-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconv3d_chalearn.py
137 lines (115 loc) · 5.68 KB
/
conv3d_chalearn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from numpy import array, prod, float32
# theano import
from theano import shared
import theano.tensor as T
from convnet3d import ConvLayer, NormLayer, PoolLayer, LogRegr, HiddenLayer, \
DropoutLayer, relu, leaky_relu
from functions.train_functions import write, conv_args, var_norm, std_norm, lin, load_params
class conv3d_chalearn(object):
"""
this is the class for generating chalearn convnet 3d moduele
"""
def __init__(self, x, use, lr, batch, net, reg, drop, mom, tr, res_dir, load_path=""):
self.out = []
self.layers = []
self.insp_mean = []
self.insp_std = []
for c in (use, lr, batch, net, reg, drop, mom, tr):
write(c.__name__+":", res_dir)
_s = c.__dict__
del _s['__module__'], _s['__doc__']
for key in _s.keys():
val = str(_s[key])
if val.startswith("<static"): val = str(_s[key].__func__.__name__)
if val.startswith("<Cuda"): continue
if val.startswith("<Tensor"): continue
write(" "+key+": "+val, res_dir)
####################################################################
####################################################################
print "\n%s\n\tbuilding\n%s"%(('-'*30,)*2)
####################################################################
####################################################################
# ConvNet
# ------------------------------------------------------------------------------
# calculate resulting video shapes for all stages
conv_shapes = []
for i in xrange(net.n_stages):
k,p,v = array(net.kernels[i]), array(net.pools[i]), array(tr.video_shapes[i])
conv_s = tuple(v-k+1)
conv_shapes.append(conv_s)
tr.video_shapes.append(tuple((v-k+1)/p))
print "stage", i
if use.depth and i==0:
print " conv",tr.video_shapes[i],"x 2 ->",conv_s #for body and hand
else:
print " conv",tr.video_shapes[i],"->",conv_s
print " pool",conv_s,"->",tr.video_shapes[i+1],"x",net.maps[i+1]
# number of inputs for MLP = (# maps last stage)*(# convnets)*(resulting video shape) + trajectory size
n_in_MLP = net.maps[-1]*net.n_convnets*prod(tr.video_shapes[-1])
if use.depth:
if net.n_convnets==2:
out = [x[:,:,0,:,:,:], x[:,:,1,:,:,:]] # 2 nets: body and hand
# build 3D ConvNet
for stage in xrange(net.n_stages):
for i in xrange(len(out)): # for body and hand
# normalization
if use.norm and stage==0:
gray_norm = NormLayer(out[i][:,0:1], method="lcn",
use_divisor=use.norm_div).output
gray_norm = std_norm(gray_norm,axis=[-3,-2,-1])
depth_norm = var_norm(out[i][:,1:])
out[i] = T.concatenate([gray_norm,depth_norm],axis=1)
elif use.norm:
out[i] = NormLayer(out[i], method="lcn",use_divisor=use.norm_div).output
out[i] = std_norm(out[i],axis=[-3,-2,-1])
# convolutions
out[i] *= net.scaler[stage][i]
self.layers.append(ConvLayer(out[i], **conv_args(stage, i, batch, net, use, tr.rng, tr.video_shapes, load_path)))
out[i] = self.layers[-1].output
out[i] = PoolLayer(out[i], net.pools[stage], method=net.pool_method).output
if tr.inspect:
self.insp_mean.append(T.mean(out[i]))
self.insp_std.append(T.std(out[i]))
# flatten all convnets outputs
for i in xrange(len(out)): out[i] = std_norm(out[i],axis=[-3,-2,-1])
out = [out[i].flatten(2) for i in range(len(out))]
vid_ = T.concatenate(out, axis=1)
# dropout
if use.drop:
drop.p_vid = shared(float32(drop.p_vid_val) )
drop.p_hidden = shared(float32(drop.p_hidden_val))
vid_ = DropoutLayer(vid_, rng=tr.rng, p=drop.p_hidden).output
#maxout
if use.maxout:
vid_ = maxout(vid_, (batch.micro,n_in_MLP))
net.activation = lin
n_in_MLP /= 2
# net.hidden *= 2
# MLP
# ------------------------------------------------------------------------------
# fusion
if net.fusion == "early":
out = vid_
# hidden layer
if use.load:
W,b = load_params(use, load_path)
self.layers.append(HiddenLayer(out, n_in=n_in_MLP, n_out=net.hidden_vid, rng=tr.rng, W=W, b=b,
W_scale=net.W_scale[-2], b_scale=net.b_scale[-2], activation=net.activation))
else:
self.layers.append(HiddenLayer(out, n_in=n_in_MLP, n_out=net.hidden_vid, rng=tr.rng,
W_scale=net.W_scale[-2], b_scale=net.b_scale[-2], activation=net.activation))
out = self.layers[-1].output
#if tr.inspect:
#self.insp_mean = T.stack(self.insp_mean)
#self.insp_std = T.stack(self.insp_std)
#self.insp = T.stack(self.insp[0],self.insp[1],self.insp[2],self.insp[3],self.insp[4],self.insp[5], T.mean(out))
#else: self.insp = T.stack(0,0)
# out = normalize(out)
if use.drop: out = DropoutLayer(out, rng=tr.rng, p=drop.p_hidden).output
#maxout
if use.maxout:
out = maxout(out, (batch.micro,net.hidden))
net.hidden /= 2
# now assembly all the output
self.out = out
self.n_in_MLP = n_in_MLP