forked from robjhyndman/ETC3550Slides
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path9-dynamic-regression.Rmd
680 lines (502 loc) · 17.5 KB
/
9-dynamic-regression.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
---
title: "ETC3550: Applied forecasting for business and economics"
author: "Ch9. Dynamic regression models"
date: "OTexts.org/fpp2/"
fontsize: 14pt
output:
beamer_presentation:
fig_width: 7
fig_height: 3.5
highlight: tango
theme: metropolis
includes:
in_header: header.tex
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, cache=TRUE, warning=FALSE, message=FALSE,
dev.args=list(bg=grey(0.9), pointsize=11))
library(fpp2)
```
# Regression with ARIMA errors
## Regression with ARIMA errors
\fontsize{13}{15}\sf
\begin{block}{Regression models}\vspace*{-0.2cm}
\[
y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \varepsilon_t,
\]\end{block}
* $y_t$ modeled as function of $k$ explanatory variables
$x_{1,t},\dots,x_{k,t}$.
* In regression, we assume that $\varepsilon_t$ was WN.
* Now we want to allow $\varepsilon_t$ to be autocorrelated.
\vspace*{0.3cm}
\pause
\begin{alertblock}{Example: ARIMA(1,1,1) errors}\vspace*{-0.2cm}
\begin{align*}
y_t &= \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t,\\
& (1-\phi_1B)(1-B)\eta_t = (1+\theta_1B)\varepsilon_t,
\end{align*}
\end{alertblock}
\rightline{where $\varepsilon_t$ is white noise.}
## Residuals and errors
\begin{alertblock}{Example: $\eta_t$ = ARIMA(1,1,1)}\vspace*{-0.2cm}
\begin{align*}
y_t &= \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t,\\
& (1-\phi_1B)(1-B)\eta_t = (1+\theta_1B)\varepsilon_t,
\end{align*}\end{alertblock}\pause
* Be careful in distinguishing $\eta_t$ from $\varepsilon_t$.
* Only the errors $\eta_t$ are assumed to be white noise.
* In ordinary regression, $\eta_t$ is assumed to be white noise and so $\eta_t = \varepsilon_t$.
## Estimation
If we minimize $\sum \eta_t^2$ (by using ordinary regression):
1. Estimated coefficients $\hat{\beta}_0,\dots,\hat{\beta}_k$ are no longer optimal as some information ignored;
2. Statistical tests associated with the model (e.g., t-tests on the coefficients) are incorrect.
3. $p$-values for coefficients usually too small (``spurious regression'').
4. AIC of fitted models misleading.
\pause
* Minimizing $\sum \varepsilon_t^2$ avoids these problems.
* Maximizing likelihood is similar to minimizing $\sum \varepsilon_t^2$.
## Stationarity
\begin{block}{Regression with ARMA errors}
\[
y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t,
\]
where $\eta_t$ is an ARMA process.
\end{block}
* All variables in the model must be stationary.
* If we estimate the model while any of these are non-stationary, the estimated coefficients can be incorrect.
* Difference variables until all stationary.
* If necessary, apply same differencing to all variables.
## Stationarity
\begin{block}{Model with ARIMA(1,1,1) errors}\vspace*{-0.2cm}
\begin{align*}
y_t &= \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t,\\
& (1-\phi_1B)(1-B)\eta_t = (1+\theta_1B)\varepsilon_t,
\end{align*}
\end{block}\pause
\begin{block}{Equivalent to model with ARIMA(1,0,1) errors}\vspace*{-0.2cm}
\begin{align*}
y'_t &= \beta_1 x'_{1,t} + \dots + \beta_k x'_{k,t} + \eta'_t,\\
& (1-\phi_1B)\eta'_t = (1+\theta_1B)\varepsilon_t,
\end{align*}
\end{block}
where $y'_t=y_t-y_{t-1}$, $x'_{t,i}=x_{t,i}-x_{t-1,i}$ and $\eta'_t=\eta_t-\eta_{t-1}$.
