forked from robjhyndman/ETC3550Slides
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2-tsgraphics.Rmd
599 lines (423 loc) · 14.3 KB
/
2-tsgraphics.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
---
title: "ETC3550: Applied forecasting for business and economics"
author: "Ch2. Time series graphics"
date: "OTexts.org/fpp2/"
fontsize: 14pt
output:
beamer_presentation:
fig_width: 7
fig_height: 3.5
highlight: tango
theme: metropolis
includes:
in_header: header.tex
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, cache=TRUE)
library(fpp2)
options(width=50)
```
# Time series in R
## `ts` objects and `ts` function
\fontsize{12}{13}\sf
A time series is stored in a `ts` object in R:
- a list of numbers
- information about times those numbers were recorded.
### Example
```{r tstable, echo=FALSE, cache=TRUE}
x <- c(123,39,78,52,110)
yr <- 2012:2016
knitr::kable(data.frame(Year=yr,Observation=x), booktabs=TRUE)
```
```r
y <- ts(c(123,39,78,52,110), start=2012)
```
## `ts` objects and `ts` function
For observations that are more frequent than once per year, add a `frequency` argument.
E.g., monthly data stored as a numerical vector `z`:
```r
y <- ts(z, frequency=12, start=c(2003, 1))
```
## `ts` objects and `ts` function
### `ts(data, frequency, start)`
\begin{tabular}{lrl}
\bf Type of data & \hspace*{1.95cm}\bf frequency & \bf start example\hspace*{0.25cm} \\
\midrule
Annual & \only<2->{1} & \only<3->{1995}\\
Quarterly & \only<4->{4} & \only<5->{c(1995,2)}\\
Monthly & \only<6->{12} & \only<7->{c(1995,9)}\\
Daily & \only<8->{7 \emph{or} 365.25} & \only<9->{1 \emph{or} c(1995,234)} \\
Weekly & \only<10->{52.18} & \only<11->{c(1995,23)}\\
Hourly & \only<12->{24 \emph{or} 168 \emph{or} 8,766} & \only<13->{1}\\
Half-hourly & \only<14->{48 \emph{or} 336 \emph{or} 17,532} & \only<15>{1}
\end{tabular}
## Australian GDP
\fontsize{12}{14}\sf
```
ausgdp <- ts(x, frequency=4, start=c(1971,3))
```
* Class: "ts"
* Print and plotting methods available.
```{r, echo=TRUE}
ausgdp
```
## Australian GDP
```{r, echo=TRUE, fig.height=4}
autoplot(ausgdp)
```
## Residential electricity sales
\fontsize{12}{14}\sf
```{r}
elecsales
```
## Class package
```
> library(fpp2)
```
\pause
This loads:
* some data for use in examples and exercises\pause
* **forecast** package (for forecasting functions)
* **ggplot2** package (for graphics functions)
* **fma** package (for lots of time series data)
* **expsmooth** package (for more time series data)
# Time plots
## Time plots
\small
```{r, echo=TRUE, fig.height=4}
autoplot(melsyd[,"Economy.Class"])
```
## Time plots
\small
```{r a10, echo=TRUE}
autoplot(a10) + ylab("$ million") + xlab("Year") +
ggtitle("Antidiabetic drug sales")
```
## Your turn
- Create plots of the following time series: `dole`, `bricksq`, `lynx`, `goog`
- Use `help()` to find out about the data in each series.
- For the last plot, modify the axis labels and title.
