-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathidentify.py
328 lines (262 loc) · 12.8 KB
/
identify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# identify
# standard libraries
import json, logging, os
from datetime import datetime
from typing import Dict, Sequence
# third-party libraries
import numpy as np
import pandas as pd
from bs4 import BeautifulSoup
# local libraries
from compare import classify_by_format, \
create_compare_func, \
extract_extra_atoms, \
normalize, \
polish_isbn, \
normalize_univ, \
NA_PATTERN
from db_cache import make_request_using_cache, set_up_database
# Initialize settings and global variables
logger = logging.getLogger(__name__)
try:
with open(os.path.join('config', 'env.json')) as env_file:
ENV = json.loads(env_file.read())
except FileNotFoundError:
logger.error('Configuration file could not be found; please add env.json to the config directory.')
logging.basicConfig(level=ENV.get('LOG_LEVEL', 'DEBUG'))
# Set up database if necessary
if not os.path.isfile(os.path.join(*ENV['DB_CACHE_PATH'])):
set_up_database()
BOOKS_CSV_PATH_ELEMS = ENV['BOOKS_CSV_PATH']
worldcat_config = ENV['WORLDCAT']
WC_API_KEY = worldcat_config['WC_SEARCH_API_KEY']
WC_BIB_BASE_URL = worldcat_config['BIB_RESOURCE_BASE_URL']
TEST_MODE_OPTS = ENV['TEST_MODE']
with open(os.path.join('config', 'marcxml_lookup.json')) as lookup_file:
MARCXML_LOOKUP = json.loads(lookup_file.read())
with open(os.path.join('config', 'input_to_identify.json')) as input_to_identify_cw:
INPUT_TO_IDENTIFY_CW = json.loads(input_to_identify_cw.read())
with open(os.path.join('config', 'identify_to_output.json')) as identify_to_output_cw:
IDENTIFY_TO_OUTPUT_CW = json.loads(identify_to_output_cw.read())
# Functions - Utilities
def create_full_title(record: Dict[str, str]) -> str:
full_title = record['Title']
if 'Subtitle' in record.keys() and record["Subtitle"] not in ["N/A", ""]:
full_title += ' ' + record['Subtitle']
logger.debug('full_title: ' + full_title)
return full_title
def mint_wc_key_name(key: str, subfield: str, index: int, num_subs: int, num_states) -> str:
key_name = key
if num_subs > 1:
key_name += " " + subfield
if num_states > 1:
key_name += " " + str(index)
return key_name
# Explode groups of related columns from one row into separate dictionaries
def unflatten(book_record: Dict[str, str], column_prefixes: Sequence[str]) -> Sequence[Dict[str, str]]:
embedded_records = []
num = 1
more_records = True
while more_records:
if (f"{column_prefixes[0]} {num}") not in book_record.keys():
more_records = False
else:
embedded_record = {}
for column_prefix in column_prefixes:
embedded_record[column_prefix] = book_record[f"{column_prefix} {num}"]
# Drop null dictionaries
non_null_values = pd.Series(list(embedded_record.values())).dropna().to_list()
if len(non_null_values) > 0:
embedded_records.append(embedded_record)
num += 1
logger.debug(embedded_records)
return embedded_records
# Functions - Processing
def parse_marcxml(xml_record: str) -> Sequence[Dict[str, str]]:
result_xml = BeautifulSoup(xml_record, 'xml')
number_of_records = result_xml.find("numberOfRecords").text
if int(number_of_records) > 100:
logger.error(f'Number of records > 100: {number_of_records}')
records = result_xml.find_all("recordData")
record_dicts = []
for record in records:
record_dict = {}
for marc_key in MARCXML_LOOKUP:
marc_field = MARCXML_LOOKUP[marc_key]
statements = record.find_all('datafield', tag=marc_field['datafield'])
num = 0
for statement in statements:
num += 1
subfields = marc_field['subfields']
for subfield in subfields:
sub_statement = statement.find('subfield', code=subfield)
key_name = mint_wc_key_name(marc_key, subfield, num, len(subfields), len(statements))
if sub_statement and not NA_PATTERN.search(sub_statement.text):
record_dict[key_name] = sub_statement.text
else:
record_dict[key_name] = pd.NA
if num > 1 and marc_key != 'ISBN':
logger.warning(f'Multiple values found for {marc_key}!')
logger.warning(record_dict)
logger.debug(record_dict)
record_dicts.append(record_dict)
return record_dicts
# Use the Bibliographic Resource tool to search for records and parse the returned MARC XML
def look_up_book_in_worldcat(book_dict: Dict[str, str]) -> pd.DataFrame:
# Generate query string
full_title = create_full_title(book_dict)
logger.info(f'Looking for "{full_title}" in WorldCat...')
