-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFourierMotzkin.fs
155 lines (133 loc) · 6.41 KB
/
FourierMotzkin.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/// Foruier-Motzkin elimination method for solving system of inequalities.
/// This algorithm is only practical for very small systems.
module FourierMotzkin
open Tensor
open Tensor.Algorithm
/// A range for a particular element of x in a system of inequalities.
/// The low limits and high limits for x[Idx] are given as follows:
/// Low limits: x[Idx] >= BLow .* b - SLow .* x.[Idx+1L..]
/// High limits: x[Idx] <= BHigh .* b - SHigh .* x.[Idx+1L..]
/// If a low limits is larger that a high limit, then no solution exists.
type Range = {
/// Index of x element this solution is for.
Idx: int64
/// Matrix to multiply b with to obtain low limits.
BLow: Tensor<Rat>
/// Matrix to multiply b with to obtain high limits.
BHigh: Tensor<Rat>
/// Matrix to multiply x.[Idx+1L..] with to obtain low limits.
SLow: Tensor<Rat>
/// Matrix to multiply x.[Idx+1L..] with to obtain high limits.
SHigh: Tensor<Rat>
}
/// Solution element.
type Solution =
/// Specifies range for a particular element of x.
| Range of Range
/// Specifies that system only has solution if B .* b <= 0.
| Feasibility of B:Tensor<Rat>
/// A possible solution to a system of inequalities.
type Solutions = Solution list
/// Solves a system of inequalities of the form A .* x >= b for arbitrary b.
let solve (A: Tensor<Rat>) : Solutions =
let m, n =
match A.Shape with
| [m; n] -> m, n
| _ -> invalidArg "A" "A must be a matrix"
let needFeasibilityCheck =
A ==== Rat.Zero |> Tensor.allAxis 1 |> Tensor.any
/// Elimination step.
let rec eliminate (rA: Tensor<Rat>) (rB: Tensor<Rat>) rAs rBs =
let k = List.length rAs |> int64
//printfn "Elimination step %d:" k
//printfn "rA=\n%A" rA
//printfn "rb=\n%A" rb
//printfn "arbitrary: %A" arb
if k < n then
let rA, rB = Tensor.copy rA, Tensor.copy rB
let zRows = rA.[*, k] ==== Rat.Zero
let nzRows = ~~~~zRows
// Divide rows so that x_k = +1 or x_k = -1 or x_k = 0 in each inequality.
let facs = abs (rA.M(nzRows, NoMask).[*, k..k])
rA.M(nzRows, NoMask) <- rA.M(nzRows, NoMask) / facs
rB.M(nzRows, NoMask) <- rB.M(nzRows, NoMask) / facs
//printfn "after division:"
//printfn "rA=\n%A" rA
//printfn "rb=\n%A" rb
// Check condition of x_k.
if Tensor.all (rA.[*, k] ==== Rat.Zero) then
// all the coefficients of x_k are zero, thus it is arbitrary
//printfn "all x_k=0"
eliminate rA rB (rA::rAs) (rB::rBs)
elif Tensor.all (rA.[*, k] ==== Rat.One) || Tensor.all (rA.[*, k] ==== Rat.MinusOne) then
// the coefficients of x_k are all +1 or -1
//printfn "all x_k=+1 or all x_k=-1"
eliminate (rA.M(zRows, NoMask)) (rB.M(zRows, NoMask)) (rA::rAs) (rB::rBs)
elif Tensor.all ((rA.[*,k] ==== Rat.Zero) |||| (rA.[*,k] ==== Rat.One)) ||
Tensor.all ((rA.[*,k] ==== Rat.Zero) |||| (rA.[*,k] ==== Rat.MinusOne)) then
// the coefficients of x_k are a mix of 0 and +1 or a mix of 0 and -1
//printfn "x_k is mix of 0 and +1 or mix of 0 and -1"
eliminate (rA.M(zRows, NoMask)) (rB.M(zRows, NoMask)) (rA::rAs) (rB::rBs)
else
//printfn "x_k has +1 and -1"
// there is at least one pair of inequalities with a +1 and a -1 coefficient for x_k
let pRows = rA.[*, k] ==== Rat.One |> Tensor.trueIdx |> Tensor.flatten |> HostTensor.toList
let nRows = rA.[*, k] ==== Rat.MinusOne |> Tensor.trueIdx |> Tensor.flatten |> HostTensor.toList
// for each pair augment the reduced system by their sum
let nextRA =
List.allPairs pRows nRows
|> List.map (fun (p, n) -> rA.[p..p, *] + rA.[n..n, *])
|> List.append [rA.M(zRows, NoMask)]
|> Tensor.concat 0
let nextRB =
List.allPairs pRows nRows
|> List.map (fun (p, n) -> rB.[p..p, *] + rB.[n..n, *])
|> List.append [rB.M(zRows, NoMask)]
|> Tensor.concat 0
eliminate nextRA nextRB (rA::rAs) (rB::rBs)
else
let feasibility =
if needFeasibilityCheck && rB.Shape.[0] > 0L then [Feasibility rB]
else []
backSubst rAs rBs feasibility
/// Backsubstitution step.
and backSubst rAs rBs sols =
match rAs, rBs with
| rA::rAs, rB::rBs ->
let k = List.length rAs |> int64
// split B for lower and upper limit of x_j
let Blow = rB.M(rA.[*,k] ==== Rat.One, NoMask)
let Bhigh = -rB.M(rA.[*,k] ==== Rat.MinusOne, NoMask)
// substitute the values into the system: x = [0; ...; 0; v_j; ...; v_n]
// solution: B .* y - A .* x.[j..n]
let S = -rA.[*, k+1L..]
//printfn "S for %d=\n%A" k S
// split C for lower and upper limit of x_j
let Slow = S.M(rA.[*,k] ==== Rat.One, NoMask)
let Shigh = -S.M(rA.[*,k] ==== Rat.MinusOne, NoMask)
let sol = Range {
Idx=k
BLow=Blow; BHigh=Bhigh
SLow=Slow; SHigh=Shigh
}
backSubst rAs rBs (sol::sols)
| _ -> sols
eliminate A (HostTensor.identity m) [] [] |> List.rev
/// Checks system for feasibility.
let feasible (fs: Tensor<Rat>) (b: Tensor<Rat>) =
match b.Shape with
| [l] when l = fs.Shape.[1] -> ()
| _ -> invalidArg "b" "b has wrong size"
Rat.Zero >>== fs .* b |> Tensor.all
/// Returns the range (xMin, xMax) for x.[sol.Idx] so that xMin <= x.[sol.Idx] <= xMax given x.[sol.Idx+1L..].
/// If xMin > xMax, then no solution exists.
let range (sol: Range) (b: Tensor<Rat>) (xRight: Tensor<Rat>) =
match b.Shape with
| [l] when l = sol.BLow.Shape.[1] -> ()
| _ -> invalidArg "b" "b has wrong size"
match xRight.Shape with
| [l] when l = sol.SLow.Shape.[1] -> ()
| _ -> invalidArg "xRight" "wrong number of substitution variables"
let lows = sol.BLow .* b + sol.SLow .* xRight
let highs = sol.BHigh .* b + sol.SHigh .* xRight
Tensor.max lows, Tensor.min highs