD#xLHF(`didNwkqiW0ZZ`Hert=)poZJ!pZm(Jqxd;`x}lK7h_$a)T8*Y z!;|VWg%Dx!RI(7Bq|dHZJ&bc$9q0FaL9^!TT&xAlgnU1s)b9E>E+*cA_n)!P9&Y<7 z#hYRj#j+8vLZDcuAgA-;f^)hyy>NN$Zq1ePQVh$1d@fKLC#N-e1Lyr*wUqpG*vvn_ zo`-Pqfl~Wf_DKfKAIx#qcOmu;!%dgq^5WME5Ke!fv=8R$QV;Q?@vhzZW^g`)-wxXK zr^e52x(q^kOaw~xVbclUI*()7+K%UwhAHh*XEqq}Hvz>wker1r&%E#Py4v3S+?}+s zg5No`53#2swP)U8+K(O=SwniZxT|s=Co#mHj`UsUxGp|)b8X9MAJgu5P_uX{qY-bh z{$n`L)g%7Ev?tf?|GuemF29Y%QyB?=V%>+FW7e&vdmjulQO~OOKf^zF5?o$1HVWa~ z0F>&x?|~(&sr@vbeM)@@zrF|08}062N3a{YBH9?BRA184FZb)_vGv9+ly*M+`Iz)Q z3L%n>ML6StQu%yo&O%y`{8Qd!`1L(FAN=}wgfjsswb%T9RrCG7cRW7{@tO>j=BWwC zDpP-JJf+=~c}}FoQ@I)b#CjSzS7s#~LVb6XQ+>BTzP8)$-imlV50uJ;42&jOAE7m1*!Nwbv1oh`;Jf^LA`KdN^y0-#MhQsc_#0l={DEdymmP+!)U9 zOs??sydC;214{j|$t%<@uGrqF@*pPlH?*RY!tQ|lVxUycOunAG&f@Q0IhU*4YtftC z3He8WQorJA-{k?_n|N2!kt6+r&lA%<4AUWhH&9B?;`gi4`1-Qt#}8Evtp9Vdjv@AR zr1mFrd?MY4Z9ewb-K6gsU$Qwq)0oTDL(?7vO7U}7jlH0|W=0%%cv=sopKixyK>l7} z$h@)2^q(etaa~CNHxu&r0HuDjH1+&m)c1;S2k(P^vw+fkx+LK;W8cC!M^j0eSGBU4 z4}SfAgfkl`m3#lipUB>!_wt9&EEN{pR@_I*9wX)$?L@>x13#pkIF!`Yj68)4g`;FS@Hv_nbG6 z^bRR6C6Ip-DEAL*wt78U=A7G>S5xg{#|{L|Ru2+M^w`GFb#0Vkzo&^Z?ulkkL4F}nYR_Ed|HiZRIcg#&1aoDDd`!(o`Jj@DE04r9n5@R@$H1Y zeDLefB3>(iVxQD-&fC6$_nSwOlyr%-?CCrQe^NPP=T>j>@Yny|@%2i?3lY&8!cE}Z zlwFm%=#=%gDFc|)ztK;fEuP9I$V=m%vXjHg%+Gnp7bxo*36?#bb?_&ZGt+LGc6RA2 zJ@V45ds(?yJbMxHF9B-+2?`fp_XAh|SdVgBcUz6`uK`N?=&`?DvD2fa8AtG&Fed@Lj~&@ zZojGOX?NV?*S*khD^TiJI^Fj6Hl3ea>#Vd(;m-rqc48aC*$$NIyJp_QXS^@IS}C6n z+xf5q;k*UB3P|97VH>rB;H3r6bHZO&RO9zHzP}SF%~#w5^J!dXKI**RZv6|tTnCr4 z2(}yg?FCBl@K1d4qV8wUUwZ4p`<44)TCsN^zXvGwW87|UW8;W**Qqsc+!Df1DY(Mln0F=fP z#q%e83qAj><4C*d;@AHhPwa3;rHo4VKRzaBPSSc>qr9+T(dccFPB!AFpN3r%)sJ;J zwnl%gP9HYPcmBJNE=yr%s+Ka2T6lC!B)HQ#l37p9e1ODX8h_{3r!x~$gLzu4 zH{_EcFHrEGdf|7V#p_~hIxTXYAfAyy8@cbnRCdO|7kjcagGRP9l});1|I;7enhO6( zoIgSQGR=614`rg@fidwO@fE)_xHa)Ug^jp&>WFL4rLxbB+1?|m;Kjkemd3v;{EP3q z#CIU)6LLUd56P7Q{~6$e^y6-alcV6_XmFFiDZ{QAbVXt&%P^i=cu%|^&Sw(g2K3jA zhj>+-FV~lU*W&pIH_!#7aQlvFy>#;qCo`->?Rdn=X5UZGB_cf7vB?yAWwDfoWTE9g z*mF55-e>dhL_7$2I^w-E@H@Aw0=JgK{T0DY{2k4Bm~iL9UBL4{HJ#gC8k7nij!1_j zE=TsXG~=Oix#BtFf!sqPUyx5_B7a1=PQ!P__mYv$LJt1C;ydC!{0n_cMZARm!i{wD z=CbOy^!;O$KbzYhn*jb=Tmjcx@Scc2WZqI))5%_Kf8C(R+Gep&4}AA#^GEtIqxk={ z0{QnR`aFKvFd&x6)~%%{5#>yzuh7$#4SrW9!gYe@CEVcWt%BR)r{Q~|URm`gjr}%a zckB6^ob0swGWyGA559ceBr<-+7=&B{XfcyHOM%HejWK8HQ2TabQ2 zZ?8yClnYlH&!<&z`%s=}J4-Vj;(eJY_+2G=+)eqw-wQY7iC@Nfmw3M^m)nDC0Qm^< zU6C%rALK>2ZoKyjc_8sddALAL{4Vq;0MAQ&FOSFXG{P5rJ4^pU{yne2{;2;bPeQI! z|6nDFf0lS^?IC}e^lHK4SvRC;vi1)aZE*DwG2d4oLuHO}LS`C41(*#Jmzqm5>T!I1^CzcEdI#SJO9K%xzYytvWx${J#m+}O?)>Iw z@A`%*_rZ3z_8mn!O8(fHt#t0pcoIU-BZ%@*8{tTLmaa?v%A++h_RpKM;Bj^M^RVFb zv_I|)cl;k5o?pKl@e=EuBEIz6_2S20(tXSyExW8~Yvr72XX{*8efWyjm-3}|i_|FLzf2khirTKTKdB4y-JLUi{(klO4EXvByy6`7K(PMFjT^8fnrR-CM zzi(7N`Db_CMYGPQi*hOI6-A2g!>#+|!#N*BD(fK4tn&$?T@mR@{z^AF#r;bAlyq@~ zJ?{%n7rXQJ2&?{IZDbQYQhBMl`hm}M&G$~^&JD+u{jI;hK8SsGhpAgbg zCuu|G`(mA}G5m>k%5Yvxd;z?Ginp`T1o|}tiuzB^GRIw1j|z<`$^~V8Hj2eSz9~?& zzvL|4a*WE^KZN(t9Qw5YO7U|w96{@C<*KLs`W_4Yt_O;GPfp(lokYuv%b>ajS;w**S{y5!a|l<(l(O7BVX-_nl->?yTI z{6s%b&V;MF5bw`CzgbC17rWynzn*|_+5n|=i^~3%&ei!=)73gVl=jSS`x$;eruOgc zpkE?T8o#8OJoL}`xg|+|lC-O*-S#@dvR5?&dP?yy?O~ODux8;6?Z#U6lT0z1Ky`%t zXrMIyj4YUWz*Cg+MDmeoLoB;lrkKlV*;C4gKPg?jKaV=-aizceYwucF!S|55dRz9C zobV^oZttb3R`_hh0emY-#&wZ!&Hf(Q=kGNQSi>JomFQi{F zSCp<*#syI!JT)nP{-aB%KA2Afr9Rj%XFZ^w4ix<$Io%)BeV<+%7amkRFD~41a&Udn zSQ6ru0jvom;PxaE^QJD?5UrexY{hy(E)6J+U!!M!xXq*G85wwGNdEPPd@4}tAGA|P ziBDiYs-4Eo^ckQ-I zcKdg~-WU310VPOye-@3GBIugH`&IsWObAcyih#$B$5sn|#wJ~?C-9%cAJ2>R1n$rN zzGk@fNX@@v6Z#e>@|G2e%_OF57i>nmcMPOs}lze~J77r!?oxZeI-#xDV$+Hk~E zn*Rm%!5>Ms)-kwP0_zX?p+LF5PkC{l$2I6tx>>T5wNAsunz2I24*`n#KRKQIlJ@d? zGNJypDXWt%DE3A^L#P@bAp-y?p@ zrSX#asO`Mn@r&K`)GVIbe~>QHe3N}z&ejXPN1~@61nLQ z8ebbU`y)-1{vn>-0{L5k5+q!?i0;ub*IVmY>+$^eSexsEn#EI_ih!hY%~p)1anD-g zCeKj2s&>Z{w;`NqKxtm({Ue{&ubo7DKYm*2$Lyb1yB*=&0hGp{u30Zr{LDw?lZQV( zlhTX66n=ZA`kM~@?gC2lKW*unxt5;6{_M7c;rF*{KYcg!a{*<2CcV86=leTU`2NaF z==U&CYUdYp^c>N>F+DTyJ2h0PM{$-trCIRT7)aoJuaxeUGM;W-lyyD_yVv}ItgZs3 z{?>hBySVR1tMGKWANoB6lJqUjiln(x$_JPdjq_S@j z$>u=t0ialSCuhW?7sR=*Jei7#(Hos{xocb(7fctW#y zYMVm!bX4DZK`$;Gf8s#N9Zam_n__eTWgg^T0ZR3#^pCSX-8XMo{O#>;2;N86(%55= zUkQ}P1;yVFcv^QqyS}l$dAPD(*TdqeErma6-NyI$Bj4#-mz&)CNA*+g9qh!Ofc*SW zf9E%^dc&i|KOeK?N_8F={{1^rzETK&{Yiwg1SqY4?&|Wy^SphT-acd>b^+v{21@Oj zR`;&Ad3kYNr>sjkLU?M@yz$p#W3Z1-_uk6wctz|ZEJC~%1Eqb@X#@5j(>0edu2c6# z?be6z>#dqD&pfD^;Y)nqb++%E8tIxpR-?08eg0HGA)()N>m6>O`87|`zO=5)qK=>NBHBV;Cd8( z{#C3$zy1Q!aSc!^Pmw7b&+DbeGT7&%l<`EA#Zy}ie^PtK-v7X`14>U}A0_`HLwITt z@K2C-HfOs>Gw&;`t>mBG{vrHvq!e#Mqp;^I!TIOcUq*aNfztj8zmM2_ua-0W;n^D( z`1Mzz-#VaFk4`PUV!uag+~B$@@AXy2pKaM|kY5W7tS7T3KmNQO?MuavBVUJpZvv(M zXxfEt#Cu4b^5$_ZCp< zZ~a}LJgsYPsfDPA_)Optui`SfH4d*-uFuuBw& z?~xrR^Jl@A@q#aupN989noe`u9ay9dtALvIS7 z+p`hwKzz6zoxTVU>8E9~bG3Uv*YqOsrjCw!Ec0An_EVcqjqkZ7i=T&I;beC#`SSK9 z*E-=Z6WEU<@f^%k69@5L@Nfi=g7`qDS)n)JU+^1z@K-;Ze@6p~-|4%W`Q&h9KyNlb zhd&s<6Ys(lv*h7+iSNO_&1v}8a=EyQOUNq@cUl4GyP%ghAKxqBDC{SB1z!Ze3m%i;-IR&)1*G`BVOZz9I)|tKDiME0 zPLxLxPf9m4zfOztmyUWS%8O`kME;2KhVQxr=5T)6KEy*U|0H*X@yrFEra974;>T#l z!v^qlu+n!RuP+0J@b@JnI0}9X*>fV6A^i=8Kgbb3#M z;uB+%|5BceVb5vnpYde2a-K}5xByS)4vjy7eKF0sW9NEL;TCtzjIl0uD}FaY;>mQz z`^%-@&s6%<<9@Vp!wn-xvvldbrUmvZBk^9E-;{m-+7}*Q^odIb`-_-E_D4j?s&I>W z+tq>J6AGGwUw=uCGM)?EcOmApl>+`;n-l0>-~~occ0pNxu4m0ZE`j`|0e=qjoT=$P zRpH|uyYtMNh>yr`f%Lj4|K4vs?%Kw|yD z^QmQcMQu8=2a0Pw=VoO0E+w|XX(ZxIG;mA_2BV;q_u8d zAO58IqIr&;zb>zNt=;jz{q-8r4z)-8q`?p%ynJQ=axDb+vc#zw?9TM~ER@(JxM{uTGv-LgL>*5ifV^!xdD z7E=C|84H7FY_Eez`qL-FpT7l{7l(D8x;0l^zMspt{0FjoK4igx$js}lc7cnvVT~c* z3Mk@9&dBy1f7Q*`(;F-IY$aIz#dYu}<&&?&7&pc!*C1Yfv(jP@w_hz?)KdHV?+kN+D-cI}j z&QsbeFMhoP;?)r-m6x*A7T))~d8u zfyIL}#prxMSI9eow3a6xey)7b#nk0wm|cwf_>b)^o{X4}Nc~Fb?HA~NQF>f|u#kSG zJHFlq%S@trt*?E6MrNrib@I&+@t#(f&STGW1IUO68*Lz%j}P z^Et1~|H2>l1do^edMd(614>YKQ~GJoKZU>02a06@#e9OCzHjd(o~U`>LDP`(nF0BJ zKrxRX=lQo6Q9qVwREQsy^sHyubIOE2xjnnPQ0yP5{h!@@uv;JO`m0cD3$AJ*IitJW+X!CH^Wa)bzEn+AG7PP0P(sBD7AxQnrti6 zy|Xqn*jn9b&7-(jatKdGDrb?EX72K63A6Y1{54fMr{C4$$qYbv(sKA`_MJ2ZnJKNu)MS=B`WJ6FN^_xG1;yZJs05gH8?^J8)* z+_dnxhmG5l{`w<5mHU}HvLeWj1WNh0Yx_~J$93bY37;;h3vbJh5R_6Sl1-yv^Ad`N4-_YOLpt6 z-Fg(hzu!qQydF9-!TdD#XxCYF=Em5Q|MPZE9XAL zkDuLgruv%<{iXn=-^*72M&smpmsHuezJ*fG;zD>bQu`9w`hBYJ##5x)&j`P~1m|D) z?S!O1Dd5+qnu=)J?ZC!Bg8xI^cYsG#bnjoOK`9Fah!9}G0Fh?soja5iN;-kiWC6j@ zG>8QS^ire>zjS8p;x)wgLeEL84&O3K!XYu#!{~8J3 zeRy~?chB58)6bllGsiXOC#r|G=EAtTGQT%ucY$tdfL{Dn^yjst2jh=Ye@@SfhF>nh z`E%M{B5Z$7+mVs7B6p7aWCDDjimWyg=Ywz}Y% zUQ37Ce$zQwYKT84sUH>1>h_1%ccl0C7guI0{;Cqg)}KjyP?CQAKJYgul+TX8ucC1< z@6MssX`@}yoUA9C2l}Nz zX+MxmS+oy$$OY=d$7%0u}+V|t{;?em?EFHXk^r{j{- zbzB6?LwPI#UIQdZy7d_K2kR-NjJr?X&mJK zPl_g-KkK@v?5{LtkAwaRprjvU)1Q5T+6&)53YI6r??=IMxzqlju~p!2HLyOApm6xx zbU&#v$Fi>pPA`19HF*AWDlcg)AAD^9O7(E;`we6lXR^7vfpTs>hCK=T^+0L7_K%#Y zF)gR)+arItl<~SDTMPQ9fRY|8zWq0aXxAqk-`^5k?-3z(GSWI#8!^zdqonKL=pM4* zc;VMWaQ!)LFV4r8aMzo`?Iry5g7c@@b~0O0e^Psi8r%A`u08SxU8UVasrQy4b~2KF zDQV{+vO~xrxgff{BA18XZ-es}!JY$uTYy!81jf-9KcxP5W!&>r0KT3FO6{}b?w?7Y zwPNOmp+8qw>tp&28=&Z4qS;Q+?*dBm zrh9GMGK{~jqx6UH%SGa!KIL?N@awz5->X1L-pv`fL--RduJcPy>(8%a;?R8HGi2Ri zzCW9$$dTcfXYlwE{`eUjkK0)+|FtxKeJO*B*8>I@5tND5WzwJTxj2;_OdjRR9@B^Y z5%K+XJF3JpE1PbeBOTPX!r}n8Fo+QE$?)L@I)A>fWoOX0f}ulKggfEjcz1*aGWJrl z^jE62OJwVM)Lz%)@dW<6hjBD|0!6qN50e2%`8(3+Um_3hNMNbgHNVidCmg6`^#&dI zCjRP~&uY*o0cm}1`s;{)Gyw;#L2rn7;KvUn0}XQ*txX%mHv-?$%*UO?(=~uT@w<30 z;`QTnWDvj&IuN$$``|lBS4#(f$%u#FwKUMBv#kY36Z@tovsM-N#8upb-;)F%eQ+>b z@Ds?7WW?M9TFUB57(pz<);(I_2` zC>PQbeP3!+=D4U-X5R96;zsei;1`Z#HX(mZl(+a@gcI2A#i0@_~9#9wpP`V4MUYD@w*Z_9@)5|jYR>)*KXRR34qd(~A zoavclauGBQ;rSvR(Y{1JMZQv4I=M@!bPDwO8T^3$&ETU@@RJUQK;k=iZvcHFjPHnc zn?C^g$l@prYpDGV-q*9{wzN$C-WZ7AfxdyfotMsJ-_oeFD@QSu5anTHpxi~eK$gMB zqs^JzfaL_zDG=#pV!T4w2NZ@U!f->w_sGD*Qs)fLLO%sP%jE5(hR7$7@@W}@k)erZ zKH_`%19|-Mc(3N04dRAA*Ni~CVI18zaufy;!l8(7FzANh_iTSUjfG=?eV^f^t)+jk$WtyMV)mcS%UOl^9{8H?ecgpD{OK%o$?x{h2YzR zm|KpgCD{TV&Dqu?rDsg4K?g%D%fgz90OC|Ib1o=FfIlH{UX8E`6A#kC-3sYVz95S# zseWj{Pp~(<1bxjwy!?&+FTB=06>s+}ru;b-umT1XZNQ(%F9p+PG(W5RdX1iu)4Z>; z5fE=Hs2U?)ok0FPDLv>Sj*5>?IXtbma&V%TZ7@+6^m4gW8%Gyd{k*V|H@mTNkiEOD z@QXyes)6*39>eG$^p~b3YBl9xU2FSbyP)Tiq!qdF$?w1SY6Wz^X#I~B#hFvXXU#U4 z5dBVS*KBO$Ij_dJ0;NoVfBGwY1&YK!#S6dQr3EO(bJ+$4qQ6#<_^}*JEW5h;4~dnP zjey4XMubo#O6`ST;L-62Y4nQ}1yOW}V-ZmwX0k8EKS>K>^HC3GIq$dswxTDv9wI{w zCd7C_naX=&jksXO`GvHltnv~6IUNW6x)`S#;Zst*yVu|LzOD^4Mc+t8ff;KXOf*D1 zsouHc*{S+%k8eF6V!+@AeFLBiNWj+K`pMsHnD>{G@G zci0=7!Tm3MMNe?OJI`Me)(reL2TJ|Z-{IXKyartxIBao8Tkhaw&d1#rNT(%G8qabo?f(P%mD;v^#L1j1 zP;Njvalpzzg1jlu)5h3*Q(#gzQl0jrfWbs-q!Z{5tiqHJX@0k!k{_?zg1>gaYCr<_ zwY!h-dBxLGX`fE(!FhRh0AGE9LjIwkzsi1c`1i!pH3NGLV?v&?$jA_(Bj^)>LSCkz zbwI%P=-7$wbA4^Oij#G)9g8F&o+O7HTH-mcYa7;o(6VxKMP6!S8%*>-JgJ@Wi-BDW zm(AQzUomiNZ5vEHQE4%^*Vh5;>a zNHl4IPstFdsPPbSfq2PZtk)C##RH}JojVS*4$hZW#-&Kxu}E*k6YCZVx>|V8qQ5(r zU!?JvJ{i8;8a)3w?|)9^!6cMNAE1!yDOjMV74l{g6<^{T5B~?Qt&0QIgJCfM} zVjTVr2Y)$0sUGq>eRmbpme*b1@@4g+-j?h}(BB*yFRyJSI^ePB{FBeW)>v8pHD@D0 ze^Y2Yt@hdld>r&uQ#O2KnFsWvfl|Mn`d-<6UTp_;_mNjA?WJLe!9+m*)Cz0fMF-2R z=Y%eeSM(-a{k3;HAFp$( zD(f*fy9e~sfRbKA`&2lLGb$+U+Ub0&*#;9cke)P;x&1Y0-Do`}uV=Uq{24$=PRURI z<}fc$(q9M958;=K^gT0$u=R@SxH}8{%?3*P)}l!*Xq7t2^= zbYNjV=$`;e`STx|bJS~iuG#LHJTch81l@4C0Q7l4DgOm8k2vi$K7Z=wWtMD>7Ep2es9cHgZ@dNG(Tt$EImh#Xw0KL?UeaFimd^CK2RDbw3-oXsl8ko z1{zM~)~ArK^+4%d!h09*p##lRBWYl|S}B*v5Q7P^pH81CsyO*gDwpECpe_9IOzM|r zjvUJq8&Mvw1Iq#lEJIi`IMwH|FK*;NGxiMsL)#6M&xcevO6{ylxs{V=47AT@aI(&} z!NjwOC#@gyToZouY7MTTvvkS!`4djo!D0UV`evl_98l^<+Kg{**0ob@M?CvAQ`Rf( z!%i=FUWs5^kj_g$DSyWO9cZ01e_i%9xlNV*l{RcE=nH_7zHa(|emkXWZn6h?`zocs z$2#OQl0A=fwgIK}1Haf*``tP>6Rdx6Du-wx1`|lugp1{_ewq5wl_3{w2V*;d(s;e{ z*4Dc)|GAX?m1x^wVh7^Y1rijk{!OfNG^Vx}XXBaE{_fXzfv;D9(m3K<_O6fQGxJgB z_wd&_()Y{{h21{Yc(0nV>G4_rYns$=jq`QS>4w=ICihdu>xdA?A`ysBz|XN*;s0F& z+BcA&Hv{<+f93jCkRfF!bAC@(+GiBo1FF41sXSflJCnm4>uIQz=f7X?!TrH`dwCoA z+6R=zEo+~Pzs^n0;={NBAtT1{QP=W8mHINfoV8bpUA`HutT#RkuNw>*(CA@Iwrz`4p@|o z_^BL?zHIO#V+KERsz2M%;ni=Ge@J4c6+*jZiOf_oMkgjR%TE9~sIVNAoL0Uo@|lnP z8EQUJj_$uJU+^pJQ9Ob#@JV(BAG}Xb^Hf&%P!IZ-!ug(_%&gJkE7kErFSHAl4-rmb zHMiy6-~1%Lv!+-Cu=nm_1KT) zcDwrMQ+7U6YYXF-+kDl`B=+7u8>bKnCMxcFg`!La8fP#M}?08Tvn&2-3 z4p)%he5D+G>3?g-a-!;8d+W9u$n9Xh$v}Sv{c(JU;#=jYiF!#!eGTCJH${1AKw*zU z^=ie-7{nd2(DH+SXAp2Wv&{Z>;XTzad6n5cw>2DtEDz9|R;n?55GK18UQXh7AQPC) zzfX2GJUxWT{>2LCBWwt|Y}jKVe?=%)!9UeI|4tg}YX}b;gE=yU$#IB9C+uiEqj*?2 zDDjN_M|Lu6e{6WmziKCAIu`L>%CU%-I~Lh@eZaBEHY=x^Chh+eJpI$}`t+tB$Dc@; z$tL4>3nV+4JMg}e^!sah&*=rj?)bLUwp-bF>AjXe)|P(;;(e9C?