Skip to content

Latest commit

 

History

History
84 lines (75 loc) · 3.96 KB

infer_benchmark.md

File metadata and controls

84 lines (75 loc) · 3.96 KB

<<<<<<< HEAD

推理Benchmark

测试环境:

<<<<<<< HEAD English|简体中文

Inference Benchmark

Test Environment:

推理Benchmark

测试环境:

9c8570af (add new models) PaddlePaddle-release/2.4

  • GPU: V100 32G
  • CPU: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
  • CUDA: 10.1
  • cuDNN: 7.6
  • TensorRT: 6.0.1.5
  • Paddle: 2.1.1

<<<<<<< HEAD

<<<<<<< HEAD The method of test segmentation model on GPU:

  1. Use all of the data in Cityscapes dataset to test(1024 * 2048).
  2. Use single GPU and set batchsize to 1.
  3. The time only includes model inference.
  4. Use the Python API of Paddle Inference to test. You can choose whether to use TRT wirh use_trt parameter and use precision to set the inference datatype.

Inference with GPU Benchmark:

| Model | With TRT | infer datatype | mIoU | time(s/img) |

PaddlePaddle-release/2.4

GPU上分割模型的测试方法:

  1. 使用cityspcaes的全量验证数据集(1024x2048)进行测试
  2. 单GPU,Batchsize为1
  3. 运行耗时为纯模型预测时间
  4. 使用Paddle Inference的Python API测试,通过use_trt参数设置是否使用TRT,使用precision参数设置预测类型

GPU上推理Benchmark:

| 模型 | 使用TRT | 预测类型 | mIoU | 耗时(s/img) | <<<<<<< HEAD

9c8570af (add new models) PaddlePaddle-release/2.4 | - | :-: | :-: | :-: | :-: | | ANN_ResNet50_OS8 | N | FP32 | 0.7909 | 0.274 |
| ANN_ResNet50_OS8 | Y | FP32 | 0.7909 | 0.281 | | ANN_ResNet50_OS8 | Y | FP16 | 0.7909 | 0.168 | | ANN_ResNet50_OS8 | Y | INT8 | 0.7906 | 0.195 | | DANet_ResNet50_OS8 | N | FP32 | 0.8027 | 0.371 |
| DANet_ResNet50_OS8 | Y | FP32 | 0.8027 | 0.330 | | DANet_ResNet50_OS8 | Y | FP16 | 0.8027 | 0.183 | | DANet_ResNet50_OS8 | Y | INT8 | 0.8039 | 0.266 | | DeepLabV3P_ResNet50_OS8 | N | FP32 | 0.8036 | 0.165 |
| DeepLabV3P_ResNet50_OS8 | Y | FP32 | 0.8036 | 0.206 | | DeepLabV3P_ResNet50_OS8 | Y | FP16 | 0.8036 | 0.196 | | DeepLabV3P_ResNet50_OS8 | Y | INT8 | 0.8044 | 0.083 | | DNLNet_ResNet50_OS8 | N | FP32 | 0.7995 | 0.381 |
| DNLNet_ResNet50_OS8 | Y | FP32 | 0.7995 | 0.360 | | DNLNet_ResNet50_OS8 | Y | FP16 | 0.7995 | 0.230 | | DNLNet_ResNet50_OS8 | Y | INT8 | 0.7989 | 0.236 | | EMANet_ResNet50_OS8 | N | FP32 | 0.7905 | 0.208 |
| EMANet_ResNet50_OS8 | Y | FP32 | 0.7905 | 0.186 | | EMANet_ResNet50_OS8 | Y | FP16 | 0.7904 | 0.062 | | EMANet_ResNet50_OS8 | Y | INT8 | 0.7939 | 0.106 | | GCNet_ResNet50_OS8 | N | FP32 | 0.7950 | 0.247 |
| GCNet_ResNet50_OS8 | Y | FP32 | 0.7950 | 0.228 | | GCNet_ResNet50_OS8 | Y | FP16 | 0.7950 | 0.100 | | GCNet_ResNet50_OS8 | Y | INT8 | 0.7959 | 0.144 | | PSPNet_ResNet50_OS8 | N | FP32 | 0.7883 | 0.327 | | PSPNet_ResNet50_OS8 | Y | FP32 | 0.7883 | 0.324 | | PSPNet_ResNet50_OS8 | Y | FP16 | 0.7883 | 0.218 | | PSPNet_ResNet50_OS8 | Y | INT8 | 0.7915 | 0.223 | | UNet | N | FP32 | 0.6500 | 0.071 |
| UNet | Y | FP32 | 0.6500 | 0.099 | | UNet | Y | FP16 | 0.6500 | 0.099 | | UNet | Y | INT8 | 0.6503 | 0.099 |