forked from robjhyndman/ETC3550Slides
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path7-exponentialsmoothing.Rmd
1031 lines (813 loc) · 35.9 KB
/
7-exponentialsmoothing.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "ETC3550: Applied forecasting for business and economics"
author: "Ch7. Exponential smoothing"
date: "OTexts.org/fpp2/"
fontsize: 14pt
output:
beamer_presentation:
fig_width: 7
fig_height: 3.5
highlight: tango
theme: metropolis
includes:
in_header: header.tex
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, cache=TRUE, warning=FALSE, message=FALSE)
library(fpp2)
source("nicefigs.R")
options(digits=4)
```
# Simple exponential smoothing
## Simple methods
\fontsize{14}{16}\sf
Time series $y_1,y_2,\dots,y_T$.
\begin{block}{Random walk forecasts}
\centerline{$\pred{y}{T+h}{T} = y_T$}
\end{block}\pause
\begin{block}{Average forecasts}
\centerline{$\displaystyle\pred{y}{T+h}{T} = \frac1T\sum_{t=1}^T y_t$}
\end{block}\pause\vspace*{-0.2cm}
* Want something in between that weights most recent data more highly.
* Simple exponential smoothing uses a weighted moving average with weights that decrease exponentially.
## Simple Exponential Smoothing
\begin{block}{Forecast equation}
$\pred{y}{T+1}{T} = \alpha y_T + \alpha(1-\alpha) y_{T-1} + \alpha(1-\alpha)^2 y_{T-2}+ \cdots$
\end{block}
where $0 \le \alpha \le1$.\pause\vspace*{0.2cm}
\small\begin{tabular}{lllll}
\toprule
& \multicolumn{4}{l}{Weights assigned to observations for:}\\
Observation & $\alpha = 0.2$ & $\alpha = 0.4$ & $\alpha = 0.6$ & $\alpha = 0.8$ \\
\midrule
$y_{T}$ & 0.2 & 0.4 & 0.6 & 0.8\\
$y_{T-1}$ & 0.16 & 0.24 & 0.24 & 0.16\\
$y_{T-2}$ & 0.128 & 0.144 & 0.096 & 0.032\\
$y_{T-3}$ & 0.1024 & 0.0864 & 0.0384 & 0.0064\\
$y_{T-4}$ & $(0.2)(0.8)^4$ & $(0.4)(0.6)^4$ & $(0.6)(0.4)^4$ & $(0.8)(0.2)^4$\\
$y_{T-5}$ & $(0.2)(0.8)^5$ & $(0.4)(0.6)^5$ & $(0.6)(0.4)^5$ & $(0.8)(0.2)^5$\\
\bottomrule
\end{tabular}
## Simple Exponential Smoothing
\fontsize{14}{16}\sf
\begin{block}{Component form}\vspace*{-0.4cm}
\begin{align*}
\text{Forecast equation}&&\pred{y}{t+h}{t} &= \ell_{t}\\
\text{Smoothing equation}&&\ell_{t} &= \alpha y_{t} + (1 - \alpha)\ell_{t-1}
\end{align*}
\end{block}\vspace*{-0.2cm}
* $\ell_t$ is the level (or the smoothed value) of the series at time t.
* $\pred{y}{t+1}{t} = \alpha y_t + (1-\alpha) \pred{y}{t}{t-1}$\newline
Iterate to get exponentially weighted moving average form.
\begin{block}{Weighted average form}
$\displaystyle\pred{y}{T+1}{T}=\sum_{j=0}^{T-1} \alpha(1-\alpha)^j y_{T-j}+(1-\alpha)^T \ell_{0}$
\end{block}
## Optimisation
* Need to choose value for $\alpha$ and $\ell_0$
* Similarly to regression --- we choose $\alpha$ and $\ell_0$ by minimising SSE:
$$
\text{SSE}=\sum_{t=1}^T(y_t - \pred{y}{t}{t-1})^2.
$$
* Unlike regression there is no closed form solution --- use numerical optimization.
## Example: Oil production
\fontsize{10}{11}\sf
```{r sesfit, echo=TRUE, cache=TRUE}
oildata <- window(oil, start=1996)
# Estimate parameters
fc <- ses(oildata, h=5)
summary(fc[["model"]])
```
```{r sesparam, echo=FALSE, cache=TRUE}
#tmp <- accuracy(fc)
#print(round(c(tmp[,c("MAE","RMSE","MAPE")],SSE=sum(residuals(fc)^2)),1))
alpha <- fc$model$par[1]
l0 <- fc$model$par[2]
```
## Example: Oil production
\fontsize{8}{8}\sf\vspace*{-0.2cm}
```{r oilses, echo=FALSE, cache=TRUE}
# Data set for table
x <- oildata
# Generate forecasts
fc <- ses(x, h=3)
# Now set up the table
n <- length(x)
year0 <- min(time(x))-1
tab <- matrix(NA,nrow=n+6,ncol=5)
colnames(tab) <- c("Year","Time","Observation","Level","Forecast")
tab[2:(n+6),1] <- year0 + 0:(n+4)
tab[2:(n+6),2] <- 0:(n+4)
# Add data, level and fitted values
tab[3:(n+2),3] <- x
tab[2:(n+2),4] <- fc$model$state
tab[3:(n+2),5] <- fitted(fc)
# Add forecasts
tab[n+(4:6),1] <- max(time(x))+1:3
tab[n+(4:6),2] <- 1:3
tab[n+(4:6),5] <- fc$mean
# Convert to characters
tab <- as.data.frame(tab)
class(tab$Year) <- class(tab$Time) <- "integer"
tab <- format(tab, digits=5)
# Remove missing values
tab <- apply(tab, 2, function(x){j <- grep("[ ]*NA",x); x[j] <- ""; return(x)})
# Add math notation rows
tab[1,] <- c("","$t$","$y_t$","$\\ell_t$","$\\hat{y}_{t+1|t}$")
tab[n+3,] <- c("","$h$","","","$\\hat{y}_{T+h|T}$")
# Show table
knitr::kable(tab, booktabs=TRUE)
```
## Example: Oil production
\fontsize{12}{12}\sf
```{r ses, echo=TRUE, cache=TRUE}
autoplot(fc) +
autolayer(fitted(fc), series="Fitted") +
ylab("Oil (millions of tonnes)") + xlab("Year")
```
# Trend methods
## Holt's linear trend
\begin{block}{Component form}\vspace*{-.4cm}
\begin{align*}
\text{Forecast }&& \pred{y}{t+h}{t} &= \ell_{t} + hb_{t} \\
\text{Level }&& \ell_{t} &= \alpha y_{t} + (1 - \alpha)(\ell_{t-1} + b_{t-1})\\
\text{Trend }&& b_{t} &= \beta^*(\ell_{t} - \ell_{t-1}) + (1 -\beta^*)b_{t-1},
\end{align*}
\end{block}
\pause\vspace*{-0.2cm}
* Two smoothing parameters $\alpha$ and $\beta^*$ ($0\le\alpha,\beta^*\le1$).
