From 330539a723d15cb2a6ca909be11f14cc4e288322 Mon Sep 17 00:00:00 2001 From: stephenturner Date: Thu, 22 Aug 2024 08:36:20 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20stephent?= =?UTF-8?q?urner/biorecap@161f4dd2db9c8a5a2cd6c8baae279764ffb753ec=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 404.html | 10 ++++++++-- CONTRIBUTING.html | 5 ++--- LICENSE-text.html | 5 ++--- LICENSE.html | 5 ++--- apple-touch-icon-120x120.png | Bin 0 -> 10037 bytes apple-touch-icon-152x152.png | Bin 0 -> 13628 bytes apple-touch-icon-180x180.png | Bin 0 -> 16805 bytes apple-touch-icon-60x60.png | Bin 0 -> 4297 bytes apple-touch-icon-76x76.png | Bin 0 -> 5569 bytes apple-touch-icon.png | Bin 0 -> 16805 bytes authors.html | 5 ++--- favicon-16x16.png | Bin 0 -> 1195 bytes favicon-32x32.png | Bin 0 -> 2111 bytes favicon.ico | Bin 0 -> 15086 bytes index.html | 16 ++++++++++++++-- logo.png | Bin 0 -> 39473 bytes pkgdown.yml | 2 +- reference/add_prompt.html | 25 ++++++++++++------------- reference/add_prompt_subject.html | 5 ++--- reference/add_summary.html | 5 ++--- reference/biorecap-package.html | 10 ++++++---- reference/biorecap_report.html | 5 ++--- reference/build_prompt_preprint.html | 5 ++--- reference/build_prompt_subject.html | 5 ++--- reference/example_preprints.html | 5 ++--- reference/figures/logo.drawio | 19 +++++++++++++++++++ reference/figures/logo.png | Bin 0 -> 39473 bytes reference/get_preprints.html | 25 ++++++++++++------------- reference/index.html | 5 ++--- reference/reexports.html | 7 +++---- reference/subjects.html | 5 ++--- reference/tt_preprints.html | 5 ++--- search.json | 2 +- 33 files changed, 102 insertions(+), 79 deletions(-) create mode 100644 apple-touch-icon-120x120.png create mode 100644 apple-touch-icon-152x152.png create mode 100644 apple-touch-icon-180x180.png create mode 100644 apple-touch-icon-60x60.png create mode 100644 apple-touch-icon-76x76.png create mode 100644 apple-touch-icon.png create mode 100644 favicon-16x16.png create mode 100644 favicon-32x32.png create mode 100644 favicon.ico create mode 100644 logo.png create mode 100644 reference/figures/logo.drawio create mode 100644 reference/figures/logo.png diff --git a/404.html b/404.html index 8350653..13e4761 100644 --- a/404.html +++ b/404.html @@ -6,11 +6,18 @@ Page not found (404) • biorecap + + + + + + + Skip to contents @@ -44,8 +51,7 @@
diff --git a/CONTRIBUTING.html b/CONTRIBUTING.html index ca02244..937bc0a 100644 --- a/CONTRIBUTING.html +++ b/CONTRIBUTING.html @@ -1,5 +1,5 @@ -Contributing to biorecap • biorecap +Contributing to biorecap • biorecap Skip to contents @@ -26,8 +26,7 @@
diff --git a/LICENSE-text.html b/LICENSE-text.html index 1d80f37..02aa11d 100644 --- a/LICENSE-text.html +++ b/LICENSE-text.html @@ -1,5 +1,5 @@ -License • biorecap +License • biorecap Skip to contents @@ -26,8 +26,7 @@
diff --git a/LICENSE.html b/LICENSE.html index b737bb6..e8c1414 100644 --- a/LICENSE.html +++ b/LICENSE.html @@ -1,5 +1,5 @@ -MIT License • biorecap +MIT License • biorecap Skip to contents @@ -26,8 +26,7 @@
diff --git a/apple-touch-icon-120x120.png b/apple-touch-icon-120x120.png new file mode 100644 index 0000000000000000000000000000000000000000..a1a1f6057b67d7c8b8cb5acd73844e918b6ab901 GIT binary patch literal 10037 zcmZ`L0N!)}Kwu~U@CfS)+y?;MK>)y^5dgrG3IM!!%4k*QgMD~sA}c8dc>8zd zbQJ%D^&q=R%ZnrLqX6-k=~y%<(E$M3IcYIrHP5A!OfOIM*_Oco+cUr2pI-32L=prz zVnP|+d4a)m#H3Co1l0yejurN26-`UF_GKLv-@rL0NCZIil5fK~NI*4-G!cs7L>zeO zVc&56@~0sI`VdrjO0$x7sB0EIwN1Njg+ZT)6;;N~RX^GN=n~^;cWBrLzl8 zcS|>CP9PIi*zrn3#545mp{{*v4}0W3v>=^ESBUT&C4PDZ+lg>UQg?%$;+M^(nTbnj zyU#SW%Y~-4i)C)2E_TF@AfZ2NgrRGPTMPe}$hn}|?(x8?7V=%@Qry|aDnJN|FT^92D9ESL8NNSkty4l(>G3m;k{btu=SBDy5!VULOrj_U%6=R$c7$LP%Dh9nu7lBS1~@9k{Lqmzix!Ter$z`XuBXB#@LP0jovtM+hK$Qkx%cPEc;++NfLE-bmdcLKxz55mL9Qf z+NQ>43i&&(yJpb|QL}VJNXQp-`?EjM>_fh>^y>_~#k0K8J3qPC^4V~E3(1v%TLbu_ zZGtV^DfjsaIxhZi4*{!rhIDj=pxs?wA|EIXhxfHryx{VG-wv-H8w^1{gKC}6&#EFl zM%R`IJ|!+p;{{N8`D${akczs7=f%;g_V5dQx|x7U@$u3+OmVerP2bx1CWB0k?6-E5 zp6jR5laZS%3I#@(ti#fdaAVc46A8B8#N>H5-$ci}; z{3`AHB!|x&n58xp^E2NN@@Ic=p^e^owZd{O+ulZPpb27ed3(fGZT8n^{Vp3~Jk$hj ze)FY6RmkUYSoz{z6ktueRc zGW#7T+R!GZ5>`% z=9;EBs5@`{$7OBle#@z(n_XPz+0&K?oS)ufF5Oy2qIVzv38pKpo4Q!kc|C4!qyI5g zx2K(HFShVVYVnfJM)jyS6krf?qLDcnAb{JGf)Mcc>Gk-$ti`q0jFpIQyL=)`SnS5@ zVKc1#<&d*6pbf69wf0kBSa(&>%9j3?7~&h5XK!a(Mco#?+-}qlQ=PH<<1SvC!>eHK zw~d#7qEP`AK2GiXvz1wuwei?TMPAwBOd8<*SN;*3G_;5t+PFj)nz#`c^SAdqtNF%2 zpH`Cx!4MjH_i5!i{4M#J-j11L!c+yawY>^xyiP*RRY(UAT*>eKBQe2ydM}f+C%InG za>_RzuWgSHiA=%PIVo?UsH46cBnR9PYgko5 zrwtz!`~m;_XBJFHsH;;^!NS)UT>Mp|V0HD}4JiS|w>z`oAQ=fgpU+L}cN?fspSy8Q z&(pZKFj3cYL1<^cJY>c1aIP6Ju(P}0dxyHSOA#t0K`$fe?+Q5caCwnONjZ{~ zy|i|p+QTLilhOHg#@5Ei$}H>Rv`!}1*UgD>8_?8d{O%XhsY2$t$C)t09!1o=?4i7= zvZ=}Ml}z!2d0SXB&|@7Sdf_SkdT?WjDxfYUG)oH3sMJ|6`(k$gWGt&rpeK0Cdg+3- z;o(DcGoyQ`r>T5wFk5^4UPKu&N~N#+n+O9+#LVl=0gd%Fk?&qs2muJp;fRG?{DN7R z7o2AgpHY#qO%s8p zVZ96v5cM!dG#~+Ct?RM{*69=03`oj;Ce{_&71(%i@}su#riejF&n;R%O?R=&@+-lP zd2@$>ch+*s+6$YQdPAut0~7eqyy5fr-uwrKQW>3PkLyzirM3Oc4RJq>#=_Q z$OG94Uq1c2%X`*Gj*p;nd27p7?KUL{XSL24a`kv4DpkV3wskUJ{P`{>1)Sl7Ly0J& z48lYZS3a0K;v>7?IU{mDk^lCMn6=YU0{sd9&-eh^0;P^-L~MzHBSDKwI`f++ZdKPg zGjF3^Nz{c+dI;;Px651NI>%$UGm5w{3NKyzv#Af0-EMLWBK&ObI?O$}y3B}^ma3m0 z3=0-65_sX=9rtfI+;InIx*d6uy*=D#x7gjIFw6e4+2>R3O`vPgdwqe76@;gSw^aw` zQ4thjJ74&|s?ID!zDMv0ue$(C0!hq9UT?l{&88|Vi2zz3=pPG5mR?x`{4UvJw|6)m zy0WOa))ceR-_?5d=&8xqwb301oe@J{BGcHO2^d+zV~P4we>n`1;1^{o!8;~ zTTe|M{3CX2sI3E0g!KpC^EGCUCc8~&*DnzlnGY#??4U&OGqFg)wAIY_Io8F zdmJbKrYHx`2y-5&;}jpbd7JEaJG4JH?_Yj;7@4JZ_OYR_R#wyM^7!Jq?n&G?Nz7w{ zp{V#v+C_!~kH~v=*6ezJfZYEE9SuG9e0Ma!vO9kC;>m`l^fOB=YpUdaHyjg36D6ra zf;rL2Asje(+ue+rW{+StC#nZTiG{ZE)I`0hAi+Mx&DcF9WT`8lEA791#K9`CoP?Mb}@!uW}m*>>4m9#(%eiP|(Y z($n#j3OfDJxtt{3^P>+j1a9+u>()~lNHD_*e(R;=yPCFJ^010Xbh^1QeK-k$T%Ckh zX*Kw=%L=3pod^a17Q36@q$O(=5Q}G|gyo|sow`!=+-V~PEm5Phm|zXe5186D^Ln;6<@eDRc5ZE+eFcl$G(lUE*X|BI_; zJH!k4ksm%V5sw%ZDavXdNzZ!#WvQU4Z}MdCWUdYwqL>~$vopvkuTga$YGhv0)6S`b zo?P2FWvTs7m}m+M5>kBPVcIo$)A}L@wsYR#^+^!X^QF@F$xt2LOvLl`XL~``AG4Gd zD9CFco7)c(wIQXJZg)Y{py>YbaHjlvLKoZq#(Hv^9jf%@TcW+A2cbp(@oGxuK<9C} zj(Mbwx0g1m7dP@kQVT&~y~hc6vEv($4$+Gt%5u0?$EK4ZXqu(>k8KP z!OT*F>+Sl+hBfce;45SUF`HkF+sEs&{syc`1UtNHP#QdXLdX3j#;89hL4~Zz#olG~;RrvD{VntBazBL zaKEvtZMS&up6QzRO=m+{N@ym-Dm`D}g%i;-+DJSoQ}?Sf(LrA84PTs8nr+WtoOByRdXlWIUUO%9=?hI%Ac7A>b5_@Ti1q%N9h0l}gM3Js ziC}rrVz!@8=hk>iHZ>3VCRpYY~f-d|IL3Oz3=K$YCI(YJYsi-HlFapS0Cp; zFh3ZauVi?`DH!kSk;maZtt5_-as8UQZO!H&Xq>)T!mjnwUQF zC)qi<+X(2LAy>H!IRPB)P*m#M1W6(xxv2UV-%hQ|E37*20hO$`nJqh=rgz1o125Qb z;mY&tQF#o$Z5Jdkag3%y?5k?Y%G$f7N17wa`CMZiS&SuI`szr zD-IZ1J7!K$nfAQCgHDzyk~7b2FGLk0)?{GnPGPxjT~sgi!+vYe)N`NRy$xoaVVVq#y%;UNVB%Gue?vdj z*1@!+`>~IiM_=#d!C+3oj*J>@=t&F$w5ObB0s8ThLyf@lltn=HiHL zn7=wsC?`S4oHqS1x4k`)Ae&iCW`w)r$(eyZr8hYLc;S+zO5p{6lyH2gmbtQh*Zb6G zpFQJCo>P(W`P7r6^ZtfEI1=s+|L@%oh?2nl0zSu)mV4*WmoiHzP*9_l z8dc;=gy`clyUHx*Z-%I2e+5VGo0z+uTk4`Q=0um5lr)#q!u)MPp4$XRj{}yJ7w6U$ z|Ap#NO@^JOw1><5$gYIC*1Ml?`;)R0#4bsCFL7ZmTUn-;O#vB9GrS(jQF#k@)1=co zF0!HVBfsspm%n!<@_sK^(Pr4Wl=s=&IURXjuMNEXobd?v`x_QGC+7mpR8`ud3dM*sHu=%eBara^hQH!K?UA@@~l zT_yWnnvPhoy!B*E{b-rS@SJN{9!aK#Nofo#CXsS^Qbw2zIuaIRI4w0C_v^z-cw z?Wt>YS82juChEIVsECTqhrR0qXpU@Ej%rG2s2d{FCt{csd*8L;MAC4vW+{OJ`*1}g z6f(VR4sFY|TY?)trTp-5A}=ydNX?Mx3KDJhy`L?B9EL{syB8Wy?#B91_2?>@np6i1 zt94;BI~5d7KYWe*>A53y-3wn$gBN6x8l8QQlk#dtW2?z(Ih2eEB;yY@U%YEI*=~TH zf}p7e;}c$w-N>%a{(Tb1y-}#3`B@foa8gn;zd`E_Pu#Dw_PEq$t-)2^$Y`>?T9*SV zv{=$2SX{Wm@w!*gXfL^Z9b2x`naXwW5tbzo(+Ie=t|z?k?2t>nB*DY`33hW5bVilF zCIN>ArCl<82-X51xA z#27PI97M%$7PhTi50{vjqIuRFTyAcY@euE z1%jT)yfK0(D7nKfr|~xN@u9+2pN; z+uUIqks={TL6DVx+ziml{R`E{nnZ0Zl+%9u#Eo2x6bw~HSyZb`;Tui}t}akV{XGku z@jIvROXo89Cf;|{r2V-i{iA%ONj?*m(NAPL;^>6%1-RYBtlf?THBLRgy{$c&Tb1;z zti(ZK=4s6#;``o=;H~twVU~9l!5h6Rb|x{T)64zFsOaME@yV&d>wA(jz}{SnBJ0g= zktx~g2|T?pLd9w_tQ!AWD(}Llb8ZePdFf3{$ZFJ~Q?NA-7BXsh@cv(%Wb+&?;fd#XjHTqURb6fk9pN~KOeyK;zJp1WFj1Hb>Ej<7UlP@?qT8>5%JPmS%V_-X zc01*~%Hoqr1{QKSF_r83hhXu=l2QpdInoPf=jIHwsCPvMQ&e1eR*Y5`hzQMm1}g?^ zIBA1Q)%f{p)Pv-rCMJ9aaU|lYQnJXOf!Y$@$re_$h@uU5)P-WI6tvtyp`kQ<4s0S) z1%;+W8WpnvmQztEmBIBm9CFd?5$oh3RKRW#83I|E&^!vLieA{9BnVGjtE4noXbFF) zFf0*IoB>6gw<2=$&B4kYQPw&a4LxF4Nc|&2R8%}uGUpU0eQ92n`%jykS={J)B?2Wi zf}rX)E4bbSlw1n6_c3$)viR33%#2EU&M}ZxIE-ZR!pMVW)!&T=X-HNpsTC;IFn?r}FW`imrPFc7q5gyN z&cnFGzn~sR1Wvp`*W2ww0Vj2vIsJ*$Y9TkB% zb^4VOj&>GB#W12DW{?mHf~*u!ykgpwkvgkh3CEi@^#O<+QgUhr)HErhe6K^<6SXVk zOpk{~P6Nc+a%;VK*i=%doxWkBpqZ|v;#(L+6-zYBm3TJOZfMq_z=`VUrD!$Kk|7?^ zrghdz@@xQwe||T6U@!mNSV{cRh%L^U-YqweLr&a_n6-GhF>k!&ubKK$skuoy&ooC_ z>pDZrZKx^@yXQz(a2UVV~OL5;H72VkrSO`m5`Zj|P| zO@y$DqN=U^Cs!01B@AAx=){AP20pUnuZlE<9h%vv@=A^QV7T~=s3Rfq9y+E^qsp9` zvpFHw;p~{a`oY!*fx(lR%>_cvi*xn4B%va3v1B9pCHo8`(vec5-5lz?+`p8L$tX;! ziM>F^sBnMGZqo zK|<&s8p=ZhMN=dfnttF>5z+QSN}ma-XYOrPU;yUT)&^fnb;d*qA^8W8MlrF+D9tiC z_o3jUsi|0dJ3THn@VMj>;721Gnjnu&^f62r2v61M$;ilB{Y(y};Aj)okpjxim0=5x+~y3+n5mL+@oWdQEjVBv52^h$K=k|DZ8DI;s^nwPZI7TXi5x z;{2LJC?1vk+v!fqfB8|skd|G*QeDOfRZB%hM?=D#BG6byX%*b@yMOSp1RO7JY)lE; z#>QJ69trR_>olTp1*w#hPA-;W9|3W;lLFL6xtR%7N}YvGIMma7x9O)w+TVFZh5NQZ zFGNOQ0b{%nh$s)dpQn0e4A!dww?~##5&_4>!!8&jAk37EBMPX;E;c`C){DLqeRRS-bUg)v)!`FH}gcE*)Iwp$HB{6cG@%uC_%fIIk+OIWR0S+Qp__{Y+Zr9 zD&JY(>qXFavP8|0q&>i;&-C@^lYn9<(u*iVqYJnRJ+h=Jab71FCQ^5OIe`S1F0P(W z4F|rj2N6?z^Ymjs-Km1v0G04!%72wLSl&YQmz&}fmy)?orl&X?c5qoR6aOHHU9lhq zQ{L`vT(PEoV)Uae<<3FP9utc0iM>&BA!SO4lM4arE4_bPZSdtY)o9;rYKNB^W8P zv>BL^#Ge>Pp>#N$%A0Mf+8#i4DZHhd-t2|WwJXkI{D_&MA1~{87zZ@`iyOtyC7+!U(bq4){2`hJJo{-Do+B@?WVdwQ>z_teZ;f)UdRoBPn6?x$|* zg?H*xzxCQE{heq**t~vgnG3uj5Nsp_lYz}JSRD8z-?2T$`A$HnDQhnf$C7VKN*+b% zh7KP^*K=#r$qV0V*_FXUoGjVEKR88U(+%u2RJ3tP8zdN`bU+6DO)=3e6p|+dCbc;E zqdw-n!#!82qX1S*>NG^|L@Y9q-Ii`xINNd)D}=via&g5UrYMDybp8Df6`%#8&E%@$ zAJqXy|6^Qf!-DAP;_=>!y0@Yxkx{9oe`ovssWjgq9howxb|2=u{JNlRr0>*s3?-n_ zON`mH|Ne#C5NWp?k}qWr?GV#p+shNxP07otg! zLg38Y9@Nh7_C8%MJ1kI0nr!H{qVKOFWv;1VwcH;pM_MOl25mD z&rX;iBqFo)qDJ$+c|L(1fn+`Qgf=>bzrj84x17KeV_2I%#140mo@(Si_JQD}rC$w1 z%#o~E*%S;_ItUE4eM5~#DD@23vYP*s`o5+pF3z2GKNIjteRg8E^LPvCUy+KV$)S|^ z2NSYD?`iD3EBxqv;_33Rdbufy(f8_?Jq(Hw5XSB4+Q^^6@54~u&#!ejIB19q4Szq! zo@ygt2_E=K;LZK5d-%-ASD(`SAI8#c>q^#>-d6i&Z+>~k+lRu3#r{GMir+_tz~gn9 zgC5L8WEQ;7tOEz%9hF*uNErH-C#6uY+epKUxw08>hVBmZ!@}!v6%3y6WVQXRH_hdk z2{wzu9})X#_poYFqr>yyZ8nK^c3&>V_q}nmskSOrr}}tTWJCEqft2{RufM1t9vDu6 zc+*hILce*P?=zu+AwIPWu&PM)b;8nvZ!P4^Vk$$Ek%hHLKkmEL{1%nMmp_h21V&riln&Ff> zOBL4J9C2iMzbehiMxPSq`ql$03d6D%o#_#z?=0Xx2l89CUjA~4%6U%|B7aRm^?2st z(|k>zPbBD!_8x=GMdz{nzjL!vJddvhDmHfH0Zj9ehvgk{%r<_|+n_@9%} z4h-c9O1j^|%Ds)ei`V9MyF8`8q4P$Ntww=6^5M)o!7)V%{RqK9h|c56!Z(NMA1OZH zkj~nBo*X+QPA}YVdDETCD_T%vdy%6D>AXR>M{6gyP6y}8(b=FhxDYmBS1ZfG00E@` zrWfar<@1lG7WabOIe$#N;^?6DD8s6)R37hH0kF`V*l)%@x@`}x_4ZiYtvI1bjMJgr zVcf=|>yp$~gOy%S)3O*|*2)CN)Oya~eDgyX(4gY?ylA}rl6nk#7%WhiMg$5Nf#t5i~G8*4}SE3^C z>mppSYm6pH+6CJTGBYvTMey(IF#Th9S-YikiUc&Dpk!<*uQYh;WSocRre`n{@N1L=Bcj2L^FO)%&ETp=FoMBb+!5CG!k>#QrD8U&BJahGmWj*>~Gu6 z1I(;E)gg`RqZaEJSKxjCg~HGXNdk8Vg5P-Q`FvF#^(yLGm@}T}t}MD_PJ{fuU`HMv zV^FlUkUtKgkb?+)n04rDp^300k!DP%^2DQ4;fe=X&k}nLmM9v7L3mcz@E-OK>bAXJ zSj(4W!IzAE4i)d6cO_OPHi7X`{OBg{Z?}a|heP|#y!KwON8;wq{*1xPS`aS%5^x+x zA4$8?95$vNTp$tE#3vcdvh_f4@_0%ndk&lMc2B%gk~Q25LDI?{5d^u+73Z+3Yb z29p?RzVA=(*Ab#S$BAEA!FC}O#K3IE@F}%M!o^dU|G9VDA>^^2sQgnavZ4;EWNLQA ztb=TGSSM_+LJLD9ATMk2meo}dSuZ?hgsl=p1VL-u8{I1p1-|p(2$65NAGZwt9@oz) z>U~4#dkrph7V7wiDWi20*K#v6b~EQObuouE01glbCkqJ7!U0la2lH@p@_Yt=0)coy zAcfb-`Ts*;?`URi;r0I$2%=zz)h5~$&{h*}-4qyif)Xe-penE}w&aQP8AU(fVltQlSvZ6)GGF94^)`BWZ17P)m41^QAvE z0y`XibhMfx2i+7TwDc{#&@t=`G>?c0Dx|Q6y$~S~MwEs-9x3~6{f)y&LRdp#uTfyl zUVg2o_CCq+d$OUzBBDDH7n$fc~A5+(aXtud}@|I7-qG#1Tj_g><*zc`@HKHDOkK zw85Z3&%;8p5PEVunB5)xvgZ4BvysPbOKm7jf=Q&$=JNvGhn>Hoi@Vb;0 z4O}{azTJ>_oxR+DKO<=6hzdwHk22+ZX{oxKdUqV zqR?2~k=tmdmbK=A5o)cES_4`gcziAxJKT)pU`^0f>~3(k94gF#`jh2iKT^NhpLwIa zDE#uikwRQ}(j`|n*6Eu=NR>3&qnAgRI3WKpst&Ukt-Jg4psMBTGfp1N8kZx~1qigH zo?|LW5qTI1*XD?m$u~nfZPkyqbLEl8z%&fgiTq%cc^^_mUkmMUT^nsPDBf!|Iu)pb zKK1V{AVqLD*Jt>qrbzPOdb~N~+b}&uE}rFW>3XPo*LB~3I{I%Jm(3&IenvM9elL2bYJ=-IH33nE?`5t#3NC2mXZB zi06-G8Wb`3T|PWKKsv&1P&}IIk5+Ws6e7`G3VmogCJ*%=Q}cE$|K@xw_Sv-a4>5<3 z{4rANjsGbAF0FVZZgy?snXQq(3X0|O;zEC-Tih-fS&1l!Ab}98xeh%POgs0J7}XP8 zkvEnP%y@###g>ILF@2>J9cPMRNXfccGKEWSu}a!zfI=12wMp) zK5-~i6{%DDc;{eOY3Cd4bs_617#amTtMWzQp2c};&B(RXD)hlsIBWga6^6KH5gd^C zXjGrPbpD%M$HHd#k3s6+;`)IbsQ4};%z=erK)dM~LNohu^01IFnQ~3pnd85!DPCLv zqYX%bO2EStF66Hl_ZH57XQ&q!s)7>_A?ORC`qYJ=^NPmW1=q*a{KTeQJ`CO<%Ef5% z4ApXzUfzsDn}W{~y~T82n&>S>SaQRBdGR<89mIa%Z^Z&DV)9#&h`=u&E^~H%oHJ6B ztH0abqY3N(GnO&B+SVHiCtrBrq*!lf$y0 z6JHuH;F)7o6YB;qO-m0hB$_b$YuEB4d7rsKe%_rrjlPJazCF5z?#;I|%kjmqrH_ZL zD{7QEH;0!Kh1ai$ckHflF+s&zgzGLoA#+RMOAskyD&pR>;>uYqrJKW(7;Zh)d z*74nLLM3LvQKdu5-(tD#d~VR!Hfy-idwfX8r1KxB$V)oM*P{pp;gh5c4z~sKl3Go3 z$zJSM_y@if|kdPNZmSFOCy#X}>hcF6o;)9W&j)udRT9QP{BEM<7q5Cb7%>UMR z(Aq6(uO5_)Th;w5;z|Cw74~NW*HP;Q!i1iMxH9o+D;5Ybm#es*u;fm^Lx{b+Ysg!> z3)$V@MIS2eb{&8XYILLvnIiyu=?F^H6%~ITfC;XS-F>GK-2v=U-aEAazrEQFga7wvTJVc$c@oOJ!2{mDH-%jV#^l3H-<;#2D`z2V!N z;K3lF$YP(7=Tr~)PXpfvBiHDqhvTR(8M(sO*X0MT4iSs|QR45kBISJa`P~dzaC;4k z;VTb=abGWDO_ZRc`+tmB5S*_T<*U?-MpukZb&Rz1Uz+xx!X28P`O3e{zh@sP6M2u= zQLHB@!6BAW=e#ojh?#*qeYXoN7*MB!QS%k%m1g+^r-(#}(!;SodKDtWmw3vzqfrv4 zWgN#{oBQg8J~Ipy>zuD`+!%Ymx?aW(&&}6RuZwcM9Q&iqQND9qn1asm#}-?SU_-y} zdu|0&b4b*cmv@Ngzc~?D3wtESIf2%N8G46G^1mGCY~_zAH>pH~0eLFn-U#sVK>O-R zXK2%P?$}(iZ}8>iA`O)je0OBw?Vrt4_De(b8=1{r(Ji#ukel_MKuit zW7op#+4$Y)%o0b6#gIo&K#s7A;MOfpao~7Dq1PNtECT zu|da^*48tM!HX0sZd_EfKM>h0Lu{g8)6~;ieMQuW`tw8@E#ml3*6&DrrUhWL&(}=2 zw;LOF&jx}gd(J%JPsi^^RC%0?CUS)f4;uSE4sLEJ5QdHkZ*vKMNJr+8Ob5$^OV zC`nh#a(%5w^yN>+@#0r(kl8%>TTiTbB_$SlUi6eUA_AyL_6$=ZtuZ(LL2S7dDqW3X zdt@Z}>8F6pdfU|xxCtY(N-czvt@x_Sqoaq)>Mv4nBB{9%Bb;mNoOxxH6EV?Io*0># z3O$~qL8svnz`DrnDruSG_X;$&7FyA=v+x$03xB!KS?cRqWfFO9v}aGJ>x_1N2=)>y z(;@i1B!^MDaXut)V9Hh+)F__x{g}eOPXak^aEy3Cq^_i z8CK=LhVkwT9^Y1cP-j4Vcx8VtH5P6g!z}gnEs>*$!bI}_sBkH$DGCL0kdUt^I%>aX zalZdEGNVm%N~`$s+epU(Z7n|kDJua5w)o;3u6R2oUA5*H*SQ`kwt?;Qi}k)|%xp6+ z!cC7HbKz%Af%@r-icH} z>|}D8N*-)+<0VLP3#oRs5eYQY4MaB`Sw*W!(^1dzYw8hKkH-v_z7k-j6q|2hEGGk^Twx`FO248NVF*m$dH%wbqzV5l_11{qo!0iJW1B#JvwZ5~+u^7}1(%OpH^2 zd-aBm>6!X$yV~0Ne0iVoap6Va=AR}NSKH8#A|ESW0>S(9!){UJU&<=?&eNj$ocEFL zey)QSW--f0l^W|21zrPo1!DiKyTvV{rfbS1`%m}sVH}3N{;$5~&*>POesrSn?-obF zA)geJfD4PYw7#Dt#+#GrejHZeEO?iH(Lw;mBQ2JEks9neOE?nRo@kxs56W|buesm5 z%zf9*%0547IML1gd_FD#&sbgVY}vnD{Clz}$3sRdERbBvAn!E>6XdyT!)HxcI<7ZP zBv92NdK=Oj%MyCd^LTR%`C2n5)fXXiKh2Q(;XpvJ#0e+5Nni!=Pc2=`YAU;1YRziV zao#)I;dlS@p4A>CHl_sYPKsFks+O{(sQX95@78Pk72!mfcWKHDjyz3y9`B&v*8VtL>I?PaO)6xP5pC53-pZC@^&5Zm=^FFKe zZEWAJ?{2=pUw5v*=;-P(y%COiP1(CSn>&l}@$%>8vcjp&V^%Wu;rHP4VDZ2`?0?T= z++EjeaUNgAek-?-Fc}6oy*cf@CoubVZ8@}m`r%GeJb%8ivbH6%p0aOq>?I(_vLAZg z`HUAH8WlV9uG%8W(g%&!ax&@Q>HZ~DKEMfGnl*_mgxO%-AGPP!)S(X;+765~Jnox-U;g7??9Qy=PI3=VQo#n4HR9e>=jn zofUk4e;rNJ!r(^;dPc?Go_X(1&m>TYZP94Gc8pt73$fg7n~w(sTOiaZ6)s@KaCx%F z?t5%RUHEoR2_neQAq$zix81`k>F&;4NnTIu^b>5+4}-8aG5BG=+|L(#d>6Yqk;obP zOO$|#x$x;bx)@Ofq#{Sq;z4lF!jq}T>mfZey+3y^DG?v?tu|e49b&(cwpkD~P0Yy1 z-0U+e(rbD~PP|h|L?zPS_j2_<8gJ#kABtCYpH6C=X_>dX5hrm^^X>N6@PRiz7Rud4 z;#bk~@V#xiv#B+Y@WFHz3wd{;Cvp-+# zL_!sz#{}=?I597JSAPTL)K(H7l&Q`H*VIiAe#p)YKe<&6u%ic6{*=qiBKox2$*mnZ zzAdHKo}fK8*b)|+pd3veMfjT7L@{3mf{aFD5*p>p^+Y}&-)<^X zWrgQ@^vM2P9cp|1+w76SdWqnV?HpMx{%cgAEUvpucfZq;^^ypmKt(!mpcTTSg@4x6 z01_>@!EN;bKBb{V7DSTL)+X}9T+8w#f!nCpKlJ!}>xh}Ov^6gfFJusF%RC+yycEYr zx6UGhl@lk&n^H`uNEA+QB^B`v*%zLQs;C|83#$1R2GEC!|$MPlzd z&z~fUB$dZXp947W{>q>fzin9*nkoZljEZpJ{Ze$fDC20{F85ovg=J$R7_0SId1ZzG8qKDcpG&df?WXw5UQBgyC zb85ESsi|fDI~!ACg#Xw==4D{8YyZ~~MH0Uq!?`A1|EA`&Pt;cA;NO$g!O0b%bUx(B z;=HREAZ!dVzX}cM^?$%2TiGy9pzqqPdUto%(`iEyaQV;Yp!CaJ!>;amW>y$z0g)f#)FfyJtnVJ{bDn z>}Jl<gkF83;xB?rEQc~^HLOrkXQ1xx${OZ{C4mbP+L zuSmQm&%)W0h+Vw=N!EUl$2VttYWA{!t>Rj3A_LLkhqbjiMTq+|J)~}(Bh1nvit)?a zOu|gBZ(snrv(?z}gL0l{SsIO1G&tPyZwz~_va)gP^AKf_8wq35E0wv|el0H&8U6e< zYc28JVerDWz7Rx%A$v`|7>L{Idou-(o32Em%kIlwFBH81CuBA!^5&qm96=*iBIJT{5v&&!L&<@=;$lvEQOU@c7DkGm?-9|<5SqY%G7Y;N1W zL<|g^IY@L-(IRoGV8h~%#`+?Un%btoMeDgnBl3VW3>zqU+-&8CXf#~)>_h|^^~8`) zr&Wr%Mzi=O#c~HSl0@-h!bB%~TVJb;!^rIo5D`?J`+y_y0gP;@v@vophsb4)?$;S(2ZI3R5Le)fA%DyH_e5A zrVT&SW1nOtTa1i;E?SIH2)!37pL}@Ld*@#Po`t*&rKFN1U~pt}*&5U@oR7Y7*u3e= zd)>eO1g^WzAPTRA1xKd^_c#+n;n%midP~gPB~}c=Kr@|MtDsBF)xCwvSiMwlC}+gR zE&iA57yfWw8pceo=QGx3Gp|DDB>ut|DOm>rjU_>B()0z7J z^Z^R-yiZC-N^dCV8f2Bn;N9*YoBOOC><{vD5 zuII?`zB~^@hm!=RwDVmDfmUN_mM*yF)2AcPwd~SFm0La*GOj+4_AH-Ub1-E*V zS2<}Lng3T&H~ZbHOAp}b5r6(K4z|Q#`tN-0YreY_Hubn~cQO2)ZpkCrZ}GdRa9L9q zm3U{z#k{ZRy3U|w^GI*Mls3!Blh&PEPcO7Ww}zF&4$i{Y%!z3cj0jXJKy{U^tEbx{ z;ZB1oe*e+o<>KAjdK09DI-2LJ>{PEwC!NvZY(=G4AS6_Uh!X z{o)P4&+?~qo^z>il?JnR9XD~8(Q5NN=GI4?8n5EK-L&32@Ij(RT3(fsqg=2k)B8)*Ztk>%O^^l*uOmz_i_+XNf9db zgY)4ruGPR_eX7A`DdI;!m}FwE9F2DmVSEv|H#_(!nwkV@xJXVV8B1*ZCM9C#1`JS= z)3V-UtgQHD@dQ8he1?~-80+5l$V+5f2=?Ci{0iT!UyF2I?k@Uu;koh(H$`y+#;?XX zE9>P5pdh^d3yN-EZ%0(`U>Qkd0wm-Itrbq^_s6&kJvJPaawGfw5e~Iv=MvlJO)8T*5 zoG>24SBE(X;i6@7F2Hr~Lui-JM$}Np`4AOH>q8BrjN@YJz5tXP93-&)c& zc|JOk0VQdbRa#ELgx&nw1a8=cSGPI$pazYKwlakravTsj7}E;Uhfi*wGfn=5e2kEZ z(=pYQ1lkQCGQXn<&dfgz3@`kepDW?OoMpF_eEDHHHT1^<(6D}Yq6Px4fAF#dpPQC7Z=56@Xo1F8Q5yAv2f5v2fCeks} zi+9THS~XACnH@cz!M2FRji`~)WMe9|1gZQotgOhasZAI++a8m>?5kz38-4U8jfunE zYOMXSbDox0q?EcAqNuE175XiOAIsLz-G5xVq>J)=ohU7kjQp)LY+Cw*5I&BA>PsdG zsTXY+jUCfZUA?Sr4 zEN`VdyuNZ`;L_|`!o|JKSj6}e-NXVnJwzCwW$7V7zBYL%ArH8W;&dsCr+wqxG`$%f zhAd*On2nP;8ZS~&Y+RgWXJ=BJD(N|ys>brn>e-j?SoWTt;3juhgMMW%qPw}Pzuk0d zYL$bf5z*t(uO`R71oXD2BUHjX(&(f6PtM<>DbByh$&G)!yeIQs@<2)4^tJkw)W@)6 zg{~&!IP&2;3EFR~y&b`uz0n$eppX7@)s~kucv^$H@YMsSI`KI4`Czs$Z1ph;Wg1r# zfP|#==ee3s%XXHb^hE=MaSTEaK9$jb|L|+i%vc|6T@PyiP9`}YP`3?vv=P%#PGcGP zYr*Dpp)5UeX`Sj@I9wbfbkSTdG*aTV<%%ljsv@tvXisP$f(B1rxnuw}ltr+Pn(^TK|jtV{&j*VBLK6@5t3cN8$Z%lb`3;hXI?U%GV|W zzym|vZP5hcX@Y%5L)56uG*~<3d{UplO<{?B+SF1axCjy4nihc=&4;dgi=I9A$}(y6b^GMR4~ zEE^N~l?n&Da51QdybVTmumiJ8pM?oJ;DEm?ii?onLlj#uD)t?x`G! zdzJewk*FJP6&smQ2~9lPK@v3|N!(zJUCbNopvaGHU>vJb3Sz^CijLkWoH!i0CZIMT zZLOZ=Fq&f6=H&m~zvJyO*q&YfRg_h+!p@S6IdFj%a+IULpl;n3$zmR%&Mz59mxFgR zk#|KzQ>uyHY9ID%YT%h{s*hVqiA_<4#f2jJ3J;-=MvUqQKX!#3h(udV337@PizCCs zHn4Lu)&635<7y(KogT$bu-N4#@yZ963nopE9yiD;9X~;-In5t2TS^tu;m?wn1dM4i z$Q&c*O;|%xu+C*psI?{+iFudp;Q`Hl+idDaK$xLLj9Y8HIYm@K`~yp`BzP|nw@}F3 zn>A9(8Oq(C@W z4t93m&B)BSae43Yy&H{Aio!5UR(X8#CbK2O;&&2`1`ivPcH@sD-}Hja@Y$VY?9)L!m;PKOdvqq1b#VO*yL=_l7|3H zO@Jw<$gkIG@IZ*6T)%1((=@+iz)$*GqLG95^TS8XC?8Sp;7B9p+9plicKZfV3TfG_ zp-ci5V@3RfwjtS1Z~sWx8r?WN)m4S|cvVz&e2D)w zkBp^m)NZAdY=(f-!nB@>>`>z6sSKNuTFo~w-9V*oNrLB(H7Z+FXwAtPn6MV<%Qry$ zInxk}i!JLjEi(0nb8=Dg3fUn4>Dr6Xc@aAL=GiU@i zLXwptuWWOw07wLs=q+F|(`2W-a7nGg8pls~5n@73+gXU1m`*V#S2VLjyn~8P!*ilK zsu6f4?-+UC#HY8gb1I0Mzm{!ZPgUU<$|aL@K6ic2F~$P4i-tVd*15{}8VSbR6#bDC z#^NDlDn!+x5R3OoGb7R|H#`#WCguIK&q2(`hWE^_yiOEZ2Px47E|Dbj^Zn!t@~rxW$Z@Zo=w9D2An5;2N1pjXosGpNv%lYW zo}$4c=@p=~?<+$54!7KiLSE=&sqi$vgX)S&Rt%G?r%_f!8@=&3uar*-hQOSjv6g2p zN}!Oek10RYX}0 zIEuKWOHmJISXXrwU%P2 z?N~2gMoL02R6-9114l|l4&YU>P18S&^ZRh>&_;_H@?cW~%0rO>%h4BgP2gy734KOG zsmaU8EVyJ{;LX=`Lg32Iw`7&{)JCjD%=)6hiGhS?SfwQ7VtIh@6alIwps$FVy5@@j0(LQzVVkFlw`l`Vnr_hv~MyQG|)ur!*tnF8*SA;FJttMwFB zN_Kk0@Nk;!*?4)iIy)ozXcv?LNr8x_gm=BmY|~;t*c5p{?$*pkQH>=o>l6u>ogNz= zZ0F**=Bb3^>7O<_h-XcKt+KO2&a$)0A;|*6@Z(6bm4hP_(}Wb|ep<0}aGV8-`cAF1 z2xME4DY`@+SRox8M(!p^FpVOsG3J!Dou1`pZk#b@ti4F52No*XO`CJRFcUFFQ&)5} z`HASJ5wNq@YW3v$6U=@P4(SR$5ZaoVHbrN}!JSLd`^%Lt{XvP`EjvFNjH#yQy8U)W z%s5NVa2_8W{gV>Q3FVAH(PDNT{KFOQ)%e3|rPB z!ftA!zjY=fiIJ=H|L#}0w=sSsexgVqtF2E%WPlilnGm0NiGbKR5>u66*rjM)D$HN8 z6bgyoum1;KRv0LaQe)rl5@bYPIJ;K%bzN3Awm0DY?k%VHS>Ix#FMtkDAC0Mrrs?ty z|3-Yiaz~F!$S{01U)BBw?OkHoE2;(|=?LYU)3tD!Sxus#H^fT6*RmB|lBw`E$E)6v999$ zt3}4@inh}jnF?9mQ=|z)5;;ZO))z}Urb^fdf$oko_XYiX=U#fzVsa9f z*;1-FA;xB{v~=Y<0Y(gf!RvyF0h}7V;rUhZNSMmObVe)joUsCdMDE_?%MEH8YnPZC z5vQ)2loq(Q5mnhVyQ9~}#NqR2zMx@m_)Y%HE^rg?3oCbB*aFuE+eTPKWBB$GVH2CO z4&r08Nvn?}$&{F}zH0IBe3=hgbgMx(bix9a^~F1WGLk}?N&)b|NEmECOWyM(5lx@O zCYJq!5H+J8Wde)%$^K8Yh~1=e#xTAr^JG5pL`bg#UDQt@fp~hbavAih0I>MAD#n)w7;+F;n&7r?N zv$#|CTg^k%-9nfpm8FcrXPic{4}TW3f36ZGbj)z)fhHAOY` zMMDa-Y_ade?Mu*pvX1b+&Wxtww~((}x7KxVUG0ic(hvh~V2P1W8~MytV}rcHEkKQ+ zI3Wa+F5%%{2$rvX6G=c1nkL1>q|E@yYOdZW0-7y3|F6g6n}&8sRZZruYgG$tY8Pan z;)){vojA5i;}90frrN&LO^^y*+l?*UK25y;I0whiVBk2(%?BVi7 z;zn>sRP)kJ4c|?XlUJa`1)bUuo>29p`*z-sO&masJ3hX5>&?jj*Ij(v`)oa~P(alb z!VzunmoMp!*wA-p@+9~D+zv6z7$*)BwuypX%Yh*G0kNvEas9`CR2`A= ztk+wB3haKSBS%YP-ypIgt|6F%JEjmh4BK^^-i5!$>I1tWyh21FeB+#mfpZQZzW|W@ zwiAA4)o?fPy28GKFn442EuQ5a2f6{thDR3fuC#_NsA4Xg>NJtN zPHTETWubGW&-dNeGp(Z6LpBh{npRa83BE%Ify7A>3S$mheGJaw8|ccPTj<4Yi!HqR zc=3~pvHbkpH8fhRgs{jeKmFy;p#vx@6?H13|bkxW6XYpr>Ms5hmILClAVs!KfX<-)OUpGYn#e; z7A-PXGIsh0^Fe@oa7Jj~bMMZM(fjjA#rEv>l(Bw9(%0P#N=l=)voV0EJTAj%w>wpN zdWPadfcT{Mc_L(wc&^c0Js^fAPB1q~yxiy!MxZ|#f=P-%wI&;w)QzJdeQ8LfCGq|~ zo!kHLd?e@M!i#F9uknq<5w?rOkxYqR=jZo{X}uAv{7{sO2p8I9WBB4XnAXcgnZqg7 zR`43hmydW&LCeg$lffAY3C#qQHhEEC=g{C1{WSl>rmF2P-jIIU^-THqEU>jiKx`M}r3QvQ@ui-xzHULgOU_H!(6=vMZZhl2`6jMM5-c za&6+M7ngS)50t??cD#?bAto<8NXyv;XcJ|hO&};fZsUpbkpOSm^}VS~eFP|6aB`$e zrEwPkd3lbnv>fy1AaJ83+3BA?d0LOK)6IP2j#}veBjL-v;8B3kYjZU0bN$STemvm2 zZc&~43}IdmGchQ6CAtvckZS$t;NzJ%%lF;mI@#|(%H-5L7M64e*qol55i9#XU7?-@ z*DjF!tbWcQUn|5~9zp!V_af>GWI0-jUBHR-*krh(SXgCq79am6ev;^zarcT$jp|<%VhkuY;R&Lj(fDq6fl|PQ5GDk92Dk=-dK-qp2HE|ba zO~!he6OMd}@c%GiFYYd|djV;y7!>y-ZEY*gzjbKbtodF~r^T-1+S)^0ZvXtk&_f!t zy-3@y=QbbY6a)pB!-rmffIa#G25xc^IrAO0>i10NOy-Sc{zsR+Q+rPOkHMSWyd8_W z^lfrI=0>uKRkXiyLH1p~VlZFA)dW}boqb~gm7~Igs+J^fjNvtmU@i2(D2qEcjKA=j zzA4_9x3xtKpEE%hpt`0uUmG32ipI0Or5vr7czR<1-yqSRomF=ZA%Ph!ce>ag0`cg$ z+>bJm5+(e;zpvRxzpMTzMAR`A&>L!3vHVr;;3hz(ZvDCqM=uE4tn@eTmw1Q&XCD#_ za9az>b>_93GLH5!3w|!ja;Xeg^=@d7XhJSsdUQBNzX- z*UT+;gY%!5Fb;v7Q+&tDZG)oENUIWc+r z<{DQ1V00Po;JEo8XI6p1kVxT=13+`RYIgA2Lz37oAi07@_gsmiUfy1AUd;!*oET6f zQs(^`!j>p2JcN{s$8|JFVoD>+TP;%<%+`eY3iyfhL|8FE9rZ)(p@I-gI19}Mz>jVL zs5OvS&IW2h(Sv75RT%>zCkD3%y26yho0nrij*!R)&e~S}*CxUI5_QpeT~>*I2Z~jN zh|x&oC_2JOlHKQ~9RSdLYc42kf>?qqYy}{<7Ym%U@7*5{`mwt2J0JrF0kw9x=>Q0> zUx5CNL=FdFtg0U#wSElqosUZOoa{>Mo0S0A$Z(1URhFm; zb|)GI+~(#!gRY)S)#E$6h%&n*Dqky`{yCV$XV%?jj!S3+o8eFk8?)E4A7w|KI6QOv zI{UMzOZkV>fH0fuBSgST&|~`3{4*6{ziahe6V9DEdN!}b%Kx71UVNcn!{eBk|+ zl0pB?86r=TPHXnQtXPGW0@7QX#D8Q)(RjQL{g(Ined?Lxo|rodDuTZNu08Ajo+Zhm zxg+aJ3mmvp_m&2QH1A=)s(2MZg;Px>eyFZfiq#2cZv@U0<$Mbx)!P^wbCSZ^v# zHTeMYQm*6Rvn8~N+%RbF(HJ3KF7JR{S?>O@5DzH!jPRII0@K7HL>8dz%JNBD=C?u- zQ$b3uW~DcgFQ{SRIC9AUEJJ{2f0(@G483iwyzNA6Jneu3h?j>K00D(w^YZAv5fb6& z7vU4;;NcPB;n|O0w)uYsxVqaq*$4dp2ju>-SqBCf1nL@kYg_rzdU(3qJGt1=dIxye z(K>l}1GD)TY+qoZeb8rR{iQKJp|qn7LSn$=vcV)|AXLd9LL#J<4d)-UMPg{xr5#`R nGdeUeL^Xsu9w3i z`JH7+z!`W~X?ZaG5dt(j1Jvjg5`ZP}{=`jUkb7Bl9UbAJE3?IyZUuU*FSxF8=oZ zRcVHJ@anuT@!{cPdl+Z4$i3m2I&>imY5ER@0!;(OTZ7{XF?@1_EK45Z3)cA4+{4=g zW%>$2kb`7`(*5k4Kv!G?f(e-E(e23(9BzMCgWL@uU#9dzqI3Py5^xjnsYcSMHBBfh zAS@s^;OK}sK@&_U@)fN%;JTIjeUY8QziUk{rE| zfVCo%CM@R_`spYNYyUgr-M<^@#|ZttrmP969@@n>Z#>XvWEm`Hc5O!gs&4nV#S==7 z&kR2!Kw?2}!NNz}J6jb-5V`P!Zn-bzYq>ok8m6ZemWi(mf&OBM4=0N^Zqh5O_@D2I z>B*^emW?%JR6tqaL#^Zmwzf#*^sgdh7PywrNAhfMDLGkFB^nz&cg^eIi=yWsbSaw) zw5oD+w9s@8yDttMmoQNWenBKr982s_a_}V3<`6Tnf72%;u?w;!AzCn7;JG2E-R9~o}Dm$s1O%NbO10!cy1>X!Q96GO2h!!iwIfXhjppt4N�Fv zJ&|JKDO^>#14#{;mGeFopRWqf5u*rhn@Vi>F(2xB5|HHKjqzV%Asc_==%hY zTy%*XPkv_P*h1<+=s>YOJyJN8lfqb)5Cv_)>PjN>wpwfz;qx3YF||KSIN#jpER4MP zk~{f!+HQZ_{B|W>>U)pz`?>8PGqcB7<+%+}CAevKq$sdfm^AY^DSQ1JQ|k#_6_E?P z?+Ynvc#y)LUO@#q3S7qBg4!nW0~K=j2b`XRvVkHr3B38BzmTyL6;@lVf?$HVahDYd zvqi24BG-nK&`_S|wcqL98#t(o>9GFO*1<$tuKDh&I^*%_mp=lrj=sKBn5&4{XzTF0 zQuVxACYOk1EGPFqJTKp6ubzC<;YC0f%)t=xz?uU+wmbvlHob!CQt$3?ZGGRqG%X4i zI#OY18=mg9TgihScp^^+*GKl3VrjUTtL0s<-zf^J)0nk;PN#$hqo>LmN~_ZhedIQw zt$CkU*N`QV3fiH#Ae$lIGHv3MG5r2Bd$3(I7M+9%e=P0fBdV{=~df%J)|&-_zNLvY?uNY&7F~6NaYinSp5O*P!+L z4%YLtv?0$uf}iG&BXt87H+0r89z?DlQF+B^e3F9M{P}~^fmhlezO!KR9TrzP>FO+K{oo7e|($SK58ITNJwP5BOSkR%iBb_b7i& z79~BrM9~{&(#Rf6nZ34vwC9#^-Cv&(&w_(bV!Q5xBKjhxW89p#4!U%{Dv+cZutnN9 zbOi~%!ISaUDr_1oKl2Ws9p~K)-o({A{^i1N+ti(7`FB5B(c|5=@DYR~k2`)9Y|hz! zvLZ&)}pPq_kOrzQ6d=qNA zF!so)v_c`_%+C7j8NfExj_;puvO97f6Wp~~=LCJx@eW1W^+vc~!lz^1MWACqI{O|k zmN1Rv$j~J83MbtPI5mO+jpFkgrW+ehTU8)j=V&PzqWN0Co69HXGK&C z3=KB^)Q&XZT3nLlfq5m*$(cs(egJ(S2J6q>xdYZY5?%4m^azO#!gAU2r!Z$xi%VT*D0crAIv@gCc z85o_ORv(+b$4`nM1uJynt>tz2kQii!u}yUcD>rWqO(!YHAMXW4ixX;kX%XageQ-K- zzOn=IDpX|E^QpRd`#Wr@6bY?(j$~2Ioh99iI*?zn`KlEPVz8 zQzDV2?~0PGZVLpIRk|Be@^*8a5pt$S z9*i}r9XNCOAA`5oJ$3lwnEwb-y^VzNVP2iepDtbfCE88D{`QYtSvh_f)-> z2}m6~AVRn|k5vS|d>XMG5$oS6*F2oc^U3`L(zx_Jzh@YHTi5p6r8t{;_FdI9Xr?Y` zH+)IL>WVUVb!JM_vwKNW<$anC##~ye@6H^3bW*JO^Rkj2Is<5w{0-4sKj|!P@I7>z z(dk~2Wx?jau~0|+jLF4eaFTz(!L$nR6S~Ci^EcH^-?{s+N}Zr&#se;eetjqYqvvNs z%r+g#8$$yKvo=rT+q&YDFT@!uMetkAX z=S>(&y98Yvv|CmtF?YMO!|EZ`0t3~6MGcs99|Rn_9``nnPC>QEBO0Vft)G&oLwY6} z3X|CCU0Tmhi2nJHXEbg?a&Z}bVsfd$>N5HLyF-%tweb1X>L-r+ps z7k5Uk_`6ut25F|B+XMy(&o-Dja;MMwuP9iGq!@pPP=7dI8>g5Zozwsz-U*7B+xn1ynTBUHE2s;geM+Z=En2VQ#Gjz8x2KeRm{oT95<4iOojx%01Gck z6bT+0K1dc`?g(4uNY0W=6oiCO8ZWA|6F?K<15JL`Hjv<$K6Fn87ad` zOe?-7FIr+oj#{*W9^W6^T2z6cE<$^yVP-A5PB%>xj0-g?<9_`foc81AuY#(kP)4Ff zOti4a7p&^(=8phhnxf=HSeGu7#k9QqazZ>^KMv?vfxmxjJYgxaIF(;Vxhth^sFOlU z3t*uvk26}@+=hfq@h5vlgT-Vq+Jk1yDI0|1McmY>tNGvZ_S$?!((KbqYo~@(ur*oz zNxHjUXqp^W5PF)~1P>DqLDRn^r-JxYWE~Ii0+QAIuC$CNn)Yp6c%5+F$=~MZM!Nm5 z|B?ut8}WyriDZ>))BWCcb9v(6O3dgy{qpqwRB+(OMk#F`V1|5HYrEYcaAhaNM8e*k zmMvQ?j9g5K4O;-L9ee{n4F!o^hE-7E9vWkWzR?zv*gRB!9M?_R;pb~zu@PulkD)Cy zJUmWL&lfj(T?Z|g%g2aHF7Di*fekBfQ#6*AZ+4jP*_r;ESC}kYp>5-XEZ6VtKWm$C z+g0I(+v;+IR$>NZ$azM6sVjQs=~EAXQE8Vli4!#8tQcxcB{iH0r$5C>Jp_k(y%A+O zA#?jQ6TADbV^zk>bY&MQ>r&#H*d+z)3%Qe^U}MGionq|B?_~x;uOKw?o634xVi$Vf zk0%4xDQ-RjVVp?OiS-KvhfUAREn>PeoK^NwqpkUa3)}CyF*C-vQNe<5&)35)yIQrT zuzXzN6RG2yaDp*IH zgCvg))cMK0C<2dYt>0v|pTR7b%U@q4l+RVA&W7c8;q46SyfC-s1Y`TzsVge-`-_-= z30%tXudyYVZ9V3)d!V*&)@!N_)ln&=v3b1#k7e0iBD?oQg(tEjYO>ict<k%2xETh@Ab05DTiBn*3R%#8@fp3=Uj2PV-Ik<@xuG?MBrsI?Fx%XgL>+7^Z zMNl)A(G#ajb~C;Gd9FwmtGArUkhPY{4yFE+J5Mg< z49sAeh`!_Ed>fB{y1yHW1`?p`9O1ClZBC7>!=%_|0qbzp8cs4yw*66I>T;&~slj0M zJ6p?kr6qUu)&&=ox36*aeb027?|;oWaK)O_RO0!xpjn z!0wgvdd;@3)5b)$$1%d}EWdQ3wBab zE6ystP8~Jsgcu%^6VpxaeS)g)eWt2TFNO>)9(n0byj5|8aGZ-Cq_8Bsiqewpli9|V zFfD|UIxsT9M=#d+^NDK3m$59hNj%X%3bMP8Sc?1iFMb177C9DcGwwWP$+%GmlV&?M zQ*1t~7HX+!97F-B!(|mku{`Pc5H7XOCWmtENaf^kKShVJb;9{0MJ8~ji!DvY#fO086|qW<$)RXgzKiYh@qaGYW$rJ$rI zq9X?}hhZ#jjYl(=Qav=_wtpr%v9|GiCG9@US<)vXY&03Js7Tx@AqvrJ$BGeOZu5e6 z<5-ZQqucCC8Tz>L;ryl3=kR{N^_5y~E@_2-Zj7GJ_u~BVh#@`|{3n?-e(|B)JeKn5 z+x5%q;Z(PR;IOFjCH(A_r|Ui5FoMC#xl=upUpOY1JFk zb$=|WqVQbpaen@>mNK1c_TTOe-QEG-byV0pSmG-uUz45D0Ul|+_tVZ}q;WWxfj41T z-w1T~3lUlxGSwcg>%ieBC3WS^vszTW!xGTPgbuS%mR$e%1heVw@(a&L-Ou6i$pLm( z&R+(7!D)HhQFIptL&oW)BgqegNgB&3KK^g$nFlbL1lizkAxe-x1;yWH2a-G9XgIbe z>%0szJ)iH&9LIl^Z#K|SCKUE$Yq5DfK76V(dBN?OZ0&H~o6z;zm@qXzR8rCHU#sRH zJ51W@V{w)7`1|Kr@_jr&BlZ->BztogRtDSg_ z91E2O_1_6pL2JtSG?X;+3yW91yC21cmBFOhzL37pq+;&&g4;?0Ta&Me`%wqfk}D~) zcy-@q_}d=N0*wOu3RIRGeUj`Wz?7z@<}P_on zLekVDIgrvLV*0?$vP;%Ws;i~HOxV(N-G56QC#jBu_y16o&=n#iPu}yLn3&o<5*gZk zD7yht2`Kl`w-+q^gAQ3qmdD_v8mhB+Rq~y+?5uSIhyMxeTyTIs_BXaLR*xc zOdQ$t`(w%I))z=@Slsc9KIFJJ!1I>P4V*uGgzEf#CkTudRymOJ;?Rg|O9A}xwreZV zd|W_gg-mF+D%5YdYfvIDM@HSmU9n7(ivY?it zvFq5zbNVW)yu-vaR`(A(peSIeEuZYy$SW#tA-A|~sGqVJ&k-6RMKB~}Kc4%}w88yR zN1AYO#g4x5z1Lm-Gc8>FH(38khGHmYJR>;#Vrsg{3*nD*D?|nRNm0d~bn?E(ugI){pk;2r8Ob zVQ%cb?Jc43zT;IeCW5tfMW$RO;KilPz&zdzqpv&$AR&)3FMO}DoMH=e_Lt8(naJUf zVqXH%?UgiiO(P_@=L$!-|Jb}$;%;>?VY-~#hW zt~1YlaNE|4YVh2`o)HdIVFJS1PErpHaHLOVSpI4Mqxxq_Q(IzPVh&(}X@r>1R&$DC zNg5On7zzRkh${6OBcHbXCV*I5v)P&l0Cv>WlN%c}jOI+vu6^9?{i0NqWbnW3(3$QZ zD0ggBl@i5B&@yh8jl#SHD~MSldiwhDZ-#2*nq`j6v~h^{l8;Mx8CH~TuYylG!lEmQ z=Owr(iIFfXt0^`1u<~FzJ0)ayNI9clPwk73T0sd{4?ZjK7YU2)pIRxa%$IcRGif*$ zuT(;(oAsZLGky()mIMoX!x3bx zjKu5f*>RkHWh~p8f!4kQIc(N6Nn0Eq;Ba~eh|6XVCL|~<)p}rUHY6M^PUO?}kIJmv zA9c^XLcWTH(WE8iTrD&Y0(NJR6d^t#qg9es#?~u2OCw;3G{35pFdzrK_D@6vydO4A zw!R>ZfBdy6^?f!<90xWF@TnjPU4LYPjEs>z#AcrAb z#tes_c16TKPuj}Z|S65Eo&y zVqy^>@7(Ub-Ce=Us~m*oIJXI8{*5rj^^E07Woq7tIJpT-MgWs{m|^L>-za{!S){VK z$`mvEa|O!h^bTS$;Loe>e#9mtF|dCJ)rx``j}{ytHoV#6xiAsgfNntV1 z-L{lqqRz%pv=2zip=fHhF~4#-O25gCXOE9^3uY*SZ>-1XG|1cl*ep9GDA}k*+$N7` z_W(}1+bgZ&8mP+0LW1+!&ydUzu(Pf+Gg>0iW#4HN*kqvleR|{gdtYPMwJkAkDw{Xt z0n`y`Mj#)X;J7KD#~b2c;g|5r&($68!b}iY!6{R3ZSPisQODd7-eFUvNF$2`CU0=& z(fN4$)SJb*Qk;4jRL`7$p*%$O!Gwu+HSYgD+Tmb9iM`Sfo8BVWUZ?bVYa&}gOB&G& zHYD3)B%G%DHN(Jf{3h-_Y4wCqEoLLOr~(3)K8?ZTu8ulfqP8wLBtUQV;yJ~}<_poa zhz@=}cH?m?&OldlJpiQaN@FFStEunqU{H<>ua4oYyalve7I{GiCZB-ixLWbw!UQ;~u{c|S>x== zc;~UvV3OY)YRlAayF0_X0O5_{P1vxaqwxFTR~!h(4W50R@S5>?ukCxu_+_8Nzd6#KDEN8;*00e?^*|i)=kiSE7ggH-_yiYzS1Qlp3!C_O#1inkr|%dd?!%#U zC^S7p)Bm<(Frx8s&q(C8r`Ubact~30GbLE;)e-#t&UURMux>WT)O`PP%gG@jHzm+a zG|hhFX`l3C!obgk8F*>XXA$QbdEWp`rz_v5x@!;59ZdUuv`(eTepOgc4^`-WWUBRU z)1by~3{EiPHg&`Qw|DOI5^2WkU(ajgc1*-Dr?QfnB9HDziU|1%9N7bxtqIDb4F?GS z*D05B>$(4?w_R)P_nqIbfBFnhFpIlzFKac#oa=CMtkAzM|L*g=eDDW>xSHiViS1ZL zLHy8DZx^HtuYT@WpK+rkelReXv{=#uWrTD)Mt!eT>u78Un~bc?GQnU{CQw1Cw#pQ}%5&+anw4(`tdV z#8n^^{W}n_JzfcP?^VJ3Fa43iGF1DjdfPiU&#aZrjw34&s;n2{aLLjz9!*oc$U1w4 z#*fx%3YsZAm(qi$i?CmlIq&rJ1*vhH(f!EjmAH_$)TPCT$W80Q*a7I8Z~Zn-c7c;l0XR% z$p7Fz`$KiV&Qb2+;X2OG4Aok_5xU#1MJD5>nklO*4>nB@{itBDID_uq2h0GF`C&#j z*~|EW#~L1IVwxRC;_MBtULBs?2h&FU`L5>KfWSPj&U%HyTrOuE5SJfSl|7MR%6fm< zCtEL_{a%_soX-A`GbXmq#Z6aKIR7@&n0qKUS#Gh%;cIdz=r9GP;Fxh1pci{}?j7LF zdi4BuP?S0_2hqGtGaW4j4!WX5)5tCr@*B1Z35-Qvn6;*X<1%1C+DM8C&miPBP z`tiqaNOM9j;p$_!%IaFNR++S-f1Jx^er`bkRhbxMrtZ}DAv96-tmlFv@S3Bkd4iDh zy!{q^omo;2!kVV7cKl*9bLYpUMuoW?WrMrh>;h8>*mKvrSLb<`?_RU2#hx9M>rLZg zE^l&wJGETnO%2T0y+cn1Tb+`tJHQB(H+d)2MWn8p8Q)X)r@Sa`pZUWl@WMj=a7oY3;@KNosd%nPQE2jUdm!8W{t0Fl`g|u$F#n{e?Bh~2*Xw3?LtkvVp(ff& zJNP@f=x=X|ZKXQfim~&--7AdY;ht?Jor!r%ca>RDPVt@f1gYfFYgPajL0DYccI3W- zpB)(L)$xC!t$NN$D?Co@HYLkP}*@XrCP+{_7zFnyt2fwSK?%u&`a_7}`5GxAf46 zx&7Y5n{7vHpOnBN>&v%Ft#!YNrx?7s)#hhQ8!7z2oo4jvsj#JswVWj9rKSlJgWSLU zSHuc<0KlWX+^EAUkGSGE`L!?bg)Q^UEbyVM&0(2~{e@K6(~)iXL>tIT|Bv}+{f zkqedOVh5e)Sk}K(xA3-@TuX~}!piJ*E;orqPP<&@vP(dUH$3W2?J{ylD87O$p;xe=9#mh3kkc#pyRMQ( znZCZ0V}JxG_aphB&LsjWJ-b)GbFLE(rpzftla8DQ@ZR8n3yTTEgG1FCMih7Q+}3&v zmff2;zUS-2BX;|CY+f#gv3v86odSRI!5eSF#ch>rlx`l0=;^V<731v2wG%DB zSmoG4#bUM>PDN^KjM0p>@rpASXYjH_k)@<#^~jXtOC!DzOCeKi^9Coku!o?uLTbE0 z73(j}q-6k?VDO?@NjOPFB8o3zIA#`G9PHkdP%~{tZf5#QV9{Glc;x_ucyAu zvBqf+Q#%u#iITA?DPXQA>A-lU)LH-Axi3Envq1Yk+n;hjS~O6qnIR!>su@LaXkP_2 zAzcV|0pI6XDN&u$-}mZUf0|{Ex60s|!iY9lj#V^!&V{;Sa|L{y4t{_J>w8d(&5Sc~ zORdODgjG3+zoG*>mn&NK8>6fsBw)vm=*h5G7D(s^8mL0e3M;;!RifB;T2UQ-T)OHi zpwgY6v!cw2a=9AU(uNv2bO#WuO!5E1Ud5CoF2F#Kf+67agdlse996?*)D~sI7gtxq zhD_(3Wu11*apaa`!KcDT!iWt<2oXK1MVMukl1JeqjpZL9Cl{cPyYtj)vE^vhf*h?l z(X6wD)ynXjh4v#xgDKbwZaeZ^6}Mh_32^5SRu~ujfEr`1Ep$Vm4^_(f{HCsA z8BCcv-ClAybgJI6uCF#1Hn-h>akF#t?9`fVnF*yLDH8#K4PLoWsi$lB9IGkX3cLx#uz{eWjR471h8)%x*k^>N)GXJxnWt!-UTUw1ua3&r zSU!8~xHnLs6V#xz%ZDO0Caw)9il8d_)7S2?u%14rWsECkg2SzeR?3#g>u0t6cLMgi~$SR#P zz$_C(DzWY=8OOwxVGXO%GgBk12;E^;=S6J7n3CbNH@=i>1(H;WHBzBj&t(5M-jJ&q zi=tA6Nkk{g^?m1-EF>}+(<(zVH4yy@=eOs$mJD)4q|SdzVm~8zo#SIsUbf=z-|L;| zrrE#R1vcz7)b9wQTV0%eq1L>rke?No;Y)y+2r6m8*#3;a9|eFAH9Lx#MycD4-!1>z z9UY4$SZ(mOz3{^RTVFr}gPdMmQfR21ZjwAqS|z-Ireo?GR7!N zxn>XZ6sQ6OwFM~h-*tzvP%I&d>le!^pQU6CwVH4iSYcI8?umrU@1>X+vB8CHx~3Ku zyALmP)e*+rH&?WcEip1Dr>8xQ1QTn>YKoE%#$o>>r}?}yZhQ-)4X)U-1MCp$V#a~! zEoz_8!YH*!R}wMRaLW3yNLNyd@6?dae0xHK0rjgT#gr>nt6|{i5{is4Ba}L>8%v}X zptu(+kwKngSHcbvP0Omu6cKo189m&dHlA0vr9eLl%5-x5|6@wj$bIf(nYqI+Jr;FA zkdqy1Kv82vZ61r7I~R>`_>tneCXEbU*xBbv@q9D28mhpl$-^C6T#AIEmHI&u9H@47 z6!ASYWqKhs+QwsUalbcENgYLx;tqkN2tihr4g?Km7HM&2k#oy)R~FC(yclIU+NU3I4=_FN(D^9Cm z%!)S;Q4x$Lw*@~I7!{e>b$eYa!Qd0Akb+$)j5Z84`MzUjvI?Df_@LlE^7X&$!RYCw zdX^G2xcUrOvNFYHh8eu64gSpx(6ZWB!4N+)7>&%X$$RQPw(7<`gT*hk)amZ8F4>`^YZ>d3f6aRQnqm)A2tjrCTy+K?|!<34%2q5AuXH}?tKQ?Db2YmQrLk81XESTz z#`ww%Rv+zFgje!ku$=q#KR3v|Y@t$0FyI!}6-KwUtv+rYUr_};MnK< z2thYz&4lc4tnR5pL75}NL{!yo!pd6;n>qy}AX0TErjlAfTN0eQj+YoRxGfhBDPWtXtAjXuHBXemY?yDQcG4tzibZ!JTF zE5h0`cHXTPus%c-N(m~=Vqh5+qpbW^Bs!|}P>zOL_nSd14fEXL#% z3FsIEJ!K_w#4&&-y2Ssv##3Pwm|t4jz4~soLRma?E};ygqKzLKYbKE}D;jrd3!Vud zIQdagC8^G#rY=&BR!lt;gFoYl(3d#Bu!IpSzRSDZ%Pvoh#znRhD+p_q9)Q?SN$xaZ zkB_UYDmHe6v$RG>1-w3F$Chs`F7V3jyL=2kam(mY`@)Sf^mUm)P!R<~JGB;kt`?cR zD*w&6MWq`7Pn~8*4K~)`;Xt`fXXNVLM%Z>tcchY|#ik;R+Hox{sK^v}V=EHopN71O zFh>z<{^(*l={Y@}o!OW_1_qNw|6WNVMz;{8X8)4Po)%kJ0ni5OSm&H9zoc3*$HZiXl}J%AVk9n$!FEvesF^x4Sb_bC zoIgywlcoBF$MC}su033t-Tp-kNI+iM{6J@khR2a*VYIlUs;msAB`zfsLRMEk8_8}U zt8xk{+;(ikkP-N;)cMw$-0uo4fD5Lug;tY`la$Tx5|pAP29mkuD4K}nrXNG~CTHBu zR{i0@eZj_MO?A9{!*9#M^EbQdh4PuI2iKQf+U|f=L51xS%Bv{=p z>PNDBf$JCrG1^dLb%;Iw)n^E*%(CF$XB)DJd)q74A;nr>u~by- zxO&lTHUvMn5%OF8ZFw4rWUh#3e^?7=u72^RP}7in=zaIdg8(PkuGNKTm0AF7BssFb=y1epl;6Z(I@B2j$p(_z@v;_ zHC=(Cqi(BG)zT7EcH#kuISFe)+4j)84%G(+Mpj*N460=vmZ-q_19y`n?^zAIF?`$l zB(nlT@>wK|$=le!A-)%!MoWhPq-1*C&-JuK>Ng1#_)DsqN?Q*WdQN*vI|bgm(6ynE zcRLI6J=KpFI0%b(0B*nHvaB_Y9`|c*0?hPe!UavGd?nc>?vGF*Xu|!eQAzyjlw>lR!UNSYbkjG>5#9_Um<;P)uKl7%J zf5h?__=hAo!;-pi4GI3ctw2rp4%TFlV8<+}V3O1G#fJbRtm_N43WOE%J`kI`w9H8jz zzi5GrtFkrOC8!9+9(}M7;r}x+Qj;GzzK`GVWkGw`JV*ZP`oe;mQ}NlRh9OFcJ5s0} zULh>9RH~h~qDDyomNrm7CvjRdph8sLjG9#bTadrdEpn;ft%59XE1b{H1F|8%k{8*b zAbtrkMGwUvwtSMKkYCkFJ50Dyb>{mj=DtsK3+gGZ=bKs4NqP| zt}>vfA-%wZdyLBE;L-|9G?3N?{OSy|h&_3EOQRkPu2%(=u62+MG+CgLc zG@X~4x|@}qLRIK$=b8}&zo;pz@$_N^iNZiw_4de-(W|xE4qU{?0!IuR0-%L$&ng+~Jb+skK_Rr6283r}B+q$oT za&4}sPEsc}T9?r z{ohToQOMedt`NXt)f-T?gwg4Nm`5ROoj#HtB0&n9Z6Qm!Z=@e@KYt|^`IIH~!M}K~ zj*el#3PN^4S3&)Sj4ey(;&jac&{dOxou_P<8Jy_0bNyH%Z>Wk=YU^LbnA7W!*cOE1 zCyrihJM`XvCQd}ix`jBvvf&H3CO9O`8eS*8V+mVaG? z3(*-2!n!ZH*9r65uhdE5ao zlE&Z6d21~jT1)@4C3uFp*Llg08*VS`^fqI2*S&%UIOf)5MNUD9I~0Qg?<{j=3g&z1 z?Jawflp~`PBHB4?kJ!jxO$K`rzys`ra3o{%Gh#RhbP=#We{6Oo^BZ*O&DY|jd#6h+ zn5*HS6QVT>(IuI!!&6}Pned4z_pr;SGHdq&4E5^;(1ogw>V~c=vL+%wYzMSj!xBf+ zp^3fm>4{I^L%>S_DU`I>cQdU@oyP32k4rKGziYuFhweDiY!^tYO?KWQJW1_Dr6-B( zOyRb5{94Dlcb7u#Zo6K*e$mFJf^rX4&B&rlFqpB>dqk%p-BEP zR*&~{vn*JdqwXa;R_KG)xZsN@Uz&2A7lC?83OAI%$O#AW!iqaJ%9*Eg`pR6_A0hvD z94vkBHtH=fMeeJPEh}lVC(s_lHa}cdO73^wub;j$L0V_I**uHsabHCBsPg|yvPKXILu_u@DTNkEZep)~6Y#c_URu5(!h|9{Bt;J&$n_)K~+F^D@ zrO4vm>~(+i*MGbb0h|ek5szA^N1{tfTOKb%^Mjy(NnuONa0A5wlE!+g0n$3xZQYJ8 z*EP}|+pWjDNU%%#<(be*htub^$S<^v)kQDLLvt2?egM=DD&pP-2Jc&;So=4)q>VTH zwomw>LY?~|ICP8^G9HCI8>Tq7z1ve|vLD+muPfhJ-n9-Ub48r2P}d?yFD)L5r~cF{ zsSOG0-sR5xX)Zzxm_k z>o?hH3R7g?ofbHh7f{+5*TuBfn&U=~YedLfn;u)r!|i_L=!{I*q%K=r%s~?Wa8OXc zqxHv-=%Z+c#cW{h2LmGwZj5m{jlj!&S&dI#(7i9At22&)Tt(Vma{ zh`^W2pNBR(^2;wTwktp&9|SaGeLchQ;Q~so`;n*iJDFL7v-KVqEfaO;Oy$(4;yO9? ztv8=5T~>H`Mm+%iAY$g9(dO40N)3sdk)Zzu|Ert#8R{Mii3R%+@sg6vrJ1>ame}o9 zxa#9-L)UenF%0N$qD%+}Rcki|BQgt2;E^g8Hnml>mLlf75?^vEZO$xpfrycU6?#y! zp z#)RN`V^7#}QWq?-I7rv$j}nzDltAEGfR3ez!6A;TQU9Gui}|f)+r!__TRJsG%`&JI(6JY5v=g3cVjx_C5xWc*y zdCqYExQ+^ZryUBXpLmp(d9_p;+~|{NI(mz_3<^D8IJM(@z&%7g$gTkwh4Nkgk_J5@ z61b@Er@z^Ys^0=#CtHt@>^tsAVu{?1%dW$SY0vn(z6j>MlKg9D0$Af#(x4?HKGM9x zq`{;IyfC5ytYu{1jTF)ime8M)8-By5HsC-hs^0Y#HqW=Gp$xWD`diIPz>%D>Vk;U} zkCG(*n|4(&9MDh~cYe?wsfV-+0T4X8i{M#-7OfW3eyKX=x=(bzIm5d;t*(fG8Hr>r zZ75HoZc^~e>=OpwSzpF9VoR-T`i3O^)hU*uKoZcXBt&)Vw(EHfkEL%k8=SUMYbPr^ zfyL`ZT+>xl-8u16TEv|HIU(Y_y9*v)ob4UmfGmep-xIcIaC0c1ypOk}>#JJ%k4oc{ zy@&M6*||!s6>EN;?RM_H9iYXIGGaR7VhwAJh!yT=Mz`p-*FL)C-MmU>kINm(7wG5O zn#!C6ycJLZJZ3ce%C$I>SD%Lyj;2m*1)#paV-2?8qw`xI8w;l$dTQ4_PXz#i5HD+e zJ#Rm0;`GSRH0FPekx#~>KEL*_e)YzJy1{%0S8g=KKY|s=Q2G3PNgZ(+`>Pds?->4d z+?M6|l8{ux*MGisGs$`N|6R96j@vdy1T6f?JIsIBaC3RSZpX3;vuy93Ie^3#JNDE@P3jkM(E_je2@3Bk~Tp8 ztvrOX6RLBuT}WR=&IWo3xNSUduW`EunApZAk{2pVZ3=$4Iv~;}V4mQ}X~v>jp*`C( zm`xg>d29DhY@OsmaG)BCx7Bj(D@}}l1i+W-jXh^P*)z7yd4*~M`mP9o(JV}j4!JhL z^zZS-AJ30Qlb6%Px=yFb*B9jBsz`c%xU?70m=2lPORVcEfD_GOj)X3G0*TmTj zI6$znu(C6>|kzXYewek+bx0pXdwdyRtN^p%!&RB>!vdS3+sni84G1R0AG zOEw7`8jDOkfW6NYnzCMvY;1XcxPQE#xF3EjKq_B`3E~6~!}VH}BLx@&LK>_fUL|Vy G{r>^^wF&hA literal 0 HcmV?d00001 diff --git a/apple-touch-icon-60x60.png b/apple-touch-icon-60x60.png new file mode 100644 index 0000000000000000000000000000000000000000..60969f3ad5911df67c3efc86882d3ff12da1def9 GIT binary patch literal 4297 zcmV;)5H|0LP)004R>004l5008;`004mK004C`008P>0026e000+ooVrmw00006 zVoOIv0RI600RN!9r;`8x00(qQO+^Rj2ow@5B*R!hCjbBsYDq*vRA}DSn|X8gFh+P%pPo2b zuE{NzD>oI%2cCFNcI)0l0>!`!K;o%3_(aeR_&cyWDkfIme*fcg`TCtQw@S(#l~U$b zNx8kkke{vGDF1xp9WvbMG6=c(U4Z*k8{Zy;0XG2Ic1M_g$(4VRA1?b*ZY$TDNgmm9 ztEJ2-@yY2QEtBUBA0;goiy!z3xCF3vwsD=Q8x0r&j8j#0%z(27JMMU393w8djIi)9 z45RhIstUC=wS2YY6XwmD%I@54byCVtfj59HfcZxuEPzblVc?eJw2auB?|O)UZ%CB?wI&28VQCfp4e3p@}N6Pt16b+>WzT@R6# zk%^RTCwep#1x(Xqd(I|4cxMXVEL&_gdKz+oslaDI{mCXA23!F=Zg+%b4Iec|z2kv# z3_N!Ts;Xjkit~Y@g5T#Sd(}$jygiu>**^q=!Qi*RYrywFpsNWVrPHitonGE1opuz5 z^u3UIv)(vd-%|TqWhk#p?(=uXj{_BHWb;H

