forked from stevenwudi/3DCNN_HMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpumodel.py
332 lines (280 loc) · 13.6 KB
/
gpumodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# Copyright (c) 2011, Alex Krizhevsky ([email protected])
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as n
import os
from time import time, asctime, localtime, strftime
from numpy.random import randn, rand
from numpy import s_, dot, tile, zeros, ones, zeros_like, array, ones_like
from util import *
from data import *
from options import *
from math import ceil, floor, sqrt
from data import DataProvider, dp_types
import sys
import shutil
import platform
from os import linesep as NL
class ModelStateException(Exception):
pass
# GPU Model interface
class IGPUModel:
def __init__(self, model_name, op, load_dic, filename_options=None, dp_params={}):
# these are input parameters
self.model_name = model_name
self.op = op
self.options = op.options
self.load_dic = load_dic
self.filename_options = filename_options
self.dp_params = dp_params
self.get_gpus()
self.fill_excused_options()
#assert self.op.all_values_given()
for o in op.get_options_list():
setattr(self, o.name, o.value)
# these are things that the model must remember but they're not input parameters
if load_dic:
self.model_state = load_dic["model_state"]
self.save_file = self.options["load_file"].value
if not os.path.isdir(self.save_file):
self.save_file = os.path.dirname(self.save_file)
else:
self.model_state = {}
if filename_options is not None:
self.save_file = model_name + "_" + '_'.join(['%s_%s' % (char, self.options[opt].get_str_value()) for opt, char in filename_options]) + '_' + strftime('%Y-%m-%d_%H.%M.%S')
self.model_state["train_outputs"] = []
self.model_state["test_outputs"] = []
self.model_state["epoch"] = 1
self.model_state["batchnum"] = self.train_batch_range[0]
self.init_data_providers()
if load_dic:
self.train_data_provider.advance_batch()
# model state often requries knowledge of data provider, so it's initialized after
try:
self.init_model_state()
except ModelStateException, e:
print e
sys.exit(1)
for var, val in self.model_state.iteritems():
setattr(self, var, val)
self.import_model()
self.init_model_lib()
def import_model(self):
print "========================="
print "Importing %s C++ module" % ('_' + self.model_name)
self.libmodel = __import__('_' + self.model_name)
def fill_excused_options(self):
pass
def init_data_providers(self):
self.dp_params['convnet'] = self
try:
self.test_data_provider = DataProvider.get_instance(self.data_path, self.test_batch_range,
type=self.dp_type, dp_params=self.dp_params, test=True)
self.train_data_provider = DataProvider.get_instance(self.data_path, self.train_batch_range,
self.model_state["epoch"], self.model_state["batchnum"],
type=self.dp_type, dp_params=self.dp_params, test=False)
except DataProviderException, e:
print "Unable to create data provider: %s" % e
self.print_data_providers()
sys.exit()
def init_model_state(self):
pass
def init_model_lib(self):
pass
def start(self):
if self.test_only:
self.test_outputs += [self.get_test_error()]
self.print_test_results()
sys.exit(0)
self.train()
def train(self):
print "========================="
print "Training %s" % self.model_name
self.op.print_values()
print "========================="
self.print_model_state()
print "Running on CUDA device(s) %s" % ", ".join("%d" % d for d in self.device_ids)
print "Current time: %s" % asctime(localtime())
print "Saving checkpoints to %s" % os.path.join(self.save_path, self.save_file)
print "========================="
next_data = self.get_next_batch()
while self.epoch <= self.num_epochs:
data = next_data
self.epoch, self.batchnum = data[0], data[1]
self.print_iteration()
sys.stdout.flush()
compute_time_py = time()
self.start_batch(data)
# load the next batch while the current one is computing
next_data = self.get_next_batch()
batch_output = self.finish_batch()
self.train_outputs += [batch_output]
self.print_train_results()
if self.get_num_batches_done() % self.testing_freq == 0:
self.sync_with_host()
self.test_outputs += [self.get_test_error()]
self.print_test_results()
self.print_test_status()
self.conditional_save()
self.print_train_time(time() - compute_time_py)
self.cleanup()
def cleanup(self):
sys.exit(0)
def sync_with_host(self):
self.libmodel.syncWithHost()
def print_model_state(self):
pass
def get_num_batches_done(self):
return len(self.train_batch_range) * (self.epoch - 1) + self.batchnum - self.train_batch_range[0] + 1
def get_next_batch(self, train=True):
dp = self.train_data_provider
if not train:
dp = self.test_data_provider
return self.parse_batch_data(dp.get_next_batch(), train=train)
def parse_batch_data(self, batch_data, train=True):
return batch_data[0], batch_data[1], batch_data[2]['data']
def start_batch(self, batch_data, train=True):
self.libmodel.startBatch(batch_data[2], not train)
def finish_batch(self):
return self.libmodel.finishBatch()
def print_iteration(self):
print "\t%d.%d..." % (self.epoch, self.batchnum),