## Regression with ARIMA errors
\fontsize{13}{15}\sf
Any regression with an ARIMA
error can be rewritten as a regression with an ARMA error by differencing all
variables with the same differencing operator as in the ARIMA model.\pause
\begin{block}{Original data}\vspace*{-0.2cm}
\begin{align*}
y_t &= \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t\\
\mbox{where}\quad
& \phi(B)(1-B)^d\eta_t = \theta(B)\varepsilon_t
\end{align*}\end{block}\pause\vspace*{-0.1cm}
\begin{block}{After differencing all variables}\vspace*{-0.2cm}
\begin{align*}
y'_t &= \beta_1 x'_{1,t} + \dots + \beta_k x'_{k,t} + \eta'_t.\\
\mbox{where}\quad
& \phi(B)\eta_t = \theta(B)\varepsilon_t \\
\text{and}\quad & y_t' = (1-B)^dy_t
\end{align*}
\end{block}
## Model selection
\fontsize{13}{15}\sf
* Check that all variables are stationary. If not, apply differencing. Where appropriate, use the same differencing for all variables to preserve interpretability.
* Fit regression model with automatically selected ARIMA errors.
* Check that $\varepsilon_t$ series looks like white noise.
### Selecting predictors
\begin{itemize}
\item AICc can be calculated for final model.
\item Repeat procedure for all subsets of predictors to be considered, and select model with lowest AIC value.
\end{itemize}
## US personal consumption and income
```{r usconsump, fig.height=6, fig.width=8.5}
autoplot(uschange, facets=TRUE) +
xlab("Year") + ylab("") +
ggtitle("Quarterly changes in US consumption and personal income")
```
## US personal consumption and income
```{r, fig.height=6, fig.width=8.5}
ggplot(aes(x=Income,y=Consumption), data=as.data.frame(uschange)) +
geom_point() +
ggtitle("Quarterly changes in US consumption and personal income")
```
## US personal consumption and income
* No need for transformations or further differencing.
* Increase in income does not necessarily translate into instant increase in consumption (e.g., after the loss of a job, it may take a few months for expenses to be reduced to allow for the new circumstances). We will ignore this for now.
## US personal consumption and income
\fontsize{11}{14}\sf
```{r usconsump2, echo=TRUE, fig.height=3}
(fit <- auto.arima(uschange[,1], xreg=uschange[,2]))
```
\pause\begin{alertblock}{}
Write down the equations for the fitted model.
\end{alertblock}
## US personal consumption and income
\fontsize{13}{15}\sf
```{r , echo=TRUE, fig.height=3.7}
ggtsdisplay(residuals(fit, type='regression'),
main="Regression errors")
```
## US personal consumption and income
\fontsize{13}{15}\sf
```{r , echo=TRUE, fig.height=3.7}
ggtsdisplay(residuals(fit, type='response'),
main="ARIMA errors")
```
## US personal consumption and income
```{r , echo=TRUE, fig.height=3.7}
checkresiduals(fit, test=FALSE)
```
## US personal consumption and income
\fontsize{10}{13}\sf
```{r , echo=TRUE, fig.height=3.7}
checkresiduals(fit, plot=FALSE)
```
## US personal consumption and income
\fontsize{9}{12}\sf
```{r usconsump3, echo=TRUE, fig.height=3.}
fcast <- forecast(fit,
xreg=rep(mean(uschange[,2]),8), h=8)
autoplot(fcast) + xlab("Year") +
ylab("Percentage change") +
ggtitle("Forecasts from regression with ARIMA(1,0,2) errors")
```
## Forecasting
* To forecast a regression model with ARIMA errors, we need to forecast the
regression part of the model and the ARIMA part of the model and combine the
results.
* Some predictors are known into the future (e.g., time, dummies).
* Separate forecasting models may be needed for other predictors.
* Forecast intervals ignore the uncertainty in forecasting the predictors.
## Daily electricity demand
\fontsize{12}{13}\sf
Model daily electricity demand as a function of temperature using quadratic regression with ARMA errors.