$IadQs3{eX#RUG`kn>M zrj7b;3*n=5dTX;zd!LX_JBkz4cWZS%w4+c}@cH~? zf4`DB(9p-&d--RrEe0!9GVnEKSqIW!KzDM&A%wMF~B@V@<9o zt==D@fKU&$uKoZFtt$!x&l$wX(O0zaJHkrs7-k-Pt2NbC?AWr2q?B}$Qqzuj(}jEU zQ5A(ANvX%ayOcEM?IKuF4pO4JoY+&-(IO(+5j8tb{CHle9dD2#psJ#b=O4d^ho722 zdS)8B9-1iN_cLk2lh_?$y!gg@XqtvlLSv+Ce$tAd{-IpW~i?ap=(ke@<7AncOT|)2}=o1mmAHZ5eWFn+n$G} zY4l7^0U;Q8?og~&E2^rZ>p}9iZDH^3JR%~aIOD7=BIBabA|g=ic9Oz+VruimJtiZo3M^Y^l^XfF{FQS>?eOjJ!He^(x*`}fhk zMN*#R8kPBQzRhRyEi7~v3W5JF)`&aeEkb``sFw{ppq*KzAT zkFX(oHBm9K1OfqOO?jE`RxBm6Uw`)O+(A@yEE8UP2dkonT+G{quV62#%Y{8971Mx) zbKhaT?yTXv+BXGLh6c^^V%B6L}qD9XV!+;IhYcWid)Ly+qca)NZ#AN(_A2}O- zK@m`TpoEg*qL3yv6-*QNxmm>DbQ`5}XH)U{=frhS!0C?QjI#$b;eTiF(wlR5=*bu8 zH((H+hI)Qp^CPAqF(v%Eel4@#dX?c9U&eDUzePe~3O=6~(=-8ruA4{+JGSKD_xngq z&+MRv1vGjZFbthf=gngMkKeI#dk(kW{Rn;gpNZGoglU@eA9N0*ufBmdUU{B%KYq*p zq5_gq)4ArRI|;5{1=2*XuP6Tc8}aYo$G(}<=zh-wjJ@Y?d^-PKcIR%x>2i~tp1}>b z-^bvtFCA81sAoN{vMqQjImg(pTGIR63fWZW2mjJV@J*=4(u;N2tj7Q{`5YrKe}#^ zyJZtXQRp{dAi5sp*Y#^DF4#kCd;(_=8AfDOG)?(?(5tJlB_(6+9*^17MAOcl2u;P7 z){9-c^T^%087U=$hm9a9Ee&sD6PtcnPyWvBxZIIkFlscurY1K2w3ejQUPMMkQ;@$4 zRaN=NBX{z`r0FP%g543u8E0kT2n$11;e(menE2Gg)r2ywoZo%JQi97J!I0q>9*lFQ z48=vORbx=rU;qpQEEWsHE*gapqYlPSDIu&^FUaVHGzrCBM;NX_16$O<=>rEbV9=n@ zJZ5N|-4Vvn3rBMPh>?flaC8h;Cf|54R;Tw)=jXNSFbo5y)5Xw{7h>qNDc^53EJ?|6 z-Q)1<$LlAL{)Chu59?Kg>48;dViU zTF_L%S4Bi%8)1R`WBB)}L8lY;H`ZhG?4d4y9i=7ZxWnCq8&wG1bK;YC0y@>Dg@B6v z`IJ>|p>IYC4x36aw`0bz^6Qx_m6){1JeVwwh0 z3M3Mx+079G#ncc&MNu>~Q^(M&XmZ9NEY2>mtIITObthnIQJ6*mJ?JMGXu|KSC*bp7 z7y(RE$LnpRwyqi}O@yL^b`XTb>gs_|IyV(K||tn z#iA%02M+8<*8_w*LX}2o2Jr`Ug5ge-E{fS*Mi>c}$aE^J_Rx^Oi|D9ur0K`g=%>EH zgJDQ2tE$m73q2Bgpz9$oXb4y!I_8AQ9&eN5H!dxuMAw6;o#5=6-AP2RKM{-^gg2-l zCHMnD%IYLOTPm*9i>MD+si-W&=WU>|v5uhPM$zmYC)!+~*LD4vzaK4>WYaXSFF&x~ z8Wq!>o=M4QR_%l`Bt^60i0p}G)FFbkl$KZHxA&rF|IyeZd*Jo@C@sjrX4O!H0IM6t zl|n~0qErUIV-bR349TIZ#}(uPF7q6-&Dn?cFUBdZrK;ACIDl zjuRIG!&is5GN0mor3iZzu}Nougz(4&YO5^8s=F5`ZC9J3fMMwTymmFO zzVIY-r%%?)50tC{#slj)tgv!4;UMrU@MSRI_vCKfobmmNrS69M`sM;!Ljnz8~C z&lrQzRE{Gu5k<2h1Q>xPf{hi#rJjZ1t-%`Ir`50|M96(B%F3Ak?lfK*{{(Bk|GM1o z^G*kzAar!G=~!c13w9DHYaaYdRb_eHnr~Mm=WP5*jf{?Km%fDpzS>ee6$OOFrqgg> zD~`xStPVG(g!+qsH1gFKpYh^99^;Eo<~7#URxbt~ z2i^y&TC=4s(cK_)pnIul8u|MQ^HaZDu{6G|`W6C8iubbq-wWxHF_5y-3L5I0=-K;R z6jh_Hx`Hk1R$_C-vvWVp6wroX){#B= zMBpCa?rsS^6aR9{U0gTzUJ{d&j$IcPP+wC`ZB;ql6H^YpIg2%vCmV)Nz~{p>4eD#F zi0PJq)plshQz#&i?9R(${=09oY|%%uuBLh?Fb$Z`VJmQ3(9uH(3NQe8R0wfhX5aqq z+wOgo(N|wjL{!9Y>dK*%v6b4fXf{L~s`a(R)AG_XmMoad$8)E%uW)ZU@B#2PA+KvU zPW04;mC#nk6Bdhg#5qHUTkm}E3C2Up{n5VH1h58FL-~(>ulS+p~*Ci zFM-#ApP=Klgw8r<5&>KX{LSfd4;Xd%waVE09;M%aGf@A9W9l)bN?5Q@ctDpdbfyIPA+xnes1O5-l{pHPX%U#<5001R)MObuXVRU6W zV{&C-bY%cCFfuePFgPtTFjO%(Iy5voGd3$QFgh?W9>J@M0000bbVXQnWMOn=I&E)c zX=ZrmIx{vaFfckWFmId_HUIzsS9(-fbW&k=AaHVTW@&6? zAar?fWguyAbYlPjc%0+%3K74o@004R>004l5008;`004mK004C`008P>0026e000+ooVrmw00006 zVoOIv0RI600RN!9r;`8x00(qQO+^Rj2ow@5CA42~u>b%RVo5|nRCwC$oOygy)!E0t z=iWPeX0q>OBS2kfL7_!k1+Ah*#aa~v7Z9*6Xax#teMRY_)wWh#Xcbfh6=YMSqNpHl zsDQGGqLD2jA^V=pB$>JQp7)QNNushOAtc!MeLkQ0Ofqxk-gAHVobP$gx#xM{#Ii`> zHXt9^35)`qJzc32(QLqZz-pku?r=)YW|KfQ@EmYDp!9SlPXrUdkAb;Bm8xlS&>3gR zN1j~qqoQV1b|gTP;a^q#J8Pg)8v6UajdnVH>B-u=L%^5dK`nNua@*OgMP z+qz%gIQ4&Id}6W$OyG0iMj)!EE8m^w1;ztg03#+YL0&(3x_oo7}qu*#%)uILr zK7;W$Pi5%&7vc7}FpPE_M1Z0|Rb>@xRxV}Hvvb&+vkNKZL9Bt{Y2d&QU9c2jB5(sj zWMua4%h-vNx#Y@gh>MTIG(pM^R#<>gAU`*k<`$GToa(H#@~x6Ln&+qcTKP5?cm(htO|V}9s}hn@>=SOC!KI_FB`zWU2f?Xh5iZQP zB@3Qp$#YNQudge{T3z|3ZP`OD`wBq(?5uOS{+6l4#KmJ6|Gi>?b#0~zX<3=vGW{NU z_dTgahwqlv4tEe$RguyvA8xuwYGtZwy|=5&Hs8_k-z^pI;qER?00l)k{Nn@d@V}-- ztfGQ^-hOQb61ZyoO*q}|mhS;{J;eGq-@s^MR}g#ANbCs-%{N6-S6fRc7$U;!#o=_cxHF0h zp+1l+U zwM($Jcj5Jym+e>e|HYSrY0`GW+Ibrn}K1NyfE(xUS9MpQc6z#@oC&L{a)e{l9+w} z-F&laC)xc@X7|@$P+wO||AB*?(=fJ}cA%j7ZubqHBE*5{ipTFNXgJlcnGIG?lOupkj4&?6PFL&KaX>k!7*1ye+ z8?UCUq=*TVr*rkBTZxQ{0ifvM0qSb189Q+@0|uYL>J^JvwR9m~pO31Fa<*>TKy_6G zznyY7=Z(0GxBjz&Kh3zA(&FOQf#_IU7|q?o?e=i-6=R5s@iFMkv-s_(5xlZ^K10qv z7n{w75Kv!N%ZeADAu1-8Y4_YuW_E87Af?IgZy3W{uPx`48>fK~7!3^+K0B9&+PXB=eFbxQW ztRXfjC6%$0Zl$EKfP&n8fK?|D*zI=Qo(OKZ{Z0m*F@#~me?@s&F|RC|&u5=}z$I6V z?mEH3W||NRLV8v zR$SDs>+g_YLI_k9G#eD}EugUA0KNO3j61^H;vzU*ZersTC_Y#~S#cp*efwCh$-x2w zem{xHsi>M}=_^g5hMq&hl~+;x!gCb->v6JX{DIhnL~J%Y**`jke>}Aar_0@P$<>vW zEPd`t4(8{PpSz#_0|#K3psBEV!$#)(?LK}!Y&bI?nnPtpIoDryE+A3VFgXQ^V)>1R z3H$f%Mp0FgQq#IlFw-(=nZ-)1r5ve8HhUw^Tk!DkNT*H?|_p_$Y8>;Ft);%#@3(kq<<`}eYQ+ovds zN+=YfytJ5u`MC%IIbVLx&aGRJQX-{f_gA~9tF2?_woiHWr3DN=<7@_>d3L)-%A*P< z1XNd55EUIud1)~-r%XiEY$PV9@~21UG5nIt$=$mfUt~0zW}~XSj8WI!K)_$mt4kIz zb>e6=O(Q-rnLp2dn$w1yNzF$auqPxURE1zk3C{Fhq))#K#qFl%(@ogp6S!;UgUnA% zX6Wvf)CfNVaI11Q4|GLRjDX1W&Xb(rnKlFgMU7Z+wPo2YwvWS5^@4*W+}$NJvh#{3>ZJlLY*AfaQldoDQTkDK0Feyrc-5 z-9c)42ENEhOcRWNAK4THK=HUy><(*SXllX;1dviCJNk~e@>2hM4R^#y3*E8vg^VzXwQwi4OJEy~4QdKpgqGO1TiD~ha!xL5jhtrAE zW%*I9i;4;PYahstbM#JX27DG{M+G*u8%qq_0D;B>ngF!-kc$FvyQ%`MEt zCjCU3l{5)Ie(A+fy>v^9lkHrqJBoGhMq8m`*kX}V;B4GSWYbP;!S;FBCyI5SU}gws zsEqQQ_t>)eQ=ASDUWbM!SO7+2PwUWb>lVR6!6tIIt;JURHHndSvNAGoIz5=ChGI0K z==D9VL%Xe87$&7jb!{D==Ty@-D;c*_XWzbW5Y2NuX%F?Z4(+yX5zOvz(f_R9Af-t~ z`EDw|SVMHAkJy-K6d^J7#^$B#o|fb2)@`GtX0sy%=nfajiSfk6#-eEop->Y7^9Lao zbhBF_0U<*~cwD$#E~A2Bs0j)EhC)AVR1Zp$4ie@-QW!*P*6f2%7ttt9D`v z2I!#>O-)Vc?hrQBhTH8$Q&mheh+!BA#Q-4?&3rSA5V~Su8WIR0RRw!OGPNNmbybD9 z8Yr239b0Vd+dZ(xgAP|a%5aE3t0wDxab6D?Eq9`^@ zvxYjwf#Qhj))BVbgEk%BWc)z|(=?km=II!wfnfyE^&p0+1G4!Uq1pVMf%Wi0Ls4xg zstrvQc;mBBY~9x#p$DLEb46i~?u%jM6AU(>sT#TwLf4xx4INc;B7_1`K{s^D%Zjnt zRJ`6OKtmuA7)WWNIHEBXrCVEA_m9g0?9rLj9^8$yrUH*A0z+>k*yKkyLP+fRA_1XL zUsprH!90?alJK}a7zhv+*P22mA-5Oxm@9Om3noEx$5E{$l3%cw*qCS>b`?G3N7qBt z`E_)|K-UdwYHO&htRT|oBRa~&Fak(v(9~E@z3xJB#B}=%;qZcq)~!KZZHj8cmw6VI z`y~7FzoA#62b*eQnv#abMjDC=(G7`ITo`HuWfkSb#>OBp2?ZNzXb7OYGjOW*F0Y$7 zF>OAqOkkpIB zloV7|>GIYlgo5UbK-H@e!3sjU!M@x=T!}v+A#(sibK-FMs46d_vS<%Bn~I{S7Wf^p z2v<^<)I(Jv*x1PXYv1JIKiorkPT0*ak zY@%ahx>hl;y#J;;jG8>Es%t1HEWsO>L3C0-YbvEE_+ry2E80(GX+A(o zU3-)cV~S#})$QE2g-0K_hk3LA%Kkk$A!(ZLVr4wo#&`DWA4;$g)~5c|KutrypS}IF zjZquczlmX(q-FIXBBBd@9|3x>k*d5c1Pm8}#wH@75{OPYrKO0?;l$~QBk$|Y*j!P# z915D#hZ@&q=(x_Yqe25ha ztX5Z5WPkGhI_K6+9}(e=BsDz~hr@R4-Bf^-g5sP__|k_E8J_`qfXJki+iXO&p1#+Y z?Ixk`P#j7KDeTyy`*ut)VRgUisw!44UdV$pr?T$#mH6xH4q`=r%mCg64*QUyJ#I`X z@D{LHN;9tL;DPk_*RIy~Z2W}y?$5-SO;tZE^i0~ zZhv#tvVogFdQZ7@^mUB6{^m{xl`0AZo9fV;>aC3}^_A!i)r1;qa74sfI|n2*R351MqCh1vy@N|H0LO@Y|E}P$8jLYN2m-1sid3zticqX=p!s`t@!2~o zh)L~7SxFfc2X+#j`7<2e_#+-$QK29&muKfZ+{~$u!kqeJ^J^z`Z0)kMGm9|a))D60 z2VuTNb%<{Txx1;Ts3LpdxkM+V;fw1M zPEhnaV3ew9Q3D5`!MK~IF?9F{-0ovc{2@RMCoXz*8H=8IBAmFWkk-KWyyJCY$J6Yz zhC-j`a(f)-TyP2FZkobR+QGL&S(sBFzh{LWx8YPcbHy!4z^QO@qIDdHfbhjx(Hc_LdX)}mc5*21%aHE;btmxi<>rT~MnK>lwayQeGk zUHe~8s#)61(dA13001R)MObuXVRU6WV{&C-bY%cCFfuePFgPtTFjO%(Iy5voGdC+R zFgh?WxVE4^0000bbVXQnWMOn=I&E)cX=ZrmIx{ybFfckW zFv;r}f&c&jS9(-fbW&k=AaHVTW@&6?Aar?fWguyAbYlPjc%0+%3K74o@{5AG7&-Q9x)cXxL}2<{%--QAtwZf|ny{kcDGQ82}v znd$E7t!uA+!WHEuP!I_aAs`@7q$I_Zfn)u@UwByHFaJ0!3vhrj7nT!-fT)Q@dNuq6 z{7-5usVoNp;YAGr;U5G6@eG{uKZ1a8Wrlz_F@S*JNrQmEb;xQ};sZW_HIk7KgZTLO zlh;w22%Ld)k&*+$9l>K^(0`@evL%Ip5E7RX6IS(DInQ>_!k&M7-!wO~TV8GC^ukm{ zgT$7psBt$E{nTHkVHEz~TdKX0mywat8A@ANfe|DUPDCDg#{=qUZN~=B{_A_1_r>3y zzsgMz51t+O#opY!tPf+X<~cXqlZVcv!HqwlkfEuec&f2IAcjtkkYvb$eZcBlP2D`* zP$sV+cv(nBD4j1p@w7$NAQ=DYZk_JDfT6Z`Rmfd`vLy;nL|T`x&Hgw3pQ|MdTT%rx z{X_k8{Ev>9;zbY<9f&Tm6y;fqup`LZ?vJRTkMSAeS0HepnxN9Zyag+BIZb0f`gMD0 z;RVz=-|R8C3(^Q?H0TK24TL&99v@1E_D*Be^mc=~`-^T}5zoVdDH{FUimf z@L9?;s6(?~p`VT-G53Ek-2J zn4FwiWm;Q7M*5cqJk&^BU}*_QO#LoIVuo%0awNz4mYkhAS**U^eb=-Gz9@VSM3c0> zK&>o8Lk&q|xBY70ehCwK;2TIB$-c-2B@0IkZ3ZzN^EYiG0xLgL0-_nC8IB8b%FQ8iHI#gn{#2M8R zg$H7E9Jz}MR{)6tlTz;IqVpA@St4YCZ4>czU#3GH4}9WW+)=(uOeDh(n~mxmcRlZb z;fqe;5*8@Gr<-4nh76m2H?O)u^gxN!^#QAEucWU4O$=u?;3sJ0NQv26BQFqdX4Gj( z%w(S9j=;I@C^(qwaqWA$_XZB^WIU|I5nq#)RqQ-E1`gMyx#=*yj5@Q7+3v~@n zN3xDb)A$mhl={^*ecfRVtHK_vxhIK-6SueMwcSfw$}i zv=z_u$|{lsVtyMGCu9@kTZVO9qI&ngop0cbwdKri?^0BSpASvrKW80?^-c)>Jy_KR zm9qsOu21qe2o*vd;$cRF4-k0A=g&+#CA@zH^E{lqDe|l6Mn}@GH(;ncpXmt~e-Bu_ z?_fSZOBrzA!~1INI8fDNazSSf;X>r-5|)*Z#3jm`&YeFv9(bm1Aw8l>^R;wLYv^}9 z3~&i#JrbBw^^dbBFFik-ZegRU`1mxVYeB~RSr}e~UT*W*ZkF%7Kj3ZNS()C$*`xS9 zQJDDf5=m!}K`nDIY5Lj>(wbewaeIA6I136oiRru#4DSt}igtC{Jm}Q^CQqEI&l+KE z-x(bwg*C`QQDhg^zdJLPrn|+-`W4pR&*P zqnw${=4>BWZue$U@qzb*)Im-yyU*@8Iw&J~yw;sWR5ToGB9 zBS!Wd$qYWi`lr?0?{Ex9duMBWj8D^dQSJMGn=i=0d(gqzn|NjiskzMW!5|I3i?)T= zMSa85)2d^W_qYkMqagWC+|}H6Z({w7P}a$=Af=|w!Kp-fx#PXSC@}&JPfh&X&JPaz zj#oB7UImJF7PAAU5VEr_L7at&?6A2GESwu&Oy>F?wD10c#fhtE95qzHg}dvE`UclI z|E9XW{oG1{z)-zA>^>{q5lP(f^51nzn=(%e^b}Xu)g3Oe`M})p@8i?{rT0_R`Nc0_ zU`oU?be)khRjmPlvPyM9N?fRPL}H;bs$&1R6E^d?!?%y}P5?8!h>~}wvOS8f=;}9d z=D#iRJo#$%Wf+C!sbyG5THNyiZlD z8GzKW0V0HR^H_=R!>bLuvnpv|Hpk*Uj#?UOEI4KPqOSVW&G=Yik8^KozE=oD0gG^|c?)bcrLD!6;R zz95mc&bj66gz%sLct+(SAQO|;BO;R=s4A7)zdIzZds`I$^%NazI9T0LVFRjsp4x~@a{S-kZn$~`VQ+6 zx3DvO#n<`T)01>T9=x7MlXnU$bKp0b$;3ZAHmNnx$PoEOJHxc~5kZ~r&!Y;SyMXqveDL0`zmZ`y!>(S|t8X}9b5pwyqge&<&xkX#c_IbtLvbk3Eo7HNRX%udRySM8AZKdoUp4JRTbY`?p~{paH?HeNzLS-GL{C5 zA8}Xb3w5LYGJJOvtH5FWA!zEi#AG0^vW&w4u78rM@0F&}c;mjcGmj&V8`<03>~NPa z)?Z@&b3?vhRN>4rE!sc3uFg;FoC)b2r(d7mpYjiUSt+E<{7sP#YizdL`LApR8Hw4t zQnO^Lgpi6Tus-DjYX{%JO+i6om15?XyM;s>qOG?ECo~P#9mjT2wEOy4m9Ga_)S+uh z4-Jix(ecKPT-QPi%`-jB^XN$X!y`nRCEvRKL7Lu9CX5^d>4@|vWW23B$Y+I-FgD9A|ReWwU3;zy~z;427~?53iQhRB)D z=i^DAWs-{*UkE!wWPI%c-hRX5a+8Sm410xb#Bg)&;KJsIPV}@9PGpe4+w=91^R8x% z2^nf=;>H_nTu%J_P7$-?tA%Q5XJd*5WfT>IP9+Klbw1TDCW@q%|ViTK#Ic2!Zd?&kt0US1mON z`rfqKWMg_?KdEu~X47c9A>?ZMsl+lNCtk`<7&j!#G0m;qC9K&f4aXLf(qiN=on_V(P>JFsKp@PW(I3>))-9CPqc0+Gj=*r{!*tm z{F9|=v)r7sa`Ls^SCHT9Za+w6a_=Z0(6L4LT;z-+R`dc<4V_+>IadE;kGj!L%YKtc zt$+8*X{~x&$8mi;%l#OBW`<8HLCRo+cQ^fhIaHFihCWi@Eq0kfR}UWkQ{eZ-41P4s`zMb;}eq&uYLT=u6@SJ4o~`YO>Q}<4%`(n_%Q5?Zp6?;-13s*?UR{? z`Pb1*)d^gYEqR&UM@)tN`xoDSOY>~=)oC~G(j=V7g9+0e z>q%Dc6?4^;RCYpsg7?5W&)0dWB6E|!_frZlx1#TlqisKbmam=5c=GAV3%n8eUXO<2 zvF*VW)qj|c4!FMVt3N2}wPMb)G0S19&1yWpHGO}&q8yQq$TTT{Cj&ya{fZl={l*tx zx!iZ?m9=kcl|eWnhJ*LE?T>q1OZC1e<>iK&)Fqb6n34Z^uc#jQaYhy+9XL!fk&si+ z5z>-@m_pGPH^-uwN+=)daoWBRo>*CXypnVsW-scI5;PbOm6s=M783^RwqZt#Ewy?= zyRy$q($a2pCJ%mGd2{^M?zMlv-~2`;JDa%7H#vM7bctjtU0^Uj@iCcImGmD{k z`hNZLdN|o7FEAvcbO|?e<>528IFEt2fQcHMc5|n0qth0#Dfo(YsLN3>Y@|$&v)ggS zbiG#SS86hNA42$(+kq=Ptt5arlB`&4@y^V&cc8)AzCOtWhkG;31Y2*KbAlx(HJn7-1B~sqaM) z+B*#0^+Jf6ibT1G$#BxcK%)9mvbWzGTE+oP27VU!d$1zpF9ET)nf|2qH){6H ziCRyC43Fo#QirkMWgGR>6!8V!S(>b#j}M<~jbCuOCtBK__QrKQ*T+rF4i%Mk`c|v> zMh_D=dzoFN-T!VKOT3Ty3kM!g|N5L_`mo7c)zMw(_h!p7+Pm-Oe3E|X_?L>}Xr%+U zfqlM0zwQUV3TRa+kD7vdZhqmaXZNG1pdyGQ%LmfunMBmhPGDP+e{JrbeFyw>&xR>12J#f*c%{~Nt# zcNfVs)rYSgU+{Ws)3W6HM1rW(RoE%s_nzTq9n=?0gvF@NY!I<;*yl}O?9tk4*+d|T zjZd6>Bm+`<1PpJO88(SJ2{qNUmvI~F&in5PW5iXlaDE>O;yQu^WJ!BI~?J=xV`Tay8QyzSCL zI2Y@mQ7#>lAAIFt=VLizRuJtFXyV3Xy?$nCg*=gFT#TION6LN$THc_nfUmtsqQ?U_ zuHFP#T@RXO7{4v)o*ViY5(v$pZ_hW;!fEJe4@P4JyIFQsH|~l=(Da&8cGL%z_^o-& zbQwfuhgxnCpFbX?o?o9xJYsq6IL|9+m>*Wt$3E=LuIp~c=o#C02yWAa)xhlY$@8ko z>bnlD+^4THN;`~R(T--x!b;b%FyYu%#bsQEMQ{@ns@IOVtk*L zR8^D9*<|Y`kvtrH;2WCSE@ii30K9@k(qH-m2-``9f^|@^a_y=dryR}MLUer7+HkpP zWLW=MZOpflpW58Qkm1oFS0A5_u6wK{KKk~}04-#}Q^~CcW%`P%GV|)3coq-hg zDEieu%}!BWTkh)qcZF^X0M@h*UiaTFSsWimF>4~wJ%cN~bdHJYrr0boZ}Evcbi-Eh|U?AqJS&Not7Q5x_24z0=l zfl~W=WeH)lI1R%_=?KhAki4h`f`^YU-$safj%mj5bSt}9580Twr$Kqi_6qovJv6F< zXil7yf(Q|#qKZO&4>R`@M~Aq~4hcup>#1GQQ41*k>cM*%?jnAn?Q;u7rP-pkT?RG# zyj&rIUT$vGn9UyX!a#8n%nWPX(q~&rA}c3k^}?xx98#DhoQthwbK?Ek&l@H6&1DDy zvwXxXbxsJMPRr~VpQjy)sJpncD)-8|UhV=X4}lnnPRe4I`Dg6l*(y|a$P^TOXpfv- zM(=Uo>CMG7#`e{7#v{+IMwB8=^Puy9k&;PaW_kJ72@locC)8BDbJ=dWf|Nk z`7|1TydrYE5hdgq@y)a5O_IK;V*8O64l7OYU10dWPxX3l-^I~HNb4Em0^v?@0gV*K z0^oWPKJ7Xl^WXmVU&$bNznfzE2T2W==P|kyK*tIOBu;XL?uKNEUAzx6|E=-6-gv~- z=KjViQ}%mJwU;@;30lb6;t~4T_Q3g=FX)@Wd~L9*+BZtU(~Y{%$LYTZLyCihykPOu zmxtr@bZyyBzcG|P$-53o7B{KaIl2IAx87i-)xH|pb$7RK{v`bMOe z?~l5sUm;&bL#a~}v#;ix1^~M=Kms2ZpWY(DB5mWDl&S8&NRn4sLg1ebUi~K`{9X?m z#+zRe$3FgAm-svzCX4}_1^85uxQ-tZetP=w9zv7%q zGNWVQA@5x8zTaKJ$tfR%W;?a=XZ#H}!SRUUPGM|X4?npHNP-8GwVPsUzuzeQuwI}v zzse9b-MRwhad-vN>+|JSbv!@#;EQRmH`m_5-nK=^_{&$w+b7~|m0Bn|-6p(1pBx;pI zuzdh0-tCoCa`so|VIsnM?x#zn^V?e0ni?(=>#*&#@^8@7{yDvI__MFR>(ZK#JDJ53 z`~Yf?FvXXPiFeqL%jF5SH}{Qy<>Ty%b7sO1DCdx_v$At7Mz3XR4{NusRG^kY1e4V} zach6PeeTKRST0Jr46I|yyHFaW{9wdDy&Cg-A8EHYr@&h7`;^u!&{nJXWpg}BUQ-Ie z^HXq^`*0X_)oZ%G@7PW3d*aFofok-6Okp_$4qYm}@m(!dn0QTXP_V!5%EfcCwe?rR zYhi7?JgkP}7VQ4craAyf*_FafI9FBM-9e`q9$Fd2UVig${cMYEfHlQ*B^-ptq%;i9|u2}+( z_2XY41c6>vsnWCOJ_vdk9vvImzP6Uwos^W29vZ*s87W3uYV?GL2+3dFE|5$D+|QNQ z8%>0Wt{l6HpjYg_Ncii>*-%)CWfZZuAb=Q;yk|g-We|K7$cfTaM-m}ri$05F?4NIt z2`pAsySgP2ayi8Ta0AKj9RK9)0@Fc_KJ<_rCdfq3$ys4wEF~lt#%g;0H9D%svs@ z1K}<%Sm{6HKp>I&#-u;;h?{E!6n31?whRFy8)d=wyP}{1CUh2T*px#fLPdmHYrM+Q znf}ggtqnb!XY{X!@5YlomA` zdcFhR`tYy*D{-uOlhz{*B9`s?hy<&;PAmC+6l`YF&T# z0&|;{32>W8^^!I^r>?6~an;ryz0c+v&n+moZFvV3{7@{*<_#VHc*NxQy{Bs*Bbc(mOs6x?yQ*^!*9}bbW29EO(QZXZR~JR_eR#6v zZbQG?b`(}1{WfLY?~hl`^CC(5>tBy+q&5tMP{-2Z=|cCeNAhsFa%`Cc=go17qjh@- zzt>6UGOOADrnX&b?Dn1BuYY+DjWdZkb1iAsN1tnRurJfSF8%5CxP0&ffjFDwI*4pp zL_mDdlW!L!^sl~dm|t)r#edQ>6*pVZ0cC{nevm1Ei3p1-?3sT&xc@6*F*dFGG9Y-X z++FSFnEd5rC4m1@0RmO|?<(-ITYiku(HH>8Kv_ABIbcumLIRR-)ROmYG}=u&Hd zw8Vu!1nmb9usvS!ckNZe`7LfqVj8G^Q@QP#onz9>V#Ai<4^h$$w!dVqAB&$oJ;D$(T3ZtN}u<5mRahxcRVxi&9NQwrUz>*-w51nRwI&dQcRW9lm;5d34fN;o1Z~1!?AV-SFiR@ZUd>qe!N$6tUzF%TWhsUZYG;O28heg%8KrYP$k{J zY!fY)PQEWqAC6~RWDE%{v$0d<~8$=IeG`DjI+9eW4Z zGw$90Aq&2RW_cZW?qTm4v)_wC7xP9cvPZ`o|FyyUub2`iT3JO+N?y-*MpD3Hi240} zk8bSoJL0V1OPJayj*^;YjAaIm$d*&-^sh|_pehrM#MqVcK8Px!mie4t2wrtCF^d;; znzP%at2Ir`hF{gN(TZDWV(R#~R4+G^rKopvotbAW27By!^=Lou^4@DyHrug*a=fUW z&E$;lZzq?ky{Ld0yS3{|W2sSacKI8EawqNtI|xx5^4*_nAJt11`+v4o4LP z44w)+lg{XSrq1Cs)YQHQxICla4IR}yOgBg<$U=LOu>1Q7yb&aB;!iH>`}W+A6aFU` z2uKh2VZmt2q&Sf~pNnP-6$B?9xBIi)?w??0pwD+g1@cY`OFu3}ay)N#*Y!lF>Z_wH zwSs<-iTv>*-&U-(DIYx_*u6p@8tUFw)E=L+a8sTU;Sk$di)`ly=y0hIP)r;|B#_F*1TaV`7#$aEZvNVdopfJ+D~Fj`r=|#plF> z&D>B?Lkp9sY+kr(%H)CIe&3X8ZeG>+=)W000jKNh;fe9V(;N0o2qkrG8CzHOl={n; zS%jj}!akC-K4RMWwJ??=(x*iCbI~nctay@RL-OK2c5(=^{YM7 zMkdyaVirp*p-@Yy{Ae`+hJ zmFVg^*!zirazCOs%4`Cl(ldK?JLlSAV2bP#RH=w50PhX*zc3#+I5Qiv*;rntr)}sg*ze-%~%4!9d57jO3At zy1z8tSH{c{Cj-x!SNzbYf7#XC=;~)R{^iJZpBvDSXf0F{3aGL1u-KM z;+7|g*?$aLUkZvvOyU@pkVT^Uc9p zA)-ae_Afiq9Wg8D67(x8G;ObrNlQcTH%LVC-o z2xx<`@_E0+NQ!8e{JB@#+-j0O-YkV<3?*D=K33M~J{Rna$>H~QJopJ3sOv^4GBwJ; zDX}Cg7E)m+`i2JVT#iWTAN11vVE-Lk!Y6|s86ctWucr(#EhztSR)K8SVM%%Tap|HX zk3xHX&VoEE!s%jELla_X-{p_LJjwSPYXw7sC?6dy5(b~c1A_F)Vnh{(K}&=gPfSe} z3o?yohGoh%+ks1#8IKYR5j`ddK3L?a27ZP`QVyAyB!+L8jEtWy_Rd4I*@nGE6LO^d zM5ET`lV-Z_474v1DqM*rTD17Iu~JY$-cJG%4Vv;FDwrA(^G@+ISUkwUxWz#g?Uh-+ zPqsl;((xrRtAyQAus?s%m3X`vRcNro2asc}*?kts&1GvslEW^Gu(Efs3{p-g#M}v^ zaDgJOs*-Yag*n>({)38cDv&3mWZQxJs;K44lbjvAauOM+OTdLEUOz^55qF*<_;q+?EqF-AQl!w{fL=pf#U|O_ja&t*v=Tc7JT(;7 zhO(JshrRxM?ZA4)U0!6#Q86u85qQ<{03p&Kqtc7OY%J3IVgg6R^ME{?MTJuCHL+i7D(9|!7EQc~H2gwUT z%?QoTHFKm$Ry-2lLxl%N*)xzbApNAdzgIYS^P!fm$D-2^W77z@bQw%v7fjx5MpEvW z24SlrafbYyE4PW&m-eXagmx)pXW>WA!;2 zG04i57=*MUoIiGMNrNMjFf7wGQUcJfu>W|BX-Xr7M`-`2DEcd$$0;rb`DHWi{=LqT zc8cwrZ9x4_ecg@#n&rjWS1OIGa=95XY2J8<@xbC{^zAQr`;h<$QN5#(VVJVr@WbM- z?a{GlyyZGi>kH4Pf9vzFrTf8#W*4PWS5zsyEaBjK#X zqp3UX%JKHW&CDfY|7Bo>o#{(}O|c|nczJj<#uV&;&M(88CT*y}%XdJYWxMjqN-F`I znxg1+^&S5Nmtaf>0PmdiPgqDb@|RKOIQj6To{e#FEe={W5Gq($MNJhfJj=EwLdpCDZB@7t*Uc48LvytB$?0i#1OE6blB$BlgHh=J$Y~zWv@7rYNWBY|Og|fhny66# zTC?hB)KCgdlH~*pRqWDUOp@i~qB~W@GoS8YAwd0VNHAoJRIBOPI|U=cO$j8AYey5P z_{r}@i=~lf*%YyYMN%`XGlcoym`4t`r;O&*Y{=1$0y7+4{{NWb)v{lDnWyjYN{&UG z;bmn8>ycF%P?|;~XU|2#?SCe_tV$t)=XdtGlRe%{ECF_1Fhef6f2Ix&*8nR}xVCUaz!xy4}@#uf?$!Bj#^ zg*8-IXc%gaOP|9N;IVnCbF&`BRHTCx{~N~>s0%8$`1D6HC~B>ei`CoR<-ry4pE_so z`m5^n8U06ZX)j=@g(KhxYiTJUrh~k+V97qgo;h}}@!LRx8Dl}&Ff#*!EXhMjl2Eyi zb)Xn3jWmeAb}*7TGRT}V{*a1DYO=AO9*xJh3CzFc0EZ@h@=atUYYqZIUV*wYN-s!6 z_*NrHk}?Vn(UO?AjtYIk8ly*szFvb`nLr~Y*ff3Uv9T5-v$+60J(GG-ODa)?{EEXe z2&4SXT|^kY(RJRJ8Ae%pX3b8=QXuF=GB|%%61^2&Rj&7#iL_jM4lXdLmu&4XTM$}W ziLQk>HI5!Vri^rvsX;nVO1)nbJ+zG0RS?9lbOuAyYqIXzkImXKk03D)$%IGGpn^WB z-(*1y+*pPRlI(I6b%PFbLYt~kUPM11R4F78HY#$0WNr`^QZXcB&HV{^%2?zp9(g2< zOj7O@e#Fhx+8pPVH9m+oNSNWrnuA;#lQ4Q~r|xK!Gwv-atlX9q&|>exP3U!``H3+( ztBZ*JR5ZBw)6-(=v4AB+PqlR)kM^iL5T#%NWJzTHh}>V!d`XOD-`VtP zm=T^5z2!%nCBc>4S4^iqy)X5$FPkV7;`BHLwFObFtt*e4$5)hrj}cL5_eCmN@RSHX zcA`dFI3-ldCU!w{@EvrN9?s83->SeF4R~Hr8uUNPxovUvbR=Xf`%OdSlxd^)YU_m{ z$Ai(#STZ2{8mhW$k&$OfF%VR=8ZmPhLnlwch)6P$SYT2t2`5h?bp1VHVJ)5rMdrAp zkl>%qio2Qpr9ebir>HBSs!tYw!cyRcm2W{)PSGi3WUYt4I8uV%%jQCPzXRuA&Qn7l z?gGEMgq3@%39JtRnL?ZrqX<|=`3MW2C9$>&9h8HC=KTg^M8WdsaJJprUNIWfBJ4jb z$mBDDCu5TFE$BczhYE$IK)kIi#fI^R&cP>ZOhqw%I4;CmD1<`>ap#CCa>df4QMP&r9=Vgx=}ruifEQII)~ z+u`9TsfdmqVK1)IQUb3J$)WjsvooAh+b%EtFPu_3l-@AIbUhtL5L9^n;7*M>uZwvG zkMe)hu90bmz*DE#P=buqx!I9#(-=5=w&AxO(i|vdX|N~>B6nO$^2;;$-&hNU_@*GQ z!p)FHn?5=jPr6S}XQtQZj)B2s(0)`9i_*>qs@lDzu%*TnlmoPZT9#Qyi?1n`Owlr< z#Nglpa>(AfaPc1C6JBUoVKxF`P8ZqP9_ETit0GFG7)26f^l0(RBCstK9ZH6_G-g0w z0>@8duO!Jnp;5fBgKKveCf9!v10s-DHa*ZSeS?r}TWldgD-fF~)QzjJ2nklR zjr^J9mhUo3PJ}wxP!(*4cl8B=GGjLKM85Z2S+Y(i=tuIuZNBkz0G1_Z z*$9s(#FFgGF&E!5EemHLR{jH&$h71I51zfeeyx?8vSxcswWb&k6xeYoojT=H*?lY< zGYV#J0uAbC9K@dep55V|?eX5@QBj#uAy*Hy)5E%h7x$l)Kl@Mb^1fQ>6edQwXQl)s zVa&1t71yoffD;FImnNcDUjg_*fQhx5A~hVZbRd`4@*U>-Wqb5IQjdp({Ffq(s?e&5uw#)Au5l-SIj-n8K*CodwWW@u;`KxmQ@N^Gw)k)m~V z-+~HAixS4{#r#hkzPL@Jfd8P%5pP)^`g@s_5Z`%-7Rwrc@^GS-*NB)eSDocCk6L%bR~p6O$AwA~WJq>LV#u#bH~z zevQkYhsW>7{|f)9qmD393rjK0Q*J@^z1A!OKQdCl%vkx&MOg;SVqSI%wTLlRSIp(* zJ1(BI8}&iYtpt3Qf196%BbdtL*dA8Hn5tg9$W_%P9(vy0b0NU-HmkM4>bXxOvG4nw z^cfGf&T=5AU-$RT08tJy3klisHQzKHz&gh&ssv1LLR|L_+^L%Ky7kC-v%(p$;BhIU zR!o+mXsKE&RWvn4l^nSNVov;OV3r;9u6@;kzM*BOEWJu;y9Ekx{=m)n$ZJO3b`;O1 zF3~jKfNTa4ed0FeZ?Mk=hvDKO04bSV_i;WglK4&l1^(j7#*&tU`R>#1k`Dg&PBbkj zq#e*P65H{(2K~rNvdj~}(<`f>DbAKuiHrDgn?SHcm7 zwlz9LQ8noJ+w5P>g1?k7g}BIO5LULgZ{N*0!>u01k||R=rLUGgs2)vTut#MmfA36P zHB6j*?AhvT?CX_!``rj@5*99d6Q&4q8ssa_`)0?2`b&noCem0;uGl9pXt^<%KhHcV zV;?cx`hLMlQw`?!?VY`>9UBn~MhmtL>Q~6nqKiL&qbTcWg&S&>mH${xl-H{=q{%3p zH?~9t1)Sv^Z4->R*-#Q87M8o+H)BuYq+Wd&FAAUHqv^~E74zZcts67x-vRU8RS8}J zj1l9v4D7T6JH7^g({B9$LFmY3IF{Z{OoFrcR=h_d@4ksot+O;n{QHw(y4*@H`NiIXBN- znz!ph%ru(-04&MSigqtjH%&I#qp%UPi3g6uc{36E#e$NPTM*o#}q z7q7K1;O^P(Dt{*bsrRfKA(l-!1L({D8V8PH_oiu_5~ddQ{hkoCIVz|?T}Ymx@trBk z7+*EPMU`0^Y~qvzqL1E~2yp)y8>-6nAK%BV`!J(EY@8$gb$MY%$u9q5T}>aU$Q2>j z1}7gHQ6kyKQ(mpe|A{6*FFRpM#J^lb&6J8n?t7r0;4M;#@2$KHPYbN~&I6JGpQ0z} zp#WYn5qUTH7Hb~yQSk4o#2rSQ$Xc^~Wiy{A+Ih8Pm-CIxsIf88PJ?DN#Jl2Ccs1GyqW*_mS_8`j-~II;(zj? zA#tQLh>Fnsyt);tN@N5v%-$=9C_J8n_XjRcSZN5aupUH9J;E9)VdV>5ct|fzr-;)_Zn)qtLh&LDI<3Ib zed>-&4V{gO4#7$^)pLz-{NGd*Rk*q_0)(L;%sM-yh^UnsEqhL)WBw!hL=kO}c7;a0 zf9d<1M2`3EMTLGxJ9jpHz<#&Bzo6l%$*zI!;2*}uSq*(AsM?z1A-m`2)pY%8n{A!f z0NGZTQ%A`YYciqOkg}!vI7!N|E(cOg{?I&b9j-OVf_ZK9G>w_m>#3%yGdd*NQZ zRz^nAKM6o~LRUilg^VeU@8odF2GCXG{+*{R=V|Py)^oiWLNBQD5-O|TL>Np*CtF+jawt8RPAFgG zC`d03J4Jo<(LMJKgTH6TI^5T0mBg-uKw+^+UTZxz_M?A0&ln$#m3$u#pOXqN*}<641b)DxkI&kpIV9ubfaILWyNKQE}W3 zFp|dJ%y?=n>RU?wv%!Ccxz~Qliydk!=HAW5){KDO@U-Ede*N6&Oybk;)SaurPV-8W zoHtX&Mk7FN5~NKuU4tXX=r!gQRqAGwOJUOL0T}An^PmeAZIyK$6(kJ=zEADYs`ZQP zjfci|MyDs<0T2E!{v=RRqCZSEE3_N3LO(7^^?k1e3hldMNwSgE2faKTK z{|ZL6qCx%{ z*I$w+O{5;okP24)9={u4qL7Ge4d{lpD*mi;8PF55co zoi3{+J2sn-cM)Lcw97NW<#xv}s}Wym7^(_ilm=(bw|)ZD4@#n*dU~&0!5F(Y*u?cW zyw=ZnA%Y$I!PvA6<{gFr7|De&9BSfncp=JCUS%wEm2k@MlQ`CiYB+} z6jcWWbnbGdx7wD*tS1Eq02ZMipp4?yosp&0>kj7_9ZRPd)6=+9P%Qq|0c`<)*lxBw zeS9Z6OkfJ_x>5rMbNx#iVmldETe4m0a104}YSLm#xVhYp9Gs8{8r5Wqir9(c9uD&B zb~LvP2tNv^nN9mwf6_Bh<3t;!QS-mtmsWe{2HyJ+xHw_!%cl2b0(Hr|h~iq#maKF2Fo}uoc5Sg(a5iTi6otv2QX^32J zg(^R;)^%L^8$yBpCW`nlP?c6=5CRkbI4+4oL1SxqO9?{uE72u~;>Pr1Cx{3!NWL2- z3;Gp{D^vXH6oyD11n{JJ3NM;BWAwdw%wJmzpkAP`a1wo)si8n9ohpMFVyz4 z0A)z1X!sO@iD4Dn#yI199L)E3h(kS=AB1)tp~9jo3i|G5OP=4=z6*F_VCwlsu+ya& zrH>1oH*|+CC3b!y5(DXYZz)o`K=B8x`fFPV>mOpf81~&6H=EsRv_Aa(vZ-BN$kgT& zKQ#p(XRcDIEK*8sPsCNh~|v1^Q%DaEAhW}CV(|=DFs?I65H=s{KsslRdPn-Qt1(n2`vk zlKQelsz!O=j9ww&o%Nq^(QPU7cbo@FxO|N`jQPuDc%BaF}|AGeN1#HMTM` zz0XNsxzv?Pac`eFBx(KD-j`6Px=&F(jQNA!@gKfiy*q2}nR3y*4azx-n4Hoxb=&F-b zBsLFx3%Xs-u8~9kZV=HDr6>kqT7dQI+T=S!|Fx**DwTfo$J;7bOmT)-MGCWbDiJjPC@ zzyX4VnT3sknTvsiS@l0I9yT@}HWoT&W*%ndEtwGi|8;|{y@{on=l^{}JdVJ>FE&v3 zQq^!#HgqR-aI!bEv@s=h@pLdHwRCVXhJf(M+Py}Gcl<^}Gomm$Cbh2&0ZoC#XpDqO zfhm)S1&v86=Fiq^0!>k;N;Mxlm%?NRVi|%qQ!k!Ea0U-sJ7poL8 H`0@V$UQG$G literal 0 HcmV?d00001 diff --git a/authors.html b/authors.html index 4fbf404..16f23e7 100644 --- a/authors.html +++ b/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • biorecap +Authors and Citation • biorecap Skip to contents @@ -26,8 +26,7 @@