# Data currently has one author last name; otherwise I'd do what's commented below or process one-to-many relationship
# query_author = normalize(f"{book_dict['Author_First']} {book_dict['Author_Last']})
# Replacing apostrophe because they are breaking query strings when they occur
query_author = book_dict['Author_Last'].replace("'", " ")
query_title = normalize(full_title)
query_str = f'srw.ti all "{query_title}" and srw.au all "{query_author}"'
logger.debug(query_str)
params = {
'wskey': WC_API_KEY,
"query": query_str,
"maximumRecords": 100,
'frbrGrouping': 'off'
}
result = make_request_using_cache(WC_BIB_BASE_URL, params)
if not result:
return pd.DataFrame({})
records = parse_marcxml(result)
records_df = pd.DataFrame(records)
logger.info(f'Number of WorldCat records found: {len(records_df)}')
logger.debug(records_df.head(10))
return records_df
def run_checks_and_return_matches(orig_record: Dict[str, str], results_df: pd.DataFrame) -> pd.DataFrame:
checked_df = results_df.copy()
logger.debug(orig_record)
logger.debug(checked_df)
if checked_df.empty:
return pd.DataFrame({})
# Create comparison functions
full_title = create_full_title(orig_record)
compare_to_title = create_compare_func([full_title], 85)
known_publishers = []
for pub_dict in unflatten(orig_record, ['Publisher']):
if pd.notna(pub_dict['Publisher']):
known_publishers.append(pub_dict['Publisher'])
logger.debug(known_publishers)
compare_to_publisher = create_compare_func(known_publishers, 85, [normalize_univ])
# Create full title column
checked_df['Full_Title'] = checked_df['Title'] + checked_df['Subtitle']
logger.debug(checked_df['Full_Title'])
# Run comparisons
checked_df['Title_Match'] = checked_df['Full_Title'].map(compare_to_title, na_action='ignore')
checked_df['Publisher_Match'] = checked_df['Publisher'].map(compare_to_publisher, na_action='ignore')
logger.info(checked_df[['Title', 'Publisher', 'Title_Match', 'Publisher_Match']])
# Gather matching manifestation records
manifest_df = checked_df.loc[(
(checked_df['Title_Match']) & (checked_df['Publisher_Match'])
)]
logger.info(f'Matched {len(manifest_df)} records!')
logger.info(manifest_df.head(20))
return manifest_df
# Determines format for a row on multiple analyzed columns
def determine_format(row: pd.Series):
results = row[['Q Format', 'Overflow Format']].drop_duplicates().dropna()
results = [result for result in results if result != "#NA#"]
if len(results) > 1:
logger.warning('Different formats were found ')
logger.warning(results)
elif len(results) < 1:
return pd.NA
else:
return results[0]
def classify_and_find_unique_manifests(orig_record: Dict[str, str], matches_df: pd.DataFrame):
if matches_df.empty:
return pd.DataFrame({})
all_isbn_dicts = []
for match_row_tup in matches_df.iterrows():
match_dict = match_row_tup[1].to_dict()
isbn_dicts = unflatten(match_dict, ['ISBN a', 'ISBN q'])
all_isbn_dicts += isbn_dicts
all_isbns_df = pd.DataFrame(all_isbn_dicts)
if all_isbns_df.empty:
return pd.DataFrame({})
logger.debug(all_isbns_df.columns)
# Transform and analyze
all_isbns_df['ISBN'] = all_isbns_df['ISBN a'].map(polish_isbn, na_action='ignore')
all_isbns_df['ISBN Overflow'] = all_isbns_df['ISBN a'].map(extract_extra_atoms, na_action='ignore')
unique_isbn_format_df = all_isbns_df.copy()
# Save unique ISBNS for later analysis
unique_isbns = unique_isbn_format_df['ISBN'].drop_duplicates()
unique_isbn_format_df = all_isbns_df.fillna('#NA#').drop_duplicates()
unique_isbn_format_df['Q Format'] = all_isbns_df['ISBN q'].map(classify_by_format, na_action='ignore').fillna('#NA#')
unique_isbn_format_df['Overflow Format'] = unique_isbn_format_df['ISBN Overflow'].map(classify_by_format, na_action='ignore').fillna('#NA#')
unique_isbn_format_df['Format'] = unique_isbn_format_df.apply(determine_format, axis='columns').fillna('#NA#')
unique_isbn_format_df = unique_isbn_format_df.drop_duplicates(subset=['ISBN', 'Format'])
unique_isbn_format_df = unique_isbn_format_df.where(unique_isbn_format_df != '#NA#', pd.NA)
complete_isbn_format_df = unique_isbn_format_df.copy().dropna(axis='index', subset=['ISBN', 'Format'])
for isbn_format_row_tup in unique_isbn_format_df.iterrows():
isbn_format_series = isbn_format_row_tup[1]
if isbn_format_series['ISBN'] in unique_isbns and isbn_format_series['Format'] == pd.NA:
complete_isbn_format_df = complete_isbn_format_df.append(isbn_format_series)
logger.info("ISBN without format was added!")
