-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy patheval_cuboid.py
202 lines (166 loc) · 7.24 KB
/
eval_cuboid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import json
import glob
import argparse
import numpy as np
from tqdm import tqdm
from scipy.spatial import HalfspaceIntersection
from scipy.spatial import ConvexHull
from misc import post_proc, panostretch
def tri2halfspace(pa, pb, p):
''' Helper function for evaluating 3DIoU '''
v1 = pa - p
v2 = pb - p
vn = np.cross(v1, v2)
if -vn @ p > 0:
vn = -vn
return [*vn, -vn @ p]
def xyzlst2halfspaces(xyz_floor, xyz_ceil):
'''
Helper function for evaluating 3DIoU
return halfspace enclose (0, 0, 0)
'''
N = xyz_floor.shape[0]
halfspaces = []
for i in range(N):
last_i = (i - 1 + N) % N
next_i = (i + 1) % N
p_floor_a = xyz_floor[last_i]
p_floor_b = xyz_floor[next_i]
p_floor = xyz_floor[i]
p_ceil_a = xyz_ceil[last_i]
p_ceil_b = xyz_ceil[next_i]
p_ceil = xyz_ceil[i]
halfspaces.append(tri2halfspace(p_floor_a, p_floor_b, p_floor))
halfspaces.append(tri2halfspace(p_floor_a, p_ceil, p_floor))
halfspaces.append(tri2halfspace(p_ceil, p_floor_b, p_floor))
halfspaces.append(tri2halfspace(p_ceil_a, p_ceil_b, p_ceil))
halfspaces.append(tri2halfspace(p_ceil_a, p_floor, p_ceil))
halfspaces.append(tri2halfspace(p_floor, p_ceil_b, p_ceil))
return np.array(halfspaces)
def eval_3diou(dt_floor_coor, dt_ceil_coor, gt_floor_coor, gt_ceil_coor, ch=-1.6,
coorW=1024, coorH=512, floorW=1024, floorH=512):
''' Evaluate 3D IoU using halfspace intersection '''
dt_floor_coor = np.array(dt_floor_coor)
dt_ceil_coor = np.array(dt_ceil_coor)
gt_floor_coor = np.array(gt_floor_coor)
gt_ceil_coor = np.array(gt_ceil_coor)
assert (dt_floor_coor[:, 0] != dt_ceil_coor[:, 0]).sum() == 0
assert (gt_floor_coor[:, 0] != gt_ceil_coor[:, 0]).sum() == 0
N = len(dt_floor_coor)
dt_floor_xyz = np.hstack([
post_proc.np_coor2xy(dt_floor_coor, ch, coorW, coorH, floorW=1, floorH=1),
np.zeros((N, 1)) + ch,
])
gt_floor_xyz = np.hstack([
post_proc.np_coor2xy(gt_floor_coor, ch, coorW, coorH, floorW=1, floorH=1),
np.zeros((N, 1)) + ch,
])
dt_c = np.sqrt((dt_floor_xyz[:, :2] ** 2).sum(1))
gt_c = np.sqrt((gt_floor_xyz[:, :2] ** 2).sum(1))
dt_v2 = post_proc.np_coory2v(dt_ceil_coor[:, 1], coorH)
gt_v2 = post_proc.np_coory2v(gt_ceil_coor[:, 1], coorH)
dt_ceil_z = dt_c * np.tan(dt_v2)
gt_ceil_z = gt_c * np.tan(gt_v2)
dt_ceil_xyz = dt_floor_xyz.copy()
dt_ceil_xyz[:, 2] = dt_ceil_z
gt_ceil_xyz = gt_floor_xyz.copy()
gt_ceil_xyz[:, 2] = gt_ceil_z
dt_halfspaces = xyzlst2halfspaces(dt_floor_xyz, dt_ceil_xyz)
gt_halfspaces = xyzlst2halfspaces(gt_floor_xyz, gt_ceil_xyz)
in_halfspaces = HalfspaceIntersection(np.concatenate([dt_halfspaces, gt_halfspaces]),
np.zeros(3))
dt_halfspaces = HalfspaceIntersection(dt_halfspaces, np.zeros(3))
gt_halfspaces = HalfspaceIntersection(gt_halfspaces, np.zeros(3))
in_volume = ConvexHull(in_halfspaces.intersections).volume
dt_volume = ConvexHull(dt_halfspaces.intersections).volume
gt_volume = ConvexHull(gt_halfspaces.intersections).volume
un_volume = dt_volume + gt_volume - in_volume
return 100 * in_volume / un_volume
def gen_reg_from_xy(xy, w):