diff --git a/favicon-16x16.png b/favicon-16x16.png new file mode 100644 index 0000000000000000000000000000000000000000..4d75272a0404a569b50da2edb858dea2b69a4a8f GIT binary patch literal 1195 zcmZ`&dsGru7{8#F1GN-e+G>$hx=KPsZPYoXVTB57NSm{EPKnSwF111ps~rrjL^Cx_ zOgy^GI_gO))9FsH32p+uCNCvT4H59s153>pyPW;CKla^o@ArMb`+dLfKC=$f4?3gP zp#T8R)I$^o)T?dX(GHG2zN;dkvOgJ23kKlfb@bv12k2v2hZr;f(zXJ?&j4T^LVObd z$piq#j{`s!0kAen{QI|i06@$gj$nqu06Z~pqt|9P%o=BxRaUDNB3@g+ianJY6Q7L5 zK_Z*Dxvx3$BfGSwS#+Wa-p$(r~l~-R~|{#4_bQ@cmkgta2Gb&6LL_HCw|^L`m}qPpCkHuF9m{5&Mveg z#|kSS7F5)QGk!p!oz`#Mbc~%4&5HM2|0N9Q9QmLavPiY&zA3AA(%PyvYA2U9Q&!ES zRWo7LLStg-d9S{6#G)8_uN?c-DSO$YGOEXyl%@rhc~LX5+%q~0>!#=4$`@DHpU-N% zS;fCrl3jAQxMa zh6cHxuZZecT5ONpq*H%^8|vRM)c~dMH`P0U|KPg^o{H z;W0d7(9ce_4lwyYzTtW)kq+3KD9-FJ~utP3|NLnR0FScQ{#naur@-{0* z{~F`wcB3G&u+Wpqj8rm|{=|kyXU|Mq)GALV35CiQhKDKS+qc!$1f(OQ1E|!-qkwS)xNJ~5z%(kXQz$1nW@uKp?m literal 0 HcmV?d00001 diff --git a/favicon-32x32.png b/favicon-32x32.png new file mode 100644 index 0000000000000000000000000000000000000000..866d9a93a5e92050a0587eced538900b058d14f8 GIT binary patch literal 2111 zcmV-F2*CG=P)004R>004l5008;`004mK004C`008P>0026e000+ooVrmw00006 zVoOIv0RI600RN!9r;`8x00(qQO+^Rj2ow@5Fxi5XS^xkB;7LS5R9M5cmwRj!*A>Qp zcV>3>z4l_v!w)cELU=e(pnww)frh4p(1t(+AyGpbssyR&gFm8@wn$CXl(Y&8DNPg_ z)qqm*XbB~02_>bWwav>IFb`uxurUU|*Q|H#_1Zf#w|}e+UKdk?;FCtHoqNwc-}%lx z_soU6gB@5rcxZY_>foVAfhPdlU9NRUP=HBE$^JhseCGM!$A2r3d7m7RkAHhflgI1( zJunUs_se;vZg;$qJNvP#@8 zbYN~;#_-ki7cHH=B(o?iCiD&M53(@|9w%j%zGiULL~M$w^sw&i_r{m{Yv+grn-jlg*zfqriS znY!Jva>|UEFD-rHmGs&3=Hqg^FwMKmovK1O6z0I^d)T>U)8&%lBOe;E*k+)vHvwG; zW%-!#Ija{v`@IQIE_qfAOijhI`j)%D5F)NfT}>@}c5Jow?AUtZ(uLCB0=odSn?UBc zhbABV^~TL3$L8cj!=MzHLo3YuT>`Vz4O3$Kc@hDUc!o|m_+mc6M|39#zQ4}>UwNSd|s5hhTey^&a zi1_=gQQ7zhq^Mnc4XvA@lwetKtl%JR;SkvmPN2H-D|EYqNTihu=T0+fTn_1%t1w$z zX*raSJ#!cp?QK+7e#OM8Gl;fFC@nd`lo>M#wFJ3TUdn{8eVy~CPZBda$sRMFw2Wa1 zifRcm0g56>_NVaI?VIs0q#mm{XEsv*%kH%eDiEC6gjnZV}y0xUF4&ua- z0xW5R;VHl{IhNjs- z2#i<^BNoGEv!Q7=EW^MxW-MkTLg-8hn$5<;v*$5=)?C`#+Hg3WoIO>{fBw0bw9G7m zfdI+=6uiDw`P2-70OK#*y_NdcG9(@b|tJ_w9bL2>J1>|;BiV!e)TJDW;MZlHIm4rh$SQy`%_5)=S1EfO?Js6c68w_1oPUM!&_dyV%#Gb~`p&|y5c@>LW?yX8r$&`(Iq z!fb0mZMlFiRsquJmz|=j*zFF4xOLmn`n3vR#5!mXTtgv%G}{pVOr+Lt^S%l8ccRVi z#65HzC<0ZONN%C$U3`k%Q3yhS$K}AG>vYN}mZbs~(lU`|6eAKq@r?x4aeoL%3DM3N zey<0YT7&Fr3^5~uX+*gm3DRLpLiMKiYP$D`fTB6*6ken>k+D{Uq5&$F(Sgh9CT2p+ z?(4Vn1Ona7M9{arP*n`qFsf^daB2}cV}kZh&{RR%;6b#RZqQt}4?>Bj^2YzJU$ge= z)sC~LP9UX)(%06Mpm{Se227*96RriK7%90lM(otoRMBCo2%+}r*s@Gc7Z=f3U)KSc z0Nt}A%}ouLiV6=7Z4NYMq-Ty$lT-Y+RzV0<-9@;ef|fRe)a;pHPolP}6t_1C&6h>b za)`HP$))mgHf?yjY++I)muqwWB+HnS^wsm>fPHmuWzicc@4-1IuaDU-F^WkCl5&Z@tnsOerMT= zRi2#5Q&AKJ!!Wz@8s{&iL`n-)Rj^Ex;-iPzp7(xB{(*ge4u^v80cW|R+DL>0SeP+< z#FsDs04RApL$i?g05UK#G%YYVEiy1vF*rIjG&(dmD=;uRFfc?r+0Fm}03~!qSaf7zbY(hiZ)9m^ zc>ppnGBhnPI4v?TR53U@G&DLiI4dwPIxsLbW?^yw0038dR9JLUVRs;Ka&Km7Y-J#H zd2nSQX>fF7004NLTY@`J(Lgn=_C2m3rQQ!Uj&d$Aa@64Q;Ip@ro@62j6%``1E zy?SYw+Gut^sL}M*Xf!r9#^;V2O*->BGL`pJTWT~b_`xImhD9{vNs_Owe;SfM;kP;4 z=tnwC+C}O~YDW5BxVn`DSO0=&tu5IepPK+w@zW+XQaFS#vPypXePI8*+Sp1 zPp>McO+Vsdb`;L1hhfuCOY!)>9ASuKhIGbqT z`E)#BNzA{>{zUog$M{jNqr$|lBnvRts5fa%i7&^Q|=ot4?)0TdsLi?Gw^Q7 zv$gx8L|o3-;mGb^@xpWe59&r5>zYgYGju~_d{WC6Ep-3x^F-C|O{*#6kp@{Y@oJJ8 z)3Yf(!}&11law-5Y|@P$O|Bc)$oTh*=c3S3#!WmjJ)Lv{IdK8FoTtMj>aR(LE@VZL zU#)sqSrBW;H}=DdZVcc!-3Z+f8Gn*Q8Shjw^LjE)ev-5v*kr#Q+Q4Jj?d*io936R$ zgZI$`IBh@jk3cqX01rGi@Y*IFNh|6iJh|I4&7E+OIYNGXK=>=i_xE+?;- zpko?WbcKB=Ln!;A&A)))obzzerz1PPo-)*g{FmnHaVR1V9;v6v=LJM^oWt|ZBf6l3 zREp5tV)$m9hFAJ2xWr{)cSsE4l47oJgDmHv3HiT}7mFkMRCs3;!8ffCdAVsgUyzKF z!W5h*73C+RFgHn2XnZVuVst3Y|NF?#Me^^iONM9qS$L=9p(LOFndR77+*k3wl50dw z?`zC&s`2MKQ%3pU9~@45a}us`nJCU{0Dl&JwAzOz;y*Js2-@&q@*fGu6R~jBrPg0I zuE)E)ZzBGaVuIikl>qm!ScKo-VL%T)%oUg75$1Bzk`UTzjjsj z8>VmS!~Z#AA2J4#s(Yh7lsqA+Q@u|%_)6jn3l#}o!c@JNZ{(RISPI+!y)5%gb*uNR zQ@%0QIcNHZm^tx%!#9#I_0@-e){}U`4K5CLaNV^5**YIwWgYQBt}4HhV-z3k3g_R} zz@OMdS#C7WrRt&c)iTwgihan4h(sd&x#F}4_`B@Do-IGAvcjX(w}0C@9JF7LGs!0u zrs8*K2ht;sL+h~zb7p*qkIDauBaR67bfyok2a4Mq|GxNa#ss`HcmP6= zIbqi14>0%R3Gmpv1<&;DjRl`h!TWE&f(5fDBhoV%Zw_@P&*2Di4Z+Bl_F|Xaan>^$ zf+K!2f0n}Ggr7nEpT>vpy@_wWoTaF5@5iz7t2r3?+AzHT)+?AkVYI4u-M0%c_}PB2 zTlJOVe^*`o&*Bu!_~<<>p7*iZ3(WguBKa7F|4bQ+&u31=1h)OftV!yfKJYM}dg4(W z+~I_g!}q~we=x?pwhudP{SeIY>)y39wys-_2(P_roIm5(3T9N6OaF)ajH7!t;s2g| z4EA>4Veo)|V%F-!6P z5hi``4(9)7vT9$(vscfDacIXLj{jav9(@qg#~dOq6c4TE9^8BP9T@Y@2)z6HOX%CX zr;_WpMhrz6v6U;tvC7#GpM%>WxMTOO_hHN0Z#bV*)clC7ZD0Q_``1%pMfKrd^k?*& z!zn)>V(9bFAkftTpH3T(rC-cM$kE*xKIB<^@yR5-GW0q2WfI~7Lh#0rJvi8Lk`b6lq)E&Mn>c;{72c>gVypNO+5Cve<(Gd|*T@5g&6*%bce zUSxMbzo%fka*@*Cy30>8rhPbCjj`;73*rNmPX4&;3)p>6S)^?~8SMqZIfC7Hp*$}d zNhc!k%5zQ#aSy>)v)u9N#KYWUac$uEM*AL6@}ux9j_LUfEy9jFA(D7c1$DDDGhFGa z*o2CFy{bDt=&;h|xIh3M7?shM%3363dN$cq(;8)ZmO7Q~Wh(b3n_3_HNn0njwwyNc zvgnwUHInREYudL~6vR=cV--~vitYcsoT+@HQtJ9n;;psp-@6c(OV{x{_pz`1bW?&6@c=^5FdyvYv~*Rx))X`(c#vyjVZwPuO(nT+VjgNP|hO zNR7R2X9XWOiEdEF#s2TG{mvlcEtHIpV|(oz%e0m9*XTxQV|0W1)JPe(!d{)SuGJ0t zqxI4a3mKm>jxye<(K22qrmcKr){RFWy1(M*>*MY zbYmuUBT=mzJFKi5BI75ok#WJmn@Yy(#I%)o?JH)Ovfdp7aCy!LO!%R?Jv z$E`Heq**52*mcicca+YaI?iCnJ9Q{xtBtYaP0F;D%G)t-3@M2uYyJpQYtjwBfU2)S zuLvj~Xh@4Y7*gLBhE(2>Dm9v~CFRP}P0~z_rj4YFxiB)V63&?NGmU1TMpG;D>5lH~<4V4lt8x95apMTHej@&M@wB_``BK$CH2TYN#7(M{za>}~ZEzvu(W{q!ezoVL4@J=@8_)Wz#Zl|n%pX2$ z%bXG2yWQvWj%VI4 zv5mZhAOv{3A@YPLF6HWwsSkv&mm3mw!G=9J=S0r67-XYwR-4wX7LkX#$cDunFEY$A z>oV`pje8tfySxK@;2r3Lb6GJscQOjc{Jo)#iTE93H~JL?2>~YAh^$36M4w(JPUKzV z99!(KDu{pVBd)W}#c&QFD=8GV2i)Kt6$Oc7ndU{MM%hRR7TFkAZj_BdY|m0(J3scw zgGqv!%GzApo=)aEJ1qwGp>f!J#0zOWbFKGmoHpVCn=Z2U z+(t58U55>MHuHjSGaKX3;v8(pUO+c#lmEil8W<_P>_>|xMbo)wZ+J8K>uAM<8d@0i?Q5l za<0bLN}lByG@|`WIWY(e55eK^czDET;6g32K@5&f4wRh**y7Np_wDI*?fs<)O@&J+sXEOw(#@-Oz5w!%QP1?GEWp2)V4;E)oB zlC@C2Vc)L#R`Q8=rbl^V)#A?#u^QH0qy7yZkXf7-3TMWH)~{TsaN{t>d?fDUv2Tlt zl?1stAlf?&dVej_w2_Qy1Q8?OieHKU>irKfuCWWU-#q5L34)2cIM_nYx(VhZXJo<| z>p07}l2!d@`$fcXBt|3nx5QMwWGq5xIx%y>v}aBnjg<>_!gjeQR?IsF2fN)oyY)OA zHmt(Ft!puMW8Xn?=n?d{X8%nF@iYdvMOMm6ey8VWgY78Z=XLbC!{uFWk_ibB? zv#FuP_fu4SLFUyQ{!$hD<@S<1d;{`KyqF6xQIh#q;cdkoh+!52(d>*n-ZpLpyM-P+~z zt4<{a-8d{!_-DTbL;P;hr&oJC^njL)jwFfCQ~m1FwoU6L{BK0gUdC|ce+Fj1?|S{S z_MYtu&Mk94;NMSW5KH-j4c=Y7(Q41)7xn7Y@z$-3@0|~F-)ZnE#Ku@_!&)A{mGhZ` zZ@fKXXwj|hZ?R*YJxKNOgT;3r*6qG~kAFV%qst=4W;^hfY7CCmfwD2Nm&nG7FRM;llMTx`{)%(_u$trd+3qc*8+D0nELF0xb&cT+yXYE8 zFfa$1<9>ZO$F1rz#|`DlC>tGqqihsQ>{ZS2t1q769NV(e`p$7f`H+~>Tb=K@D~5Pf zDDUNeE)AMv1=9#bBk+t7QV>X{oUlVC5f)$SX=6z05D3EzUq~AQSqNM~s6ucGfhBB6 zW}Kq#|1fC5eepp4N5+%u)zPl^-SZ5qvE0}2(fY;tx}S5n>X7~VeEBcaIqnO1_9J)n zn=dbCjH{dVQY!a$u4^+luUVFuqw}dMXI!};ISi%Q(I`v}M`n~))h|CRj-#AT<=34o z>S;;rV8pizXZthuTp@cQ(dUbKdUyxVPbh6W49KzC?zc(d&2Z^*G9oBHW^nWMyqT=BK@vt{J3nMj%6i2_JH%&H5qEX zGTM)_{5S-sW+RN}P(yh}EGR9P`xj$*V;wx3ELdR|ResA)8J2CA_Tq!Fg9coup2i*U}$5fSq=3$_EsmPjHf5JdZACTjVT}?e|}q%6DJ0 ze15W=F)HCcQ_d<}CjTj+5y+2?R`GXcvWMsSipn3Bd>-=jQ;)yJvSy8H)w1P1uMZzQpFU%T;8x}} z#W>y)&*s^bG@c*%jCj|bENks*cE>+%>%sFfc08wZR`$&$?2nt{FQ<71XzlHtIzG%o zby@3LF-9|d-pq-ijKu~$^nlG!mNWBe*>DxH(Q;~KF|l7?YQtjIUK`0b@~xDSvi}7z C_?XWC literal 0 HcmV?d00001 diff --git a/index.html b/index.html index bd2900e..13787d3 100644 --- a/index.html +++ b/index.html @@ -6,6 +6,12 @@ Retrieve and summarize bioRxiv preprints with a local LLM using ollama • biorecap + + + + + + @@ -13,6 +19,7 @@ + Skip to contents @@ -46,11 +53,15 @@
- +

Retrieve and summarize bioRxiv preprints using a local LLM with Ollama via ollamar.

