-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathKeystoneness_computing.R
91 lines (79 loc) · 3.78 KB
/
Keystoneness_computing.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
library(ggplot2)
library(scales)
library(ggpubr)
library(gridExtra)
library(ggExtra)
setwd("/Users/xu-wenwang/Dropbox/Projects/Keystone/code")
## read the data
species_id = read.table(file = paste('../data/Species_id.csv',sep = ''), header = F, sep=",")
sample_id = read.table(file = paste('../data/Sample_id.csv',sep = ''), header = F, sep=",")
Ptrain = read.table(file = paste('../data/Ptrain.csv',sep = ''), header = F, sep=",")
ptst = read.table(file = paste('../data/Ptest.csv',sep = ''), header = F, sep=",")
GCN_full = read.table(file = paste('../data/GCN.csv',sep = ''), header = F, sep=",")
GCN_full = as.matrix(GCN_full)
## read the prediction of cNODE2
qtst = read.table(file = paste('../results/qtst.csv',sep = ''), header = F, sep=",")
qtrn = read.table(file = paste('../results/qtrn.csv',sep = ''), header = F, sep=",")
## calculate keystoneness
keystone_predicted = c()
keystone_true = c()
function_predicted = c()
function_true = c()
for (i in 1:nrow(qtst)){
# predicted null composition
q_i = qtrn[sample_id$V1[i],]
q_i_null = q_i
q_i_null[species_id$V1[i]] = 0
q_i_null = q_i_null/sum(q_i_null)
# true null composition
p_i = Ptrain[,sample_id$V1[i]]
p_i_null = p_i
p_i_null[species_id$V1[i]] = 0
p_i_null = p_i_null/sum(p_i_null)
# impact to the community
BC_true=sum(abs(p_i_null-ptst[,i]))/sum(abs(p_i_null+ptst[,i]))
BC_pred=sum(abs(q_i_null-qtst[i,]))/sum(abs(q_i_null+qtst[i,]))
# structural keystoneness
keystone_predicted = c(keystone_predicted, BC_pred*as.numeric(1-Ptrain[species_id$V1[i],sample_id$V1[i]]))
keystone_true = c(keystone_true, BC_true*as.numeric(1-Ptrain[species_id$V1[i],sample_id$V1[i]]))
# functional keystoneness
f_before_true = as.numeric(p_i_null)%*%as.matrix(GCN_full)
f_before_pred = as.numeric(q_i_null)%*%as.matrix(GCN_full)
f_after_true = as.numeric(ptst[,i])%*%as.matrix(GCN_full)
f_after_pred = as.numeric(qtst[i,])%*%as.matrix(GCN_full)
f_before_true = f_before_true/sum(f_before_true)
f_before_pred = f_before_pred/sum(f_before_pred)
f_after_true = f_after_true/sum(f_after_true)
f_after_pred = f_after_pred/sum(f_after_pred)
BC_true = sum(abs(f_after_true-f_before_true))/sum(abs(f_after_true+f_before_true))
BC_pred = sum(abs(f_after_pred-f_before_pred))/sum(abs(f_after_pred+f_before_pred))
function_true = c(function_true, BC_true*(1-as.numeric(Ptrain[species_id$V1[i],sample_id$V1[i]])))
function_predicted = c(function_predicted, BC_pred*(1-as.numeric(Ptrain[species_id$V1[i],sample_id$V1[i]])))
}
keystoness = data.frame(str_pred=keystone_predicted,func_pred=function_predicted,str_true=keystone_true,func_true=function_true)
# figure
g1 = ggplot(keystoness, aes(x=str_true, y=str_pred)) +
geom_hex()+scale_fill_distiller(palette= "Spectral", direction=-1) +
geom_abline(intercept = 0, slope = 1,color="#d01c8b")+
scale_x_continuous(limits = c(0, 0.04), breaks = seq(0,0.04,by=0.02))+
scale_y_continuous(limits = c(0, 0.04), breaks = seq(0,0.04,by=0.02))+
stat_cor(p.accuracy = 0.001, r.accuracy = 0.01,method = "spearman",size=3,cor.coef.name="rho")+
xlab(expression(italic(K[s])~'(true)'))+ylab(expression(italic(K[s])~'(prediction)'))+
theme_bw()+
theme(
line = element_line(size = 0.5),
rect = element_rect(size = 0.5),
text = element_text(size = 8),
axis.text.x = element_text(size = 10,color = 'black'),
axis.text.y = element_text(size = 10,color = 'black'),
axis.title.x = element_text(size = 10),
axis.title.y = element_text(size = 10),
panel.grid.minor = element_blank(),
panel.grid.major.x = element_blank(),
panel.grid.major.y = element_blank(),
legend.title = element_blank(),
legend.position = 'none',
legend.box.background = element_rect(size = 0.2),
legend.key.size = unit(4, unit = 'mm'),
legend.text = element_text(size = 8)
)