* $\ell_t$ level: weighted average between $y_t$ and one-step ahead forecast for time $t$, $(\ell_{t-1} + b_{t-1}=\pred{y}{t}{t-1})$
* $b_t$ slope: weighted average of $(\ell_{t} - \ell_{t-1})$ and $b_{t-1}$, current and previous estimate of slope.
* Choose $\alpha, \beta^*, \ell_0, b_0$ to minimise SSE.
## Holt's method in R
\fontsize{12}{15}\sf
```{r, fig.height=3.6, echo=TRUE}
window(ausair, start=1990, end=2004) %>%
holt(h=5, PI=FALSE) %>%
autoplot()
```
## Damped trend method
\begin{block}{Component form}\vspace*{-0.4cm}
\begin{align*}
\pred{y}{t+h}{t} &= \ell_{t} + (\phi+\phi^2 + \dots + \phi^{h})b_{t} \\
\ell_{t} &= \alpha y_{t} + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})\\
b_{t} &= \beta^*(\ell_{t} - \ell_{t-1}) + (1 -\beta^*)\phi b_{t-1}.
\end{align*}
\end{block}
\pause
* Damping parameter $0<\phi<1$.
* If $\phi=1$, identical to Holt's linear trend.
* As $h\rightarrow\infty$, $\pred{y}{T+h}{T}\rightarrow \ell_T+\phi b_T/(1-\phi)$.
* Short-run forecasts trended, long-run forecasts constant.
## Example: Air passengers
\fontsize{12}{15}\sf
```{r, echo=TRUE, fig.height=3.6}
window(ausair, start=1990, end=2004) %>%
holt(damped=TRUE, h=5, PI=FALSE) %>%
autoplot()
```
## Example: Sheep in Asia
\fontsize{13}{15}\sf
```{r, echo=TRUE}
livestock2 <- window(livestock, start=1970,
end=2000)
fit1 <- ses(livestock2)
fit2 <- holt(livestock2)
fit3 <- holt(livestock2, damped = TRUE)
```
```r
accuracy(fit1, livestock)
accuracy(fit2, livestock)
accuracy(fit3, livestock)
```
## Example: Sheep in Asia
\fontsize{13}{15}\sf
```{r echo=FALSE}
tab <- matrix(NA, ncol=3,nrow=10)
colnames(tab) <- c("SES","Linear trend","Damped trend")
rownames(tab) <- c("$\\alpha$","$\\beta^*$","$\\phi$","$\\ell_0$","$b_0$",
"Training RMSE","Test RMSE","Test MAE","Test MAPE","Test MASE")
# SSE
tab[1,1] <- fit1$model$par["alpha"]
tab[4,1] <- fit1$model$par["l"]
tab[6,1] <- sqrt(fit1$model$mse)
tab[c(7:10),1] <- accuracy(fit1,livestock)["Test set",c("RMSE","MAE","MAPE","MASE")]
# Holt
tab[1,2] <- fit2$model$par["alpha"]
tab[2,2] <- fit2$model$par["beta"]/fit1$model$par["alpha"]
tab[4,2] <- fit2$model$par["l"]
tab[5,2] <- fit2$model$par["b"]
tab[6,2] <- sqrt(fit2$model$mse)
tab[c(7:10),2] <- accuracy(fit2,livestock)["Test set",c("RMSE","MAE","MAPE","MASE")]
# Damped trend
tab[1,3] <- fit3$model$par["alpha"]
tab[2,3] <- fit3$model$par["beta"]/fit1$model$par["alpha"]
tab[3,3] <- fit3$model$par["phi"]
tab[4,3] <- fit3$model$par["l"]
tab[5,3] <- fit3$model$par["b"]
tab[6,3] <- sqrt(fit3$model$mse)
tab[c(7:10),3] <- accuracy(fit3,livestock)["Test set",c("RMSE","MAE","MAPE","MASE")]
# Convert to characters
tab <- as.data.frame(formatC(tab, format="f", digits=2))
# Remove missing values
tab <- apply(tab, 2, function(x){j <- grep("[ ]*NA",x); x[j] <- ""; return(x)})
# Show table
knitr::kable(tab, booktabs=TRUE)
```
```{r fig-7-comp}
tmp <- cbind(Data=window(livestock, start=1970),
SES=fit1$mean, "Holt's"=fit2$mean, "Damped trend"=fit3$mean)
autoplot(tmp) + xlab("Year") +
ylab("Livestock, sheep in Asia (millions)") +
scale_color_manual(name="",
values=c("#dd0000","#000000","#00dd00","#0000dd"),
breaks=c("Data","SES","Holt's","Damped trend"))
```
## Your turn
`eggs` contains the price of a dozen eggs in the United States from 1900–1993
1. Use SES and Holt’s method (with and without damping) to forecast “future” data.
[Hint: use h=100 so you can clearly see the differences between the options when plotting the forecasts.]