+

Turner, S. D. (2024). biorecap: an R package for summarizing bioRxiv preprints with a local LLM. arXiv, 2408.11707. https://doi.org/10.48550/arXiv.2408.11707.

Installation

@@ -253,6 +264,7 @@

Developers

Dev status

  • R-CMD-check
  • +
  • arXiv
diff --git a/logo.png b/logo.png new file mode 100644 index 0000000000000000000000000000000000000000..607230db0cded6e349b3c830067e4020a0891d20 GIT binary patch literal 39473 zcmYg&Wmr^E*ES{HC_QwjNQ1!8sDzYBr$~1X4boBy0@9(BbT>nHcMn}d4c+sdd7k&Z zzV`uD_ecI%fK&m z=MM^UXeGn+yJ%=kXiBeTKS2!k^&kCWo0@Ar5Rj}8hky6NB_8-fz+Bh(3YQp<_Jy_< z+v>;~-XZDYk~Tf1)*|Kfl4(`-p7f>H)PTUC%4c`Y5f^o+`*6sR+Ek(D<<#QMp6^xw z18u;GtP!cdGFocgc&t4RA9ic%Nj*{X_*;e6kGp6)x4d*%JXMM!lf&OBD6bz1Z4Tvm ztFp;PJ9Wnv3@JtYME%FmrrpZs!_jy!kADQ3oHNq~*u9dWu&H1vnnGAY2udOyNk?K_db2)!HQ=wg_fuJuel+*T4lNWrr$QKZ%$eac z+-&C(*GzovEQ|UlVqzoC2GzJ%eIHZb`;^EOp1;%Z!XkO;?;XQ=dA)v3J6I=4JH{V+mZs#Vp5 zwKvw7go_J8rd*cnP*isnW}u6ZI(+US!U_~UUsQG&*M?3xp6c)0&fHUo7)oLnd=-E_ zn@`U>H>~|pwBk|KrQ4QbxKd0d+XISvzzls{R|HF!@;iJ{?pyr;2UmHvO8{s~;dFT7 zojd?O9R9LtSCQik5;5GDW<&;PK^a@_JzG9j{nw=0#-|o*#brdiD{i$F^yVcybsd_9 z6nSZ0co!0UejpK;m&a;2j^pW62^<>fe(1g;E+sqZVc;=%9=exRD~?N z&?;ZXA$QfArV~`yc^nx^73M`N_srQ{r!HQku1-3RfTEg-!Q)Z8Z#|>88Ic*C$cB7m zi;dWd%bmT_QPXY2L?>J-HwVn>sz-kK%32!dR^9nL7ds};LHdJN z#G6(fBzGYvGqTHSZHTea2^@!t-o5T@lE)x-A#6h0y>1s%v7RO|LH4`BH}|z&EQTPY zZi4!2yNKz|6gq=Vw<F3d7+Yyty(rLdXxysku zW1YI$bRSnLYO4N=Ee-uw^ycxI>st|x<9;+q@n|Pd7b=S`=hPC{(8d##BPRWnT99tma+2zoEWkIt5bo=Hla9Nh zx+772@-~+^`V7oTI~CjO*<~l(u-_C4$E==J_HT`K)#|7naVi3qgLs{GKC zv%Wtm$GLVbm0?J4o|k$`B9c4d{1`nzx1?T=g-L*B<_wm?jguOUm6CB;9HSP6{HB}O75g66x;Q5o_%HZ2tAyhpNMN4o;piE#$V2;9>j#Y$3vI|Bl_FMzuGr@$q2x*r*wy)VWZ*Zgm< zB>xAejJzaRp54!d5pF|LDBIeQi0~+&)`eSo?<$m$`bh)K85<38A-P^RM-l&_O1HLC z0GxG9jiu}9;&J90r&EON#)q{;rpBY|>tey@uBv+P*g(Jlp?ssf^V*X!&um!FUhq((1D}9TYDG zV75I2ZLjXvV>K@C=dEy4i9?G%@WdHrE1j&hFF1W%WTKY&B>m|J}AR4t)iSBfHY@_M0~GKNJ*sk=*%#qdh=x@ zu*MD5E-$0tK^p*LI^GREQoQa%9PUD4I@6`m$f0$Q3BZXKz+1iwDGiyRj`8Z{uP>Hk zEGFxvKp*q#iEbO*)j2G}$6IqyUj%N9(kq@G^CCUK9-394VTvP%0d~j0$Rx!t# zJh~KBP-1kYPjxgLJJmCqh2toBGlt~IAo+;afTgqsRcwFU|>5ji5<_V zL*~pg7(e7@)oUsF*9~vqB`t9GxySPW2+Cv^;vz3iB7Ta8#Sb9&vdHqkVoBYv*a8%9 zdezx{1+#yFqZbo{Jm~9G1|&@35m#FuPFJ}GeNPs#}7r`$TyIoTeZyHkmw+*VPWarY=E7r>~=)~7~BW` zjTyxy4VV*raeqlxjC8wrefD@wvehZo5~PWIu*Q0e7N9N#(cQp#n8^V$P~tjH{p3>J zyl3ufOOq^mi7tzuI~{8>rX3s4vnHvI#Be1}dz;C9<&|eqcVkJkj$_IK*q ziw!T1IR-p&eFAXHxJgOg81Cb+R{VSS7x$(mM0?OwhjMGd28s6t0Wpt zgfrlhfsvSWHP#h;j3UqOJ@dhD&X(^0el>uPdzYwvwCZexzNtIhsnfOR)i_K5Uj965 zEY1?^doUVYitjGc)nA_$Sjt<~>xDA7CVt@~{==;HB8OI^qo4nlV2I1^WRZ>H{$j+~ z_iiJm=GlXeXcO1Ph9M8^*0{e#i|aJVlx-(5&;s_kW-+1->3kSR-(Gu)cV8=xvSjh1 zj)=_C_79WJep5|DNg)i{fb>BB9jHmqN|FK)J&C&0_O-jvCD|sOo&zx`#f_Q}hJHxv z)nyMJ`X$zVEmycZ#em~hY_zx@SZ3d^4)FDU-wf3_?k_ZqNxxnH6hY?(-NLK~Wyy8t zT8^reJgzX{sqDefS?=!L5pBA}F?<7nnu1jr^T>AI<5Gt(PxD%%HHz9*v4v#=WSRmQ zsVG7r=}(SS$+V-s_vG0p+5iE0qv^9}U+$%Dckb<$9-SNNKxgWOjlE7EN1$S-|Gt?n z0%ik0VEbS^VC(K;0+tMwmth_4AO#pom)v(N`{6d;^q!LaVa9gNRkH^qK%bW`LJO>j zc?=i7cNWHQEwH`^w0zPxr|tAt;&TbGwAuG8MpWMIgDp)gVaSpMuC z79lI^v_07wz^BTK{zF7-uKGQuRqdmnT_j5A=!&*SaX&rB5X@8kc|($ukEE1qy4BVw z5eFZJ9dtSZSuUm7{Dt6r>K8eQSitx@-Sboc0I4fp>sS|(X9 zUO>_WM+D~KT#sG^Qs3-n>7Oe@@&CMJ_nZcpK_oBqHDeKAiN`nrF)))m`x!VCM0V7j zus$dWN_2e^J&NK|@3SJ*gqeW}uPm|14yJAXdr-z%q&g@r%;~rElu!>K)@%6>PX%pVZ9TasHPVQ6RUIU0HXB{lbbIk@6fV zhWlBP9SgDyP^pur4=~fZyWBlIVW!S#PNC^W;IjjS$&ye%Fd#l1F>cYqFzU zU0W{H8zgLXWNGH0Y)6HT$~aW7M0xK;MAkrjkbF`A?-7j!o^GhGOOU?1Iiem+lN3yR zB+j`UH}cTk{+1G`>ew5FJ&jS$QGWx}V(LrUK8C1IeWd^M zVNnY&>eE+LXQ)E=4^=KIa6X|5-O046OOyeAy}&S4Zu-cn+9_TN4da$S^gn;O`1dRN zG{MAw3~WpGRBX-kJiU~|J5sRUreSEUUnXIuPMfsFG1#(B`5OU|t=+^6CEK5%3b>KN z?e&9`?dX&EsdBHJQwr5eX|ulD!~I2%@Rc-{AYO9i>ZyyzNBG`unqMvSDHzRfWcXHJ zNbi?3@-%O~JS#bZU!}jjZdFkhY>~bp?KD^6?HBMFdp>zoFS6&pL{Wb3hoflA0Whp2 zK|n04LAx^E>aUJVmmrsCq(@%%Es=4=OU)hUc4dgII^mJ=tu z&>7v;nG0V(fge>hXE=!&tqQ6e%}e*V%sGW-xRc$0Ao(@^jf9RqSzlP*Rdg!LEm#dL z*IX_yb>7~sBRj717)%?7|7i(JrB^+c${4wrbrNkABJ{3ac=|ViXSZT=+OC;MqjCRv z4kkQ{?5PRX+XP7XuE9c4OdkdG=<)I)$Fen#IHUXhHY}PUAP;tpZ(UlO^~YpjHPcd4 z?_2PQge3NU{0& z1qKhig~O_p{|w=QY@`yjZ|Zg{7;~KtE`5&uRX~wP&%e{=$V-#UU;r^Vo$ z%^PzTA&%f6P$3DhX40aDtkrWCdvKoGiRCch8CJsT?%?$cg4u6LNYzg={JNN~yxOGV z+l(c!O|(*OnkL-s#=dh{T#YV<0Yg8@3JA0*Ek(`lzeDM}v)f&5!<5q@f=PrtlG|(& z*DLx^ZR;bcdxy;^caz(+%cs@Nybwt{3SO#TzlAAaAP>^t`NksCS2Myp)f0>d#1qmp zKo9^mv;JZ%W6L!LBlMQTOeH09zF}F*z9WkN%Wc~GrB@vpl+Y8F+{l(zO4&S0d$;Vl zT3C>n`?8hz(I_-E5M6=6+ACE`hV`8ls=ZqcdiLl1g~vI&%0tg}4cBlyB(YhLSUTg9 zYQf_c0o{GJAA&|7MO1j7WU+r=;+-XgbMY197iTf^e=i}SFC2#SDNAOx(HFLo;Ir1 zw07&-L`Bt7KeOfuic~r*g&Bpcu7K*W?c$x9VeCi zx}qERiTq@K=1uVX9oo>Bt#i}}(^i~5dE0cy-gw@?wV60n+!ngOsNA!qFJ{{ZFEu*p zy68+S?4rvM1HtHx4B0GaleV*vs|t-6IDP?10lmCo-q_Z18RwUN#vA!-qPHzqXRj9h z;OCI@`kqtmjWI6X z1uqa4zxE49q@u;`n)+X!RyX%uf_D_@Jr|$NLQac8hT=1rUi66Q<_*0?=SrWKQ~fgh zCo8|>M%n`u?rEAmFC8OS&z?!Ix2C;}9|1M~7z-nXuco(E5UA0xaTjr8E*GcPL~H9s*K7SCC6wW;V*)bs7o z*K&=jw%zu;7`t^`-R+rW=)qKMVvO`6GU1gRDVLp`>%5Dl@mhGrqEsj8`54i1JuWD^ z{`>xvDpRp_*9L`%V}SvEGmJC(lN zI!pRYxF$Sd>FwSbV39WOQK6KnX>W6OQr8rboA>cqIJ5=%@-mL^N}zEwi>hoc?BHZM zVN*GAh0*+;#=hywW!bsP{Yy*dKs2vcq*hOLHR&I(3>r>>pe2Xcwtg|{ilkEEya5tw->!9pR@lrQu{&23Z{$ofSwb??%76k1a zieq>qlgg^rJuYI{!IsFqTz|P3pk2FY;dMP#N*}Q-eq`mP=Y=y$=CPGQ>@@U!--1j; z^7w`PL4*6S_1#?@$#J5|g?pEkwHLxWERnaM7l-yP3o3-_qkgcLS0uPkFecxU<)Y0+imlEU%viDd(@@WW-of>S@8`2 z?zc+YncYuT4#_{>*WN!Z5}Qs>UC^cG?hABZZu%JdY2h@CS31Ic=y!7EtJCw5ysZt0 z7os54aak#J;Y;!n`ZX!<#6?nzVI*Q3ni^Aybc{ck{NpPvWWI09IfU?sA9@lt?)$up zHm~-B#4s)MN?oIoEMLQ(xc5%#c{=ZYHa%+tTBu#h2d^XaX*kGv@n-E(A;%>Uzs155 z(jz#pL@<=W-G7OFbK7O-?x4bYBd+ETDW|;Fv9qVC_dZA7vd_cj%seP0XMMT#@99W| zAA#FOC#UqL!<5X7wb$S20!AqmV28RTQ4+FDJMfi3Tt!fS1(|Huk)q&;Y}eH zwdb_-?J-Et?ZGlS%s-h|x*$z7ZXcXf)yych-gw}S>kHl0Ag7Gy7x*n~i@)P#^oeNO z`gU;pZIc@@k52KckmBzRH&R+Pke|iq;};B9@m)>@Zh=4EepQJs|dwyiB}5_$1*p z!d2t%a9Uoyk%46ia+R+{-NKmK;vlKgB*6b|3rZZ?;FSroyx zpn9OcuzE#SR6QxLQp(9v|Eks5BO89F$1my1i<_<%YAUm{PPe#5))LAS#W+^&w{mTu zWzmZ!bnm`7g58$3jU1gcW~N;s_#f{xAS=XUH)*t{P3HZMHl4b?PrcUIvkq#Gn4=|6 zuu_(_^K$4dKTDh*&WxYe{b|b&+-C5~G>W+7?KwQ^O{kG#w>& zBPXAg^ZMMXs@yCj)r`RUDeZF$l%D?(_BnsFB?-weY0t@NoF=Mey10$9EuC3LS4+u1 z^k`kZx-2FEw}iwcmZW{|!3tWc(OLNU$fq-7r1epvp|$cSE||YDH3Zl%WCwFlt(jtB z`f2Vg!H~z&#-Y-O;mKfg9WGbxy>_=K!n$Gg+!qQ(4Y?l&k=~<>?Cl+WnJ%(;9lJ&> z#&SYk5j+X3O(!vy+8 zl5Oby?k6Baw{xo4cZ*@Z9{=Zd65_h9`SyRc0JU6;EoW)9e7jB1`4ZD=ex%%KC*$Z< zUynu78JuUZh7;4s>Uibj@YDRwk@sG<=5UqufvrAA!`ax@ervbyoW*~m*W}WENpA|P zOPsQ#dLZJ}n5-|UW0~SG!Ic=AQa?3BzyV4;$K`W}ohgmMra_vMielxO+Afaij9((zMWlVTl?w-Nx zk8k1<+0Mkw1yxBUW~x=*4D1x^p)OC*$7d7HkNC!{o)#6IoOUAUn>e&TQJ3U>yx$08 zA|<2@dZU>>NLYC=T^keNbDJ_(V;q^s*j&0(;Rcx07fr>#*L-7b_Qm9w##rY7VPdmF z$x&~|{S{q?E48y$ei!^K@#q^@NyixHoZtL{q>GC9k~RFCe(Cb`$d5DmiZ6NVuEcdwh4N@dzDvQe6FOd7~kx6WaEbjn1F-cMb8SeQc5I7qEf} z)6p@(!@?w}*j7Kmh{MKJ6FhvzR#;!0zTsv&BgT(W;jq5=z_iCllHeYP`0z}Wvr{<| z_M1=G+*-uT_^p7#KL7Z80isPRu<9x3iE0zpP=Rn~ok90yjR-!w0Vm~C>8y0*u@_cg zmiOh2=C)Y8j+&&qkeW2~{#~}|QFBzrh**c4e}Ge?5_>W@#nFX}p+Q-gNiN#_ZcHka?;yC0vB)yC)ID=ol_9 zJ+&4g@p~8(w_mx!ba!*I7>hA}xzPUzp&hwhckfo!d`Q6f;6F9(!fQQv@y&yw^&PkT zNLd(#$ygdOXD7T9;oWY?`@@qaI2xMfjfE0pELhGT<{jX1filCXT2Et;B-nt^$ARzsKETe~=_S83<(>)xCYUX9FOm$2ktt1luF} z@3Zz#5sY{LK4|g4og*Mi{XEV(p8mpWS}L3wS>aS@1Y?o&4q@EB86y@Cs*5b@&tF?< zHGCzLFR?w6u)0mMYShBP;j26d3KTE(QVw0t`$(t9Y@k-L6Ku|ZE^xcHNyw;+4Co=H z1rN5Rxp?=&ke(9hp1o51e=;LPCF*Sx65>b;qEnrSd3X1Woz2vGu1LC-3f@SGNA5V7 z)V*m6*2?69;V2v0HPPpj#FQ9Ri2>=5L`S&=p2hlcR>Z+TEXGfW0*QR5biinB5J`*@=UI z#Ma>&M0gW zC$+VEyYVvCdOq%pLylSY!Q~G~1_h?j*dHQ>J~R)veiyU|lTyF$L@(zDFANqXT9xi` zL-;FlRLjNbwqv{cgvapB&%uprFE& zPqeFFqG5FtK+k!ORf7X&zHa<43^+~MueC3SYn@O2v5zh%&nf<_);Iv0yT~irk(KsE z=21i^IQ>+UKbKE2Dn>36+xJTOB&)JmYR?m`-7b@yHh!|JyM>zMP!=s2iCA28aBZz< zqC<)IyLAnRe@tJfDTt9Dy)mbcFlVSQozQ)8ru=s;d`9Vl((jq{gNIURmq@A>Pnr@@ z%#u4DkK{~C21TPPz1Mf2LJ%kPvD(Iy;SQZn>*Cu+w>+CG7YUB^3-g76IoHe;tnhm0 z<0a!;aeV%DM6=s0ULg`r3-L}fzvqu~4J8VlwJJzG1-hfZrq=#L#F$ls#oDUXwrQ@dGxvgjZQEUBeZC@*1)B(s35o&jb zT>G^h@--{28cd;_K$h)NW(#d&TFA$5K{LqU`)u`>Qh-{%Tk*SPoOo%}z{p!lj9m*M z@0Sb|>aL*>528HBwz>1OIWOrV&#|1Ew2-4F1k&MP^P-wD?C9fqi-pM7GSVh-@fpiB zZF&4fBJ(wrum| zpOcW5FX4$A((xas6RpOx#>0{xP_36!!^?}G;>cgDZPhL>XRY?K{gzi; zbi{`75N^LRC#E`Y$0uS|7AZ(7o1t>#oE342fcPZ**&wHLl;sajP(?~{i_(wbMwb`S z;s=XrA{|6)Lz|UxV#uQQjh|oJ7qOKrj%;6+-JfxwOP*e6rcJ+erTzJX0Fj&&*@-=o z>;}fpfY4&!*E<(%#a62S+6qy_Hne+@e^50PwUjE2JTA7VZ{EB0Z{F8nP=iWUY?qy_ zn$9d4)2SNOay+C`G7!8jCz_sz+v8F;?Ar7SB8F$g$ee4GaK5k|A z%}i3kI*qA+{)Q(8EV99dL*i6*ue}r2OePdKA4#Q7x4H&G>gDq`cOWl7JSHXel6lcs zP39K~PUAT6Lrz$$#)7NCVk6>oyk~$gNm3;{gKN>PH>9sWfvceD2 zh1sw*AoHVaH&ge$UDEl2N`H*>9knDgP4y_+(SwB5asr*92jcem4JU$w+p!})EkB9b z^eFA2h<|>HVjnbQOfm#?n%z1q#V__H)WQFXGgc=8R%{F*Vj3=4@Q9Vjioa2k@;=R#*2C_FIe5&8BN4SBFn;k8|Vg z7o)w?T)tZnuvNxgNNrfyy!;}rkibCT553(QAWyGz5`jyn`7#VQZ@@r@6z~}XUtc@^ zEVclO;ih+<^7YnxidGn&Nxv$?4 zY!f8;owO~~jBs*aS3V$0i3uV;Vq`uZoy+`Be0Md8RsI#rTRP$?EM7W0QbwGy4ztKZ zpd-yl+qU9b2no=nFZ!8MO}XzD&0yF)`98ul9{El*l0Aa*%kZEjWIe~6o@}^(W+$IX z%?s{u@~%vl9dF2P^lkP<>VVNdjySHGIY&)GTCkp6_N;1>WGT>b6Mi@0dUAZ4{9?nY zV@X}qDx+d!Xol~)-PtCw|0H^>dZt>ktP7dtk+Ip%v>P@w6HCa^ zN>>=OW$^Fq|FWaxP33*m3iG+oar42JNF-)!85E}_Ji3KD;)w1EEV&U6H=d^7noJbe z#8*$9{|l8SMGH@W|Di}SrPuT&`?_sJ{#xU~2qtPg_tWA5o{*1(!vt4a>3Zu6HA%m~wrl7{d zTNjoN(~drd1~|u9@e+Og+hn&H9_=;P4}TX9x18?9Ub&UD954eS6AwwWykN6^@RM47 zE@{7fko(jM=XsareNVXv%)+uQvGHi<>0yGa>rCUe@xt$g=tI|w0}m0KW-;g66H%|_Jq=_YUbyRr8rAtwdpH9rKU!k zmJn7vlT9%av5T)|e_p$7$Tf8yH^mXx#&hf+GT)wl5u)W*TFa?iy~1=G)@E?P|LWDl zf0?SoFYV|=6G>v4njh!bA*tTanKdD+dh#7rQW83Y&AocW#xfStMSv}&@+;GAwUB_G zG=Jv2S$DR>9VtplBw?;Wx-Q`}Yw@Csk@Ebxs(Tk*t39eT-xoW2&!!>krL@V5j-OofZ8U^tue#$1Y=6Fgw(8_WZ$c3xu^O3Lw7B0?m3(En z<8nN4INW21DZQIUY-S+o3A3$x=#S7tvj2_u8lR)ub~z%vOmAoh_vqSx3KL; z+*mUhJEYdSp0KHakt&_$8yfB9Bk8wBy}RbjqiSn-)yF_FO#|$-1;cr7PP_HE)$+Y@ zbVti*T77B_5|18((#;dAWHQj8xF^gd7ug~^)aysz)7F1OSqBroD)q%H@KD-cNaQW) z&trybXDiVAd8)mCRd4g5kBpZ}-Ms5>ILu@`2Bst^3Feu1CfsoP!^NmP=5u*Zf|-VS zZ5FVpBggA??`@579CrXkwtPyBaw91P@!SzgZ2hX_|2q56E%ae)`;?)HM9{ttynR~1 zS>!hNIUnX4(=;NYqg%eSxm|u0Y(92&FcZCPtldYH;aA+T20m-Aq{HP_jeVU(Ex2{Q z>u9)j_h@RFsGP1dj$}C)CGCt)42+v~DPhe>e0Zd(7y3sXT)E_v_5RJt=8>AhdX0iX zdyV-0G<3CdY}uf{Y=T8ekHo{cG%)&?bQ-&gnC}i)tc)$Zw)s3aR!JoTXstXTbb*a` z1-@0I<9$+hsCTT0<|9bk_s$#kW#g$$ z&AHnL+$P%uovh2A#E#ITCY~V<8nNSR&NNPmucbXOOnF?J`h(~b@m6&U&QVx+`Wv@YjQ*Ho2;ha7O#&thtv^Kwe-(Mrjy||qq~cfh8|MZ!K3*sE%d)kE@qK@ z`|et|zER%ciOzyz-=KohKFBC)S3U7pDz_x`FCO_(_ox_@5lC~nAT^|*HeoY|x%F9R z_?+vG5FaUzr%oPq`&+!58I{wReqsqcI(2JQ*(EI`p67=Xmbf3E!9G4KiGr39j;-_Z zvVTvW2X|Uoz5nkp%S1K%F*L|U|1$DZSHn>>BeQMt&_ zluz#>wrjf-fgC$8Pvg)sm* zh(8F}0zM$c$mBM_VcLBKXlT%TfUR6tw0MsHb3xSdWo8aGx3H*h=2-yhTap-RVV42h zu=wQ8O+FWTd$IjkgFo__?PQ|xtH2yDdGqxP1;Ye0v`s!hP}0G(D{O`JoF1KX2)m>S zaY$?}`HR*&8KP{faOR0p?HDq*($b`q>X<~}52RMqxQGGu+Gd%uXB2G!zPvw3Y}RqH z58`pBK2B9S8OpKz0mj@c6(#eCwe@f|kD)x#1WPMBR@f)v{m&r;3q5^)_zb$@4Jpca zaI&kNG!cip0P$^a{>?Yt}3po=A4%I zyT^Kso1?+g4j2NEm!X8^=O!pMo&{C|HK2*nC#-Avuli=R6FB$s-@Cd{LYgnF0|!p> zU&JJm%$O!|7!1o66G~?a$(|~qbTu0_zlO5~icgJssAFUf_GE_U`I;ZbwNnkk2-yVmg4ZJXiCRXvz0;|Zmv)RUw+APt2h-3AZ>5iE zy%47<4}}`>sN+74;W{y)j4fm`-I9v20KPEHLbr6oJYkb>g$eZ^piVQe#^4v<0Xs|pWE;D8Kb$vr%dbiwCN z_q8ZqruR>v+Ygvl_=FE&kjpf0sZL!mP{tdZrB6F7DE7GZwE*7LJ)1$i+TuKIsHITb z_6S;TcwMcCz%uRMNVM_QDI?FoY;-`z1IUbp5E>_k+mNH8IZ~@@nwBfMD+wB`Z@)++ zdZ{_?0?@oC{RKG)Ss#^(5c#1UUrY3UCAY9rV>)Dvc7ceh`0>i*F>HsmNHuYy&Z}@9 zn2{ZI2@z#lVrPdJgxxeBUq2c1^f9RFPWhq2$=2TnN3`<^9A7u%V$-Y|vBW9iU$-lM zK?sn1s7`6qm8=RYocajJj8R_CX_jU$2Mf;O8d^PLDR>n2NFe|Fo7K}RqjogBdg0~B z%>f!IY^*!k-??}hBcX~yPm#irLLUm)Vi6ibFNIlXwCU1sRI4`LkvA4nje$@>NIW^P zk!;rRBz^i#*w?K;97dV$N8s?y_&U7_tRJ!*GztQ9-$O!7EvziR!HyEk1g%=iwK`dr z3C9bBV#7tr!zqQ>oA_?*aMbflRDO&OOybs|9O#bNC#y6Su>4IlL8dmWppTVbTKejh z2`eR!PMDS}_a6L~mHLBayF55t1swfJAi#8hikZRw4Ij0P5c#XB=lCQ!I1~Ps)QaqJ zifoFL+*%>B$J0m#hSCzm0xJWp4}}9a_zPo!}-V?)fqNcl8ae6v=Bf3ss?xqdzTl-(cHRVgWVfNqtO7 zZYT;1E) zOxk@}a1v>R$WKM4G_~w8>Bq|ka5yf`J)s6lV8mrN;8$-vG1zL6Oki>?#JrfSg;oCV z>D|MR*PK7-VaTgj^j;^hvB}sr^xMO5ybQmnIp^H&#b(Jg(Ag8E8{;9jeWaJ$|e zrks2rsom$l_$@LrZ&N1ZRr3VpGJy>}ifGAej2C)Ugyj~GRk^vT#lEoW`670;><@&= za5bJ0B(9njX-=53!r#puw+vTQuGyt|*?)VpI$B z@tJ}8j8lHucGNc9hSQ}9!2ExXCK{pO#C>l(5nSuLLdHR&VCM^Vb##*1+x##_HKjHns*5j~)? zF?l#Mt?_K4{Tl+|1dlTaVYpWBUqQLSv3Ua-rXpOCc*Mhx;d&=#gwOYfCV#<+kLFuJD+BMVj^CoPc{JQhMYJmB z$#0t2V1yroK7Qez@H7h+h~p@oVFel|1{0b4t$ym+{KQ{xY%$d{|H-+@!E)tgbeo=> z60)ro*IhP5ARg*8%kN+6u7w3&wygwU{!rvtCAsR{Gri+>)dYqKQpUKrzWb0UOJs%3 zwrmqmxa6HOp58E|NxGs5xYr$-f&q z=f@`TpcT9y)S?;%;Ptx)wvKKx-(jC_8A9itP2Rmd5oWYENn>GWNd~VngnHVP4by6w zA54wb+DlJPoy&>R%kz=`xFI-xZ)Vg)%{^7si$gO(+MGaRUDWmCZ4TRoW|3haxQyhh zA-SU)s~qT2$#6#VhF8!_#C`DJhB$awXR-NM4I zowks$>)05R-$F+ElcuKj-(=aRA_k3G#E%b#5S%+C0X=AD`m)~jw7gK4YG zBBS8=HqL{9Puw80@|?eA#G3@k{ZgfP&v_ivgUI8??_h_aX*j!rtg_2FaWQw8}r|{O9RJD=o6oceH8Ph7(w<1SItsafyS>{ z$bvfF2Yr*hdMXz7iiZ_z(BvBV?DXw*pNh`sr`C1>_M>XJlf?z%A2!NGZhoD-Mx7l# z)J-g&?`7k^j|&~GfW(USH%aMKBs_tihW{cxyX|U^dJWKP$M}N+3$x644(ZQ;nVwmr zh$_iQDl>9DuH=-IRhlwxx$~l#Ox;%Zx$ZpzS1w>NYJBoA4uycn!YmnKB!cBy9yb}bWK)y9&inVew!TcW1+~OK9FMmWNASY9#%t#|EBZ0yZ4d2 zFdyPur%LwANGySH%2vjN?`HBGvcX!q&{wZ9KH%PeB5W?-9OVI?E|Ak*{x8>zKOTGYK&VRLlelWy!X%Ky78@QER8{?2L?$08|4%3fI2DL5gIZy1oS18We-|`1< zR~&tiOmKI%;O_3exWnSkF79q2!9Bp@?gU%h-JJx7h2X&`VWeD~hnKQJ?Iru)~` zRb4%IcG$G%4hq~e$&EO)Gxq2P%0%Qg{^b#6gX`#OY*<6@&@1^)Xy5S-uSivE{Em}_ z)ZSQDItx|sw#%<7`VUm(_@l#^Ke`(Ihg)mgYR-sr9nGQwEF|h;gh=G+XQV>(Mo$6b zw@R$;($-$(YvF`=wq&R@I$S;6YWnmx5*9=zcI~_RWs4pxb;I8K8JB@54tp05v&#nO zf^RR?m;BFx$1Z4EXXbGaH$noc(_UOrfz^1LW#7XdhmXRW^X73xVuTtxkb~m3RA)nB zE=V=mU=sNA=2Owi$|$|Ka(a__5>x!akX-xtc5y1yUKQg1LJBTMA|MWQV?FbDjT_P9 zAx~?yw6auE(UzIa4&6{HQ>ZmmK~2!#`2_Py962jqqJHKkolMSP7i3f?IiE)=1Py`{ z=yTv|=>7xiQVI`S>;Jpa0WY6+fL7$DFAyU|T4zdbWyG3RM5`V%s^k(;mX^ssIHamu zRfwF!TtOh_?(B*UQMPHBWOR=9=M0ItKEP%+dS#;Pa@nnt@g`(O5xx*8jBiu5@X5q*3VuBMgL0}NZ=Mh)@A z?%p=M!;0TlqEiDl&g^5VfcaL|!OMJeM~CILmWEYB>;(la>-~0f6q*C)Z&hbr=GyDc zo00zct=_4u9l-r+^tsYwe|d4x8;4s+3}YD@q<(CS+_8C2fsF~Yt>&=~ZR}}@gf2jI zxHcW%)9b*un#ItkXjI1_+14{S359+Q6mYpBYS4UGx|aR#kh*vq9B&I4)HD>mGFn=Z zH^AXS-$w`sLZshgcO&Tr7JaKRepDj&N6IBt%i*S14!i1G^34{e!Q{ro)?tZCYo*q1 zX6f-cbKJYQ-drX==ln0Ch_At(n-%v`MOF*wmC!m_ATXVO00Tkx@^N?ptAJjW(jd=~ z{_PWe9$hvff*`2v0VBV|NK%cQDX28xvCt*@-|zx@TAc=$bmX$d2?Mhu|MTi-Aq4%q zSHI~8?ElQvHqnK~te$ep?4{$SJjs!U;&Gzi8jsX8g#*d`d?{_ANGiAsPdZ&D^vQy} zN{p#WE3RmzjvW;B(F#R)Z^3DT+MV}XB8QReC?xXGp}w@PPN6JHiyK4A={FKBEtmiE z`zn1#myHus-7S8?_UV4UP}vD#cz>huK{g$DzE!1xSb4as^;s)@%;k~X-;yUcQ&?{; z3Ai0>)^2HBmDnt$==m$C5*kZGR;9xmj^k#?Zg!w{Gf3A254D)g(!xb+alQBRsLtk2 zXff<}eoVE>tLOT>0z#YYnoU8yTZDe=w{FR^56ixgKN_L(9yz@iY}xS zdp*bBNKf?JML6Y#-TGCE^Fa&?GPqo4LP{jrI6SDCqn>&m6rwPHHE}TQd=SEn@0#AgHinPGh2uWIAw((WO@;|v zbEz|a{~enl1irNh5q7(j2uL}!P0G6^TStj0{Tp?9$sg%SA%rBUh%{1Z#yNDP)~#w9 z2Bm=|8>4H8Z#S#QNiq0)vPi6UMcZtHh>s@YlMc$nAD)zmPfM4r-#&kWWnSiT#4zdV zU=%dY&|5BQK~w%gu7i5t+GZ5QW%L9hZhZZ{5tc4a-qy29eiw-;y#KPT)5Wa)7_=D7 zuO5QiiVHtzY51b$Xt_o*nJGUl_={>dB2&L!3MEONFF9c(E43oCB@(lef7e?Sz8>|T zoK-|=>s~|r_$ z2hsr+q0#OwZ%G&fTPGYApv1JD-n*edK11388q{gq#xynH1d^xKR;ESuK*>4L_g@1J zPx~LF2@|ImP-fm|o9^94T0JNayeBE3p0P}%&-Ty!gska^nv;_|_XC1M$~bI~y$6c=no_EMN>BH)GBe)5_6$lyK48__PT;n;~ zSjksgqbOQ0cnr16YFMsX;+YyNW4^@bvE%Q}Hf+_gqOu^+`H)v42H|2PkAz!Gr0y8z zW=fXpiAEAAFZ>zi-g`<5CDfl^;9mNM9U#P_>Yz{7q6yz#7k4=cOMs>7o8428;W_ z%yAg-5qm)aQYWqKld&gp9i_xdT-?J=@Sc?|A9Suu&$jDDe^yp2C(4}498mkzZ5%Fz zgIGpUp~6hl>4|#+;xjhJw=bfDwi2FTSiF-QsUC_^(951p$j05w9KV|WY(XjjX`&3} zGDIAsKaQji zE6z$LXHj6NZj|H#BM;a}Q#e4BXrvfJ5pi&8jFbtS?={e~EMVpe@*o{&ZFYUSSiyA1 zQlMpUwDMugb-k?FIh^yID%&05nGUXlQrvo!tMbRMQ%mjzml+pyGs zduhfsWs=i5_j}a$tkW>1=2qN#O~QE6)Jg+>0c zQrht6=`Jtj3ICxs`6XPLCDey5I8M6itMSO}cfZRAJUcZ^gH|q`#tAjA!(emO8vW&E zdd_Umh?WN8)si3eR)LY0q)?f#%sk0{i&j~@v#j2u4k89W5IVAeV5{Y?ABcwQ15qV3 z^1~rjNCw+AWP_ivXQ9gM<_n+wX=8J$nH>XfksMbdVNRuZOGDj1=h+|Q-#mGb9PC?| z$^OJoe?)`TrIc5U+4Upc2eA94Vx+lQi#6$ajdQ(UP>@qJ%Qg`DTa>k0tjoi`7(&dA zq529uv2#c0tmxVFOzFOBtV$wPYDw5tAif0$Uv?scg5_C5vzVhB|AOB%Mhn+vU!0mq zuzf7ysiewL3TpBKs2Tt%aV!~`NaYB4t-`2Aieb0mP%6)*5NM$)BUNWs2Ac&Vy)H|5 zRnv{UPBGZI+F5eZKHUZ`S2m zx!z^GG~$Shb+x#u7dZ#j7z(v)1)@PRm<6Ck{8G4QyzxlGH3W=@YPr<#+RVji z%_@cMl*w?zDq2Pbjl-rW)X;_V3(RR)%@Z zD|xhdA|a(ii;wlj5rI&o(rqPwR%WEGr%yFYly5vZiuKO}NmtYe zIYBH94qB|fYX0gO7$M9L5K4h6P&y;61F;rn-O9{%RTE&eQYFb*x&XR_DhWI@6^ZBTfblOw#ng@ z98vTzF(^;mVk#s?jKJFX%_F@xA5cb-N<0STTfUJ*OSZClCwyxIsFIcKd)2mm2!n4& zDl4m?I*52f_nzxePIES?sw0hH^2vb0lCCZV@!z%M)3pKUsr1hG~MJCSN@`p!ISU7 zR;%4u3$sjp9jp3?C#vwZ(6a;#eh;YI`(sUvnW6}1oiarxPkh+2RH!__f*OOLzw*aq z9*xyn=CGXZ3nVTsReDSfg=oodmR&iu2%7nBGMjMyA9x^Bw#26sr&EfANR7BXD*2>Y zAS^|6=K0V8VSiB@I7*x!>d%{ac!*HaNa7gn0&npf)0-xr^JSCykLO!o3ur(t)I3^w ziglxrJmOngTA?8VvrO>Irf}1yka;wvC@};lT-D*}C`9W>D~+CE4ihH~jC;vySJ^9| z^W~-k%=D|>W80?Yc#OMRgin4n4bi4S*)_OE%c^-J&?dmg#II6d1UwQ3Oh9Ez)+mGs zk0}!@03y69sx>dx_vta5m28w}c@H9YLqj!z1)R?D^V0Gp*Fw)?IP)&}#Tj0L@r)C z())~eslJUe?Dp)>n;F4wE9Xu6?5wZ*L8u%2c9LO{*#&=IUl-Lg7{|E|lIOfc4n_eu zmJ4#lM$yw1&aSMA#q#0A(C93qhg!aqG|rQ?RPjkjpEiCB|Hi?*oymr0PmAH$sldVc4 z2&Hsc346EHTRHN&AQ$>s=EIO@{_0_Aell4yng}H4P>iRTC9F^`)7bP)(}0m~7reKg z0_kIbssB|As^R7E&B6ndJ|V!zhjJ)|H7i?R*@13is&Z$S$= z5if?Y*HX!x_A~DL0ds1Vuw>m^P#h4O6O#!tTF!Nh@y&dY9{{$v&Ry+#r(kSt(C0#5T}7_Z^})|C-sS>Q3XOuKqeZLTyO8}E=LF3}&MY75sdQtL%A@rcebP${ zt6qF(+<=je9}58QSGn`!xe01yJ84zTK>C?Bh4kWsCNosO(yOZ1nx6Jvd+KDn(dznF zmOgU3ZHcSpN~+_jKm4fzP@7_Ys>j5o?1>Bsoc?diC%DVQto1wt?8W2q1RsOI7Xuu{ zi3i}KzLCz63}F38%W?)J>Gh5v_{zFpk%kF)@N}59_6RSTqAr5;soJSRrY&?@oi42%VM#uC)6=JF_aL`@nSyNFoC_2erunh+~pq5rhX*0GA z^sOorZ5n)ikiNT|tkI<3*tB%7qguY0CFp{b!RaP%rY>-bj1g@&@C8Nh_N01T+F~61 zMp<-W*lXr;F0X$kEtHJ-+(|L0Wk?^b#r;_+B66BzoWMp$f(oRADo@*byxc8SqJ4HG zYsuQ}1W<=Zh3PbQv$2~@TW7qwEo&s7^U^pG?mxzZtK%*!Pi?2H6t7dgE$~>JL}H$b zWP8&1l2&yyDjjF4YMp@N5F*a<2e z;Kg_;?uP3U2f<#t-qs~NJ^yDV;jn6wQZl_~_!Uy>#`*P& z&7gOVr-8#<>77auL{~Wu9%L*F##XK`v~o%d5l!?4^3))y?;PlQ08K-Ac6w!H8sA>P9Q~3ZN=GsERD2T zeu_lgABA?BjM_Qvl^mh5^h6!J@38x18{8@y(45L-zY|9A+)jI3!x)- zk}c9U%eTiHe$-)u$6V#)&G&=W&)Tv$V|pijMo1Z~mZ!Q>xmv{#=3@_?3}}f|`cm?; z9|O5s)2`k`R*o*At$}A4fvXl#9ZpR(EV;Eh(ihT2H*sx!yYs_k@Jt>QSh@kncXK=GBpGj?yx*els{-sSr`# zZbk$)GMIol&~xZ?ptZjTtWdDl^}(;droewTw^Ey$wjYvs0%6R3>{ zs*Gn@EBfDN2|9`@?d9<%;PA+rF3gM-btuj-S<~%cMCV|#8F3~ZKS3XS*Ibx_xa7%j zHp4ouM4Qf-qr;J~&QX=!*rY$@wlZl8e6MTdmQbryWsH^~;Bw1~ho_4vvZxY1t5a(@ ztfIs7Gq}#gOc#8fVxauQjx<7#Rr48pm5bE-sq+@D0Yq$k1G&hsT9A*w#k*Ec@lThn zz21gQ+Omm6>^ej3?=Yi`+8bF}e=yX@ex~IUEOUtedzk9YB1FQF*eaNrz!#wEL1JKt0Iqcrv7Bcnx|@Q36zE| zE0~XNu(IWve*z|q?b}pjsfZDA7zfL^i4)Ac_PKXe`QKmCkmd6fD@bl7je2*wlnv4B4y+ibjPzX zO4{^A5Kxd;NVuXmVkB4{YUCtYr8)yA68FdfHT;P;#U&nn)x9)gWTg&$~fyk z%o`F0{;ie)(zE)ID)p)5;814xAeLRx<*TU$?;Q0tsc}TV#{Dt9C9Eq!t=y;oxJz!obE};Zk{3WiJ5W8;bWRR;`n;e`L zHdG)*pkr#qKX;{L5S4>!rQdASV+DaNvJbeDjo1n(|o0+$m$LWef}|hnw{s_Qktx~1|KG%4&ZACK zjiZ?;I(mN)*_Jok&^&iF41sURxeX<37X>b~!7z6LCl%3~eq_2jmJW$6-%_$mRwM;h1mzUK-^=AbR3f3&;&^j04 z^hejK03fKVC_EtzIk%1q@8v^{o)Xz(laUp;r2(L6yYJ7|MN?yUL!$5nv_Q&_qz@>P zT8u~sl`7uA zfp={3w;t9(8GHS{Zyc0_wFlFhp37eoi;bpafi#YIzUjro@dzYMFJ?ZemL>reKOf*| zQV7?=Hs$u313SPb-{PMJHSqOk5r8}54BF@l#wk4c{)y`9h7InahJDM8tba~)lawMh z1#9UAze!VO2R8BFgEB1%8OPJ?fQFlCnaMrkwJ~VMFD*YY1-H`5u>0S%bbIdFoWYg> z{41noTNLw_wvm+TZM4A$%r3j_TcFw7mbUsDcl|L?wmg2u>mOPi3+l~i7$yyc?FEu= zrlrAV5rM?tdqdh32AXtuL@hqM|C(f&Jc%k7o{pCo>T{i=4OP~G5zcFD79$_ zmhjt(@njW#n=43UmY7{ek5Y9F?eX@fch&-G#zh*?^+DCOyjG<8!rNFneJ2_P$p%YN zN+-ueZ!{HBWd&|SAAi6~5eVX_APOr%G2!==s;pw#OQh{>8Nug%Op-0~U7qrv2>fUE zCVTCYo7QfaNZv|-h(5(ya#OdGzxgE(cI<9c9B%Lxn2lXpJ=%X9P5Zv(6F%SSBDeI*$xDizGmey9xjE2vj8MWaQ@Ip>!-!ldnGJGg6 zA&FgeL?4;5hH!kXE{<(e8!s4V`&OHgVLMYOhVOMWD^pt`^zi3b;>$BKEuOZSke+|T zLI%UEQI}Bza-M|>Sj9IVrw(|kgAtsbHdtIDs<&z*y3}F29I-fMnCdPHKM7(p&LN*q zL!%Y;CPt`!AaYW@?J@grV3!l2o5{@azV`b(?=wfEZ?@WCS9cnf{nfQ@fxhd&cdSm8 zo7u5$w3B4bW=b0Saa+FbHRH`V=41^V{p)bg5p5*P@`ki!QFC1KTT|n*B{1poKwY2r zOjSjW8k4PHE*gi;M3y{}l7r$hEbI$AjT3gnPn}6&yes{dwifH%ArZp{d&z2>ULMeK z^|7u67c^j*O?C<({l zJVwSgt4^Z7?>Bf!RObO2*MqO-owy3uqfXrvzLL5OtDT{J%p_xu9-&e4QAnqtiS(sc zo8^MemxJiK#pg~A-^-?uO%Hx$O;^UHWE+(I4_zK-w^Tn;D-Ss=+i|4WE0nY%LSqpi zu?QK0?BgYoUgh1_JH^BE-EBm>?s_fG%ez_1WHdEFymI||2$5yzbR3|b>sAAK!-;zp zYh1QMuX{R(T8f51Jcn9rgr}mD6CV+mi~Mp9GL4~F$Iiz^{4}Khq&1rlQ?7*0osu>~ z!zg9M#iB%V{CKi+nir6Qry?ax=l35l{v9M$Z#v!THnU3&D>1{_8fO8gLy1_S2Kdf3 zr6@ULbd%bBzez;~-1$f@qn$=%HCozeZIE`b{c$m)uU;=cBBz-yH(vb8t6*YE^pt+D zMQg`RB$AEsZH%STnz^1zjysdmXXIEJLg`yC|Dtqr1)7Kzr*%Iga1dh~sA zTJ5AmfRN12oXo3z?_@Wr>i#9-^Gna*_j>E}KKk$^9C`DOBvpMvgaJU*_J_)vBDf@i zd%+=O`MYujxu!gBJOGr}1uoyYdDJp93SD3KcpLq7|LY*@KGH2s`6GApn*9SI$VhnC zH$_G9SbBaHf%um$6TS=;&@zq4;UsN(K&6GPniAdhgukoXcz$a+zB*t#VjE#g`>&U0 z17hxg3BRI954n}Q{q_^mUiX#^GXVs3Bu}!I8&Ut?=B0m{W!L!Zc2N0lXr?>qd86dg zB~WHHBdO)p{NshKLTy+7LUxCDB&tf@0lihzfbjdF*aCZEcDAHzw798wbxq9%7=~`Iu!3uD0rZ2>?fMkstmWez#ZEYe2u!tfl;__$B>=GHZ zjI+zCI?+(lG)zXL-Y27GDXofn?4^4#}rhlR7Dr3ovGt{#bSn_nZ zE#udfCYM0}Cxt|3|HA8`%~^!4q5HN<4!(%dbwA71XzXJ4pRxnLajTScCerLhHXP0H zf{i}k1ZJgN*Rm@873Ew#YJl8?BM>@fC~Nm zQWH5W5B>I5SH5CF`r~rw7EK7~@RGgIBvt{?bhBsa1Z|SW% z$dF#1`4(64(voKYeX6#Rjo@#EG9lDyDZ&F?4PD`;&bT3X#!I469;yO$Zj;Tsd0lt; z)#2Z7^j{C0ITw5q-lOfDO+z`TZ2Kr&aXoNZ9*JR>*-8&hWr>-3Oqn8!>*VotHUk+K zEwg?rO*-0_o?fsZ>z+5l}&``bP--;xf-kn&u!By|$lJ7L>T= zT1XTD1=2haEC{L#Mm|tm2Jv>^k`&#C4#$q^ajF{elr0kR8VQM}Ql+VhpchCV?23TA zR>S-U5VpcPd}>K%OM5*8e4+jb0s;qN2N2^!2+X=nhlPPR$z*=^UwS_GXWb}}XAT1F zJ$rSd$&CIL1dal}1Q8jA!dWHJd2FBm z02ng?ZY|^z5)ut?ibcNP5Z!~|Yz~Ua@E`d@{nRMDb_KKJ6dSxY*(OGPhqF&)=6*-4 z?kj%gTcy7_;8xC*#x(zMrPGeqM?p@X%|_U@R;_x0I0^&iyJA4fk{Qa$6OFh;8b@@O zk15gegK*DU=eFkGw~sTy?3Fvznq0Sr_t|7b3GwsR4({SdXqj%S3qZW|3rb^j4Yk7Q zG(a1dIAq9NKX z(4|SQc66W- z7=;*VdfXcphb*mq-Q~Te?Y1I1W=7|f}j{XwoMP5ooYD0!`q3N|K zU&%>z#wRQrfO9dqjQBi*{$B3W^4s2`@p__(Y3Y#j%W3jZh6qnf88pFy{s% z^$cDQdv_eRMP7eK?TNfTCuz=AxwG7eV@kPLXYN9O{|P7LQ>--xXwhBtddM9G5gsLy z`NK(iJ&g7xUnA_I4Gs~IIu0`(p_?R*oO<>KYDu6W>>O=FIjQ5E@`eSgrx^dP%8QN)WEpD zVO-u(*_xo0ET)P|rF{hn*3c~2O5NKJHN2~AXXM<7=Yz217Mm{Fzh$$rU14!0yX&{f zY`F!M!S5^J`FQs@-@568@bm=bjOm@+wzLW1aIV*L&+ZfrBM4?QEEG}j#fbWyNpEdU z4SAy>S9J{=kE>~K7}-$y(86V4kIsbd&4FP)d=G~Yi#kCy&{&-xVnlq6 zwXj|m8XgC#;>VlBz^jzr?5Wu~9I^Ex%tuz+;pn21cp|qRTkZM9Fk&oOu|mvS#b4{K z5B4S{bQW$cDJ~{^9~ZyzU^OD?1uL^GcGMG723OyIwm1S;H?-i@SZ8m@3Bt|&SO~Ru zGX)o8bS)v>;W0(=)5T15fQqDfaSe>>Ha{}L+yyxn5@*Vw2p(WW<>YLc%Hrl;c&d8z z+ty`fHuTam`Up#EW;v*mM)3K@L8zgO!L{ zo?-mMsVAV5R_t>!91L@TcbdpV#~OB3!H9>iXj^f77wMvwKH9*(E*dxogTWUb1CoW* z=E>T)bjM``ycz(8iD`ao>_~z;2d9e>L-iLhlY0mE&omoGzYJZz0=bCnlg_#*En-()Te?;}7cY`u<<4WfDIDOoD- zi%Uh7Vc^|`k9P*Ca9i5eFFk^_7;ZD$y68|_eB>iIWI95%!dXwjX=?ZsLnmASyJ-z?{zgj_Jzz#@MYT@H(2_GVYC1Ee zwGkZ+;c|8gJ|&XCp5kmWomaTaP~pm?Jc=Sc4KO9CHcDQ0e%%^|m-f8}r!UzdhlD1n z@eZ6dP_tP+wi7BYef3ArO)PNTk9wsMpQBrl4*&N+SgBn}QygjS6db8LaAjHnx%)z& z*{;lr=lCJHyh!+V2~|uu@Ay|-iH9GXxFpvQ!~02J7F6Y)41QiD$1f$s#^lW=B{fFK zrlGtY&j*(XY`d8H!v;ERX09cTXLqPydYqnf*Dim3z>W7-HTaP>xeq>#+CEDsa_BGI zJBlkFWJEiuv=N+^rCObREt4?ByaqK8F3G$k?Qdk8eNCP`Oi?Mv)wE4U|1Q0m7Z2nX zGSCiuLl!0CD=FP9d;KtiNc+IK9x&oir$RzKI&2Djr{pcBn+BHyN|^BlQtO8^xKNsD zbJ4-md>Py1fQUdiXuUN-q#%U8;adXxj#Hq1i^4c&qL##|OW^t?H2xUK* zUH!@!(D3=;SxJ85U<;pVrL?PB_TPjg7X#0m$x+zpOK7H?D6o;kju^?vQrFSuTkm@J zwcUxkZa6P2!(N%A}tBSyd?9W1 zr)HkNf6jKV5S?*z2Q?4CzFjZ*;|&+7nFvHhj<6OMd>*Sk1eT=~<>EK{kZiP#Rg$=M zopv%_wswNI{-?A_Hm9qfuHLY3jy-h z+RodJ$YOr2N<}rUS+VaOBmztGmA)=iGII_8Azh5f9=x-x-w21e zvxtNAgx`dEU~$BE!aytZqWHB=vfuF0#Gnw+uZ2-d-{gXZttJ*{6);N*9m?yuzf@&^nXMMT}xL~%U_6`OZw1s5)*lH37EX+8Zy2ybj5Sc0p443o6ZgX{$HP9sB z?6&kdzn797PS|%z=Z+1O^K@A}#J<{9{Yzb_KJ~omN?f6t8+RS&c_MBz9F>$a?AnfC z=KHgXT3yD!TJsMyG*V#np6~({rfJ;uha`BB6g{I9ZgBEwn6j2^A!jyM@e8tfz>D$^ zkF#0B_UqD6PRE_l_TO0XoLv+`9Ohw0inAY%)o0Jf!;rgH2R5I1C@h;p(dzK>&g+jC zvMl{_J9|UQQa#FQ&C8lKCjB?Wx*B>LQLp@Us8QReLrKTY5iufu!-yGp?k;s6y^{6yf#!o@`hBv6c{*BK1-@~LZeT~Agdp`O-tt7pW32~Z- zxjVotiLJH_5~!5g24GKiDyg3yZjE=4tUHyY z$?DDbvL8L_a|7Xs3cSLVIaZW{3IBKi5WyAB6^-$Y_tFOJfKtE{h*H~W~6;GZpe z9)V!lo`2F*6~0ao2RVnZ8%CM0!-=rd-k}~f?1rg0oM(8YeUJS5@{% z3mEk>e7v(+aGhb(!y~B8Tx6l|IckOzN}d^@EdmWL%*lk*%Zdw^XRWzyr66DJ_a(va zz8>=N4i0+)hxxAHgnxYeKp|(+9`N@vU?;RYgrz}NbCqVl!=gnPwZ{!kSbd!6OP*f> zsNb&eQx%ri*ckKOXS!TCWAjitYA;I=GtBo&2 z^CCN1>av6*dNpK+mb(E`VXGhXXVKsqv3l_n4A0lwKLDmHz$N%Hfuy^U%KPM?KR6Dc zb7Q*ZP*~kmh#4)%U~&`6s#lJ$Ku&5aBr6WcdlFgd>{7C(K{s&#dYiP+oHO~y+ZOQzlj2hQKYOdceSCVPKXqD z^yWn6Bx%Cwp~B4lQK^b-VM4Gxdx;TRZGOSlVkjMJutiF>M?=GbbVm=>&G&m66;>w4 zP|~|wSMl{IpJ^)T9vk$M`3TEt3O1>LYx%T{3>q*4eK%NN^_G`t4~3_pSdKp?5-P)< zJ1iyvL28y(OvtRaisx%S)PtD{PbCrjST&_vg-09jMdXrt?C&D#L?7UI_v_cA;F4Wd zP7p@ltHEl1-|c=s5lYF(PJfrFX!ZF|8Sh zIPqhR-L2@oS7kdDWtlwfKHd2!k<%Va+1qmW9ofjvh*Z^HB^MiwSDT7BzqevRybObx zWLTK{WH=az4DsMYHW+lHiq}HO?pwfe8Ffp&W>60j(=2KlfJ*vxL3AWoP}T?VWznCy^Xy z5Zy-T;c7(G=({q4NfL$htOWa;b-gBg&99&y%1!NahhGF9q=I}Xv+=13n^d7xUnI}E zNrW!4XmlsB&d0^OjN7dD#jxoJofLQ-Xf*N>+sSWz1QtLth7oLk16igt>_ZLfb>wXn zxNzhoIjluPwK_4nLD2={-v{z#woH(Jk9h4|W?TPJ3d;D<@tBF{EwJ11V=LTu0I1{t zXlkK{C5b$M_wMVdJI<8_(he8tlR>nYVq{`)6MA+&*I;%$%$u#fWpzr}cV4{ca|eEv z9^RxLnlf9`h1lOBF+2lG8@#nV+O}`b+5LqcL(5s*M>BB0q>}E;&Ki8~_hbBOc4{h| ze*$X1)>V*kI+SUR3e?qL`?^oAm5L){q4!PisQJPp2M6}N&o;=M64@=d1b2klK54$k z_K>cyFndTtFijNxW%AAy>2hI^$dg%|Vy_=#U>~_9H@xRxUVQyPq7>b$U%`K=iE{T2 z_U^<*HFV@xZ)r%SRgrD2Hg|L?JG=Jvl*o@5dHfP3g~NAFc2#K%7Dw67*MGqWBn|MQfBoo1sddvFr1YG(Tq~ASGoEGg0cSkx8BDsfoQfayUo5^z>bn+BJC1PV@5X z9!`UsAU=GbJw-hLfJikX{a|a~KAs)CKHq_};w(`IZ&HUYOZRU_5O@FS-E4o(ywLR* zSGSj5X{s0i9oqQw@~7jTVJVo5AJ>-}y30El^~?0TCmc(M19_{sq%bD&|*3BA)jnvvXN4t~K@HG`qMGAz!8mP;Elf_iz_m zt4(MATcw2BQ|3}fZ8zFWZ2Y@z8uaSp^)HR^Z%4KpexRWrF}ZDv>8A$xUm?PE-v&19 z&P==CeMNrF|HSV40Q-*lQga|eVx*w6nHb|1g7hUA?WBc4H_(i#ztW#47i?!NP8D9` zN#ywpkKZMbT%VP}sDAn+SzCH0dDFc8nDO8An9WMnb|{lHCs+Cq)~)Ks&Qp`!Ft4-! zZx4_z>L`4nmQ|R)tNXQ%UB1)-=v?T{@y6O46I?PAV(4Z$H z$bF8}KXGc|U(j~T3#JdJT`V4^3&Z9V34_Iwt?O47L_4-r4wu`56o*Q|nk#WdUdwb7 zOzSBsW6O9|@^8#INu8`XksSLRxsy|0M3THcs=<_T^hz;_nnT&3ID&X%CfZg{YbBrUzi-y zHp9ER)!C?IE1XLCaT_+22<6T_kU2&-A(Mz^ zzk)vX{&NGT&wcN^lL&vsx=qGDd%O|xb`8Owq^u8LoHsf#(4Eh3s5Lh-F0y*hNa;tJ z=c?hVRO)e{b8dV?8+_Lit9c~ni4ly$r|}}F66K*5crymJH@y{y^lA^58vV3Mnccm% z-unT_68{?vQ)FF<`f{r|nEeY+Jd?C({B00oTGk3Jq`D!pVo>UZUsxh^IFNlb*lWZ>R74+MMz46OC9gnyz zcZwisON2LyQ$+8B59+DiCx`mD?B$Iw&=2BqYTiQZY|tjvuX46o>H14WR=YmT&}>0x zu@eVa4CXYIJS&VYQbuRYzw={x*2hzyN|H}4PuW3<=fTMOi^!Lcd9rLaeg$}nb~4{k z)4l`juTR|L=8`(S19z5*3o_XK5+y1Ax^%k>GE?|I7c?l4-2IY=rd7{p}CX zznLy0CB;+|ljUw6R_A(N82p1J9VQP(l}GRoEut2pA`vb8wlS^Ex*P76w{KYTOy0dC z?N*kT(W6d1hm2uWr=aH7?lMz&ObJQyePi0(_%d;Lv@_+cdV}13(_w4d>%bPd^OFxZ z$DcM&Bd#;oiJ1zA;_phX$9BH)eaEXa^5z=^jb_{5{M(ndY4=_O`?bBvcPPauZBqk;?&I)R6!me?1+Vh(fx`2jRPNigX{qKfZ)XC1*CS%fp$D?Q+=T>9f0sd0 zyjwM#-|qk2jn?P8I%PN4cLA?Wu}_cLCfVI1GoMhI)ATywTjN3q>E4!J(b*H`wW7;M z+9+X5>Y*4UI5-&~Y{Cm^n*FZ~wz6kGH zqgc3urGI}xtVvU)^&ad`**EiU%X3*#)g zzLbc936sPwKj(AoM;#2Tls3D?En-k*SUHSa|ozZSCNvtW7i47(V; z(gx-l&=l^IP<~j@ulF7RYKY(-=zjkHYd5oV}6XCQ|_aQ___OLiu%JyM!i542DEWM0OcVq^v3ZvSl}RVk{XM z49S`$Ek@Q*D6%Wr24g8>3CYeN`!DAv%bH|!9*!vLs`Buhu)fFt{hF({`?|@mjR> za#WjJ)a^52`;9={(H|!dUca$`1c~uZU%bPzL3RH9J?iC14ZqXT4qD{($cv=9f=7MB z2A!GjS0gtVIHsPk+nUM+eF* zKjwStKhLz2rXv47U3kynPMB?{#aEU5szF{2mO}}MeATn%$#f!Sx>}#OtInfn+OYdh zW5!24fgoI*{$$STHo%fiB#L6+b`BD0dH9F;!Bs)cmr373{J7>`+o0`d!>YWL$N?ZHsFXpy)z0* z5n@Z(JIeLVdFJcRkvIw1%EXRrS%32Phh|n%#zowUHU=NAwnA=W2hkU75zm5kf(~0f z!a%^`*({BNO}Xz}Ry{e2WLcz(ou`^A;vY`5SoSAgXkKSk`)|7PrMy%bqb$eNkF)o# zqXo9du9iP~`1Rq6lbjYs-wtH+%1%wlU(HvZbw-PfZX=2YkFEx<(!yj$W{O=lt#fJM3`}K4s(A=C@sMUT98! z4hhniNU`w&cvQP)bAzZ3k+e25hb>@KSFgGIjENXX!p15$BJ>W*ZksNpr(Ivt?J@fC zI$>w;oYQYZH1?v>)yHWZl}CM&Kbtr09z1vx{fxb0l)GX86sIT`$`RGGT9StZXUm3P zap(=06dHA0PISjVE_O|VcJIR-UA54!z+Ui>)43rUSBizL_LY9OuqJP7M}~E6^#?ZG zDvo-fg!0rZ$|m0lxv30WJ0xM7zdkS5wbail57+i#pW1KWI`uVY@aaxOnnQ{19kyrZ zsM~{_Df~y{Z)0iD756l-_Z6O-7lslKa=d?j*}2M-;l$vK?{nK@y88N8e{1i5<+|4U zEcsshb~`g7O^1Id9^-$ticHG&4b@oCip96LLu|h?~649U%8+Q+@&)q!q5hz0$#$sb>Jivf3D7*)MU*HuW1eA6F)?$+kUt%qdj%j6Cu?7o_! znlG*R0UZh54|isJ)&$M8kJk{~RAi-oqS$T@I;9akYjUOC&eaKhx|*tY&BSjA>g?#3SOdW{C`_u(pY5 z83mK~lH}GTyv#h97zV+{_fn0J6_bl+4{yiu5<+b+U*&jL{)K4{e!6W)p;wb~^4A@0 z)2W|L-q3X5$ur@LQYLTjMYHa?!-h!eub+j%)gT4>ZBHkju{!8@+WAYrq|D7gC2*TQ zs=%O}5Dt!;_v|%~>~E6MV1l7~dctE*XF34Stjut^!pOi#eByq7KW=2-3|( zwcRAY3%1a(!o=9Uwopo^yMOm*RoK4%1bhmy**;#)_3YUwlEz>}bN(sl041M}*%3#nXhh0gBz zFPoj)o%_2d*ZtPvP(GWTCv>zr0qf{8d^B=j4LSF*J7_v5%=TPARUh4!=2L8yAIp50 zy~|7GY_lF#KDH1{<>_vt*`kR98W=Cq6K5LRptA$yhSGZ zm&w-gPD<3*9B0#T9Bz>HRo(Z+!?|MmA8}1&P4iwO+!Zr3yVAP01^CfA2=nb`^;G|X zg&pp^DB5~U-HuKFc}|r;$Z`K|X(|*kx6>XWP)gb^24A>^A)?5vvW_3hPE>@~EQEix zlsN{jLvX){vvY;pKDz7YPnF>6)$BlV=y-r#;Z#>kPG;w>4a%e;`xlu#uZ1Y=dQ{)~ z=m|{|@svrQn=czV zXHq0kt(>DNj!HUBb3H(A=3^G|6%R<;XKYc}Wc6OKP!}^RvGpeA+ke$`u~b{tQi##qJ+(7GAOtZ{THBHQU zhX!hQP#9w}V&@Etk}~684C~&>g{Xnh^E}&p2KfwXveCX%q~qtBj!fJ6+F}41e#(3( z)dD6He}Y<@?x(WHFDT$PJ%+owmDRQwQoC4Y7}dEL=t7{WFv*69VyFM@w+hOqZ^L$4 zbuZd%?C&ezLie;#pulq4h{Wx36K<6SzV6(<$CoxvLu;YM(1j(gDiJAUE5 zrPBv{`g^`PA56lx>1Dkkwm>M|W?9a|))53u!cuKw>smUu_XqlD2mLdE!lA9~lh0@` zX*OhLUQUEer|Wf|R8HlMnMtk`Xr}3J;1PM}=!PpF^p~E;yw9_9CpbX1ghy0FsGAiM zxRLmUmj|uwZ`=Gi$u2<2q9gk@EEljH!QDL?v`gJf(KN%yDV|HS@F}nQ!${ZbSf#Zk zk}YtzoaLCy+x+Y5Yf$2s2nXBZ(-rR?fH~n0Nf`dH#fMU@ck(<*m za#2rNn6L6nfn>6$KXzuy2YeT~7Daqv_hCQg?5ZnaD$P)E!Q(<(aE>ijyrq;H@ z9}FM$sB%l<>Y+F3c{DNmo{yGum+qF?RM%*lm-a^|1=3Pp9$ID;UyuDmaB4~BXu@s~ zB7F79Xx93N5ZrwLQzm(aPRfDFY#^WUdQ-vkO7r!v&%@?=fxY(%gv^{^3aLinY<1K{O{czDe=}sgM;p+az!YVL8l3&xd^(M?dh2X`Bl+>SCt`wVV{Ha&4mk24J7AE|v{;9Y2-6~6> zh?gtc+0@0o$AEgv&~&)`p+Mx|N5CVsE%so#1q(?WicyHOqBB~?m>;sOp1^_{a`^au zWLEIAIohd%ow0_5uqhkDRGx@PS;7D&RZW)D9kHU|u_3Gll+_|hVHL;y7lRLu742d% z#9`EF3VU7~3N-$~LLmzJy_>R#5#B|fnv3~5VePwd+TPn<;iLw@IhWPmGs^CGK#xb- zX`ep|Nse#V%_@**sr^y(NOR(0<`Hr=p9(#!?+vgNT@&hEza2*}KY}bPWte+)qWFao z)hzhoeihR8G7wow8~?*#n?@0APZNM4?He!6m9hMGw*?=-Hp3|ypRrRVU#cDthvvt5 zcKA>F7_-Rwo6)71k8mPNNEmS=MNw{M zosl=B`#1Im89lyjuKwjSVfJGEfsOVrC*KESA%75)W^{;_MFzsTBap+h#Zg%kT?>`IG@Pj1T=&t^i9eT;qa@onMAxtH6 zr3jgrxPFV~Q2cUH z1FE4r4mhKe@9!}Pqjgk29iL8a9$WqYikCEoyy;-q&M$At>n|9-VjP@oRZB3 z3x9nlsd|)@)e1f8_o=r4Qelks54*YL8sa$mP>C%0R;xeJIVB-7b1z?XOqb zxI)y|@26^SOuqI0hd=LiA&KMWCE$3bp8?0J$1B@EfUN!JP=5e_7W*i~USic2eY%c# zuT@eUoY@`kkhY~>QgV+z%wbWpq5G^q0<@|4&8ST>zTy&n?W_e1YPy32O7rHm7j!q^ zzveJ(-B&wcjy|V;(~0YM;8OU+&a5bTMEfLj`}&^eo^Ma}vybpm6j<0Y>%ZiDF?w6E zMtH9fkeOtfdZVt9&r1vcOGI$k=m2g}ZwG8W%2Ti+SQWsFv2hho);mz($kY)h#2iPl z!2xm&-4Ch!_SHVzta>VSW;Avo!h_uwSlCEPy+Wt{0AuM3%%5b|uHuA;k}#GL=IZz& zVI~^lc!_(+|6pSQ^|MZru6;M&LF>S}Lm~k-AJt%wA>8-~39H*dp$L{V{Y#D^&BqHE zAkqA*vXQ!;7qk@AIOKlneN?7YZ@%$+` z^)D3Q3A)_bau%rMraaT1p~lk`NYuU)RuiZ(9f0)3@z=VB&H!dHF4n9*Faq3&l!&b? zqt(%uG*I+j-&O9?HVx*uS!VPEtJ+oaY{ZwFS^x>%g-{=5@g=!}GLjH7dDQO{NUoM$mh@$|#^) -Add prompt to a data frame of preprints — add_prompt • biorecap +Add prompt to a data frame of preprints — add_prompt • biorecap Skip to contents @@ -26,8 +26,7 @@
@@ -70,16 +69,16 @@

