forked from stevenwudi/3DCNN_HMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChalearnLAPEvaluation.py
431 lines (340 loc) · 16.2 KB
/
ChalearnLAPEvaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
#-------------------------------------------------------------------------------
# Name: Chalearn LAP evaluation scripts
# Purpose: Provide evaluation scripts for Chalearn LAP challenge tracks
#
# Author: Xavier Baro
# Miguel Angel Bautista
#
# Created: 21/01/2014
# Copyright: (c) Chalearn LAP 2014
# Licence: GPL
#-------------------------------------------------------------------------------
import os
import zipfile
import shutil
import re
import csv
import numpy
from PIL import Image
def gesture_overlap_csv(csvpathgt, csvpathpred, seqlenght, begin_add, end_add):
""" Evaluate this sample agains the ground truth file """
maxGestures=20
# Get the list of gestures from the ground truth and frame activation
gtGestures = []
binvec_gt = numpy.zeros((maxGestures, seqlenght))
with open(csvpathgt, 'rb') as csvfilegt:
csvgt = csv.reader(csvfilegt)
for row in csvgt:
binvec_gt[int(row[0])-1, int(row[1])-1:int(row[2])-1] = 1
gtGestures.append(int(row[0]))
# Get the list of gestures from prediction and frame activation
predGestures = []
binvec_pred = numpy.zeros((maxGestures, seqlenght))
with open(csvpathpred, 'rb') as csvfilepred:
csvpred = csv.reader(csvfilepred)
for row in csvpred:
binvec_pred[int(row[0])-1, int(row[1])-1+begin_add:int(row[2])-1+end_add] = 1
predGestures.append(int(row[0]))
# Get the list of gestures without repetitions for ground truth and predicton
gtGestures = numpy.unique(gtGestures)
predGestures = numpy.unique(predGestures)
# Find false positives
falsePos=numpy.setdiff1d(gtGestures, numpy.union1d(gtGestures,predGestures))
# Get overlaps for each gesture
overlaps = []
for idx in gtGestures:
intersec = sum(binvec_gt[idx-1] * binvec_pred[idx-1])
aux = binvec_gt[idx-1] + binvec_pred[idx-1]
union = sum(aux > 0)
overlaps.append(intersec/union)
# Use real gestures and false positive gestures to calculate the final score
return sum(overlaps)/(len(overlaps)+len(falsePos))
def action_overlap_csv(csvpathgt, csvpathpred, seqlenght):
""" Evaluate this sample agains the ground truth file """
maxActions=11
# Get the list of gestures from the ground truth and frame activation
gtGestures = []
binvec_gt = numpy.zeros((maxActions, seqlenght))
with open(csvpathgt, 'rb') as csvfilegt:
csvgt = csv.reader(csvfilegt)
for row in csvgt:
binvec_gt[int(row[0])-1, int(row[1])-1:int(row[2])-1] = 1
gtGestures.append(int(row[0]))
# Get the list of gestures from prediction and frame activation
predGestures = []
binvec_pred = numpy.zeros((maxActions, seqlenght))
with open(csvpathpred, 'rb') as csvfilepred:
csvpred = csv.reader(csvfilepred)
for row in csvpred:
binvec_pred[int(row[0])-1, int(row[1])-1:int(row[2])-1] = 1
predGestures.append(int(row[0]))
# Get the list of gestures without repetitions for ground truth and predicton
gtGestures = numpy.unique(gtGestures)
predGestures = numpy.unique(predGestures)
# Find false positives
falsePos=numpy.setdiff1d(gtGestures, numpy.union1d(gtGestures,predGestures))
# Get overlaps for each gesture
overlaps = []
for idx in gtGestures:
intersec = sum(binvec_gt[idx-1] * binvec_pred[idx-1])
aux = binvec_gt[idx-1] + binvec_pred[idx-1]
union = sum(aux > 0)
overlaps.append(intersec/union)
# Use real gestures and false positive gestures to calculate the final score
return sum(overlaps)/(len(overlaps)+len(falsePos))
def overlap_images(gtimage, predimage):
""" this function computes the overlap between two binary images im1 and im2 """
gtimage=(numpy.array(gtimage)>127)*1
predimage=(numpy.array(predimage)>127)*1
intersec = numpy.bitwise_and(gtimage, predimage)
intersec_val = float(numpy.sum(intersec))
union = numpy.bitwise_or(gtimage, predimage)
union_val = float(numpy.sum(union))