1. Which method gives the best training RMSE?
1. Are these RMSE values comparable?
1. Do the residuals from the best fitting method look like white noise?
# Seasonal methods
## Holt-Winters additive method
\fontsize{13}{15}\sf
Holt and Winters extended Holt's method to capture seasonality.
\begin{block}{Component form}\vspace*{-0.4cm}
\begin{align*}
\pred{y}{t+h}{t} &= \ell_{t} + hb _{t} + s_{t+h-m(k+1)} \\
\ell_{t} &= \alpha(y_{t} - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1})\\
b_{t} &= \beta^*(\ell_{t} - \ell_{t-1}) + (1 - \beta^*)b_{t-1}\\
s_{t} &= \gamma (y_{t}-\ell_{t-1}-b_{t-1}) + (1-\gamma)s_{t-m},
\end{align*}
\end{block}\fontsize{12}{14}\sf
* $k=$ integer part of $(h-1)/m$. Ensures estimates from the final year are used for forecasting.
* Parameters: $0\le \alpha\le 1$, $0\le \beta^*\le 1$, $0\le \gamma\le 1-\alpha$ and $m=$ period of seasonality (e.g. $m=4$ for quarterly data).
## Holt-Winters additive method
* Seasonal component is usually expressed as
$s_{t} = \gamma^* (y_{t}-\ell_{t})+ (1-\gamma^*)s_{t-m}.$
* Substitute in for $\ell_t$:
$s_{t} = \gamma^*(1-\alpha) (y_{t}-\ell_{t-1}-b_{t-1})+ [1-\gamma^*(1-\alpha)]s_{t-m}$
* We set $\gamma=\gamma^*(1-\alpha)$.
* The usual parameter restriction is $0\le\gamma^*\le1$, which translates to $0\le\gamma\le(1-\alpha)$.
## Holt-Winters multiplicative method
\fontsize{13}{14}\sf
For when seasonal variations are changing proportional to the level of the series.
\begin{block}{Component form}\vspace*{-0.3cm}
\begin{align*}
\pred{y}{t+h}{t} &= (\ell_{t} + hb_{t})s_{t+h-m(k+1)}. \\
\ell_{t} &= \alpha \frac{y_{t}}{s_{t-m}} + (1 - \alpha)(\ell_{t-1} + b_{t-1})\\
b_{t} &= \beta^*(\ell_{t}-\ell_{t-1}) + (1 - \beta^*)b_{t-1} \\
s_{t} &= \gamma \frac{y_{t}}{(\ell_{t-1} + b_{t-1})} + (1 - \gamma)s_{t-m}
\end{align*}
\end{block}\vspace*{-0.1cm}\fontsize{11}{12}\sf
* $k$ is integer part of $(h-1)/m$.
* With additive method $s_t$ is in absolute terms:\newline within each year $\sum_i s_i \approx 0$.
* With multiplicative method $s_t$ is in relative terms:\newline within each year $\sum_i s_i \approx m$.
## Example: Visitor Nights
```{r 7-HW, echo=TRUE}
aust <- window(austourists,start=2005)
fit1 <- hw(aust,seasonal="additive")
fit2 <- hw(aust,seasonal="multiplicative")
```
```{r, fig.height=3.2}
tmp <- cbind(Data=aust,
"HW additive forecasts" = fit1[["mean"]],
"HW multiplicative forecasts" = fit2[["mean"]])
autoplot(tmp) + xlab("Year") +
ylab("International visitor night in Australia (millions)") +
scale_color_manual(name="",
values=c('#000000','#1b9e77','#d95f02'),
breaks=c("Data","HW additive forecasts","HW multiplicative forecasts"))
```
## Estimated components
```{r fig-7-LevelTrendSeas}
addstates <- fit1$model$states[,1:3]
multstates <- fit2$model$states[,1:3]
colnames(addstates) <- colnames(multstates) <-
c("level","slope","season")
p1 <- autoplot(addstates, facets=TRUE) + xlab("Year") +
ylab("") + ggtitle("Additive states")
p2 <- autoplot(multstates, facets=TRUE) + xlab("Year") +
ylab("") + ggtitle("Multiplicative states")
gridExtra::grid.arrange(p1,p2,ncol=2)
```
## Holt-Winters damped method
Often the single most accurate forecasting method for seasonal data:
\begin{block}{}\vspace*{-0.4cm}
\begin{align*}
\pred{y}{t+h}{t} &= [\ell_{t} + (\phi+\phi^2 + \dots + \phi^{h})b_{t}]s_{t+h-m(k+1)} \\
\ell_{t} &= \alpha(y_{t} / s_{t-m}) + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})\\
b_{t} &= \beta^*(\ell_{t} - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1} \\
s_{t} &= \gamma \frac{y_{t}}{(\ell_{t-1} + \phi b_{t-1})} + (1 - \gamma)s_{t-m}
\end{align*}
\end{block}
## Your turn
Apply Holt-Winters’ multiplicative method to the `gas` data.