Examples#> # A tibble: 60 × 5 #> subject title url abstract prompt #> <chr> <chr> <chr> <chr> <chr> -#> 1 bioinformatics Tesorai Search: Large pretrained model … http… Current… "I am… -#> 2 bioinformatics DIAMOND2GO: A rapid Gene Ontology assig… http… DIAMOND… "I am… -#> 3 bioinformatics Multi-Modal Large Language Model Enable… http… Predict… "I am… -#> 4 bioinformatics Sawfish: Improving long-read structural… http… Motivat… "I am… -#> 5 bioinformatics Towards Digital Quantification of Ploid… http… Abnorma… "I am… -#> 6 bioinformatics Interdependent regulation of alternativ… http… Alterna… "I am… -#> 7 bioinformatics UnigeneFinder: An automated pipeline fo… http… For mos… "I am… -#> 8 bioinformatics Normalization of Single-cell RNA-seq Da… http… Normali… "I am… -#> 9 bioinformatics Phytochemical Analysis and Cytotoxic Ef… http… Hepatoc… "I am… -#> 10 bioinformatics mobileRNA: a tool for efficient analysi… http… In plan… "I am… +#> 1 bioinformatics Unsupervised domain classification of A… http… The rel… "I am… +#> 2 bioinformatics Testing and overcoming the limitations … http… Modular… "I am… +#> 3 bioinformatics Decoding multicellular niche formation … http… Accurat… "I am… +#> 4 bioinformatics Insights from Molecular Docking and Dyn… http… Alpha-s… "I am… +#> 5 bioinformatics TUSCAN: Tumor segmentation and classifi… http… The ide… "I am… +#> 6 bioinformatics Characterizing the role of exosomal miR… http… Backgro… "I am… +#> 7 bioinformatics The Lomb-Scargle periodogram-based diff… http… Motivat… "I am… +#> 8 bioinformatics Protein stability models fail to captur… http… There i… "I am… +#> 9 bioinformatics CryptoBench: Cryptic protein-ligand bin… http… Structu… "I am… +#> 10 bioinformatics haCCA: Multi-module Integrating of spat… http… Spatial… "I am… #> # ℹ 50 more rows

diff --git a/reference/add_prompt_subject.html b/reference/add_prompt_subject.html index 4ef7ae8..24a9d53 100644 --- a/reference/add_prompt_subject.html +++ b/reference/add_prompt_subject.html @@ -1,5 +1,5 @@ -Add prompts for an entire subject — add_prompt_subject • biorecap +Add prompts for an entire subject — add_prompt_subject • biorecap Skip to contents @@ -26,8 +26,7 @@
diff --git a/reference/add_summary.html b/reference/add_summary.html index c4b2b75..d82ee9d 100644 --- a/reference/add_summary.html +++ b/reference/add_summary.html @@ -1,5 +1,5 @@ -Generate a summary from a data frame of prompts — add_summary • biorecap +Generate a summary from a data frame of prompts — add_summary • biorecap Skip to contents @@ -26,8 +26,7 @@
diff --git a/reference/biorecap-package.html b/reference/biorecap-package.html index 7d5aab1..12d512c 100644 --- a/reference/biorecap-package.html +++ b/reference/biorecap-package.html @@ -1,5 +1,7 @@ -biorecap: Retrieve and summarize bioRxiv preprints with a local LLM using ollama — biorecap-package • biorecap +biorecap: Retrieve and summarize bioRxiv preprints with a local LLM using ollama — biorecap-package • biorecap Skip to contents @@ -26,14 +28,14 @@
-

Retrieve and summarize bioRxiv preprints with a local LLM using ollama.

+

+

Retrieve and summarize bioRxiv preprints with a local LLM using ollama.

