-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgps.py
249 lines (189 loc) · 9.28 KB
/
gps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
'''
Copyright 2020 The Board of Trustees of The Leland Stanford Junior University
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
import pandas as pd
import db_dtypes
import math
import configparser
import sys
from google.cloud import bigquery
from src.BQ_interaction import *
from src.build_features import *
from src.data_features import *
from src.format_lzr import *
from src.get_predictions_algorithm import *
from src.predictive_patterns_algorithm import *
from src.scanning_plan import *
###################################################
#GPS: Predicting first or remaining services?
###################################################
def error_mes():
print("------Command line parsing failed!")
print("------Expecting one of the following command line arguments:")
print("------'first': predict first service across hosts (phase 1)")
print("------or")
print("------'remaining': predict all remaining services (phase 2)")
print("------Aborting.")
sys.exit()
if len(sys.argv) != 2:
error_mes()
gps_part = sys.argv[1]
if gps_part not in ['first','remaining']:
error_mes()
GPS_PART1 = False
if gps_part == 'first':
GPS_PART1 = True
###################################################
#Read Config
###################################################
config = configparser.ConfigParser()
config.read('config.ini')
BQ_RESOURCE_PROJECT = config['BigQuery']['BQ_Resource_Project']
BQ_DATASET = config['BigQuery']['BQ_Dataset']
SEED_TABLE = config['BigQuery']['Seed_Table']
DATAPATH = config['GPS']['Datapath']
HITRATE= config['GPS']['Hitrate']
STEP_SIZE=config['GPS']['Step_Size']
PRE_FILT_SEED=eval(config['GPS']['Pre_Filt_Seed'])
PRE_FILT_PRIORS=eval(config['GPS']['Pre_Filt_Priors'])
useASN = eval(config['Features']['UseASN'])
###################################################
#Begin GPS Algorithm
###################################################
BQ_CLIENT = bigquery.Client(project=BQ_RESOURCE_PROJECT)
print('Authenticated')
#**************************************************
#********GPS variables
#**************************************************
FILT_TABLE = SEED_TABLE + '-formatted'
PRED_PATTERNS_TABLE = SEED_TABLE + "-predictivepatterns"
PRIORS_SCAN_TABLE = SEED_TABLE + "-priors"
SCANNING_PLAN_TABLE = SEED_TABLE + "-scanningplan"
PRIORS_SCAN_FILT_TABLE = PRIORS_SCAN_TABLE + "-formatted"
PRED_RESULTS_TABLE = SEED_TABLE + "-predictionresults"
SCANNING_PLAN=DATAPATH+"priors_scan_"
#**************************************************
#********Format Uploaded Scan (Assuming its a LZR scan)
#**************************************************
if not PRE_FILT_SEED:
if GPS_PART1:
print("------optionally formating lzr scan...")
print("------saving to BQ table " + FILT_TABLE)
FORMAT_LZR_QUERY = GPS_BANNER_FORMAT_LZR + FORMAT_LZR
FORMAT_LZR_QUERY = FORMAT_LZR_QUERY.format(project=BQ_RESOURCE_PROJECT,\
dataset=BQ_DATASET,\
table=SEED_TABLE)
run_bq_query(FORMAT_LZR_QUERY,BQ_RESOURCE_PROJECT,\
BQ_DATASET, FILT_TABLE)
print("------done w/ BigQuery.")
else:
FILT_TABLE = SEED_TABLE
#**************************************************
#********Extract features and build predictive patterns table
#**************************************************
if GPS_PART1:
print("------extracting features and building predictive patterns table...")
print("------saving to BQ table " + PRED_PATTERNS_TABLE)
PREDICTIVE_PATTERNS_QUERY = WITH + GPS_BANNER_PRED_PATTERNS + \
buildDataFeatures(FEATURES) + \
buildSpatialFeatures(startSlash=16, endSlash=23, L4 = True, ASN = useASN)+\
buildCrossJoinFeatures(slashes = [16],ASN = useASN) +\
PREDICTIVE_PATTERNS_ALGORITHM
PREDICTIVE_PATTERNS_QUERY = PREDICTIVE_PATTERNS_QUERY.format(project=BQ_RESOURCE_PROJECT,\
dataset=BQ_DATASET,\
table=FILT_TABLE,\
hitrate=HITRATE)
run_bq_query(PREDICTIVE_PATTERNS_QUERY,BQ_RESOURCE_PROJECT,\
BQ_DATASET, PRED_PATTERNS_TABLE)
print("------done w/ BigQuery.")