`g+Qf8fpk{ozro zwvJ};f%o*+2wUE2hxg?Izw>i^vp;_OkI#p(xWIcF&@yd3Z#BG^^5?HH|66Zf;~jlI znK)3fKj~wy0|mXrr}ljvx**nk7G)^={IT}_y^xC~y=U4|_ZMD|Ibprs$Sw!YmQ($u zU$4MFpj{1=^aN?SOT@Xll9$ITg1@T38bAWpdJ#D;U31F^RTf6u^~HZ~XzM9lpsyZ? zx8wXTSoayK<2|>1?ncy`s7H$KFCgN;%AbGW zQfg<`qptUzuEU(yyR-W9>q5`cnrB24?T3Qa1#(7}gihmL>Y`lKtJ~vgGsG(oG{HQV zY?%HszlgK#()iC^S$)to1&VQ-f^l1Z`%c#^iNBGe-)qg>pl=cyPuu>|4zKp@i!)Q| zxRmia;8>&~;)(jCU~bGw;XwU@W4jfp-O?xh`gKSr1}Mfg3f}(aSAMTn#O>+I;CBwr z$E8O2PGg`L4=Gsq?mMI}Eqd;XxR59o{E0>wN^!NReu1}5zqUXzZkxd~gUFr^4%CCo#kqXuY~0mYd+^rEjRL?TeEJU>kbt2Aq9_(*i7<-rRgX>yEy95 z*3%Ox%}4G<8qI&^1y9oz{#4jM9}vIO7iE5ZhgK&^@g6ePXc`( zpfoO(>-_-P3;O<-_rd*of8;9_DAjvW^=rTOY6(mBrDry=*WH|~Axj2*3Qz)%YdF^7 zTFIaHO#@@;Kxv-l`@Ic!w)?hyHKpG=op1em2GYp{O7nx|n2BbPuCHbkpS{@tq>}}d z#wE{5&x_{xGQUgm1?8OLzddiN=M*(I2>jgy6nYT~uE=&3dOf2zPWiak(BSnZZ4hLG zemGDq&!PvXo}N80L+S5r*kI5P0ZQ%qp7hzmanWDO{O5GOb+MsHXBbedt0|bf;28BI z>nVAMw>N^n(LiZF%B?V!9C;l(bG$)rKc&AnW+Om93Mk3R{CqF#Z59mh% zqkse*zj%z!t69%(J$PLeem#^9e2@Nex*l`7es@0qjRD`c1BL#Lg6{V3y{Bs*W!JBL zO}cVErz;x^`U${VKr`NMztAgoSJvU3*v+6D50ui&t$SwyowG6R{fD%8RO5>{g_c3lw@n3Qiq-@C5ZEt~ZtVpr4%fhw$q` z8dpuu*lp(j^i1I(JFa#8o=W#1Sx*!T=F@3rtR2fBrGL{Y$!U z_vR-zEFTkmZk{d@ybJUX0VO$v+pU-<9^O#rzaDHV=obQ|_0h!>-<{E|9oje2mGg#O zL+oUvb${Wtg;WpA#>^i*JYHE>b^5>TWL!zzX?<&oyU~Gr&Ny4)_jk3uOh>+E0HyJz zASQwwheeZmX-1SHpM~G9gX=H+aUwWg1iKIX%>hdD=EOrOWIt;@yRTK`kT_;oKWN%) zpcL<$jKAo96Tf-C*PqJx8O3ITeil#~=PQ0W>MdQIzYU)M!tW2k`3t{41lOO_c{76D zk9<7FKnanGtS(4RvlKw*p5XOAYOeSfoq)qO{~XM``L!JW0Cowm(GC|Hk?BC z8OA@`cM2{~r{kH^dT<)guP;J*JP4HJGj`^tWjbCf<8}D$EV#Wm=W{U_$pc0J39R#t z#wXh+eX>2UugrfAf1C*B)2}bV_m=@Bc|Nbz0>ivyk%zD?z^sD9Pm)KiwhhFI`Ii zbKZ}f>Ajtf^L{-a`Fa*8)kEIH_x?vW%xn41CoAim)*+5XBsr@n=^)t!m=2vbb+pfQ z@Xv=j7LoKJM*BNI_F8lv^_++EdS8cpJq?uP7h}*LWIx0orT(0bpHAyRV;jK8CZIIV zYuODJdo_dG0R^waBiTmKKLeEHm!d=6sUKMzzwax0;me=DaND&s&Y3x4n~|^QfO7r) zP{WIRBO58}Kd17pU*Cdso(D?fgmh0rgfcFcOcT;jMegk5qog>oc!cczc3Uo=)Y0 z2(}&He;Fv{!_(~)90(g-m2uwr__71(>;y{fMRL?q^82^1fWOy(()u=U@B>wtMz@A+ zDSwkvE|F|E=wAg&df~YDV#_h>^%dZ-Bi!*tl?(pP?!g=I?{TrLrVUuK{LN*XQ(3nk zcg%}llgthdYw$shQGMA*)o++P`|U&)X*~(NI6OUY4!kW7Yn?b6tr2boY|HPj-_eVQ z-M!h%BqUGz1YtTprddyKAihub665m9jmw*xi1*$3{rg>$a6Z02fA0p8dP6fGUq6nv zodMp{IrTZNo)Hb^B=U3FKOr5mkFe|l#>Vq_ZjpW>v!wZRcyGkxTy-FxnVfkYc_YiP z1N__hK|HdTu)e=O3Fp|6A7OVO>?<^tZ`e~D7WosuC$rlt+*IkQx(NFOe?9rR@b-d# z@jijI`*CwljPR2o&dG~&&cc6$JB{aG1KQ`%)A1f?q_fEd`Rl%V80j-%HT@E-lQxYwsJ zGWIx{_E}#Z-z~})<=_)x@JHp&{kY&<`y!NYF8CAWq#-QqU9U9<=HhI=i$Y9chL^Ok56e2`2jw8yAOmdwuSwGXlK3* zo)5ddEA`>awj;dkL*LmLD-VV3}Vg2Q;PWg{NK!cKtNk7hmMyP2HdDd2|z zMLvZ+LfQyEZrn7O#~1b%#xR730EctbfWG0d+ZfH?#{z|Yf=`71nVrHd$Mw7aRXc?$ zWT$ZWQg#Z5xt+p_mH|73xf*{YJ+oGE(l$M3?)ekrH_f!~L$atOI|W)mSWjgjf$y`2 zioE{seAnh?=dg^xd-^Nj&!ZgPR}K80-L0i&q{iXOeWtskg_^lAbLTmxs3<4Ei2q^z^UuLrrD|9|e+QR7ts zUxGhTpY+;V-&u~RhqMV<$B6o>f%qby6m*~2^@3NkM(9v|qiFxt5Kr1CFn)WM^pw`V zQjKD2*P(U_lAMqG6HG>mOTXz<-{Exq>eog2)kb+rdSC5SHM-x!der+;qU`&Jg}zDZ z4|%ueP`h@S62kw^`dn?-q8z%RTtxX$&^_Y9dEN6{n)daYzRLL>#>Bo(SHu(J1_h)3 zyyJlGd1t`uMZfn7xo4#w=*2iLrDxg0XoWw=m+RbJxre#CJ-)dSUyO?swDt+C>qI8^ zQu>4Q_R;|9Gz5zAkb?f$KZKpawIx0-#elyqz(^oLZkJknyzJ+_Sr2Xx_!Z(mcd_@e zX{xs#(GDo!`f&9jT`P6q&ZAwgSL{VP+xPunk9cC7qF_?B^uu1mbiUJg+xOJP zBA%EhD9HUmSno^zylhkO*9<6)*M(Q@Bt6h-({3)(vEDFvUpLCOQ)q$or2ZLkq8p7b zh30-#$=|Dc1NiG0S}wlNl4!qs*xXg;X4SRj6;9UDwo_<>cw*e3VBzw{r*-Yjf0iG9 zrHpbetto2-`qseeK!O*Z83=tG%}2rI=?+`&k;ZZJ%VEcp>W895v9@MxdOC2>r2fGD zL>+sI*4`HsJ|kH>(6ZcFQjt|P@0eOzDXs&4(2tY52OdL|Fr(BH|YBTg?vsy z&y9PEy!ox}YSCas8gt`!4t-cW!bw0Or&DmnjxXt+esljatF}9sotgiwvzXU z6mCBXmP7pdP~>YEQ2O2D>ge|xCq|YVF}}CbuG@rNp3?Uy1s5BRbZ!L7a!-|1vJ?8t z-D}LeZnj>CleKi1o?jnQ2YRdNX(&bS|IWgnZo$l-AR`rmUj#Q&FX1}`;<0Q;cWD=NYo&K5d?NR_DJcmJ9mHz`!`c zo?Q0D+j{ZNf6nvgY}}2o{dvqr{v>(OfBw`l-N@No<-xK;lyR`R?a$*L#1r~q3YK!a zNbhaxg@<%e#-&)>PT?-ZljPR8NeMeiA4&IoJm1*f7vW^#pNmoZ?Np?5H&EzNDQH~1 zlkSPI^b;lTPjwpjn+}xbhuEG!lYZimxel+d$n(y}ml;UM07~+w*5QSN=nV9X*i7&@3n;C}wAXH0e#P)P2mIX+l%X=v zAM{TGCAoarbrs0IujtZpt1~{suLp^L;>^XK0)Lx;lAbo#@|UoW?AX>cRmRWewm**z zh$rnM6qTz0J)cj#-`~xi2K{=VG(W5;dd$2(y*T~Jg0GXJR_`wMEcn|Dl;m>l)^bnk+A`DMy?S25xnHX1kj@sMBuC!6`|QPHwi|F- ze-W$z{Otrv?aVl|^-EnlN^<#`Y(+2C*7oP|BH~H&L++nbc2K?3^YTDNo_Ditpnm}< z)x(SP;*RimT5ClfbUu$cYcCpm3H{Jwx928s;^Dkv*09Au_~HL0UIPMf`5w zPiH>AEA}Gc>tBNV-{mfsP=6j$yWY64Ch6-o)4KTT=E^u2>rjr=Y&(TFdBJIte$e=J z37re_(Y2?GYbkPM40{#yZvdtF{o*qXizuGy7d+HY@N1xd9Vn0UO z%nN!SP-@qa4U@?Zu~^4Jr|reLUTP2WwHGMO)Bf!VKcHQg{5@sP`nz9$8~J({D9P9U zH_M#x`l@$%zWOWoDEgkJY#->~0oDf+#Qk}Y{M(rR&nm0yTc`cj={WD#-veIm2uA4S^L!3LFDTYP@1Q|`DJApX1!+Jm3h;7dvV6+-}{?6 z9I(6ENOg1U)|(!Fq;o1;M@qjz>-(_RN4&D?wubRIzu%f?M{5Oa%Rb!p>&^XpC9ui+ z=O6e?*#D6I)w`oRH?N+Z0RIq4oZhxaN~zRJM>8L?W3iCz zs4OJApT{3FAJE%&G9ujsHoer2CPtTdX5GepsyF+gU9F|-Zx{YvbbPNjN23eEoq*k0 z^rt_MXmGJNd!EdV4!+!*J+-hUxsd3^fA=xaAwOg<#{IpB@Acw#Er;VdogpxR-C1_u ztEXqhvo}-D?oBz1_q0u-S&yI-<)6U6lZEmldoNBW!ikojpf?WpWM|W98~<7GqX|CL z@=N3Kjdb?z#d8^{3CZlS{i8ZB{8p52cW&G z-`A|CKescLM0pBKwA+{IRO_o9N;?zwWx}q==*jctQObergRK16 zc1X#nPxxtSs@A7SKZ)}>4)OESxc%4AK>3?WrmW?tPmvDgkNdYlJYjD{^=n{rLX! z(C=E`AvYVE`H1fupuamT{Enf%2|SO2SaVin0wY|o|a#P)DIv5idw zc4E7%oNAgRr&<113nt(APN~Oc+V{skr+4JzMeUyPV2z z5w@PS8Tgde&7PDVw2v}jarMT}4G!@GE$W$?j`fIqQXp+c^Rwjd@z-(9XhN)p-#K)* z^+OHtUeZ%|S~ouH^&Rc?e#K9EDtx-Q)A&lspW7aX>w{j5+Z43!jp6s=>{t4OQ@y{_ ze&n=VB3MJ@s}WFYXCCw3NslG5srPY4+vne75KojZ1>Lddj_TS;zMmCb?@sx2S}uOQ zG5EV4C_&o2!@lD6?u%5$PgjVYm^4llY#xns1pl-9pH9nDv+cy%p&+ID_05kt<#n&o zPsa|=R_w2u+Wu_XBAyuEDCj$yNaM@f=KYwBZ8?XNMYEQmZv~XVxAlgzUM<^PshwBG zvnbn+Bn}b8ct}A{+j4ZjoAs3ZzJ6=)*9Iu$5(@ejdW3yMaoIaN?SIba>GsH12cT5% zc}=%c{w{g`z^Q&Tf^|eXoq$4)q2l~gKeeCkp}R8d*}8zg8-YTOp`c|q!cH}NW%ROa z=Em&h@e798Sh;e>Oc4Pm(|L?(RkX=;Q+*jd;A1VrSdI zUcdA}yeJ@nYithfdt2jtoHBk!F?2AEfnLZJ6r6a~+b2m+&FvAT@q>PHI&V6aC!DwI zUdUGlupW@WQ}0Lw)3o~ChTh#wk>^|4c4DcZm-3(c{xft=@b=$lS6p7hUe|E4mbRT( zU&NEvf86eM+2L1CzOIFgy9uCA1WMzef3J(?zuPZ;{wG|yPHIP#f?rQUI(>i@fdtb1 z4JAMB_5)x2fztZD@bi9TSD$bCnfzSw{}=xK`cl183K6!QSPIgU#(CGoFG-%T{AD@! z=N4QK;m_~Ed`7Y~@RtsZ1QKw26DwTu`=6QMYXDFxPtR9Bi}TA3OMIVbAov>!l;q@P z?;qah)xI?4KonU7kr(V)Kx zD7CYI9>s_)@%}d!{M`(c*8NeRjH7kO+HHFdoocMio6hY6bCAvipai+`aU}2FG=nU0 zswjG!=4>1Y#{-4_)eM?`b1!Y@7rvYvJkC4s4?+(<34BWJC3eCIpO?ShudK)1VV{c% z<}>_pA~>E?IWoew6I+G+N%M-<|CIwe8|Yba{K1>;b*V*08%2{r{{T>u&$QR_p3~ir z{yOxvG9&H#ig>&}_I|_+#1nd63Z@Ni@S$#OE_J?FjZw<|^WE4K&`$?S^-$RIz&Ea|kZbyM3;><+{WtdF!6mK~fq9X%ASw9iHKtBg4wa=m_?|ap2msDSLGG0Fk`n5o5JloN%2KgT=Ry(Tj$KBxZTC?rMo(7*%yBOb~(RtDf7w0{L z&iUK`{x$-o@zdAq8al6WmhKVGQT5*8k4wSj;@6)+I-7u!zP#wG@qf2p75@4!I6bHR zA;R`&vlDzu^3ujL+x$AKO&2VGkg4bknzQFXzYQpjpX{R{Pw2+^mUqV$srNEBWm`bM z6)4TO)_tp5glV`{O<6xUoyYuo0n&LMD2<=_oz9V+gY~HQGdUfX!f&6!<8{EF&5Pi( z0+4{;Ghv23&6IJ%xt#nGzP|%l4M@N~8}u2;Au;4CqkL~kAnMy(|At%kzaoW<@Xw}exN+__eX!E8>U!y?0zQA8${92wiA05^iuoGGd_X- z)5uolO{aW1Ef>G;1%Gb>+bsMpxQd z`2Ag)Zzu()?JWF$8{E$R-fm=1z-}ap>b&8U{~Vk&B$c1%otMn+E`0FJ19$Xc8@fKq zj%W$Y+_Zapau;Tm64`;6&P?01Y0bl0TVN~p%kP`YE!v&P9xHmiYx?K$?E6xqGRJj{ zXJ3~-c5R1#3GCN5myT%OsVC@rb9;xZ9tiia?H;Ui`WF-UdtVZM@551?*B9r=U9eLT z{%VL{&3p`?7SF@Ei8#NV$io`GE6$~B;(bq?>+cG>?!ZnQY1+`t$JdLaZJ!~+BHdKB z`q+Y1$13y>_SYlQVS-NK*8@IOzQ}IIY{j;nfR@hfE}EusKFD5xxS}VGtth;)=d^eF zGb?y9h23-TiO+s%EbJBfqW=2v-)(!GzC29jxBh8*8l|v?=Cd}LrJCj~y+wR{SJ-d( z@Ey9A)Jl)O$IsIz<9jKvcMxHqh)?`l@dW=yD&nOFzbAVJZfBCt&%cj4?L>_+zp&d~AUw%Q)NR+>A7lisZda~ZuBicQ?ib9OJ?Svvv?HzA)OKJvJdQe5N2rC zqJ10j@DC)~kKi+r@zc{Oyc|}*e^4is$9$9*m5b$1Yp5tcpeR?{u0qtes3+0xM7<`l z1k*86*$nQlYehQjFhqMzxBVDt=HnCb)Bo@E-AX+&g!6$0&3M~*mPTg|B zD%f|NPviZnhSCnHU0VI^uv!io+@7bx0RDYpXOWNZ`+%gTx7>N{&0?l`(({>F=ojL5 z@L7nkhVO~^xdVgw_aW>ag!e#Agz>vE6yw53@Hd8|XDmly-$8aCRzIyc9Pfd`ZiD>$ znC{;07?m?9C!79Xc>T;}GnU2XJe0FICogA7&eD{ehx?VvS=R5WoaKoco}5Q=*5y2! zlCz@ko|_U}|EirvC9>0a^HO#iZ*n`0sAd8ETh$oPO`Q|>5(ea&&f7Whc z({Zxq_Idisq3Px2{zUc&^DbPs;n&)V+#0wKRg_~j#3x8wQR5sJ7k%nE&hXbO!E#-s zy{}#g=?J8tJFe1?biU`xI0sk-{JDUVem<`38KJK$dHC7RHa)G-C)EKTB3%j= zt|?D`&aFpXhdW>YIXyr4Z^sKBCn8vVl!qHAl}mp9F!=NK#VO-i_~Vi^znLl6_anw2 zJ*l0sr$2wktL-z#rHYC^E6TRhxDN5I1`@bu9i?+6*7Hp3>XI5Wy zrs6lMr+uGh3&fMkWm)YO8so1^Df$o>Baz8^ngc5W3D~?{v>%T1?5ch++j`S;0 z=D)bKIg~%G>!**`e@kg+;oFr<^=hWzkk4q=6a0yFtu%h7JyVJ7S3aD$^xiQZ+b^6& zPKv8uh}Rn^&A0B#vwtW5L8dB3y+_|^JM-)DNGAa(m>qe(~Xs7aZz)oWt z_!R3h3i`GjdPg@--8Jq^#cbQolarBx4fI2RQvK%bj5+DGhNb&bg3mdUVz)2olYx@_ z!p{rSZtCW(Jwx^l`+>ecP%2M$OC`F8&w5H;ZcPDygMd=Mja}6JcU`M%YV6hZbgZqf z7=U=vI#nAHcf_kzUbt-LhU&`r(vYQrJ`*U_pXagKySk<+!+}zNaFzLq)+;%CzFyp^i+#TZ zC+i&c{GjrABhncSl=d6>If0FX-fg|Nm2#f16B_|~4=|8FEv?n2?Ytg*s(&)KLp~!y z{P_qy8YOSMF`U|`F~>TW7c7T3osXQ>djz`)A+En$k8Oz3kejHHfVJMi_Wy^NmdVLA~;LV`V0ZQ_VKYL8T zPQRqr0pX5k!R=aO6OgZoK)GGFJo^X@PRCupJ_Y>U4wTwwQI-D3`S@~gf}-zn zI=*Q3zR5jEPv~ta=-cz?({!&9ZRPK8t>_t|LhLl8agcqnt4P<{ngZ~k{W%>6{rdgL*K0tre@H>=9=iPgRjRzzahkGDO|k7X79*at4sbv1I_~vs zt2{S<>Udj!Y?0Byj(MP81eC@>&sR5p>t*F;F7LIxhcdoI+5UVMAfB{-U>!2^`M9Jt z2&q43<>}WSKspP7(m3e*>8GbCy(`1d!-L@OA)r*A7wR-QM(uNxXF$f~UT@}hQ~PZm z_*))Yo_S?+KKJ?tA71>#BoCALCkZTxEdl+~(EMfJ)R^>3*8GsB)VtI1C4xPSbd~|7 z{=V;>I<&85oh<8I;_IA8z~3uCsXr7v{S&R{P?d6Y9`tHggjnvwgU94fKq?R>))IF?#)?18|mGY`Jpj;4D^o!rS*G3tpTJD ziM#YX?X=%Mfpk^^B|W?L*IvlwT5-+q&gHDt;BO63ns0MAZ6Z5w^E_?G*2UDW{dzvq zc@ikeOKmNA$<6IPgXb})>o}+7qS^j@wu4Wp{}s3kX&pE6n(dxv)%z;D+jbhyBc8NB zo&Vn^L`Aae=|6t{`n}zi{eV_%J?NhWO7madh<;~u z>viSk%6XJHwgL1TfpU3|*>s5f&YB9|#!9_At%p!M4Jm)VPa|plZawP$X87xl;Bnrm z9HQBF8e35=^?(FK>M54bGhZL z!1+X;e)#JnwcqYWzFq}N`D^`MP1CQL`IP+qL|)E_wihVv%S_KNa52lR?wq;GI1y^6 zA+7(ozV&L;F6%}`&k+8&8{BU-_6GRd6Ut{!(|a*LX#YF*=)vvf@9jd~4A_OlmeaH{ z=TASn^EBBp)cJhpkHh=1zpgv0zwu{p#!IC&uobW^8}rNd&4*hhu!diEf5pg#pN)p` z{P$cD4}LqE;=Oc!oqsox(~I--WRLLk!baZg+XD6>oUR9_D+E3HAsK5vr<3^me4y|r z!Vsoq36C$ZFAvl5)_U&)Uk2KaEs2sdrkQ+@jYYD#~n7$Nal1ReNWoo z+G|+f)6zM81it4J@xd3_Cy~oZj}!(wpahy(m9Xz9@I%H^_emmAiG` z{|QkJeYk&t(IOnk*Bxo)>0cWE{#fzd?#Q1=59LASyJY{+ir-Gh`T3_)StIixd`5px zFUnC9^ujMnGW@Qjz|IBv_aUAE)I_{u*!V$f?`(8t0K367@VO-u<(UC~5O#?$ zkm}j8D;ht5(~+HpRUJQrUf5%h9f@TRatHjS(DJ;B`7B1f{sYiIM0pKDx(M6lHh?WM z-4DH&$?ZrMsObp41wYx`j;7;4d~YC+*9Tz+6m}?iNVf<`^`u!(Hb;gq8;1A8Ig;H7 zw|5bCA^4q+A!_EsZsh0#J^BAIUu$Gn!tF$se_e*pGtLY~qBAeF_*V@^DwDy;;Y%5e z9OeciD_RBwvPZ0}X_~Z<$@yg75pTrs+t0uI*$g%vzgr*~jNE|tl>@&Q?Vm>uI)429 ztK0UEWrG6mNku!-UMLEIMq1#xjdtI73+ErZc4g|IV22V~-~yep_+F*JcP)bhZt~T_ z{yzUXe1S+67)Thfp7KCxfe`oJFxqf4pJKZ}!>J$~VK4NXgHK7(<^M3}gkE&*FK?`W zJS9Xyb~Whh18V{a@~e$I;?4iA?b_EH^$vC%PcyG5hiae~VG44Cn0t0Do8A3}5XFU1 zY*j(L8bE^ln6q>ce9QJx_g!04QOL#E2MR>{iVnonY7Kr>*Lf93)lbpPHRq6msa zJW+2_e=&Zzn-tqPFdJMhmp^~Cz-Misl)tolZX`aNo3hVEJ5Q7m>KJ=Nw{SE2j zXzNiI%;C2)sl3cDIXvK^F`CJy9o;I$F^}v_YaZqD!V#s{1=O8=yEx7;F<6fg|yBcdNwFfudX~n6q-; z1zlTYYPKVk1$sl)m<0rpQ+_pfp}5wQffT>#e8cFFI}k{zz1_ zo(ez$?jXksyOa&S%U=(1;A;U;YKO+TYrfL+$6R>&r`JZ~T6wer{Zybd?