diff --git a/reference/biorecap_report.html b/reference/biorecap_report.html index af3ea05..07bbd22 100644 --- a/reference/biorecap_report.html +++ b/reference/biorecap_report.html @@ -1,5 +1,5 @@ -Create a report from bioRxiv preprints — biorecap_report • biorecap +Create a report from bioRxiv preprints — biorecap_report • biorecap Skip to contents @@ -26,8 +26,7 @@
diff --git a/reference/build_prompt_preprint.html b/reference/build_prompt_preprint.html index 8a6f131..c174f1e 100644 --- a/reference/build_prompt_preprint.html +++ b/reference/build_prompt_preprint.html @@ -1,5 +1,5 @@ -Construct a prompt to summarize a paper — build_prompt_preprint • biorecap +Construct a prompt to summarize a paper — build_prompt_preprint • biorecap Skip to contents @@ -26,8 +26,7 @@
diff --git a/reference/build_prompt_subject.html b/reference/build_prompt_subject.html index 60b6361..5b06f16 100644 --- a/reference/build_prompt_subject.html +++ b/reference/build_prompt_subject.html @@ -1,5 +1,5 @@ -Construct a prompt to summarize a set of papers from a subject — build_prompt_subject • biorecap +Construct a prompt to summarize a set of papers from a subject — build_prompt_subject • biorecap Skip to contents @@ -26,8 +26,7 @@
diff --git a/reference/example_preprints.html b/reference/example_preprints.html index 5ee7953..c53468a 100644 --- a/reference/example_preprints.html +++ b/reference/example_preprints.html @@ -1,5 +1,5 @@ -Example preprints with summaries — example_preprints • biorecap +Example preprints with summaries — example_preprints • biorecap Skip to contents @@ -26,8 +26,7 @@
diff --git a/reference/figures/logo.drawio b/reference/figures/logo.drawio new file mode 100644 index 0000000..7b88111 --- /dev/null +++ b/reference/figures/logo.drawio @@ -0,0 +1,19 @@ + + + + + + + + + + + + + + + + + + + diff --git a/reference/figures/logo.png b/reference/figures/logo.png new file mode 100644 index 0000000000000000000000000000000000000000..607230db0cded6e349b3c830067e4020a0891d20 GIT binary patch literal 39473 zcmYg&Wmr^E*ES{HC_QwjNQ1!8sDzYBr$~1X4boBy0@9(BbT>nHcMn}d4c+sdd7k&Z zzV`uD_ecI%fK&m z=MM^UXeGn+yJ%=kXiBeTKS2!k^&kCWo0@Ar5Rj}8hky6NB_8-fz+Bh(3YQp<_Jy_< z+v>;~-XZDYk~Tf1)*|Kfl4(`-p7f>H)PTUC%4c`Y5f^o+`*6sR+Ek(D<<#QMp6^xw z18u;GtP!cdGFocgc&t4RA9ic%Nj*{X_*;e6kGp6)x4d*%JXMM!lf&OBD6bz1Z4Tvm ztFp;PJ9Wnv3@JtYME%FmrrpZs!_jy!kADQ3oHNq~*u9dWu&H1vnnGAY2udOyNk?K_db2)!HQ=wg_fuJuel+*T4lNWrr$QKZ%$eac z+-&C(*GzovEQ|UlVqzoC2GzJ%eIHZb`;^EOp1;%Z!XkO;?;XQ=dA)v3J6I=4JH{V+mZs#Vp5 zwKvw7go_J8rd*cnP*isnW}u6ZI(+US!U_~UUsQG&*M?3xp6c)0&fHUo7)oLnd=-E_ zn@`U>H>~|pwBk|KrQ4QbxKd0d+XISvzzls{R|HF!@;iJ{?pyr;2UmHvO8{s~;dFT7 zojd?O9R9LtSCQik5;5GDW<&;PK^a@_JzG9j{nw=0#-|o*#brdiD{i$F^yVcybsd_9 z6nSZ0co!0UejpK;m&a;2j^pW62^<>fe(1g;E+sqZVc;=%9=exRD~?N z&?;ZXA$QfArV~`yc^nx^73M`N_srQ{r!HQku1-3RfTEg-!Q)Z8Z#|>88Ic*C$cB7m zi;dWd%bmT_QPXY2L?>J-HwVn>sz-kK%32!dR^9nL7ds};LHdJN z#G6(fBzGYvGqTHSZHTea2^@!t-o5T@lE)x-A#6h0y>1s%v7RO|LH4`BH}|z&EQTPY zZi4!2yNKz|6gq=Vw<F3d7+Yyty(rLdXxysku zW1YI$bRSnLYO4N=Ee-uw^ycxI>st|x<9;+q@n|Pd7b=S`=hPC{(8d##BPRWnT99tma+2zoEWkIt5bo=Hla9Nh zx+772@-~+^`V7oTI~CjO*<~l(u-_C4$E==J_HT`K)#|7naVi3qgLs{GKC zv%Wtm$GLVbm0?J4o|k$`B9c4d{1`nzx1?T=g-L*B<_wm?jguOUm6CB;9HSP6{HB}O75g66x;Q5o_%HZ2tAyhpNMN4o;piE#$V2;9>j#Y$3vI|Bl_FMzuGr@$q2x*r*wy)VWZ*Zgm< zB>xAejJzaRp54!d5pF|LDBIeQi0~+&)`eSo?<$m$`bh)K85<38A-P^RM-l&_O1HLC z0GxG9jiu}9;&J90r&EON#)q{;rpBY|>tey@uBv+P*g(Jlp?ssf^V*X!&um!FUhq((1D}9TYDG zV75I2ZLjXvV>K@C=dEy4i9?G%@WdHrE1j&hFF1W%WTKY&B>m|J}AR4t)iSBfHY@_M0~GKNJ*sk=*%#qdh=x@ zu*MD5E-$0tK^p*LI^GREQoQa%9PUD4I@6`m$f0$Q3BZXKz+1iwDGiyRj`8Z{uP>Hk zEGFxvKp*q#iEbO*)j2G}$6IqyUj%N9(kq@G^CCUK9-394VTvP%0d~j0$Rx!t# zJh~KBP-1kYPjxgLJJmCqh2toBGlt~IAo+;afTgqsRcwFU|>5ji5<_V zL*~pg7(e7@)oUsF*9~vqB`t9GxySPW2+Cv^;vz3iB7Ta8#Sb9&vdHqkVoBYv*a8%9 zdezx{1+#yFqZbo{Jm~9G1|&@35m#FuPFJ}GeNPs#}7r`$TyIoTeZyHkmw+*VPWarY=E7r>~=)~7~BW` zjTyxy4VV*raeqlxjC8wrefD@wvehZo5~PWIu*Q0e7N9N#(cQp#n8^V$P~tjH{p3>J zyl3ufOOq^mi7tzuI~{8>rX3s4vnHvI#Be1}dz;C9<&|eqcVkJkj$_IK*q ziw!T1IR-p&eFAXHxJgOg81Cb+R{VSS7x$(mM0?OwhjMGd28s6t0Wpt zgfrlhfsvSWHP#h;j3UqOJ@dhD&X(^0el>uPdzYwvwCZexzNtIhsnfOR)i_K5Uj965 zEY1?^doUVYitjGc)nA_$Sjt<~>xDA7CVt@~{==;HB8OI^qo4nlV2I1^WRZ>H{$j+~ z_iiJm=GlXeXcO1Ph9M8^*0{e#i|aJVlx-(5&;s_kW-+1->3kSR-(Gu)cV8=xvSjh1 zj)=_C_79WJep5|DNg)i{fb>BB9jHmqN|FK)J&C&0_O-jvCD|sOo&zx`#f_Q}hJHxv z)nyMJ`X$zVEmycZ#em~hY_zx@SZ3d^4)FDU-wf3_?k_ZqNxxnH6hY?(-NLK~Wyy8t zT8^reJgzX{sqDefS?=!L5pBA}F?<7nnu1jr^T>AI<5Gt(PxD%%HHz9*v4v#=WSRmQ zsVG7r=}(SS$+V-s_vG0p+5iE0qv^9}U+$%Dckb<$9-SNNKxgWOjlE7EN1$S-|Gt?n z0%ik0VEbS^VC(K;0+tMwmth_4AO#pom)v(N`{6d;^q!LaVa9gNRkH^qK%bW`LJO>j zc?=i7cNWHQEwH`^w0zPxr|tAt;&TbGwAuG8MpWMIgDp)gVaSpMuC z79lI^v_07wz^BTK{zF7-uKGQuRqdmnT_j5A=!&*SaX&rB5X@8kc|($ukEE1qy4BVw z5eFZJ9dtSZSuUm7{Dt6r>K8eQSitx@-Sboc0I4fp>sS|(X9 zUO>_WM+D~KT#sG^Qs3-n>7Oe@@&CMJ_nZcpK_oBqHDeKAiN`nrF)))m`x!VCM0V7j zus$dWN_2e^J&NK|@3SJ*gqeW}uPm|14yJAXdr-z%q&g@r%;~rElu!>K)@%6>PX%pVZ9TasHPVQ6RUIU0HXB{lbbIk@6fV zhWlBP9SgDyP^pur4=~fZyWBlIVW!S#PNC^W;IjjS$&ye%Fd#l1F>cYqFzU zU0W{H8zgLXWNGH0Y)6HT$~aW7M0xK;MAkrjkbF`A?-7j!o^GhGOOU?1Iiem+lN3yR zB+j`UH}cTk{+1G`>ew5FJ&jS$QGWx}V(LrUK8C1IeWd^M zVNnY&>eE+LXQ)E=4^=KIa6X|5-O046OOyeAy}&S4Zu-cn+9_TN4da$S^gn;O`1dRN zG{MAw3~WpGRBX-kJiU~|J5sRUreSEUUnXIuPMfsFG1#(B`5OU|t=+^6CEK5%3b>KN z?e&9`?dX&EsdBHJQwr5eX|ulD!~I2%@Rc-{AYO9i>ZyyzNBG`unqMvSDHzRfWcXHJ zNbi?3@-%O~JS#bZU!}jjZdFkhY>~bp?KD^6?HBMFdp>zoFS6&pL{Wb3hoflA0Whp2 zK|n04LAx^E>aUJVmmrsCq(@%%Es=4=OU)hUc4dgII^mJ=tu z&>7v;nG0V(fge>hXE=!&tqQ6e%}e*V%sGW-xRc$0Ao(@^jf9RqSzlP*Rdg!LEm#dL z*IX_yb>7~sBRj717)%?7|7i(JrB^+c${4wrbrNkABJ{3ac=|ViXSZT=+OC;MqjCRv z4kkQ{?5PRX+XP7XuE9c4OdkdG=<)I)$Fen#IHUXhHY}PUAP;tpZ(UlO^~YpjHPcd4 z?_2PQge3NU{0& z1qKhig~O_p{|w=QY@`yjZ|Zg{7;~KtE`5&uRX~wP&%e{=$V-#UU;r^Vo$ z%^PzTA&%f6P$3DhX40aDtkrWCdvKoGiRCch8CJsT?%?$cg4u6LNYzg={JNN~yxOGV z+l(c!O|(*OnkL-s#=dh{T#YV<0Yg8@3JA0*Ek(`lzeDM}v)f&5!<5q@f=PrtlG|(& z*DLx^ZR;bcdxy;^caz(+%cs@Nybwt{3SO#TzlAAaAP>^t`NksCS2Myp)f0>d#1qmp zKo9^mv;JZ%W6L!LBlMQTOeH09zF}F*z9WkN%Wc~GrB@vpl+Y8F+{l(zO4&S0d$;Vl zT3C>n`?8hz(I_-E5M6=6+ACE`hV`8ls=ZqcdiLl1g~vI&%0tg}4cBlyB(YhLSUTg9 zYQf_c0o{GJAA&|7MO1j7WU+r=;+-XgbMY197iTf^e=i}SFC2#SDNAOx(HFLo;Ir1 zw07&-L`Bt7KeOfuic~r*g&Bpcu7K*W?c$x9VeCi zx}qERiTq@K=1uVX9oo>Bt#i}}(^i~5dE0cy-gw@?wV60n+!ngOsNA!qFJ{{ZFEu*p zy68+S?4rvM1HtHx4B0GaleV*vs|t-6IDP?10lmCo-q_Z18RwUN#vA!-qPHzqXRj9h z;OCI@`kqtmjWI6X z1uqa4zxE49q@u;`n)+X!RyX%uf_D_@Jr|$NLQac8hT=1rUi66Q<_*0?=SrWKQ~fgh zCo8|>M%n`u?rEAmFC8OS&z?!Ix2C;}9|1M~7z-nXuco(E5UA0xaTjr8E*GcPL~H9s*K7SCC6wW;V*)bs7o z*K&=jw%zu;7`t^`-R+rW=)qKMVvO`6GU1gRDVLp`>%5Dl@mhGrqEsj8`54i1JuWD^ z{`>xvDpRp_*9L`%V}SvEGmJC(lN zI!pRYxF$Sd>FwSbV39WOQK6KnX>W6OQr8rboA>cqIJ5=%@-mL^N}zEwi>hoc?BHZM zVN*GAh0*+;#=hywW!bsP{Yy*dKs2vcq*hOLHR&I(3>r>>pe2Xcwtg|{ilkEEya5tw->!9pR@lrQu{&23Z{$ofSwb??%76k1a zieq>qlgg^rJuYI{!IsFqTz|P3pk2FY;dMP#N*}Q-eq`mP=Y=y$=CPGQ>@@U!--1j; z^7w`PL4*6S_1#?@$#J5|g?pEkwHLxWERnaM7l-yP3o3-_qkgcLS0uPkFecxU<)Y0+imlEU%viDd(@@WW-of>S@8`2 z?zc+YncYuT4#_{>*WN!Z5}Qs>UC^cG?hABZZu%JdY2h@CS31Ic=y!7EtJCw5ysZt0 z7os54aak#J;Y;!n`ZX!<#6?nzVI*Q3ni^Aybc{ck{NpPvWWI09IfU?sA9@lt?)$up zHm~-B#4s)MN?oIoEMLQ(xc5%#c{=ZYHa%+tTBu#h2d^XaX*kGv@n-E(A;%>Uzs155 z(jz#pL@<=W-G7OFbK7O-?x4bYBd+ETDW|;Fv9qVC_dZA7vd_cj%seP0XMMT#@99W| zAA#FOC#UqL!<5X7wb$S20!AqmV28RTQ4+FDJMfi3Tt!fS1(|Huk)q&;Y}eH zwdb_-?J-Et?ZGlS%s-h|x*$z7ZXcXf)yych-gw}S>kHl0Ag7Gy7x*n~i@)P#^oeNO z`gU;pZIc@@k52KckmBzRH&R+Pke|iq;};B9@m)>@Zh=4EepQJs|dwyiB}5_$1*p z!d2t%a9Uoyk%46ia+R+{-NKmK;vlKgB*6b|3rZZ?;FSroyx zpn9OcuzE#SR6QxLQp(9v|Eks5BO89F$1my1i<_<%YAUm{PPe#5))LAS#W+^&w{mTu zWzmZ!bnm`7g58$3jU1gcW~N;s_#f{xAS=XUH)*t{P3HZMHl4b?PrcUIvkq#Gn4=|6 zuu_(_^K$4dKTDh*&WxYe{b|b&+-C5~G>W+7?KwQ^O{kG#w>& zBPXAg^ZMMXs@yCj)r`RUDeZF$l%D?(_BnsFB?-weY0t@NoF=Mey10$9EuC3LS4+u1 z^k`kZx-2FEw}iwcmZW{|!3tWc(OLNU$fq-7r1epvp|$cSE||YDH3Zl%WCwFlt(jtB z`f2Vg!H~z&#-Y-O;mKfg9WGbxy>_=K!n$Gg+!qQ(4Y?l&k=~<>?Cl+WnJ%(;9lJ&> z#&SYk5j+X3O(!vy+8 zl5Oby?k6Baw{xo4cZ*@Z9{=Zd65_h9`SyRc0JU6;EoW)9e7jB1`4ZD=ex%%KC*$Z< zUynu78JuUZh7;4s>Uibj@YDRwk@sG<=5UqufvrAA!`ax@ervbyoW*~m*W}WENpA|P zOPsQ#dLZJ}n5-|UW0~SG!Ic=AQa?3BzyV4;$K`W}ohgmMra_vMielxO+Afaij9((zMWlVTl?w-Nx zk8k1<+0Mkw1yxBUW~x=*4D1x^p)OC*$7d7HkNC!{o)#6IoOUAUn>e&TQJ3U>yx$08 zA|<2@dZU>>NLYC=T^keNbDJ_(V;q^s*j&0(;Rcx07fr>#*L-7b_Qm9w##rY7VPdmF z$x&~|{S{q?E48y$ei!^K@#q^@NyixHoZtL{q>GC9k~RFCe(Cb`$d5DmiZ6NVuEcdwh4N@dzDvQe6FOd7~kx6WaEbjn1F-cMb8SeQc5I7qEf} z)6p@(!@?w}*j7Kmh{MKJ6FhvzR#;!0zTsv&BgT(W;jq5=z_iCllHeYP`0z}Wvr{<| z_M1=G+*-uT_^p7#KL7Z80isPRu<9x3iE0zpP=Rn~ok90yjR-!w0Vm~C>8y0*u@_cg zmiOh2=C)Y8j+&&qkeW2~{#~}|QFBzrh**c4e}Ge?5_>W@#nFX}p+Q-gNiN#_ZcHka?;yC0vB)yC)ID=ol_9 zJ+&4g@p~8(w_mx!ba!*I7>hA}xzPUzp&hwhckfo!d`Q6f;6F9(!fQQv@y&yw^&PkT zNLd(#$ygdOXD7T9;oWY?`@@qaI2xMfjfE0pELhGT<{jX1filCXT2Et;B-nt^$ARzsKETe~=_S83<(>)xCYUX9FOm$2ktt1luF} z@3Zz#5sY{LK4|g4og*Mi{XEV(p8mpWS}L3wS>aS@1Y?o&4q@EB86y@Cs*5b@&tF?< zHGCzLFR?w6u)0mMYShBP;j26d3KTE(QVw0t`$(t9Y@k-L6Ku|ZE^xcHNyw;+4Co=H z1rN5Rxp?=&ke(9hp1o51e=;LPCF*Sx65>b;qEnrSd3X1Woz2vGu1LC-3f@SGNA5V7 z)V*m6*2?69;V2v0HPPpj#FQ9Ri2>=5L`S&=p2hlcR>Z+TEXGfW0*QR5biinB5J`*@=UI z#Ma>&M0gW zC$+VEyYVvCdOq%pLylSY!Q~G~1_h?j*dHQ>J~R)veiyU|lTyF$L@(zDFANqXT9xi` zL-;FlRLjNbwqv{cgvapB&%uprFE& zPqeFFqG5FtK+k!ORf7X&zHa<43^+~MueC3SYn@O2v5zh%&nf<_);Iv0yT~irk(KsE z=21i^IQ>+UKbKE2Dn>36+xJTOB&)JmYR?m`-7b@yHh!|JyM>zMP!=s2iCA28aBZz< zqC<)IyLAnRe@tJfDTt9Dy)mbcFlVSQozQ)8ru=s;d`9Vl((jq{gNIURmq@A>Pnr@@ z%#u4DkK{~C21TPPz1Mf2LJ%kPvD(Iy;SQZn>*Cu+w>+CG7YUB^3-g76IoHe;tnhm0 z<0a!;aeV%DM6=s0ULg`r3-L}fzvqu~4J8VlwJJzG1-hfZrq=#L#F$ls#oDUXwrQ@dGxvgjZQEUBeZC@*1)B(s35o&jb zT>G^h@--{28cd;_K$h)NW(#d&TFA$5K{LqU`)u`>Qh-{%Tk*SPoOo%}z{p!lj9m*M z@0Sb|>aL*>528HBwz>1OIWOrV&#|1Ew2-4F1k&MP^P-wD?C9fqi-pM7GSVh-@fpiB zZF&4fBJ(wrum| zpOcW5FX4$A((xas6RpOx#>0{xP_36!!^?}G;>cgDZPhL>XRY?K{gzi; zbi{`75N^LRC#E`Y$0uS|7AZ(7o1t>#oE342fcPZ**&wHLl;sajP(?~{i_(wbMwb`S z;s=XrA{|6)Lz|UxV#uQQjh|oJ7qOKrj%;6+-JfxwOP*e6rcJ+erTzJX0Fj&&*@-=o z>;}fpfY4&!*E<(%#a62S+6qy_Hne+@e^50PwUjE2JTA7VZ{EB0Z{F8nP=iWUY?qy_ zn$9d4)2SNOay+C`G7!8jCz_sz+v8F;?Ar7SB8F$g$ee4GaK5k|A z%}i3kI*qA+{)Q(8EV99dL*i6*ue}r2OePdKA4#Q7x4H&G>gDq`cOWl7JSHXel6lcs zP39K~PUAT6Lrz$$#)7NCVk6>oyk~$gNm3;{gKN>PH>9sWfvceD2 zh1sw*AoHVaH&ge$UDEl2N`H*>9knDgP4y_+(SwB5asr*92jcem4JU$w+p!})EkB9b z^eFA2h<|>HVjnbQOfm#?n%z1q#V__H)WQFXGgc=8R%{F*Vj3=4@Q9Vjioa2k@;=R#*2C_FIe5&8BN4SBFn;k8|Vg z7o)w?T)tZnuvNxgNNrfyy!;}rkibCT553(QAWyGz5`jyn`7#VQZ@@r@6z~}XUtc@^ zEVclO;ih+<^7YnxidGn&Nxv$?4 zY!f8;owO~~jBs*aS3V$0i3uV;Vq`uZoy+`Be0Md8RsI#rTRP$?EM7W0QbwGy4ztKZ zpd-yl+qU9b2no=nFZ!8MO}XzD&0yF)`98ul9{El*l0Aa*%kZEjWIe~6o@}^(W+$IX z%?s{u@~%vl9dF2P^lkP<>VVNdjySHGIY&)GTCkp6_N;1>WGT>b6Mi@0dUAZ4{9?nY zV@X}qDx+d!Xol~)-PtCw|0H^>dZt>ktP7dtk+Ip%v>P@w6HCa^ zN>>=OW$^Fq|FWaxP33*m3iG+oar42JNF-)!85E}_Ji3KD;)w1EEV&U6H=d^7noJbe z#8*$9{|l8SMGH@W|Di}SrPuT&`?_sJ{#xU~2qtPg_tWA5o{*1(!vt4a>3Zu6HA%m~wrl7{d zTNjoN(~drd1~|u9@e+Og+hn&H9_=;P4}TX9x18?9Ub&UD954eS6AwwWykN6^@RM47 zE@{7fko(jM=XsareNVXv%)+uQvGHi<>0yGa>rCUe@xt$g=tI|w0}m0KW-;g66H%|_Jq=_YUbyRr8rAtwdpH9rKU!k zmJn7vlT9%av5T)|e_p$7$Tf8yH^mXx#&hf+GT)wl5u)W*TFa?iy~1=G)@E?P|LWDl zf0?SoFYV|=6G>v4njh!bA*tTanKdD+dh#7rQW83Y&AocW#xfStMSv}&@+;GAwUB_G zG=Jv2S$DR>9VtplBw?;Wx-Q`}Yw@Csk@Ebxs(Tk*t39eT-xoW2&!!>krL@V5j-OofZ8U^tue#$1Y=6Fgw(8_WZ$c3xu^O3Lw7B0?m3(En z<8nN4INW21DZQIUY-S+o3A3$x=#S7tvj2_u8lR)ub~z%vOmAoh_vqSx3KL; z+*mUhJEYdSp0KHakt&_$8yfB9Bk8wBy}RbjqiSn-)yF_FO#|$-1;cr7PP_HE)$+Y@ zbVti*T77B_5|18((#;dAWHQj8xF^gd7ug~^)aysz)7F1OSqBroD)q%H@KD-cNaQW) z&trybXDiVAd8)mCRd4g5kBpZ}-Ms5>ILu@`2Bst^3Feu1CfsoP!^NmP=5u*Zf|-VS zZ5FVpBggA??`@579CrXkwtPyBaw91P@!SzgZ2hX_|2q56E%ae)`;?)HM9{ttynR~1 zS>!hNIUnX4(=;NYqg%eSxm|u0Y(92&FcZCPtldYH;aA+T20m-Aq{HP_jeVU(Ex2{Q z>u9)j_h@RFsGP1dj$}C)CGCt)42+v~DPhe>e0Zd(7y3sXT)E_v_5RJt=8>AhdX0iX zdyV-0G<3CdY}uf{Y=T8ekHo{cG%)&?bQ-&gnC}i)tc)$Zw)s3aR!JoTXstXTbb*a` z1-@0I<9$+hsCTT0<|9bk_s$#kW#g$$ z&AHnL+$P%uovh2A#E#ITCY~V<8nNSR&NNPmucbXOOnF?J`h(~b@m6&U&QVx+`Wv@YjQ*Ho2;ha7O#&thtv^Kwe-(Mrjy||qq~cfh8|MZ!K3*sE%d)kE@qK@ z`|et|zER%ciOzyz-=KohKFBC)S3U7pDz_x`FCO_(_ox_@5lC~nAT^|*HeoY|x%F9R z_?+vG5FaUzr%oPq`&+!58I{wReqsqcI(2JQ*(EI`p67=Xmbf3E!9G4KiGr39j;-_Z zvVTvW2X|Uoz5nkp%S1K%F*L|U|1$DZSHn>>BeQMt&_ zluz#>wrjf-fgC$8Pvg)sm* zh(8F}0zM$c$mBM_VcLBKXlT%TfUR6tw0MsHb3xSdWo8aGx3H*h=2-yhTap-RVV42h zu=wQ8O+FWTd$IjkgFo__?PQ|xtH2yDdGqxP1;Ye0v`s!hP}0G(D{O`JoF1KX2)m>S zaY$?}`HR*&8KP{faOR0p?HDq*($b`q>X<~}52RMqxQGGu+Gd%uXB2G!zPvw3Y}RqH z58`pBK2B9S8OpKz0mj@c6(#eCwe@f|kD)x#1WPMBR@f)v{m&r;3q5^)_zb$@4Jpca zaI&kNG!cip0P$^a{>?Yt}3po=A4%I zyT^Kso1?+g4j2NEm!X8^=O!pMo&{C|HK2*nC#-Avuli=R6FB$s-@Cd{LYgnF0|!p> zU&JJm%$O!|7!1o66G~?a$(|~qbTu0_zlO5~icgJssAFUf_GE_U`I;ZbwNnkk2-yVmg4ZJXiCRXvz0;|Zmv)RUw+APt2h-3AZ>5iE zy%47<4}}`>sN+74;W{y)j4fm`-I9v20KPEHLbr6oJYkb>g$eZ^piVQe#^4v<0Xs|pWE;D8Kb$vr%dbiwCN z_q8ZqruR>v+Ygvl_=FE&kjpf0sZL!mP{tdZrB6F7DE7GZwE*7LJ)1$i+TuKIsHITb z_6S;TcwMcCz%uRMNVM_QDI?FoY;-`z1IUbp5E>_k+mNH8IZ~@@nwBfMD+wB`Z@)++ zdZ{_?0?@oC{RKG)Ss#^(5c#1UUrY3UCAY9rV>)Dvc7ceh`0>i*F>HsmNHuYy&Z}@9 zn2{ZI2@z#lVrPdJgxxeBUq2c1^f9RFPWhq2$=2TnN3`<^9A7u%V$-Y|vBW9iU$-lM zK?sn1s7`6qm8=RYocajJj8R_CX_jU$2Mf;O8d^PLDR>n2NFe|Fo7K}RqjogBdg0~B z%>f!IY^*!k-??}hBcX~yPm#irLLUm)Vi6ibFNIlXwCU1sRI4`LkvA4nje$@>NIW^P zk!;rRBz^i#*w?K;97dV$N8s?y_&U7_tRJ!*GztQ9-$O!7EvziR!HyEk1g%=iwK`dr z3C9bBV#7tr!zqQ>oA_?*aMbflRDO&OOybs|9O#bNC#y6Su>4IlL8dmWppTVbTKejh z2`eR!PMDS}_a6L~mHLBayF55t1swfJAi#8hikZRw4Ij0P5c#XB=lCQ!I1~Ps)QaqJ zifoFL+*%>B$J0m#hSCzm0xJWp4}}9a_zPo!}-V?)fqNcl8ae6v=Bf3ss?xqdzTl-(cHRVgWVfNqtO7 zZYT;1E) zOxk@}a1v>R$WKM4G_~w8>Bq|ka5yf`J)s6lV8mrN;8$-vG1zL6Oki>?#JrfSg;oCV z>D|MR*PK7-VaTgj^j;^hvB}sr^xMO5ybQmnIp^H&#b(Jg(Ag8E8{;9jeWaJ$|e zrks2rsom$l_$@LrZ&N1ZRr3VpGJy>}ifGAej2C)Ugyj~GRk^vT#lEoW`670;><@&= za5bJ0B(9njX-=53!r#puw+vTQuGyt|*?)VpI$B z@tJ}8j8lHucGNc9hSQ}9!2ExXCK{pO#C>l(5nSuLLdHR&VCM^Vb##*1+x##_HKjHns*5j~)? zF?l#Mt?_K4{Tl+|1dlTaVYpWBUqQLSv3Ua-rXpOCc*Mhx;d&=#gwOYfCV#<+kLFuJD+BMVj^CoPc{JQhMYJmB z$#0t2V1yroK7Qez@H7h+h~p@oVFel|1{0b4t$ym+{KQ{xY%$d{|H-+@!E)tgbeo=> z60)ro*IhP5ARg*8%kN+6u7w3&wygwU{!rvtCAsR{Gri+>)dYqKQpUKrzWb0UOJs%3 zwrmqmxa6HOp58E|NxGs5xYr$-f&q z=f@`TpcT9y)S?;%;Ptx)wvKKx-(jC_8A9itP2Rmd5oWYENn>GWNd~VngnHVP4by6w zA54wb+DlJPoy&>R%kz=`xFI-xZ)Vg)%{^7si$gO(+MGaRUDWmCZ4TRoW|3haxQyhh zA-SU)s~qT2$#6#VhF8!_#C`DJhB$awXR-NM4I zowks$>)05R-$F+ElcuKj-(=aRA_k3G#E%b#5S%+C0X=AD`m)~jw7gK4YG zBBS8=HqL{9Puw80@|?eA#G3@k{ZgfP&v_ivgUI8??_h_aX*j!rtg_2FaWQw8}r|{O9RJD=o6oceH8Ph7(w<1SItsafyS>{ z$bvfF2Yr*hdMXz7iiZ_z(BvBV?DXw*pNh`sr`C1>_M>XJlf?z%A2!NGZhoD-Mx7l# z)J-g&?`7k^j|&~GfW(USH%aMKBs_tihW{cxyX|U^dJWKP$M}N+3$x644(ZQ;nVwmr zh$_iQDl>9DuH=-IRhlwxx$~l#Ox;%Zx$ZpzS1w>NYJBoA4uycn!YmnKB!cBy9yb}bWK)y9&inVew!TcW1+~OK9FMmWNASY9#%t#|EBZ0yZ4d2 zFdyPur%LwANGySH%2vjN?`HBGvcX!q&{wZ9KH%PeB5W?-9OVI?E|Ak*{x8>zKOTGYK&VRLlelWy!X%Ky78@QER8{?2L?$08|4%3fI2DL5gIZy1oS18We-|`1< zR~&tiOmKI%;O_3exWnSkF79q2!9Bp@?gU%h-JJx7h2X&`VWeD~hnKQJ?Iru)~` zRb4%IcG$G%4hq~e$&EO)Gxq2P%0%Qg{^b#6gX`#OY*<6@&@1^)Xy5S-uSivE{Em}_ z)ZSQDItx|sw#%<7`VUm(_@l#^Ke`(Ihg)mgYR-sr9nGQwEF|h;gh=G+XQV>(Mo$6b zw@R$;($-$(YvF`=wq&R@I$S;6YWnmx5*9=zcI~_RWs4pxb;I8K8JB@54tp05v&#nO zf^RR?m;BFx$1Z4EXXbGaH$noc(_UOrfz^1LW#7XdhmXRW^X73xVuTtxkb~m3RA)nB zE=V=mU=sNA=2Owi$|$|Ka(a__5>x!akX-xtc5y1yUKQg1LJBTMA|MWQV?FbDjT_P9 zAx~?yw6auE(UzIa4&6{HQ>ZmmK~2!#`2_Py962jqqJHKkolMSP7i3f?IiE)=1Py`{ z=yTv|=>7xiQVI`S>;Jpa0WY6+fL7$DFAyU|T4zdbWyG3RM5`V%s^k(;mX^ssIHamu zRfwF!TtOh_?(B*UQMPHBWOR=9=M0ItKEP%+dS#;Pa@nnt@g`(O5xx*8jBiu5@X5q*3VuBMgL0}NZ=Mh)@A z?%p=M!;0TlqEiDl&g^5VfcaL|!OMJeM~CILmWEYB>;(la>-~0f6q*C)Z&hbr=GyDc zo00zct=_4u9l-r+^tsYwe|d4x8;4s+3}YD@q<(CS+_8C2fsF~Yt>&=~ZR}}@gf2jI zxHcW%)9b*un#ItkXjI1_+14{S359+Q6mYpBYS4UGx|aR#kh*vq9B&I4)HD>mGFn=Z zH^AXS-$w`sLZshgcO&Tr7JaKRepDj&N6IBt%i*S14!i1G^34{e!Q{ro)?tZCYo*q1 zX6f-cbKJYQ-drX==ln0Ch_At(n-%v`MOF*wmC!m_ATXVO00Tkx@^N?ptAJjW(jd=~ z{_PWe9$hvff*`2v0VBV|NK%cQDX28xvCt*@-|zx@TAc=$bmX$d2?Mhu|MTi-Aq4%q zSHI~8?ElQvHqnK~te$ep?4{$SJjs!U;&Gzi8jsX8g#*d`d?{_ANGiAsPdZ&D^vQy} zN{p#WE3RmzjvW;B(F#R)Z^3DT+MV}XB8QReC?xXGp}w@PPN6JHiyK4A={FKBEtmiE z`zn1#myHus-7S8?_UV4UP}vD#cz>huK{g$DzE!1xSb4as^;s)@%;k~X-;yUcQ&?{; z3Ai0>)^2HBmDnt$==m$C5*kZGR;9xmj^k#?Zg!w{Gf3A254D)g(!xb+alQBRsLtk2 zXff<}eoVE>tLOT>0z#YYnoU8yTZDe=w{FR^56ixgKN_L(9yz@iY}xS zdp*bBNKf?JML6Y#-TGCE^Fa&?GPqo4LP{jrI6SDCqn>&m6rwPHHE}TQd=SEn@0#AgHinPGh2uWIAw((WO@;|v zbEz|a{~enl1irNh5q7(j2uL}!P0G6^TStj0{Tp?9$sg%SA%rBUh%{1Z#yNDP)~#w9 z2Bm=|8>4H8Z#S#QNiq0)vPi6UMcZtHh>s@YlMc$nAD)zmPfM4r-#&kWWnSiT#4zdV zU=%dY&|5BQK~w%gu7i5t+GZ5QW%L9hZhZZ{5tc4a-qy29eiw-;y#KPT)5Wa)7_=D7 zuO5QiiVHtzY51b$Xt_o*nJGUl_={>dB2&L!3MEONFF9c(E43oCB@(lef7e?Sz8>|T zoK-|=>s~|r_$ z2hsr+q0#OwZ%G&fTPGYApv1JD-n*edK11388q{gq#xynH1d^xKR;ESuK*>4L_g@1J zPx~LF2@|ImP-fm|o9^94T0JNayeBE3p0P}%&-Ty!gska^nv;_|_XC1M$~bI~y$6c=no_EMN>BH)GBe)5_6$lyK48__PT;n;~ zSjksgqbOQ0cnr16YFMsX;+YyNW4^@bvE%Q}Hf+_gqOu^+`H)v42H|2PkAz!Gr0y8z zW=fXpiAEAAFZ>zi-g`<5CDfl^;9mNM9U#P_>Yz{7q6yz#7k4=cOMs>7o8428;W_ z%yAg-5qm)aQYWqKld&gp9i_xdT-?J=@Sc?|A9Suu&$jDDe^yp2C(4}498mkzZ5%Fz zgIGpUp~6hl>4|#+;xjhJw=bfDwi2FTSiF-QsUC_^(951p$j05w9KV|WY(XjjX`&3} zGDIAsKaQji zE6z$LXHj6NZj|H#BM;a}Q#e4BXrvfJ5pi&8jFbtS?={e~EMVpe@*o{&ZFYUSSiyA1 zQlMpUwDMugb-k?FIh^yID%&05nGUXlQrvo!tMbRMQ%mjzml+pyGs zduhfsWs=i5_j}a$tkW>1=2qN#O~QE6)Jg+>0c zQrht6=`Jtj3ICxs`6XPLCDey5I8M6itMSO}cfZRAJUcZ^gH|q`#tAjA!(emO8vW&E zdd_Umh?WN8)si3eR)LY0q)?f#%sk0{i&j~@v#j2u4k89W5IVAeV5{Y?ABcwQ15qV3 z^1~rjNCw+AWP_ivXQ9gM<_n+wX=8J$nH>XfksMbdVNRuZOGDj1=h+|Q-#mGb9PC?| z$^OJoe?)`TrIc5U+4Upc2eA94Vx+lQi#6$ajdQ(UP>@qJ%Qg`DTa>k0tjoi`7(&dA zq529uv2#c0tmxVFOzFOBtV$wPYDw5tAif0$Uv?scg5_C5vzVhB|AOB%Mhn+vU!0mq zuzf7ysiewL3TpBKs2Tt%aV!~`NaYB4t-`2Aieb0mP%6)*5NM$)BUNWs2Ac&Vy)H|5 zRnv{UPBGZI+F5eZKHUZ`S2m zx!z^GG~$Shb+x#u7dZ#j7z(v)1)@PRm<6Ck{8G4QyzxlGH3W=@YPr<#+RVji z%_@cMl*w?zDq2Pbjl-rW)X;_V3(RR)%@Z zD|xhdA|a(ii;wlj5rI&o(rqPwR%WEGr%yFYly5vZiuKO}NmtYe zIYBH94qB|fYX0gO7$M9L5K4h6P&y;61F;rn-O9{%RTE&eQYFb*x&XR_DhWI@6^ZBTfblOw#ng@ z98vTzF(^;mVk#s?jKJFX%_F@xA5cb-N<0STTfUJ*OSZClCwyxIsFIcKd)2mm2!n4& zDl4m?I*52f_nzxePIES?sw0hH^2vb0lCCZV@!z%M)3pKUsr1hG~MJCSN@`p!ISU7 zR;%4u3$sjp9jp3?C#vwZ(6a;#eh;YI`(sUvnW6}1oiarxPkh+2RH!__f*OOLzw*aq z9*xyn=CGXZ3nVTsReDSfg=oodmR&iu2%7nBGMjMyA9x^Bw#26sr&EfANR7BXD*2>Y zAS^|6=K0V8VSiB@I7*x!>d%{ac!*HaNa7gn0&npf)0-xr^JSCykLO!o3ur(t)I3^w ziglxrJmOngTA?8VvrO>Irf}1yka;wvC@};lT-D*}C`9W>D~+CE4ihH~jC;vySJ^9| z^W~-k%=D|>W80?Yc#OMRgin4n4bi4S*)_OE%c^-J&?dmg#II6d1UwQ3Oh9Ez)+mGs zk0}!@03y69sx>dx_vta5m28w}c@H9YLqj!z1)R?D^V0Gp*Fw)?IP)&}#Tj0L@r)C z())~eslJUe?Dp)>n;F4wE9Xu6?5wZ*L8u%2c9LO{*#&=IUl-Lg7{|E|lIOfc4n_eu zmJ4#lM$yw1&aSMA#q#0A(C93qhg!aqG|rQ?RPjkjpEiCB|Hi?*oymr0PmAH$sldVc4 z2&Hsc346EHTRHN&AQ$>s=EIO@{_0_Aell4yng}H4P>iRTC9F^`)7bP)(}0m~7reKg z0_kIbssB|As^R7E&B6ndJ|V!zhjJ)|H7i?R*@13is&Z$S$= z5if?Y*HX!x_A~DL0ds1Vuw>m^P#h4O6O#!tTF!Nh@y&dY9{{$v&Ry+#r(kSt(C0#5T}7_Z^})|C-sS>Q3XOuKqeZLTyO8}E=LF3}&MY75sdQtL%A@rcebP${ zt6qF(+<=je9}58QSGn`!xe01yJ84zTK>C?Bh4kWsCNosO(yOZ1nx6Jvd+KDn(dznF zmOgU3ZHcSpN~+_jKm4fzP@7_Ys>j5o?1>Bsoc?diC%DVQto1wt?8W2q1RsOI7Xuu{ zi3i}KzLCz63}F38%W?)J>Gh5v_{zFpk%kF)@N}59_6RSTqAr5;soJSRrY&?@oi42%VM#uC)6=JF_aL`@nSyNFoC_2erunh+~pq5rhX*0GA z^sOorZ5n)ikiNT|tkI<3*tB%7qguY0CFp{b!RaP%rY>-bj1g@&@C8Nh_N01T+F~61 zMp<-W*lXr;F0X$kEtHJ-+(|L0Wk?^b#r;_+B66BzoWMp$f(oRADo@*byxc8SqJ4HG zYsuQ}1W<=Zh3PbQv$2~@TW7qwEo&s7^U^pG?mxzZtK%*!Pi?2H6t7dgE$~>JL}H$b zWP8&1l2&yyDjjF4YMp@N5F*a<2e z;Kg_;?uP3U2f<#t-qs~NJ^yDV;jn6wQZl_~_!Uy>#`*P& z&7gOVr-8#<>77auL{~Wu9%L*F##XK`v~o%d5l!?4^3))y?;PlQ08K-Ac6w!H8sA>P9Q~3ZN=GsERD2T zeu_lgABA?BjM_Qvl^mh5^h6!J@38x18{8@y(45L-zY|9A+)jI3!x)- zk}c9U%eTiHe$-)u$6V#)&G&=W&)Tv$V|pijMo1Z~mZ!Q>xmv{#=3@_?3}}f|`cm?; z9|O5s)2`k`R*o*At$}A4fvXl#9ZpR(EV;Eh(ihT2H*sx!yYs_k@Jt>QSh@kncXK=GBpGj?yx*els{-sSr`# zZbk$)GMIol&~xZ?ptZjTtWdDl^}(;droewTw^Ey$wjYvs0%6R3>{ zs*Gn@EBfDN2|9`@?d9<%;PA+rF3gM-btuj-S<~%cMCV|#8F3~ZKS3XS*Ibx_xa7%j zHp4ouM4Qf-qr;J~&QX=!*rY$@wlZl8e6MTdmQbryWsH^~;Bw1~ho_4vvZxY1t5a(@ ztfIs7Gq}#gOc#8fVxauQjx<7#Rr48pm5bE-sq+@D0Yq$k1G&hsT9A*w#k*Ec@lThn zz21gQ+Omm6>^ej3?=Yi`+8bF}e=yX@ex~IUEOUtedzk9YB1FQF*eaNrz!#wEL1JKt0Iqcrv7Bcnx|@Q36zE| zE0~XNu(IWve*z|q?b}pjsfZDA7zfL^i4)Ac_PKXe`QKmCkmd6fD@bl7je2*wlnv4B4y+ibjPzX zO4{^A5Kxd;NVuXmVkB4{YUCtYr8)yA68FdfHT;P;#U&nn)x9)gWTg&$~fyk z%o`F0{;ie)(zE)ID)p)5;814xAeLRx<*TU$?;Q0tsc}TV#{Dt9C9Eq!t=y;oxJz!obE};Zk{3WiJ5W8;bWRR;`n;e`L zHdG)*pkr#qKX;{L5S4>!rQdASV+DaNvJbeDjo1n(|o0+$m$LWef}|hnw{s_Qktx~1|KG%4&ZACK zjiZ?;I(mN)*_Jok&^&iF41sURxeX<37X>b~!7z6LCl%3~eq_2jmJW$6-%_$mRwM;h1mzUK-^=AbR3f3&;&^j04 z^hejK03fKVC_EtzIk%1q@8v^{o)Xz(laUp;r2(L6yYJ7|MN?yUL!$5nv_Q&_qz@>P zT8u~sl`7uA zfp={3w;t9(8GHS{Zyc0_wFlFhp37eoi;bpafi#YIzUjro@dzYMFJ?ZemL>reKOf*| zQV7?=Hs$u313SPb-{PMJHSqOk5r8}54BF@l#wk4c{)y`9h7InahJDM8tba~)lawMh z1#9UAze!VO2R8BFgEB1%8OPJ?fQFlCnaMrkwJ~VMFD*YY1-H`5u>0S%bbIdFoWYg> z{41noTNLw_wvm+TZM4A$%r3j_TcFw7mbUsDcl|L?wmg2u>mOPi3+l~i7$yyc?FEu= zrlrAV5rM?tdqdh32AXtuL@hqM|C(f&Jc%k7o{pCo>T{i=4OP~G5zcFD79$_ zmhjt(@njW#n=43UmY7{ek5Y9F?eX@fch&-G#zh*?^+DCOyjG<8!rNFneJ2_P$p%YN zN+-ueZ!{HBWd&|SAAi6~5eVX_APOr%G2!==s;pw#OQh{>8Nug%Op-0~U7qrv2>fUE zCVTCYo7QfaNZv|-h(5(ya#OdGzxgE(cI<9c9B%Lxn2lXpJ=%X9P5Zv(6F%SSBDeI*$xDizGmey9xjE2vj8MWaQ@Ip>!-!ldnGJGg6 zA&FgeL?4;5hH!kXE{<(e8!s4V`&OHgVLMYOhVOMWD^pt`^zi3b;>$BKEuOZSke+|T zLI%UEQI}Bza-M|>Sj9IVrw(|kgAtsbHdtIDs<&z*y3}F29I-fMnCdPHKM7(p&LN*q zL!%Y;CPt`!AaYW@?J@grV3!l2o5{@azV`b(?=wfEZ?@WCS9cnf{nfQ@fxhd&cdSm8 zo7u5$w3B4bW=b0Saa+FbHRH`V=41^V{p)bg5p5*P@`ki!QFC1KTT|n*B{1poKwY2r zOjSjW8k4PHE*gi;M3y{}l7r$hEbI$AjT3gnPn}6&yes{dwifH%ArZp{d&z2>ULMeK z^|7u67c^j*O?C<({l zJVwSgt4^Z7?>Bf!RObO2*MqO-owy3uqfXrvzLL5OtDT{J%p_xu9-&e4QAnqtiS(sc zo8^MemxJiK#pg~A-^-?uO%Hx$O;^UHWE+(I4_zK-w^Tn;D-Ss=+i|4WE0nY%LSqpi zu?QK0?BgYoUgh1_JH^BE-EBm>?s_fG%ez_1WHdEFymI||2$5yzbR3|b>sAAK!-;zp zYh1QMuX{R(T8f51Jcn9rgr}mD6CV+mi~Mp9GL4~F$Iiz^{4}Khq&1rlQ?7*0osu>~ z!zg9M#iB%V{CKi+nir6Qry?ax=l35l{v9M$Z#v!THnU3&D>1{_8fO8gLy1_S2Kdf3 zr6@ULbd%bBzez;~-1$f@qn$=%HCozeZIE`b{c$m)uU;=cBBz-yH(vb8t6*YE^pt+D zMQg`RB$AEsZH%STnz^1zjysdmXXIEJLg`yC|Dtqr1)7Kzr*%Iga1dh~sA zTJ5AmfRN12oXo3z?_@Wr>i#9-^Gna*_j>E}KKk$^9C`DOBvpMvgaJU*_J_)vBDf@i zd%+=O`MYujxu!gBJOGr}1uoyYdDJp93SD3KcpLq7|LY*@KGH2s`6GApn*9SI$VhnC zH$_G9SbBaHf%um$6TS=;&@zq4;UsN(K&6GPniAdhgukoXcz$a+zB*t#VjE#g`>&U0 z17hxg3BRI954n}Q{q_^mUiX#^GXVs3Bu}!I8&Ut?=B0m{W!L!Zc2N0lXr?>qd86dg zB~WHHBdO)p{NshKLTy+7LUxCDB&tf@0lihzfbjdF*aCZEcDAHzw798wbxq9%7=~`Iu!3uD0rZ2>?fMkstmWez#ZEYe2u!tfl;__$B>=GHZ zjI+zCI?+(lG)zXL-Y27GDXofn?4^4#}rhlR7Dr3ovGt{#bSn_nZ zE#udfCYM0}Cxt|3|HA8`%~^!4q5HN<4!(%dbwA71XzXJ4pRxnLajTScCerLhHXP0H zf{i}k1ZJgN*Rm@873Ew#YJl8?BM>@fC~Nm zQWH5W5B>I5SH5CF`r~rw7EK7~@RGgIBvt{?bhBsa1Z|SW% z$dF#1`4(64(voKYeX6#Rjo@#EG9lDyDZ&F?4PD`;&bT3X#!I469;yO$Zj;Tsd0lt; z)#2Z7^j{C0ITw5q-lOfDO+z`TZ2Kr&aXoNZ9*JR>*-8&hWr>-3Oqn8!>*VotHUk+K zEwg?rO*-0_o?fsZ>z+5l}&``bP--;xf-kn&u!By|$lJ7L>T= zT1XTD1=2haEC{L#Mm|tm2Jv>^k`&#C4#$q^ajF{elr0kR8VQM}Ql+VhpchCV?23TA zR>S-U5VpcPd}>K%OM5*8e4+jb0s;qN2N2^!2+X=nhlPPR$z*=^UwS_GXWb}}XAT1F zJ$rSd$&CIL1dal}1Q8jA!dWHJd2FBm z02ng?ZY|^z5)ut?ibcNP5Z!~|Yz~Ua@E`d@{nRMDb_KKJ6dSxY*(OGPhqF&)=6*-4 z?kj%gTcy7_;8xC*#x(zMrPGeqM?p@X%|_U@R;_x0I0^&iyJA4fk{Qa$6OFh;8b@@O zk15gegK*DU=eFkGw~sTy?3Fvznq0Sr_t|7b3GwsR4({SdXqj%S3qZW|3rb^j4Yk7Q zG(a1dIAq9NKX z(4|SQc66W- z7=;*VdfXcphb*mq-Q~Te?Y1I1W=7|f}j{XwoMP5ooYD0!`q3N|K zU&%>z#wRQrfO9dqjQBi*{$B3W^4s2`@p__(Y3Y#j%W3jZh6qnf88pFy{s% z^$cDQdv_eRMP7eK?TNfTCuz=AxwG7eV@kPLXYN9O{|P7LQ>--xXwhBtddM9G5gsLy z`NK(iJ&g7xUnA_I4Gs~IIu0`(p_?R*oO<>KYDu6W>>O=FIjQ5E@`eSgrx^dP%8QN)WEpD zVO-u(*_xo0ET)P|rF{hn*3c~2O5NKJHN2~AXXM<7=Yz217Mm{Fzh$$rU14!0yX&{f zY`F!M!S5^J`FQs@-@568@bm=bjOm@+wzLW1aIV*L&+ZfrBM4?QEEG}j#fbWyNpEdU z4SAy>S9J{=kE>~K7}-$y(86V4kIsbd&4FP)d=G~Yi#kCy&{&-xVnlq6 zwXj|m8XgC#;>VlBz^jzr?5Wu~9I^Ex%tuz+;pn21cp|qRTkZM9Fk&oOu|mvS#b4{K z5B4S{bQW$cDJ~{^9~ZyzU^OD?1uL^GcGMG723OyIwm1S;H?-i@SZ8m@3Bt|&SO~Ru zGX)o8bS)v>;W0(=)5T15fQqDfaSe>>Ha{}L+yyxn5@*Vw2p(WW<>YLc%Hrl;c&d8z z+ty`fHuTam`Up#EW;v*mM)3K@L8zgO!L{ zo?-mMsVAV5R_t>!91L@TcbdpV#~OB3!H9>iXj^f77wMvwKH9*(E*dxogTWUb1CoW* z=E>T)bjM``ycz(8iD`ao>_~z;2d9e>L-iLhlY0mE&omoGzYJZz0=bCnlg_#*En-()Te?;}7cY`u<<4WfDIDOoD- zi%Uh7Vc^|`k9P*Ca9i5eFFk^_7;ZD$y68|_eB>iIWI95%!dXwjX=?ZsLnmASyJ-z?{zgj_Jzz#@MYT@H(2_GVYC1Ee zwGkZ+;c|8gJ|&XCp5kmWomaTaP~pm?Jc=Sc4KO9CHcDQ0e%%^|m-f8}r!UzdhlD1n z@eZ6dP_tP+wi7BYef3ArO)PNTk9wsMpQBrl4*&N+SgBn}QygjS6db8LaAjHnx%)z& z*{;lr=lCJHyh!+V2~|uu@Ay|-iH9GXxFpvQ!~02J7F6Y)41QiD$1f$s#^lW=B{fFK zrlGtY&j*(XY`d8H!v;ERX09cTXLqPydYqnf*Dim3z>W7-HTaP>xeq>#+CEDsa_BGI zJBlkFWJEiuv=N+^rCObREt4?ByaqK8F3G$k?Qdk8eNCP`Oi?Mv)wE4U|1Q0m7Z2nX zGSCiuLl!0CD=FP9d;KtiNc+IK9x&oir$RzKI&2Djr{pcBn+BHyN|^BlQtO8^xKNsD zbJ4-md>Py1fQUdiXuUN-q#%U8;adXxj#Hq1i^4c&qL##|OW^t?H2xUK* zUH!@!(D3=;SxJ85U<;pVrL?PB_TPjg7X#0m$x+zpOK7H?D6o;kju^?vQrFSuTkm@J zwcUxkZa6P2!(N%A}tBSyd?9W1 zr)HkNf6jKV5S?*z2Q?4CzFjZ*;|&+7nFvHhj<6OMd>*Sk1eT=~<>EK{kZiP#Rg$=M zopv%_wswNI{-?A_Hm9qfuHLY3jy-h z+RodJ$YOr2N<}rUS+VaOBmztGmA)=iGII_8Azh5f9=x-x-w21e zvxtNAgx`dEU~$BE!aytZqWHB=vfuF0#Gnw+uZ2-d-{gXZttJ*{6);N*9m?yuzf@&^nXMMT}xL~%U_6`OZw1s5)*lH37EX+8Zy2ybj5Sc0p443o6ZgX{$HP9sB z?6&kdzn797PS|%z=Z+1O^K@A}#J<{9{Yzb_KJ~omN?f6t8+RS&c_MBz9F>$a?AnfC z=KHgXT3yD!TJsMyG*V#np6~({rfJ;uha`BB6g{I9ZgBEwn6j2^A!jyM@e8tfz>D$^ zkF#0B_UqD6PRE_l_TO0XoLv+`9Ohw0inAY%)o0Jf!;rgH2R5I1C@h;p(dzK>&g+jC zvMl{_J9|UQQa#FQ&C8lKCjB?Wx*B>LQLp@Us8QReLrKTY5iufu!-yGp?k;s6y^{6yf#!o@`hBv6c{*BK1-@~LZeT~Agdp`O-tt7pW32~Z- zxjVotiLJH_5~!5g24GKiDyg3yZjE=4tUHyY z$?DDbvL8L_a|7Xs3cSLVIaZW{3IBKi5WyAB6^-$Y_tFOJfKtE{h*H~W~6;GZpe z9)V!lo`2F*6~0ao2RVnZ8%CM0!-=rd-k}~f?1rg0oM(8YeUJS5@{% z3mEk>e7v(+aGhb(!y~B8Tx6l|IckOzN}d^@EdmWL%*lk*%Zdw^XRWzyr66DJ_a(va zz8>=N4i0+)hxxAHgnxYeKp|(+9`N@vU?;RYgrz}NbCqVl!=gnPwZ{!kSbd!6OP*f> zsNb&eQx%ri*ckKOXS!TCWAjitYA;I=GtBo&2 z^CCN1>av6*dNpK+mb(E`VXGhXXVKsqv3l_n4A0lwKLDmHz$N%Hfuy^U%KPM?KR6Dc zb7Q*ZP*~kmh#4)%U~&`6s#lJ$Ku&5aBr6WcdlFgd>{7C(K{s&#dYiP+oHO~y+ZOQzlj2hQKYOdceSCVPKXqD z^yWn6Bx%Cwp~B4lQK^b-VM4Gxdx;TRZGOSlVkjMJutiF>M?=GbbVm=>&G&m66;>w4 zP|~|wSMl{IpJ^)T9vk$M`3TEt3O1>LYx%T{3>q*4eK%NN^_G`t4~3_pSdKp?5-P)< zJ1iyvL28y(OvtRaisx%S)PtD{PbCrjST&_vg-09jMdXrt?C&D#L?7UI_v_cA;F4Wd zP7p@ltHEl1-|c=s5lYF(PJfrFX!ZF|8Sh zIPqhR-L2@oS7kdDWtlwfKHd2!k<%Va+1qmW9ofjvh*Z^HB^MiwSDT7BzqevRybObx zWLTK{WH=az4DsMYHW+lHiq}HO?pwfe8Ffp&W>60j(=2KlfJ*vxL3AWoP}T?VWznCy^Xy z5Zy-T;c7(G=({q4NfL$htOWa;b-gBg&99&y%1!NahhGF9q=I}Xv+=13n^d7xUnI}E zNrW!4XmlsB&d0^OjN7dD#jxoJofLQ-Xf*N>+sSWz1QtLth7oLk16igt>_ZLfb>wXn zxNzhoIjluPwK_4nLD2={-v{z#woH(Jk9h4|W?TPJ3d;D<@tBF{EwJ11V=LTu0I1{t zXlkK{C5b$M_wMVdJI<8_(he8tlR>nYVq{`)6MA+&*I;%$%$u#fWpzr}cV4{ca|eEv z9^RxLnlf9`h1lOBF+2lG8@#nV+O}`b+5LqcL(5s*M>BB0q>}E;&Ki8~_hbBOc4{h| ze*$X1)>V*kI+SUR3e?qL`?^oAm5L){q4!PisQJPp2M6}N&o;=M64@=d1b2klK54$k z_K>cyFndTtFijNxW%AAy>2hI^$dg%|Vy_=#U>~_9H@xRxUVQyPq7>b$U%`K=iE{T2 z_U^<*HFV@xZ)r%SRgrD2Hg|L?JG=Jvl*o@5dHfP3g~NAFc2#K%7Dw67*MGqWBn|MQfBoo1sddvFr1YG(Tq~ASGoEGg0cSkx8BDsfoQfayUo5^z>bn+BJC1PV@5X z9!`UsAU=GbJw-hLfJikX{a|a~KAs)CKHq_};w(`IZ&HUYOZRU_5O@FS-E4o(ywLR* zSGSj5X{s0i9oqQw@~7jTVJVo5AJ>-}y30El^~?0TCmc(M19_{sq%bD&|*3BA)jnvvXN4t~K@HG`qMGAz!8mP;Elf_iz_m zt4(MATcw2BQ|3}fZ8zFWZ2Y@z8uaSp^)HR^Z%4KpexRWrF}ZDv>8A$xUm?PE-v&19 z&P==CeMNrF|HSV40Q-*lQga|eVx*w6nHb|1g7hUA?WBc4H_(i#ztW#47i?!NP8D9` zN#ywpkKZMbT%VP}sDAn+SzCH0dDFc8nDO8An9WMnb|{lHCs+Cq)~)Ks&Qp`!Ft4-! zZx4_z>L`4nmQ|R)tNXQ%UB1)-=v?T{@y6O46I?PAV(4Z$H z$bF8}KXGc|U(j~T3#JdJT`V4^3&Z9V34_Iwt?O47L_4-r4wu`56o*Q|nk#WdUdwb7 zOzSBsW6O9|@^8#INu8`XksSLRxsy|0M3THcs=<_T^hz;_nnT&3ID&X%CfZg{YbBrUzi-y zHp9ER)!C?IE1XLCaT_+22<6T_kU2&-A(Mz^ zzk)vX{&NGT&wcN^lL&vsx=qGDd%O|xb`8Owq^u8LoHsf#(4Eh3s5Lh-F0y*hNa;tJ z=c?hVRO)e{b8dV?8+_Lit9c~ni4ly$r|}}F66K*5crymJH@y{y^lA^58vV3Mnccm% z-unT_68{?vQ)FF<`f{r|nEeY+Jd?C({B00oTGk3Jq`D!pVo>UZUsxh^IFNlb*lWZ>R74+MMz46OC9gnyz zcZwisON2LyQ$+8B59+DiCx`mD?B$Iw&=2BqYTiQZY|tjvuX46o>H14WR=YmT&}>0x zu@eVa4CXYIJS&VYQbuRYzw={x*2hzyN|H}4PuW3<=fTMOi^!Lcd9rLaeg$}nb~4{k z)4l`juTR|L=8`(S19z5*3o_XK5+y1Ax^%k>GE?|I7c?l4-2IY=rd7{p}CX zznLy0CB;+|ljUw6R_A(N82p1J9VQP(l}GRoEut2pA`vb8wlS^Ex*P76w{KYTOy0dC z?N*kT(W6d1hm2uWr=aH7?lMz&ObJQyePi0(_%d;Lv@_+cdV}13(_w4d>%bPd^OFxZ z$DcM&Bd#;oiJ1zA;_phX$9BH)eaEXa^5z=^jb_{5{M(ndY4=_O`?bBvcPPauZBqk;?&I)R6!me?1+Vh(fx`2jRPNigX{qKfZ)XC1*CS%fp$D?Q+=T>9f0sd0 zyjwM#-|qk2jn?P8I%PN4cLA?Wu}_cLCfVI1GoMhI)ATywTjN3q>E4!J(b*H`wW7;M z+9+X5>Y*4UI5-&~Y{Cm^n*FZ~wz6kGH zqgc3urGI}xtVvU)^&ad`**EiU%X3*#)g zzLbc936sPwKj(AoM;#2Tls3D?En-k*SUHSa|ozZSCNvtW7i47(V; z(gx-l&=l^IP<~j@ulF7RYKY(-=zjkHYd5oV}6XCQ|_aQ___OLiu%JyM!i542DEWM0OcVq^v3ZvSl}RVk{XM z49S`$Ek@Q*D6%Wr24g8>3CYeN`!DAv%bH|!9*!vLs`Buhu)fFt{hF({`?|@mjR> za#WjJ)a^52`;9={(H|!dUca$`1c~uZU%bPzL3RH9J?iC14ZqXT4qD{($cv=9f=7MB z2A!GjS0gtVIHsPk+nUM+eF* zKjwStKhLz2rXv47U3kynPMB?{#aEU5szF{2mO}}MeATn%$#f!Sx>}#OtInfn+OYdh zW5!24fgoI*{$$STHo%fiB#L6+b`BD0dH9F;!Bs)cmr373{J7>`+o0`d!>YWL$N?ZHsFXpy)z0* z5n@Z(JIeLVdFJcRkvIw1%EXRrS%32Phh|n%#zowUHU=NAwnA=W2hkU75zm5kf(~0f z!a%^`*({BNO}Xz}Ry{e2WLcz(ou`^A;vY`5SoSAgXkKSk`)|7PrMy%bqb$eNkF)o# zqXo9du9iP~`1Rq6lbjYs-wtH+%1%wlU(HvZbw-PfZX=2YkFEx<(!yj$W{O=lt#fJM3`}K4s(A=C@sMUT98! z4hhniNU`w&cvQP)bAzZ3k+e25hb>@KSFgGIjENXX!p15$BJ>W*ZksNpr(Ivt?J@fC zI$>w;oYQYZH1?v>)yHWZl}CM&Kbtr09z1vx{fxb0l)GX86sIT`$`RGGT9StZXUm3P zap(=06dHA0PISjVE_O|VcJIR-UA54!z+Ui>)43rUSBizL_LY9OuqJP7M}~E6^#?ZG zDvo-fg!0rZ$|m0lxv30WJ0xM7zdkS5wbail57+i#pW1KWI`uVY@aaxOnnQ{19kyrZ zsM~{_Df~y{Z)0iD756l-_Z6O-7lslKa=d?j*}2M-;l$vK?{nK@y88N8e{1i5<+|4U zEcsshb~`g7O^1Id9^-$ticHG&4b@oCip96LLu|h?~649U%8+Q+@&)q!q5hz0$#$sb>Jivf3D7*)MU*HuW1eA6F)?$+kUt%qdj%j6Cu?7o_! znlG*R0UZh54|isJ)&$M8kJk{~RAi-oqS$T@I;9akYjUOC&eaKhx|*tY&BSjA>g?#3SOdW{C`_u(pY5 z83mK~lH}GTyv#h97zV+{_fn0J6_bl+4{yiu5<+b+U*&jL{)K4{e!6W)p;wb~^4A@0 z)2W|L-q3X5$ur@LQYLTjMYHa?!-h!eub+j%)gT4>ZBHkju{!8@+WAYrq|D7gC2*TQ zs=%O}5Dt!;_v|%~>~E6MV1l7~dctE*XF34Stjut^!pOi#eByq7KW=2-3|( zwcRAY3%1a(!o=9Uwopo^yMOm*RoK4%1bhmy**;#)_3YUwlEz>}bN(sl041M}*%3#nXhh0gBz zFPoj)o%_2d*ZtPvP(GWTCv>zr0qf{8d^B=j4LSF*J7_v5%=TPARUh4!=2L8yAIp50 zy~|7GY_lF#KDH1{<>_vt*`kR98W=Cq6K5LRptA$yhSGZ zm&w-gPD<3*9B0#T9Bz>HRo(Z+!?|MmA8}1&P4iwO+!Zr3yVAP01^CfA2=nb`^;G|X zg&pp^DB5~U-HuKFc}|r;$Z`K|X(|*kx6>XWP)gb^24A>^A)?5vvW_3hPE>@~EQEix zlsN{jLvX){vvY;pKDz7YPnF>6)$BlV=y-r#;Z#>kPG;w>4a%e;`xlu#uZ1Y=dQ{)~ z=m|{|@svrQn=czV zXHq0kt(>DNj!HUBb3H(A=3^G|6%R<;XKYc}Wc6OKP!}^RvGpeA+ke$`u~b{tQi##qJ+(7GAOtZ{THBHQU zhX!hQP#9w}V&@Etk}~684C~&>g{Xnh^E}&p2KfwXveCX%q~qtBj!fJ6+F}41e#(3( z)dD6He}Y<@?x(WHFDT$PJ%+owmDRQwQoC4Y7}dEL=t7{WFv*69VyFM@w+hOqZ^L$4 zbuZd%?C&ezLie;#pulq4h{Wx36K<6SzV6(<$CoxvLu;YM(1j(gDiJAUE5 zrPBv{`g^`PA56lx>1Dkkwm>M|W?9a|))53u!cuKw>smUu_XqlD2mLdE!lA9~lh0@` zX*OhLUQUEer|Wf|R8HlMnMtk`Xr}3J;1PM}=!PpF^p~E;yw9_9CpbX1ghy0FsGAiM zxRLmUmj|uwZ`=Gi$u2<2q9gk@EEljH!QDL?v`gJf(KN%yDV|HS@F}nQ!${ZbSf#Zk zk}YtzoaLCy+x+Y5Yf$2s2nXBZ(-rR?fH~n0Nf`dH#fMU@ck(<*m za#2rNn6L6nfn>6$KXzuy2YeT~7Daqv_hCQg?5ZnaD$P)E!Q(<(aE>ijyrq;H@ z9}FM$sB%l<>Y+F3c{DNmo{yGum+qF?RM%*lm-a^|1=3Pp9$ID;UyuDmaB4~BXu@s~ zB7F79Xx93N5ZrwLQzm(aPRfDFY#^WUdQ-vkO7r!v&%@?=fxY(%gv^{^3aLinY<1K{O{czDe=}sgM;p+az!YVL8l3&xd^(M?dh2X`Bl+>SCt`wVV{Ha&4mk24J7AE|v{;9Y2-6~6> zh?gtc+0@0o$AEgv&~&)`p+Mx|N5CVsE%so#1q(?WicyHOqBB~?m>;sOp1^_{a`^au zWLEIAIohd%ow0_5uqhkDRGx@PS;7D&RZW)D9kHU|u_3Gll+_|hVHL;y7lRLu742d% z#9`EF3VU7~3N-$~LLmzJy_>R#5#B|fnv3~5VePwd+TPn<;iLw@IhWPmGs^CGK#xb- zX`ep|Nse#V%_@**sr^y(NOR(0<`Hr=p9(#!?+vgNT@&hEza2*}KY}bPWte+)qWFao z)hzhoeihR8G7wow8~?*#n?@0APZNM4?He!6m9hMGw*?=-Hp3|ypRrRVU#cDthvvt5 zcKA>F7_-Rwo6)71k8mPNNEmS=MNw{M zosl=B`#1Im89lyjuKwjSVfJGEfsOVrC*KESA%75)W^{;_MFzsTBap+h#Zg%kT?>`IG@Pj1T=&t^i9eT;qa@onMAxtH6 zr3jgrxPFV~Q2cUH z1FE4r4mhKe@9!}Pqjgk29iL8a9$WqYikCEoyy;-q&M$At>n|9-VjP@oRZB3 z3x9nlsd|)@)e1f8_o=r4Qelks54*YL8sa$mP>C%0R;xeJIVB-7b1z?XOqb zxI)y|@26^SOuqI0hd=LiA&KMWCE$3bp8?0J$1B@EfUN!JP=5e_7W*i~USic2eY%c# zuT@eUoY@`kkhY~>QgV+z%wbWpq5G^q0<@|4&8ST>zTy&n?W_e1YPy32O7rHm7j!q^ zzveJ(-B&wcjy|V;(~0YM;8OU+&a5bTMEfLj`}&^eo^Ma}vybpm6j<0Y>%ZiDF?w6E zMtH9fkeOtfdZVt9&r1vcOGI$k=m2g}ZwG8W%2Ti+SQWsFv2hho);mz($kY)h#2iPl z!2xm&-4Ch!_SHVzta>VSW;Avo!h_uwSlCEPy+Wt{0AuM3%%5b|uHuA;k}#GL=IZz& zVI~^lc!_(+|6pSQ^|MZru6;M&LF>S}Lm~k-AJt%wA>8-~39H*dp$L{V{Y#D^&BqHE zAkqA*vXQ!;7qk@AIOKlneN?7YZ@%$+` z^)D3Q3A)_bau%rMraaT1p~lk`NYuU)RuiZ(9f0)3@z=VB&H!dHF4n9*Faq3&l!&b? zqt(%uG*I+j-&O9?HVx*uS!VPEtJ+oaY{ZwFS^x>%g-{=5@g=!}GLjH7dDQO{NUoM$mh@$|#^) -Get bioRxiv preprints — get_preprints • biorecap +Get bioRxiv preprints — get_preprints • biorecap Skip to contents @@ -26,8 +26,7 @@
@@ -73,16 +72,16 @@