1. Why is multiplicative seasonality necessary here?
1. Experiment with making the trend damped.
1. Check that the residuals from the best method look like white noise.
# Taxonomy of exponential smoothing methods
## Exponential smoothing methods
\fontsize{12}{14}\sf
\begin{block}{}
\begin{tabular}{ll|ccc}
& &\multicolumn{3}{c}{\bf Seasonal Component} \\
\multicolumn{2}{c|}{\bf Trend}& N & A & M\\
\multicolumn{2}{c|}{\bf Component} & (None) & (Additive) & (Multiplicative)\\
\cline{3-5} &&&&\\[-0.4cm]
N & (None) & (N,N) & (N,A) & (N,M)\\
&&&&\\[-0.4cm]
A & (Additive) & (A,N) & (A,A) & (A,M)\\
&&&&\\[-0.4cm]
A\damped & (Additive damped) & (A\damped,N) & (A\damped,A) & (A\damped,M)
\end{tabular}
\end{block}\fontsize{12}{14}\sf
\begin{tabular}{lp{9.7cm}}
\textcolor[rgb]{0.90,0.,0.00}{(N,N)}: &Simple exponential smoothing\\
\textcolor[rgb]{0.90,0.,0.00}{(A,N)}: &Holt's linear method\\
\textcolor[rgb]{0.90,0.,0.00}{(A\damped,N)}: &Additive damped trend method\\
\textcolor[rgb]{0.90,0.,0.00}{(A,A)}:~~ &Additive Holt-Winters' method\\
\textcolor[rgb]{0.90,0.,0.00}{(A,M)}: &Multiplicative Holt-Winters' method\\
\textcolor[rgb]{0.90,0.,0.00}{(A\damped,M)}: &Damped multiplicative Holt-Winters' method
\end{tabular}
\begin{block}{}\fontsize{12}{14}\sf
There are also multiplicative trend methods (not recommended).
\end{block}
## Recursive formulae
\placefig{0}{1.4}{width=12.8cm}{pegelstable.pdf}
## R functions
\fontsize{11.5}{13}\sf
* Simple exponential smoothing: no trend. \newline
`ses(y)`
* Holt's method: linear trend. \newline
`holt(y)`
* Damped trend method. \newline
`holt(y, damped=TRUE)`
* Holt-Winters methods\newline
`hw(y, damped=TRUE, seasonal="additive")`\newline
`hw(y, damped=FALSE, seasonal="additive")`\newline
`hw(y, damped=TRUE, seasonal="multiplicative")`\newline
`hw(y, damped=FALSE, seasonal="multiplicative")`
* Combination of no trend with seasonality not possible using these functions.
# Innovations state space models
## Methods v Models
### Exponential smoothing methods
* Algorithms that return point forecasts.
\pause
### Innovations state space models
* Generate same point forecasts but can also generate forecast intervals.
* A stochastic (or random) data generating process that can generate an entire forecast distribution.
* Allow for "proper" model selection.
## ETS models
* Each model has an \textit{observation} equation and \textit{transition} equations, one for each state (level, trend, seasonal), i.e., state space models.
* Two models for each method: one with additive and one with multiplicative errors, i.e., in total \color{orange}{18 models}.
* ETS(Error,Trend,Seasonal):
* Error $=\{$A,M$\}$
* Trend $=\{$N,A,A\damped$\}$
* Seasonal $=\{$N,A,M$\}$.
## Exponential smoothing methods
\fontsize{12}{14}\sf
\begin{block}{}
\begin{tabular}{ll|ccc}
& &\multicolumn{3}{c}{\bf Seasonal Component} \\
\multicolumn{2}{c|}{\bf Trend}& N & A & M\\
\multicolumn{2}{c|}{\bf Component} & ~(None)~ & (Additive) & (Multiplicative)\\
\cline{3-5} &&&&\\[-0.3cm]
N & (None) & N,N & N,A & N,M\\
&&&&\\[-0.3cm]
A & (Additive) & A,N & A,A & A,M\\
&&&&\\[-0.3cm]
A\damped & (Additive damped) & A\damped,N & A\damped,A & A\damped,M
\end{tabular}
\end{block}
\vspace*{10cm}
## Exponential smoothing methods
\fontsize{12}{14}\sf
\begin{block}{}
\begin{tabular}{ll|ccc}
& &\multicolumn{3}{c}{\bf Seasonal Component} \\
\multicolumn{2}{c|}{\bf Trend}& N & A & M\\
\multicolumn{2}{c|}{\bf Component} & ~(None)~ & (Additive) & (Multiplicative)\\
\cline{3-5} &&&&\\[-0.3cm]
N & (None) & N,N & N,A & N,M\\
&&&&\\[-0.3cm]
A & (Additive) & A,N & A,A & A,M\\
&&&&\\[-0.3cm]
A\damped & (Additive damped) & A\damped,N & A\damped,A & A\damped,M
\end{tabular}
\end{block}
\begin{tabular}{l@{}p{2.3cm}@{}c@{}l}
\structure{General n\rlap{otation}}
& & ~E T S~ & ~:\hspace*{0.3cm}\textbf{E}xponen\textbf{T}ial \textbf{S}moothing \\ [-0.2cm]
& \hfill{$\nearrow$\hspace*{-0.1cm}} & {$\uparrow$} & {\hspace*{-0.2cm}$\nwarrow$} \\
& \hfill{\textbf{E}rror\hspace*{0.2cm}} & {\textbf{T}rend} & {\hspace*{0.2cm}\textbf{S}easonal}
\end{tabular}
\pause\vspace*{-0.4cm}
\structure{Examples:}\newline\footnotesize\vspace*{-0.5cm}
\begin{tabular}{ll}
A,N,N: &Simple exponential smoothing with additive errors\\
A,A,N: &Holt's linear method with additive errors\\
M,A,M: &Multiplicative Holt-Winters' method with multiplicative errors
\end{tabular}
\pause
\color{orange}{\bf There are 18 separate models in the ETS framework}
## A model for SES
\begin{block}{Component form}\vspace*{-0.4cm}
\begin{align*}
\text{Forecast equation}&&\pred{y}{t+h}{t} &= \ell_{t}\\
\text{Smoothing equation}&&\ell_{t} &= \alpha y_{t} + (1 - \alpha)\ell_{t-1}
\end{align*}
\end{block}\pause
Forecast error: $e_t = y_t - \pred{y}{t}{t-1} = y_t - \ell_{t-1}$.\pause
\begin{block}{Error correction form}\vspace*{-0.4cm}
\begin{align*}
y_t &= \ell_{t-1} + e_t\\
\ell_{t}
&= \ell_{t-1}+\alpha( y_{t}-\ell_{t-1})\\
&= \ell_{t-1}+\alpha e_{t}
\end{align*}
\end{block}\pause\vspace*{-0.2cm}
Specify probability distribution for $e_t$, we assume $e_t = \varepsilon_t\sim\text{NID}(0,\sigma^2)$.