\fontsize{10}{12}\sf
```{r, echo=TRUE, fig.height=3.6}
qplot(elecdaily[,"Temperature"], elecdaily[,"Demand"]) +
xlab("Temperature") + ylab("Demand")
```
## Daily electricity demand
\fontsize{12}{13}\sf
```{r, echo=TRUE, fig.height=4}
autoplot(elecdaily, facets = TRUE)
```
## Daily electricity demand
\fontsize{9}{10}\sf
```{r, echo=TRUE}
xreg <- cbind(MaxTemp = elecdaily[, "Temperature"],
MaxTempSq = elecdaily[, "Temperature"]^2,
Workday = elecdaily[, "WorkDay"])
fit <- auto.arima(elecdaily[, "Demand"], xreg = xreg)
checkresiduals(fit)
```
## Daily electricity demand
\fontsize{9}{10}\sf
```{r, echo=FALSE}
checkresiduals(fit, plot=FALSE)
```
## Daily electricity demand
\fontsize{10}{13}\sf
```{r, echo=TRUE}
# Forecast one day ahead
forecast(fit, xreg = cbind(26, 26^2, 1))
```
## Daily electricity demand
\fontsize{10}{13}\sf
```{r echo=TRUE}
fcast <- forecast(fit,
xreg = cbind(rep(26,14), rep(26^2,14),
c(0,1,0,0,1,1,1,1,1,0,0,1,1,1)))
autoplot(fcast) + ylab("Electicity demand (GW)")
```
# Stochastic and deterministic trends
## Stochastic \& deterministic trends
\begin{block}{Deterministic trend}
\[ y_t = \beta_0 + \beta_1 t + \eta_t \]
where $\eta_t$ is ARMA process.\pause
\end{block}
\begin{block}{Stochastic trend}
\[ y_t = \beta_0 + \beta_1 t + \eta_t \]
where $\eta_t$ is ARIMA process with $d\ge1$.\pause
Difference both sides until $\eta_t$ is stationary:
\[ y'_t = \beta_1 + \eta'_t \]
where $\eta'_t$ is ARMA process.
\end{block}
## International visitors
```{r}
autoplot(austa) + xlab("Year") +
ylab("millions of people") +
ggtitle("Total annual international visitors to Australia")
```
## International visitors
\fontsize{10}{10}\sf
**Deterministic trend**
```{r, echo=TRUE}
trend <- seq_along(austa)
(fit1 <- auto.arima(austa, d=0, xreg=trend))
```
\pause\vspace*{-0.1cm}
```{r austaparams, echo=FALSE}
phi1 <- coef(fit1)['ar1']
phi2 <- coef(fit1)['ar2']
intercept <- coef(fit1)['intercept']
slope <- coef(fit1)['xreg']
sigma2 <- fit1$sigma2
```
###
\vspace*{-.2cm}
\begin{align*}
y_t &= `r format(intercept,digits=2)` + `r format(slope, digits=2)` t + \eta_t \\
\eta_t &= `r format(phi1, digits=3)` \eta_{t-1} `r format(phi2, digits=2)` \eta_{t-2} + \varepsilon_t\\
\varepsilon_t &\sim \text{NID}(0,`r format(sigma2, digits=3)`).
\end{align*}
## International visitors
\fontsize{10}{10}\sf
**Stochastic trend**
```{r, echo=TRUE}
(fit2 <- auto.arima(austa,d=1))
```
\pause\vspace*{-0.1cm}
```{r austaparams2, cache=TRUE, echo=FALSE}
drift <- coef(fit2)['drift']
theta1 <- coef(fit2)['ma1']
sigma2 <- fit2$sigma2
```
###
\vspace*{-.2cm}
\begin{align*}
y_t-y_{t-1} &= `r format(drift, digits=2)` + \varepsilon_t \\
y_t &= y_0 + `r format(drift, digits=2)` t + \eta_t \\
\eta_t &= \eta_{t-1} + `r format(theta1,digits=2, nsmall=2)` \varepsilon_{t-1} + \varepsilon_{t}\\
\varepsilon_t &\sim \text{NID}(0,`r format(sigma2, digits=3)`).
\end{align*}
## International visitors
```{r, fig.height=2.2}
autoplot(forecast(fit1, xreg=length(austa) + 1:10)) +
xlab("Year") + ylab("") +
ggtitle("Forecasts from linear trend with AR(2) error")
```
```{r, fig.height=2.2}
autoplot(forecast(fit2)) +
xlab("Year") + ylab("") +
ggtitle("Forecasts from ARIMA(0,1,1) with drift")
```
## International visitors
```{r echo=FALSE, fig.height=5.5, fig.width=8.5}
fc1 <- forecast(fit1,
xreg = data.frame(trend = length(austa) + 1:10))
fc2 <- forecast(fit2, h=10)
autoplot(austa) +
autolayer(fc2, series="Stochastic trend") +
autolayer(fc1, series="Deterministic trend") +
ggtitle("Forecasts from trend models") +
xlab("Year") + ylab("Visitors to Australia (millions)") +
guides(colour=guide_legend(title="Forecast"))
```
## Forecasting with trend
* Point forecasts are almost identical, but prediction intervals differ.
* Stochastic trends have much wider prediction intervals because the errors are non-stationary.
* Be careful of forecasting with deterministic trends too far ahead.