#@3t z`)#lB=7PNrD)ax^c{gxxfJo{&c=$UZu7kodgxg}%K(9}krHoVvKxF0|{C z-zX1v{UGsAISLqz^a;(MroBHK%|cy2IGx{}&YKaeANWfHN^$|epw+rLskyR_i(>sj zpA3}7Ps=fN zI6gV)*5j&SXB(CY`T;LnNQA*DAE}Ql;l?5@<&K+Ei@fJeXZyj zoX?x#wNH<7u{r5Z!QW`0G=Icym`(@CSD5Rnx=KAnu@Rv60HyV)Yw2^)PZ*UHxxjgO zjzl`6LetC5z4!r*6IaH;$?)nSpwC5iY=e=pcp=GytlqS}x^~h0a)T0IKjeVFNkD0w z@QkTTa?i`=jrOrhdx^9idrU+;NuJN2w3ZywnU4|L|HgxU0#MSMrj2hvh6C2l{Mlma zN0(oYbk<({`mHFBT%e@i)uM+!?A5B86MQqJy*SlRIG^8d1Alh_rTKlmWkB`p^WEDX zX%n(OngaUUfzo>O;#(`}Afx$s8af_dr16SAnd2e0R4YMIWk)_BJaqJ$@&j3o}QbC7b&v^~g4*xl3?{9Fj=4=}1rvs&a z8&|I^%7wL6+UMo(fA@mF`+;Krf`YEye|@BDrkZbMGesX6%kBgH9H2A~=2zYOy>7jx z@l5Q4aWXeEKtB^G$>m&MXIP$K6uofx2ik(=9*xaHI&O5gS0^6c-rhxDeU%ihPtz6~eqZySs}jd+sW zleYKm9oEGg8=e}?>f?6~Nw&erTD+I)ea6_k$#IEk@RO3JtW#szc=zCVcKl*iA z$C(DbrCKR^6sHbSU2G-Nc@kJDkZyLVLr2LmglWK0Uy-k)*ecMi28PTl*8AeSNN)|& z$p=d1J@v%is~CU%zq;=fFc?{f{7HI^fMWr7yfO}6{(iI`{A~#3GyC!DfAae1o`FpR zhXtQ2(RzkGE=m2;Oo44gI?n^8c_s3*t9-iVYT1AMiUIaTlANpudj|9cKzaN*cjHye zF#SIDN>aw_XtoLTTY<9tvNbc0&Yy zp<)j}M$G>lY zzc+!>_*u~NR$S=oS1+n|vpt~S3zXLV+Nz*8!je8(*%=H zRKECvm%mo|bh>ZhG=Ca92>uQMrFC4c(G(7j@`jeU{Ar%B&pDn`E2nlpjZUja&s&zU zES8M54hIajHkQ-0qmB1&sQGFtJG?&W#mHv;*wa6aJh62G9D|JQ#CR?lM_&ho+X6eW zt}busAEza-dSA7w_tlT_tlx8o`aajTH``-5B%j6PV6^t1|ZO6V+1K`iZ?}uB(#F?kn7%TQnhsB@e&l zzPzfbEdOA+&XZQBvPY)X9=Wqg3cKZ#?UO!f-xuFg_|gPFB7LN*iLk(a>|4{1O-?HR zPDdDAEeBs@NW>j{r1Rf}p^}EM4|E2?ECu<(_cUQ(CDIdo0P{r{@eG8ioF^V$xuMy) zG}a*@?xW9VitlH!)Dc6Yn|DlSHx4dZUUq*P%UN=6x?WcBn{Fvd>rG0v9oF1z8T5f4 z%8%8~9!rHG4!-LW-$(wlL>Or2F9YSB$x%3lA%iFWUF5@q?;l3G!XXi*uUU`CZ$IAN zHi>%d$A71GYF6*|NoZ$9_}w-{6Xhh@v8Zpf`=Ue`28njq1K&lz)4Ic83Gwrj;5bKo zM>x7t+LdVkwqYF7%NOlHlut4@*gF7&t9Rij$8J}meABqW-n>lEqg+)-HU_?Hx9dQ@ zt#TrRDyyG=l*y6Ou?(;>1L;@>T36#cd3f&wdITL%)VBtHe5ePz|6*J@H2~$B%nbv{ zfXp(8{3HX0q~iNXR~W`=A}rDs`4jCpi&g))U(O9*WU)H$PKe$58%p^z&X#_M9G#oze=aC``0&>k zR|WD-e>q(zxNQB23*VE<)1ABNl-Kw+c9=mHrFG@>j70mQ{z`Z+@=HOzFAO{LzQ?n^n9+x@y||E(y(0s+YT?O~-%kZl6aN>vNGl{hsUTvqLwweK>mAyaviXUySVts|L~$ z^-n=xb`x?8Wj;l!0~WVKy|G^x>&RNxhc!*qBL!WL-SM4Qn_isz-hN%^ImG&|I?^Th zCBZyb3j3?lf%o*6)AKPAc74{t_e8&-U|j9aKX|VcM_Z!bh`TL4A5Qm`PaADthmPWqXTTiD|lCu?iZGqH##+8YJkyZxl^YD?y2 zYicR|p{Z>T(g^XS_Njee=L|U{GWUhggzO7n2l^PGG|p$&i6_T2MVGP@yZqx)WAN7m zDA#+;^*FD21zccvJ@{)1j06(+y49m`!rG|)Owr3Z?YCNpVj)I{39Z45*T2F6V4(H)$)*19&fYP|zcl2@EuS?oN2ZO&*`mJ+$uq)E(29)}P5&sFD z%P7`y*QtE1F&+Fdpj7YLRkQZ-^1K4}iF$&+g+NIjj5~X}NY}PhzUJ#mqilOlPL^fc zi48$KAzx6iU}`z)NB8Zx{)=P7?Qzy3BSlDW(DwmK{nk~h=p`>J)!~sI= zbw}PON7j0cNq0{6>}ap-U$?RC#QGziG|qeK-dTX=tCq{rGNV?R~zGil1wK%X9(-o7#;NUqy#9=yCtX=mZj zw^IF>DX2!18G+<*TT>?e~Wj^bKZh1(w_ zxtlnPVA5i&gW!08xHzWq48YvJAUQ0j-M~@sjRD-+je3j5l_+&Zhz|{ z+3%PR4liN%GXnG;pah=$XT&*zl6Tk|Zab6uC1u60k4A=W0!sDA9c+`^z?#>q_5)5Y z#P#cAkk0r^q-Q!vuwEObL-zH@g8pWp&`VMk_`C0;$_N&}qTwL!pmKJR- zoH9_EADXiVL7xYd*8O>nZln3(-jC;%8P!f1ucO&RpkEA>$}Mk8UGse5m7zZiuO2*# zBO@1EihL~xO8r4wN9zEMnVx~GDE%Qi#IcZ659`<>^FE>CEEnhPTY|V$s(hJOOJ#8DWFsjakotJdbJiSvyErQ zgg8!m0`&Pnsa$e@{-n@rnS0%vrpWWLww>52#1s3!6m;#ohUTL`$S&=Tx=KHCF88cP zI%|Lu#68kk><5&5{XGfB)&eCti`_DT?%OfdHqWaL`NG%RNaGHr;Cy|w4*b0YtPdn8 z`0IR;ZbUCTG%9(xy}!?Y*4fjb+YAg@SJl-QzqK)4k;?uqMYgz|bk7@@HuKW@>uf)IObpF$9JF#c+A!$8!apUmgy7l@BxCi<< z@K*pV4>aM&-`48dZI5p~{6ZI{zc*%EK(`er>D}VCyg+uLCr!K1l0X0QJotMND9Q72 ztCncYdhM?k($2Pl{so}4ekfD!+d^G4OovO(?UST&oKgtCeFpb;r*foU-;R9k1WMz) zG3S#Lbe|V(TeRw-=nG;)?8Kz?!yilcL*H`++@rAz`Fb5#1xPS8EzJ*kzOEt<#;{jF z_Zm=IKX`8JN{-oB+avSd`c1Kei)On)|0+^L7@V{HbZd?K;%4kkme>Houd``C`5I!Ra{f*WW}rz6+GbmuAhU9nlR_4c&2^ zvJVu)-U9tQz_LIBmpA{su1%qPUZRr}c_|{qPE2lR_jeHIX4Lbh&hr;;{RNL_PUZ4| zo!I**kE(%kaa-p+%jQzve&<*J^*%t0&q?aqwnrYDdA;qYl}8-!Z{+p_cDmF{_T zcOnl9J1ng?KgXZd6?EN!omi`nK7VKYV@d3;*Vfd&p<5z*@5%V>KY!Yr|DGF0c>|q4Gc%Q(`+dJN%?JmuH$ZpKizCYW8+b2y-Vh^l3wqR8@>|Xi^yRSfe z9uMLC1jfTaEs^JIc@lqbJKRE8*u9Yb3AfAXi}?M5>1{gvPRHjhJCrGDpc4+4L>MUS zf+#+>BU1Rv5@CgJmW=PF+Wd@qsQ(Q^e@*6&kqY{=kK$_$zkNv(&tDCsC+u}Zx>`EE zlfq85TXr<VU@jO3mlGyPDW`UzV*9pGjIsexpK9#FxK6DJ-LZ4E;c6s&Z zzYDt}vIFaFKFd z0bxzlw+Q!P2M?G}3ha6M@bB1mbfC|LUD@$Kee!xoxv~r%k0I<6{EGHNc5>!3A)Q&b zWaQyHbo@rM9>k}5x~?HTU#7CQW&#hVvL{TtNwR0N$Rs;6%MNHA?9#5yM8Cp!gdLJ0 z!kIk2u)8u4rt}}G+W(ikT4%5Wc~jO5*Z$rNr! z7W}&=;^Vu*9*gY1Ec?7KTK{N|Hvg)f zRu!_-I({iTt>fHIYw8UFy~k23hniL&NRap1#3NpJ+uf($iJQ%gz6 z*EinsjkjR`8+$4?n7{_g@eGeG-?YSgNk8e^bH}G%-|^S}dVP5|ljK{XjJM^m3W!%# z`tI!qukslco;ox*H$7Odsr9nu#R$+>3&cya{dUmA8ocgt*?N!iq3IQVR<4YXzgEwq z{jbQ|nyr@;`Ws0<>1*x#QukHyzB{I0e8~MtqP~RQu2P^pi^kOdOV?s&9B4A5t^Ixe zb4%M!OUR+p{&->619V<%zNuHaPSHCwx6fU=kd9RE5nsjQyyOnIUC*4%9b%^yU{lL` z_US9c-mZJN>Yny_9X?tAYd`H>$i;4Cn%9Vc4eRZ-Q`P-+Q3v`;l@YlP+dJd=S zET`q^*G2iY;02|L{!77}8_WNw8(R~*jcCN|e#*((*!Gq&h$oHn9#=;y&s`C344=|m zIj7g!J|}n`;)!~sVE%><2fSMAiObG^QcLN#F-*)qZp5RtpLqCrt+Pk|C`kHMIUg4O zIX1N(8sO^<^| ze0={^{M)%%W9tV^YXTJGJ_YliSVQ)C#k!yCyj@=p{+a@>1`=53-?TJt?@=c3p8g8A zJOlC(qTBWZ&GAC&N3na#kp1sJ)T0KsPv_<0R4+y%q4mT8rFv(B-=}j>Wf=QRcKDgp^&8+H3hkE?X<%!BPciodc{+n-lg&{qk> zE9~<6Ij`G4==*Jt4Q8TW^Pf{#N6>Wviusd*zP!wnUh{NVz57!XIXRMb0)1zo)F0f- z*9OkvOXWqBPTPyq{@^s8U+;!|iFJ&aN9lF`fZnvfQ*h5Z{a9wO|2Mi2sXO9j0c!#Y zJU87{mRZ|LOB0z?KlD>qMgxfT3;;@yH?!NX&$w9z9&%P^Wur`&VZfomHF1~*#5p3(&-J9#_Rd!dF6k)zgj%) zEMTYA2YgE7pi%kB6JF!sbH9#U;#Srxtyv=IlYnBqL&3D#cagonkHm?|CGRJsFZfFb zigmRawEQK#opyZWncB)eY0D5hElEx(sIij9>jYC(rurKQ|6H~7J>n#SC4;{dpjgLK zFzI{-onI{G`x;V_P8v{ZpWN>lGvz_&_kITFFMN40xLrrG4Dgo;6zfO|7Ol*sbsWx{ ztMQ!51)c?X*0he7f3ROY>izc@gJDWj!5X+i8tJJP8Vx4l~ye=A)k1a>}Rk_TsEv`}I*g z1KMby)c>aT7$(k<*m{;t{nymG;(G=8SdXnt1L8kL(_wq+|@&&J8(*jUhy z3(a4_=$X{6Q)a%ue|(J6A7a?epw9u;0up3zt0>OHsO|dl*ZX+zH32Bi@3~c{5}$GR zF4|fC_mFk5)AlkE=}ZDja-oxgbH6?r{M`nW)_?g!7K!zrOVJaBuYU>VGkm>UaJfX- z_tf1H%4b1x+*foi(3I_#1?#ZIL%XIA~)4ZgCQV#(;t@{yA8qc)zeNOTE(|%Xvknr25({Vy=pYy=qe4tbh z+Naka(TjKe=X{)a0Q@ZhO5;TK|D*0(z-+4C|F_(RTn-J5D5uF~$Yn6(zL&wwm|^D3 z7&GI3T$?D3NEEeoK}k&^lr%1hl153AoKsY8X-cA!roJjkbt)>9{_o!Fv-VkMoxcC) zJo`JDe*5wG%sTsBd%f#^{j4|R5A@SJ)cbYZY(C^40!riEMO|YL@qL-(R$==x4?=zc zP#TBudECFG{d^eu6#}aQ38D{=`xW_D{&vSA9T$X_PtE3OeTaBT^)Ik#N@eEV|7YXh zQto9fgYnihBi**=wFkdT-?jKi?p|w0AKf`AbX}1SE-i-qcA&Jrly}d)r*!wy(v97& z9L?N#Zvh>sdJOJYfl|907t+kMs z#&z0-TR%X*8LN~}=jF^2N$tO>S;YGR zq4ic{n-H(fz^i}+#^Lneb&bwNpNXrdtV1`k?RmWfd8s|q8tT)1qMb0eD}#^Id85<# zx!B7Hd@E2YXHhTrJI(XqZ|u`=f&44s{@lk?50JlqNBMMG-?t%NuK}fTq-WL5;=YaY zUmp~_t{u=*Dxcctk1o_T>m+w~WgnuxQX zAM)=2rTT6>y_(MDnf=2DD}5&@`?9I&;O0j85*9`_&FU9MxHLA z6llyOMp@e55C=kfahiX8;j01^~c zx$-FVRPS+eT0WiXsj)-Q>m#5Pe}9!f{@{8Jovfs%b3G3uoFhPKKKA>H&wt_J73L`A z(`o#i*T4V9d;2)Zd)r+_(>|Q5eSP){54+@GO#FgZQ`xA`R-K#Hs4x2~tM0kN7JZl% zOV)*>(VnB$4wwLBtkv5i&puiMcE%1Ra{EdBdh_=MiJUiah;g^ghwH`pDdQnW$M7}l zfm`sVj6~R5f+lh|KwnvN5nP4MZ=PU=6Mg`D8I!N2$p z=^^-W)^}ate;rEU;Rt@4%{NQN?~oe=x8QAQ;=PBFam9dT^w)Lx&%K0e!dvSk$k$xf_ggb$y-ZXLLJv&o*etetE z-XD>8N41-hS+`A>(Ld-_gm{s@k2WC&(w^{mnpVRf8YAq#33-9Z?EZQ5L?vLf34eg=Vh>2IwkyIe7^|!DD)y;nKg?jf*!MSb-C*R!hUu!6>K%&PQCHtWC9-7L2d-%rnCCVemV%S_nS!}liS zAYQo~iBD#g<7xxJ9~Jrv`(|(py+ry_{4Ac=eh=4^?5=6%BjPD|W`e&Jp{iG;;0FK!aa=t zZVZPUPy?32zu?0Wk4`h6>0>#1$8#(k4fiOH|D!##s|F@}{!yM>9pcHo^>;kEw>VEO z=Gx%?4CXl_}onz{%3RViS{`S z{`GP8cu2_0;dx&=;qy*gy6xzlIm*3EJ?(v$%Fwemkihl$-9P#aDqo|UXDIX4mJ!ca zrSY5jWqV#&4dK)U5*X8Zki8-E{`~cc$~>Z(?H2n$@^^pI#eEj)`I&$Ed_pjvc{Bog zb;L)c{}sXb1=d{lk%QBH#CV$2wPUhv(@|9pa2cMiZ8}@i?dRs#jARV&E$|Pu zd2*xV-}&DqGhX^jcX#V?+x!_rSu6RyKg;IHdGLFc;QNBb=RVPm=yBZ|Ez1er$EAUf z8*=@Cq8^jes6^)|*l!Q5JGCMxXNl1O`D)0w1WN5lLEfBieCBfWPcNj}_UE`*ifzxV z1^kKrjGX>yCqMNW-@CSMs?lCqhiS&HfqXNdsQ2V7emR-i3G*@3dq~|j52L9iK%E|t zp!39|ew4Gax{u3w`D_lo;(%g&Ku+tNGXJ^!dAQE%QIyS-i%0yVe0P^zUh4B3-*g?& zuy^P_ypd>^^S1C;18BluySC^?3v((LZ;y}o>uA;*a&3T8{R>Q}ChR*jRN9xw`_0gP z+IhY^OV5Db4)JOal=hLfj=6w#enWy{mykY*H1ACFlkdmb{W5>A zI}WcS0!Rc(<)!-SE8o(!flEGZd_2}3KX9?0Hcze#{7K;Xa45A)zYportx{cupWMmj z$#sSY(SMTDRovmqhI?WniP`c)U>Z!Xr}aXxfMIK9HdGj5zr zynC&2kD)UT>r($slI@t_$@L8Pmp3)5gzir)eY<_!A!U5lEMh&S{)R$`Vx)-mFrXM; zkTb>@SBiFiyIu+JIk+PZFSNc#zRnvuu5*5$Z*SpN<&%yHvq5dxZI(;hi8vvBX z6I&-u+~+gao}~t+r#%nmV$H&Ma=~%ArY#irrD|@aKf2icipJ6ruMA)`kf5OEJAa~@ zIj={dK$^G&(9X*D)Y@adz?NH{=&uuQ_UL$uTjPm z&hsG~;S2&w{j_UhThnf=`IP^;hFq?QHUcQM=lneGS8Jnd&;^85@t#Ah&6697-^F~6 zoW_@X7y7iQr;0D%*g$EQ8reL#A@C>l@9XpmUlM=fS#NgM#ZH%kFh0sK=r=qa@?ynpCaxOrGodxbaJ)#k~~fIqQ5NlyRRSLuASxl_F( zUKuaNv0EWO4JeiC_?wbmCA-ag{Rf|~rqqYX*IU*093#cn@1GtD)lJxd4K3U&cz-^0EIxg9%X+ncqJEm zJRiP)`zZ8#0w}dF(Z?$Ib%R#Vs!USt6t%Z`a!bSgr95>5jaxT7OHWHBJ!5U2++z5X z=KYQC{^U(xS@WeHLpV!-(m0FdRipOoU&5Tg? zK-ss5XX_xp9w>$9sW_F|7uWnnv!Cf0wr=Ar|AIWZO$bkJ=Yw`<8Y%sln>`2lVxTm? zEx9oMM_ns0*WD^8ZrF5CzwCF!nUd-ofr5?H1^ZbRj5h%g$RjQlzZOy0r z`y*%h;B>sCh4JL1{9E2@2=34R7o^L}JcG2Yz^i}+@il+gr)w{g{hzt*mGaVvZGqe? zKxy8%ZgmXtHLP~G{O!@b3jMYLB}jRtlg7Ba{P`N&q1fv{DIeA~*weFEs59pfs*6zUI42ne{UrEH4{9 zo%TloeJAwW1(fHv);$#F?}bClUC;lpPvLxzCHP(NZwiE4$P0Hr{#}>gt0?JB{2tAG{Netr^3f&(?=yi}92wk& zh`&fL;&m(>+3M_D&t~A9{y@mXUn$&l{$8`5Y&JjXk{vS!4PbrmYX00;-=}eVQ~uz0 zg*_n44pIk^Z%AjsTX91l;w@O86}*9BxDC9gbNk;e?D_4&bnqIUg`F&6XUaf&+4iGE zx`=cW`P17Dr|V5c2di8m(nrK=5Pwg6jz+IO((u(y;5D4dU}klA=O>gON-ry3FCm=` zpwM6Ft>OFhy^}??P8OvL-UqN1crvL%PQ({T{<%Fc@qMI=NH2dDv#iNJl*Kr|NtEv- zZVxF-lyBrq5!^yguM!^VZI$2duyZsBe3Azt=ZC%%!u?tK=RrCOehKMk>2(e471?%= za(FuXfyC3W{8K(#Jdt|H2VqxDJ& zpc|+GDLgA&L;MasN`YD)fA7!byrQw-1x?82ziU9DXOSq!qCCOvAA;`;2jaWCM{_rs z{n5-v*i{ntmR#fb?}9h-Kk`JD9+{oOJ=HRH>m`pQee21}3B7lU1~Anje>Lz@ zAc67Rv2T3dPKN>|E&7L^chz)zelPO7e$byMKZfq@tGwyi-OIWu`-q*wcp`O!{yN`1 zO6&udKM%h)^b+$cf@=bxF{WYC~I#7N0|2yvUZ4Uk7fTDdO=U)HhpM6^CzeCTK(C=EH zX!pq(Upt%nG5#py0;m17({-bO-WrOu0g85poQ2i0PV4;V^1lx+9{Sw{l_!&Qvb*830l8Lg_W~N^DngjbK0H-^hD^_8z|+&()Q1hy#+Tvk5&=y zIYd6L3)RzkKiwDMrvRmXlQmfSIWI3UDM~)LSrX)vfnoV~rMWayR`=vaKE4heFKMhF z^h*Uw?~PZ#+u_q1^ZBiqKXWms`4D+|3C%x^^@n~#fnuISPUGBjyx#in$x_-~X4_NB zfj_BViL>~zDYUeilw!|IxmbeD6Ul@>seDfVF=3O>h#gn@?MLmy_MI~z?*U5feBjpr z-4F4$Iew|3)W68nMamxvA@Y1z(=!YD4FXF2U*P85bs7J;PS`kdAmp=wV%|wkf9vM2 zqx~%Zd1IvQS!jA{EEn<014{jE=en76p0}cTzlVC?yHj3Yw7tGH1mTJG7;?rX{zB)j ztVivSoX(G&ma`}}4El`%O6gL#;{0BpX0G&B)|GZJ&bFsCBHW+X8oxYf-hkFXsSnQM zHxl7^fl|HI;)V>!+=BX;en(qOq|EXB<$PS5-Or zxf*e9lHVY(|}TWDb5&6=`xNsDn=(L{X;yP0Qt#4DLoDAeBYdp_S{8w(4=uGNj75> zAwLNy=~+;ex6h|p`5tcn=SIli6z;F&huGkKBBA4@f4*FY)+3GG4E+j#(mCLiwqt0# zWX<2p-yY;G(C^mp^z?QdevH-?|NQmV(omdI?%Z9av`f)!I?`hXP#X7y*sBRGFV4s1&ieO% zIv~6^42b9X0Yxs}Ek1aCC1*)CJ71tORl3gJ)6Klc8gzYt%bQIkHc6O?gX6ZQb)=L4m6u;NkIl0C@Mj0H>9{;2Sg+z!vb z1@s3I&H`XqziC{$dtAX@rM-5_FVWaT2upR_)|H0ymauL>ybgwy)&w7quj?{UQI381td z;xD+K?y>lnjI*AEetUsZ`)b+IGHz?p>&mKzvd*4r^F*G9KdHWJHEw!Q_kQ+xbQ=SuP#S69ll({?GKuSPg)fYSPl@qGRFbs6psZ;LJr`&wt_@a*^?