## ETS(A,N,N)
\begin{block}{}\vspace*{-0.4cm}
\begin{align*}
\text{Measurement equation}&& y_t &= \ell_{t-1} + \varepsilon_t\\
\text{State equation}&& \ell_t&=\ell_{t-1}+\alpha \varepsilon_t
\end{align*}
\end{block}
where $\varepsilon_t\sim\text{NID}(0,\sigma^2)$.
* "innovations" or "single source of error" because same error process, $\varepsilon_t$.
* Measurement equation: relationship between observations and states.
* Transition equation(s): evolution of the state(s) through time.
## ETS(A,A,N)
Holt's linear method with additive errors.
* Assume $\varepsilon_t=y_t-\ell_{t-1}-b_{t-1} \sim \text{NID}(0,\sigma^2)$.
* Substituting into the error correction equations for Holt's linear method\vspace*{-0.2cm}
\begin{align*}
y_t&=\ell_{t-1}+b_{t-1}+\varepsilon_t\\
\ell_t&=\ell_{t-1}+b_{t-1}+\alpha \varepsilon_t\\
b_t&=b_{t-1}+\alpha\beta^* \varepsilon_t
\end{align*}
* For simplicity, set $\beta=\alpha \beta^*$.
## Your turn
\large
* Write down the model for ETS(A,Ad,N)
## ETS(A,A,A)
Holt-Winters additive method with additive errors.
\begin{block}{}\vspace*{-0.4cm}
\begin{align*}
\text{Forecast equation} && \hat{y}_{t+h|t} &= \ell_{t} + hb_{t} + s_{t+h-m(k+1)}\\
\text{Observation equation}&& y_t&=\ell_{t-1}+b_{t-1}+s_{t-m} + \varepsilon_t\\
\text{State equations}&& \ell_t&=\ell_{t-1}+b_{t-1}+\alpha \varepsilon_t\\
&& b_t&=b_{t-1}+\beta \varepsilon_t \\
&&s_t &= s_{t-m} + \gamma\varepsilon_t
\end{align*}
\end{block}
* Forecast errors: $\varepsilon_{t} = y_t - \hat{y}_{t|t-1}$
* $k$ is integer part of $(h-1)/m$.
## Your turn
\large
* Write down the model for ETS(A,N,A)
## ETS(M,N,N)
SES with multiplicative errors.
* Specify relative errors $\varepsilon_t=\frac{y_t-\pred{y}{t}{t-1}}{\pred{y}{t}{t-1}}\sim \text{NID}(0,\sigma^2)$
* Substituting $\pred{y}{t}{t-1}=\ell_{t-1}$ gives:
* $y_t = \ell_{t-1}+\ell_{t-1}\varepsilon_t$
* $e_t = y_t - \pred{y}{t}{t-1} = \ell_{t-1}\varepsilon_t$
\pause
\begin{block}{}\vspace*{-0.4cm}
\begin{align*}
\text{Measurement equation}&& y_t &= \ell_{t-1}(1 + \varepsilon_t)\\
\text{State equation}&& \ell_t&=\ell_{t-1}(1+\alpha \varepsilon_t)
\end{align*}
\end{block}
\pause
* Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.
## ETS(M,A,N)
Holt's linear method with multiplicative errors.
* Assume $\varepsilon_t=\frac{y_t-(\ell_{t-1}+b_{t-1})}{(\ell_{t-1}+b_{t-1})}$
* Following a similar approach as above, the innovations state space model underlying Holt's linear method with multiplicative errors is specified as\vspace*{-0.4cm}
\begin{align*}
y_t&=(\ell_{t-1}+b_{t-1})(1+\varepsilon_t)\\
\ell_t&=(\ell_{t-1}+b_{t-1})(1+\alpha \varepsilon_t)\\
b_t&=b_{t-1}+\beta(\ell_{t-1}+b_{t-1}) \varepsilon_t
\end{align*}
where again $\beta=\alpha \beta^*$ and $\varepsilon_t \sim \text{NID}(0,\sigma^2)$.
## Additive error models
\placefig{0}{1.5}{width=12.8cm,trim=0 120 0 0,clip=true}{fig_7_ets_add.pdf}
## Multiplicative error models
\placefig{0}{1.5}{width=12.8cm,trim=0 120 0 0,clip=true}{fig_7_ets_multi.pdf}
## Estimating ETS models
* Smoothing parameters $\alpha$, $\beta$, $\gamma$ and $\phi$, and the initial states $\ell_0$, $b_0$, $s_0,s_{-1},\dots,s_{-m+1}$ are estimated by maximising the "likelihood" = the probability of the data arising from the specified model.