if union_val == 0:
return 0
else:
if float(intersec_val / union_val)>0.5:
return 1
else:
return 0
def exportGT_Gesture(dataPath, outputPath):
""" Create Ground Truth folder. Open each file in the data path and copy labels and sample data to output path"""
# Check the given data path
if not os.path.exists(dataPath) or not os.path.isdir(dataPath):
raise Exception("Data path does not exist: " + dataPath)
# Check the output path
if os.path.exists(outputPath) and os.path.isdir(outputPath):
raise Exception("Output path already exists. Remove it before start: " + outputPath)
# Create the output path
os.makedirs(outputPath)
if not os.path.exists(outputPath) or not os.path.isdir(outputPath):
raise Exception("Cannot create the output path: " + outputPath)
# Get the list of samples
samplesList = os.listdir(dataPath)
# For each sample on the GT, search the given prediction
for sample in samplesList:
# Build paths for sample
sampleFile = os.path.join(dataPath, sample)
# Check that is a ZIP file
if not os.path.isfile(sampleFile) or not sample.lower().endswith(".zip"):
continue
# Prepare sample information
file = os.path.split(sampleFile)[1]
sampleID = os.path.splitext(file)[0]
samplePath = dataPath + os.path.sep + sampleID
# Unzip sample if it is necessary
if os.path.isdir(samplePath):
unziped = False
else:
unziped = True
zipFile = zipfile.ZipFile(sampleFile, "r")
zipFile.extractall(samplePath)
# Copy labels file
sampleDataPath = samplePath + os.path.sep + sampleID + '_data.csv'
if not os.path.exists(sampleDataPath):
raise Exception("Invalid sample file. Sample data is not available")
shutil.copyfile(sampleDataPath, outputPath + sampleID + '_data.csv')
# Copy Data file
srcSampleDataPath = samplePath + os.path.sep + sampleID + '_data.csv'
dstSampleDataPath = outputPath + os.path.sep + sampleID + '_data.csv'
if not os.path.exists(srcSampleDataPath) or not os.path.isfile(srcSampleDataPath):
raise Exception("Invalid sample file. Sample data is not available")
shutil.copyfile(srcSampleDataPath, dstSampleDataPath)
if not os.path.exists(dstSampleDataPath) or not os.path.isfile(dstSampleDataPath):
raise Exception("Cannot copy data file: " + srcSampleDataPath + "->" + dstSampleDataPath)
# Copy labels file
srcSampleLabelsPath = samplePath + os.path.sep + sampleID + '_labels.csv'
dstSampleLabelsPath = outputPath + os.path.sep + sampleID + '_labels.csv'
if not os.path.exists(srcSampleLabelsPath) or not os.path.isfile(srcSampleLabelsPath):
raise Exception("Invalid sample file. Sample labels is not available")
shutil.copyfile(srcSampleLabelsPath, dstSampleLabelsPath)
if not os.path.exists(dstSampleLabelsPath) or not os.path.isfile(dstSampleLabelsPath):
raise Exception("Cannot copy labels file: " + srcSampleLabelsPath + "->" + dstSampleLabelsPath)
# Remove temporal data
if unziped:
shutil.rmtree(samplePath)
def exportGT_Action(dataPath,outputPath):
""" Create Ground Truth folder. Open each file in the data path and copy labels and sample data to output path"""
# Check the given data path
if not os.path.exists(dataPath) or not os.path.isdir(dataPath):
raise Exception("Data path does not exist: " + dataPath)
# Check the output path
if os.path.exists(outputPath) or os.path.isdir(outputPath):
raise Exception("Output path already exists. Remove it before start: " + outputPath)
# Create the output path
os.makedirs(outputPath)
if not os.path.exists(outputPath) or not os.path.isdir(outputPath):
raise Exception("Cannot create the output path: " + outputPath)
# Get the list of samples
samplesList = os.listdir(dataPath)
# For each sample on the GT, search the given prediction
for sample in samplesList:
# Build paths for sample
sampleFile = os.path.join(dataPath, sample)
# Check that is a ZIP file
if not os.path.isfile(sampleFile) or not sample.lower().endswith(".zip"):
continue