``ii_>&#w&{8pgUAFVt2VnDa- zH!bL)teduC#gKmmD9xumrvhX*VV&!y-~VW;j6+)5_LR23pR|5fl=>KjXFjDBl=|lm z9csQzBz0VQ;-k8MS8`^CO%$fYN>y zw;yBuu8xI{Bl1^#7x~yZoxiWrpA&ZelLA9G%J&7~kEQbO z7KwZi>5tzjK9+%_CF!B*A<|nD>5umT5W6M>(~svL-rN2%pjQ^Yi+mEq8zLNO=EJhs zwx;QSt{CcJEzReohnLTUO!idW<1KovKzJ?TU*x;UHzHnH;V%~Nfh?2J;c;ScWH8fS z)I2h*6hhDnBZ5Jnc%aZv6YharUn;Mr+8Pu2F7hdveOQI4YO6&&LCmU`&C9_r@Gpo+ zf}rQm#`lOg_hf~tdq#O!@A)@=bADNWM%I(RxV>1E`~K|bx1*Y!lMFo#{Lj-*>>`4j zAn;jwk=sHh@>%42GB2;25Fa~U(3c2h+&|tMSv*}yfBron>D}>->DQibl*_-DDSr3x z`cl~ggKQ!nK+L;UxPgU05w0KZBGgZ+|GZow{-Rt_y|eTogF{yPazzfC^eNfdn3l^j zPVGuRwJVpukIUu$&*VTJ=)!vqC57R5gO6y9q? zAvc7h0k?YuejmxvkM9z3&FtrH9i5+>pGW`CZ!vq(tVMD859L3cUzq<${-f#n3)3#i zUzAoMe{r&gC;zehHTg@@^OvU1oLw{VA0@2SAi~<~e@9q*ofFpbS_CJOg;4KOp(kPg z*FMk-d$*c??RR(B8=BT@iLf>i@~)u2rCq-F>t0XPrxlYXu%W@iMJ)>rynGltm%p=$WOPVoKKr!TMIH};hLap0%nwgC_8H8tp!AtwgH zQv8g*eZTivuid?Ey|}o`9#~d||7ajV;j^F8!8QIU1Ihm@3l0BY!$z)3KY!&b{e6$e zO%*m|L74_J&IW`*!$xAlDCL8@O1~36_VM@$jbl=ow9riDCDA5^iS(E9eceyS=X#Mz zILzy%Omv#q2V#W0v>;isxEURQF(0FvozFZw-S&pAD9`oz3-kZt5xHWcr2G%`)rDS{ z0foM%Giu<+D4*rOfL0IsiFB08Q(SBz9c(rqmY~$5$R{in@O=)>C*q>qHOBWY34Yg8 zV*r)UDbq8LP&t#+S<|}N^+O!+s2=pkHyn4FCu0-r_KUxcwF$WmAuo`eMvpaO0$5fP zRj2JzIAKkcH`3EP;uzXbO+Aq5bR)rOzH7{lbi4*A^(!Ua-hiG)E9Jmjd)u&4Ec}W7 z#dMxeSdV&CRu|JbEuT@gVWYOtQ&7 zI~hn>eCV~~6_f?0maG}%X^3DwqP-zU{4Gl;J$IYs`d7uEM=Wa&`8Z%$eXxEn|AoGm z(C=EH)GoPit4<5besiPpq_S}s`9`JGewZOd+;4{Z3pZ>ewRa~j-20Qx)i3{c-r2Yy zXxJzb`5^Vv@k>8A>MPy5r1xhN2QyI)Eisz-w1+$rK;A&|+|u9+-QsU9@2ec}X>SwO zy2HO1SCF&l{z|Xnb8VFR(8?yPb%8%It{|u9-llZnzB%z+Cm%K&^Q9VoSTh2Pyo2j%h_U-4b< zhW0$4i$xwkRnH8B;{i(by-!ZYFQ`Z5e}FIx`sD(}`UW}w@Z}!ndKw*-ek_3vgnSNA znumM)kEM-R?{nAB_19F=vl+{V{2-vTu~u;Gq}ae!+d+54;~ptr%@88?7dl>wyx$D< z7iAkZ8jkph`5-xu{Ji9Z&M($IuZ#y{!w73~Jl0JThE6_L4&pjZ7ni-BHVk@7?cnK6 zFVKMv>nW=PXwK&=PRD~I5w8j1@hf=j#viQs8Q1qx%5^;RLjHQ71Z@4{cYWIa?`yZu zuCJ^UwPB+mI2tI`qoN^$=)mH-6<1zzUAO@XXYte67=$wxD9!uhTR%jEApfLyYtR2M zteiOwZydrI50us~tcz91-~~-|d`kI@y#18RyK@3=OqgLKssCHIbp1y@uKo!{&&bCw zYJGQ>o=)pSK)(^`e-}{dSBidr@(W+lXEVFbnm?LJ;}eqX#cqQ9RG^f9@u$8n)s4f2 zvz|PW9X5WM1o_E8DgG9bf&biHnRhe_BdkgDl|bJ!V*RuH$C0-nUQ>Y5x{YK=sjLpN zIL&v>Hf%IKJRgqqoN!3jej8G9$IjkLyVQhDgZypb{ye98SqFUPbsO-TLb!0c&KGI? z!U-2Mpx;cOG>_v4S?Vr0vvN}#WnSEf-46LX!s8d{QeTX-)C;jA9~U@nmsEeVpx>S0 z@hffe!V+qi_=Rhg@Sa2D<6Ws-XIyDaMe=Jh4ZTYZ%Li?s=B_rQZRKZ=Puk97v4{0$J^2mR(r5yPJ`AFQMc z3~1H#TuGC#c5n`a<^rX8RZ$hMAc&WL`HZw53oS3vVT3hl9c*4sV_X3GdkZC9oQ_+A zgtdo}o>D(o`phq6*ulu(PZUOTGuZy_htP1>6w{p?=x|+ zJ`vBWLgPmV`Vh{OKzV%De)UT}W4ZUs7oNzl_rokP+Am%V`Nx4ZfdqM%e297K^j1py z;tnIMN%Nekcdh!E2wmpM^vjg;=``O1`cmk%3@D9z;-A`1?I4J>>Ux2*`WN}QRn3Pd zpx<(!G=KQLK~pggSNG#Ce!sZ_`mF@Y}6(xv@Gdexq-huj9>RX~E0ZWUi9 z0^o?Bz5b7NX}r1t^tIZPu|3 zJRjnFDB~9wdl~XufQ^9!h4-!5UB(x{M4o@4{fhJc;Z?+EJ5ZX37hZLq+86Uexk(e0 zbctr$ApaUr>Q|qic%}l=OhRSn9Hy4DNc-E+_+9LD(X4}^f5&@xJ;-}FL1Voy`oD1G zR7nQA<%XyHCpz?Jt=GP^^gwJXdui>478CdOWmf9YGCohG_P_*SJ0Qb3)+D&Quszp* z=6zshGCvnyqYwXG@EVHXrs0`pJqX7w`~zv2X}vajaI|?By;!r&OG-w(nZgZJypx9a zsla|5>72Y~J?X#<-~f)|Jh)fr13k1p+`vcO6lNVyK7e!Blat{u1>XVE`Eu(#b0@sF z^@h7BD5qIZP`|?b``(?stH1KSB%W>$f^V=`=!f(o9s>W4$RFWW!$-KKLSGRs+zja; z&S%qk?R`DxepqQtI-B)T&9%F)@6QeFbk6|)1oB!cqq;%=(%CCFnFqPm?;ySDyneq& zoAi5hjfd+i&i@x>!VMJX+UdJf-|u_*@YBdQugE{3$WPMOGNiH`@huVY2D;Vs7V$@U znwiOBttXRxyJ~)$ZTUiYdh$&e3`K@8`I;4QwsS z9pdpf>CW?0=qd6knHArX|H$_>G8ucO=G0FFPe9@in5nE zna})zJic4Sdr?mi58}`8bNX5QyW-ruhH%7rd69oh2XQ$%mv3f!lYVf!ff|s`$7|+8 z=jN^R`5z0pZ2mjdpEbR%Skr3=+(&T!J~bEb^U$uqtpUaPdqaem!{sU5Egub;`25Q- zFmo~(K50RE3}WW#ndmkH!AlY8=;3^Vodek~SC|YV{B9sUh$ql|+UVxfR*7`Pd%+(t z;4T0%;eR0XNBl&7iS!id;{s3S5b{TqKat*44=ldJ!BL!_@PL=c*X9R|f_u#W#1oi$ zW0#u$C{N&0;tA~gJD$Kk&J)OQ732wQFf)vvOF5YT7ai;Ro$k73arZi>@3Pmst=AGy zU;yMLe|hG9vv=;V7vlEZ#75&i_czuaFT~<^sXs67mH)lZMa!;B2YOj+*&k(OCAdX6 z(mpPWuS)0Id%aSl(e0^W=R_*QpO_~I|MauP6DY81dXlm)9yEMfRSB1zfzRs;LoDTg zUZ5KEs}8IKB=FWe@P|)}G1swwQ1;g%U&og6$NX}{^FVccR|9(02G#@;xZ`Wmxf`Q! z<%>I;Df8-{_Iz2adrSG}GWiAgOu3II#s1yZP)N#$($ja-ymMaX-&o_uHh+POb+a#W zt`C1w{0a+x{?@16y+3o?tlD-uaIvnoVVipJR~JYScW?%+Ywa>GfK@L}h_TmY#JaFR z@>jgw^WXLXBhUBH^5S%S?$n>lHsB=Y(;{Cee*UE^3uzyo3_d@6PFZhAu=y!s-A%L? zCqV|^<#xq+aLD1W4>H+bIXx-d9=ic@74tJ9f49gv@R|w)wl0^Za|*0-glkN6KD^A zqI{FH=x;a~%imav;Ih+%)1PoH7~x%@sYJ z=AYB}MX@f>t0z#(_xQ!`fRCBO&kIaxmlDDZ+erQN)=3lTg77T!!h#m|e1U&Hnsq}s z-GS2hWzoU5BLB+&e2}yCOpT$UXi12l826IX+p_IvK4Udq_;t90a!#@hW03C!l=7kQ z{y&J1Vm^V!$~?#IxLhY9oZdibTo7MpJ6-rZkB(pD{iTe1oVJ5etPjHJ3k;60{TKAF z4)FN>3oe#RhJO8l(s;h8LKiBZ=5dHKP3`$C7i+{)Am0xtwIkDi`isWp1?Cki>IGbp zj|ZjinIW)Lgp&r8#;pVIS}4wCs^>49?mszgU!3|2=;?^pO+cx97B)HciH}Vmd~LOk z6Ko!rB}NNH8IT_jl=_E{_6*&lyUq2tFTM7>jf-_>9>@;|O5>iTd9D&4UjZAYw1e$g zCgk&gVm?n!%PA1jYxen-qk&Z)vmjMY_+V|(sE@?_X z<~+Qi`2H}Ulz*$%?H|@hkj##!S-5P)bHglbd6@=Z=UI@^heQb zB;-c}rEx*__8Vxwd4p*&w62n#QOpbZQ9xk43!3 z0i|}ybw?$^t1SO>i`PTH8-da}n3M6&!|($z}8 z8Tq*l>3gJElx^5%Vt9J~e)K!@oQV0T^G&Dyt)LZB6 z;4KJe3Q(%=T2cWSKrYkuC8zZ^$P<_YJteSsvD&4FmbJaAud?pl(dG%<2M^Nt?M&78 zis_tI`|N2;g9hWdSQ~a5&Rxx2b0eCkdP}<`p+UwoQ{K0v7iL|{AUAJ*s z|1@?dB6Jr}8V`DgX19{A zaJgZQ>-H<_pU%st)A-GYeh&hrd4MarHQjIYFVXWM=(iHs7)a1L_q*40&7_w?tK(0n?S#{E9mSSFzZF1f-r@Rg#aFsvE}PEptMp?{*iy(p z0hIbpZ@c%!__~QQUundaLH==|IB!5sPsORCoiG1+$8zZRBv4wHVuSb7x&0XPs7@ti zeCBjLIr8yR=(ya)o`QZwKxzExIsPu)3&9^{-P>t-ao*pqf+EiVrSYeAVZLz(4U}gm zD*TrwHcwzJ{7L2Prj~7JUH`wV^R0pW(?F>`i`jc?Db>HS+)s@>|3dper|B8R)*)Wc z0i||#-IbNjQT*ufs|FceHc#ML_>;=hiM7w0?e72ObP4FsBVN0K(zs#G+zWI+96g=y zxJQ|fF}4x%Zvdrs$>N`tn8zSGO;-B9p0;5dKm1AkyT7?-r(Q(Eke@ysrL1Fiws`_C z!JkyFwH<}e>&Dq3J-RK*QTokJwqctW;qNLSLFw1?zvlT~I8>?cPRp6oavjh&L$6nW zQn`2Ue3E!9Pn(8Vx+(iI31K_|sogDTxR2Ip-83JYrQQeWe4oVGxX#74B3`cpB|S?P zzeM#f|4f@1@vW48vn6{K^4r4GMXR&yw61;hJY8@UtMr?ZuiHrJOd$mH*AUKjpfs=I zhL^10e^BO)?uhrfLg#-@`@bl*1Nu<|WIZ*21Y4t~kl{M(QO^%Lo!>gG56=C)iTJz) zl;T%f|HyB;VVz{pR`NZD?S%X;pwzw??yTF8Tn&|RNaX1vwf_`?({VvSe;fL}1C-jO zdFv`^jQ<>4?(NbZ=(iUr)d$bS3iY_2|AO|@yion`cr*KgyqUZzns(xmy0^6SX0Y22 zK5^`Hv;O=XdxaF%^5?e~LG8ExzB7A`eN7(7` zig3m60=q!}1Yl3tH1LQWvk!4T;u z(ic3VL&7cc8$6``SzIr{Unm;L-3HJv+>k3(;!nHwsqL5!^X^u2r*zT+JN|HC;F@5nO4^YuXFw^DAkEbw)* zxgC^tB7JhW|A2@Wkd9es=2Il}7x95S+2`PPY=&_;VW&gzZ`erwyD^v}gT5kuu5tW# z{}_({qdkwD-Zu~ZM|nD?J&!|w$J05)c{)qm1bI4ZHU3EBbIYE`yo%}dqW9ck@5fkD z5>KZa{M7;y#CMrd>SL9cUG~kbH?rZu-!;t}wC7PBzt@r8KYj4Lui&-lQ)h1&#@y2H z8g(R<;I0Z3{>kZT?K|Z=Ve%VCWZH6EEXE!uR)N20Ai?G!FQNR;^+iFiYQTm;J-x-> z?A8s7LD@Ivt+}bWuLUe$FL9Jq!EZ_KmM-@Ph;YT16E$_&fcTWY6nGev9wW zOV4Xp;v5AHOho*-_jsG1B9$-kWq;;a@TCm(JZI$N`U>J}76$a%aJzu@gYW&z&VJ+5 z-ZuA3YLt6E)P-K+{Fz8s`q`b*^Lw9RwsiFply$;5dp$?g18F~D-PON~`{C95V4TiZ zo#%r{cQKEX;`i0&zAJUjyl(#r)!<bg@n@=BZM8vciH>K3BKDKK*$~rd_VM-rXZ!7g6h9W8|9~DDt12 zta{NGzS32*$1K{OWb@RxShtA7liDlOt8LFCo_|Oa<%XQDVZYG%*d;d)ORdsFIY-fj z#X`O{P_*CVzUPOJIK-ig)2`sp~xw*ZRzK~8_eH%$9P zZ@lAu>s#ggsMB^yV=WQRwLob+q1||pc%!9dxi9W?eb{;awL!ev0;PK7pLq@Otjy)% z{Agu8Eb{f?(0b%NAKF2`PC)6q-uv_Ed_p~Q|FEU9KHS8%=g|TFM1M%mg5OH$o})e# zy$!XMau#{~)OINW;dBIwcAK10e?GCxr^TBCv@ewM8Tmf76mR;Z)AS7J*FnF|Kq($Y zd1=&6Of?U1tLOcl_YYkVPFJAlx5-&@^J;28t*89=sk=kJ1;ERI1cj3}e5|_??(N$* zeLU+C{GED-JllN>e!o2UKB3*&ojzl9Yk$AaUMBhv{(2zm3AqfQ)UOnFeCd$So&9)e zvzrFnd{#@$=*M)(_Xmpk4mmA8rr&Iqy7srn(_E}GW03C+l;U?H=G-T~q91C;U6#uf zK4wSO3-XCTF`gu+|NGnab9KV*Wpz5PbK0J1tPk|-2bAi2{Kj+N=~|oq6XvaLr0_=D z+4ek=;7^Qa$XR$#)8jsErg`wRl08r4Vv*bB2(7nKEE(aX03|(LpRAzzXPEpY^?rZn z?NX%ubf}&&VLTn_ef*$vWEa4s6RoV^xPOq^9ZHGF+ZRa>^5V4mBSQg|5 z0i|;7t=Ez6uQ+Zlh;&xUb&#i%9qzAq(N5fZ;ccVLZ=Ke6r{kU|mIM6;1Eu~pu(mLY zY4PR~^)E_)8_jYdp9hrM>w^0p73Y7|{>W+koR$}-{sQ_?#A^gl8ecPCXKDwn$EDQU z7&Z*@!+{cbejoh1uEq27u~PXX5vSvj$m@G(JK;QCyok{CKxsU0+10dGes3M1^nY<- z_B^C@E91^zabKpZNc*GEd=KdP&~GA80`}_9xTnF(!sf*{KyU(3%J-=C!|C2osbO8r>;(MyOo)5_$nspsLNZF?S*;7=M~YrlT+!oMc}3ZUO)pwu53 zM`slK@N*gEgVTORV^g4r5w2%Z+P8ar+WbGq{dU}=^wV9~RLIW)N)Wht{+B+lxs%l? zOIhz}V&88z9Ui204cCmlH2yTp=X7f(D9p6kDQLrB5yw{LLUw;HXrT>Lw>g$@s;nP_RM+$3ZE$QavhrQPSaCk z4?(|WKxyB?Ncdr=hlY(q3L(E3*ceFA z`Q}90S2OuN&#L3dnExM7$5ngG4^%$Qr|kHx3;74NML=o2$1v}&__y$^oVI665U-^` zY5uo+>@d+zsO8gXIg7j=g_i4p{y6ko36$0g3U6uglWshD0n=OajQ$VR)&pUk2J3h^864xp!^TtN(Nyx7NO7l(k_1T~4nt5

|Th- z*S$m2#c4h`ZC{+{-zucXYM?aU^$eRxvP=$+LG-J8#;N*r@KKH(@V9elt*7e{rAO_L7hPTvm4EowhGgYzy>z1t^Vc`FcUT zNrd=C84o&bcLVxXg!3v;st-j~t~{y>dn}>jL8t9m>13Leu(He^+@(?bz#(_XDNcOzc=fYN$FVc%t+>wa@P=c=r* zerylq_X4GHh50us!g7i8QM-bFP{ey{)a$m9J2K1(;DMHmp}jP zzwx>b1$kZTs81Zc@|7u5v<&wB=^8Kgua?GADo($&Nu1!vbVYPJ0NVi*I1gY@FSr@7 z54(K&xY@bH)6%S`A4i*~)eF3dK6oz>^8Qr*yWr~x{uA-FIA2Qei3Y&Gzzpv8rolgu z_(EH@x4ZlP6(XEW*5=(eE`6@CaCc$1=dJ7b?rVM6z{$UU(c#A4%)A}oi@k`KA9BPe z)2yct%V>CF^XvnRjo8+&#wFMGV%BZH&-LQzaR}*Pi1ZNY(-Zb##CH&1vIk}HgkDPG zyq7J>2qzWk3%B5*Q95vbnxdCTU;3WVbHb5Hk2SB8&h5Cg?ayYJ&!7Ex`hSA-{1p25 zg}yzxe~|6Y=fO z-xooS_&}QZ81PTmpjmDv$_Y>tZjt}c`)i?}K%t+AH_DA)_)CGl&_e?<5x$5Aka%A_ zKZ5bH^dtTo=jA|uFOZ4&2zM5b4>fDtUly}&am)5_H-&3`zn+M<626@-h!@otu8(kw z_zJfO7wGq}+pH&(U2YML@H_E_EPd!b|DNK{$V9$DPmxayZUg?A_)Zq*rxn2Mft(-T zb&KzNc=?pBzsX- zxJ>ZP@Ezi5y=$5qeo*}`>@s!EWnX?_J~`Z;TY4_%!!^jo_kecykVg4iekEZ7@OuHn1QCfxk#mO3;{KxXw_tKQ+1#EKgd(>c#x7S@f_+1(=d&d8K%okX;_3D%Tz4kdvOU$2VkFPF= zKWU!eZTA%MKjz%?^ZJE@ZF>vcpU0lRRfoSuKogF4&(}Ssg|y8%%K4F?9qOu(zbxp_ z+LyA{t>`}eioxIMFQ@Zn&7Rj*!}p|gDQvin_T9>Kyzg{A6SVW|f}U3dYF4hlfhwJGsc$UhG^_2g5P#x$O z4V0i@(dRhV=51@2fBxQOueXVEDZWGRS3h5XYr1s z;v9MTuWyU?qyzMn>R-VhC8vDeMX$_Qy_q^%ytjY`ehuIj?TXY68qXd3#%DCWVRA;T z-U`pCD--ob%tJ*w(dRr@+(x{~od>TS*H7i^MLw^T^rufc&A%wyo|E8-iTKh-3pP=E ztv&hm#51QlE9Mb?Pqf?Q^t77(@2P)r(2s^B)+5yiS4=h9ce~1*m{qj< zb1oIbT0p)fP>R11*d)$VeeL)>PG~&}x923~yQj{~Z*;Ck`S16%L3*?WigAqT44hj9 zJIy zYTWk%Z(rQ~mG#k!AHUAfuUmNhtnq~Lrg;Hi5)xfR2i(C0ZZWG^xC}tFI!S?JqCiJ}s(=(jPTr4D!8z(tg3NH>S||+Iq^r zUFr?}l7PYX(|EXdqMy=pQ%ZyB=ahak*5--zg+DQ$BWLl3G1QO2j$UZKN8WFSw)4*C zabljI0zIYt)AnBW3G$)*+uc;?mj;v|J|TnV9dk`S+cipm>oh$BdVd5k02mbvaATWO z|FQ3}trYy7{))Vv2+enmrQFQ|3n<*$~K&1d4e)IoCx`eNi{!KHKr)?bj*ivs<#EkRJw=+Ij7+12pfq zb}%ki^4)p<4M#YC!%H(B`(2zPC{fyLr}-Co{R_=^7xO~TQNUn1)4bv1SS96Y%Ju*0i|{#YR*rkG~X=Cd#jzc zX94|s=$8+a*9+$Ezd&|q{x^Faq51B--cEpi%Yco61VuY<{=ipy`}*fE{B%7N>p|9Q z+TfT7xkrQY;xEtWIJ#f^l`Vm(dE=Q_*WoYwup1#Y7buOBON)1XuE%e_e|ooDM%niq zaWUQIiA{q)DLu6lAAjg8S{eW7Rg(rP^Nvnz66B`^s^pyGs&%x2(`V9Zxl|5RdD)XH9i2GY9-V{PWpMh}h z1xn>5=EAKX=>Fq_>c(wm%DP({+n&>G_>;zi9*e)zKCWJ~W0x!aUo&-R zg|@q{FrJvKXT8rq)w%lRzix9M(s2$@YM0r&>n%ILtmXP&daCh@G+osC;LKl?ZO`dp z=qc5QqV4mmGG@}pw+>Y1{juzR$Ug{_)~`#R7{A4*(P`=AFIp<&o@n*}&~|G`0|WEd@&BPkw&+YqJ6Es+5;lwg~czfpvid{>AIx*R>dKmm;)%iM(A>)AKQW ze+e)+?(tW=W7&N)E-=TD2bBKS>HN=WdOGdjHTF2-^%PJ7*SZd0`dH`2_x#ds7?a97 zO_}@HJh2tjN!s@@yWgRO%6D?q9I z8r!