* For models with additive errors equivalent to minimising SSE.
* For models with multiplicative errors, \textbf{not} equivalent to minimising SSE.
* We will estimate models with the \Verb|ets()| function in the forecast package.
## Innovations state space models
\fontsize{12}{14}\sf
Let $\bm{x}_t = (\ell_t, b_t, s_t, s_{t-1}, \dots, s_{t-m+1})$ and
$\varepsilon_t\stackrel{\mbox{\scriptsize iid}}{\sim}
\mbox{N}(0,\sigma^2)$.
\begin{block}{}
\begin{tabular}{lcl}
$y_t$ &=& $\underbrace{h(\bm{x}_{t-1})} +
\underbrace{k(\bm{x}_{t-1})\varepsilon_t}$\\
&& \hspace*{0.5cm}$\mu_t$ \hspace*{1.45cm} $e_t$ \\[0.2cm]
$\bm{x}_t$ &=& $f(\bm{x}_{t-1}) +
g(\bm{x}_{t-1})\varepsilon_t$\\
\end{tabular}
\end{block}
Additive errors
: \mbox{}\vspace*{-0.5cm}\newline
$k(x)=1$.\qquad $y_t = \mu_{t} + \varepsilon_t$.
Multiplicative errors
: \mbox{}\vspace*{-0.5cm}\newline
$k(\bm{x}_{t-1}) = \mu_{t}$.\qquad $y_t = \mu_{t}(1 + \varepsilon_t)$.\newline
$\varepsilon_t = (y_t - \mu_t)/\mu_t$ is relative error.
## Innovations state space models
\structure{Estimation}\vspace*{0.5cm}
\begin{block}{}
\begin{align*}
L^*(\bm\theta,\bm{x}_0) &= n\log\!\bigg(\sum_{t=1}^n \varepsilon^2_t/k^2(\bm{x}_{t-1})\!\bigg) + 2\sum_{t=1}^n \log|k(\bm{x}_{t-1})|\\
&= -2\log(\text{Likelihood}) + \mbox{constant}
\end{align*}
\end{block}
* Estimate parameters $\bm\theta = (\alpha,\beta,\gamma,\phi)$ and
initial states $\bm{x}_0 = (\ell_0,b_0,s_0,s_{-1},\dots,s_{-m+1})$ by
minimizing $L^*$.
## Parameter restrictions
\fontsize{12}{14}\sf
### *Usual* region
* Traditional restrictions in the methods $0< \alpha,\beta^*,\gamma^*,\phi<1$\newline (equations interpreted as weighted averages).
* In models we set $\beta=\alpha\beta^*$ and $\gamma=(1-\alpha)\gamma^*$.
* Therefore $0< \alpha <1$, $0 < \beta < \alpha$ and $0< \gamma < 1-\alpha$.
* $0.8<\phi<0.98$ --- to prevent numerical difficulties.
\pause
### *Admissible* region
* To prevent observations in the distant past having a continuing effect on current forecasts.
* Usually (but not always) less restrictive than the \textit{traditional} region.
* For example for ETS(A,N,N): \newline \textit{traditional} $0< \alpha <1$ --- \textit{admissible} is $0< \alpha <2$.
## Model selection
\begin{block}{Akaike's Information Criterion}
\[
\text{AIC} = -2\log(\text{L}) + 2k
\]
\end{block}\vspace*{-0.2cm}
where $L$ is the likelihood and $k$ is the number of parameters initial states estimated in the model.\pause
\begin{block}{Corrected AIC}
\[
\text{AIC}_{\text{c}} = \text{AIC} + \frac{2(k+1)(k+2)}{T-k}
\]
\end{block}
which is the AIC corrected (for small sample bias).
\pause
\begin{block}{Bayesian Information Criterion}
\[
\text{BIC} = \text{AIC} + k(\log(T)-2).
\]
\end{block}
## Automatic forecasting
**From Hyndman et al.\ (IJF, 2002):**
* Apply each model that is appropriate to the data.
Optimize parameters and initial values using MLE (or some other
criterion).
* Select best method using AICc:
* Produce forecasts using best method.
* Obtain forecast intervals using underlying state space model.
Method performed very well in M3 competition.
## Some unstable models
* Some of the combinations of (Error, Trend, Seasonal) can lead to numerical difficulties; see equations with division by a state.
* These are: ETS(A,N,M), ETS(A,A,M), ETS(A,A\damped,M).
* Models with multiplicative errors are useful for strictly positive data, but are not numerically stable with data containing zeros or negative values. In that case only the six fully additive models will be applied.
## Exponential smoothing models
\fontsize{11}{12}\sf
\begin{block}{}
\begin{tabular}{ll|ccc}
\multicolumn{2}{l}{\alert{\bf Additive Error}} & \multicolumn{3}{c}{\bf Seasonal Component} \\
\multicolumn{2}{c|}{\bf Trend} & N & A & M \\
\multicolumn{2}{c|}{\bf Component} & ~(None)~ & (Additive) & (Multiplicative) \\ \cline{3-5}
& & & & \\[-0.3cm]
N & (None) & A,N,N & A,N,A & \st{A,N,M} \\
& & & & \\[-0.3cm]
A & (Additive) & A,A,N & A,A,A & \st{A,A,M} \\
& & & & \\[-0.3cm]
A\damped & (Additive damped) & A,A\damped,N & A,A\damped,A & \st{A,A\damped,M}
\end{tabular}
\end{block}
\begin{block}{}
\begin{tabular}{ll|ccc}
\multicolumn{2}{l}{\alert{\bf Multiplicative Error}} & \multicolumn{3}{c}{\bf Seasonal Component} \\
\multicolumn{2}{c|}{\bf Trend} & N & A & M \\
\multicolumn{2}{c|}{\bf Component} & ~(None)~ & (Additive) & (Multiplicative) \\ \cline{3-5}
& & & & \\[-0.3cm]
N & (None) & M,N,N & M,N,A & M,N,M \\
& & & & \\[-0.3cm]
A & (Additive) & M,A,N & M,A,A & M,A,M \\
& & & & \\[-0.3cm]
A\damped & (Additive damped) & M,A\damped,N & M,A\damped,A & M,A\damped,M
\end{tabular}
\end{block}
## Example: International tourists
\fontsize{7.8}{8.7}\sf
```{r, echo=TRUE}
aust <- window(austourists, start=2005)
fit <- ets(aust)
summary(fit)
```
## Example: International tourists
Model selected: ETS(M,A,M)
\begin{align*}
y_{t} &= (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)\\
\ell_t &= (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)\\
b_t &=b_{t-1} + \beta(\ell_{t-1} + b_{t_1})\varepsilon_t\\
s_t &= s_{t-m}(1+ \gamma \varepsilon_t).