# Prepare sample information
file=os.path.split(sampleFile)[1]
sampleID=os.path.splitext(file)[0]
samplePath=dataPath + os.path.sep + sampleID;
# Unzip sample if it is necessary
if os.path.isdir(samplePath):
unziped = False
else:
unziped = True
zipFile=zipfile.ZipFile(sampleFile,"r")
zipFile.extractall(samplePath)
# Copy Data file
srcSampleDataPath=samplePath + os.path.sep + sampleID + '_data.csv'
dstSampleDataPath=outputPath + os.path.sep + sampleID + '_data.csv'
if not os.path.exists(srcSampleDataPath) or not os.path.isfile(srcSampleDataPath):
raise Exception("Invalid sample file. Sample data is not available")
shutil.copyfile(srcSampleDataPath,dstSampleDataPath)
if not os.path.exists(dstSampleDataPath) or not os.path.isfile(dstSampleDataPath):
raise Exception("Cannot copy data file: " + srcSampleDataPath + "->" + dstSampleDataPath)
# Copy labels file
srcSampleLabelsPath=samplePath + os.path.sep + sampleID + '_labels.csv'
dstSampleLabelsPath=outputPath + os.path.sep + sampleID + '_labels.csv'
if not os.path.exists(srcSampleLabelsPath) or not os.path.isfile(srcSampleLabelsPath):
raise Exception("Invalid sample file. Sample labels is not available")
shutil.copyfile(srcSampleLabelsPath,dstSampleLabelsPath)
if not os.path.exists(dstSampleLabelsPath) or not os.path.isfile(dstSampleLabelsPath):
raise Exception("Cannot copy labels file: " + srcSampleLabelsPath + "->" + dstSampleLabelsPath)
# Remove temporal data
if unziped:
shutil.rmtree(samplePath)
def exportGT_Pose(dataPath,outputPath):
""" Create Ground Truth folder. Open each file in the data path and copy labels and sample data to output path"""
nactors=2;
nlimbs=14;
# Check the given data path
if not os.path.exists(dataPath) or not os.path.isdir(dataPath):
raise Exception("Data path does not exist: " + dataPath)
# Check the output path
if os.path.exists(outputPath) and os.path.isdir(outputPath):
raise Exception("Output path already exists. Remove it before start: " + outputPath)
# Create the output path
os.makedirs(outputPath)
if not os.path.exists(outputPath) or not os.path.isdir(outputPath):
raise Exception("Cannot create the output path: " + outputPath)
# Get the list of samples
samplesList = os.listdir(dataPath)
# For each sample on the GT, search the given prediction
for sample in samplesList:
# Build paths for sample
sampleFile = os.path.join(dataPath, sample)
# Check that is a ZIP file
if not os.path.isfile(sampleFile) or not sample.lower().endswith(".zip"):
continue
# Prepare sample information
file=os.path.split(sampleFile)[1]
sampleID=os.path.splitext(file)[0]
samplePath=dataPath + os.path.sep + sampleID;
# Unzip sample if it is necessary
if os.path.isdir(samplePath):
unziped = False
else:
unziped = True
zipFile=zipfile.ZipFile(sampleFile,"r")
zipFile.extractall(samplePath)
# Copy labels images
gtimages=os.listdir(samplePath+os.path.sep+'maskspng'+os.path.sep)
for img in gtimages:
srcSampleLabelsPath = samplePath + os.path.sep+'maskspng'+os.path.sep+ img
dstSampleLabelsPath = outputPath + os.path.sep + img
if not os.path.exists(srcSampleLabelsPath) or not os.path.isfile(srcSampleLabelsPath):
raise Exception("Invalid sequence file. Limb labels are not available")
shutil.copyfile(srcSampleLabelsPath,dstSampleLabelsPath)
if not os.path.exists(dstSampleLabelsPath) or not os.path.isfile(dstSampleLabelsPath):
raise Exception("Cannot copy limbs file: " + srcSampleLabelsPath + "->" + dstSampleLabelsPath)
# Remove temporal data
if unziped:
shutil.rmtree(samplePath)
def evalPose(prediction_dir, truth_dir):
""" Perform the overlap evaluation for a set of samples """
# Get the list images from the gt
gt_list = os.listdir(truth_dir)
score = 0.0
nevals = 0
for gtlimbimage in gt_list:
# Avoid double check, use only labels file
if not gtlimbimage.lower().endswith(".png"):
continue
# Build paths for prediction and ground truth files
aux = gtlimbimage.split('.')