=3q8nC6&?juYd^O}Z1Eu;G7;%B_YpJ|q(z_X5l<`@6napq2ETJG~O+I z>Sf|_tTXw!QA)oV7seBl)@|av;}6g{i_ddH*CQieN0G`AX%-#E6RQG!2{`Y^a;yFA z#qS?pfL_HwXouTMAKbgwQoHn`N!aVI^ec_R>^Vv8t6uFz+*{>U}(1 zdh7s7?O;(SvhQjA{9u-nE>7d8F%(?QkMN{^tmKh7xThfO-bSb67pMJnKz|eZ?F35m zs^1$lE%j-gO@3!xC0(432Lt*pg!2|KI3Cmw16@gCpTdO~0L(>(k= z@!>S{5quWnky-8{A(zZn&u_EsMC<_myBq#&c@IyQ$^AKBs)_I?^b-jGS~~xZHUNAO z5g%dyN~AmVX5u|i17_np#G5e}XaCbVlYdv}l_%Ul!LRXWv6wldV&;62#xhRrN}L~ z?U3o&?A2%LJa)(919|?`$mYM(c9|vDXdu@k2ks)o(~h5r_dukF&==?iGN2~jBOQpB zWrZWsMU-nM%7;jo94<%c$>npvXN0?0yax(i6m3UZ@+C+I(XNz=aD`r3sK2>fo_JH1 zowEsWGa&J+-lAHTUc<|}m=$&PP^8;n?vH3VR(OK{R5}9gk$69xV;S4ix?|V*8UH9x z%Cx6-`0sd9hdECws%?-b^_Z0cn${Rd5a-H%-{;w|@R7upv+aE?>$Sv_;u8f;s}=O; zKlV_m&mBAbnu%TW*`VO>nnr}Pif}grO5{1ww|^LqL5w%We6e=W zU&+3YXut8(EjN9-rMt3^7rc){j02@~DV(wi=hCOQw&TM;>$caasv(@{V0eMbd33L@ zdEM2REA8~-ubt03s^j}2J*0U;Y1OJf`m_@B9)|LtcQ~8hhV!JP__<#62e`edL(T2- z!IQ)3yego(ke-(TrFoopMLwE3t#DEa5Kow(TRHUT{z5$FPx>a9DjPF2S5mu#%;S2bbn zAm1J+`ayDbUhIawOutL%r=8|QK<|KXIsrxdO-}#N=eO(HI@6BKPfB~%h$TS2BT&k} z(uCH26sGdpjuuY-P_fl_)Nc`cgCwRQjLeq}w`d3a9SGpGK#AznR!Qae%9B=a-0 zgY}hq8{|p#fIlhU-Onv}llDc;@orhAi_`Yg`M8H6UZa3g`Sjnt`)glm@3+@A?L3-^ za&L(lgIF)f4*`nto#}MDurE_P&mRAAF~$-hKL99|Gt0geJMo|Q;{R0VRoz%`$fp3M ze)@RnoJG2}YE#dIoM!fXh>Nwdc~Z&nC&e#bt4H&=nPfe0!5QWJZX?zg@<~8xJXo5% zjLw5GlYje$QXibQyH4}Z`FN=x;?*A*1th?^QQEFLrz!1cBbExeG@z6ZrDwd96 zk}WVcwlS&YU;h4Em;QSJwU0P8AUC{{S)PXP9O{V ziS-q!9n_NJX??;x9(jdof2Ii=2!Gi?G5;i|``Fe)ydV1)?8D|jzrn!2pI52pKiw=B z@_9fhUC=+6^Eh8vJK?N9ioCu{<5JShdHXUH@$v%2IukiNH|_DWZe*ED-$}}NH`=zR zH4^@$^{jaw58dlvKE?52{pN7Uj{r*b$nARaZS=S0UmyPI{FCOrloA1bG}7ZfpwzD{ zZP0k1&(P^!j*TPj`!u*%n$45C9sb06pXofGu-@l3{k0jX@MRKhp43h7C)Ov)X`Qn& znok?uyi=}nF0U&a2l)v=sh=*qzc$^IOvmzS&+n;>%VXJi$ln0`+xizaKXS3_A)gPF z+Lv{iwZu5Ntjfzj-><0oJ`wS{5h(SW@xxXVkKJW%bsbmQ7w7$Zq~$uaeR0`5sav6^ zSpOzx!E_g`M_%5nW1oS^%KCLXn#0X21@BtvZW@i zdpF|esKq)y7mIxTT8*ExbcwR?p8qU?L{W*|H%y;;sPZ}I*?Q`eU+e*L=x`rQds%bDLC_nb>t<_}H6cv51$mOit6 z@D{q?#=0Q2sj~j!bYAQ{UG74>?hcRN*jt|?UXN~`KZ{q|>qg9g{A{39Uc8r#{+xJx zX1T5vHZE{lkDU3_*geqiUSL%qLBYyNWIw@r%K!ZJ9O(5hQ0fPwUS9B$uI;Zqf6*J) zDg3|oY%b*I0j2WE+BE*$r^Svd{q`d@{~|wsE$Kla1oZn6&VxYdz0qKm#RDU;hRXcU z9mbQA>O=9uzr;HGd8Hq7x~}MSoE*g#AYKmvrFJP$|B%pAJrC_vPp9=Z$dg(KJ*9ki zKi84&M>+cKM}HK@DESZ@W=~5RUoZdjGSlvY`IIR65c&K;N-z43)AlSXj3*_H>rQVn z&kL97`dQ@VMJn%RLa`<0|MYyoL6h*sFKqExon=)D)^Jii`I$k?(v_? zf8THo^m`g8m6w==mudalddgqVNXG@C_10;959sTW9vgrSfdrM7Cskouck{%TYS%2> zo>qgPzkq)36JOcR1Dv+IPWz*Pz7g@+1eE6Q-l3Uq`ZVv~-*@o>!|e8(QGs1Uj~NH8|j7N4r^bW)`u+!=M|uIj?8t% zJK#l9e;2y$9eFvE;%$cDa9`Vbz1@a*y#rMER z+7Z|KbEkD}?5z9^Z4;G#rIl?@iz>GDNcrbpd&_=Z%Rh6gKD9+CZ>&uw;N_hg5Svm(uh(E1+5_9C43 zfzm!nvF<6+HJYuYG-$8XzgV^p@&|y@cT4WfrTx@Wb6|IsQvYJue#pNIl;#hw9ew_J zRLkAUxr@l_gVT0UN@vn6puY$GN`TV(r#5v5#m{>Ful9dY>>%Rx5m1_M7QOQBCf#CA z)VW9LSEAX6kUs>J%1hps1;od*>TTaLT0gtk^_KI_7VoaZi$ng$`IqNkk*3ix`9^aW zWi5&$^4Z}a0c~p)O*`9X|JNU^%wXg0I9%bgm^5~0t@YL39-74NpJzV3xgnSXeHc%! zM2;TD4QqYM@OvK+FoauRFTC%vt;g15X}TJ%n@W5srZgCgoJQP5pOcYHOV}WFASj-2|a+MpG6F@(@VS;{-KW{4CZ)v zc!J2K!A(S$$;n6S+*T=_zb{B-ZCAd2@2_?H@pK(441FPA>xu7+{1NWn%%Tr`54~C{ z>1n593L9-~y!(nPw6{1OJk25^1+A|4{W@LiV9n)Wjd!az8VUA)fI- zznTu2$OjSLKu)}?0=w z>JPm|`4sVCLA^Eeq55H^Lz^s)=_37*PD|mA&*I?-{WQ2WB_5O?JY5l=BFGs*|5iCa zDdG#H_*vJdJ~N1oq2Y1unnW0TX;OUO9fR1tUDw^yH4X-`zD7DU%jWtN4&>>P8vMQ) zElq@1D)bcL!R-bz@g69MZd5+3_UKSHhr9a*)TrC%$9kaRTcU;Xn925g*NZgq}!8|8V{t zZ2-P2>Om6f4ceV&mHNlvru4EtTO`Ue&@bErc)8p#n#ZT3m&*$SUu-1Y<1K!*Q^Q_+ z{CcB*l(1Ht2x|xbj<9x+6V~F|1PN<@Ga>U_*!sO*I`+irHDBJtW?3nQ|0KfN4E$6( z_}+8m>vw&5kEV3*`uSvgBink-#@PcQu^=oBm^{7aedQ~ubEm)Zd)Kqn;PIo0Uhf(uT113A1F(D(3hMJ zw4&?{)=RlUnv^bXqaz)ZGtX82l%X8-Z*NavM7-+4KS8`{pjsFpyCnEK{dMstsx=V4 zSWv7J)Th+_#=B!4dU)d8P%;og{ea3e2glK!UV_66~xdB3Dwua9sp2Sx!2_(iPN2E2M9{6Al=)$|k# zx?*ER(lcoInHHi{e~~UUlui2*d3jO869;yCBK@WJMcz+N`i%ESKEA2WXx1&5KlE2F z6ANZ7@Viw1ioGwL@EJ9-_V?;%08hUkw!X zmz>6rXV3HYb8;&sA0l7imEvuN;CO-e8tB&yD9SfE|2CLcJJhoKEiM+#nn1oO z@G>C5+B@8I0Iif0E}SmhlvVj`4!z=lqWvZ3(xGuX(N2{Af=^56*BU6bgRDWFuY6kl z)xLx=UF?2@i(O|M4s8X0wSWW#=M%(1va&jm>9pQzjD~jB(*-D%m+6P{wv*vN+Su0H zDHlj4u(puz1eEHncH@^6zr&`*msoqe!o^y#c*wT{O6AGBX1YoEz5lmso;jI{_L=dJi01SHK}M(v>U^4S&o^#DrkMBva!Dlg_^sDy+VyPxR}e_}jI zPWR3o;zIHAuYZyD?^6Cy6rz}pcufF`aXmSg=DA9It_jbcpEG_G6a9xJW~4I)`MyA@ z-z;(uIPNQ2b<%(P_k)?3cX5A7Hesy~{7K`NKYY1|xjKe=FxF)g)_TLAlz&=_IzOQv z{offUtNnWt;?)l*#-rpcYfKKasMAbAYEeY zc`z4qI&O8^PDI)B>oL$%jO)qi)=qz_TUT(smdd1f)2l?52Kg+YRG!>3>7o;BUvx)e z*u^pZA)f)1%IEG%BTIZ<>p~W$%*PtB0gz7*4{v(=8$~&5U+(Rh2l{0KrSjBj-PA8p zt=0N)@%xp5(9a7L>nY^43~3sPRlm@;Ul%s+$%gzOpj@uU+({SQmD(JVM7yts)LDbROV# z=+F85eFWk)5-82bydS3T@o8V08`~8Q7_VsyQ!jSY8y_NOIxQOdtX#6zWuvZ?!liJ;a zOGi<=WbJ&mvDbmQSW}y@b_e`b2NIln@KKr{6`NO5{;bT8oQ^{xp9h4tOD;ABdW{20 z<@%!;?~y@Tt6aw@>mf1hPRNf1O6|4(*=vNs!P4(<$3wpfKxw`i`1mXlSPIRnHKR(X z{zZiu_LB15e?ud>0NZ-h`K|N%;H>@y^hrpM)j+AA&OcIhk6!%MzKuVu8WuXwp$+cI zkY5ax(lh_D;Rkeo`L8a?x?7p&Xo)sqZ5sSZ^G5&F?9Y9Mb>nOwdwraXb+-4t?uS3Q z{ha*35uafZ-8{;Ac?_EZ`KiG2Kod-2vi6?2Ue`>?_h@z>&-nQF zs<&R(#onLdVy(jnYmz>3DL>*u2=9$bzB`=<1PN=8LQkn48CRPJYOVAvsq*4HJs*R9 zbAZ8lBfBv!d#g`dZ$7GFn&x4IwYu<6P_U?;K)m!rDT-m-bgiCVo%*BpN@s9XbwiKJHnBaGnH8?R?bJ_t5yo zdP@Hyv!|ioGeBt^`F|Y5b=odDZ6`GLEc7b?O7pSe=SLs%8P=84t(Ea^tmAh6IfSze zD5Xn&Tot+~xJv4@M}EFiSubd48}?cXe`3FroCWopigu~=$63pv-zuO~-yfa-N-(eU2}8RK~lJUp%7b-^&Q+HDFaBf#>Q~ z$Npme7tPi|?p2_ao}LFc{lME@qp~tCaIse)zaA)sr|}EB{)~VW`S>$5evy~6P=Aq^ zYt`TDh}Q<7)X$CE{rmsWAC>-v5F4T2+rZ#>P-FdW+eiDi<`Lq{mHex26V~2>KdIei zZ~S2rsQ=6P7c}hk9^xmh3+J2b!tB0Vw_X1DRAt`LmiZyS1t|5KTERO5bi>+y@2Aw; zhU^{4ZwA%{ns9E!w7)1X7k^x^6?$z4O6M6^$2Wc<16Db-gVbJG|E$g4h5R<4G+yMy z`ICGdI<%d4THl@4+i=2~)b6%(?GhKlmz04#r|ps!Mp%>DPxr3Lw617A?ompA6dOiZ zyBzsJzztgtq>Im2_EProoc6a);}^v~gkF1ray>fQeTuF{r(G4 z-yKU~H*P$+WX9+&%t{^BlB3of*ovRyZ;}9mR-N#k0o!wfGpE7R8rhYT9 zH1iSs3*x)nTWR<9;$Ox0A#eWW`0g1185eAbPVIoCG&JVp2Ge2 z7xC!M<{j|dobU_clbga~%x8&+S2E|ny(ZkkpU^iE`7QEIlsA!%8C);H3lj#}h}UG5 zJBjbac`hP<(-9xI1s~-c(oe*X-dp^t5#qg?em(hjgntcgBNP0fEc}l51;Py^o=|4F z@t$&@WwJ9JKm4)dhk{Roa424u-n|6x2=NuXEn#?zWg?xz(~*A{;m7rYJ}@}7Dx13n ze~I{3n)wL+lN)+6!7~%_1!`F=$*d6XLSMW5Dd|M%!t+D%FZg33Jdu6{@K5Pz>Ej2F zu9wKSBu2Hc*1$7xyOnaU3B!8$-3$Iw6X737ye8}WB0VX+Z?Q(hz1UlC(sNT5+La#Q zX^Qmf1HF(w9vCE>AIw*-w{Rog1tNXLcaR?}hv)PB9OwfS{4IYU*6!`E)9*OnAL-qj z%Zc)2=UW!|lK5UP=xOuKgu5^FM>xWOnAgkug{&d?eJDrbV_7`avjf2+8_3^lKtGW9 zTBaRLr#!9xv(66qM|oP6iKlhw&v;sgI8SThjX|E)qZ)rI0tu{(-t(vRuh{902km_) z>t~6lH5Bq!1pQe&t+*$eXMfr7cKd>F{__BP-c=LwQh0$H)4%q4eye_>{BJ|;^QM-V zzn49}5#t{zJXhBbPy4Lx|Js9<`AhJEm?(rN&3lZB*PYXItn)?j_V>A1ZF@db?oagm zq9z%<;3f<0_;9g*e%w_u^9jvf4-)BL1@R=voAcFCpEd1C$WqorBR?lpCip%2E1*|` zyE0J9Kkd6~i0_fN?bQ@dYh^vONyO`EYIq_(S0X%l9l&Tz>*po|cci+H5o`0bs==RB zURaCAh-Y9fYtE~xjMHOm!*o^QPafYF)S&Ub^%N=RBHR(jFErmHpC>!@r>3WvH;VMA zfOry2zx3S4K5d7&e_T=q(45Y*0=n3jiG_aBK5)_TYfktIM(nr zHqd!qoMV&pARo@>S$3VXZK+(>S^ToGj(uJ<4GdI*J8>{py_1SfhuMd>; zIaoFS6CZzFQalRh^{65AYXlVKl$KkG znR)ZOJ~lOd@ZL$inJ9-`EXA(>E#XgU&*JVsaKh(p{`Ivd#(C^|%EjWtcv@mSLcil; za{4Qv?qfvW&P(ON{E&VF4_Ipfl;T&s_YT@O*>2{;)k=R<+vaIChd?_T5<3v+Ea3R?7uw?cX(1EqMl zon9#@gFoT0sbU? zjIrJ6yg`x4uRN*jtJk)9TJi8F=4IsM1}LoerJwIzpN$m&4D4?exUYX(XbDQHxb~b0>O;>hN=0^=#H^`>~rG7fERy{he)nMo5 zjUAeV^$*VKQ9w^aI2k~xUs)MdV>4Zx|MQa-7pVr6qgi*zrvs&S$+e>OHsYnM@@DtE z*ySv*lbR1bpq~dQ{hs^dG}?!9nLnIV#yuCiyhO2{(63jxo}MS)q4TchLl@nKwr4Ju z1^H~Cn75eH*Ll}so?22oSEucu^Lo?=@#+VZ#xJf94j%XU&G!e@dmduLcv@0Ft<4zl zrmp3iH@4SR<{go@FH$)o1)Rpu#rm82(=&vFe4kHBhu`S}*#K=LwyG0W-v>Z`5KtZO z^4H-PuMdR$%|NU8^S_G*-6Qyi7rWjD*Dbj!0o@Dz1_PybiTyN zVvitxQh5qge)cO}du8$ug|1r_gJkV(p4R>FC)ORv>A$=3m%8@yoyQ){9H8)V+uDZ3 zCc~eY&zsJ{1J3hy!qZdXF3i%oz(v0g;Zz~x;}>V|p0;j-=u540)Eh5Q(xG@mZ+ z`t4TTFpt-6O0d^0xmbO6E9CQlQhVml_?*rqnHTaN>!6I6qS;8u-vN~ByJu!^x?p@I z(U=ZgsnnzDY!u{21I0QcIoY=@(C%s%lzEkl-3IyFfl~g(?amke{yXJU8ef_*ayb8U z+71TvJCTlKfnpt-oJCg^(R!r$km0+_tUttmk@wST{KnxECte@#X#bc1$1C+`|VD#z> zx;uJm)#x!}?e#}Xj1G*qF(`*f%GdP8(^j=UQSclg)zs0-)Ls#+m!K zH{7o57q?=wA^$|Uzx@BPr6^}Lm2-%0mJj(kKxv$HvU6qPHCQKWE?3%J=ktfh5zbto z1c9l=-|_ZL3t#7R*6z|dJp?cxD6cbIUqRge^xtWh)P8Is;`IzrT5n|ysxI+qCO>FW zrZSFOg{Df6AkIj`ajeX#K_MxYfD8rHIcmpwvHjhA%(q z^Y18ED|Y%oCbe_4GLsVV_&Ri)6~&e#oNd6cb^V!@mwnbShe`FBB$I8P)|PNR0|R5u z>1@OoZ`R1k4&CoCy4XCe*WgcTcLRqTf2vP-v5BjvO zbWKjyb;|yGGxh@HR{^DU#kdVy=^g~@xmu~W?ugSki zU*hJqB7>uaohc(!o=@#Co|ZI^E9~>p1zj^9EI}T&(|LgN_T_b?$3~#EpW~@lK)k-1 zjW6xdCsCLc@zvFz*o6yS-l-ifP1&P%E4O@9SZhSpueAX= z;=Z49JXI;5k>6Jv+8=3bC&DQLO8uti)AF<*(6r~}i$}Lt`o9?4u-Nq@4hCL^)sJOl96uselhf8DbOD%@#8puPfZWF-LPY|4Dn+k zzCZ)^#75wETQA{`XRo)P@YK)+>FmPkONM0a6zQG9CKFlo$jI)@?9-R})1hBF<7|cu z?xy_G%*W^sgxl-kZsHr!uT;5(y9aj*{*t=~_?9AEeAh??uLk~X`AqI#1Jd#xeVrB* zfqwCOPyU|5H77mQM|;>8XP$5S_N@rNKoAiSn7kzrP&udsXBM z;^`7@Af>0(p3Kk2cY1O3!%gv{@m(gqFWj)-)=1bZ z6Xi#IKa*88pFO=e&+ZW7;X?cbFHyvocy63W*c;CC&a9CvoGzt7##_PnATTeQ;-W#XnUv2vwjwoNX;Gdw<(IMM(t%KQw)UwMX z|2f*`$+;jet)qFTEvNY->}ZANpVR%Wi@lEKG~WYyb)<(#N2wlN;&#zK*~9H5sfG`NYNIZ9687;ZL-qgr@XwB{Yn)>ip5lG;l;U(V8bUJ>YQ%0$`O>KK-*Fj#i7vwBHRP{=x?J}Q$a*tkp zn_;QFZVX?_p)hBUi>aNh9`(GV({@l}oe>Tyj3$j+ zHNUVEM)g}tXVZt{cEZ{GA)t4Gp7B7by^d>smfCCFKO3s2^Kq6_J-b4`TYyr&7th{& z$X6T_eQUFX&Ze`^rr$Eaz9)f;C9ovOCj+H+!X5R~ z*FJ-GA%2a^RQLt)4)ZUHr68P4pag8OPWzS1%Gau6++>fZt>0qJkjiU2U25%?I z;&%>_kF!F{S>*L0bpGJ9-Ujp@(Axu)^4;_E9I_u{J+aDutn=`k)rTNYt}pZy^J;Rs z@Bd`8Pg^ph*~Z*P$~dGA%YuAwpj02W#xLFE({juu%d$$o$FOY3_X0{#)O;}UkZ_J7 zG#~!?e3$ZvRC3wtO*v3dD%ZsCAwK56WM8!(^cxJ6`lE?omwkuMTY0kTeG;vV&zjgg zxtrln%0J__C~B`KnhTocl>RS<4S@VWU>zVq-qFd$=%z~lyvHEuy(P4Pdn@E`14{F;iM!tV!Dm(Xj@^|0FV^PCje*mhWs5sX&x7Nc`f*@ zfoe)S;f{FxqSn7Wgfj*xt(O<&{YZAA|KoP-#vxw!0i|*lJL<6CS709dZZ{zG{I7Ns z8xQ$OKxy2nUG~!&UCa5f%G7IaQrh{3Yy#x(0!rY0*h}g8r5WBe%DT7H{?=vh@7yf~ zB>o)P?-{fcr9V%d45jV?O67XnFJ*tEak6;?K%K`$-amxaKP`+WC;jfJ_30rR@0R3x zmeY1#V+PV=4p5#4h;xMg8~fS&H(V@^O@;h)pmg5YpRRrC^H(1C30sk*tP3||_e1_+ zV6dOo;)ac(^Wuxm3k6#!?MqCUJu_)N#C2-pE4-Wqu2RZ%u`S7W00Q-l-EP7dnl~;rQg0dn~yo~-<^f$w4Dg(bCLdU0i}7m zyT!=!`nlcJChVJVzjCh}T>uXG1wbj^Jsp~S>GQkm9Bx$g7G)hJiOq-n6F_Ob;GWry z>AqR(DXDR?({-tUz7YDo0IUlnh+dWRnos+pxZ+$oNG12*n%33k$*qLE)V|~=F8YGb z?a%hKTo$jiyY1PNkY53m+Fj4#19ZRU!h~OQ=C)GW-L^JQZZZ5x<1Fv9J;<*3Ym+8K z9d;}Gac$Vskbed!#ZP?uKeDg)fzXX)pPw&u*G+wgiM=Fon z`FMT}!dVNH#swQb?{AiC^C|uQ_GPY!whkzb3)oLRw@|$`pD1M<5_!6WmKQCICntq> zZg?BwgIUkH659U@=&$k*YOevM@K(MxqZ||Kk)ieP;K73GTd3Kdtk7u+@9l zqSzY{+z6D`ZO*(9Bi0qwb2HBShl@R4dK>ZD3Y7AxVBd)Ix`$ec{ZpnY{cSAU1oH)!3`Pg8Z$yiJp4TVMBy)q zohyFeiq2$*$u#dXF0%*cb5+X#UrNLadeHfP&3pv^#ESbN7UiMBJ z*QbWa|9JkpT~0eQbMdhDcH~=}l7IU}{=vUp?$VJC={$Y+i1g^ezi+1_(p97{9iz8+ z7nKkXN*^n|<}2|s;BJ=&zEdi*)chWLc!WOC*DcDIs4v0|J?D%326}=1aQ!sv5${pn zM0|)p(qZKT9ag6GX89{FyE`?2^e+(UB*IN*=Bd{p;;&e05)Z|?{b&T-n)qI}ZEwnw z(?t1%y{>-Xr@Y#me@F0B+;B7TULeYsp_DV?vzXRiR-Hn*6TB4SxA1xZy^2LS4eD*_ zMd@i_;AUP9%MC!f4CL>LA7k{$xK<> zyzxKElc_>HnNR1rm5ZEd1DKjBKg*dGsE3U+_Jh#K^VB z2iM_!nc(l>-+gJJ=Ycfc z9v7B{KWV?