\end{align*}
$\hat\alpha=`r format(fit$par[1],nsmall=4,digits=4)`$, $\hat\beta=`r format(fit$par[2],nsmall=3,digits=3, scientific=FALSE)`$, and $\hat\gamma=`r format(fit$par[3],digits=2,nsmall=2, scientific=FALSE)`$.
## Example: International tourists
```{r MAMstates, fig.height=3.5,fig.width=6, echo=TRUE}
autoplot(fit)
```
## Example: International tourists
\fontsize{9.5}{12}\sf
```{r, echo=TRUE}
cbind('Residuals' = residuals(fit),
'Forecast errors' = residuals(fit, type='response')) %>%
autoplot(facet=TRUE) + xlab("Year") + ylab("")
```
## Residuals
\fontsize{16}{18}\sf
### Response residuals
$$\hat{e}_t = y_t - \hat{y}_{t|t-1}$$
### Innovation residuals
Additive error model:
$$\hat\varepsilon_t = y_t - \hat{y}_{t|t-1}$$
Multiplicative error model:
$$\hat\varepsilon_t = \frac{y_t - \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}}$$
## Forecasting with ETS models
\structure{Point forecasts:} iterate the equations for $t=T+1,T+2,\dots,T+h$ and set all $\varepsilon_t=0$ for $t>T$.\pause
* Not the same as $\text{E}(y_{t+h} | \bm{x}_t)$ unless trend and seasonality are both additive.
* Point forecasts for ETS(A,x,y) are identical to ETS(M,x,y) if the parameters are the same.
## Example: ETS(A,A,N)
\vspace*{-1.3cm}
\begin{align*}
y_{T+1} &= \ell_T + b_T + \varepsilon_{T+1}\\
\hat{y}_{T+1|T} & = \ell_{T}+b_{T}\\
y_{T+2} & = \ell_{T+1} + b_{T+1} + \varepsilon_{T+2}\\
& =
(\ell_T + b_T + \alpha\varepsilon_{T+1}) +
(b_T + \beta \varepsilon_{T+1}) +
\varepsilon_{T+2} \\
\hat{y}_{T+2|T} &= \ell_{T}+2b_{T}
\end{align*}
etc.
## Example: ETS(M,A,N)
\fontsize{13}{16}\sf
\vspace*{-1.3cm}
\begin{align*}
y_{T+1} &= (\ell_T + b_T )(1+ \varepsilon_{T+1})\\
\hat{y}_{T+1|T} & = \ell_{T}+b_{T}.\\
y_{T+2} & = (\ell_{T+1} + b_{T+1})(1 + \varepsilon_{T+2})\\
& = \left\{
(\ell_T + b_T) (1+ \alpha\varepsilon_{T+1}) +
\left[b_T + \beta (\ell_T + b_T)\varepsilon_{T+1}\right]
\right\}
(1 + \varepsilon_{T+2}) \\
\hat{y}_{T+2|T} &= \ell_{T}+2b_{T}
\end{align*}
etc.
## Forecasting with ETS models
\structure{Prediction intervals:} cannot be generated using the methods, only the models.
* The prediction intervals will differ between models with additive and multiplicative errors.
* Exact formulae for some models.
* More general to simulate future sample paths, conditional on the last estimate of the states, and to obtain prediction intervals from the percentiles of these simulated future paths.
* Options are available in R using the `forecast` function in the forecast package.
## Prediction intervals
\fontsize{12}{13}\sf\vspace*{-0.2cm}
PI for most ETS models: $\hat{y}_{T+h|T} \pm c \sigma_h$, where $c$ depends on coverage probability and $\sigma_h$ is forecast standard deviation.
