forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_ovdict.py
259 lines (205 loc) · 7.75 KB
/
test_ovdict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# -*- coding: utf-8 -*-
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
from collections.abc import Mapping
import numpy as np
import pytest
import openvino.opset13 as ops
from openvino import Core, CompiledModel, InferRequest, Model
from openvino import ConstOutput
from openvino.utils.data_helpers import OVDict
def _get_ovdict(
device,
input_shape=None,
data_type=np.float32,
input_names=None,
output_names=None,
multi_output=False,
direct_infer=False,
split_num=5,
):
# Create model
# If model is multi-output (multi_output=True), input_shape must match
# requirements of split operation.
# TODO OpenSource: refactor it to be more generic
if input_shape is None:
input_shape = [1, 20]
if input_names is None:
input_names = ["data_0"]
if output_names is None:
output_names = ["output_0"]
if multi_output:
assert isinstance(output_names, (list, tuple))
assert len(output_names) > 1
assert len(output_names) == split_num
param = ops.parameter(input_shape, data_type, name=input_names[0])
model = Model(
ops.split(param, 1, split_num) if multi_output else ops.abs(param), [param],
)
# Manually name outputs
for i in range(len(output_names)):
model.output(i).tensor.names = {output_names[i]}
# Compile model
core = Core()
compiled_model = core.compile_model(model, device)
# Create test data
input_data = np.random.random(input_shape).astype(data_type)
# Two ways of infering
if direct_infer:
result = compiled_model(input_data)
assert result is not None
return result, compiled_model
request = compiled_model.create_infer_request()
result = request.infer(input_data)
assert result is not None
return result, request
def _check_keys(keys, outs):
outs_iter = iter(outs)
for key in keys:
assert isinstance(key, ConstOutput)
assert key == next(outs_iter)
return True
def _check_values(result):
for value in result.values():
assert isinstance(value, np.ndarray)
return True
def _check_items(result, outs, output_names):
i = 0
for key, value in result.items():
assert isinstance(key, ConstOutput)
assert isinstance(value, np.ndarray)
# Check values
assert np.equal(result[outs[i]], result[key]).all()
assert np.equal(result[outs[i]], result[i]).all()
assert np.equal(result[outs[i]], result[output_names[i]]).all()
i += 1
return True
def _check_dict(result, obj, output_names=None):
if output_names is None:
output_names = ["output_0"]
outs = obj.model_outputs if isinstance(obj, InferRequest) else obj.outputs
assert len(outs) == len(result)
assert len(outs) == len(output_names)
# Check for __iter__
assert _check_keys(result, outs)
# Check for keys function
assert _check_keys(result.keys(), outs)
assert _check_values(result)
assert _check_items(result, outs, output_names)
assert all(output_names[i] in result.names()[i] for i in range(0, len(output_names)))
return True
@pytest.mark.parametrize("is_direct", [True, False])
def test_ovdict_assign(device, is_direct):
result, _ = _get_ovdict(device, multi_output=False, direct_infer=is_direct)
with pytest.raises(TypeError) as e:
result["some_name"] = 99
assert "'OVDict' object does not support item assignment" in str(e.value)
@pytest.mark.parametrize("is_direct", [True, False])
def test_ovdict_single_output_basic(device, is_direct):
result, obj = _get_ovdict(device, multi_output=False, direct_infer=is_direct)
assert isinstance(result, OVDict)
if isinstance(obj, (InferRequest, CompiledModel)):
assert _check_dict(result, obj)
else:
raise TypeError("Unknown `obj` type!")
@pytest.mark.parametrize("is_direct", [True, False])
def test_ovdict_wrong_key_type(device, is_direct):
result, _ = _get_ovdict(device, multi_output=False, direct_infer=is_direct)
with pytest.raises(TypeError) as e:
_ = result[2.0]
assert "Unknown key type: <class 'float'>" in str(e.value)
@pytest.mark.parametrize("is_direct", [True, False])
def test_ovdict_single_output_noname(device, is_direct):
result, obj = _get_ovdict(
device,
multi_output=False,
direct_infer=is_direct,
output_names=[],
)
assert isinstance(result, OVDict)
outs = obj.model_outputs if isinstance(obj, InferRequest) else obj.outputs
assert isinstance(result[outs[0]], np.ndarray)
assert isinstance(result[0], np.ndarray)
with pytest.raises(KeyError) as e0:
_ = result["some_name"]
assert "some_name" in str(e0.value)
# Check if returned names are tuple with one empty set
assert len(result.names()) == 1
assert result.names()[0] == set()
@pytest.mark.parametrize("is_direct", [True, False])
def test_ovdict_single_output_wrongname(device, is_direct):
result, obj = _get_ovdict(
device,
multi_output=False,
direct_infer=is_direct,
output_names=["output_21"],
)
assert isinstance(result, OVDict)
outs = obj.model_outputs if isinstance(obj, InferRequest) else obj.outputs
assert isinstance(result[outs[0]], np.ndarray)
assert isinstance(result[0], np.ndarray)
with pytest.raises(KeyError) as e:
_ = result["output_37"]
assert "output_37" in str(e.value)
with pytest.raises(KeyError) as e:
_ = result[6]
assert "6" in str(e.value)
@pytest.mark.parametrize("is_direct", [True, False])
@pytest.mark.parametrize("use_function", [True, False])
def test_ovdict_single_output_dict(device, is_direct, use_function):
result, obj = _get_ovdict(
device,
multi_output=False,
direct_infer=is_direct,
)
assert isinstance(result, OVDict)
outs = obj.model_outputs if isinstance(obj, InferRequest) else obj.outputs
native_dict = result.to_dict() if use_function else dict(result)
assert issubclass(type(native_dict), dict)
assert not isinstance(native_dict, OVDict)
assert isinstance(native_dict[outs[0]], np.ndarray)
with pytest.raises(KeyError) as e:
_ = native_dict["output_0"]
assert "output_0" in str(e.value)
with pytest.raises(KeyError) as e:
_ = native_dict[0]
assert "0" in str(e.value)
@pytest.mark.parametrize("is_direct", [True, False])
def test_ovdict_multi_output_basic(device, is_direct):
output_names = ["output_0", "output_1", "output_2", "output_3", "output_4"]
result, obj = _get_ovdict(
device,
multi_output=True,
direct_infer=is_direct,
output_names=output_names,
)
assert isinstance(result, OVDict)
if isinstance(obj, (InferRequest, CompiledModel)):
assert _check_dict(result, obj, output_names)
else:
raise TypeError("Unknown `obj` type!")
@pytest.mark.parametrize("is_direct", [True, False])
@pytest.mark.parametrize("use_function", [True, False])
def test_ovdict_multi_output_tuple0(device, is_direct, use_function):
output_names = ["output_0", "output_1"]
result, obj = _get_ovdict(
device,
input_shape=(1, 10),
multi_output=True,
direct_infer=is_direct,
split_num=2,
output_names=output_names,
)
out0, out1 = None, None
if use_function:
assert isinstance(result.to_tuple(), tuple)
out0, out1 = result.to_tuple()
else:
out0, out1 = result.values()
assert out0 is not None
assert out1 is not None
assert isinstance(out0, np.ndarray)
assert isinstance(out1, np.ndarray)
outs = obj.model_outputs if isinstance(obj, InferRequest) else obj.outputs
assert np.equal(result[outs[0]], out0).all()
assert np.equal(result[outs[1]], out1).all()