-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathtrain.py
352 lines (309 loc) · 15.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import os
import argparse
import numpy as np
from tqdm import trange
from tensorboardX import SummaryWriter
import shutil
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from torch.cuda.amp import GradScaler, autocast
from model import HorizonNet, ENCODER_RESNET, ENCODER_DENSENET
from dataset import PanoCorBonDataset
from misc.utils import adjust_learning_rate, save_model, load_trained_model
from inference import inference
from eval_general import test_general
class AugDataLoader():
def __init__(self,aug_loader) -> None:
self.aug_loader = aug_loader
self.iter_loader = iter(self.aug_loader)
def get_data(self):
try:
return next(self.iter_loader)
except:
self.iter_loader = iter(self.aug_loader)
return next(self.iter_loader)
def save_checkpoint(state, is_best, checkpoint_dir, epoch):
filename = os.path.join(checkpoint_dir, 'checkpoint.pth.tar')
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, os.path.join(checkpoint_dir, f'best_model_{epoch}.pth.tar'))
def flatten_rnn_parameters(model):
for module in model.modules():
if isinstance(module, nn.RNNBase): # Checks for all types of RNN layers
module.flatten_parameters()
def feed_forward(net, x, y_bon, y_cor):
flatten_rnn_parameters(net.module if hasattr(net, 'module') else net)
x = x.to(device)
y_bon = y_bon.to(device)
y_cor = y_cor.to(device)
losses = {}
with autocast():
y_bon_, y_cor_ = net(x)
losses['bon'] = F.l1_loss(y_bon_, y_bon)
losses['cor'] = F.binary_cross_entropy_with_logits(y_cor_, y_cor)
losses['total'] = losses['bon'] + losses['cor']
return losses
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--id', required=True,
help='experiment id to name checkpoints and logs')
parser.add_argument('--ckpt', default='./ckpt',
help='folder to output checkpoints')
parser.add_argument('--logs', default='./logs',
help='folder to logging')
parser.add_argument('--pth', default=None,
help='path to load saved checkpoint.'
'(finetuning)')
# Model related
parser.add_argument('--backbone', default='resnet50',
choices=ENCODER_RESNET + ENCODER_DENSENET,
help='backbone of the network')
parser.add_argument('--no_rnn', action='store_true',
help='whether to remove rnn or not')
# Dataset related arguments
parser.add_argument('--train_root_dir', default='data/layoutnet_dataset/train',
help='root directory to training dataset. '
'should contains img, label_cor subdirectories')
parser.add_argument('--train_aug_root_dir', default=None,
help='root directory to training dataset. '
'should contains img, label_cor subdirectories')
parser.add_argument('--valid_root_dir', default='data/layoutnet_dataset/valid',
help='root directory to validation dataset. '
'should contains img, label_cor subdirectories')
parser.add_argument('--no_flip', action='store_true',
help='disable left-right flip augmentation')
parser.add_argument('--no_rotate', action='store_true',
help='disable horizontal rotate augmentation')
parser.add_argument('--no_gamma', action='store_true',
help='disable gamma augmentation')
parser.add_argument('--no_pano_stretch', action='store_true',
help='disable pano stretch')
parser.add_argument('--num_workers', default=8, type=int,
help='numbers of workers for dataloaders')
# optimization related arguments
parser.add_argument('--freeze_earlier_blocks', default=-1, type=int)
parser.add_argument('--batch_size_train', default=8, type=int,
help='training mini-batch size')
parser.add_argument('--batch_size_valid', default=2, type=int,
help='validation mini-batch size')
parser.add_argument('--epochs', default=300, type=int,
help='epochs to train')
parser.add_argument('--optim', default='Adam',
help='optimizer to use. only support SGD and Adam')
parser.add_argument('--lr', default=1e-4, type=float,
help='learning rate')
parser.add_argument('--lr_pow', default=0.9, type=float,
help='power in poly to drop LR')
parser.add_argument('--warmup_lr', default=1e-6, type=float,