\fontsize{10}{12}\sf\vspace*{0.2cm}
\hspace*{-0.8cm}\begin{tabular}{ll}
\hline
(A,N,N) & $\sigma_h = \sigma^2\big[1 + \alpha^2(h-1)\big]$\\
(A,A,N) & $\sigma_h = \sigma^2\Big[1 + (h-1)\big\{\alpha^2 + \alpha\beta h + \frac16\beta^2h(2h-1)\big\}\Big]$\\
(A,A$_d$,N) & $\sigma_h = \sigma^2\biggl[1 + \alpha^2(h-1) + \frac{\beta\phi h}{(1-\phi)^2} \left\{2\alpha(1-\phi) +\beta\phi\right\}$\\
& \hspace*{1.5cm}$\mbox{} - \frac{\beta\phi(1-\phi^h)}{(1-\phi)^2(1-\phi^2)} \left\{ 2\alpha(1-\phi^2)+ \beta\phi(1+2\phi-\phi^h)\right\}\biggr]$\\
(A,N,A) & $\sigma_h = \sigma^2\Big[1 + \alpha^2(h-1) + \gamma k(2\alpha+\gamma)\Big]$\\
(A,A,A) & $\sigma_h = \sigma^2\Big[1 + (h-1)\big\{\alpha^2 + \alpha\beta h + \frac16\beta^2h(2h-1)\big\} + \gamma k \big\{2\alpha+ \gamma + \beta m (k+1)\big\} \Big]$\\
(A,A$_d$,A) & $\sigma_h = \sigma^2\biggl[1 + \alpha^2(h-1) +\frac{\beta\phi h}{(1-\phi)^2} \left\{2\alpha(1-\phi) + \beta\phi \right\}$\\
& \hspace*{1.5cm}$\mbox{} - \frac{\beta\phi(1-\phi^h)}{(1-\phi)^2(1-\phi^2)} \left\{ 2\alpha(1-\phi^2)+ \beta\phi(1+2\phi-\phi^h)\right\}$ \\
& \hspace*{1.5cm}$\mbox{} + \gamma k(2\alpha+\gamma) + \frac{2\beta\gamma\phi}{(1-\phi)(1-\phi^m)}\left\{k(1-\phi^m) - \phi^m(1-\phi^{mk})\right\}\biggr]$
\end{tabular}
# ETS in R
## Example: drug sales
\fontsize{8}{8}\sf
```{r, echo=TRUE}
ets(h02)
```
## Example: drug sales
\fontsize{8}{8}\sf
```{r, echo=TRUE}
ets(h02, model="AAA", damped=FALSE)
```
## The `ets()` function
* Automatically chooses a model by default using the AIC, AICc or BIC.
* Can handle any combination of trend, seasonality and damping
* Ensures the parameters are admissible (equivalent to invertible)
* Produces an object of class "ets".
## `ets` objects
* **Methods:** `coef()`, `autoplot()`, `plot()`, `summary()`, `residuals()`, `fitted()`, `simulate()` and `forecast()`
* `autoplot()` shows time plots of the original time series along with the extracted components (level, growth and seasonal).
## Example: drug sales
```{r, echo=TRUE, fig.height=4}
h02 %>% ets() %>% autoplot()
```
## Example: drug sales
```{r, echo=TRUE, fig.height=4}
h02 %>% ets() %>% forecast() %>% autoplot()
```
## Example: drug sales
\fontsize{11}{13}\sf
```{r, echo=TRUE}
h02 %>% ets() %>% accuracy()
h02 %>% ets(model="AAA", damped=FALSE) %>% accuracy()
```
## The `ets()` function
\fontsize{8}{10}\sf
`ets()` function also allows refitting model to new data set.
```{r, echo=TRUE}
train <- window(h02, end=c(2004,12))
test <- window(h02, start=2005)
fit1 <- ets(train)
fit2 <- ets(test, model = fit1)
accuracy(fit2)
accuracy(forecast(fit1,10), test)
```
## The `ets()` function in R
\fontsize{12}{13}\sf
```r
ets(y, model = "ZZZ", damped = NULL,
additive.only = FALSE,
lambda = NULL, biasadj = FALSE,
lower = c(rep(1e-04, 3), 0.8),
upper = c(rep(0.9999, 3), 0.98),
opt.crit = c("lik","amse","mse","sigma","mae"),
nmse = 3,
bounds = c("both", "usual", "admissible"),
ic = c("aicc", "aic", "bic"),
restrict = TRUE,
allow.multiplicative.trend = FALSE, ...)
```
## The `ets()` function in R
\fontsize{13}{14}\sf
* `y` \newline The time series to be forecast.
* `model` \newline use the ETS classification and notation: "N" for none, "A" for additive, "M" for multiplicative, or "Z" for automatic selection. Default `ZZZ` all components are selected using the information criterion.
* `damped`
* If `damped=TRUE`, then a damped trend will be used (either A\damped\ or M\damped).
* `damped=FALSE`, then a non-damped trend will used.
* If `damped=NULL` (default), then either a damped or a non-damped trend will be selected according to the information criterion chosen.
## The `ets()` function in R
\fontsize{13}{14.5}\sf\vspace*{-0.2cm}
* `additive.only`\newline
Only models with additive components will be considered if \Verb"additive.only=TRUE". Otherwise all models will be considered.
* `lambda`\newline
Box-Cox transformation parameter. It will be ignored if `lambda=NULL` (default). Otherwise, the time series will be transformed before the model is estimated. When `lambda` is not `NULL`, `additive.only` is set to `TRUE`.
* `biadadj`\newline
Uses bias-adjustment when undoing Box-Cox transformation for fitted values.
## The `ets()` function in R
\fontsize{12}{13}\sf\vspace*{-0.2cm}
* `lower,upper` bounds for the parameter estimates of $\alpha$, $\beta^*$, $\gamma^*$ and $\phi$.
* `opt.crit=lik` (default) optimisation criterion used for estimation.
* `bounds` Constraints on the parameters.
* \textit{usual} region -- `"bounds=usual"`;
* \textit{admissible} region -- `"bounds=admissible"`;
* `"bounds=both"` (default) requires the parameters to satisfy both sets of constraints.
* `ic=aicc` (default) information criterion to be used in selecting models.
* `restrict=TRUE` (default) models that cause numerical problems not considered in model selection.
* `allow.multiplicative.trend` allows models with a multiplicative trend.
## The `forecast()` function in R
\fontsize{13}{15}\sf\vspace*{-0.2cm}
```r
forecast(object,
h=ifelse(object$m>1, 2*object$m, 10),
level=c(80,95), fan=FALSE,
simulate=FALSE, bootstrap=FALSE,