-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDeepVisual.jl
126 lines (103 loc) · 3.32 KB
/
DeepVisual.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
module DeepVisual
using EDF
using Glob
using DataFrames, CSV
using Plots
using Flux
using Flux: mse, batch
using ClassImbalance
using Random: shuffle
searchdir(path,key) = glob(key, path)
mutable struct Session
rec::EDF.File
ann::DataFrame
bad_channels::Array{String}
sampling_rate::Int
Session()=new()
Session(rec, ann, bad_channels, sampling_rate)=new(rec, ann, bad_channels, sampling_rate)
Session(path) = begin
edfpath = searchdir(path, "*.edf")[1]
ann = CSV.read("$path/ann.csv")
ann = ann[completecases(ann), :]
bad_channels = open("$path/../BAD_CHANNELS.txt") |> readlines
sampling_rate = 500 #Hz
Session(EDF.read(edfpath), ann, bad_channels, sampling_rate)
end
end
struct Individual
sessions::Array{Session,1}
Individual(session1, session2)=new([session1, session2])
end
datarel = "./DeepVisual"
individuals = Individual[]
for indiv in 1:1
if indiv in [7 13 17] #too many bad_channels
continue
end
if (div(indiv, 10) == 0)
n = "0$indiv"
else
n = "$indiv"
end
dir = "$datarel/DATA/S$n"
s1 = Session("$dir/Session1")
s2 = Session("$dir/Session2")
push!(individuals, Individual(s1, s2))
end
data = [ searchdir("$datarel/DATA/_screenshots/", "$i*")|>length for i in 0:4 ]
labels = CSV.read("$datarel/DATA/Label Meaning.txt", delim = ' ', header = -1)[:, 3]
bar(labels, data, title = "Sequences class distribution", titlefontsize = 12, legend=false)
# TODO read from signal dataframe stacked vectors of signals with intervals from anno
# at 500 Hz (round(sec*500) is image begin)
# minframes = individuals[1].session1.rec.signals
function workSession!(d::Dict{String, Array{Float32, 2}}, s::Session)
signalArray = [ st for st in EDF.decode.(s.rec.signals) ] |> batch
for timeframe in eachrow(s.ann)
startframe = trunc(Int, timeframe[:onsets_start]*s.sampling_rate)
endframe = trunc(Int, timeframe[:onsets_end]*s.sampling_rate)
labelord = timeframe[:labels] + 1#label successive number
if labels[labelord] in keys(d)
d[labels[labelord]] = vcat(d[labels[labelord]],
signalArray[startframe:endframe,:])
else
d[labels[labelord]] = signalArray[startframe:endframe,:]
end
end
end
classSignalVectors = Dict{String, Array{Float32, 2}}()
for individual in individuals
for session in individual.sessions
workSession!(classSignalVectors, session)
end
end
indexof(el, a) = findall(x -> x == el, a)[1]
x = zeros(0)
y = zeros(0)
data = map(k -> begin
trc = 230000
v = classSignalVectors[k]
if size(v)[1] > trc
hcat(v[1:trc,:], fill(indexof(k, labels), trc))
end
end, [ k for k in keys(classSignalVectors)])
dm = reduce(vcat, filter(x -> x !== nothing, data))
function partitionData(data, at = 0.7)
n = size(data)[1]
idx = shuffle(1:n)
train_idx = view(idx, 1:floor(Int, at*n))
test_idx = view(idx, (floor(Int, at*n)+1):n)
data[train_idx,:], data[test_idx,:]
end
train, testval = partitionData(dm, 0.7)
test, val = partitionData(testval, 0.66)
m = Chain(
Dense(256, 256, relu),
Dense(256, 32, relu),
Dense(32, 1),
relu) |> gpu
loss(x, y) = mse(m(x), y)
opt = ADAM()
dataset = (train[:, 1:131], train[:, 132])
Flux.train!(loss, params(m), dataset, opt)
@save "model.bson" m
end