$W7MYk>GSWzSD6y8tSdRUe?(&h>k;!yX`IAjKK_;NL&{rUZeUYoeB8ud zzo`WOR{%};w#t`2E$Y#_Lm$0L**|dG^JupiCJt?7|RBry_ka7oC$WC-w$fYEM0-e1m$?sT z^d)oK3C)%Kt8MdSM1Lakk^JSi8%gIr|K@oor}-CJA6)i+Pz>TH`XzE6Jn}f{X+5RC zo>(9H4Frnzo}3mB$aO=}6B%QNvo84E0@l~&o5te3sQ={jKOU|5{pNYRF9+D^z{OHo zL&!G*mIo48c9RV2Tu2*x9Ke5$yk7~;Kj-~QW9ZckSQAKK%vyNdSMbuimpq@A%|to0 zekMYH6Uf~Vlox*`6+il}u94m9pJJ=q;}!m6^)Q}{)W7?8z9r7ls^!ILyW})oocass zG$gd14nV2C_@~#Wan|RvpZ@Z$Oq+Md#ggp%W81@@RF4X}y|h=i%F9Gu=^tWQbI7*= zO8qUj2XFB&uT|QY82dbYOZck}Bv{#^@_V}0&b-&}yt3Zy)ZSSXYlZK(4u&KCVta3* zbg`b&&-b>_s-4g-i21pTY5ZwDrGG9m((y}ZI}ychLVOrdI^XDRHJJ1Mif>P|#}8bL zh1rvm#yy_=ahLh|zL>fm?6f@#=$)aT4wTx@i8n13yqwY>M~ePp0Q8jFvx0Bxko||1 zbq|hQ#O!e+7wg30A>Ruq^+)_%Yx!>*tY6TMN#i||yon`1z9&#>C*szeCq6Q*W6nBO zUm1V4U|k{K16U47FwwJ^)~z3zPEWKwAL2hZvw1SzAuo+z7G72NeV_I?AAd^i4oSw? zJeh9rCqZ1WzF%U`OZo57EE$3+Krt>PXQ4H2wRlG*Wp~x-xK(4R&@T-rjpyBs=F+(5 zUvjQB9r|Seqkshbo`iyue4>TLX-1yxB8kY}(I~ORWi>vP0Vjp`p`NhK< z2H5K~T&ykgLVhSv%v;H6>}tP(k9!zX^3Tl%Lw*QQ3NP;3BceX2<2vW#>qzq&+$@YIBc*roOWIdHW9x-E`|jzYv@emLkCVPfng#URpx+(g zdKNXm_pnd9hmIo*uBVjG`s{Ydj|NKf9OLkTr|2GXvtMz3|3_%Ob(-%1JrDYg0ZQ|5 z?d*}Y7zV57Wg>51LetY}In&r!=r<84eRo$;GM$ezpBHnKah;2egZy1Ush!Y9{Z8lH zI+_Dlm7fu1^JFH#pS1o`Y~HWWUzdLS;TeR#;}M`V4taagy5&A&*BiGD+uci< zKXhP|A^#At29SW?dzO&Aufbf^?rKwZ59A&IO6Bv^ck8$MG;_mo)s0GhkF|L+2K-6m zkm5IW;vpP14{kT^zWNd|8DKel>R(mD)hS_D76Ph&xNo*M)vWf z_ay1G-a2pRAB29>fKoeH@W^FvP(9-7?4f!(Z_k{SYZrSM`b`H)^D1kfL^I80?QtvP zYp3m5q~mKN%x>f9)rIsKmzZy!PJjgkGj6( zw7fV?7tOXOH5d9x?R8w4lb0~ek~Vs+xDdL;ZNGP@Em-d)*04nZyeaF z_R~(sXt+VP#<#r#&~-8!A$YHTs|dlo3I*X0kq;h^1KhnCOC+iNvloVC{h z{W<8j3@G*Q-j&}FU+E-W7n56C8JE{)OCY}#D6JQqDf@L1>O<*|>y|^m=Yi7xv{B_b zYOlR!hor7cMV=2*{W3$a?Mbafc+z}x*B{^0IN7?mV3#tUa6T?@mha&_8K`SQ?y))d z`^-Q5TXK~9CYjBXdCe4{M_Sh~D&Aa?X?cTtCbVj+$_pfl_+%ah>%(psd$LKJE#P zU*!F!Q-4x9BFzK(2E=PSP^!0D&8Q_lf7XPB8wd1N?qh6b^JF%|pESQ+S$!O>FFlvN zaH8(9&$n^0hHN9`t%^o}Oa3O7=}z-1^FaIV)=Ik@&EAB+O+abhSoHdpbWYBC)O|dc zZBOcL_>;ziup?HI_Z>u@e`-EBEuVhG>m8spo{yS)o4B{9^!uYN&~GbHoaZEG^n$9N z>Dt*?I(gAaS;utR9|iPx5zaQCl<%(X`~JtgMga*tGkc%a3l?8{N!znim3d=BRs^~IKy|!pETZS`ACR$jRr`h+cPFsUrWLrvcy6btLKpCN805Ne zB%a%8(@gwo;f8&v5sCP{E93>@y_Uq%%;)`N*i}j5e5?&gT;87y|0zJ&S^6^QUo#)U zb2H+ZWl!eYZi>C5RQONh=*RbM`#4E#Y1aj{>m2LOd48L_fltzb%WIv1t=K#7H=fvj zS}OQ69{%196nq)M`!O=P{hQt3wGp4l+{_tMyE}L~-SJ%@OXqHz_XM{F{Wa)M%MzOP zWO5va^bz3`U&{K~fL=l$zlXiCqUsZqpG@ZQYl8HpeBknlNPpxLgZ-^lBHsiiq8y0) z4f?lwqg4s~dvwhR|84@(Q^*Mn&tFSk#LqxHDLpvQ=@XWgR;J<4?n_rmD?FG$AWl2O2+>?m#D19w+ zR%2lYZobe%(a*1>mj-tpcyNN>=S98}&&^5?Dn}OD`lhf?k9xawTbs$ABQr}?QnTyb zck6U*VLER&R-rs_r&{j)PJS?YaU*XK83!;!FXEn)sPNjMSKL$P^3T50Cw$#_NzDJ{`;`6&FgDd z_U8QH<9P26{%*+$o}94fM0UWe_eLL%#E-Mw;&;j)>-5|7EM{7hYBmWxzzV^9=e#+% znJ5Q9!S5>wkB61-Erp)YBOm2PlotcP2b6Y>)=VuuDP1iT?H1*~<@RUs^oSjR-}~YH zK#pt>5N-`fd_5i?=%XQgqc7yeckuh)_t-CJrsrN2*54*H34o|K*z z53!(kwTI_4?;d*2odyz7@F(U=m%vTnDc@s4b$+w1W)Aupw;yUqLW z>;7`<7WdoPMp<78-jgNts}Ky&b%XD;Pg{TF$L+Q2*?RGxn?$_7AmtBv4d|8d{VRYX zzU1WREiL;}E@l1`Ysa?={M7;yEIjiN*)PC(Qc&ykPUrF15*PUk-wb3v~fz-S;r z{`whz=-N1Q09H~lgADpgF2XwKob2Y*d^^lyNdIbl3 zn&%~V{Pk7rc8`liUOq$XQP7^1Sf3Q-jlS!>WC-1#=Uv#n#$)@HeGsSR+Ufk<`95o1 zq+=_flz(xP@A|~&ua`IUs#aZ;bDC|K8}co~{pC$*PUp^#F1n&$-&S^e!o^zJ{IvS; zC)!_f7N1#pOxMh9mj(@$_OrRYUwd7+zjGBv?AQ70lCp~vd3uJnXHhm!uL<-N?FBhq zpWaIC=Zo>w(wDRQ5iZswjHf4mw^n=NC8hBFz02@j4w0{?%HJcuEEeBs3>5W=oY7AY zB0CG#xu%lZ-*eu+To3)40Y!gC&Z74}{u<+ubIQJ%n>B^}4M3@#aK%3nJeM7sE*HE0 zY3xSmM?*vFxdup(|MPFOuj~2qecd?7H4n;*zx)p;e`B9JFPZo`&%cY?ABEeqlH#AY z>jlbpYh|WssjrK+LvBq2it(%IOy9Ir&-dT-OVdIx6XSg@md)BjegaS$M=s2975TIe zo~^XGruDC5YB-R=hTbm-R; zD2)dz)&7v|;hK-PiBccjECcdAfRewcE*T!+5oSxq{(S04(Q~LRy z1^u#tV!eW#I6r6pQ2O_a_lACbfKq!FSUrjFBO4Xfd&1)!uTSJ4oZ&#JUpZ%)Wx_*RLUPxDWKmB#RdVTc0Q+h3e7vL=f|*dveWUI z7vT&BiuDw79$!9&=6^_+(D{n zGZrY7PtUz4h$mEU?7Y!~8Y}g^iOtiy6aJ)eWYL>*>3pYkuYqc}H-?Rd{1~8E=OyQZ z@0Z=d>!1HerT=rYJ0PDI?vI@d-qO-mKUe%8cxT9k(V=7&v8hP@j$5@29_-W zKc&RZdqtiup?XHKyP%%|l;&fe=WB1*wZu0EW<8altoJmv?OELme^UA6_7#WSoBQGw zjg@g$ZFV>0?*WSSS8^^)i~3TxUK?e@#`BXPKN%>^bMmVnr~ct@wiBW05_x(``D$wB zcswx$@wyMF&TmVWr{`SHsnG9!ptSB*aHmG)`uex_ZtK%rS-*C=ULF-@&q^9EvF4q8 zWJjWBqk^l{^MOw5d!*@-r|^3Q%k8wZinSF%C=`U1K~;iUtm=oIwxJi z{Ef#D&Pg%=WV+&q+sK-$UC8EsUpE3Hq84xryqYfa5YBv{w2tCldU`W&=ji}dNyX3U_;UgDI|!8O zQQ`6*F6aeOnTw9hxz}Eg=VF;QPwyG{lh+3q|55BK_-^#5s)I)<>yh1Up5D{&CynR1 zJ#p(M@Jp3^h_>xnJr%Aed+(d0NY9d*hdZqgPRnPIr}qxxR~JZ7JYwrZzT$mnuj*7h z*xrA$ex`$W&q8h!P)g6-QO|3PRi8QiP~*PJym1mqLCS zP#X7mE8I#vHn(|iN)@FZIjy(O^Y3}+w*puhNZ^@yGx0i?Jvp&=D|J2Dd3cf4_lZhB z9nfEZUTc8TzC~=pAA5Dp{P0a}lyR%uwr8~({-p8}*Q@?#H2yTtT^v&8M^5u0pudQ4 zUIL2!dvX?izFO=XmVUpo7Wx$erSiGKvZqs`{dA<`v*0;3u2w)_2mRgvO6_%FtGdKr zoNeCs*E(#R^$O%)14{LML$%RIc)Q!q9aeAGL;h8uw0}D-$Kd-%;r78I9~Y?oZDjR9 zO&5*54*fO&F9#Cv`>{-SiOo};*7tzE5qiB1l*WUB{e95?c^fGGrpxB(y%p~7y>ess zpx-S0d*+$ z!t~Vgp1AEhUHg%)&p(zB#{b?4`68gS&OUL9XSGkOzv7pEomwjEm%`!J25gm%`*#&#I-= z+i12Q@*e}Gc#PZqJMm=FYhzx_c>6iNB)#uWCz)N*e%NV+WCE{Um%>LKxzER?Kz$` z@1g0Yv`e*FG31W`rGCX2_9)HAO4MF+6Z&!%SV81(xRDE;pFX;K+xz5bJN&vD3~ z07~QCg>7&BftMHherUb@=i3QMe^WDu>yZK75dtR%t{`k1xKwpuoc@s!MA?j zwMi@~ZqFAxn{;J05AFUrYi8)KM2cl^W5Dj~Y_X1S{B8ZAj5UwEB5uZb| zo+OS&GJEv*jNb3}?}GR3S=yABkJq|B9=|8BG3I(5ol^@Tv}!`$!wFdDlbL02t#vZn zy2X5wxqojezLUn0h?`_Ka!8}INt{4;mCz$8lt3vFFg5cbJ+0$qO;Y%G=)9fznyzrh zcR(~0hV~>Pt0hMMImRQL?r=jdI`{Wd?S8{<>YvUkrjP7we3r(Zxqm@c;LcRmbkou6 zHywpsM_@rZ_g^gH1ve9J@qNU<7{6;h5Uy}%a5sZn5XLm&7V+%HfoJ|7>FR}lkw1S$ zKxLx*i}EMj={#RYLQg>?B*L6UaQzhJg9yh~xtSpH5$}tVKs*+5!SZCqTjaYS-WDJo z4UtdX*!HM~=Wn{z0|TbegNS{+yumHfk@T{@E7D6fxX604N38lJ^3}ug%=+UOH6Kq~ z0pjmSq;s*7o_4)TVH?b6ViwE%tjhjxT|Jq(Dz#`)PflFFCzIF9dLEuX&m(>mFU@=? z9Zl;6)2Abyi1=z5C|rbceXu8&Bf_L9t`XtW!Xlt}PX-)$xfSsP8c44ii2nwl8_0m< z-}o*^IX^6j9#1E+TWOdBv=HBcv zvTL~{tq<2{M{l%Oa0>z~8Hluq$PJO7LSG_=TKcR){u)3c)bjU&2(6@pNKYcTT14)5 z2k`Lohj5e(L0aEA)sMd?`N!*%>EB0$!AZO~`r~)F0|U9+0BS%#kocEoKRbR%ZlBy7 z`hP~_sq^lg7n?gPcXn=m?ws7mGjivqU6MO5txWFxWDQU56S>QB7i8ovOnv*|Z!7(y zgw;w!Sl#(&gw>s#uzK$L;DXmgs8>gkTF{Jqbh<1jOS3ZIAw zIWa*N{>gh$i=Te-S)cK@Q{v}zp*Wyl0li$nNViP3R}mmz?=q_kZWp4lbp!#?Q*Z_{bNILMKel^If!GL!qZA zcjU~utJ_As=;QZyjQ?n`O(?O%{Jm|0i)fETe$elE+xBVx0`0r!JJsxK8$#os@5w|v zBsTs$*F-*&)7AU_k9_V!_cbr`YnE+T&Jv>mhS)f4 z34c;P6&?AI+NG*po35mRSAG1>A(hpIy9H2cM*@qEzM~u7CjWbIY?4h7=VGmy8}f~T zqCGU7=EaD{rVBOR*wRiRx`q>0rTp9Q)0urf4TkNc{Gl(#gb`My@HpY0>!Gwu|NH`i zlwPI=HeofE>!XSMBxm6@6VB_JWspQA2t|hxRz*K!e#Rt}iHqDX#dkS4t+$ac0ENcS zd3|pJy>A4H@c}uH*J?r+F)pKKsa6YRp|O6LVM)<$kUxL@ujydfX!Gu>I?8y$=>flh zegpJt29y>=3%g%)DZ^`fe8k<6_wS+k=QKSvyZ$$aLQ;MA91GAz0Xxk8sHx-n5Ss57 zyB*YQ!;)e=E81_0Zo%Q79`v!jA5L2DPP7d$^JLIjYotd9pfrAQrF5orS-LmxF0F&I zvDb#RfqZ*l*f_*|U)V-TPnS(7Z3lm0_14OV(jON%?T>Ckyi$Nty*)R)4K3XMyl3`` zgW-k=J3>Ao+#kOfByi>Xp9jw9a(Zc6Gn=r=;7{uRyf<&5gVp}iXCByiNWUDvbEt0< zR&~6W%8P&YuD#~C_1w`m=R05Aa;+ZB4d`8mAC$9e2bF)1mE4 z<56-(M_r(UE!Oj2Js23! zyCGhwK&d_iK7HbMonPovQuRIZep=1H?$ECXP^=q}Gv9TFh%iUK{`l9z7WTZGi^Z^X z$Y%hh`ciw%$Da~G-DLbXP{zql$63z%6%X{w1j^%r79)r-KF>Trr5Ye|S|0*>PlS^N zl=_v1Wk=D4BFx;753di-+TF<0Mam!2EXuyHtao_2xUTJe+-I~gFA$Hj*9W**OK>2S0KkKL{w+8_3Ctr{?=WwXpT2zK|aP6!UU& zp6u=Z$fworeBZ9j3d%S#NLcL;f71NH?QeL74z8NSu;U7$vwp{8lYr}Z!L_9e8OY0L}#1_LF?e|R3X^VY$LlDhCFay`}b zbXNa@h9!q1Vp99*E&udaKDL=Axa~b*7cw~wZv?^_50vMP+Or3AZN|K*EBdz#tGBm6 zJ`X6xzo5sQHM;irbL+Nz)Ih06%~&qvZwE^Cwy?)AIuM#e_6hE+rW` z$W2-Q3Gd(ie<<}R^7^2bvr!1=HlS4BJ?q!gK`&z)^+(PPJxb|CAw*uzLiMa}6ISnl zo??B9oJQ3lhv~ppNfLx2?;q6oje&mSfYR^NbEne5GV}4*37hBK3HhW}i1yVC)jLUTS{`s>hlL%+>HDIeS|MxNKbO=dOHrrph&<97>a zBXbhmtATZczn@!k_7&Zmam~r~_YGHwMLli9k}DxE)jw^>RE-sX_St7|e>;>(?G;I; z*!x!t;7@8Nw2zkW(2bS9d2%QBXJS2;izVBJB_D@BX`Yui|NJMqF{NUerN+(5dSpl2 zu;c^qC)Gdiv0J|O6}XS)d!l+P?PnWyALI?7)XriJ#`Uw0<<1>VzYo!dU68kl=zsPM`D!z!TEv7*$5{eDAkAC>c2}wEq24nBUfxy z_NyXY-_3hl>fa~?r{mnO$F z-nEOy*OSOHwrbGH>3%@u=@J@0=i`uth}SbfX`bW1w>FJG%@ZW2S}F6!7GZ={X?^gq ztAG1N*IqO&OIB0LXEUV%T!XKMxe=8ps)Ud(s>Bd?j?f!1=mVq~qPtbz$f2#0!YmDxg$v zcU}JsE{ebXjaTeveNSQY}ZReei&!TL?>Ne;p&EpCeUwF@FogChur<|XNVOt^p zE>P;nIKj(2=2#_LY3C!?Gc-M&=ihedw*x4RlR4qa+OJAf+B2v55V@YA<=SN(T>dj& z(9R$)D23KKTD?8wm4sFv_VCjePG90q<>#imbzxTQR>B}y6YzX`b>#20_Q1|Kza0-Z z{22+MJPFnnzmwf&bF{oF5$+_Q;18w3od)a%9z{#ITLGK1F}MEKu}zciY;TIc?b?3A zpU_Llb!G>>gVtQ;Ph~NgiPK-dvOBA^C9cwz!W8!QLqA;o-Z#lG^aec)=xGT3x^jI_ zffuw$=$p*-AUivn`4}mjU+`ErxS@~D^FVxTen%?!0r-yK6%h}~{2c8_u|MhudR#In zgL%HwPE--R8#fHp?HA#vFiTwML2^S*-Fe}G!|BZZ^OF_3wM=KnmOr)CZKQL)2k{v! zdBPBbUfy(k2T0%Hyoc`my%(qf4T0(45qP*9@h3F%AwGq5P5WWN-|1n$w|=MZTl|Re zL3wMng{Gza_nsUDkAc#kzfWgZn9ppuiDyHsE&7)X!)PKu1cIOSC;T7I&k*?x6!~t% zvo`Y%cy4|G`VddSicjrKc9->JGSjSFt!wf7K@orOb1H~a)#e2jvuP0BB z{c!t%S{9Etr7N#DBL9${l#kn19=Rjyv21R5j0~@Ru#28RCVSzY=%2rNJd+LjzQ&;M zr+L`-^V~hk-`NA@PLvyzBfoG1wQlUO^+U^UPVq1@TX(8pH^LR=mj&gle4%pA^%Lbs z$fvVd^B&-yNFR!K{Iwr-x%Q(T>?w>qp;^nVzHjlr=1L5T$gU6#a(nqAH z7wKv!>2DxC129at3f~ocn_>|TkoY#VHdcH4%aDH$;Rs%i(8s`gZ$IeShod%-;|}m_ zYCulNGw_+3^hUWA;X}{3Uic1>_$-?F6!hju;a4@EJ-wN^2~s<`4{vX;5#a+Fuox)u zbgb{W@jc?_SZ)TMPLn}AKbs8U?qcMJegap7n(e-Hd=RhRQK*Wv!I~S2$q81ISjPN z2Tkx^8lSihHmCiAp*7AgTrto##K6UJ>~*_x;r{ZMzDGQZ`mq~2c1~x~{ERxN1be(i zeZKWn01_1RNfQ?;mHxVQ6!dBYtQpkvV1wxGy8p~gV`gmV%%t}ezj%AzQa#*Xe&4oq z{;2N$^8>$Ws+`~KV$ZLt!e9AdcsK`5FX)0Jk#78Fx4lkS3G!8f{_@AZO#3+2d7yLp zWx@CKm(y`zK(DNXb7kBJy#rR8L5= zfL;yyiS&@x^Nk%n|2-Gh)PSCDptKKJ=)Lc-&zLjsHf>Qo<(zN_yPS*po)mxMP~Go+ z+T)3T%sz8X*gC7zd8TML#Qv(te^UEg)btO08rc(@SK(4+Kdqt7lM(4J{F~8j@WJ=G zmSc7uC&Jb*Bh@o>epB7v#})goQvD2G+(q;D(E8wXoxo}N)NGziUF5r@r?tP#Uk8-^ zCa2*!U%#ve{ptgy_SHY^js0Zc(!AmQa-|(?8pe|m?G$~cxPD_gr)WJzN;??&IX5-m zotBpdh*v|PXgA1Nw6fQ6=y^fOhseu|R4?h1PV*ru%&?o(?t1FIPKFtH2UqIrAlD-u zn*l}pOU~lnU4Qc#{c>O5lG{I&|3wqWrjVy0m-R^fZO)U8fACq`KmURY+irw@J%OTK zBxm63gFAiRS5G`VFTbZ<{<&D1&6DW_f1-UNXY{^TiBB->!&-y#QtWn}izV3SXF9;2 zRGuz-`tqH+*0oiGn&sT~IERZhw|R#x;ZG{par^G3`sZIaX+cNTP^?qKv{5!srZvKo z(#5#{eLA;f8DPCsX(uAD?^3)egn-@#;j{-z{n5#fI@3ADeDj>5Y8WLZj3*=dPxCWL zc`In2@!zrj9BF$Nnl74c*sUYdMcUVNRXj=;l3S0uuj#ZsbJ`ziHcuu2dP?IS|Mx47 z`HZLAtxUTmIc(oZhkQIxD%Y+XC&Q4OKiZy0aWNNTknaMN`VZro(NzEbCF53S`5w@_ zB3|8qQvLIuKSll6CoewIY5(>1yoQT4w|O#R9xC}UPBQQc zpb03L7Vn8E_MPJ z{L#L?SfAly?l7LrpRd2TlyRNYb~n=e3$A-{Jp+0U;?)-@wV$4++7PebI`34|UQgm; z&et{iA)Nj|sh`W)vYEyc1?Ece*UJ3CX?fAu0E9CTDCOVE%qo5w7w~hDq2)93axJBo z8G_^e`a#fd2vF+Z^P)GBp;+@7&`HS$H}hIQXxd<)v@YeHn@<XGyE;;em%yu3)|onjQwa}lq*fOUW- z^!fa2y?|nOmFAQ5Q(VOLFEoDD!wkELb!GZ!VN@eZ z&+2qhZE6jroo^U%cxt|nLA>q+O6w>&mwZIy39osz+S#!2gtPS2*jR)!0VvO_dj3J{ z*Va?4j6>XP9OTCX#d;q(3m>?g=9_=B{Z!K>()fkuU*zp>s6XfJ#N9{_KTwK?