-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJRWTactics.v
384 lines (324 loc) · 8.76 KB
/
JRWTactics.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
Ltac subst_max :=
repeat match goal with
| [ H : ?X = _ |- _ ] => subst X
| [H : _ = ?X |- _] => subst X
end.
Ltac inv H := inversion H; subst_max.
Ltac invc H := inv H; clear H.
Ltac invcs H := invc H; simpl in *.
Ltac break_if :=
match goal with
| [ |- context [ if ?X then _ else _ ] ] =>
match type of X with
| sumbool _ _ => destruct X
| _ => destruct X eqn:?
end
| [ H : context [ if ?X then _ else _ ] |- _] =>
match type of X with
| sumbool _ _ => destruct X
| _ => destruct X eqn:?
end
end.
Ltac break_match_hyp :=
match goal with
| [ H : context [ match ?X with _ => _ end ] |- _] =>
match type of X with
| sumbool _ _ => destruct X
| _ => destruct X eqn:?
end
end.
Ltac break_match_goal :=
match goal with
| [ |- context [ match ?X with _ => _ end ] ] =>
match type of X with
| sumbool _ _ => destruct X
| _ => destruct X eqn:?
end
end.
Ltac break_match := break_match_goal || break_match_hyp.
Ltac break_exists :=
repeat match goal with
| [H : exists _, _ |- _ ] => destruct H
end.
Ltac break_exists_exists :=
repeat match goal with
| H:exists _, _ |- _ =>
let x := fresh "x" in
destruct H as [x]; exists x
end.
Ltac break_and :=
repeat match goal with
| [H : _ /\ _ |- _ ] => destruct H
end.
Ltac solve_by_inversion' tac :=
match goal with
| [H : _ |- _] => solve [inv H; tac]
end.
Ltac solve_by_inversion := solve_by_inversion' auto.
Ltac apply_fun f H:=
match type of H with
| ?X = ?Y => assert (f X = f Y)
end.
Ltac conclude H tac :=
(let H' := fresh in
match type of H with
| ?P -> _ => assert P as H' by (tac)
end; specialize (H H'); clear H').
Ltac concludes :=
match goal with
| [ H : ?P -> _ |- _ ] => conclude H auto
end.
Ltac forward H :=
let H' := fresh in
match type of H with
| ?P -> _ => assert P as H'
end.
Ltac forwards :=
match goal with
| [ H : ?P -> _ |- _ ] => forward H
end.
Ltac find_contradiction :=
match goal with
| [ H : ?X = _, H' : ?X = _ |- _ ] => rewrite H in H'; solve_by_inversion
end.
Ltac find_rewrite :=
match goal with
| [ H : ?X _ _ _ _ = _, H' : ?X _ _ _ _ = _ |- _ ] => rewrite H in H'
| [ H : ?X = _, H' : ?X = _ |- _ ] => rewrite H in H'
| [ H : ?X = _, H' : context [ ?X ] |- _ ] => rewrite H in H'
| [ H : ?X = _ |- context [ ?X ] ] => rewrite H
end.
Ltac find_rewrite_lem lem :=
match goal with
| [ H : _ |- _ ] =>
rewrite lem in H; [idtac]
end.
Ltac find_rewrite_lem_by lem t :=
match goal with
| [ H : _ |- _ ] =>
rewrite lem in H by t
end.
Ltac find_erewrite_lem lem :=
match goal with
| [ H : _ |- _] => erewrite lem in H by eauto
end.
Ltac find_reverse_rewrite :=
match goal with
| [ H : _ = ?X _ _ _ _, H' : ?X _ _ _ _ = _ |- _ ] => rewrite <- H in H'
| [ H : _ = ?X, H' : context [ ?X ] |- _ ] => rewrite <- H in H'
| [ H : _ = ?X |- context [ ?X ] ] => rewrite <- H
end.
Ltac find_inversion :=
match goal with
| [ H : ?X _ _ _ _ _ _ = ?X _ _ _ _ _ _ |- _ ] => invc H
| [ H : ?X _ _ _ _ _ = ?X _ _ _ _ _ |- _ ] => invc H
| [ H : ?X _ _ _ _ = ?X _ _ _ _ |- _ ] => invc H
| [ H : ?X _ _ _ = ?X _ _ _ |- _ ] => invc H
| [ H : ?X _ _ = ?X _ _ |- _ ] => invc H
| [ H : ?X _ = ?X _ |- _ ] => invc H
end.
Ltac prove_eq :=
match goal with
| [ H : ?X ?x1 ?x2 ?x3 = ?X ?y1 ?y2 ?y3 |- _ ] =>
assert (x1 = y1) by congruence;
assert (x2 = y2) by congruence;
assert (x3 = y3) by congruence;
clear H
| [ H : ?X ?x1 ?x2 = ?X ?y1 ?y2 |- _ ] =>
assert (x1 = y1) by congruence;
assert (x2 = y2) by congruence;
clear H
| [ H : ?X ?x1 = ?X ?y1 |- _ ] =>
assert (x1 = y1) by congruence;
clear H
end.
Ltac tuple_inversion :=
match goal with
| [ H : (_, _, _, _) = (_, _, _, _) |- _ ] => invc H
| [ H : (_, _, _) = (_, _, _) |- _ ] => invc H
| [ H : (_, _) = (_, _) |- _ ] => invc H
end.
Ltac f_apply H f :=
match type of H with
| ?X = ?Y =>
assert (f X = f Y) by (rewrite H; auto)
end.
Ltac break_let :=
match goal with
| [ H : context [ (let (_,_) := ?X in _) ] |- _ ] => destruct X eqn:?
| [ |- context [ (let (_,_) := ?X in _) ] ] => destruct X eqn:?
end.