help='starting learning rate for warm up')
parser.add_argument('--warmup_epochs', default=0, type=int,
help='numbers of warmup epochs')
parser.add_argument('--beta1', default=0.9, type=float,
help='momentum for sgd, beta1 for adam')
parser.add_argument('--weight_decay', default=0, type=float,
help='factor for L2 regularization')
parser.add_argument('--bn_momentum', type=float)
# Misc arguments
parser.add_argument('--no_cuda', action='store_true',
help='disable cuda')
parser.add_argument('--multi_gpu', action='store_true',
help='enable data parallelism on multiple GPUs')
parser.add_argument('--device', default='0',
help='Comma-separated list of GPUs to use (e.g., 0 or 0,1)')
parser.add_argument('--seed', default=594277, type=int,
help='manual seed')
parser.add_argument('--disp_iter', type=int, default=1,
help='iterations frequency to display')
parser.add_argument('--save_every', type=int, default=25,
help='epochs frequency to save state_dict')
args = parser.parse_args()
if not args.no_cuda:
os.environ['CUDA_VISIBLE_DEVICES'] = args.device
device = torch.device('cpu' if args.no_cuda else 'cuda')
np.random.seed(args.seed)
torch.manual_seed(args.seed)
os.makedirs(os.path.join(args.ckpt, args.id), exist_ok=True)
# Create dataloader
if args.train_aug_root_dir:
train_batch_size, train_aug_batch_size = args.batch_size_train//2, args.batch_size_train//2
print(args.train_aug_root_dir)
dataset_train_aug = PanoCorBonDataset(
root_dir=args.train_aug_root_dir,
flip=not args.no_flip, rotate=not args.no_rotate, gamma=not args.no_gamma,
stretch=not args.no_pano_stretch)
loader_train_aug = DataLoader(dataset_train_aug, train_aug_batch_size,
shuffle=True, drop_last=True,
num_workers=args.num_workers,
pin_memory=not args.no_cuda,
worker_init_fn=lambda x: np.random.seed())
print(f'train batch size: {train_batch_size}, train augmentation batch size: {train_aug_batch_size}')
print(f'training augmentation dataset contains {len(loader_train_aug.dataset)} images!!!')
else:
train_batch_size = args.batch_size_train
train_batch_size = args.batch_size_train
dataset_train = PanoCorBonDataset(
root_dir=args.train_root_dir,
flip=not args.no_flip, rotate=not args.no_rotate, gamma=not args.no_gamma,
stretch=not args.no_pano_stretch)
loader_train = DataLoader(dataset_train, train_batch_size,
shuffle=True, drop_last=True,
num_workers=args.num_workers,
pin_memory=not args.no_cuda,
worker_init_fn=lambda x: np.random.seed())
print(f'training dataset contains {len(loader_train.dataset)} images!!!')
if args.valid_root_dir:
dataset_valid = PanoCorBonDataset(
root_dir=args.valid_root_dir, return_cor=True,
flip=False, rotate=False, gamma=False,
stretch=False)
# Create model
if args.pth is not None:
print('Finetune model is given.')
print('Ignore --backbone and --no_rnn')
net = load_trained_model(HorizonNet, args.pth).to(device)
flatten_rnn_parameters(net.module if hasattr(net, 'module') else net)
else:
net = HorizonNet(args.backbone, not args.no_rnn).to(device)
if args.multi_gpu and torch.cuda.device_count() > 1:
print(f"Using {torch.cuda.device_count()} GPUs for Data Parallelism")
net = nn.DataParallel(net)
elif not args.no_cuda:
net = net.to(device)
else:
print("Using CPU")
flatten_rnn_parameters(net.module if hasattr(net, 'module') else net)
assert -1 <= args.freeze_earlier_blocks and args.freeze_earlier_blocks <= 4
if args.freeze_earlier_blocks != -1:
b0, b1, b2, b3, b4 = net.feature_extractor.list_blocks()
blocks = [b0, b1, b2, b3, b4]
for i in range(args.freeze_earlier_blocks + 1):
print('Freeze block%d' % i)
for m in blocks[i]:
for param in m.parameters():
param.requires_grad = False
if args.bn_momentum:
for m in net.modules():
if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
m.momentum = args.bn_momentum
# Create optimizer
if args.optim == 'SGD':
optimizer = optim.SGD(
filter(lambda p: p.requires_grad, net.parameters()),
lr=args.lr, momentum=args.beta1, weight_decay=args.weight_decay)
elif args.optim == 'Adam':
optimizer = optim.Adam(