logger.info(isbn_format_series)
logger.debug(complete_isbn_format_df.head(15))
complete_isbn_format_df = complete_isbn_format_df.drop(columns=['ISBN a', 'ISBN q', 'ISBN Overflow', 'Overflow Format', 'Q Format'])
complete_isbn_format_df = complete_isbn_format_df.assign(**{'Source': 'WorldCat'})
# Add Full_Title and HEB ID from HEB
complete_isbn_format_df = complete_isbn_format_df.assign(**{
'HEB_ID': orig_record['ID'],
'HEB_Title': orig_record['Title'],
'Source': 'WorldCat'
})
logger.info(complete_isbn_format_df)
return complete_isbn_format_df
def identify_books() -> None:
# Load input data
input_path = os.path.join(*BOOKS_CSV_PATH_ELEMS)
if '.xlsx' in BOOKS_CSV_PATH_ELEMS[-1]:
press_books_df = pd.read_excel(input_path, dtype=str)
press_books_df = press_books_df.iloc[1:] # Remove dummy record
else:
press_books_df = pd.read_csv(input_path, dtype=str)
# Crosswalk to consistent column names
press_books_df = press_books_df.rename(columns=INPUT_TO_IDENTIFY_CW)
logger.debug(press_books_df.columns)
# Limit number of records for testing purposes
if TEST_MODE_OPTS['ON']:
logger.info('TEST_MODE is ON.')
press_books_df = press_books_df.iloc[:TEST_MODE_OPTS['NUM_RECORDS']]
# For each record, fetch WorldCat data, compare to record, analyze and accumulate matches
match_manifest_df = pd.DataFrame({})
non_matching_books = []
num_books_with_matches = 0
for press_book_row_tup in press_books_df.iterrows():
new_book_dict = press_book_row_tup[1].to_dict()
logger.info(new_book_dict)
wc_records_df = look_up_book_in_worldcat(new_book_dict)
new_matches_df = run_checks_and_return_matches(new_book_dict, wc_records_df)
unique_manifests_df = classify_and_find_unique_manifests(new_book_dict, new_matches_df)
if unique_manifests_df.empty:
logger.warning(f'No matching records with ISBNs were found!')
non_matching_books.append(new_book_dict)
else:
num_books_with_matches += 1
match_manifest_df = match_manifest_df.append(unique_manifests_df)
isbns = unique_manifests_df['ISBN'].drop_duplicates().to_list()
logger.info(f'Book successfully matched with record(s) with {len(isbns)} unique ISBN(s): {isbns}')
logger.debug('Matching Manifests')
logger.debug(match_manifest_df.describe())
# Generate CSV output
if not match_manifest_df.empty:
match_manifest_df.to_csv(os.path.join('data', 'matched_manifests.csv'), index=False)
if non_matching_books:
no_isbn_matches_df = pd.DataFrame(non_matching_books)
no_isbn_matches_df.to_csv(os.path.join('data', 'no_isbn_matches.csv'), index=False)
# Log Summary Report
report_str = '** Summary Report from identify.py **\n\n'
report_str += f'-- Total number of books included in search: {len(press_books_df)}\n'
report_str += f'-- Number of books successfully matched with records with ISBNs: {num_books_with_matches}\n'
report_str += f'-- Number of books with no matching records: {len(non_matching_books)}\n'
logger.info(f'\n\n{report_str}')
return None
# Main Program
if __name__ == '__main__':
identify_books()