diff --git a/src/cnn.py b/src/cnn.py new file mode 100644 index 0000000..2494387 --- /dev/null +++ b/src/cnn.py @@ -0,0 +1,31 @@ +import torch.nn as nn + + +class CNN(nn.Module): + def __init__(self): + super(CNN, self).__init__() + self.conv1 = nn.Conv2d(1, 32, kernel_size=5) + self.conv2 = nn.Conv2d(32, 64, kernel_size=5) + self.fc1 = nn.Linear(4 * 4 * 64, 1024) + self.fc2 = nn.Linear(1024, 10) + + def forward(self, x): + x = nn.functional.relu(self.conv1(x)) + x = nn.functional.max_pool2d(x, 2) + x = nn.functional.relu(self.conv2(x)) + x = nn.functional.max_pool2d(x, 2) + x = x.view(-1, 4 * 4 * 64) + x = nn.functional.relu(self.fc1(x)) + x = self.fc2(x) + return nn.functional.log_softmax(x, dim=1) + + +def train_model(model, dataloader, criterion, optimizer, epochs=3): + for _epoch in range(epochs): + for images, labels in dataloader: + optimizer.zero_grad() + output = model(images) + loss = criterion(output, labels) + loss.backward() + optimizer.step() + return model diff --git a/src/main.py b/src/main.py index 243a31e..55b663f 100644 --- a/src/main.py +++ b/src/main.py @@ -5,6 +5,7 @@ from torchvision import datasets, transforms from torch.utils.data import DataLoader import numpy as np +from cnn import CNN, train_model # Step 1: Load MNIST Data and Preprocess transform = transforms.Compose([ @@ -31,18 +32,12 @@ def forward(self, x): return nn.functional.log_softmax(x, dim=1) # Step 3: Train the Model -model = Net() +model = CNN() optimizer = optim.SGD(model.parameters(), lr=0.01) -criterion = nn.NLLLoss() +criterion = nn.CrossEntropyLoss() # Training loop epochs = 3 -for epoch in range(epochs): - for images, labels in trainloader: - optimizer.zero_grad() - output = model(images) - loss = criterion(output, labels) - loss.backward() - optimizer.step() +model = train_model(model, trainloader, criterion, optimizer, epochs) torch.save(model.state_dict(), "mnist_model.pth") \ No newline at end of file