Ltac break_or_hyp :=
match goal with
| [ H : _ \/ _ |- _ ] => invc H
end.
Ltac copy_apply lem H :=
let x := fresh in
pose proof H as x;
apply lem in x.
Ltac copy_eapply lem H :=
let x := fresh in
pose proof H as x;
eapply lem in x.
Ltac conclude_using tac :=
match goal with
| [ H : ?P -> _ |- _ ] => conclude H tac
end.
Ltac find_higher_order_rewrite :=
match goal with
| [ H : _ = _ |- _ ] => rewrite H in *
| [ H : forall _, _ = _ |- _ ] => rewrite H in *
| [ H : forall _ _, _ = _ |- _ ] => rewrite H in *
end.
Ltac find_reverse_higher_order_rewrite :=
match goal with
| [ H : _ = _ |- _ ] => rewrite <- H in *
| [ H : forall _, _ = _ |- _ ] => rewrite <- H in *
| [ H : forall _ _, _ = _ |- _ ] => rewrite <- H in *
end.
Ltac clean :=
match goal with
| [ H : ?X = ?X |- _ ] => clear H
end.
Ltac find_apply_hyp_goal :=
match goal with
| [ H : _ |- _ ] => solve [apply H]
end.
Ltac find_copy_apply_lem_hyp lem :=
match goal with
| [ H : _ |- _ ] => copy_apply lem H
end.
Ltac find_apply_hyp_hyp :=
match goal with
| [ H : forall _, _ -> _,
H' : _ |- _ ] =>
apply H in H'; [idtac]
| [ H : _ -> _ , H' : _ |- _ ] =>
apply H in H'; auto; [idtac]
end.
Ltac find_copy_apply_hyp_hyp :=
match goal with
| [ H : forall _, _ -> _,
H' : _ |- _ ] =>
copy_apply H H'; [idtac]
| [ H : _ -> _ , H' : _ |- _ ] =>
copy_apply H H'; auto; [idtac]
end.
Ltac find_apply_lem_hyp lem :=
match goal with
| [ H : _ |- _ ] => apply lem in H
end.
Ltac find_eapply_lem_hyp lem :=
match goal with
| [ H : _ |- _ ] => eapply lem in H
end.
Ltac insterU H :=
match type of H with
| forall _ : ?T, _ =>
let x := fresh "x" in
evar (x : T);
let x' := (eval unfold x in x) in
clear x; specialize (H x')
end.
Ltac find_insterU :=
match goal with
| [ H : forall _, _ |- _ ] => insterU H
end.
Ltac eapply_prop P :=
match goal with
| H : P _ |- _ =>
eapply H
end.
Ltac isVar t :=
match goal with
| v : _ |- _ =>
match t with
| v => idtac
end
end.
Ltac remGen t :=
let x := fresh in
let H := fresh in
remember t as x eqn:H;
generalize dependent H.
Ltac remGenIfNotVar t := first [isVar t| remGen t].
Ltac rememberNonVars H :=
match type of H with
| _ ?a ?b ?c ?d ?e =>
remGenIfNotVar a;
remGenIfNotVar b;
remGenIfNotVar c;
remGenIfNotVar d;
remGenIfNotVar e
| _ ?a ?b ?c ?d =>
remGenIfNotVar a;
remGenIfNotVar b;
remGenIfNotVar c;
remGenIfNotVar d
| _ ?a ?b ?c =>
remGenIfNotVar a;
remGenIfNotVar b;
remGenIfNotVar c
| _ ?a ?b =>
remGenIfNotVar a;
remGenIfNotVar b
| _ ?a =>
remGenIfNotVar a
end.
Ltac generalizeEverythingElse H :=
repeat match goal with
| [ x : ?T |- _ ] =>
first [
match H with
| x => fail 2
end |
match type of H with
| context [x] => fail 2
end |
revert x]
end.
Ltac prep_induction H :=
rememberNonVars H;
generalizeEverythingElse H.
Ltac econcludes :=
match goal with
| [ H : ?P -> _ |- _ ] => conclude H eauto
end.
Ltac find_copy_eapply_lem_hyp lem :=
match goal with
| [ H : _ |- _ ] => copy_eapply lem H
end.
Ltac apply_prop_hyp P Q :=
match goal with
| [ H : context [ P ], H' : context [ Q ] |- _ ] =>
apply H in H'
end.
Ltac eapply_prop_hyp P Q :=
match goal with
| [ H : context [ P ], H' : context [ Q ] |- _ ] =>
eapply H in H'
end.
Ltac copy_eapply_prop_hyp P Q :=
match goal with
| [ H : context [ P ], H' : context [ Q ] |- _ ] =>
copy_eapply H H'
end.
Ltac find_false :=
match goal with
| H : _ -> False |- _ => exfalso; apply H
end.
Ltac injc H :=
injection H; clear H; intro; subst_max.
Ltac find_injection :=
match goal with
| [ H : ?X _ _ _ _ _ _ = ?X _ _ _ _ _ _ |- _ ] => injc H
| [ H : ?X _ _ _ _ _ = ?X _ _ _ _ _ |- _ ] => injc H
| [ H : ?X _ _ _ _ = ?X _ _ _ _ |- _ ] => injc H
| [ H : ?X _ _ _ = ?X _ _ _ |- _ ] => injc H
| [ H : ?X _ _ = ?X _ _ |- _ ] => injc H
| [ H : ?X _ = ?X _ |- _ ] => injc H
end.
Ltac break_exists_name x :=
match goal with
| [ H : exists _, _ |- _ ] => destruct H as [x H]
end.