-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_trainer.py
34 lines (26 loc) · 1.08 KB
/
model_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import tensorflow as tf
import input_data
def create_model(data, weight, bias):
y = tf.nn.softmax(tf.matmul(data,weight)+bias)
return y
def train_data():
mnist = input_data.read_data_sets("mnist_data/",one_hot=True)
x = tf.placeholder("float",[None,784])
w = tf.Variable(tf.zeros([784,10]), name="weights")
b = tf.Variable(tf.zeros([10]), name="biases")
y = create_model(x,w,b)
y1 = tf.placeholder("float",[None,10])
cross_entropy = -tf.reduce_sum(y1*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
saver = tf.train.Saver()
sess.run(init)
for i in range(15000):
batch_xs, batch_ys = mnist.train.next_batch(20)
sess.run(train_step, feed_dict={x:batch_xs, y1:batch_ys})
saver.save(sess, './model_final/model_final')
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y1,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print ("The Model is trained with the accuracy : ")
print (sess.run(accuracy, feed_dict={x:mnist.test.images, y1:mnist.test.labels}))