parts = aux[0].split('_')
seqID = parts[0]
gtlimbimagepath = os.path.join(truth_dir, gtlimbimage)
predlimbimagepath= os.path.join(prediction_dir) + seqID+'_'+parts[1]+'_'+parts[2]+'_'+parts[3]+"_prediction.png"
#check predfile exists
if not os.path.exists(predlimbimagepath) or not os.path.isfile(predlimbimagepath):
score+=0
nevals+=1
else:
#Load images
gtimage = Image.open(gtlimbimagepath)
gtimage = gtimage.convert('L')
predimage = Image.open(predlimbimagepath)
predimage = predimage.convert('L')
if numpy.count_nonzero(gtimage) >= 1:
score += overlap_images(gtimage, predimage)
nevals += 1
#release videos and return mean overlap
return score/nevals
def evalAction(prediction_dir, truth_dir):
""" Perform the overlap evaluation for a set of samples """
worseVal=10000
# Get the list of samples from ground truth
gold_list = os.listdir(truth_dir)
# For each sample on the GT, search the given prediction
numSamples=0.0;
score=0.0;
for gold in gold_list:
# Avoid double check, use only labels file
if not gold.lower().endswith("_labels.csv"):
continue
# Build paths for prediction and ground truth files
sampleID=re.sub('\_labels.csv$', '', gold)
labelsFile = os.path.join(truth_dir, sampleID + "_labels.csv")
dataFile = os.path.join(truth_dir, sampleID + "_data.csv")
predFile = os.path.join(prediction_dir, sampleID + "_prediction.csv")
# Get the number of frames for this sample
with open(dataFile, 'rb') as csvfile:
filereader = csv.reader(csvfile, delimiter=',')
for row in filereader:
numFrames=int(row[0])
del filereader
# Get the score
numSamples+=1
score+=action_overlap_csv(labelsFile, predFile, numFrames)
return score/numSamples
def evalGesture(prediction_dir,truth_dir, begin_add=0, end_add=0):
""" Perform the overlap evaluation for a set of samples """
worseVal=10000
# Get the list of samples from ground truth
gold_list = os.listdir(truth_dir)
# For each sample on the GT, search the given prediction
numSamples=0.0;
score=0.0;
for gold in gold_list:
# Avoid double check, use only labels file
if not gold.lower().endswith("_labels.csv"):
continue
# Build paths for prediction and ground truth files
sampleID=re.sub('\_labels.csv$', '', gold)
labelsFile = os.path.join(truth_dir, sampleID + "_labels.csv")
dataFile = os.path.join(truth_dir, sampleID + "_data.csv")
predFile = os.path.join(prediction_dir, sampleID + "_prediction.csv")
# Get the number of frames for this sample
with open(dataFile, 'rb') as csvfile:
filereader = csv.reader(csvfile, delimiter=',')
for row in filereader:
numFrames=int(row[0])
del filereader
# Get the score
numSamples+=1
score_temp = gesture_overlap_csv(labelsFile, predFile, numFrames, begin_add, end_add)
print "Sample ID: %s, score %f" %(sampleID,score_temp)
score+=score_temp
return score/numSamples