# Dynamic harmonic regression
## Dynamic harmonic regression
**Combine Fourier terms with ARIMA errors**
\fontsize{13}{14}\sf
### Advantages
* it allows any length seasonality;
* for data with more than one seasonal period, you can include Fourier terms of different frequencies;
* the seasonal pattern is smooth for small values of $K$ (but more wiggly seasonality can be handled by increasing $K$);
* the short-term dynamics are easily handled with a simple ARMA error.
### Disadvantages
* seasonality is assumed to be fixed
## Eating-out expenditure
```{r cafe, echo=TRUE, fig.height=4.6, fig.width=8}
cafe04 <- window(auscafe, start=2004)
autoplot(cafe04)
cafefit <- function(K)
{
require(latex2exp)
fit <- auto.arima(cafe04, xreg=fourier(cafe04, K=K),
seasonal = FALSE, lambda = 0)
reg <- log(cafe04) - residuals(fit, type='regression')
reg <- exp(reg - mean(reg) + mean(log(cafe04)))
fc <- fit %>%
forecast(xreg=fourier(cafe04, K=K, h=24))
autoplot(cafe04, series="Data") +
autolayer(fc) + ggtitle(TeX(paste(fc$method,"and $\\lambda = 0$"))) +
autolayer(reg, series="Regression fit") +
xlab(paste("K=",K," AICC=",round(fit$aicc,2))) +
ylab("") + ylim(1.5,4.7)
}
```
## Eating-out expenditure
```{r cafe1, dependson='cafe', fig.height=5, echo=FALSE}
cafefit(1)
```
## Eating-out expenditure
```{r cafe2, dependson='cafe', fig.height=5, echo=FALSE}
cafefit(2)
```
## Eating-out expenditure
```{r cafe3, dependson='cafe', fig.height=5, echo=FALSE}
cafefit(3)
```
## Eating-out expenditure
```{r cafe4, dependson='cafe', fig.height=5, echo=FALSE}
cafefit(4)
```
## Eating-out expenditure
```{r cafe5, dependson='cafe', fig.height=5, echo=FALSE}
cafefit(5)
```
## Eating-out expenditure
```{r cafe6, dependson='cafe', fig.height=5, echo=FALSE}
cafefit(6)
```
## Example: weekly gasoline products
\fontsize{8}{8}\sf
```{r gasmodel, echo=TRUE}
harmonics <- fourier(gasoline, K = 13)
(fit <- auto.arima(gasoline, xreg = harmonics, seasonal = FALSE))
```
## Example: weekly gasoline products
\fontsize{11}{12}\sf
```{r gasf, echo=TRUE, fig.height=3.5}
newharmonics <- fourier(gasoline, K = 13, h = 156)
fc <- forecast(fit, xreg = newharmonics)
autoplot(fc)
```
## 5-minute call centre volume
```{r calls, echo=TRUE, fig.height=4}
autoplot(calls)
```
## 5-minute call centre volume
\fontsize{8}{8}\sf
```{r callsmodel, echo=TRUE}
xreg <- fourier(calls, K = c(10,0))
(fit <- auto.arima(calls, xreg=xreg, seasonal=FALSE, stationary=TRUE))
```
## 5-minute call centre volume
```{r callsres, echo=TRUE}
checkresiduals(fit, test=FALSE)
```
## 5-minute call centre volume
\fontsize{10}{11}\sf
```{r callsf, echo=TRUE, fig.height=4}
fc <- forecast(fit, xreg = fourier(calls, c(10,0), 1690))
autoplot(fc)
```
# Lagged predictors
## Lagged predictors
\structure{Sometimes a change in $x_t$ does not affect $y_t$ instantaneously}\pause
\begin{block}{}
\begin{itemize}
\item $y_t=$ sales, $x_t=$ advertising.
\item $y_t=$ stream flow, $x_t=$ rainfall.
\item $y_t=$ size of herd, $x_t=$ breeding stock.
\end{itemize}
\end{block}
\pause
* These are dynamic systems with input ($x_t$) and output $(y_t)$.
* $x_t$ is often a leading indicator.
* There can be multiple predictors.
## Lagged predictors
The model include present and past values of predictor: $x_t,x_{t-1},x_{t-2},\dots.$
\begin{block}{}
\centerline{$
y_t = a + \nu_0x_t + \nu_1x_{t-1} + \dots + \nu_kx_{t-k} + \eta_t$}
\end{block}
where $\eta_t$ is an ARIMA process.\pause
**Rewrite model as **\vspace*{-0.3cm}
\begin{align*}
y_{t} & = a+ (\nu_{0} + \nu_{1} B + \nu_{2} B^{2} + \dots + \nu_{k} B^{k}) x_{t} +\eta_t \\
& = a+ \nu(B) x_{t} +\eta_t.