`|@{w z(cKSyy+3Z(M0=iZiLor3Co>2Bq;W`rr|WjTxM+UP{rz+8bsr{O^qUTp^eKFL6SXhw=KZ5; zcPz2;@(9A21(encw2j(9UF&FGxPFZ?UWyJg>?W<(xfUd!LOZDPv7FDV9)o@}fl|Gl zH`Jhc_`ig=IUD-r1EqN}zfZ+_U;6tNk3+w;z`8&J??Z{3bZuVeujh8|Yv0Fa{Y(d@ z=0a{6Q0m7D^2hG>8QIg@+|xN*;r(^6c`}ROPnzfPd)>@yE~ek4tiQBi^CABPP#Tx} zH!a(sYbLFDjCu~*d3&}1;VcA7=@MJveY&?m;|3k1dP$N_`#-1SUClP^_6+ot)-{To zCbZ(L%*d!xqUg)kmhl517>gj>73G!)&IYE zGVY~MpU^dCp1b~B>5n4k#i{xJ9Q0cPl;#1f$~iKqVm+mQZa&iSpxTcuN4!=7<#EGtfIs!Dxt#x_9yO`sg!_0>?$ zw3EuY5;uDT@*9Ct`|7FpxjCPHi0*6Jt(-5o`2DT3dT^Kp5k=_%=N#^^73M;``xM-!=U+i~DTt1D}ISjQhKeAfHDZtRugwbG_EO<{Yd zWGzlB?#isx`4hWDFHM_T`-Z8BZ0mrtvl}0SoD23~dL_YMGUpFOYR89lgTEAx#KU>H zVA-*KZM(Aj$m~#BMxt$JXz2{o5Qg9@B|;wP7jB`4a3|Y(Y34)IPs=_y)52Rz- z=Fggjc)8=5>C%K)-P6ZF61AkBUX{_J1R?L0JtyON0 zO=ItTHz+lJZ8z4@ddSWaS=D*wpwJI`3w{UbY4IS&q%iB&m{|E7A@A8R9E= zG#Xu(J9gNlL#xube1S+ekv>38xD#00XD%ICR5P9PSazjyf42Q1d`Iw5h^I1i=Z#PN zS|Ni?*!1kxH_l9F%}f^S8|kdEIjbUm4A)cPI~hnf!DkZoUsgiC*kk+S{)K!G{$B7) z1W$)$LLNMwKd~EReJ3CK`;lInNcR-*f4ZaGcE|UE`D^(nJuUkx+dQ22u^sx@-$8nb za+DX0M=gu6B=m$op|>CJ-O&FO{P~4{{BFzVF#n*u18*JAW{v+Sdc8F*V_ST&yL+(q z<|^AU=%I;nBFcp*KZ36%+(J&2r=C3if-hravR@uud+yP-J$X1}kH_L0HOb;~c0OeB zbQJcF1n)=uuJU&T|HsJY_NBUIF^g?KI-7t0R4;sA@R53RH}PaN^D%&h(8CM8?eKbX ze$S6t;KM;q=pp=xc=|jr8-CgOo`i(v0(KH{tOft{Z|Tu%n1_mnC$4eJd)l9FD6$He+^x!C?3^M`Qs z59LUFBg@X#n|(REiPpR1B>;8}Ol&X+D zpM8JEQ`*OQO0ms?=QWQ zx8hdTFZiA^axXYf$m4p8ZKmv*1R8j^XosS!x zjjIB>h>zIUm-5|M{WoW@VATZnQg^rrCq4Yt!hOaVWa6FPps*yG!PF3NFr zq=!^Ki`(SB=QA$xf19(rzFm&FSPZKM`743aIoP;W7igV(VfPx3y;q^s*AYd0#C)a< z^d<0LwVL+#3;4NdX`V|zMLypvnf!Cv{6>+EQu%b}tvcajA3wb9d~Pxm>CL0jF^s1q z@{xWYR^xYZ?xFPU@`!zcx?FKhs<%e&fnuM(dGgn1TX$iiJaVxP_PvjLid&;*w zY1VEaRUm{e1&xOQTZ927s2OBBtflb*BkZ%JN?I}6=_+??o=)7&$hV{2Jw6mU;Kxv%CcI_tK zmuc7K`|`^ATr9g0@-2X3{9`%;=aG$a|UE9Ct#yU;AD)phY%~MK( zKdC;Ptl5+7LztF`hc;L0Lo55=r}Zzie|JY*Z$ra#UT?c09W#JZyX4vP_E$b5 zabKn3tNMk_<5D4?29)y8{nTY-C&zpWJ1XNIr}+@jyCa-*pqP)7b4|0;RNqTALus{DD_9$ z5B-18wR^XGIdWRJuz6e#|4{h*z3T z$Dco_uJBP?*z02b;ZN#Uv`?S@XvIJA9t&beQ{cEgFK~M zp{F$e%kMLh)+7C^yxBd~ae?#jA{(ED+dmuy{YC>NV5k3w^`0yGE8`wFyA6W31Eu;` zwBQ=*AHW9)O;4xe0;lN`6~+#c`L7``xtJ2_xE*^)pf=8 zHc#n3c#zgx^W0{?`EA_zH-1y^t8QlVl)88%U1_fKvI?tnp_R(*T>wr;1@yA%8zm>K_&kyFlq#qU$!1_wS+o zbU05*S}$PBzt~CkT+JIcFLj*nq2UGehmal*1EqRx@!I}s9W1hbCAja3&$H?H;}M_~ zKV$07xm3F6_E}8lJ?Ssdx|G?VT~_LJ57@#ihHzRT~`b2=VW(`7!wc>*ZKFYoyIZz%uF=VFiR)cP0D7ji|kML=m? z%DwdTX0B&+qOzakbbcH8_*zZRr=Z_^KDbn&%W>R%WZticNxAwleOCVT&REEHGHk zG;Q75qq=6~zIesV2Fm)9)AjNwR)BDx14`|Z|MwBUpq!ml&dWQ^Kd0?y6k7`YmI0-5 zmUn#x;&WJ!x{h-3+ok8B-xi=$Z@n{~Kc%yjtzX?)rFZE4w?-GX0`hBs(zw++?k_3quebQhUauu+QHiF1<0=gO6AOZ?Sw*IGxr0Q zR#oclKb@Xl#co^Bp3h6rQv&z9OZTFD8l9x^C5c@8`QKV7wh<_;pA~MZPV?~FCyeoK zXlI`T;$khscuG<}@OyBw2Os@yhsuv>X!DfTAv~#^xtgA%dpP3E4fsoycEV}8gxm9x z#>tb;o+lop^^_DZ(Rn-n8q(u+pj0kijP61EBn9TU;Ha_>8~Hp(>Nh9^m(5dp1K~;a zFYk($v>s_arQc7#3H>$!rSf8o_tE&pd^X&u^ha*?7UbUsO7oo9ZpTmmYwThnp|#D> zvl5V?-ER+-VOoy4|6V4nKKLQ`4p7<`J=(Az*)_A~aiwqn*V#B(v+eopMEs=n`7>+Z zrgNMrS54g5x~-D$G3;H)?*K~uZQPny=pG#NDOT4D++jSWD)3LhUaCd+lUV$;|0(q^ z^6`sQpXrlM$05$!7iakp(BDTo>;+2ka77Q%n0M&Cxi9`N&ptoP#ezJgJ@6;3_uO{l zH(%)1J-yRCO8!N&4z1{J?8%N?tko6v7#3aL=3KVkbaHj#2+4P6$DF=DtHEHJK2ikgx^h)4-sR_xp zeImpS?XR^LaycsLrI}vX~=qcPtU*bWXDQBhnT8xf%$ciSz&pyHqysOMEYrooUsy$CheHuL9^r>CgE&LJmmj_DzH9 zTC-@_@9EWz^EFzEbOws>Y+h3^{#W1m-76Ifday5g%v>;fgopFf=6Jy0@gV&&+1E>m zs2A(ue4+N@J&<@*Je_-Ro>})y?k)fl-^lvi54%k@;MRaFliSl0yc;S{A@;NiyYqOx zqU0;3ALs3eaC-7^=zE)vUQhorS=IQcdJhtB$0{#1P#%dEVV!CvdtR1a6rP1zIy3h= zW693e=bxER5B^^8wnRKB9+te|^-y@0-JtCm$fxk{TH(*f_lQSl@y@=4+khRZ8ftn9 zH{ulsKGt8_waVst6$t%+f`=sZcH?{Ey@*FqAH+9@BiU_Av>vkG^zo*_-@c#4<5|wb z=x(x4U%Nqs13io3Hk5D$Z_TcEDXen)pAVJYn$6C{-*_he!z^Z*v3e&HcHc61_>?c) zZkosk=-u%7bu?hZ`2D?%ZBYorgpgn_I@V)%Pjqek$%WAhCxtW)%3IkDY z2J&#&AddNP`+=HpBOi$eW_DlWhvfFj&7uEiG@d%|-g&XPvvOzW=I74IeLN#~ZrUZe z^U})X&QG>tM*rnLk-IE+K}PPv)Kh`gH~ix~t@r^D|cK?wUXD-P-U@HX`_*M!3W5`9&+d zuM+&7z5G+Lub|$n@nfnE59MiTeeLy`8jzRPe~P|;<%G|5rtH042KBRf1(ukRXpj5E zc&mCayn?A+13quxx6|rW>aLszZDNlz%Rye!)0p#>;9p#2rvtmu@7J~z;_^XERldHm);b34CyFwV!nVtid0 z`ilG@=kZ!i{_0#y* z7uM-T=W=V%J-U-F3(E(gm#BB59FV{K#6@4|{IjLM-s>z~qU>`L{~vW<0%v3O|NoSw zsmQgDDAzQmAu;ydb1btl%$*s-*m5n&lA6+jwkH*$Wm*(cjY5(vEfVEkQiK>GM18O9 zk#2=V>Gye_^FGf#_gwv7_y2t7YxKOlyyrakbDr}#+vj}F@;RSIC?BbQ3x4`-KX0G6 z^$cGpCWWp#=-oikz9|^2I{B#2y}s7mJ-yX)18wZ{9AX~tLVOc8-0-uHTa4?rT;M;) z+4~w|-YM$S{N393vItB5o=dUrb{%J2s{l0N<$g5ZZAaImd~w#Xoq;<46zgZTk&e{g z3;X7Z^9|~{-^K6mb--UDQ0jlK?S1H6?)aBK-1f^&%DQx8+fM67#1rj~g2vf*cKNK= zV-uD3;$}C1J{~B^-K1BK(EUBuO%_+%;~gh+y8ar}>mr>5pfrvZ41I~lF_$S{4k+sm z(aZVpdUslX(T{)O>1nJU@wB%LH6->v9GsYsXyoGMJunv>mkOr(`pJnrFLC#cQVfX zd)0kemwnH46T}na83ptEoD+5_|5kg)pxzw$8VQu-?%3vYi*)y{8m*SE8q7pLwaDn= zoED&O4Xg$v@E1IA#OJ;2w*FJA^tbIy`OjS={7FgWIla+@1CTGB6utFguNP{zomN}q zOX4$W)r#{zmb|llyLWmi=MB;v>erfWr!@%aN%DGnx0pk^);?=UYHYT0&qFF}5Bd&3 zss8f2|44el*ao$FKi*dx>GmY(e6eo+d=VzS}Pi~)LE_&57Ccf;q@NW)4*SPB%hW&uHU@A?hB^O z1ESv-Qq${-bh-g0y}PdR;cs$pKykByjr^PU@Qb-=)_{^+Q<*>b;PkK0s-Fs5Rl+HC(^e&M9_9 ziL5v1^CIJ={U_m9+OIb4sW&M4lGA<^y_^V_XH_EXw8VU#*ml+0LiP~QKT9JY9HQ4h zONGUAt`82tcf3Gpe#_6_^fxc$RL@7(Vz+>PAW*8`R>OV`of`<}GkWR$MZ>6X~usp`E|_U;By2}%74<$2e$dNABxjH$a%ew0)KY^RR{ zg*E2y^0CRECoUU2BI16CF`%CStPLb6tT~44yI%d{ht-`j6}_OjZKw4B=%xBI{Hs^{ zG*dkr-%;5|Xu$3T{n*HONq=Sh;M2&8x5Cs&`|bNce?L$jAC~PQ|0{0OFUE;tTAy&* zA3}Coy>QV41%>%6a(5&IMih5qFifyN5AfEKy z{1=XqU5e+zb`1}M{t=+0w`Pn>!TGRDz&^q0yvkWTjXj3)cpNC!qbb;bq<6kgGw-85 z)>3IN&h@h=kj_M)B+qhgSYi6bxHQ)JCWF7JKuNw7?yq^!XOx|_Y>IoRGVkxgo&^0A zV8pz`e9t;4^4e*CcRs&;3jDnal=P6mn$kb`{7KuJZ@s#oz3*d@(ZQ;xLH`m^ng_Tt zzWPb`uWt9?%JVtO`g}|F4CtQ&O8SykEr#ZCr8Y0Gc4ewEkE_p~1$_ZfS`T5TvgzEo z`FPd!GpF**>AX0oKM($<0i|*&sCX^e!MIChest&xr60vb*l9`ftX=FZnl~DkhQB3e z^2NnoMtRHxO8QyR!}ZASbWfw#7q)Am?90Tn>7bthl*X|$J(GVVIkAo=j$4Xpe=Pd; zBGnIZ78Bu5>T2*yaHiWz)83*$PMpifZ?OR0X*M*>)4V3!B65Ufo%@is$kbp3*hb%pl7h z(f{Uy?j4}iZ@ps@$bQDsv&ty)IxfOaOVX2jt(yV64Vte@XsY06Y4nK#J1B~ zhIr!K00r6BzOU$7#>mO@*0!?GD{->M5&opEKztK^G4GQ+VXo7<6*=KlkBng-;QJo} zrFF1?`&Dtjob&w-shlZ==<82yFCT$FKTz5)4kSEUlW7ZSTf2&SE+O8w)A|(g#CaA9 z24~cL*QYHs4?b0j=zkxB{u7|I4t7i4HK+9p+kMBf6`)@Ul=NLzYXglB)}!vrL_cnZ zm#0&G*Ll2E$QLrANqV{E#|S?c(|F{R&*1i#;(LE35vg!VIikyg#u+x(2kMHL^b!zs~4vC6>?Nq*K5&opW zE`j0OR)+Q|1ExLFzt!JT%s={D+8DC)$s-+O?3IA<$UGN_9{hblUdzxNa@fhPsVQ#;mBaHWC|6|c< zBHV$WpYM~(2H$w!;2Td1e?j8=?Uneg;g?A817ykgE|Buq*LqU<`y$w3{D?5w?|fz6 zf|8Mj?+e85WM^aT)?br?^ZlXkYSxp&;}rsJyA_0!Jos)VN4ic|Gaq4}LG}l2rXFoD z@BMDvj^#`EaT=Me(B-gW=IGm?D}PVNG6!_bSmd79mF0IRdw57t)MplZ`OZIHx^rAQ z?2j_IJxMOo4RlBR9vsPTK{FqB7Do-pvbf#EXna@j%TPYHokSWltLwhFH1^_7&n=zD zrP}sOmc7eJQ7*}_i$R#|TFhiMVP_%ip8~1y`y%Q`)C2r_%@Fk?_(nQa__AuPe1NB4p5@t3uVP`>h6qfx=F21Xw zeCc~578M-2YF`#B_gPZ8&z5vY`xWi0E9@l%pBc>htnhc`SIZ*}<*C%8AL)sDwf$fT zK0K_hX+ZZi_#^uitNoV~`~s=IUw{0k^j&x4a6Xu*FVP>`lpm$f^C>Wg{rYwH!LC9NxAPk+>Lt`JyFE;f+1^p? zu0(#<=kog54L)eQ(E2_Dih2_DtbtC;=5}NAd+~Dp4gC9oh7x8Xf4%wlDSuWvWM@NG zT&_+refjC;QoUFO^LaKG{YmhHaw!t&<2}W<+E*XN?~+K*Ez$*QKtsF-KhzF6KR}Ux zvb(YTzD*y9--qz@S`Xmu@$>-xp6qojxjhD9)n14EG5t4oI$zYC=J}u6>69aXN?R^u zr?Z9I>7?BpveQ{>l~gE9L3i2Jf9S^E!?)e5KVk1vS!9x(P9wyV^z*>xN&9?Bm5v-u zy?cy(kEBKB9cJq_WfAW(AVI;K8-DQ>6t1iLNmifm`=7OBTaPLe8E;9e{dE3)ZZos(@bFM{<3Bn*6yGnET>qly#<<2!BdaJ6qCj_gVA@b)Nh0 zna@>2d5CfpVR~IK>G8wlFKPxorR@I3$>VK19WnpA4&Nd0C!ZJhY6X>b?2BJ6q8$tV zr1cgfapQk@{TauUdz{_2Tomo(%258abIs`fJ=}j;JnNFtmy5(dapbbkJJ$w(qF+$3 zF#h;Iodbt|I7Kd9{QT7gUkO0bpD5^UHi*uN zRG9EguX|O$B@LsN^J=}{h;-@$rQeGt$CG{5l%!elGb$EYH z1G*j8gR^}B=i_D)&w%zaP#WL040HeR_iHN5YI!@$!tWNi2ibNy6Y*ZE_rU%GKj@y# zGs|zNKg71{u*m#8&&_M!bl^IXx+99xg$WbIf7(02w(ai-&#I3Q4K1 zieBEzw$tf^c+xo$?stZ-fJM|h1ARxJq|dwJD$;o}>nX1LM5EuYl=?Gq;B>r=VO@}~ zZa}Hua=&uRw*69}VGCv7zcEV&eG0HLkl;w{S<*wSn`>@}*f)+=eyaIP#rM;ISA^2z z`-ey9`q{KUBF2Yk)05f}eL04uNs8R9W!vfW0KGJBx)#jbuWM^fxl~Tkvz)e1r*bK%d%$1V_{QIP?)pxQ z?}wCmoKtzGv23K51C-kJya(KL9?5!2e*TvW{(1q+0}1k;zU6byrz=;HXHLr{sQ1SA z^MI0^XGdm`9K1yQf%FA`V}N2lNI|wUp~&Y?uJ&E4#wkpCPd}xzexM%?42?&cac2d} z-;ePR&Ro$^8CTk}{-7TMl)h`!YOtI9XJ6x=Q_x(|%M&B~DM@-=(X#T?t}8uF8o%ZRH=v;Rsrn0bt!P;4f}blyl*_H49|n~4f}(-H)4CL$@B5*}*$(0I+G+ob zwp>&{MbX9!Tc0M@gZc>M>u#W=muq{z+3Yh;roVnNy{Xc!8?uq0zY8e!BUi5p+sS@n z*ORaAs-x%y_1P%U-vJcsl4j7|klbPRq^++Vmn-8~qP-428u6s^_KuoH>skNh{jA~b zCHnDC;)6JIMfg*a@>ivL6FMi!E{${T&iYaG`b&6uYWDue1E{}BK!V_nYYzL2312_d zE~k^Se%;cx(-{x?vY~kVykkA{JhgiNbDVuI+WnxHq^Re)9rY@U@X!Z z2bA&`NF77>)mV?ZZu-BL6Ka2VE+-yDz8(cia!_*xC+gZe6=)z+$G-*jouDdZJ*BiL-cYYJiVYk0p<7vQ0(haFzJcP zAMy5LTp7_m9|Qg4K(=oEe97qoH|aW}Y%0B}CZiNaJ7rjl+-lv{+NXBq-yN({-t!J{5dD z1(eo_V%k5rk;|okYPTJ|TncYznr)}^4APVJo?*u*f7Vl^%&VNvZ=>%I;q@MUJT-sM zAzv>7rS=l+`qNLmJiVQie&k}$gZ>4eG(LD+XxKl}N`C)g8u)t&DE0T?-Cxr=N$V+j zyM*cBZz-@gkbq5bf2bEOtTgUFa|hY`i~Q$~YzF9-0Hyjh9(nC|-8i=3Ouab+?0sxb z)`ZOj{kuSEU8BM9P5X3X+u9H3y_~D)6OC;xQ*{ovDmtF}6RY*AP#d{{@eZIEeZy`F7@P{0r){k*|5ci1oVPZ+PpE zzHOEHLjrpP^mBodTv~GC1l@;aKK|>K@^nS`Q!0b_1je+TpP@X}@z1&5svJyW?}PpWpw!Oz{hH0pBY&!$xO2VyL!`3|D2;#aLubgI*1DIot}+jBS`W_4 zb2<214V3gcV@Zt@x;A61e)r7w5pwWj(EEY%dck!c<9^2c>lOXeZQJRf!)Vg{Xl&W% z=-ksk_>o+RbXEbSam+t%#@gpBqHj=}7VXRbRn= zPQH47p*!mJ7fDZ~Bx54%bfoeuY`&HD`>l)9e^<_jIF(D$muIO^dC^}kwh`e?KxuqG zQ*9UNyQUu5`Zh)HaXKHy`-YxTmsMpJ8w-0X^3&;hfz$pF)Xjt7(_$;}YQ2!- zp)DbUq_MOJIQpG0|9-Q%hwYfKzj?29-Pz#p-Z*<-tu8!2T2o+SU^6!7b#MOdKXu`T z6=hPH>AokqcM1$Yk~y6)JR-vm&3x#-PzyDL$wAO=TGf8?Iyk(^P2<1&fd)_*q6otj zzlbmBQh7WN+p2vGlV0Rc6flho^7|duQUukUC_b2DI{M3W? zg!&?fKY~9Ci9ZX4A)ELfmAhqF^gJ9VO%vsZ?-SoVKEfLK@t}MH;=L#@gvmfC&U^-o z_a0_V*Y^tgp8UJh5oVzCB5a8FB8+wu=mmaqIogIoc+c|iUSMx_o4Ng((35%2&dEIc zcs3h4gr5D`aC{>i9*KOb<%ayyxvCUPfPwENNZ%{c6?_57VCfFCLEV=F!=xO}mxlO$ zghjr|kV!KiBb$A)(tN;&28UQPgxo><{}btp{0alMs(tVsj4 z%9oj}R;Yw+{sf@{$1nTA*Xrs$wK8wbXT7BNTEJ^7GG+0ekMLH&GFb9F z+%jWWyIYhC0lV7^9AyyC75Z-CsJ(ul!Cj^)ii=Z)&Z*)OGFWN={-lYt@nPTPKL3Kj z!|LxN0Tkk&I#yR(VHO){(!!we&i8Zxcj`m8`M*e34zMKK21}Ljy=tNF2Hw3R;PVF> zm0r8Bg>rx;bWuln&`aeR^L#(rh?`=r)Lk1fK^1(JL%eH3=@pDw3PoPKT&V}=6KQ7) zXF*-?CEBGlu{|@P8s*Qr==lm|BJF%5N0eVhlt-0Nxkv}n*DDi_=qEVg69?xLfXWJg z(t=yk%8%%Rw`a%ryJaOQ_3rdyhoCMddZJxQ=}o`>5vqs#5+6w!5~pm$B}P5*llqsL zGkZfp)VFA_^qb%NK5cN#KX>=AmB*EOh_^576a0zxL-Fz#Uq=)0LYmm-{YTjtb9yi< z`Uzur{+!l(3=uC%Wa?K2$o_UNehBGJlYI(-6MxajuigDfy z{%tv2GXE<14Q8k1+0~g(rE>h>WMoPUvD}( zh;-=I0`x6`VmzbZ_b0mktqX@>;d05TzU#anMOzQye1;qg-HH53?b_H_X1&j|USIWL zlVP@DnnlKPSXTX>Qt`_ z>gh(ILjCn(J-H7>0571`;Bjm2Np{C9Q;#el=JwP$9qu{0$UEnZMTd!>NJ1>`L z<)4anU%&E{zMKbHQIPpd=@X;_I1uGCdb?IOwcgG}asG96 z_dL|#IM*XDfeZcng1>%12@0AWCj*A#S#$-j>R>ebejDCif_i@>FaRj`YkwT{YbuxU zb%yBMwfsFwBI@~jIG>RQOH#Y`zh09JtIYcVW~vv$$1yMRH3%quwwM9-7pZ>e zlTPQiF>D0*x&tWb^MScLH>1BdQ1tmY+hA!l;>qKRe@!!8JHjvWEREkeRIv?