forked from kaixin96/PANet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
129 lines (110 loc) · 4.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""Training Script"""
import os
import shutil
import torch
import torch.nn as nn
import torch.optim
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import MultiStepLR
import torch.backends.cudnn as cudnn
from torchvision.transforms import Compose
from models.fewshot import FewShotSeg
from dataloaders.customized import voc_fewshot, coco_fewshot
from dataloaders.transforms import RandomMirror, Resize, ToTensorNormalize
from util.utils import set_seed, CLASS_LABELS
from config import ex
@ex.automain
def main(_run, _config, _log):
if _run.observers:
os.makedirs(f'{_run.observers[0].dir}/snapshots', exist_ok=True)
for source_file, _ in _run.experiment_info['sources']:
os.makedirs(os.path.dirname(f'{_run.observers[0].dir}/source/{source_file}'),
exist_ok=True)
_run.observers[0].save_file(source_file, f'source/{source_file}')
shutil.rmtree(f'{_run.observers[0].basedir}/_sources')
set_seed(_config['seed'])
cudnn.enabled = True
cudnn.benchmark = True
torch.cuda.set_device(device=_config['gpu_id'])
torch.set_num_threads(1)
_log.info('###### Create model ######')
model = FewShotSeg(pretrained_path=_config['path']['init_path'], cfg=_config['model'])
model = nn.DataParallel(model.cuda(), device_ids=[_config['gpu_id'],])
model.train()
_log.info('###### Load data ######')
data_name = _config['dataset']
if data_name == 'VOC':
make_data = voc_fewshot
elif data_name == 'COCO':
make_data = coco_fewshot
else:
raise ValueError('Wrong config for dataset!')
labels = CLASS_LABELS[data_name][_config['label_sets']]
transforms = Compose([Resize(size=_config['input_size']),
RandomMirror()])
dataset = make_data(
base_dir=_config['path'][data_name]['data_dir'],
split=_config['path'][data_name]['data_split'],
transforms=transforms,
to_tensor=ToTensorNormalize(),
labels=labels,
max_iters=_config['n_steps'] * _config['batch_size'],
n_ways=_config['task']['n_ways'],
n_shots=_config['task']['n_shots'],
n_queries=_config['task']['n_queries']
)
trainloader = DataLoader(
dataset,
batch_size=_config['batch_size'],
shuffle=True,
num_workers=1,
pin_memory=True,
drop_last=True
)
_log.info('###### Set optimizer ######')
optimizer = torch.optim.SGD(model.parameters(), **_config['optim'])
scheduler = MultiStepLR(optimizer, milestones=_config['lr_milestones'], gamma=0.1)
criterion = nn.CrossEntropyLoss(ignore_index=_config['ignore_label'])
i_iter = 0
log_loss = {'loss': 0, 'align_loss': 0}
_log.info('###### Training ######')
for i_iter, sample_batched in enumerate(trainloader):
# Prepare input
support_images = [[shot.cuda() for shot in way]
for way in sample_batched['support_images']]
support_fg_mask = [[shot[f'fg_mask'].float().cuda() for shot in way]
for way in sample_batched['support_mask']]
support_bg_mask = [[shot[f'bg_mask'].float().cuda() for shot in way]
for way in sample_batched['support_mask']]
query_images = [query_image.cuda()
for query_image in sample_batched['query_images']]
query_labels = torch.cat(
[query_label.long().cuda() for query_label in sample_batched['query_labels']], dim=0)
# Forward and Backward
optimizer.zero_grad()
query_pred, align_loss = model(support_images, support_fg_mask, support_bg_mask,
query_images)
query_loss = criterion(query_pred, query_labels)
loss = query_loss + align_loss * _config['align_loss_scaler']
loss.backward()
optimizer.step()
scheduler.step()
# Log loss
query_loss = query_loss.detach().data.cpu().numpy()
align_loss = align_loss.detach().data.cpu().numpy() if align_loss != 0 else 0
_run.log_scalar('loss', query_loss)
_run.log_scalar('align_loss', align_loss)
log_loss['loss'] += query_loss
log_loss['align_loss'] += align_loss
# print loss and take snapshots
if (i_iter + 1) % _config['print_interval'] == 0:
loss = log_loss['loss'] / (i_iter + 1)
align_loss = log_loss['align_loss'] / (i_iter + 1)
print(f'step {i_iter+1}: loss: {loss}, align_loss: {align_loss}')
if (i_iter + 1) % _config['save_pred_every'] == 0:
_log.info('###### Taking snapshot ######')
torch.save(model.state_dict(),
os.path.join(f'{_run.observers[0].dir}/snapshots', f'{i_iter + 1}.pth'))
_log.info('###### Saving final model ######')
torch.save(model.state_dict(),
os.path.join(f'{_run.observers[0].dir}/snapshots', f'{i_iter + 1}.pth'))