## Are time plots best?
\fontsize{12}{14}\sf
```{r maxtemp}
autoplot(elecdaily[,"Temperature"]) +
xlab("Week") + ylab("Max temperature")
```
## Are time plots best?
\fontsize{12}{14}\sf
```{r maxtemp2, warning=FALSE, message=FALSE}
qplot(time(elecdaily), elecdaily[,"Temperature"]) +
xlab("Week") + ylab("Max temperature")
```
## Are time plots best?
```{r maxtemp3, warning=FALSE, message=FALSE, echo=FALSE}
data.frame(
Week = c(time(elecdaily)),
Maxtemp = c(elecdaily[,"Temperature"]) ) %>%
ggplot(aes(x=Week, y=1)) +
geom_tile(aes(fill=Maxtemp)) +
scale_fill_gradient2(
low = "navy",
mid = "yellow",
high = "red", midpoint=28) +
ylab("") + scale_y_discrete(expand=c(0,0))
```
## Are time plots best?
\fullheight{TemperatureBlanket}
# Seasonal plots
## Seasonal plots
\footnotesize
```{r, echo=TRUE}
ggseasonplot(a10, year.labels=TRUE, year.labels.left=TRUE) +
ylab("$ million") +
ggtitle("Seasonal plot: antidiabetic drug sales")
```
## Seasonal plots
* Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
* Something like a time plot except that the data from each season are overlapped.
* Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
* In R: `ggseasonplot()`
## Seasonal polar plots
\small
```{r, fig.height=6, out.width="7.5cm"}
ggseasonplot(a10, polar=TRUE) + ylab("$ million")
```
## Seasonal subseries plots
\small
```{r, echo=TRUE}
ggsubseriesplot(a10) + ylab("$ million") +
ggtitle("Subseries plot: antidiabetic drug sales")
```
## Seasonal subseries plots
* Data for each season collected together in time plot as separate time series.
* Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
* In R: `ggsubseriesplot()`
## Quarterly Australian Beer Production
```{r}
beer <- window(ausbeer,start=1992)
autoplot(beer)
```
## Quarterly Australian Beer Production
```{r}
ggseasonplot(beer,year.labels=TRUE)
```
## Quarterly Australian Beer Production
```{r}
ggsubseriesplot(beer)
```
## Your turn
The `arrivals` data set comprises quarterly international arrivals (in thousands) to Australia from Japan, New Zealand, UK and the US.
- Use `autoplot()` and `ggseasonplot()` to compare the differences between the arrivals from these four countries.
- Can you identify any unusual observations?
# Seasonal or cyclic?
## Time series patterns
Trend
: pattern exists when there is a long-term increase or decrease in the data.
Seasonal
: pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).
Cyclic
: pattern exists when data exhibit rises and falls that are \emph{not of fixed period} (duration usually of at least 2 years).
## Time series components
### Differences between seasonal and cyclic patterns:
* seasonal pattern constant length; cyclic pattern variable length
* average length of cycle longer than length of seasonal pattern
* magnitude of cycle more variable than magnitude of seasonal pattern
## Time series patterns
\small
```{r}
autoplot(window(elec, start=1980)) +
ggtitle("Australian electricity production") +
xlab("Year") + ylab("GWh")
```
## Time series patterns
\small
```{r}
autoplot(bricksq) +
ggtitle("Australian clay brick production") +
xlab("Year") + ylab("million units")
```
## Time series patterns
\small
```{r}
autoplot(hsales) +
ggtitle("Sales of new one-family houses, USA") +
xlab("Year") + ylab("Total sales")
```
## Time series patterns
```{r}
autoplot(ustreas) +
ggtitle("US Treasury Bill Contracts") +
xlab("Day") + ylab("price")
```
## Time series patterns
\small
```{r}
autoplot(lynx) +
ggtitle("Annual Canadian Lynx Trappings") +
xlab("Year") + ylab("Number trapped")
```
## Seasonal or cyclic?
\alert{Differences between seasonal and cyclic patterns:}
* seasonal pattern constant length; cyclic pattern variable length
* average length of cycle longer than length of seasonal pattern
* magnitude of cycle more variable than magnitude of seasonal pattern
\pause
\begin{alertblock}{}
The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.
\end{alertblock}
# Lag plots and autocorrelation
## Example: Beer production
```r
beer <- window(ausbeer, start=1992)
gglagplot(beer)
```
## Example: Beer production
```{r, echo=FALSE, fig.height=6, fig.width=6, out.width="8cm"}
beer <- window(ausbeer, start=1992)
gglagplot(beer)
```
## Lagged scatterplots
* Each graph shows $y_t$ plotted against $y_{t-k}$ for
different values of $k$.