~ZpV8` zo-JAb3LWgRo|5lJ(bjwM)PsxVqdXo1N_uVKnDoth;X6q;ws~=|qVKk4cY*$4pfu0% z&Rw)ZFDy8IvfT57A`al*4SKOJA+_J44kLHy#=fJ|-g~O2q8G%oF^D%Fcm>b|>q6?& ziT$4)96A5H2XyxXrThh#wAkd+zNHPdWvavZTDHN`eTa7@kRY+sZzPwXhe-U>Pfphv zoc1G)jRjxhfKvYa8ynF@-Ld9@(bC1#-=iHLitm8qgUHuIKuMl)$815f$5c@A7cHNm zeKh`gr}Yrj9|3;`P-+(irLyTFIZL6btc(xNAXB22Y-`* zvYcP3lL1)6z*D21i&xg6>$4|7KM^Rk>!L-!(fp`b9dtSEw_1e3k|YO@SAB*IMa{>r z?#H=pgQaJXKWW{ReYl+DOF=x{&3dJ>zfy}$0sYfJ36j=K|CP$cJQA@_xmY8XO$Fgo zKxy1u|J)f`H-(-Ru17{+E>e3pQ*fw9M&JL!(~F+Z;u$xC`g179%|Pk9mLrG2*S{V9 zW|(2G<8!j^w!zYyh<6Q;!1KeX-M+$)M_u`cec||Eh=U$+c|9La*~^npA)DZ)jv1Iu&RAIqkO^n+^Wn07~`H>iFkZ zGyb~d*D>dSzb}E}91I05$1U2{7xQYZA7<}=bFz+XF6fs7s{>8==8>H~_qMZ>d-U)! zseb5}_G}*L-UmwUnsr*WR}Yxmx2wDndih(RUj&rWo7~M6@EO+py_=$!$Jqu;?;xJE zPg!7JaLJlRtb4x=`UOC#{T8(UOE_vOdB?d6!QZ<;Y23*VB+!1G^^|-&TMYh|0405J z?84eKzFSv#w^sB|=j&2SkFM|bt>nz2**Owx>R7>;|G2GB&DaA z%0*+#P#zxvrT#FzARyLXnke%Xr*hEw`0z3K^8+P)g3aFIqxRDCzUeDM7i4p?hPJ`d zr-&!b!zVBL>kwVkY@WBNpsd@}Vk<%a39u%Rpzzh~B|c4?NDg;5E9;oiw@;~G(kGpk zr^bXq6)|Kz()c)M()n{}*Cl^WZZ-J(0x0S8#{S<)KQo{Hk%l>IK>ry~D!1U8dugA< zI*F@ZeC6Pt^5Oy>)$sk|%lR$f?`xnW z=RJj|m+^MC_HIQkxmgkDw?^hK@an$HnbyWUU#A*YIqwh7)^|0w4g777JxQ zmyLnVShLrU{F(VXB8xReU`A-BKsxlQQS<#46ueR`ua5D2AEQ;Gxqa(LR*uy|4P_@H?L6 zZm-cImDAh&fe#J#XFKq_&378?q|$jj;rPe4N9%<2JMjE1Kz@YX8`-y+<{9^F74}aa z&}RaB0P$Yf#R&T+vd=LmhtJPRg+nZbKT(ck_xAjoR|Tv0&t&A~?alm8GuWCxVrM0%9E1Ic`lNhW-`9{X^(*ec zNz?<7-dl75peEvHv0sAp6y&m{d$+}G{In;RAKzp%>(pl}@g0plMeFO)wo2WbFQCSyqQ9{?SgX zBj_c)&vR|>eLnAr>tFcjg;8vv^gXR`u&sB}7;inU(C2Kb*M}CKSg1R2$^n8U={Vm2`|4Ib^93HT zn0PPEfBoC0uJ*aaJAKi*EvP|zZU$9 zc0<9!6ff5eF-}SHENNr^ zAAJF`{^(`OYS+pU)SpOe|F6&)$S+yc6OOm(B}GR0>U=} zuathb9H?30lD8MC2fmVkQn|3Y{r3CZ6*Y@~a<}%s! znM(atu^rzuKs+I5DCnN{#`ieqSzH&DIqgT9Z6`)5p7n_SPl1HafBgk{mQ>>Xy)pP} z1(fcSypan+yG@skkMWwNS0FXd!aSPJM!yjb+}hj2cFdN$I@ z1xoUaJHR__9^_Fk6s^T_K;IK6<^vRL*XE^dwtOjt-#Iuh&uHafc>P7+AHw6s*mh#x zF#fH8YxDzjPl(ywA8Mn>iFlR=`T;!UTl<6 z+O^a24C?)mK!2d5_dMlJr19?(xu4<|@HY@BjSs;G>fqvU?VKV%otI0r?M$jy;w**@ z0)K;nRe%I%UVna{&V%Z@V)X4ZJUyrSd{7?>zQzHie(O%}OXoRmyDu|$_${`BV2g|{ z;JX#{cK{`Q$=dg3ODnfsTDh09URU3?6B`woo_4Q?`q7o<)<`R*KU872fqpnp8gE^V zo;jjxh2}sV>8RaV{e>J`jYN7GQ_4v)^7aeBKHE?gL8m z+mpA=`i%40qjSVKmJj;7fYSQmSkG(J->n@KRiAJ=U(wjzNM{UCtZP#6`S>i_4=5Q^kKzv-hEZp>dQWrqAm|?fO7n*#b05L-D_6U{ zvd$24Z1phWN&Ply@8#q`^pJV+gX&;9`tl6dU!0FC2KajtDE5OW=-pI{<2k6o^Z4gt|vz?&%*2d;_E$5$J?nWj{=~i*BvR{ zh|1GtIyzMyG1X#Ef&N*bG(K?qTe+^bqZ#Be&`9+!42AKRC)hhhUKzo!GmeUjmfmQqgluj`;k)AFSE*bFY04h?6yB zi$K2^D2)U8)pF_nH}g5}QRV?o<%Cmt7Sxx5zvV!wy%Y`Wa#S}iYxz>gw^JhI#CxFs z2q=vo1p{s-z2FD)o|i_-JT*STv6U2$&r>bC-pKs`r|soK@V5+D21wv3bXJAEM|lEo?inRfs3`2ln}Ov@SL0 zwwr!_FHf1rHI8s>C9Q)6N?*2C=jYEFDE+}{yLMg=yklzG8stwJ$6~%c`ZdkR%zc@r zid}sJ<_G<1ptKIA=6JI$ZQKI4pN>w#5)1do)ey1+i`?b>_! zaIue2^5wD({Cxu~4J6?9tES)4Mh`0bbuG3XbUT1GLh(x1YebF#uQ%_NNiHV&8U1*q z_S>D{YgdRr@mDZ*)#c0z6!cU0y!dkPpX}gvhwR|i)0$IH-`SZzf0D_@zul{L?7^;V z={N3|OTX2HXTxa0QELWl&9tXSH1U6u%4=}kZ_m98zk7hf9!#>^(#*%UpJRxR z^jQWE)3JY|B7xftc5>o9>~0Q;bi08r6)4h8W7et2;ho_Rs6Fg}I&wP7r)E9|($|{v zutw!*J&oB5H_S|#^m-TepHIjS><69rdjs)Ae9G6Eoc(iO=_0-xviIZmJ%XQPZb#Bo z*!79`Kn?u+fn+~sv09cJ3&+Ea%eo-$#;n$1o>?}K+r;u(T>dPzm0G~S$w(S-{7ZBe= zx(32b)T?N3DXikcH@`a9)5G~8dpusw@OMUbS(^Fyfo`A%Wa4*`9`Ys9bD>>{@*#UV z-XB8s!M`u~5$#a?j{K1OAB&E@YuU4%7Iu?8xc{?C8ThWqpJ)f^yq^u|&hu46@F~74 z5as9v-3-u)e299{M0})w0Djk~oUHmPr<4oTBhOzpN3yT`w%hPVv)dy~cBX@GypR6D zZ`cD_@Uw{T7{V@2`K~DcfGB?;*|$Aqn(1!L;pqi>ax{Qsm&ffNMHpz?fAs==Hp&xx z3VSwcznb~@v)Q1ZYJRh-Vje5kXmjUv`MK<+KL>x=i0tRA-`!{jBL7tX%kIoOH?et7 z-p}U2?(nHxPEYn|R=cQ*F!5=9hsw)BvPzz>T6SPKfau3I@4lRve*6^)ZG89TYn8h^?F39NgXTqB#NPVP6+zHig|S@NeQ&TU*BisyRj z%FlfHpoAfdivThm}Hk9ClA@b zU4!^lfCPz2GwB|8>p7&XpSo;2x$>Zw%Cl&Gt|%9Eec$PP+^L@JG+v~g9O<~?;rr=U zNS!BLeEqyKxJm?yFa-L-3S!*PeIo=lMnIy z(K=*!{WBOyq!?a<6e9|8-PEdpNR3-d~NzCC@A&H z&Yx?0?fz|%(*-CuBVI$G6wm0Gddg>*=6p|N6qEdn^rt4qYf9ez`Wfzmjpy|8(=&$~`vp7cl0@O?+EqirYG0`a7CH@gPiNP47s{C9(H z>nog$E@A?GbD-4jgRhJi`irKNi_>=PTn}jp{yG6AxpeS@yZtQ)4s<)oKI*2`nEu+-v*D7KW5GN zckLgBw@=OXr`8eq6M6{+jn#YTTAzpQ{^zqu>0wM7^&(F2YVu zlAp^@og{myU6bfS)0hZ7(y6@80DqZ4Xt{lr zckaI?ygx)=@8SJHV;=CA1(ez+KYwApFZuax4*2T{l=OL{(m3+xWIb_8KZ?Fw!pk#y z`J%?_1^)T~rT#Fs>~jIVkWO#+uh3u7udA@$pw9zJ^S|KOu5|7@z|XaZ*Pl~)<}`mA z>kIz+0VRHl*t3uvCIp)K|o0l;eKn)cnc~idb0C+ zAB=Q{0Ht}Hw)`Oj!+6Q}cW3fC#}{-6Ern(FZ_Z0956Cp#Q05J+_Vv-_OxHN7%_p{oQ@~ z&YyhV4gPKK4jQW13pZg8A)SYTQoN+wzM^|ztf%DrtpWa~0&4?J==zo`=o7Uf?Bt~RinglYT`JGww1aRi=buErrU2!2ebO)> zwv&4a3`+XEaenPGU0Z1C<)xK+cY3}#sK1PKrURw^UbuL?=`YUo3%XY64^G>e)A8LE z;ZIFkw@LeW`*z6Bk{?%IMLE6(lJh_umM>!|p^d2;gy^eI=h)mD#9dVe; zGyf??|8%oL(9Z@+H(|ezymxI#0o;Y*f&gLLrUjn6hM`51+ zhi+7Tz&B{oElgU^(KI93_NVp%;>rB{l}UE~rhNG#N70wM*#6YsMm%Z%Py5gFFX&o} z7k7GY(G|JWl)VM|`9P`vy?DcwU-EXHU%i;*OZ4Sg3jA=0VG9s`2Plj(8E;O~8)v`^`+|L~9ch406SWlKT-9#G<^=#Qo1{_~R8U!2vu#y&*8)&M2& zUz2oJH=cYWampJ#lz!CQ_NTTI5v27O&zL@keTH>HlPT@9A^QmQD}Yk}%X^^bNsPDZ zI#?`Q4*HLQlAO;k-$wW){P)(wC&(8UK$<4?_kxTrG~SwO$btk#F2%7=5pNYxYM=94 z_YY9NHSIAkQ|95(%O$CtDFvtV9F6(G-)f*VpKcW>d(f5>68}UQy__f>K7;ya;BPHZ zYM&mKK<&)5w@GcN)PqxfP-CAXo%KLzJu+$0`#X8L_^T-Trz^rvPMY7IdE#TzudPSz z57Fxd;pOR6k8~POv+d+IqFkhPzP#3_VAo~jDCOd`eMb6I3(fzG7CE~vW1NkWpO0-p zd3*zu*7ZC5LF)znjo%(UbEBcGqcpbtsqH{KNnc9b6403SI;oc;uM^o;(0>h-pwsbH zt9d&kLmqjZ(!8h0*?1Jxw;_S;z-vPZx;i`7)0+0%@1N<~-R3>YS;Zu;qtBn(-=nmXdvbUGHrw4@{AH+otoWk*{o=jIH^P1q7WE+N73om9 zSm}|yn{^9fQ`mzo0N+L^f1EE7ALT{u$?~@s5Bs{?k$)!g0eX=R6MQIqQN3EHp1&65 z)t&Pt?88L8CxM?LAeo0)eEES4c2?6uc4XG?c0TZa2jXiYKEeUPzovCKMj5ug?N2t@u$--tId0ME-I)PDa?yR}TDTBEOV>tG)h) zuop;nXjcCH!j28);a19pAx!1P{rMpuqCFVMuUq6BDEhJJ_nPqUro{In96&i~$Pe*t z_1osir+8n4u*ip@{J9!P z;D58nPkQWQZ9jU?^Mrl>r}eXBCzlR-X@AE1-A(`T6*e93d*!M-*~rlM=%n?nw%*+e z?ESWJ48(|Lqu-w#tA{K@s;eV_7IH~yUdo@pa31B)y!Uce>4^D`v-GMkQSMccp42{# zJ1gw-X^+!!)x5uz^P{y`CD2y}O6xv>4g0>-wIZ_~O5T56RV81dAJXg4zTAJY&MV0e z`egL&CA{8aY<>O=U%=^pm(%v*eBCZuIia@ec$7z7plCl7Jo4NGabH+*olA+n zT*CQ`VK;)mM4%);U5m$wbM3LV9>B?*uQ${~IznF%;}X5L?jyWZ876th|jTb!cc(MC~^Y-Gj|20E-v;<0!^kgQLr^`HlaX=~0Dy%sO zTL6XprQr0~a~pa6MVw>$x2(6v*miQAkUwesi*2!Sqs~fYespM3rmZ(}vL>tz=-UG& zITE}#j_zBq>}KMW{t##TlWT`~5&DGXzwR=nKR8`?jb5J**C!(F(<1%GKkF~6c<;OjfdzQB6ads3XH=TuIF{K<_2pF&SJ`D`(KgU@^Z z+bOqxJDf56ZUM_<-4N~xl;)eBR-YdCxrdzS+v&BT%#GhUq_Yf!y8|UTq0QZPj+e_P z?d?~*fEwU=sa+sO?wcTn(^R`NO}Gr=DAke%uV_Q;V>ZlhRw_-T8MhuS+={|AM+$mmY(1k>rwVZ-o=O zX8PmonQ5=Dayc5+gGm^?G#YhBAO``R5}wU5wSZ$~<#fzo`;yJ+nhS`RVLC#+W1 zL!xgl;qoQ=`cwPEo#5|oproHAmf0orEOq`K!}39Y7f?Enq}@K@aX!9l>OEo3>(A+U zIM3fZ@9+16zp+56{vw>|V_ZZ?ydb!cO z%@kd0L)SE{>Y()ZMB7fzKs>2D{h!@S=XlMX!}>QX<5(-_a)!Xo&tX_1EuxPV4cb22lA7h=~MT3 z?0Xe0GCH{RH0WOhO5<(e_6Nu=edvzF54SW{`d=J-2K3JX#eM_@gNr}jrE5Xc-}Y%` zysgEa1$_ZfTDS4^%UVPI;nLXOd>;J00F?TJ|ECu(9s7c5;O`}%q-W)ix_OVTX$vo4 zxAwo*3nKm7Ob36j110@T+Z1!3&oBkV8TJ0qR%{07X96WT;u`SDAud0S=8om3^gT); zsK0`AUIR+&pWOb_yawi(nu;8ZVY5L0Do|R74$hzcE$8!JyAB=H3z4t4fYSVSec`Dk zxYRPX-Q$uw?SPsy(@%?E$)042GrRf~DUr?sg1M)}v9D)XxP>}}95 z07~PuKQQq{oxiT3^arPULG=2ITJHJ!oHgT>RXo%e_Lk*^KFD}e+?jYqCv z=E>rR=M^wXe$Y>?*ax6PhtcG6xu(rQ-FUEQ!}IBPDEB@!we94VBfiuwlCJpUoNky0 zn$wdN{iT*|C-)KJl>-u3>(`gceJ&q^uN6RPKcMKQTYu)owWRpQzm-Vm6QI&un#A^LgW+E2QL@hvPSrSYLDV)z}C!k>Nw<~6xP>#zU^$= z+gRtw7YMqJoL<-;k=>1T&i%tK_)ZttIly1hj%3iM01@_w=r!xX`va-m?qWjM&ox)q$9$qJYCx^DII*I;eA(xI|BvZos{3VR^3bJEO*>~qXT^SfrjK8Ng2g#RAvcP*1y zDC`r2os2h&znAP^IDHngq}>pa&rmvH-|-9nMY*N3^6TsPOTXh`)~V@dyYufCiF)e* zyAM&nqWnaBk#F(42&b{v4v%~7aO+H7&s}@)?~3|iqTED13BJ0s2Y>$b_wOIbWb@|I zQy2UgJ-FYdtMMHw7w(@3zmuJdl}}+;b0@xWGvsu5=C%w(z%|?HMUD`np|J^Uzf%u*% z4}qW)?S%N`_AlVukKcvek+6r+a`^W}Jds01E z`4Rnu+JhCQ@-e-M4Soysg}MB_U5~wBw}$fZ!=7mj!iC~Jkm}p|E|r5NA4m6Rzg@dw zRN`XPFU7as=l0@ssvS@P;xoYq!lE4Q?+ZHEm7VR2@R|e zuA<#}2jD$W8^Gh|+=}-@IR2M*LZ`p0mheBd6RJRVLI*EoCv=e83B@)E*$K_FNAJ`~TLRQ?yA z6=W^#@AIFd*T1BEQ`Dd?_=-U~(!42u?4+w1-EDCDE_uHhqP~WK&k8_-C0h?4(hJ}D{+oJF_p#68@}EQZG!F!QjZi#S?4L*U zK=t|W{ou-BNul>NQ^~UJgtGBov>OWMPdodq&T6kbFlJ09YaqunJodW64R|lgm4d;l zlaKnm@m7bi=!?Nvm+r20#mu=615 zua({YdAwNr98fi+R})BZWL~9!PpfU7i-}YELlxVfmY9D^^;1pA-ZfipbVvRq z@V4Ja{r2OS-;ESj7lfUF)k6`jd#;U#y!{7vVoZ8Z6R=J!0d)0%LJm{V z8aIvCPo}?qGRc--oUB8HoscA#_~1dLt)uF;ZQv zrzx;9kRax@zo|T}=il4kTOdEY07%nAn7}`Mc7acueDw?0zHy~;uBkC=3A%Q`kbdoL zR4I$>NZT!~+;-`2x}?_-WqsS9R%^tQ_Dh2;n~@(954mkSwlAW6Ivf8q+fJx$WO}8I zE65(kTG-yCv}@<>%qgGk!CwcUq}PS~CupjFD|giP4dME{(|L!+82IZ56#5+nUA-oV zb4?}hcc?S?O9M*%J!akz>bG4?M;%QS`B^K%PDttxXYLsCqt7y5taXDTC!DvJ6!4b{ zl=Kko_d2l8yadiwq=UZ$Cl&#5&B=v~~usHx|jo%UO&?bB&IjpZO;{ejZF zBtNN8%#XS#`-yR^C+PbCB{`VX|IK|q!*mZgwt2+7BNz0&fK`A5t`(0S#yEXW8CRU^ zgT3+nJfOsV5otkn= zKXTeWqwnwG8f=l|oMfNb(qsobkF9)6KJjY2%Ju0=ua&)j-n@^WG{_`3rr%{P}cX(a3oN?uOn zgTE(%()yBT^~^&)@6pZ+JlVI}{=_XZqbs`$^afC>2hHswy)}8OZ{wo_?e$eo){@-~ z`iFp0|BK!BVZi4%64nf>n5vu$O=4p}KOQInd-OV*cUT+G3Cg@Gk=+Brd!-2YbNNfT zG*30J)q3{YVr$p;;p5|gQhBm=DPr7I&yBd){h%KUl=QlnemHZ?UZ)M$2QR+7b}C;U zK)xOXRss?vEjoKl7x$l(4!x(pqPPDJFBhkBNsF)(lIGh<6K}bk5mPbyTb%6>K8`up zd!j4P{PvQ*M=WTzKdp&oh#sk(d4g{o_VE({y_I%d%ia%sj7QTXInRDwN9S|t*5ds3 zO%%PrX?e!5$C1txKuKTHtb3=d_a#5xP6B_Efzo(%q;HqsFB!dV3ix{kDCtW^vl9>M zY*E2O9mn;u_lr1L2R0S-(}7a|n>Fj?hdh6DAVvBfQ8uytX}yeiQhx~fw>sQLk-JH@ zozOFgC-oQ4-cz(rn=~#d@KhsZzEVHx^_TGe5Y(SVIxhmHab?bpX*B<{{6E!H&Z{S~ z0?@wzl=R5_)_42|^*!vzEfMxi(e-ytlgf)e8NHkj zkLOe_1@&pj&r6|viN6BpYiywWnUC6Uou=nhzjhig=Kp0Ul=k=GkNzQlPScBiex$bR zSynk~+FYPC50BNxkzby_9xFGkdmE)6C9+pRKL;qc>rXe6pPb<}Uc9Pu1*JbEu-8C8 z8z`-xEy=&?OIlAhkN%ue)}iCr>!2?LO8ZAKZx6tHjMm-4$LZ+XOL)6>S`S);osd*6 zTCbP3>zX!^_H#BXd`3V16%U`$_xJGj5^cFe+S|Q_diw?_eRoOUndkHXnO$wXe1g57 z$;mRj&8zDtXY_BY=K{Rcp4+_CJ<17sie;=Mza`((OA z_|uZ&6@HPi-{&^nh+dl;(XOMFyHdVQ&e%fmw-hMpOP&#>$WHI*H-9ckYp$$&$FX-o zzX(_zNN~)Pc0ku2H19jAs?2Yr*LT%+wiw@E0+i+tiKF)VeVUu^Q-;TjzFmixi}UvR z9{7777}`fL<^>B#E?G~>&)+`;e_sQy021Wg=sp2T>w|fhZzp}pI-y=kX`iud1?X1-rFC|rU*c!P#-*|U@G1CP z1(f8{@I}*T-XAa*42tVM=4j<^=-eh}%eh{#8u|JHD6KCgeRr7li*Gmm&s0_9QaoD& z`p<#Vys`AdtBZVE!1NCodCu`O(60qb^P?qIw%K|Tr&HS zPkoxVc=yr2L^>OQ(){7XwD&G&#oLdZwlj@w0)Jb9Qa>tK`U&03^ds5b3~#5jvs&yc z&=&zEeX!QC=SngDI;h-l9m_U@ehW|nqw7@imkIqWe4QxzaV&iNi@x86$8$RVIjsk$ z@v5-xD8L;+X&m>z()m3q&&Ae#58--w^yMjik5Y)9&+zhe+5WT+fKQ2^K>D%j%-=ci zMU%-7D)XEKwhQ!ofRbEtcN)3HXV5hRi?$3>^uc(x8}#1-CB5#RM>0hFROh$Rw-=}7 zqQ=_`{{91$^a6MLS$nAd=;@!OjPGvt9q7LYO8w6@>Y8)h|KYl1&Gx(v?jd6gzQHt5jwcXP^~Fx-Z2F({Uxs z5RCjM@NhF=V~$2gggXGcu*I{<6II_dR;|SqmEK*F%5Ht3dyC!isVsi^vw;p1;GnH} zXV75W-)vhC>+T7K`$JqXgausyVU_|qpeDk}Fg#3UIS1aq zBPkh%cDX1Q;jqr8@5GL;?QwkVX8dlXqny(C_X~l-P*51A34_Z(S5D{e#?dyc6ydIH zg!vp5{H4ILmPk(+a)y4_tOvil)%+pM1Ybbn%W~+Jp25qpKKRn`I}`i>$>7sUCeR%Q zVcmIH7%XZcoXOvNP;bJ3)==t&9OGGre)YSd9@FuCkx#*g2m>_{&InJR_~Qn^J@|Vv z*wd`12ih6lyYRjc$OK&$=)pfZzT<|Ff-aZ;UWniQ$Zv$;YrQ||;f9H~A--rA zh2ncz+z@wYC~U