<<<<<<< HEAD
<<<<<<< HEAD English|简体中文
测试环境:
9c8570af (add new models) PaddlePaddle-release/2.4
- GPU: V100 32G
- CPU: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
- CUDA: 10.1
- cuDNN: 7.6
- TensorRT: 6.0.1.5
- Paddle: 2.1.1
<<<<<<< HEAD The method of test segmentation model on GPU:
- Use all of the data in Cityscapes dataset to test(1024 * 2048).
- Use single GPU and set batchsize to 1.
- The time only includes model inference.
- Use the Python API of Paddle Inference to test. You can choose whether to use TRT wirh use_trt parameter and use precision to set the inference datatype.
Inference with GPU Benchmark:
PaddlePaddle-release/2.4
GPU上分割模型的测试方法:
- 使用cityspcaes的全量验证数据集(1024x2048)进行测试
- 单GPU,Batchsize为1
- 运行耗时为纯模型预测时间
- 使用Paddle Inference的Python API测试,通过use_trt参数设置是否使用TRT,使用precision参数设置预测类型
GPU上推理Benchmark:
9c8570af (add new models) PaddlePaddle-release/2.4 | - | :-: | :-: | :-: | :-: | | ANN_ResNet50_OS8 | N | FP32 | 0.7909 | 0.274 |
| ANN_ResNet50_OS8 | Y | FP32 | 0.7909 | 0.281 | | ANN_ResNet50_OS8 | Y | FP16 | 0.7909 | 0.168 | | ANN_ResNet50_OS8 | Y | INT8 | 0.7906 | 0.195 | | DANet_ResNet50_OS8 | N | FP32 | 0.8027 | 0.371 |
| DANet_ResNet50_OS8 | Y | FP32 | 0.8027 | 0.330 | | DANet_ResNet50_OS8 | Y | FP16 | 0.8027 | 0.183 | | DANet_ResNet50_OS8 | Y | INT8 | 0.8039 | 0.266 | | DeepLabV3P_ResNet50_OS8 | N | FP32 | 0.8036 | 0.165 |
| DeepLabV3P_ResNet50_OS8 | Y | FP32 | 0.8036 | 0.206 | | DeepLabV3P_ResNet50_OS8 | Y | FP16 | 0.8036 | 0.196 | | DeepLabV3P_ResNet50_OS8 | Y | INT8 | 0.8044 | 0.083 | | DNLNet_ResNet50_OS8 | N | FP32 | 0.7995 | 0.381 |
| DNLNet_ResNet50_OS8 | Y | FP32 | 0.7995 | 0.360 | | DNLNet_ResNet50_OS8 | Y | FP16 | 0.7995 | 0.230 | | DNLNet_ResNet50_OS8 | Y | INT8 | 0.7989 | 0.236 | | EMANet_ResNet50_OS8 | N | FP32 | 0.7905 | 0.208 |
| EMANet_ResNet50_OS8 | Y | FP32 | 0.7905 | 0.186 | | EMANet_ResNet50_OS8 | Y | FP16 | 0.7904 | 0.062 | | EMANet_ResNet50_OS8 | Y | INT8 | 0.7939 | 0.106 | | GCNet_ResNet50_OS8 | N | FP32 | 0.7950 | 0.247 |
| GCNet_ResNet50_OS8 | Y | FP32 | 0.7950 | 0.228 | | GCNet_ResNet50_OS8 | Y | FP16 | 0.7950 | 0.100 | | GCNet_ResNet50_OS8 | Y | INT8 | 0.7959 | 0.144 | | PSPNet_ResNet50_OS8 | N | FP32 | 0.7883 | 0.327 | | PSPNet_ResNet50_OS8 | Y | FP32 | 0.7883 | 0.324 | | PSPNet_ResNet50_OS8 | Y | FP16 | 0.7883 | 0.218 | | PSPNet_ResNet50_OS8 | Y | INT8 | 0.7915 | 0.223 | | UNet | N | FP32 | 0.6500 | 0.071 |
| UNet | Y | FP32 | 0.6500 | 0.099 | | UNet | Y | FP16 | 0.6500 | 0.099 | | UNet | Y | INT8 | 0.6503 | 0.099 |