Examples#> # A tibble: 60 × 4 #> subject title url abstract #> <chr> <chr> <chr> <chr> -#> 1 bioinformatics Tesorai Search: Large pretrained model boosts … http… Current… -#> 2 bioinformatics DIAMOND2GO: A rapid Gene Ontology assignment a… http… DIAMOND… -#> 3 bioinformatics Multi-Modal Large Language Model Enables Prote… http… Predict… -#> 4 bioinformatics Sawfish: Improving long-read structural varian… http… Motivat… -#> 5 bioinformatics Towards Digital Quantification of Ploidy from … http… Abnorma… -#> 6 bioinformatics Interdependent regulation of alternative splic… http… Alterna… -#> 7 bioinformatics UnigeneFinder: An automated pipeline for gene … http… For mos… -#> 8 bioinformatics Normalization of Single-cell RNA-seq Data Usin… http… Normali… -#> 9 bioinformatics Phytochemical Analysis and Cytotoxic Effects o… http… Hepatoc… -#> 10 bioinformatics mobileRNA: a tool for efficient analysis of mo… http… In plan… +#> 1 bioinformatics Unsupervised domain classification of AlphaFol… http… The rel… +#> 2 bioinformatics Testing and overcoming the limitations of Modu… http… Modular… +#> 3 bioinformatics Decoding multicellular niche formation in the … http… Accurat… +#> 4 bioinformatics Insights from Molecular Docking and Dynamics S… http… Alpha-s… +#> 5 bioinformatics TUSCAN: Tumor segmentation and classification … http… The ide… +#> 6 bioinformatics Characterizing the role of exosomal miRNAs in … http… Backgro… +#> 7 bioinformatics The Lomb-Scargle periodogram-based differentia… http… Motivat… +#> 8 bioinformatics Protein stability models fail to capture epist… http… There i… +#> 9 bioinformatics CryptoBench: Cryptic protein-ligand binding si… http… Structu… +#> 10 bioinformatics haCCA: Multi-module Integrating of spatial tra… http… Spatial… #> # ℹ 50 more rows