xy = xy[np.argsort(xy[:, 0])]
return np.interp(np.arange(w), xy[:, 0], xy[:, 1], period=w)
def test(dt_cor_id, z0, z1, gt_cor_id, w, h, losses):
# Eval corner error
mse = np.sqrt(((gt_cor_id - dt_cor_id)**2).sum(1)).mean()
ce_loss = 100 * mse / np.sqrt(w**2 + h**2)
# Pixel surface error (3 labels: ceiling, wall, floor)
y0_dt = []
y0_gt = []
y1_gt = []
for j in range(4):
coorxy = panostretch.pano_connect_points(dt_cor_id[j * 2],
dt_cor_id[(j * 2 + 2) % 8],
-z0)
y0_dt.append(coorxy)
coorxy = panostretch.pano_connect_points(gt_cor_id[j * 2],
gt_cor_id[(j * 2 + 2) % 8],
-z0)
y0_gt.append(coorxy)
coorxy = panostretch.pano_connect_points(gt_cor_id[j * 2 + 1],
gt_cor_id[(j * 2 + 3) % 8],
z0)
y1_gt.append(coorxy)
y0_dt = gen_reg_from_xy(np.concatenate(y0_dt, 0), w)
y1_dt = post_proc.infer_coory(y0_dt, z1 - z0, z0)
y0_gt = gen_reg_from_xy(np.concatenate(y0_gt, 0), w)
y1_gt = gen_reg_from_xy(np.concatenate(y1_gt, 0), w)
surface = np.zeros((h, w), dtype=np.int32)
surface[np.round(y0_dt).astype(int), np.arange(w)] = 1
surface[np.round(y1_dt).astype(int), np.arange(w)] = 1
surface = np.cumsum(surface, axis=0)
surface_gt = np.zeros((h, w), dtype=np.int32)
surface_gt[np.round(y0_gt).astype(int), np.arange(w)] = 1
surface_gt[np.round(y1_gt).astype(int), np.arange(w)] = 1
surface_gt = np.cumsum(surface_gt, axis=0)
pe_loss = 100 * (surface != surface_gt).sum() / (h * w)
# Eval 3d IoU
iou3d = eval_3diou(dt_cor_id[1::2], dt_cor_id[0::2], gt_cor_id[1::2], gt_cor_id[0::2])
losses['CE'].append(ce_loss)
losses['PE'].append(pe_loss)
losses['3DIoU'].append(iou3d)
def prepare_gtdt_pairs(gt_glob, dt_glob):
gt_paths = sorted(glob.glob(gt_glob))
dt_paths = dict([(os.path.split(v)[-1].split('.')[0], v)
for v in glob.glob(dt_glob) if v.endswith('json')])
gtdt_pairs = []
for gt_path in gt_paths:
k = os.path.split(gt_path)[-1].split('.')[0]
if k in dt_paths:
gtdt_pairs.append((gt_path, dt_paths[k]))
return gtdt_pairs
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dt_glob', required=True,
help='NOTE: Remeber to quote your glob path.'
'Files assumed to be json from inference.py')
parser.add_argument('--gt_glob', default='data/test/label_cor/*txt',
help='NOTE: Remeber to quote your glob path.'
'Files assumed to be txt')
parser.add_argument('--w', default=1024, type=int,
help='GT images width')
parser.add_argument('--h', default=512, type=int,
help='GT images height')
args = parser.parse_args()
# Prepare (gt, dt) pairs
gtdt_pairs = prepare_gtdt_pairs(args.gt_glob, args.dt_glob)
# Testing
losses = {
'CE': [],
'PE': [],
'3DIoU': [],
}
for gt_path, dt_path in tqdm(gtdt_pairs, desc='Testing'):
with open(gt_path) as f:
gt_cor_id = np.array([l.split() for l in f], np.float32)
with open(dt_path) as f:
dt = json.load(f)
dt_cor_id = np.array(dt['uv'], np.float32)
dt_cor_id[:, 0] *= args.w
dt_cor_id[:, 1] *= args.h
test(dt_cor_id, dt['z0'], dt['z1'], gt_cor_id, args.w, args.h, losses)
print(' Testing Result '.center(50, '='))
print('Corner Error (%):', np.mean(losses['CE']))
print('Pixel Error (%):', np.mean(losses['PE']))
print('3DIoU (%):', np.mean(losses['3DIoU']))
print('=' * 50)