* The autocorrelations are the correlations associated
with these scatterplots.
## Autocorrelation
**Covariance** and **correlation**: measure extent of **linear relationship** between two variables ($y$ and $X$).\pause
**Autocovariance** and **autocorrelation**: measure linear relationship between **lagged values** of a time series $y$.\pause
We measure the relationship between:
* $y_{t}$ and $y_{t-1}$
* $y_{t}$ and $y_{t-2}$
* $y_{t}$ and $y_{t-3}$
* etc.
## Autocorrelation
We denote the sample autocovariance at lag $k$ by $c_k$ and the sample autocorrelation at lag $k$ by $r_k$. Then define
\begin{block}{}
\begin{align*}
c_k &= \frac{1}{T}\sum_{t=k+1}^T (y_t-\bar{y})(y_{t-k}-\bar{y}) \\[0.cm]
\text{and}\qquad
r_{k} &= c_k/c_0
\end{align*}
\end{block}\pause\small
* $r_1$ indicates how successive values of $y$ relate to each other
* $r_2$ indicates how $y$ values two periods apart relate to each other
* $r_k$ is \textit{almost} the same as the sample correlation between $y_t$ and $y_{t-k}$.
## Autocorrelation
\small
Results for first 9 lags for beer data:
\footnotesize
```{r, echo=FALSE}
beeracf <- matrix(acf(c(beer), lag.max=9,
plot=FALSE)$acf[-1,,1], nrow=1)
colnames(beeracf) <- paste("$r_",1:9,"$",sep="")
knitr::kable(beeracf, booktabs=TRUE,
align="c", digits=3,
format.args=list(nsmall=3))
```
```{r beeracf, fig.height=2.5}
ggAcf(beer)
```
## Autocorrelation
* $r_{4}$ higher than for the other lags. This is due to **the seasonal pattern in the data**: the peaks tend to be **4 quarters** apart and the troughs tend to be **2 quarters** apart.
* $r_2$ is more negative than for the other lags because troughs tend to be 2 quarters behind peaks.
* Together, the autocorrelations at lags 1, 2, \dots, make up the \emph{autocorrelation} or ACF.
* The plot is known as a **correlogram**
## ACF
```{r, fig.height=4, echo=TRUE}
ggAcf(beer)
```
## Trend and seasonality in ACF plots
- When data have a trend, the autocorrelations for small lags tend to be large and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.
## Aus monthly electricity production
```{r}
elec2 <- window(elec, start=1980)
autoplot(elec2)
```
## Aus monthly electricity production
```{r}
ggAcf(elec2, lag.max=48)
```
## Aus monthly electricity production
Time plot shows clear trend and seasonality.
The same features are reflected in the ACF.
* The slowly decaying ACF indicates trend.
* The ACF peaks at lags 12, 24, 36, \dots, indicate seasonality of length 12.
## Google stock price
```{r}
autoplot(goog)
```
## Google stock price
```{r}
ggAcf(goog, lag.max=100)
```
## Your turn
We have introduced the following graphics functions:
- `gglagplot`
- `ggAcf`
Explore the following time series using these functions. Can you spot any seasonality, cyclicity and trend? What do you learn about the series?