diff --git a/reference/index.html b/reference/index.html index b8b74cb..09217f9 100644 --- a/reference/index.html +++ b/reference/index.html @@ -1,5 +1,5 @@ -Package index • biorecap +Package index • biorecap Skip to contents @@ -26,8 +26,7 @@
diff --git a/reference/reexports.html b/reference/reexports.html index b0290df..d82a4e1 100644 --- a/reference/reexports.html +++ b/reference/reexports.html @@ -1,5 +1,5 @@ -Objects exported from other packages — reexports • biorecapObjects exported from other packages — reexports • biorecap +"> Skip to contents @@ -40,8 +40,7 @@
diff --git a/reference/subjects.html b/reference/subjects.html index e66a7ba..10f2560 100644 --- a/reference/subjects.html +++ b/reference/subjects.html @@ -1,5 +1,5 @@ -bioRxiv subjects — subjects • biorecap +bioRxiv subjects — subjects • biorecap Skip to contents @@ -26,8 +26,7 @@
diff --git a/reference/tt_preprints.html b/reference/tt_preprints.html index 0261958..03618f1 100644 --- a/reference/tt_preprints.html +++ b/reference/tt_preprints.html @@ -1,5 +1,5 @@ -Create a markdown table from prepreprint summaries — tt_preprints • biorecap +Create a markdown table from prepreprint summaries — tt_preprints • biorecap Skip to contents @@ -26,8 +26,7 @@
diff --git a/search.json b/search.json index 7b8824f..30bacd3 100644 --- a/search.json +++ b/search.json @@ -1 +1 @@ -[{"path":"https://stephenturner.github.io/biorecap/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contributing to biorecap","title":"Contributing to biorecap","text":"outlines propose change biorecap. detailed discussion contributing tidyverse packages, please see development contributing guide code review principles.","code":""},{"path":"https://stephenturner.github.io/biorecap/CONTRIBUTING.html","id":"fixing-typos","dir":"","previous_headings":"","what":"Fixing typos","title":"Contributing to biorecap","text":"can fix typos, spelling mistakes, grammatical errors documentation directly using GitHub web interface, long changes made source file. generally means ’ll need edit roxygen2 comments .R, .Rd file. can find .R file generates .Rd reading comment first line.","code":""},{"path":"https://stephenturner.github.io/biorecap/CONTRIBUTING.html","id":"bigger-changes","dir":"","previous_headings":"","what":"Bigger changes","title":"Contributing to biorecap","text":"want make bigger change, ’s good idea first file issue make sure someone team agrees ’s needed. ’ve found bug, please file issue illustrates bug minimal reprex (also help write unit test, needed). See guide create great issue advice.","code":""},{"path":"https://stephenturner.github.io/biorecap/CONTRIBUTING.html","id":"pull-request-process","dir":"","previous_headings":"Bigger changes","what":"Pull request process","title":"Contributing to biorecap","text":"Fork package clone onto computer. haven’t done , recommend using usethis::create_from_github(\"stephenturner/biorecap\", fork = TRUE). Install development dependencies devtools::install_dev_deps(), make sure package passes R CMD check running devtools::check(). R CMD check doesn’t pass cleanly, ’s good idea ask help continuing. Create Git branch pull request (PR). recommend using usethis::pr_init(\"brief-description--change\"). Make changes, commit git, create PR running usethis::pr_push(), following prompts browser. title PR briefly describe change. body PR contain Fixes #issue-number. user-facing changes, add bullet top NEWS.md (.e. just first header). Follow style described https://style.tidyverse.org/news.html.","code":""},{"path":"https://stephenturner.github.io/biorecap/CONTRIBUTING.html","id":"code-style","dir":"","previous_headings":"Bigger changes","what":"Code style","title":"Contributing to biorecap","text":"New code follow tidyverse style guide. can use styler package apply styles, please don’t restyle code nothing PR. use roxygen2, Markdown syntax, documentation. use testthat unit tests. Contributions test cases included easier accept.","code":""},{"path":"https://stephenturner.github.io/biorecap/CONTRIBUTING.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contributing to biorecap","text":"Please note biorecap project released Contributor Code Conduct. contributing project agree abide terms.","code":""},{"path":"https://stephenturner.github.io/biorecap/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"MIT License","title":"MIT License","text":"Copyright (c) 2024 Stephen Turner Permission hereby granted, free charge, person obtaining copy software associated documentation files (“Software”), deal Software without restriction, including without limitation rights use, copy, modify, merge, publish, distribute, sublicense, /sell copies Software, permit persons Software furnished , subject following conditions: copyright notice permission notice shall included copies substantial portions Software. SOFTWARE PROVIDED “”, WITHOUT WARRANTY KIND, EXPRESS IMPLIED, INCLUDING LIMITED WARRANTIES MERCHANTABILITY, FITNESS PARTICULAR PURPOSE NONINFRINGEMENT. EVENT SHALL AUTHORS COPYRIGHT HOLDERS LIABLE CLAIM, DAMAGES LIABILITY, WHETHER ACTION CONTRACT, TORT OTHERWISE, ARISING , CONNECTION SOFTWARE USE DEALINGS SOFTWARE.","code":""},{"path":"https://stephenturner.github.io/biorecap/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Stephen Turner. Author, maintainer.","code":""},{"path":"https://stephenturner.github.io/biorecap/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Turner S (2024). biorecap: Retrieve summarize bioRxiv preprints local LLM using ollama. R package version 0.1.0, https://stephenturner.github.io/biorecap/.","code":"@Manual{, title = {biorecap: Retrieve and summarize bioRxiv preprints with a local LLM using ollama}, author = {Stephen Turner}, year = {2024}, note = {R package version 0.1.0}, url = {https://stephenturner.github.io/biorecap/}, }"},{"path":"https://stephenturner.github.io/biorecap/index.html","id":"biorecap","dir":"","previous_headings":"","what":"Retrieve and summarize bioRxiv preprints with a local LLM using ollama","title":"Retrieve and summarize bioRxiv preprints with a local LLM using ollama","text":"Retrieve summarize bioRxiv preprints using local LLM Ollama via ollamar.","code":""},{"path":"https://stephenturner.github.io/biorecap/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Retrieve and summarize bioRxiv preprints with a local LLM using ollama","text":"Install biorecap GitHub (keep dependencies=TRUE get Suggests packages needed create HTML report):","code":"# install.packages(\"remotes\") remotes::install_github(\"stephenturner/biorecap\", dependencies=TRUE)"},{"path":[]},{"path":"https://stephenturner.github.io/biorecap/index.html","id":"quick-start","dir":"","previous_headings":"Usage","what":"Quick start","title":"Retrieve and summarize bioRxiv preprints with a local LLM using ollama","text":"First, load biorecap library. Let’s make sure Ollama running can talk R: Next can list available models: Write HTML report containing summaries recent preprints select subject areas current working directory. Example HTML report generated bioRxiv RSS feed August 6, 2024:","code":"library(biorecap) test_connection() #> Ollama local server running #> #> GET http://localhost:11434/ #> Status: 200 OK #> Content-Type: text/plain #> Body: In memory (17 bytes) list_models() #> # A tibble: 3 × 4 #> name model parameter_size quantization_level #> #> 1 gemma2:latest gemma2:latest 9.2B Q4_0 #> 2 llama3.1:latest llama3.1:latest 8.0B Q4_0 #> 3 llama3.1:70b llama3.1:70b 70.6B Q4_0 biorecap_report(output_dir=\".\", subject=c(\"bioinformatics\", \"genomics\", \"synthetic_biology\"), model=\"llama3.1\")"},{"path":"https://stephenturner.github.io/biorecap/index.html","id":"details","dir":"","previous_headings":"Usage","what":"Details","title":"Retrieve and summarize bioRxiv preprints with a local LLM using ollama","text":"get_preprints() function retrieves preprints bioRxiv’s RSS feeds. pass one subjects subject argument. add_prompt() function adds prompt preprint used prompt model. Let’s take look one prompts: giving paper’s title abstract. Summarize paper many sentences instruct. include preamble text. Just give summary. Number sentences summary: 2 Title: SeuratExtend: Streamlining Single-Cell RNA-Seq Analysis Integrated Intuitive Framework Abstract: Single-cell RNA sequencing (scRNA-seq) revolutionized study cellular heterogeneity, rapid expansion analytical tools proven blessing curse, presenting researchers significant challenges. , present SeuratExtend, comprehensive R package built upon widely adopted Seurat framework, streamlines scRNA-seq data analysis integrating essential tools databases. SeuratExtend offers user-friendly intuitive interface performing wide range analyses, including functional enrichment, trajectory inference, gene regulatory network reconstruction, denoising. package seamlessly integrates multiple databases, Gene Ontology Reactome, incorporates popular Python tools like scVelo, Palantir, SCENIC unified R interface. SeuratExtend enhances data visualization optimized plotting functions carefully curated color schemes, ensuring aesthetic appeal scientific rigor. demonstrate SeuratExtend’s performance case studies investigating tumor-associated high-endothelial venules autoinflammatory diseases, showcase novel applications pathway-Level analysis cluster annotation. SeuratExtend empowers researchers harness full potential scRNA-seq data, making complex analyses accessible wider audience. package, along comprehensive documentation tutorials, freely available GitHub, providing valuable resource single-cell genomics community. add_summary() function uses locally running LLM available Ollama summarize preprint. Let’s add summary. Notice can single pipeline. takes minutes! Let’s take look results: Let’s look one summaries. ’s summary SeuratExtend paper (abstract ): SeuratExtend R package integrates essential tools databases single-cell RNA sequencing (scRNA-seq) data analysis, streamlining process user-friendly interface. package offers various analyses, including functional enrichment gene regulatory network reconstruction, seamlessly integrates multiple databases popular Python tools. biorecap_report() function runs code RMarkdown template, writing resulting HTML CSV file results current working directory. built-subjects vector contains available bioRxiv subjects. create report subjects like (note, take time):","code":"pp <- get_preprints(subject=c(\"bioinformatics\", \"genomics\", \"synthetic_biology\")) pp #> # A tibble: 90 × 4 #> subject title url abstract #> #> 1 bioinformatics Integrity and miss grouping as support for clu… http… \"The hi… #> 2 bioinformatics Sainsc: a computational tool for segmentation-… http… \"Spatia… #> 3 bioinformatics BRACE: A novel Bayesian-based imputation appro… http… \"Bayesi… #> 4 bioinformatics Topological embedding and directional feature … http… \"Cancer… #> 5 bioinformatics SeuratExtend: Streamlining Single-Cell RNA-Seq… http… \"Single… #> 6 bioinformatics An Evolutionary Statistics Toolkit for Simplif… http… \"We pre… #> 7 bioinformatics A map of integrated cis-regulatory elements en… http… \"Cis-re… #> 8 bioinformatics MOSTPLAS: A Self-correction Multi-label Learni… http… \"Plasmi… #> 9 bioinformatics Bootstrap Evaluation of Association Matrices (… http… \"Motiva… #> 10 bioinformatics Thermodynamic modeling of Csr/Rsm- RNA interac… http… \"Backgr… #> # ℹ 80 more rows pp <- pp |> add_prompt() pp #> # A tibble: 90 × 5 #> subject title url abstract prompt #> #> 1 bioinformatics Integrity and miss grouping as support … http… \"The hi… \"I am… #> 2 bioinformatics Sainsc: a computational tool for segmen… http… \"Spatia… \"I am… #> 3 bioinformatics BRACE: A novel Bayesian-based imputatio… http… \"Bayesi… \"I am… #> 4 bioinformatics Topological embedding and directional f… http… \"Cancer… \"I am… #> 5 bioinformatics SeuratExtend: Streamlining Single-Cell … http… \"Single… \"I am… #> 6 bioinformatics An Evolutionary Statistics Toolkit for … http… \"We pre… \"I am… #> 7 bioinformatics A map of integrated cis-regulatory elem… http… \"Cis-re… \"I am… #> 8 bioinformatics MOSTPLAS: A Self-correction Multi-label… http… \"Plasmi… \"I am… #> 9 bioinformatics Bootstrap Evaluation of Association Mat… http… \"Motiva… \"I am… #> 10 bioinformatics Thermodynamic modeling of Csr/Rsm- RNA … http… \"Backgr… \"I am… #> # ℹ 80 more rows pp <- get_preprints(subject=c(\"bioinformatics\", \"genomics\", \"synthetic_biology\")) |> add_prompt() |> add_summary(model=\"llama3.1\") pp #> # A tibble: 90 × 6 #> subject title url abstract prompt summary #> #> 1 bioinformatics Integrity and miss grouping as … http… \"The hi… \"I am… \"The p… #> 2 bioinformatics Sainsc: a computational tool fo… http… \"Spatia… \"I am… \"Sains… #> 3 bioinformatics BRACE: A novel Bayesian-based i… http… \"Bayesi… \"I am… \"Alter… #> 4 bioinformatics Topological embedding and direc… http… \"Cancer… \"I am… \"Resea… #> 5 bioinformatics SeuratExtend: Streamlining Sing… http… \"Single… \"I am… \"Seura… #> 6 bioinformatics An Evolutionary Statistics Tool… http… \"We pre… \"I am… \"The \\… #> 7 bioinformatics A map of integrated cis-regulat… http… \"Cis-re… \"I am… \"The a… #> 8 bioinformatics MOSTPLAS: A Self-correction Mul… http… \"Plasmi… \"I am… \"Plasm… #> 9 bioinformatics Bootstrap Evaluation of Associa… http… \"Motiva… \"I am… \"The a… #> 10 bioinformatics Thermodynamic modeling of Csr/R… http… \"Backgr… \"I am… \"Resea… #> # ℹ 80 more rows biorecap_report(output_dir=\".\", subject=c(\"bioinformatics\", \"genomics\", \"synthetic_biology\"), model=\"llama3.1\") subjects #> [1] \"all\" #> [2] \"animal_behavior_and_cognition\" #> [3] \"biochemistry\" #> [4] \"bioengineering\" #> [5] \"bioinformatics\" #> [6] \"biophysics\" #> [7] \"cancer_biology\" #> [8] \"cell_biology\" #> [9] \"clinical_trials\" #> [10] \"developmental_biology\" #> [11] \"ecology\" #> [12] \"epidemiology\" #> [13] \"evolutionary_biology\" #> [14] \"genetics\" #> [15] \"genomics\" #> [16] \"immunology\" #> [17] \"microbiology\" #> [18] \"molecular_biology\" #> [19] \"neuroscience\" #> [20] \"paleontology\" #> [21] \"pathology\" #> [22] \"pharmacology_and_toxicology\" #> [23] \"plant_biology\" #> [24] \"scientific_communication_and_education\" #> [25] \"synthetic_biology\" #> [26] \"systems_biology\" #> [27] \"zoology\" biorecap_report(output_dir=\".\", subject=subjects, model=\"llama3.1\")"},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt.html","id":null,"dir":"Reference","previous_headings":"","what":"Add prompt to a data frame of preprints — add_prompt","title":"Add prompt to a data frame of preprints — add_prompt","text":"Add prompt data frame preprints","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add prompt to a data frame of preprints — add_prompt","text":"","code":"add_prompt(preprints, ...)"},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add prompt to a data frame of preprints — add_prompt","text":"preprints Result get_preprints(). ... Additional arguments build_prompt_preprint().","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add prompt to a data frame of preprints — add_prompt","text":"data frame bioRxiv preprints prompt added.","code":""},{"path":[]},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add prompt to a data frame of preprints — add_prompt","text":"","code":"preprints <- get_preprints(subject=c(\"bioinformatics\", \"genomics\")) preprints <- add_prompt(preprints) preprints #> # A tibble: 60 × 5 #> subject title url abstract prompt #> #> 1 bioinformatics Tesorai Search: Large pretrained model … http… Current… \"I am… #> 2 bioinformatics DIAMOND2GO: A rapid Gene Ontology assig… http… DIAMOND… \"I am… #> 3 bioinformatics Multi-Modal Large Language Model Enable… http… Predict… \"I am… #> 4 bioinformatics Sawfish: Improving long-read structural… http… Motivat… \"I am… #> 5 bioinformatics Towards Digital Quantification of Ploid… http… Abnorma… \"I am… #> 6 bioinformatics Interdependent regulation of alternativ… http… Alterna… \"I am… #> 7 bioinformatics UnigeneFinder: An automated pipeline fo… http… For mos… \"I am… #> 8 bioinformatics Normalization of Single-cell RNA-seq Da… http… Normali… \"I am… #> 9 bioinformatics Phytochemical Analysis and Cytotoxic Ef… http… Hepatoc… \"I am… #> 10 bioinformatics mobileRNA: a tool for efficient analysi… http… In plan… \"I am… #> # ℹ 50 more rows"},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt_subject.html","id":null,"dir":"Reference","previous_headings":"","what":"Add prompts for an entire subject — add_prompt_subject","title":"Add prompts for an entire subject — add_prompt_subject","text":"Add prompts entire subject","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt_subject.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add prompts for an entire subject — add_prompt_subject","text":"","code":"add_prompt_subject(preprints, ...)"},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt_subject.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add prompts for an entire subject — add_prompt_subject","text":"preprints Output get_preprints() followed add_prompt() followed add_summary(). ... Additional arguments build_prompt_subject().","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt_subject.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add prompts for an entire subject — add_prompt_subject","text":"tibble subject prompt column.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt_subject.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add prompts for an entire subject — add_prompt_subject","text":"","code":"subjects <- example_preprints |> dplyr::group_by(subject) |> add_prompt_subject() #> Warning: Expecting a tibble of class 'preprints_prompt' returned from get_preprints() |> add_prompt(). subjects #> # A tibble: 3 × 2 #> subject prompt #> #> 1 bioinformatics \"I am giving you information about preprints published in b… #> 2 genomics \"I am giving you information about preprints published in b… #> 3 synthetic_biology \"I am giving you information about preprints published in b…"},{"path":"https://stephenturner.github.io/biorecap/reference/add_summary.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate a summary from a data frame of prompts — add_summary","title":"Generate a summary from a data frame of prompts — add_summary","text":"Generate summary data frame prompts","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_summary.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate a summary from a data frame of prompts — add_summary","text":"","code":"add_summary(preprints, model = \"llama3.1\")"},{"path":"https://stephenturner.github.io/biorecap/reference/add_summary.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate a summary from a data frame of prompts — add_summary","text":"preprints Output get_preprints() followed add_prompt(). model model available Ollama (run ollamar::list_models()) see available.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_summary.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate a summary from a data frame of prompts — add_summary","text":"tibble, response column added.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_summary.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generate a summary from a data frame of prompts — add_summary","text":"","code":"if (FALSE) { # \\dontrun{ # Individual papers preprints <- get_preprints(c(\"genomics\", \"bioinformatics\")) |> add_prompt() |> add_summary() preprints } # }"},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap-package.html","id":null,"dir":"Reference","previous_headings":"","what":"biorecap: Retrieve and summarize bioRxiv preprints with a local LLM using ollama — biorecap-package","title":"biorecap: Retrieve and summarize bioRxiv preprints with a local LLM using ollama — biorecap-package","text":"Retrieve summarize bioRxiv preprints local LLM using ollama.","code":""},{"path":[]},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"biorecap: Retrieve and summarize bioRxiv preprints with a local LLM using ollama — biorecap-package","text":"Maintainer: Stephen Turner vustephen@gmail.com (ORCID)","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a report from bioRxiv preprints — biorecap_report","title":"Create a report from bioRxiv preprints — biorecap_report","text":"Create report bioRxiv preprints","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a report from bioRxiv preprints — biorecap_report","text":"","code":"biorecap_report( output_dir = \".\", subject = NULL, nsentences = 2L, model = \"llama3.1\", use_example_preprints = FALSE, ... )"},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a report from bioRxiv preprints — biorecap_report","text":"output_dir Directory save report. subject Character vector subjects include report. nsentences Number sentences summarize paper . model model use generating summaries. See ollamar::list_models(). use_example_preprints Use example preprints data included package instead fetching new data bioRxiv. diagnostic/testing purposes . ... arguments passed rmarkdown::render().","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a report from bioRxiv preprints — biorecap_report","text":"Nothing; called side effects produce report.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap_report.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Create a report from bioRxiv preprints — biorecap_report","text":"","code":"if (FALSE) { # \\dontrun{ output_dir <- tempdir() biorecap_report(use_example_preprints=TRUE, output_dir=output_dir) biorecap_report(subject=c(\"bioinformatics\", \"genomics\", \"synthetic_biology\"), output_dir=output_dir) } # }"},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_preprint.html","id":null,"dir":"Reference","previous_headings":"","what":"Construct a prompt to summarize a paper — build_prompt_preprint","title":"Construct a prompt to summarize a paper — build_prompt_preprint","text":"Construct prompt summarize paper","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_preprint.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Construct a prompt to summarize a paper — build_prompt_preprint","text":"","code":"build_prompt_preprint( title, abstract, nsentences = 2L, instructions = c(\"I am giving you a paper's title and abstract.\", \"Summarize the paper in as many sentences as I instruct.\", \"Do not include any preamble text to the summary\", \"just give me the summary with no preface or intro sentence.\") )"},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_preprint.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Construct a prompt to summarize a paper — build_prompt_preprint","text":"title title paper. abstract abstract paper. nsentences number sentences summarize paper . instructions Instructions prompt. can character vector gets collapsed single string.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_preprint.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Construct a prompt to summarize a paper — build_prompt_preprint","text":"string containing prompt.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_preprint.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Construct a prompt to summarize a paper — build_prompt_preprint","text":"","code":"build_prompt_preprint(title=\"A great paper\", abstract=\"This is the abstract.\") #> [1] \"I am giving you a paper's title and abstract. Summarize the paper in as many sentences as I instruct. Do not include any preamble text to the summary just give me the summary with no preface or intro sentence.\\nNumber of sentences in summary: 2\\nTitle: A great paper\\nAbstract: This is the abstract.\""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_subject.html","id":null,"dir":"Reference","previous_headings":"","what":"Construct a prompt to summarize a set of papers from a subject — build_prompt_subject","title":"Construct a prompt to summarize a set of papers from a subject — build_prompt_subject","text":"Construct prompt summarize set papers subject","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_subject.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Construct a prompt to summarize a set of papers from a subject — build_prompt_subject","text":"","code":"build_prompt_subject( subject, title, summary, nsentences = 5L, instructions = c(\"I am giving you information about preprints published in bioRxiv recently.\", \"I'll give you the subject, preprint titles, and short summary of each paper.\", \"Please provide a general summary new advances in this subject/field in general.\", \"Provide this summary of the field in as many sentences as I instruct.\", \"Do not include any preamble text to the summary\", \"just give me the summary with no preface or intro sentence.\") )"},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_subject.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Construct a prompt to summarize a set of papers from a subject — build_prompt_subject","text":"subject name subject. title character vector titles subject summary character vector summaries paper provided get_preprints() followed add_prompt() followed add_summary(). nsentences number sentences summarize subject . instructions Instructions prompt. can character vector gets collapsed single string.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_subject.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Construct a prompt to summarize a set of papers from a subject — build_prompt_subject","text":"string containing prompt.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_subject.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Construct a prompt to summarize a set of papers from a subject — build_prompt_subject","text":"","code":"title <- example_preprints |> dplyr::filter(subject==\"bioinformatics\") |> dplyr::pull(title) summary <- example_preprints |> dplyr::filter(subject==\"bioinformatics\") |> dplyr::pull(summary) build_prompt_subject(subject=\"bioinformatics\", title=title, summary=summary) #> [1] \"I am giving you information about preprints published in bioRxiv recently. I'll give you the subject, preprint titles, and short summary of each paper. Please provide a general summary new advances in this subject/field in general. Provide this summary of the field in as many sentences as I instruct. Do not include any preamble text to the summary just give me the summary with no preface or intro sentence.\\n\\nSubject: bioinformatics\\nNumber of sentences in summary: 5\\n\\nHere are the titles and summaries:\\n\\nTitle: Integrity and miss grouping as support for clusters in agglomerative hierarchical methods: the R-package octopucs\\nSummary: The proposed method assesses cluster support throughout hierarchical analyses by compiling a consensus topology and using ecological concepts of reciprocal complementarities to define cluster integrity and contamination. This approach allows for building support for groups even when there is partial membership match after resampling, and was implemented in the R package octopucs, which showed robust detection of changes in group memberships compared to other methods.\\n\\nTitle: Sainsc: a computational tool for segmentation-free analysis of in-situ capture\\nSummary: Sainsc is a computational tool that enables segmentation-free analysis of spatially resolved transcriptomics data, allowing for accurate cell-type assignment at the subcellular level without requiring manual cell border delineation. The tool provides efficient processing of high-resolution spatial data and can generate maps of cell types with corresponding confidence scores, making it a valuable resource for biomedical researchers working with complex tissue samples.\\n\\nTitle: BRACE: A novel Bayesian-based imputation approach for dimension reduction analysis of alternative splicing at single-cell resolution\\nSummary: Alternative splicing represents an additional layer of complexity in gene expression profiles, but analyzing it at single-cell resolution is challenging due to missing data. This paper introduces BRACE, a Bayesian-based imputation approach that improves upon existing methods and enables dimension reduction analysis of alternative splicing events at single-cell resolution.\\n\\nTitle: Topological embedding and directional feature importance in ensemble classifiers for multi-class classification\\nSummary: Researchers developed a new metric called class-based direction feature importance (CLIFI) to provide interpretable insights into the decision-making process of ensemble classifiers for multi-class classification problems, specifically in the context of cancer biomarker identification. The CLIFI metric was incorporated into four algorithms and applied to The Cancer Genome Atlas proteomics data, resulting in high F1-scores and allowing for the visualization of model decision-making functions and the identification of heterogeneity in several proteins across different cancer types.\\n\\nTitle: SeuratExtend: Streamlining Single-Cell RNA-Seq Analysis Through an Integrated and Intuitive Framework\\nSummary: SeuratExtend is an R package that integrates essential tools and databases for single-cell RNA sequencing (scRNA-seq) data analysis, streamlining the process through a user-friendly interface. The package offers various analyses, including functional enrichment and gene regulatory network reconstruction, and seamlessly integrates multiple databases and popular Python tools.\\n\\nTitle: An Evolutionary Statistics Toolkit for Simplified Sequence Analysis on Web with Client-Side Processing\\nSummary: The \\\"Evolutionary Statistics Toolkit\\\" is a web-based platform that integrates multiple evolutionary statistics tools for simplified sequence analysis, including Tajima's D calculator and Shannon's Entropy. The open-source toolkit facilitates streamlined workflows for researchers in evolutionary biology and genomics, and also serves as an educational interactive website for beginners in evolutionary statistics.\\n\\nTitle: A map of integrated cis-regulatory elements enhances gene regulatory analysis in maize\\nSummary: The authors integrated various methods for profiling cis-regulatory elements (CREs) in maize, resulting in maps of integrated CREs that show increased completeness and precision. These maps were used to infer drought-specific gene regulatory networks and identify candidate regulators of maize drought response, as well as to study the potential role of transposable elements in regulating gene expression.\\n\\nTitle: MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction\\nSummary: Plasmid host range prediction tools are essential for understanding how plasmids promote bacterial evolution, but existing learning-based tools struggle due to limited well-annotated training samples. The proposed model, MOSTPLAS, addresses this issue with a self-correction multi-label learning approach that uses pseudo label learning and asymmetric loss to facilitate training with incomplete labels.\\n\\nTitle: Bootstrap Evaluation of Association Matrices (BEAM) for Integrating Multiple Omics Profiles with Multiple Outcomes\\nSummary: The authors propose Bootstrap Evaluation of Association Matrices (BEAM), a new statistical method that integrates multiple omics profiles with multiple clinical endpoints to identify significant associations between them. BEAM outperformed other integrated analysis methods in simulations and identified biologically relevant genes in a pediatric leukemia application that were missed by univariate screens and other methods.\\n\\nTitle: Thermodynamic modeling of Csr/Rsm- RNA interactions capture novel, direct binding interactions across the Pseudomonas aeruginosa transcriptome\\nSummary: Researchers developed a thermodynamic model to predict interactions between the post-transcriptional regulator RsmA and mRNAs in Pseudomonas aeruginosa, predicting 1043 direct binding interactions, including 457 novel targets. The predictions were validated through in vitro binding assays and in vivo translational reporters, revealing direct regulation of genes involved in quorum sensing and the Type IV Secretion system, expanding the known pool of RsmA target genes.\\n\\nTitle: Assessing the ability of ChatGPT to extract natural product bioactivity and biosynthesis data from publications\\nSummary: ChatGPT was tested on its ability to extract data from publications on natural product bioactivity and biosynthesis, which is crucial for training models that predict natural product activity from biosynthetic gene clusters. The results showed that ChatGPT performed well in identifying papers describing natural product discovery and extracting information about the product's bioactivity, but struggled with extracting accession numbers for the biosynthetic gene cluster or producer's genome.\\n\\nTitle: Genome-Wide Analysis of TCP Family Genes and Their Constitutive Expression Pattern Analysis in the Melon (Cucumis melo)\\nSummary: This study identified and characterized 29 putative TCP genes in melon, classifying them into two classes and analyzing their chromosomal location, gene structure, and expression patterns. The results suggest that some CmTCP genes may have similar functions to their homologs in other plant species, while others may have undergone functional diversification, providing a resource for future investigations into their roles in melon development.\\n\\nTitle: Single-cell differential expression analysis between conditions within nested settings\\nSummary: Researchers compared various methods for differential expression analysis of single-cell transcriptomics data and found that methods designed specifically for single-cell data do not offer performance advantages over conventional pseudobulk methods like DESeq2 when applied to individual datasets. However, permutation-based methods excel in performance for atlas-level analysis, but require significantly longer run times, making DREAM a compromise between quality and runtime.\\n\\nTitle: CoMPHI: A Novel Composite Machine Learning Approach Utilizing Multiple FeatureRepresentation to Predict Hosts of Bacteriophages\\nSummary: Here is a 2-sentence summary of the paper: This study introduces CoMPHI, a novel composite machine learning approach that combines multiple feature representations to predict hosts of bacteriophages, with potential applications in phage therapy for treating bacterial infections. The model achieves high prediction accuracy, with an Area Under the ROC Curve (AUC) of up to 96.7% and accuracy of up to 95.1%, outperforming existing methods due to its inclusion of alignment scores and use of both nucleotide and protein sequences from phages and hosts.\\n\\nTitle: FourierMIL: Fourier filtering-based multiple instance learning for whole slide image analysis\\nSummary: The paper presents FourierMIL, a multiple instance learning framework that uses the discrete Fourier transform to analyze whole-slide images (WSIs) in digital pathology. The method captures both global and local dependencies within WSIs and outperforms existing state-of-the-art methods in tumor classification tasks on gigapixel-resolution WSIs.\\n\\nTitle: Multiple Protein Structure Alignment at Scale with FoldMason\\nSummary: Here is a 2-sentence summary of the paper: FoldMason is a new method for multiple protein structure alignment that can handle hundreds of thousands of structures at scale with high speed and accuracy. It leverages the structural alphabet from Foldseek to compute confidence scores, provide interactive visualizations, and support large-scale protein structure analysis and phylogenetic studies.\\n\\nTitle: Deciphering octoploid strawberry evolution with serial LTR similarity matrices for subgenome partition\\nSummary: A novel approach was developed to assign polyploid genome assemblies to subgenomes using long terminal repeat retrotransposons (LTR-RTs) and the Serial Similarity Matrix (SSM) method, which is particularly useful for genomes without known diploid ancestors. The SSM approach was validated using well-studied allopolyploidy genomes and then applied to the octoploid strawberry genome, revealing three allopolyploidization events in its evolutionary history.\\n\\nTitle: IDENTIFICATION OF IMMUNE RESPONSE AND RNA NETWORK OF RHEUMATOID ARTHRITIS AND MOLECULAR DOCKING OF CELASTRUS PANICULATUS AS POTENTIAL THERAPEUTIC AGENT\\nSummary: This study used bioinformatics analysis to identify immune responses, microRNA-hub genes networks, and potential therapeutic agents for rheumatoid arthritis (RA), a complex autoimmune disease with an unknown pathogenesis. The researchers found several hub genes and miRNAs associated with RA, and identified oleic acid and zeylasterone as potential novel drug candidates against the disease through molecular docking analysis of Celastrus paniculatus phytochemical compounds.\\n\\nTitle: Imputing abundance of over 2500 surface proteins from single-cell transcriptomes with context-agnostic zero-shot deep ensembles\\nSummary: SPIDER is a deep ensemble model that predicts the abundance of over 2500 surface proteins from single-cell transcriptomes with improved generalization across diverse contexts such as tissues or disease states. The model outperforms other state-of-the-art methods and has various applications including cell type annotation, biomarker/target identification, and cell-cell interaction analysis in cancer research.\\n\\nTitle: Modelling Protein-Glycan Interactions with HADDOCK\\nSummary: Glycans play important roles in living organisms by interacting with proteins for information transfer and signalling purposes, making it essential to determine the three-dimensional structures of protein-glycan complexes. The molecular docking approach HADDOCK was used to predict protein-glycan complexes with a top 5 success rate of 70% for bound datasets and 40% for unbound datasets using a benchmark of 89 complexes.\\n\\nTitle: Machine Learning Reveals Key Glycoprotein Mutations and Rapidly Assigns Lassa Virus Lineages\\nSummary: Machine learning and phylogenetic analysis of Lassa virus glycoprotein sequences revealed key mutations and genetic differences between Nigerian lineages and those from other West African countries. The study identified specific amino acid positions that are highly variable among the lineages, which may explain structural and phenotypical differences, and developed a machine learning-based tool for rapid lineage classification.\\n\\nTitle: RESP2: An uncertainty aware multi-target multi-property optimization AI pipeline for antibody discovery\\nSummary: The RESP2 pipeline is an AI-powered tool designed to optimize the discovery of therapeutic antibodies against infectious disease pathogens, taking into account multiple targets and properties such as specificity, low immunogenicity, and high affinity. The pipeline uses a suite of methods to estimate uncertainty in predictions and has been successfully applied to discover a highly human antibody with broad binding to variants of the COVID-19 spike protein receptor binding domain.\\n\\nTitle: Extending the capabilities of deconvolution to provide cell type specific pathway analysis of bulk RNA-seq data for idiopathic pulmonary fibrosis\\nSummary: A deconvolution method was applied to bulk RNA-seq data from idiopathic pulmonary fibrosis (IPF) samples to correct for changes in cell type proportions and provide cell-type specific pathway analysis. The results showed significant increases in fibroblasts and myofibroblasts, decreases in vascular endothelial capillary cells, and IPF-related changes in extracellular matrix organization and TGF-{beta} regulation, as well as the involvement of interferon signaling in ATII cells.\\n\\nTitle: A survey of ADP-ribosyltransferase families in the pathogenic Legionella\\nSummary: A comprehensive bioinformatic survey of 41 Legionella species identified 63 proteins with significant sequence or structural similarity to known ADP-ribosyltransferases (ARTs), organized into 39 ART-like families, including 26 novel families. The study found that most members of the novel ART families are predicted effectors, presenting promising targets for understanding Legionella pathogenicity and developing therapeutic strategies.\\n\\nTitle: A replicable and modular benchmark for long-read transcript quantification methods\\nSummary: Researchers have developed a replicable benchmark for evaluating long-read transcript quantification methods using synthetic RNA-seq datasets, which can be easily extended to include new tools or data sets. The study reveals discrepancies with previously published results and highlights the importance of high-quality simulated data in assessing the robustness of certain approaches.\\n\\nTitle: Logan: Planetary-Scale Genome Assembly Surveys Life's Diversity\\nSummary: The NCBI Sequence Read Archive contains over 50 petabases of DNA sequencing data across 27 million datasets, but its size makes it impractical to search for specific genetic sequences within a reasonable time frame. To address this issue, the authors used cloud computing to perform genome assembly on each dataset and created the Logan assemblage, which is now freely available and enables faster querying of the data, with some queries completing in as little as 11 hours.\\n\\nTitle: Cell-type specific epigenetic clocks to quantify biological age at cell-type resolution\\nSummary: Epigenetic clocks have been developed to estimate biological age, but most are based on heterogeneous bulk tissues and reflect both changes in cell-type composition and individual cell aging. This study created neuron- and hepatocyte-specific DNA methylation clocks that provide improved estimates of chronological age and detect accelerated biological aging in Alzheimer's disease and liver pathology.\\n\\nTitle: Genomic and transcriptomic analyses of Heteropoda venatoria reveal the expansion of P450 family for starvation resistance in spider\\nSummary: The genome of Heteropoda venatoria was sequenced and comparative genomic analysis revealed significant expansions in gene families related to lipid metabolism, including cytochrome P450 and steroid hormone biosynthesis genes. The study found that during starvation, H. venatoria undergoes a series of physiological changes, including the activation of fatty acid metabolism and protein degradation pathways, and the expression of expanded P450 gene families, which help the spider maintain a low-energy metabolic state and endure longer periods of starvation.\\n\\nTitle: Annotation Vocabulary (Might Be) All You Need\\nSummary: The authors introduce the \\\"Annotation Vocabulary\\\", a language of protein properties defined by structured ontologies that can be used to train transformer models without reference to amino acid sequences. They demonstrate the effectiveness of this approach in various experiments, achieving state-of-the-art results on several common datasets with competitive performance on others, and generating high-quality de novo protein sequences from annotation-only prompts.\\n\\nTitle: AncFlow: An Ancestral Sequence Reconstruction Approach for Determining Novel Protein Structural\\nSummary: Here is the summary in 2 sentences: AncFlow is an automated software pipeline that integrates phylogenetic analysis, subfamily identification, and ancestral sequence reconstruction (ASR) to generate ancestral protein sequences for structural prediction using state-of-the-art tools like AlphaFold. The pipeline was validated on two well-characterized protein families, providing insights into the evolutionary mechanisms underpinning functional diversification within these families and demonstrating its potential to guide protein engineering efforts.\""},{"path":"https://stephenturner.github.io/biorecap/reference/example_preprints.html","id":null,"dir":"Reference","previous_headings":"","what":"Example preprints with summaries — example_preprints","title":"Example preprints with summaries — example_preprints","text":"Example preprints summaries August 6, 2024.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/example_preprints.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Example preprints with summaries — example_preprints","text":"","code":"example_preprints"},{"path":"https://stephenturner.github.io/biorecap/reference/example_preprints.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Example preprints with summaries — example_preprints","text":"tibble returned get_preprints() followed add_prompt() followed add_summary().","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/example_preprints.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Example preprints with summaries — example_preprints","text":"","code":"example_preprints #> # A tibble: 90 × 6 #> subject title url abstract prompt summary #> #> 1 bioinformatics Integrity and miss grouping as … http… \"The hi… \"I am… \"The p… #> 2 bioinformatics Sainsc: a computational tool fo… http… \"Spatia… \"I am… \"Sains… #> 3 bioinformatics BRACE: A novel Bayesian-based i… http… \"Bayesi… \"I am… \"Alter… #> 4 bioinformatics Topological embedding and direc… http… \"Cancer… \"I am… \"Resea… #> 5 bioinformatics SeuratExtend: Streamlining Sing… http… \"Single… \"I am… \"Seura… #> 6 bioinformatics An Evolutionary Statistics Tool… http… \"We pre… \"I am… \"The \\… #> 7 bioinformatics A map of integrated cis-regulat… http… \"Cis-re… \"I am… \"The a… #> 8 bioinformatics MOSTPLAS: A Self-correction Mul… http… \"Plasmi… \"I am… \"Plasm… #> 9 bioinformatics Bootstrap Evaluation of Associa… http… \"Motiva… \"I am… \"The a… #> 10 bioinformatics Thermodynamic modeling of Csr/R… http… \"Backgr… \"I am… \"Resea… #> # ℹ 80 more rows"},{"path":"https://stephenturner.github.io/biorecap/reference/get_preprints.html","id":null,"dir":"Reference","previous_headings":"","what":"Get bioRxiv preprints — get_preprints","title":"Get bioRxiv preprints — get_preprints","text":"Get bioRxiv preprints","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/get_preprints.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get bioRxiv preprints — get_preprints","text":"","code":"get_preprints( subject = \"all\", baseurl = \"https://connect.biorxiv.org/biorxiv_xml.php?subject=\", clean = TRUE )"},{"path":"https://stephenturner.github.io/biorecap/reference/get_preprints.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get bioRxiv preprints — get_preprints","text":"subject character vector valid biorxiv subjects. See subjects. baseurl base URL biorxiv RSS feed. Default https://connect.biorxiv.org/biorxiv_xml.php?subject=. change unless know . clean Logical; try strip graphical abstract information? TRUE, strips away text O_FIG C_FIG, words graphical abstract abstract text RSS feed.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/get_preprints.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get bioRxiv preprints — get_preprints","text":"data frame bioRxiv preprints.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/get_preprints.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get bioRxiv preprints — get_preprints","text":"","code":"preprints <- get_preprints(subject=c(\"bioinformatics\", \"genomics\")) preprints #> # A tibble: 60 × 4 #> subject title url abstract #> #> 1 bioinformatics Tesorai Search: Large pretrained model boosts … http… Current… #> 2 bioinformatics DIAMOND2GO: A rapid Gene Ontology assignment a… http… DIAMOND… #> 3 bioinformatics Multi-Modal Large Language Model Enables Prote… http… Predict… #> 4 bioinformatics Sawfish: Improving long-read structural varian… http… Motivat… #> 5 bioinformatics Towards Digital Quantification of Ploidy from … http… Abnorma… #> 6 bioinformatics Interdependent regulation of alternative splic… http… Alterna… #> 7 bioinformatics UnigeneFinder: An automated pipeline for gene … http… For mos… #> 8 bioinformatics Normalization of Single-cell RNA-seq Data Usin… http… Normali… #> 9 bioinformatics Phytochemical Analysis and Cytotoxic Effects o… http… Hepatoc… #> 10 bioinformatics mobileRNA: a tool for efficient analysis of mo… http… In plan… #> # ℹ 50 more rows"},{"path":"https://stephenturner.github.io/biorecap/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. ollamar list_models, test_connection","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/subjects.html","id":null,"dir":"Reference","previous_headings":"","what":"bioRxiv subjects — subjects","title":"bioRxiv subjects — subjects","text":"Names subjects RSS feeds biorXiv","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/subjects.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"bioRxiv subjects — subjects","text":"","code":"subjects"},{"path":"https://stephenturner.github.io/biorecap/reference/subjects.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"bioRxiv subjects — subjects","text":"character vector","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/subjects.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"bioRxiv subjects — subjects","text":"https://www.biorxiv.org/alertsrss","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/subjects.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"bioRxiv subjects — subjects","text":"","code":"subjects #> [1] \"all\" #> [2] \"animal_behavior_and_cognition\" #> [3] \"biochemistry\" #> [4] \"bioengineering\" #> [5] \"bioinformatics\" #> [6] \"biophysics\" #> [7] \"cancer_biology\" #> [8] \"cell_biology\" #> [9] \"clinical_trials\" #> [10] \"developmental_biology\" #> [11] \"ecology\" #> [12] \"epidemiology\" #> [13] \"evolutionary_biology\" #> [14] \"genetics\" #> [15] \"genomics\" #> [16] \"immunology\" #> [17] \"microbiology\" #> [18] \"molecular_biology\" #> [19] \"neuroscience\" #> [20] \"paleontology\" #> [21] \"pathology\" #> [22] \"pharmacology_and_toxicology\" #> [23] \"plant_biology\" #> [24] \"scientific_communication_and_education\" #> [25] \"synthetic_biology\" #> [26] \"systems_biology\" #> [27] \"zoology\""},{"path":"https://stephenturner.github.io/biorecap/reference/tt_preprints.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a markdown table from prepreprint summaries — tt_preprints","title":"Create a markdown table from prepreprint summaries — tt_preprints","text":"Create markdown table prepreprint summaries","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/tt_preprints.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a markdown table from prepreprint summaries — tt_preprints","text":"","code":"tt_preprints(preprints, cols = c(\"title\", \"summary\"), width = c(1, 3))"},{"path":"https://stephenturner.github.io/biorecap/reference/tt_preprints.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a markdown table from prepreprint summaries — tt_preprints","text":"preprints Output get_preprints() followed add_prompt() followed add_summary(). cols Columns display resulting markdown table. width Vector relative widths equal length(cols).","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/tt_preprints.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a markdown table from prepreprint summaries — tt_preprints","text":"tinytable table.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/tt_preprints.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Create a markdown table from prepreprint summaries — tt_preprints","text":"","code":"# Use built-in example data example_preprints #> # A tibble: 90 × 6 #> subject title url abstract prompt summary #> #> 1 bioinformatics Integrity and miss grouping as … http… \"The hi… \"I am… \"The p… #> 2 bioinformatics Sainsc: a computational tool fo… http… \"Spatia… \"I am… \"Sains… #> 3 bioinformatics BRACE: A novel Bayesian-based i… http… \"Bayesi… \"I am… \"Alter… #> 4 bioinformatics Topological embedding and direc… http… \"Cancer… \"I am… \"Resea… #> 5 bioinformatics SeuratExtend: Streamlining Sing… http… \"Single… \"I am… \"Seura… #> 6 bioinformatics An Evolutionary Statistics Tool… http… \"We pre… \"I am… \"The \\… #> 7 bioinformatics A map of integrated cis-regulat… http… \"Cis-re… \"I am… \"The a… #> 8 bioinformatics MOSTPLAS: A Self-correction Mul… http… \"Plasmi… \"I am… \"Plasm… #> 9 bioinformatics Bootstrap Evaluation of Associa… http… \"Motiva… \"I am… \"The a… #> 10 bioinformatics Thermodynamic modeling of Csr/R… http… \"Backgr… \"I am… \"Resea… #> # ℹ 80 more rows tt_preprints(example_preprints[1:2,]) #> #> +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ #> | title | summary | #> +=====================================================================================================================================================================================+=========================================================================================================================================================================================================================================================================================================================================================================================================================================================================================+ #> | [Integrity and miss grouping as support for clusters in agglomerative hierarchical methods: the R-package octopucs](http://biorxiv.org/cgi/content/short/2024.08.01.606070v1?rss=1) | The proposed method assesses cluster support throughout hierarchical analyses by compiling a consensus topology and using ecological concepts of reciprocal complementarities to define cluster integrity and contamination. This approach allows for building support for groups even when there is partial membership match after resampling, and was implemented in the R package octopucs, which showed robust detection of changes in group memberships compared to other methods. | #> +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ #> | [Sainsc: a computational tool for segmentation-free analysis of in-situ capture](http://biorxiv.org/cgi/content/short/2024.08.02.603879v1?rss=1) | Sainsc is a computational tool that enables segmentation-free analysis of spatially resolved transcriptomics data, allowing for accurate cell-type assignment at the subcellular level without requiring manual cell border delineation. The tool provides efficient processing of high-resolution spatial data and can generate maps of cell types with corresponding confidence scores, making it a valuable resource for biomedical researchers working with complex tissue samples. | #> +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+"}] +[{"path":"https://stephenturner.github.io/biorecap/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contributing to biorecap","title":"Contributing to biorecap","text":"outlines propose change biorecap. detailed discussion contributing tidyverse packages, please see development contributing guide code review principles.","code":""},{"path":"https://stephenturner.github.io/biorecap/CONTRIBUTING.html","id":"fixing-typos","dir":"","previous_headings":"","what":"Fixing typos","title":"Contributing to biorecap","text":"can fix typos, spelling mistakes, grammatical errors documentation directly using GitHub web interface, long changes made source file. generally means ’ll need edit roxygen2 comments .R, .Rd file. can find .R file generates .Rd reading comment first line.","code":""},{"path":"https://stephenturner.github.io/biorecap/CONTRIBUTING.html","id":"bigger-changes","dir":"","previous_headings":"","what":"Bigger changes","title":"Contributing to biorecap","text":"want make bigger change, ’s good idea first file issue make sure someone team agrees ’s needed. ’ve found bug, please file issue illustrates bug minimal reprex (also help write unit test, needed). See guide create great issue advice.","code":""},{"path":"https://stephenturner.github.io/biorecap/CONTRIBUTING.html","id":"pull-request-process","dir":"","previous_headings":"Bigger changes","what":"Pull request process","title":"Contributing to biorecap","text":"Fork package clone onto computer. haven’t done , recommend using usethis::create_from_github(\"stephenturner/biorecap\", fork = TRUE). Install development dependencies devtools::install_dev_deps(), make sure package passes R CMD check running devtools::check(). R CMD check doesn’t pass cleanly, ’s good idea ask help continuing. Create Git branch pull request (PR). recommend using usethis::pr_init(\"brief-description--change\"). Make changes, commit git, create PR running usethis::pr_push(), following prompts browser. title PR briefly describe change. body PR contain Fixes #issue-number. user-facing changes, add bullet top NEWS.md (.e. just first header). Follow style described https://style.tidyverse.org/news.html.","code":""},{"path":"https://stephenturner.github.io/biorecap/CONTRIBUTING.html","id":"code-style","dir":"","previous_headings":"Bigger changes","what":"Code style","title":"Contributing to biorecap","text":"New code follow tidyverse style guide. can use styler package apply styles, please don’t restyle code nothing PR. use roxygen2, Markdown syntax, documentation. use testthat unit tests. Contributions test cases included easier accept.","code":""},{"path":"https://stephenturner.github.io/biorecap/CONTRIBUTING.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contributing to biorecap","text":"Please note biorecap project released Contributor Code Conduct. contributing project agree abide terms.","code":""},{"path":"https://stephenturner.github.io/biorecap/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"MIT License","title":"MIT License","text":"Copyright (c) 2024 Stephen Turner Permission hereby granted, free charge, person obtaining copy software associated documentation files (“Software”), deal Software without restriction, including without limitation rights use, copy, modify, merge, publish, distribute, sublicense, /sell copies Software, permit persons Software furnished , subject following conditions: copyright notice permission notice shall included copies substantial portions Software. SOFTWARE PROVIDED “”, WITHOUT WARRANTY KIND, EXPRESS IMPLIED, INCLUDING LIMITED WARRANTIES MERCHANTABILITY, FITNESS PARTICULAR PURPOSE NONINFRINGEMENT. EVENT SHALL AUTHORS COPYRIGHT HOLDERS LIABLE CLAIM, DAMAGES LIABILITY, WHETHER ACTION CONTRACT, TORT OTHERWISE, ARISING , CONNECTION SOFTWARE USE DEALINGS SOFTWARE.","code":""},{"path":"https://stephenturner.github.io/biorecap/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Stephen Turner. Author, maintainer.","code":""},{"path":"https://stephenturner.github.io/biorecap/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Turner S (2024). biorecap: Retrieve summarize bioRxiv preprints local LLM using ollama. R package version 0.1.0, https://stephenturner.github.io/biorecap/.","code":"@Manual{, title = {biorecap: Retrieve and summarize bioRxiv preprints with a local LLM using ollama}, author = {Stephen Turner}, year = {2024}, note = {R package version 0.1.0}, url = {https://stephenturner.github.io/biorecap/}, }"},{"path":"https://stephenturner.github.io/biorecap/index.html","id":"biorecap-","dir":"","previous_headings":"","what":"Retrieve and summarize bioRxiv preprints with a local LLM using ollama","title":"Retrieve and summarize bioRxiv preprints with a local LLM using ollama","text":"Retrieve summarize bioRxiv preprints using local LLM Ollama via ollamar. Turner, S. D. (2024). biorecap: R package summarizing bioRxiv preprints local LLM. arXiv, 2408.11707. https://doi.org/10.48550/arXiv.2408.11707.","code":""},{"path":"https://stephenturner.github.io/biorecap/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Retrieve and summarize bioRxiv preprints with a local LLM using ollama","text":"Install biorecap GitHub (keep dependencies=TRUE get Suggests packages needed create HTML report):","code":"# install.packages(\"remotes\") remotes::install_github(\"stephenturner/biorecap\", dependencies=TRUE)"},{"path":[]},{"path":"https://stephenturner.github.io/biorecap/index.html","id":"quick-start","dir":"","previous_headings":"Usage","what":"Quick start","title":"Retrieve and summarize bioRxiv preprints with a local LLM using ollama","text":"First, load biorecap library. Let’s make sure Ollama running can talk R: Next can list available models: Write HTML report containing summaries recent preprints select subject areas current working directory. Example HTML report generated bioRxiv RSS feed August 6, 2024:","code":"library(biorecap) test_connection() #> Ollama local server running #> #> GET http://localhost:11434/ #> Status: 200 OK #> Content-Type: text/plain #> Body: In memory (17 bytes) list_models() #> # A tibble: 3 × 4 #> name model parameter_size quantization_level #> #> 1 gemma2:latest gemma2:latest 9.2B Q4_0 #> 2 llama3.1:latest llama3.1:latest 8.0B Q4_0 #> 3 llama3.1:70b llama3.1:70b 70.6B Q4_0 biorecap_report(output_dir=\".\", subject=c(\"bioinformatics\", \"genomics\", \"synthetic_biology\"), model=\"llama3.1\")"},{"path":"https://stephenturner.github.io/biorecap/index.html","id":"details","dir":"","previous_headings":"Usage","what":"Details","title":"Retrieve and summarize bioRxiv preprints with a local LLM using ollama","text":"get_preprints() function retrieves preprints bioRxiv’s RSS feeds. pass one subjects subject argument. add_prompt() function adds prompt preprint used prompt model. Let’s take look one prompts: giving paper’s title abstract. Summarize paper many sentences instruct. include preamble text. Just give summary. Number sentences summary: 2 Title: SeuratExtend: Streamlining Single-Cell RNA-Seq Analysis Integrated Intuitive Framework Abstract: Single-cell RNA sequencing (scRNA-seq) revolutionized study cellular heterogeneity, rapid expansion analytical tools proven blessing curse, presenting researchers significant challenges. , present SeuratExtend, comprehensive R package built upon widely adopted Seurat framework, streamlines scRNA-seq data analysis integrating essential tools databases. SeuratExtend offers user-friendly intuitive interface performing wide range analyses, including functional enrichment, trajectory inference, gene regulatory network reconstruction, denoising. package seamlessly integrates multiple databases, Gene Ontology Reactome, incorporates popular Python tools like scVelo, Palantir, SCENIC unified R interface. SeuratExtend enhances data visualization optimized plotting functions carefully curated color schemes, ensuring aesthetic appeal scientific rigor. demonstrate SeuratExtend’s performance case studies investigating tumor-associated high-endothelial venules autoinflammatory diseases, showcase novel applications pathway-Level analysis cluster annotation. SeuratExtend empowers researchers harness full potential scRNA-seq data, making complex analyses accessible wider audience. package, along comprehensive documentation tutorials, freely available GitHub, providing valuable resource single-cell genomics community. add_summary() function uses locally running LLM available Ollama summarize preprint. Let’s add summary. Notice can single pipeline. takes minutes! Let’s take look results: Let’s look one summaries. ’s summary SeuratExtend paper (abstract ): SeuratExtend R package integrates essential tools databases single-cell RNA sequencing (scRNA-seq) data analysis, streamlining process user-friendly interface. package offers various analyses, including functional enrichment gene regulatory network reconstruction, seamlessly integrates multiple databases popular Python tools. biorecap_report() function runs code RMarkdown template, writing resulting HTML CSV file results current working directory. built-subjects vector contains available bioRxiv subjects. create report subjects like (note, take time):","code":"pp <- get_preprints(subject=c(\"bioinformatics\", \"genomics\", \"synthetic_biology\")) pp #> # A tibble: 90 × 4 #> subject title url abstract #> #> 1 bioinformatics Integrity and miss grouping as support for clu… http… \"The hi… #> 2 bioinformatics Sainsc: a computational tool for segmentation-… http… \"Spatia… #> 3 bioinformatics BRACE: A novel Bayesian-based imputation appro… http… \"Bayesi… #> 4 bioinformatics Topological embedding and directional feature … http… \"Cancer… #> 5 bioinformatics SeuratExtend: Streamlining Single-Cell RNA-Seq… http… \"Single… #> 6 bioinformatics An Evolutionary Statistics Toolkit for Simplif… http… \"We pre… #> 7 bioinformatics A map of integrated cis-regulatory elements en… http… \"Cis-re… #> 8 bioinformatics MOSTPLAS: A Self-correction Multi-label Learni… http… \"Plasmi… #> 9 bioinformatics Bootstrap Evaluation of Association Matrices (… http… \"Motiva… #> 10 bioinformatics Thermodynamic modeling of Csr/Rsm- RNA interac… http… \"Backgr… #> # ℹ 80 more rows pp <- pp |> add_prompt() pp #> # A tibble: 90 × 5 #> subject title url abstract prompt #> #> 1 bioinformatics Integrity and miss grouping as support … http… \"The hi… \"I am… #> 2 bioinformatics Sainsc: a computational tool for segmen… http… \"Spatia… \"I am… #> 3 bioinformatics BRACE: A novel Bayesian-based imputatio… http… \"Bayesi… \"I am… #> 4 bioinformatics Topological embedding and directional f… http… \"Cancer… \"I am… #> 5 bioinformatics SeuratExtend: Streamlining Single-Cell … http… \"Single… \"I am… #> 6 bioinformatics An Evolutionary Statistics Toolkit for … http… \"We pre… \"I am… #> 7 bioinformatics A map of integrated cis-regulatory elem… http… \"Cis-re… \"I am… #> 8 bioinformatics MOSTPLAS: A Self-correction Multi-label… http… \"Plasmi… \"I am… #> 9 bioinformatics Bootstrap Evaluation of Association Mat… http… \"Motiva… \"I am… #> 10 bioinformatics Thermodynamic modeling of Csr/Rsm- RNA … http… \"Backgr… \"I am… #> # ℹ 80 more rows pp <- get_preprints(subject=c(\"bioinformatics\", \"genomics\", \"synthetic_biology\")) |> add_prompt() |> add_summary(model=\"llama3.1\") pp #> # A tibble: 90 × 6 #> subject title url abstract prompt summary #> #> 1 bioinformatics Integrity and miss grouping as … http… \"The hi… \"I am… \"The p… #> 2 bioinformatics Sainsc: a computational tool fo… http… \"Spatia… \"I am… \"Sains… #> 3 bioinformatics BRACE: A novel Bayesian-based i… http… \"Bayesi… \"I am… \"Alter… #> 4 bioinformatics Topological embedding and direc… http… \"Cancer… \"I am… \"Resea… #> 5 bioinformatics SeuratExtend: Streamlining Sing… http… \"Single… \"I am… \"Seura… #> 6 bioinformatics An Evolutionary Statistics Tool… http… \"We pre… \"I am… \"The \\… #> 7 bioinformatics A map of integrated cis-regulat… http… \"Cis-re… \"I am… \"The a… #> 8 bioinformatics MOSTPLAS: A Self-correction Mul… http… \"Plasmi… \"I am… \"Plasm… #> 9 bioinformatics Bootstrap Evaluation of Associa… http… \"Motiva… \"I am… \"The a… #> 10 bioinformatics Thermodynamic modeling of Csr/R… http… \"Backgr… \"I am… \"Resea… #> # ℹ 80 more rows biorecap_report(output_dir=\".\", subject=c(\"bioinformatics\", \"genomics\", \"synthetic_biology\"), model=\"llama3.1\") subjects #> [1] \"all\" #> [2] \"animal_behavior_and_cognition\" #> [3] \"biochemistry\" #> [4] \"bioengineering\" #> [5] \"bioinformatics\" #> [6] \"biophysics\" #> [7] \"cancer_biology\" #> [8] \"cell_biology\" #> [9] \"clinical_trials\" #> [10] \"developmental_biology\" #> [11] \"ecology\" #> [12] \"epidemiology\" #> [13] \"evolutionary_biology\" #> [14] \"genetics\" #> [15] \"genomics\" #> [16] \"immunology\" #> [17] \"microbiology\" #> [18] \"molecular_biology\" #> [19] \"neuroscience\" #> [20] \"paleontology\" #> [21] \"pathology\" #> [22] \"pharmacology_and_toxicology\" #> [23] \"plant_biology\" #> [24] \"scientific_communication_and_education\" #> [25] \"synthetic_biology\" #> [26] \"systems_biology\" #> [27] \"zoology\" biorecap_report(output_dir=\".\", subject=subjects, model=\"llama3.1\")"},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt.html","id":null,"dir":"Reference","previous_headings":"","what":"Add prompt to a data frame of preprints — add_prompt","title":"Add prompt to a data frame of preprints — add_prompt","text":"Add prompt data frame preprints","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add prompt to a data frame of preprints — add_prompt","text":"","code":"add_prompt(preprints, ...)"},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add prompt to a data frame of preprints — add_prompt","text":"preprints Result get_preprints(). ... Additional arguments build_prompt_preprint().","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add prompt to a data frame of preprints — add_prompt","text":"data frame bioRxiv preprints prompt added.","code":""},{"path":[]},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add prompt to a data frame of preprints — add_prompt","text":"","code":"preprints <- get_preprints(subject=c(\"bioinformatics\", \"genomics\")) preprints <- add_prompt(preprints) preprints #> # A tibble: 60 × 5 #> subject title url abstract prompt #> #> 1 bioinformatics Unsupervised domain classification of A… http… The rel… \"I am… #> 2 bioinformatics Testing and overcoming the limitations … http… Modular… \"I am… #> 3 bioinformatics Decoding multicellular niche formation … http… Accurat… \"I am… #> 4 bioinformatics Insights from Molecular Docking and Dyn… http… Alpha-s… \"I am… #> 5 bioinformatics TUSCAN: Tumor segmentation and classifi… http… The ide… \"I am… #> 6 bioinformatics Characterizing the role of exosomal miR… http… Backgro… \"I am… #> 7 bioinformatics The Lomb-Scargle periodogram-based diff… http… Motivat… \"I am… #> 8 bioinformatics Protein stability models fail to captur… http… There i… \"I am… #> 9 bioinformatics CryptoBench: Cryptic protein-ligand bin… http… Structu… \"I am… #> 10 bioinformatics haCCA: Multi-module Integrating of spat… http… Spatial… \"I am… #> # ℹ 50 more rows"},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt_subject.html","id":null,"dir":"Reference","previous_headings":"","what":"Add prompts for an entire subject — add_prompt_subject","title":"Add prompts for an entire subject — add_prompt_subject","text":"Add prompts entire subject","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt_subject.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add prompts for an entire subject — add_prompt_subject","text":"","code":"add_prompt_subject(preprints, ...)"},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt_subject.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add prompts for an entire subject — add_prompt_subject","text":"preprints Output get_preprints() followed add_prompt() followed add_summary(). ... Additional arguments build_prompt_subject().","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt_subject.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add prompts for an entire subject — add_prompt_subject","text":"tibble subject prompt column.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_prompt_subject.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add prompts for an entire subject — add_prompt_subject","text":"","code":"subjects <- example_preprints |> dplyr::group_by(subject) |> add_prompt_subject() #> Warning: Expecting a tibble of class 'preprints_prompt' returned from get_preprints() |> add_prompt(). subjects #> # A tibble: 3 × 2 #> subject prompt #> #> 1 bioinformatics \"I am giving you information about preprints published in b… #> 2 genomics \"I am giving you information about preprints published in b… #> 3 synthetic_biology \"I am giving you information about preprints published in b…"},{"path":"https://stephenturner.github.io/biorecap/reference/add_summary.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate a summary from a data frame of prompts — add_summary","title":"Generate a summary from a data frame of prompts — add_summary","text":"Generate summary data frame prompts","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_summary.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate a summary from a data frame of prompts — add_summary","text":"","code":"add_summary(preprints, model = \"llama3.1\")"},{"path":"https://stephenturner.github.io/biorecap/reference/add_summary.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate a summary from a data frame of prompts — add_summary","text":"preprints Output get_preprints() followed add_prompt(). model model available Ollama (run ollamar::list_models()) see available.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_summary.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate a summary from a data frame of prompts — add_summary","text":"tibble, response column added.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/add_summary.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generate a summary from a data frame of prompts — add_summary","text":"","code":"if (FALSE) { # \\dontrun{ # Individual papers preprints <- get_preprints(c(\"genomics\", \"bioinformatics\")) |> add_prompt() |> add_summary() preprints } # }"},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap-package.html","id":null,"dir":"Reference","previous_headings":"","what":"biorecap: Retrieve and summarize bioRxiv preprints with a local LLM using ollama — biorecap-package","title":"biorecap: Retrieve and summarize bioRxiv preprints with a local LLM using ollama — biorecap-package","text":"Retrieve summarize bioRxiv preprints local LLM using ollama.","code":""},{"path":[]},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"biorecap: Retrieve and summarize bioRxiv preprints with a local LLM using ollama — biorecap-package","text":"Maintainer: Stephen Turner vustephen@gmail.com (ORCID)","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap_report.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a report from bioRxiv preprints — biorecap_report","title":"Create a report from bioRxiv preprints — biorecap_report","text":"Create report bioRxiv preprints","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap_report.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a report from bioRxiv preprints — biorecap_report","text":"","code":"biorecap_report( output_dir = \".\", subject = NULL, nsentences = 2L, model = \"llama3.1\", use_example_preprints = FALSE, ... )"},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap_report.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a report from bioRxiv preprints — biorecap_report","text":"output_dir Directory save report. subject Character vector subjects include report. nsentences Number sentences summarize paper . model model use generating summaries. See ollamar::list_models(). use_example_preprints Use example preprints data included package instead fetching new data bioRxiv. diagnostic/testing purposes . ... arguments passed rmarkdown::render().","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap_report.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a report from bioRxiv preprints — biorecap_report","text":"Nothing; called side effects produce report.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/biorecap_report.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Create a report from bioRxiv preprints — biorecap_report","text":"","code":"if (FALSE) { # \\dontrun{ output_dir <- tempdir() biorecap_report(use_example_preprints=TRUE, output_dir=output_dir) biorecap_report(subject=c(\"bioinformatics\", \"genomics\", \"synthetic_biology\"), output_dir=output_dir) } # }"},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_preprint.html","id":null,"dir":"Reference","previous_headings":"","what":"Construct a prompt to summarize a paper — build_prompt_preprint","title":"Construct a prompt to summarize a paper — build_prompt_preprint","text":"Construct prompt summarize paper","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_preprint.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Construct a prompt to summarize a paper — build_prompt_preprint","text":"","code":"build_prompt_preprint( title, abstract, nsentences = 2L, instructions = c(\"I am giving you a paper's title and abstract.\", \"Summarize the paper in as many sentences as I instruct.\", \"Do not include any preamble text to the summary\", \"just give me the summary with no preface or intro sentence.\") )"},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_preprint.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Construct a prompt to summarize a paper — build_prompt_preprint","text":"title title paper. abstract abstract paper. nsentences number sentences summarize paper . instructions Instructions prompt. can character vector gets collapsed single string.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_preprint.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Construct a prompt to summarize a paper — build_prompt_preprint","text":"string containing prompt.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_preprint.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Construct a prompt to summarize a paper — build_prompt_preprint","text":"","code":"build_prompt_preprint(title=\"A great paper\", abstract=\"This is the abstract.\") #> [1] \"I am giving you a paper's title and abstract. Summarize the paper in as many sentences as I instruct. Do not include any preamble text to the summary just give me the summary with no preface or intro sentence.\\nNumber of sentences in summary: 2\\nTitle: A great paper\\nAbstract: This is the abstract.\""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_subject.html","id":null,"dir":"Reference","previous_headings":"","what":"Construct a prompt to summarize a set of papers from a subject — build_prompt_subject","title":"Construct a prompt to summarize a set of papers from a subject — build_prompt_subject","text":"Construct prompt summarize set papers subject","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_subject.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Construct a prompt to summarize a set of papers from a subject — build_prompt_subject","text":"","code":"build_prompt_subject( subject, title, summary, nsentences = 5L, instructions = c(\"I am giving you information about preprints published in bioRxiv recently.\", \"I'll give you the subject, preprint titles, and short summary of each paper.\", \"Please provide a general summary new advances in this subject/field in general.\", \"Provide this summary of the field in as many sentences as I instruct.\", \"Do not include any preamble text to the summary\", \"just give me the summary with no preface or intro sentence.\") )"},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_subject.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Construct a prompt to summarize a set of papers from a subject — build_prompt_subject","text":"subject name subject. title character vector titles subject summary character vector summaries paper provided get_preprints() followed add_prompt() followed add_summary(). nsentences number sentences summarize subject . instructions Instructions prompt. can character vector gets collapsed single string.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_subject.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Construct a prompt to summarize a set of papers from a subject — build_prompt_subject","text":"string containing prompt.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/build_prompt_subject.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Construct a prompt to summarize a set of papers from a subject — build_prompt_subject","text":"","code":"title <- example_preprints |> dplyr::filter(subject==\"bioinformatics\") |> dplyr::pull(title) summary <- example_preprints |> dplyr::filter(subject==\"bioinformatics\") |> dplyr::pull(summary) build_prompt_subject(subject=\"bioinformatics\", title=title, summary=summary) #> [1] \"I am giving you information about preprints published in bioRxiv recently. I'll give you the subject, preprint titles, and short summary of each paper. Please provide a general summary new advances in this subject/field in general. Provide this summary of the field in as many sentences as I instruct. Do not include any preamble text to the summary just give me the summary with no preface or intro sentence.\\n\\nSubject: bioinformatics\\nNumber of sentences in summary: 5\\n\\nHere are the titles and summaries:\\n\\nTitle: Integrity and miss grouping as support for clusters in agglomerative hierarchical methods: the R-package octopucs\\nSummary: The proposed method assesses cluster support throughout hierarchical analyses by compiling a consensus topology and using ecological concepts of reciprocal complementarities to define cluster integrity and contamination. This approach allows for building support for groups even when there is partial membership match after resampling, and was implemented in the R package octopucs, which showed robust detection of changes in group memberships compared to other methods.\\n\\nTitle: Sainsc: a computational tool for segmentation-free analysis of in-situ capture\\nSummary: Sainsc is a computational tool that enables segmentation-free analysis of spatially resolved transcriptomics data, allowing for accurate cell-type assignment at the subcellular level without requiring manual cell border delineation. The tool provides efficient processing of high-resolution spatial data and can generate maps of cell types with corresponding confidence scores, making it a valuable resource for biomedical researchers working with complex tissue samples.\\n\\nTitle: BRACE: A novel Bayesian-based imputation approach for dimension reduction analysis of alternative splicing at single-cell resolution\\nSummary: Alternative splicing represents an additional layer of complexity in gene expression profiles, but analyzing it at single-cell resolution is challenging due to missing data. This paper introduces BRACE, a Bayesian-based imputation approach that improves upon existing methods and enables dimension reduction analysis of alternative splicing events at single-cell resolution.\\n\\nTitle: Topological embedding and directional feature importance in ensemble classifiers for multi-class classification\\nSummary: Researchers developed a new metric called class-based direction feature importance (CLIFI) to provide interpretable insights into the decision-making process of ensemble classifiers for multi-class classification problems, specifically in the context of cancer biomarker identification. The CLIFI metric was incorporated into four algorithms and applied to The Cancer Genome Atlas proteomics data, resulting in high F1-scores and allowing for the visualization of model decision-making functions and the identification of heterogeneity in several proteins across different cancer types.\\n\\nTitle: SeuratExtend: Streamlining Single-Cell RNA-Seq Analysis Through an Integrated and Intuitive Framework\\nSummary: SeuratExtend is an R package that integrates essential tools and databases for single-cell RNA sequencing (scRNA-seq) data analysis, streamlining the process through a user-friendly interface. The package offers various analyses, including functional enrichment and gene regulatory network reconstruction, and seamlessly integrates multiple databases and popular Python tools.\\n\\nTitle: An Evolutionary Statistics Toolkit for Simplified Sequence Analysis on Web with Client-Side Processing\\nSummary: The \\\"Evolutionary Statistics Toolkit\\\" is a web-based platform that integrates multiple evolutionary statistics tools for simplified sequence analysis, including Tajima's D calculator and Shannon's Entropy. The open-source toolkit facilitates streamlined workflows for researchers in evolutionary biology and genomics, and also serves as an educational interactive website for beginners in evolutionary statistics.\\n\\nTitle: A map of integrated cis-regulatory elements enhances gene regulatory analysis in maize\\nSummary: The authors integrated various methods for profiling cis-regulatory elements (CREs) in maize, resulting in maps of integrated CREs that show increased completeness and precision. These maps were used to infer drought-specific gene regulatory networks and identify candidate regulators of maize drought response, as well as to study the potential role of transposable elements in regulating gene expression.\\n\\nTitle: MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction\\nSummary: Plasmid host range prediction tools are essential for understanding how plasmids promote bacterial evolution, but existing learning-based tools struggle due to limited well-annotated training samples. The proposed model, MOSTPLAS, addresses this issue with a self-correction multi-label learning approach that uses pseudo label learning and asymmetric loss to facilitate training with incomplete labels.\\n\\nTitle: Bootstrap Evaluation of Association Matrices (BEAM) for Integrating Multiple Omics Profiles with Multiple Outcomes\\nSummary: The authors propose Bootstrap Evaluation of Association Matrices (BEAM), a new statistical method that integrates multiple omics profiles with multiple clinical endpoints to identify significant associations between them. BEAM outperformed other integrated analysis methods in simulations and identified biologically relevant genes in a pediatric leukemia application that were missed by univariate screens and other methods.\\n\\nTitle: Thermodynamic modeling of Csr/Rsm- RNA interactions capture novel, direct binding interactions across the Pseudomonas aeruginosa transcriptome\\nSummary: Researchers developed a thermodynamic model to predict interactions between the post-transcriptional regulator RsmA and mRNAs in Pseudomonas aeruginosa, predicting 1043 direct binding interactions, including 457 novel targets. The predictions were validated through in vitro binding assays and in vivo translational reporters, revealing direct regulation of genes involved in quorum sensing and the Type IV Secretion system, expanding the known pool of RsmA target genes.\\n\\nTitle: Assessing the ability of ChatGPT to extract natural product bioactivity and biosynthesis data from publications\\nSummary: ChatGPT was tested on its ability to extract data from publications on natural product bioactivity and biosynthesis, which is crucial for training models that predict natural product activity from biosynthetic gene clusters. The results showed that ChatGPT performed well in identifying papers describing natural product discovery and extracting information about the product's bioactivity, but struggled with extracting accession numbers for the biosynthetic gene cluster or producer's genome.\\n\\nTitle: Genome-Wide Analysis of TCP Family Genes and Their Constitutive Expression Pattern Analysis in the Melon (Cucumis melo)\\nSummary: This study identified and characterized 29 putative TCP genes in melon, classifying them into two classes and analyzing their chromosomal location, gene structure, and expression patterns. The results suggest that some CmTCP genes may have similar functions to their homologs in other plant species, while others may have undergone functional diversification, providing a resource for future investigations into their roles in melon development.\\n\\nTitle: Single-cell differential expression analysis between conditions within nested settings\\nSummary: Researchers compared various methods for differential expression analysis of single-cell transcriptomics data and found that methods designed specifically for single-cell data do not offer performance advantages over conventional pseudobulk methods like DESeq2 when applied to individual datasets. However, permutation-based methods excel in performance for atlas-level analysis, but require significantly longer run times, making DREAM a compromise between quality and runtime.\\n\\nTitle: CoMPHI: A Novel Composite Machine Learning Approach Utilizing Multiple FeatureRepresentation to Predict Hosts of Bacteriophages\\nSummary: Here is a 2-sentence summary of the paper: This study introduces CoMPHI, a novel composite machine learning approach that combines multiple feature representations to predict hosts of bacteriophages, with potential applications in phage therapy for treating bacterial infections. The model achieves high prediction accuracy, with an Area Under the ROC Curve (AUC) of up to 96.7% and accuracy of up to 95.1%, outperforming existing methods due to its inclusion of alignment scores and use of both nucleotide and protein sequences from phages and hosts.\\n\\nTitle: FourierMIL: Fourier filtering-based multiple instance learning for whole slide image analysis\\nSummary: The paper presents FourierMIL, a multiple instance learning framework that uses the discrete Fourier transform to analyze whole-slide images (WSIs) in digital pathology. The method captures both global and local dependencies within WSIs and outperforms existing state-of-the-art methods in tumor classification tasks on gigapixel-resolution WSIs.\\n\\nTitle: Multiple Protein Structure Alignment at Scale with FoldMason\\nSummary: Here is a 2-sentence summary of the paper: FoldMason is a new method for multiple protein structure alignment that can handle hundreds of thousands of structures at scale with high speed and accuracy. It leverages the structural alphabet from Foldseek to compute confidence scores, provide interactive visualizations, and support large-scale protein structure analysis and phylogenetic studies.\\n\\nTitle: Deciphering octoploid strawberry evolution with serial LTR similarity matrices for subgenome partition\\nSummary: A novel approach was developed to assign polyploid genome assemblies to subgenomes using long terminal repeat retrotransposons (LTR-RTs) and the Serial Similarity Matrix (SSM) method, which is particularly useful for genomes without known diploid ancestors. The SSM approach was validated using well-studied allopolyploidy genomes and then applied to the octoploid strawberry genome, revealing three allopolyploidization events in its evolutionary history.\\n\\nTitle: IDENTIFICATION OF IMMUNE RESPONSE AND RNA NETWORK OF RHEUMATOID ARTHRITIS AND MOLECULAR DOCKING OF CELASTRUS PANICULATUS AS POTENTIAL THERAPEUTIC AGENT\\nSummary: This study used bioinformatics analysis to identify immune responses, microRNA-hub genes networks, and potential therapeutic agents for rheumatoid arthritis (RA), a complex autoimmune disease with an unknown pathogenesis. The researchers found several hub genes and miRNAs associated with RA, and identified oleic acid and zeylasterone as potential novel drug candidates against the disease through molecular docking analysis of Celastrus paniculatus phytochemical compounds.\\n\\nTitle: Imputing abundance of over 2500 surface proteins from single-cell transcriptomes with context-agnostic zero-shot deep ensembles\\nSummary: SPIDER is a deep ensemble model that predicts the abundance of over 2500 surface proteins from single-cell transcriptomes with improved generalization across diverse contexts such as tissues or disease states. The model outperforms other state-of-the-art methods and has various applications including cell type annotation, biomarker/target identification, and cell-cell interaction analysis in cancer research.\\n\\nTitle: Modelling Protein-Glycan Interactions with HADDOCK\\nSummary: Glycans play important roles in living organisms by interacting with proteins for information transfer and signalling purposes, making it essential to determine the three-dimensional structures of protein-glycan complexes. The molecular docking approach HADDOCK was used to predict protein-glycan complexes with a top 5 success rate of 70% for bound datasets and 40% for unbound datasets using a benchmark of 89 complexes.\\n\\nTitle: Machine Learning Reveals Key Glycoprotein Mutations and Rapidly Assigns Lassa Virus Lineages\\nSummary: Machine learning and phylogenetic analysis of Lassa virus glycoprotein sequences revealed key mutations and genetic differences between Nigerian lineages and those from other West African countries. The study identified specific amino acid positions that are highly variable among the lineages, which may explain structural and phenotypical differences, and developed a machine learning-based tool for rapid lineage classification.\\n\\nTitle: RESP2: An uncertainty aware multi-target multi-property optimization AI pipeline for antibody discovery\\nSummary: The RESP2 pipeline is an AI-powered tool designed to optimize the discovery of therapeutic antibodies against infectious disease pathogens, taking into account multiple targets and properties such as specificity, low immunogenicity, and high affinity. The pipeline uses a suite of methods to estimate uncertainty in predictions and has been successfully applied to discover a highly human antibody with broad binding to variants of the COVID-19 spike protein receptor binding domain.\\n\\nTitle: Extending the capabilities of deconvolution to provide cell type specific pathway analysis of bulk RNA-seq data for idiopathic pulmonary fibrosis\\nSummary: A deconvolution method was applied to bulk RNA-seq data from idiopathic pulmonary fibrosis (IPF) samples to correct for changes in cell type proportions and provide cell-type specific pathway analysis. The results showed significant increases in fibroblasts and myofibroblasts, decreases in vascular endothelial capillary cells, and IPF-related changes in extracellular matrix organization and TGF-{beta} regulation, as well as the involvement of interferon signaling in ATII cells.\\n\\nTitle: A survey of ADP-ribosyltransferase families in the pathogenic Legionella\\nSummary: A comprehensive bioinformatic survey of 41 Legionella species identified 63 proteins with significant sequence or structural similarity to known ADP-ribosyltransferases (ARTs), organized into 39 ART-like families, including 26 novel families. The study found that most members of the novel ART families are predicted effectors, presenting promising targets for understanding Legionella pathogenicity and developing therapeutic strategies.\\n\\nTitle: A replicable and modular benchmark for long-read transcript quantification methods\\nSummary: Researchers have developed a replicable benchmark for evaluating long-read transcript quantification methods using synthetic RNA-seq datasets, which can be easily extended to include new tools or data sets. The study reveals discrepancies with previously published results and highlights the importance of high-quality simulated data in assessing the robustness of certain approaches.\\n\\nTitle: Logan: Planetary-Scale Genome Assembly Surveys Life's Diversity\\nSummary: The NCBI Sequence Read Archive contains over 50 petabases of DNA sequencing data across 27 million datasets, but its size makes it impractical to search for specific genetic sequences within a reasonable time frame. To address this issue, the authors used cloud computing to perform genome assembly on each dataset and created the Logan assemblage, which is now freely available and enables faster querying of the data, with some queries completing in as little as 11 hours.\\n\\nTitle: Cell-type specific epigenetic clocks to quantify biological age at cell-type resolution\\nSummary: Epigenetic clocks have been developed to estimate biological age, but most are based on heterogeneous bulk tissues and reflect both changes in cell-type composition and individual cell aging. This study created neuron- and hepatocyte-specific DNA methylation clocks that provide improved estimates of chronological age and detect accelerated biological aging in Alzheimer's disease and liver pathology.\\n\\nTitle: Genomic and transcriptomic analyses of Heteropoda venatoria reveal the expansion of P450 family for starvation resistance in spider\\nSummary: The genome of Heteropoda venatoria was sequenced and comparative genomic analysis revealed significant expansions in gene families related to lipid metabolism, including cytochrome P450 and steroid hormone biosynthesis genes. The study found that during starvation, H. venatoria undergoes a series of physiological changes, including the activation of fatty acid metabolism and protein degradation pathways, and the expression of expanded P450 gene families, which help the spider maintain a low-energy metabolic state and endure longer periods of starvation.\\n\\nTitle: Annotation Vocabulary (Might Be) All You Need\\nSummary: The authors introduce the \\\"Annotation Vocabulary\\\", a language of protein properties defined by structured ontologies that can be used to train transformer models without reference to amino acid sequences. They demonstrate the effectiveness of this approach in various experiments, achieving state-of-the-art results on several common datasets with competitive performance on others, and generating high-quality de novo protein sequences from annotation-only prompts.\\n\\nTitle: AncFlow: An Ancestral Sequence Reconstruction Approach for Determining Novel Protein Structural\\nSummary: Here is the summary in 2 sentences: AncFlow is an automated software pipeline that integrates phylogenetic analysis, subfamily identification, and ancestral sequence reconstruction (ASR) to generate ancestral protein sequences for structural prediction using state-of-the-art tools like AlphaFold. The pipeline was validated on two well-characterized protein families, providing insights into the evolutionary mechanisms underpinning functional diversification within these families and demonstrating its potential to guide protein engineering efforts.\""},{"path":"https://stephenturner.github.io/biorecap/reference/example_preprints.html","id":null,"dir":"Reference","previous_headings":"","what":"Example preprints with summaries — example_preprints","title":"Example preprints with summaries — example_preprints","text":"Example preprints summaries August 6, 2024.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/example_preprints.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Example preprints with summaries — example_preprints","text":"","code":"example_preprints"},{"path":"https://stephenturner.github.io/biorecap/reference/example_preprints.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Example preprints with summaries — example_preprints","text":"tibble returned get_preprints() followed add_prompt() followed add_summary().","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/example_preprints.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Example preprints with summaries — example_preprints","text":"","code":"example_preprints #> # A tibble: 90 × 6 #> subject title url abstract prompt summary #> #> 1 bioinformatics Integrity and miss grouping as … http… \"The hi… \"I am… \"The p… #> 2 bioinformatics Sainsc: a computational tool fo… http… \"Spatia… \"I am… \"Sains… #> 3 bioinformatics BRACE: A novel Bayesian-based i… http… \"Bayesi… \"I am… \"Alter… #> 4 bioinformatics Topological embedding and direc… http… \"Cancer… \"I am… \"Resea… #> 5 bioinformatics SeuratExtend: Streamlining Sing… http… \"Single… \"I am… \"Seura… #> 6 bioinformatics An Evolutionary Statistics Tool… http… \"We pre… \"I am… \"The \\… #> 7 bioinformatics A map of integrated cis-regulat… http… \"Cis-re… \"I am… \"The a… #> 8 bioinformatics MOSTPLAS: A Self-correction Mul… http… \"Plasmi… \"I am… \"Plasm… #> 9 bioinformatics Bootstrap Evaluation of Associa… http… \"Motiva… \"I am… \"The a… #> 10 bioinformatics Thermodynamic modeling of Csr/R… http… \"Backgr… \"I am… \"Resea… #> # ℹ 80 more rows"},{"path":"https://stephenturner.github.io/biorecap/reference/get_preprints.html","id":null,"dir":"Reference","previous_headings":"","what":"Get bioRxiv preprints — get_preprints","title":"Get bioRxiv preprints — get_preprints","text":"Get bioRxiv preprints","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/get_preprints.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get bioRxiv preprints — get_preprints","text":"","code":"get_preprints( subject = \"all\", baseurl = \"https://connect.biorxiv.org/biorxiv_xml.php?subject=\", clean = TRUE )"},{"path":"https://stephenturner.github.io/biorecap/reference/get_preprints.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get bioRxiv preprints — get_preprints","text":"subject character vector valid biorxiv subjects. See subjects. baseurl base URL biorxiv RSS feed. Default https://connect.biorxiv.org/biorxiv_xml.php?subject=. change unless know . clean Logical; try strip graphical abstract information? TRUE, strips away text O_FIG C_FIG, words graphical abstract abstract text RSS feed.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/get_preprints.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get bioRxiv preprints — get_preprints","text":"data frame bioRxiv preprints.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/get_preprints.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get bioRxiv preprints — get_preprints","text":"","code":"preprints <- get_preprints(subject=c(\"bioinformatics\", \"genomics\")) preprints #> # A tibble: 60 × 4 #> subject title url abstract #> #> 1 bioinformatics Unsupervised domain classification of AlphaFol… http… The rel… #> 2 bioinformatics Testing and overcoming the limitations of Modu… http… Modular… #> 3 bioinformatics Decoding multicellular niche formation in the … http… Accurat… #> 4 bioinformatics Insights from Molecular Docking and Dynamics S… http… Alpha-s… #> 5 bioinformatics TUSCAN: Tumor segmentation and classification … http… The ide… #> 6 bioinformatics Characterizing the role of exosomal miRNAs in … http… Backgro… #> 7 bioinformatics The Lomb-Scargle periodogram-based differentia… http… Motivat… #> 8 bioinformatics Protein stability models fail to capture epist… http… There i… #> 9 bioinformatics CryptoBench: Cryptic protein-ligand binding si… http… Structu… #> 10 bioinformatics haCCA: Multi-module Integrating of spatial tra… http… Spatial… #> # ℹ 50 more rows"},{"path":"https://stephenturner.github.io/biorecap/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. ollamar list_models, test_connection","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/subjects.html","id":null,"dir":"Reference","previous_headings":"","what":"bioRxiv subjects — subjects","title":"bioRxiv subjects — subjects","text":"Names subjects RSS feeds biorXiv","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/subjects.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"bioRxiv subjects — subjects","text":"","code":"subjects"},{"path":"https://stephenturner.github.io/biorecap/reference/subjects.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"bioRxiv subjects — subjects","text":"character vector","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/subjects.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"bioRxiv subjects — subjects","text":"https://www.biorxiv.org/alertsrss","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/subjects.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"bioRxiv subjects — subjects","text":"","code":"subjects #> [1] \"all\" #> [2] \"animal_behavior_and_cognition\" #> [3] \"biochemistry\" #> [4] \"bioengineering\" #> [5] \"bioinformatics\" #> [6] \"biophysics\" #> [7] \"cancer_biology\" #> [8] \"cell_biology\" #> [9] \"clinical_trials\" #> [10] \"developmental_biology\" #> [11] \"ecology\" #> [12] \"epidemiology\" #> [13] \"evolutionary_biology\" #> [14] \"genetics\" #> [15] \"genomics\" #> [16] \"immunology\" #> [17] \"microbiology\" #> [18] \"molecular_biology\" #> [19] \"neuroscience\" #> [20] \"paleontology\" #> [21] \"pathology\" #> [22] \"pharmacology_and_toxicology\" #> [23] \"plant_biology\" #> [24] \"scientific_communication_and_education\" #> [25] \"synthetic_biology\" #> [26] \"systems_biology\" #> [27] \"zoology\""},{"path":"https://stephenturner.github.io/biorecap/reference/tt_preprints.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a markdown table from prepreprint summaries — tt_preprints","title":"Create a markdown table from prepreprint summaries — tt_preprints","text":"Create markdown table prepreprint summaries","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/tt_preprints.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a markdown table from prepreprint summaries — tt_preprints","text":"","code":"tt_preprints(preprints, cols = c(\"title\", \"summary\"), width = c(1, 3))"},{"path":"https://stephenturner.github.io/biorecap/reference/tt_preprints.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a markdown table from prepreprint summaries — tt_preprints","text":"preprints Output get_preprints() followed add_prompt() followed add_summary(). cols Columns display resulting markdown table. width Vector relative widths equal length(cols).","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/tt_preprints.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a markdown table from prepreprint summaries — tt_preprints","text":"tinytable table.","code":""},{"path":"https://stephenturner.github.io/biorecap/reference/tt_preprints.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Create a markdown table from prepreprint summaries — tt_preprints","text":"","code":"# Use built-in example data example_preprints #> # A tibble: 90 × 6 #> subject title url abstract prompt summary #> #> 1 bioinformatics Integrity and miss grouping as … http… \"The hi… \"I am… \"The p… #> 2 bioinformatics Sainsc: a computational tool fo… http… \"Spatia… \"I am… \"Sains… #> 3 bioinformatics BRACE: A novel Bayesian-based i… http… \"Bayesi… \"I am… \"Alter… #> 4 bioinformatics Topological embedding and direc… http… \"Cancer… \"I am… \"Resea… #> 5 bioinformatics SeuratExtend: Streamlining Sing… http… \"Single… \"I am… \"Seura… #> 6 bioinformatics An Evolutionary Statistics Tool… http… \"We pre… \"I am… \"The \\… #> 7 bioinformatics A map of integrated cis-regulat… http… \"Cis-re… \"I am… \"The a… #> 8 bioinformatics MOSTPLAS: A Self-correction Mul… http… \"Plasmi… \"I am… \"Plasm… #> 9 bioinformatics Bootstrap Evaluation of Associa… http… \"Motiva… \"I am… \"The a… #> 10 bioinformatics Thermodynamic modeling of Csr/R… http… \"Backgr… \"I am… \"Resea… #> # ℹ 80 more rows tt_preprints(example_preprints[1:2,]) #> #> +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ #> | title | summary | #> +=====================================================================================================================================================================================+=========================================================================================================================================================================================================================================================================================================================================================================================================================================================================================+ #> | [Integrity and miss grouping as support for clusters in agglomerative hierarchical methods: the R-package octopucs](http://biorxiv.org/cgi/content/short/2024.08.01.606070v1?rss=1) | The proposed method assesses cluster support throughout hierarchical analyses by compiling a consensus topology and using ecological concepts of reciprocal complementarities to define cluster integrity and contamination. This approach allows for building support for groups even when there is partial membership match after resampling, and was implemented in the R package octopucs, which showed robust detection of changes in group memberships compared to other methods. | #> +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ #> | [Sainsc: a computational tool for segmentation-free analysis of in-situ capture](http://biorxiv.org/cgi/content/short/2024.08.02.603879v1?rss=1) | Sainsc is a computational tool that enables segmentation-free analysis of spatially resolved transcriptomics data, allowing for accurate cell-type assignment at the subcellular level without requiring manual cell border delineation. The tool provides efficient processing of high-resolution spatial data and can generate maps of cell types with corresponding confidence scores, making it a valuable resource for biomedical researchers working with complex tissue samples. | #> +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+"}]