filter(lambda p: p.requires_grad, net.parameters()),
lr=args.lr, betas=(args.beta1, 0.999), weight_decay=args.weight_decay)
else:
raise NotImplementedError()
scaler = GradScaler()
# Create tensorboard for monitoring training
tb_path = os.path.join(args.logs, args.id)
os.makedirs(tb_path, exist_ok=True)
tb_writer = SummaryWriter(log_dir=tb_path)
# Init variable
args.warmup_iters = args.warmup_epochs * len(loader_train)
args.max_iters = args.epochs * len(loader_train)
args.running_lr = args.warmup_lr if args.warmup_epochs > 0 else args.lr
args.cur_iter = 0
args.best_valid_score = 0
if args.train_aug_root_dir:
aug_loader = AugDataLoader(loader_train_aug)
else:
aug_loader = None
# Start training
for ith_epoch in trange(1, args.epochs + 1, desc='Epoch', unit='ep'):
# Train phase
net.train()
flatten_rnn_parameters(net.module if hasattr(net, 'module') else net)
if args.freeze_earlier_blocks != -1:
b0, b1, b2, b3, b4 = net.feature_extractor.list_blocks()
blocks = [b0, b1, b2, b3, b4]
for i in range(args.freeze_earlier_blocks + 1):
for m in blocks[i]:
m.eval()
iterator_train = iter(loader_train)
for _ in trange(len(loader_train),
desc='Train ep%s' % ith_epoch, position=1):
# Set learning rate
adjust_learning_rate(optimizer, args)
args.cur_iter += 1
x, y_bon, y_cor = next(iterator_train)
if aug_loader is not None:
x_aug, y_bon_aug, y_cor_aug = aug_loader.get_data()
x = torch.cat((x,x_aug),axis=0)
y_bon = torch.cat((y_bon,y_bon_aug),axis=0)
y_cor = torch.cat((y_cor,y_cor_aug),axis=0)
optimizer.zero_grad()
with torch.cuda.amp.autocast():
losses = feed_forward(net, x, y_bon, y_cor)
loss = losses['total']
# backprop
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
for k, v in losses.items():
k = 'train/%s' % k
tb_writer.add_scalar(k, v.item(), args.cur_iter)
tb_writer.add_scalar('train/lr', args.running_lr, args.cur_iter)
loss = losses['total']
# Valid phase
net.eval()
if args.valid_root_dir:
valid_loss = {}
for jth in trange(len(dataset_valid),
desc='Valid ep%d' % ith_epoch, position=2):
x, y_bon, y_cor, gt_cor_id = dataset_valid[jth]
x, y_bon, y_cor = x[None], y_bon[None], y_cor[None]
with torch.no_grad():
losses = feed_forward(net, x, y_bon, y_cor)
# True eval result instead of training objective
true_eval = dict([
(n_corner, {'2DIoU': [], '3DIoU': [], 'rmse': [], 'delta_1': []})
for n_corner in ['4', '6', '8', '10+', 'odd', 'overall']
])
try:
dt_cor_id = inference(net, x, device, force_raw=True)[0]
dt_cor_id[:, 0] *= 1024
dt_cor_id[:, 1] *= 512
except:
dt_cor_id = np.array([
[k//2 * 1024, 256 - ((k%2)*2 - 1) * 120]
for k in range(8)
])
test_general(dt_cor_id, gt_cor_id, 1024, 512, true_eval)
losses['2DIoU'] = torch.FloatTensor([true_eval['overall']['2DIoU']])
losses['3DIoU'] = torch.FloatTensor([true_eval['overall']['3DIoU']])
losses['rmse'] = torch.FloatTensor([true_eval['overall']['rmse']])
losses['delta_1'] = torch.FloatTensor([true_eval['overall']['delta_1']])
for k, v in losses.items():
valid_loss[k] = valid_loss.get(k, 0) + v.item() * x.size(0)
for k, v in valid_loss.items():
k = 'valid/%s' % k
tb_writer.add_scalar(k, v / len(dataset_valid), ith_epoch)
# Save best validation loss model
now_valid_score = valid_loss['3DIoU'] / len(dataset_valid)
print('Ep%3d %.4f vs. Best %.4f' % (ith_epoch, now_valid_score, args.best_valid_score))
is_best = now_valid_score > args.best_valid_score
if is_best:
args.best_valid_score = now_valid_score
# Prepare the dictionary to save
save_dict = {'epoch': ith_epoch,
'state_dict': net.module.state_dict() if hasattr(net, 'module') else net.state_dict(),
'optimizer': optimizer.state_dict(),
'best_valid_score': args.best_valid_score
}
if hasattr(net, 'module'):
save_dict['backbone'] = getattr(net.module, 'backbone', None)
else:
save_dict['backbone'] = getattr(net, 'backbone', None)
save_checkpoint(save_dict, is_best, os.path.join(args.ckpt, args.id), ith_epoch)
# Periodically save model
if ith_epoch % args.save_every == 0:
save_model(net,
os.path.join(args.ckpt, args.id, 'epoch_%d.pth' % ith_epoch),
args)