- `hsales`
- `usdeaths`
- `bricksq`
- `sunspotarea`
- `gasoline`
## Which is which?
```{r, fig.height=6, fig.width=12, echo=FALSE, warning=FALSE, out.width="11.5cm"}
tp1 <- autoplot(cowtemp) + xlab("") + ylab("chirps per minute") +
ggtitle("1. Daily temperature of cow")
tp2 <- autoplot(USAccDeaths/1e3) + xlab("") + ylab("thousands") +
ggtitle("2. Monthly accidental deaths")
tp3 <- autoplot(AirPassengers) + xlab("") + ylab("thousands") +
ggtitle("3. Monthly air passengers")
tp4 <- autoplot(mink/1e3) + xlab("") + ylab("thousands") +
ggtitle("4. Annual mink trappings")
acfb <- ggAcf(cowtemp, ci=0) + xlab("") + ggtitle("B") + ylim(-0.4,1)
acfa <- ggAcf(USAccDeaths, ci=0) + xlab("") + ggtitle("A") + ylim(-0.4,1)
acfd <- ggAcf(AirPassengers, ci=0) + xlab("") + ggtitle("D") + ylim(-0.4,1)
acfc <- ggAcf(mink, ci=0) + xlab("") + ggtitle("C") + ylim(-0.4,1)
gridExtra::grid.arrange(tp1,tp2,tp3,tp4,
acfa,acfb,acfc,acfd,nrow=2)
```
# White noise
## Example: White noise
```{r}
wn <- ts(rnorm(36))
autoplot(wn)
```
## Example: White noise
```{r, results='asis', echo=FALSE}
wnacf <- matrix(acf(c(wn), lag.max=10,
plot=FALSE)$acf[-1,,1], nrow=1)
colnames(wnacf) <- paste("$r_{",1:10,"}$",sep="")
print(xtable::xtable(t(wnacf)),
sanitize.rownames.function=identity,
booktabs=TRUE,
include.colnames = FALSE,
hline.after = FALSE,
size='small',
comment=FALSE,
floating=FALSE)
```
```{r, echo=FALSE}
# Create nice R figures
savepdf <- function(file, width=16, height=10)
{
fname <<- paste("figs/",file,".pdf",sep="")
pdf(fname, width=width/2.54, height=height/2.54, pointsize=10)
par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(3.3,3.6,1.1,1.1))
}
endpdf <- function()
{
crop::dev.off.crop(fname)
}
savepdf("wnacf")
ggAcf(wn)
endpdf()
```
\placefig{4.5}{1.6}{width=8cm}{wnacf}
\centerline\textbf{Sample autocorrelations for white noise series.}
We expect each autocorrelation to be close to zero.
## \large Sampling distribution of autocorrelations
Sampling distribution of $r_k$ for white noise data is asymptotically N(0,$1/T$).\pause
* 95% of all $r_k$ for white noise must lie within $\pm 1.96/\sqrt{T}$.
* If this is not the case, the series is probably not WN.
* Common to plot lines at $\pm 1.96/\sqrt{T}$ when plotting ACF.
These are the \textcolor{orange}{\textbf{\emph{critical values}}}.
## Autocorrelation
\placefig{5}{1.6}{width=8cm}{wnacf}
\begin{textblock}{4.8}(0.2,1.5)
\structure{Example:}
$T=36$ and so critical values at $\pm
1.96/\sqrt{36} = \pm 0.327$.
All autocorrelation coefficients lie within these
limits, confirming that the data are white noise. (More precisely, the data cannot be \\
distinguished \rlap{from white noise.)}
\end{textblock}
## Example: Pigs slaughtered
\small
```{r, fig.height=3}
pigs2 <- window(pigs, start=1990)
autoplot(pigs2) +
xlab("Year") + ylab("thousands") +
ggtitle("Number of pigs slaughtered in Victoria")
```
## Example: Pigs slaughtered
```{r}
ggAcf(pigs2)
```
## Example: Pigs slaughtered
Monthly total number of pigs slaughtered
in the state of Victoria, Australia, from January 1990 through August 1995.
(Source: Australian Bureau of Statistics.)\pause
* Difficult to detect pattern in time plot.
* ACF shows some significant autocorrelation at lags 1, 2, and 3.
* $r_{12}$ relatively large although not significant. This may indicate
some slight seasonality.
\pause
These show the series is **not a white noise series**.
## Your turn
You can compute the daily changes in the Google stock price using
```r
dgoog <- diff(goog)
```
Does `dgoog` look like white noise?