-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mnist_conv
executable file
·243 lines (207 loc) · 6.69 KB
/
train_mnist_conv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#!/usr/bin/env python3
import os
import sys
import time
import random
import scipy.ndimage
import numpy as np
import tensorflow as tf
import tensorflow.examples.tutorials.mnist as tf_mnist
import loadsave
from utils import *
def dense(x, out_dim):
with tf.name_scope("dense"):
in_dim = np.prod([
1 if v is None else v
for v in x.shape.as_list()
])
x = tf.reshape(x, [-1, in_dim])
b = tf.Variable(tf.constant(0.1, shape = [out_dim]))
w = tf.Variable(tf.truncated_normal(
[in_dim, out_dim],
stddev = 0.1
))
return tf.matmul(x, w) + b
def conv(x, ksize, filters, stride = 1, padding = "SAME"):
with tf.name_scope("conv"):
in_channels = x.shape[-1].value
b = tf.Variable(tf.constant(0.1, shape = [filters]))
w = tf.Variable(tf.truncated_normal(
[ksize, ksize, in_channels, filters],
stddev = 0.1
))
return tf.nn.conv2d(
x, w,
strides = [1, stride, stride, 1],
padding = padding
) + b
def maxpool(x, size, padding = "SAME"):
with tf.name_scope("maxpool"):
return tf.nn.max_pool(
x,
ksize = [1, size, size, 1],
strides = [1, size, size, 1],
padding = padding
)
def trainable_parameters():
return sum([
np.prod(v.shape.as_list())
for v in tf.trainable_variables()
])
def create_layers(inp, layers):
params = trainable_parameters()
print_info(
"%30s Input: %d params"
% (inp.shape, params)
)
y = inp
for i in range(len(layers)):
with tf.name_scope("layer_%d" % (i+1)):
y = layers[i](y)
new_params = trainable_parameters() - params
print_info(
"%30s Layer %d: %d params"
% (y.shape, i+1, new_params)
)
params += new_params
return y
def create_model():
x = tf.placeholder(tf.float32, [None, 28, 28], name = "x")
t = tf.placeholder(tf.float32, [None, 10], name = "t")
dropout = tf.placeholder_with_default(0.0, [], name = "dropout")
layers = [
lambda l: tf.nn.relu(conv(l, 3, 32)),
lambda l: tf.nn.relu(conv(l, 3, 32)),
lambda l: tf.nn.dropout(l, 1.0 - dropout),
lambda l: maxpool(l, 2),
lambda l: tf.nn.relu(conv(l, 3, 64)),
lambda l: tf.nn.relu(conv(l, 3, 64)),
lambda l: tf.nn.dropout(l, 1.0 - dropout),
lambda l: maxpool(l, 2),
lambda l: tf.nn.relu(conv(l, 3, 64)),
lambda l: tf.nn.relu(conv(l, 3, 64)),
lambda l: tf.nn.dropout(l, 1.0 - dropout),
lambda l: maxpool(l, 2),
lambda l: tf.nn.relu(dense(l, 1024)),
lambda l: tf.nn.dropout(l, 1.0 - dropout),
lambda l: dense(l, 10)
]
x = tf.clip_by_value(x * 1.1 - 0.1, 0.0, 1.0)
x = tf.reshape(x, [-1, 28, 28, 1])
y = create_layers(x, layers)
correct = tf.equal(tf.argmax(y, 1), tf.argmax(t, 1))
correct = tf.cast(correct, tf.float32)
tf.cast(tf.reduce_sum(1.0 - correct), tf.int64, name = "mistakes")
tf.reduce_mean(correct, name = "accuracy")
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=t, logits=y),
name = "loss"
)
y = tf.nn.softmax(y, 1, name = "y")
global_step = tf.contrib.framework.get_or_create_global_step()
tf.train.AdamOptimizer(0.0001).minimize(
loss,
global_step = global_step,
name = "train"
)
def compute_stats(s, data):
accuracy, loss, mistakes = 0, 0, 0
for x, t in random_batches(data, 1000):
v = s.run(
[s.accuracy, s.loss, s.mistakes],
feed_dict = {s.x: x, s.t: t}
)
accuracy += v[0] * len(x)
loss += v[1] * len(x)
mistakes += v[2]
return {
"accuracy": accuracy / len(data[0]),
"loss": loss / len(data[0]),
"mistakes": mistakes,
"samples": len(data[0])
}
def format_stats(v):
return "%5.2f%% (%d/%d), loss=%f" % (
v["accuracy"] * 100.0,
v["samples"] - v["mistakes"],
v["samples"],
v["loss"]
)
def add_scar(i, size):
y = random.randrange(i.shape[0] - size + 1)
x = random.randrange(i.shape[1] - size + 1)
i[y:y+size,x:x+size] = 0.0
def augment_image(i):
i = i.reshape((28, 28)).copy()
add_scar(i, 3)
if np.random.rand() < 0.5:
add_scar(i, 4)
i = scipy.ndimage.rotate(
i, 20.0 * (np.random.rand() - 0.5),
reshape = False
)
if np.random.rand() < 0.2:
i = i * 3 - np.random.rand() * 2
if np.random.rand() < 0.1:
add_scar(i, 5)
return i
def augmented_batches(data, batch_size):
for b in random_batches(data, batch_size):
yield (np.array([augment_image(i) for i in b[0]]), b[1])
def train_batch(s, batch):
t = time.time()
s.run(
s.train,
feed_dict = {s.x: batch[0], s.t: batch[1], s.dropout: 0.5}
)
return time.time() - t
def train(s, train, valid, program):
epoch = 0
next_target = 0.99
while True:
epoch += 1
start_time = time.time()
calc_time = 0.0
for b in iterate_in_thread(augmented_batches(train, 100)):
calc_time += train_batch(s, b)
epoch_time = time.time() - start_time
s_train = compute_stats(s, next(augmented_batches(train, 5000)))
s_valid = compute_stats(s, valid)
stat = "epoch %-5d train: %s valid: %s" % (epoch,
format_stats(s_train), format_stats(s_valid))
time_stat = "[C+%.1fs/X+%.1fs/S+%.1fs]" % (
calc_time,
epoch_time - calc_time,
time.time() - start_time - epoch_time
)
print_info("%-30s %s" % (time_stat, stat))
accuracy = s_valid["accuracy"]
if accuracy >= next_target:
next_target = accuracy * 0.9 + 0.1
loadsave.save(s, sys.argv[1])
save_result(program, stat)
if accuracy >= 0.99985:
return
def run():
if len(sys.argv) < 2:
sys.stderr.write("\nUsage:\n\n");
sys.stderr.write("\ttrain_mnist_conv <output.model>\n\n")
sys.exit(1)
with open(sys.argv[0], "r") as f:
program = f.read()
mnist = tf_mnist.input_data.read_data_sets(
"__mnist__",
one_hot = True
)
with loadsave.load(sys.argv[1], create_model = create_model) as s:
print_info("Training model...")
train(
s,
(mnist.train.images.reshape((-1, 28, 28)),
mnist.train.labels),
(mnist.validation.images.reshape((-1, 28, 28)),
mnist.validation.labels),
program
)
if __name__ == "__main__":
run()