def print_train_time(self, compute_time_py):
print "(%.3f sec)" % (compute_time_py)
def print_train_results(self):
batch_error = self.train_outputs[-1][0]
if not (batch_error > 0 and batch_error < 2e20):
print "Crazy train error: %.6f" % batch_error
self.cleanup()
print "Train error: %.6f " % (batch_error),
def print_test_results(self):
batch_error = self.test_outputs[-1][0]
print "%s\t\tTest error: %.6f" % (NL, batch_error),
def print_test_status(self):
status = (len(self.test_outputs) == 1 or self.test_outputs[-1][0] < self.test_outputs[-2][0]) and "ok" or "WORSE"
print status,
def conditional_save(self):
batch_error = self.test_outputs[-1][0]
if batch_error > 0 and batch_error < self.max_test_err:
self.save_state()
else:
print "\tTest error > %g, not saving." % self.max_test_err,
def aggregate_test_outputs(self, test_outputs):
test_error = tuple([sum(t[r] for t in test_outputs) / (1 if self.test_one else len(self.test_batch_range)) for r in range(len(test_outputs[-1]))])
return test_error
def get_test_error(self):
next_data = self.get_next_batch(train=False)
test_outputs = []
while True:
data = next_data
self.start_batch(data, train=False)
load_next = not self.test_one and data[1] < self.test_batch_range[-1]
if load_next: # load next batch
next_data = self.get_next_batch(train=False)
test_outputs += [self.finish_batch()]
if self.test_only: # Print the individual batch results for safety
print "batch %d: %s" % (data[1], str(test_outputs[-1]))
if not load_next:
break
sys.stdout.flush()
return self.aggregate_test_outputs(test_outputs)
def set_var(self, var_name, var_val):
setattr(self, var_name, var_val)
self.model_state[var_name] = var_val
return var_val
def get_var(self, var_name):
return self.model_state[var_name]
def has_var(self, var_name):
return var_name in self.model_state
def save_state(self):
for att in self.model_state:
if hasattr(self, att):
self.model_state[att] = getattr(self, att)
dic = {"model_state": self.model_state,
"op": self.op}
checkpoint_dir = os.path.join(self.save_path, self.save_file)
checkpoint_file = "%d.%d" % (self.epoch, self.batchnum)
checkpoint_file_full_path = os.path.join(checkpoint_dir, checkpoint_file)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
pickle(checkpoint_file_full_path, dic,compress=self.zip_save)
for f in sorted(os.listdir(checkpoint_dir), key=alphanum_key):
if sum(os.path.getsize(os.path.join(checkpoint_dir, f2)) for f2 in os.listdir(checkpoint_dir)) > self.max_filesize_mb*1024*1024 and f != checkpoint_file:
os.remove(os.path.join(checkpoint_dir, f))
else:
break
@staticmethod
def load_checkpoint(load_dir):
if os.path.isdir(load_dir):
return unpickle(os.path.join(load_dir, sorted(os.listdir(load_dir), key=alphanum_key)[-1]))
return unpickle(load_dir)
@staticmethod
def get_options_parser():
op = OptionsParser()
op.add_option("f", "load_file", StringOptionParser, "Load file", default="", excuses=OptionsParser.EXCLUDE_ALL)
op.add_option("train-range", "train_batch_range", RangeOptionParser, "Data batch range: training")
op.add_option("test-range", "test_batch_range", RangeOptionParser, "Data batch range: testing")
op.add_option("data-provider", "dp_type", StringOptionParser, "Data provider", default="default")
op.add_option("test-freq", "testing_freq", IntegerOptionParser, "Testing frequency", default=25)
op.add_option("epochs", "num_epochs", IntegerOptionParser, "Number of epochs", default=500)
op.add_option("data-path", "data_path", StringOptionParser, "Data path")
op.add_option("save-path", "save_path", StringOptionParser, "Save path")
op.add_option("max-filesize", "max_filesize_mb", IntegerOptionParser, "Maximum save file size (MB)", default=5000)
op.add_option("max-test-err", "max_test_err", FloatOptionParser, "Maximum test error for saving")
op.add_option("num-gpus", "num_gpus", IntegerOptionParser, "Number of GPUs", default=1)
op.add_option("test-only", "test_only", BooleanOptionParser, "Test and quit?", default=0)
op.add_option("zip-save", "zip_save", BooleanOptionParser, "Compress checkpoints?", default=0)
op.add_option("test-one", "test_one", BooleanOptionParser, "Test on one batch at a time?", default=1)
op.add_option("gpu", "gpu", ListOptionParser(IntegerOptionParser), "GPU override", default=OptionExpression("[-1] * num_gpus"))
return op
@staticmethod
def print_data_providers():
print "Available data providers:"
for dp, desc in dp_types.iteritems():
print " %s: %s" % (dp, desc)
def get_gpus(self):
self.device_ids = [get_gpu_lock(g) for g in self.op.get_value('gpu')]
if GPU_LOCK_NO_LOCK in self.device_ids:
print "Not enough free GPUs!"
sys.exit()
@staticmethod
def parse_options(op):
try:
load_dic = None
options = op.parse()
if options["load_file"].value_given:
load_dic = IGPUModel.load_checkpoint(options["load_file"].value)
old_op = load_dic["op"]
old_op.merge_from(op)
op = old_op
op.eval_expr_defaults()
return op, load_dic
except OptionMissingException, e:
print e
op.print_usage()
except OptionException, e:
print e
except UnpickleError, e:
print "Error loading checkpoint:"
print e
sys.exit()