\end{align*}\pause\vspace*{-0.6cm}
* $\nu(B)$ is called a \textit{transfer function} since it describes how
change in $x_t$ is transferred to $y_t$.
* $x$ can influence $y$, but $y$ is not allowed to influence $x$.
## Example: Insurance quotes and TV adverts
```{r tvadvert}
autoplot(insurance, facets=TRUE) +
xlab("Year") + ylab("") +
ggtitle("Insurance advertising and quotations")
```
## Example: Insurance quotes and TV adverts
\fontsize{10}{10}\sf
```{r, echo=TRUE}
Advert <- cbind(
AdLag0 = insurance[,"TV.advert"],
AdLag1 = lag(insurance[,"TV.advert"],-1),
AdLag2 = lag(insurance[,"TV.advert"],-2),
AdLag3 = lag(insurance[,"TV.advert"],-3)) %>%
head(NROW(insurance))
# Restrict data so models use same fitting period
fit1 <- auto.arima(insurance[4:40,1], xreg=Advert[4:40,1],
stationary=TRUE)
fit2 <- auto.arima(insurance[4:40,1], xreg=Advert[4:40,1:2],
stationary=TRUE)
fit3 <- auto.arima(insurance[4:40,1], xreg=Advert[4:40,1:3],
stationary=TRUE)
fit4 <- auto.arima(insurance[4:40,1], xreg=Advert[4:40,1:4],
stationary=TRUE)
c(fit1$aicc,fit2$aicc,fit3$aicc,fit4$aicc)
```
## Example: Insurance quotes and TV adverts
\fontsize{10}{10}\sf
```{r tvadvertagain, echo=TRUE}
(fit <- auto.arima(insurance[,1], xreg=Advert[,1:2],
stationary=TRUE))
```
\pause
```{r tvadvertparam, echo=FALSE}
# Store coefficients
phi1 <- coef(fit)['ar1']
phi2 <- coef(fit)['ar2']
phi3 <- coef(fit)['ar3']
intercept <- coef(fit)['intercept']
gamma0 <- coef(fit)['AdLag0']
gamma1 <- coef(fit)['AdLag1']
```
###
\begin{align*}
y_t &= `r format(intercept, digits=3)` +
`r format(gamma0, digits=3)` x_t +
`r format(gamma1, digits=2)` x_{t-1} + \eta_t,\\
\eta_t &= `r format(phi1, digits=3)` \eta_{t-1}
`r format(phi2, digits=2)` \eta_{t-2} +
`r format(phi3, digits=2)` \eta_{t-3} + \varepsilon_t,
\end{align*}
## Example: Insurance quotes and TV adverts
\fontsize{11}{13}\sf
```{r, echo=TRUE, fig.height=3.3}
fc <- forecast(fit, h=20,
xreg=cbind(c(Advert[40,1],rep(10,19)), rep(10,20)))
autoplot(fc)
```
## Example: Insurance quotes and TV adverts
\fontsize{11}{13}\sf
```{r, echo=TRUE, fig.height=3.3}
fc <- forecast(fit, h=20,
xreg=cbind(c(Advert[40,1],rep(8,19)), rep(8,20)))
autoplot(fc)
```
## Example: Insurance quotes and TV adverts
\fontsize{11}{13}\sf
```{r, echo=TRUE, fig.height=3.3}
fc <- forecast(fit, h=20,
xreg=cbind(c(Advert[40,1],rep(6,19)), rep(6,20)))
autoplot(fc)
```
## Transfer function models
\fontsize{13}{15}\sf
\begin{block}{}\centerline
{$y_t = a + \nu(B) x_t + \eta_t$}
\end{block}
where $\eta_t$ is an ARMA process. So $$\phi(B)\eta_t = \theta(B) \varepsilon_t\qquad\text{or}\qquad
\eta_t = \frac{\theta(B)}{\phi(B)}\varepsilon_t = \psi(B) \varepsilon_t.$$\pause\vspace*{-0.2cm}
\begin{block}{}\centerline
{$y_t = a + \nu(B) x_t + \psi(B)\varepsilon_t$}
\end{block}\pause\vspace*{-0.1cm}
* ARMA models are rational approximations to general transfer functions of $\varepsilon_t$.
* We can also replace $\nu(B)$ by a rational approximation.
* There is no R package for forecasting using a general transfer function approach.