#**************************************************
#********Generate scanning plan
#********can try out different ones to see which fits bandwidth budget
#**************************************************
if GPS_PART1:
for STEP in [STEP_SIZE]:
SCANNING_PLAN_CSV = SCANNING_PLAN+str(STEP)+".csv"
print("------building priors scanning plan to predict first service across all IPs...")
print("------saving locally at "+ SCANNING_PLAN_CSV)
GET_PRIORS_SCAN_QUERY = buildScanningPlan(project=BQ_RESOURCE_PROJECT,\
dataset=BQ_DATASET,\
table=PRED_PATTERNS_TABLE,\
hitrate=HITRATE, \
STEP=STEP)
GET_PRIORS_SCAN_QUERY = GPS_BANNER_GET_PRIORS + GET_PRIORS_SCAN_QUERY
scanning_plan_df = run_bq_query(GET_PRIORS_SCAN_QUERY,BQ_RESOURCE_PROJECT,\
BQ_DATASET, SCANNING_PLAN_TABLE, SAVE=True)
print("------done w/ BigQuery.")
scanning_plan_df.to_csv(SCANNING_PLAN_CSV, index=False, header=False)
print("Here is a snippet of the scanning plan: ")
print(scanning_plan_df)
print("Packets that will be sent: ", calcBandwidthNeeded(scanning_plan_df,STEP))
#**************************************************
#********Run scanning plan scan
#**************************************************
if GPS_PART1:
print("------Internet scan all the services in the scanning plan list")
#upload scanning plan scan to big query under the PRED_PATTERNS_TABLE name
print("------Then upload the results of the scan under the following table name: "+\
PRIORS_SCAN_TABLE )
print("------Using the following bash command: ")
print("------bq load --source_format NEWLINE_DELIMITED_JSON --autodetect "+
BQ_RESOURCE_PROJECT+"."+BQ_DATASET+"."+ PRIORS_SCAN_TABLE+ " data.json")
print("------Once scanning plan is executed and uploaded to BQ, run:")
print("------python gps.py remaining")
sys.exit()
#**************************************************
#********Format priors scan
#**************************************************
if not PRE_FILT_PRIORS:
if not GPS_PART1:
print("------optionally formating lzr scan...")
print("------saving to BQ table " + PRIORS_SCAN_FILT_TABLE)
FORMAT_LZR_QUERY = GPS_BANNER_FORMAT_LZR + FORMAT_LZR
FORMAT_LZR_QUERY = FORMAT_LZR_QUERY.format(project=BQ_RESOURCE_PROJECT,\
dataset=BQ_DATASET,\
table=PRIORS_SCAN_TABLE)
run_bq_query(FORMAT_LZR_QUERY,BQ_RESOURCE_PROJECT,\
BQ_DATASET, PRIORS_SCAN_FILT_TABLE)
print("------done w/ BigQuery.")
else:
PRIORS_SCAN_FILT_TABLE=PRIORS_SCAN_TABLE
#**************************************************
#********Get final predictions
#**************************************************
if not GPS_PART1:
print("------Building final predictions")
print("------saving to BQ table " + PRED_RESULTS_TABLE)
GET_PREDICTIONS_QUERY = WITH + buildDataFeatures(FEATURES) + \
buildSpatialFeatures(startSlash=16, endSlash=23, L4 = True, ASN = True)+\
buildCrossJoinFeatures(slashes = [16],ASN = True) +\
GET_PREDICTIONS_ALGORITHM
GET_PREDICTIONS_QUERY = GPS_BANNER_GET_PREDICTIONS + GET_PREDICTIONS_QUERY
GET_PREDICTIONS_QUERY = GET_PREDICTIONS_QUERY.format(project=BQ_RESOURCE_PROJECT,\
dataset=BQ_DATASET,\
table=PRIORS_SCAN_FILT_TABLE,\
step=STEP_SIZE,\
pred_table=PRED_PATTERNS_TABLE,\
seed_table=FILT_TABLE,\
prior_table=SCANNING_PLAN_TABLE)
#saving the results to a destination table b/c the list is going to be large
run_bq_query(GET_PREDICTIONS_QUERY,BQ_RESOURCE_PROJECT,\
BQ_DATASET, PRED_RESULTS_TABLE)
print("------done w/ BigQuery.")
print("------To download run two commands:")
print("------bq extract --destination_format CSV --field_delimeter , " +\
"--print_header=false " + BQ_RESOURCE_PROJECT+"."+BQ_DATASET+"."+ \
PRED_RESULTS_TABLE + "gs://bucket/filename.csv")
print("------gsutil cp gs://bucket/filename.csv " + DATAPATH )
print("------Then Internet scan all the services in the prediction results list")
print("!!!!!!Remember to eventually delete the generated GPS tables from BigQuery!!!!!!")
sys.exit()