-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathprometeo_cfl.hpp
192 lines (178 loc) · 8.81 KB
/
prometeo_cfl.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// Copyright (c) "2019, by Stanford University
// Developer: Mario Di Renzo
// Affiliation: Center for Turbulence Research, Stanford University
// URL: https://ctr.stanford.edu
// Citation: Di Renzo, M., Lin, F., and Urzay, J. (2020).
// HTR solver: An open-source exascale-oriented task-based
// multi-GPU high-order code for hypersonic aerothermodynamics.
// Computer Physics Communications 255, 107262"
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef __PROMETEO_CFL_HPP__
#define __PROMETEO_CFL_HPP__
#include "legion.h"
using namespace Legion;
//-----------------------------------------------------------------------------
// LOAD PROMETEO UTILITIES AND MODULES
//-----------------------------------------------------------------------------
#include "task_helper.hpp"
#include "PointDomain_helper.hpp"
#include "prometeo_types.h"
#include "prometeo_cfl.h"
//-----------------------------------------------------------------------------
// TASK THAT COMPUTES THE CFL NUMBER
//-----------------------------------------------------------------------------
#ifndef __CUDACC__
using std::max;
using std::min;
#endif
class CalculateMaxSpectralRadiusTask {
public:
struct Args {
uint64_t arg_mask[1];
LogicalRegion Fluid;
Mix mix;
FieldID Fluid_fields [FID_last - 101];
};
public:
static const char * const TASK_NAME;
static const int TASK_ID;
static const bool CPU_BASE_LEAF = true;
static const bool GPU_BASE_LEAF = true;
static const int MAPPER_ID = 0;
private:
__CUDA_H__
static inline double CalculateConvectiveSpectralRadius(const Vec3 &velocity,
const double SoS,
const double dcsi,
const double deta,
const double dzet) {
double r = (fabs(velocity[0]) + SoS)*dcsi;
r = max(r, (fabs(velocity[1]) + SoS)*deta);
r = max(r, (fabs(velocity[2]) + SoS)*dzet);
return r;
};
__CUDA_H__
static inline double CalculateViscousSpectralRadius(const double rho,
const double mu,
const double dcsi,
const double deta,
const double dzet) {
const double nu = mu/rho;
double r = nu*dcsi*dcsi;
r = max(r, nu*deta*deta);
r = max(r, nu*dzet*dzet);
r *= 4;
return r;
};
__CUDA_H__
static inline double CalculateHeatConductionSpectralRadius(const double temperature,
const VecNSp &MassFracs,
const double rho,
const double lam,
const double dcsi,
const double deta,
const double dzet,
const Mix &mix) {
const double cp = mix.GetHeatCapacity(temperature, MassFracs);
const double DifT = lam/(cp*rho);
double r = DifT*dcsi*dcsi;
r = max(r, DifT*deta*deta);
r = max(r, DifT*dzet*dzet);
r *= 4;
return r;
};
__CUDA_H__
static inline double CalculateSpeciesDiffusionSpectralRadius(const VecNSp &Di,
const double dcsi,
const double deta,
const double dzet) {
double r = 0.0; // Spectral radius cannot be lower than 0
for (int s = 0; s < nSpec; s++) {
r = max(r, Di[s]*dcsi*dcsi);
r = max(r, Di[s]*deta*deta);
r = max(r, Di[s]*dzet*dzet);
}
r *= 4;
return r;
};
#if (defined(ELECTRIC_FIELD) && (nIons > 0))
__CUDA_H__
static inline double CalculateSpeciesDriftSpectralRadius(const Vec3 &eField,
const VecNIo &Ki,
const double dcsi,
const double deta,
const double dzet) {
double r = fabs(eField[0])*dcsi;
r = max(r, fabs(eField[1])*deta);
r = max(r, fabs(eField[2])*dzet);
// Compute the maximum electric mobility
double Kimax = 0.0;
__UNROLL__
for (int i = 0; i < nIons; i++)
Kimax = max(Kimax, Ki[i]);
r *= Kimax;
return r;
};
#endif
public:
__CUDA_H__
static inline double CalculateMaxSpectralRadius(const AccessorRO<double, 3> &dcsi,
const AccessorRO<double, 3> &deta,
const AccessorRO<double, 3> &dzet,
const AccessorRO<double, 3> &temperature,
const AccessorRO<VecNSp, 3> &MassFracs,
const AccessorRO< Vec3, 3> &velocity,
const AccessorRO<double, 3> &rho,
const AccessorRO<double, 3> &mu,
const AccessorRO<double, 3> &lam,
const AccessorRO<VecNSp, 3> &Di,
const AccessorRO<double, 3> &SoS,
#if (defined(ELECTRIC_FIELD) && (nIons > 0))
const AccessorRO<VecNIo, 3> &Ki,
const AccessorRO< Vec3, 3> &eField,
#endif
const Point<3> &p,
const Mix &mix) {
double r = CalculateConvectiveSpectralRadius(velocity[p], SoS[p], dcsi[p], deta[p], dzet[p]);
r = max(r, CalculateViscousSpectralRadius(rho[p], mu[p], dcsi[p], deta[p], dzet[p]));
r = max(r, CalculateHeatConductionSpectralRadius(temperature[p], MassFracs[p],
rho[p], lam[p],
dcsi[p], deta[p], dzet[p], mix));
r = max(r, CalculateSpeciesDiffusionSpectralRadius(Di[p], dcsi[p], deta[p], dzet[p]));
#if (defined(ELECTRIC_FIELD) && (nIons > 0))
r = max(r, CalculateSpeciesDriftSpectralRadius(eField[p], Ki[p], dcsi[p], deta[p], dzet[p]));
#endif
return r;
}
public:
static double cpu_base_impl(const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime);
#ifdef LEGION_USE_CUDA
static DeferredValue<double> gpu_base_impl(const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime);
#endif
};
#endif // __PROMETEO_CFL_HPP__