-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_unet.py
105 lines (86 loc) · 3.79 KB
/
train_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Common
import numpy as np
from argparse import ArgumentParser
from fire import Fire
from tqdm import trange, tqdm
#import visdom
import time
import cv2
# Torch
import torch as th
from torch import nn
import torchvision.transforms as tf
from torch.utils import data as tdata
from torch.optim import SGD
from torch.autograd import Variable
# Spherical Op
from sconv.module import SphereMSE
# Parameter Setting
import ref
from opts import opts
# Network
from models.baseline_ablation_unet import SphericalUNet
# Dataset
from datasets.data import VRVideo, VRVideoLSTM
from datasets.data_retrain import VRVideo as VRVideo_retrain
def train(test_mode=False):
opt = opts().parse()
print("\nConfig Visdom.\n")
#viz = visdom.Visdom(server=opt.plot_server, port=opt.plot_port, env=opt.exp_name)
print("\nBuilding Dataset..\n")
transform = tf.Compose([
tf.Resize((64, 128)),
tf.ToTensor()
])
#dataset = VRVideo(ref.dataDir, 64, 128, 80, frame_interval=5, cache_gt=True, transform=transform, gaussian_sigma=np.pi/20, kernel_rad=np.pi/7)
sal_path = '/p300/2018-ECCV-Journal/codes-project/saliency-dection-360-videos/Saliency-SConv-LSTM/exp/eval/baseline_spherical_sal_unet_1e1_b32_07_07_epoch30_train/'
dataset = VRVideo_retrain(ref.dataDir, 64, 128, 80, frame_interval=5, cache_gt=True, transform=transform, train=True, sal_path = sal_path, gaussian_sigma=np.pi/20, kernel_rad=np.pi/7)
if opt.clear_cache:
dataset.clear_cache()
loader = tdata.DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=16, pin_memory=True)
print("\nBuilding Network...\n")
model = SphericalUNet()
optimizer = SGD(model.parameters(), opt.lr, momentum=0.9, weight_decay=1e-5)
pmodel = nn.DataParallel(model).cuda()
print('opt.use_smse', opt.use_smse)
criterion = SphereMSE(64, 128).float().cuda()
print("\nLoad Trained or Pre-trained Model....\n")
if opt.resume:
ckpt = th.load('ckpt-' + exp_name + '-latest.pth.tar')
model.load_state_dict(ckpt['state_dict'])
start_epoch = ckpt['epoch']
start_epoch = opt.start_epoch
log_file = open(opt.snapshot_fname_log + '/' + opt.snapshot_fname_dir +'.out', 'w+')
print("\nStart Training .....\n")
for epoch in trange(start_epoch, opt.epochs, desc='epoch'):
tic = time.time()
for i, (img_batch, last_batch, target_batch) in tqdm(enumerate(loader), desc='batch', total=len(loader)):
img_var = Variable(img_batch).cuda()
last_var = Variable(last_batch * 10).cuda()
t_var = Variable(target_batch * 10).cuda()
data_time = time.time() - tic
tic = time.time()
out = pmodel(img_var, last_var)
loss = criterion(out, t_var)
fwd_time = time.time() - tic
tic = time.time()
optimizer.zero_grad()
loss.backward()
optimizer.step()
bkw_time = time.time() - tic
msg = '[{:03d}|{:05d}/{:05d}] time: data={}, fwd={}, bkw={}, total={}\nloss: {:g}'.format(
epoch, i, len(loader), data_time, fwd_time, bkw_time, data_time+fwd_time+bkw_time, loss.data[0]
)
#viz.images(img_batch.cpu().numpy() * 255, win='img')
#viz.images(target_batch.cpu().numpy() * 20000, win='gt')
#viz.images(out.data.cpu().numpy() * 1000 , win='out')
#viz.text(msg, win='log')
print(msg, file=log_file, flush=True)
print(msg, flush=True)
tic = time.time()
if (epoch ) % opt.save_interval == 0:
state_dict = model.state_dict()
ckpt = dict(epoch=epoch, iter=i, state_dict=state_dict)
th.save(ckpt, opt.snapshot_fname_prefix + '_epoch_' + str(epoch) + '.pth.tar')
if __name__ == '__main__':
Fire(train)