diff --git a/src/api.py b/src/api.py index 36c257a..b1e4351 100644 --- a/src/api.py +++ b/src/api.py @@ -2,12 +2,14 @@ from PIL import Image import torch from torchvision import transforms -from main import Net # Importing Net class from main.py +from main import MNISTTrainer # Importing MNISTTrainer class from main.py -# Load the model -model = Net() -model.load_state_dict(torch.load("mnist_model.pth")) -model.eval() +# Create an instance of MNISTTrainer and train the model +trainer = MNISTTrainer() +trainloader = trainer.load_data() +model = trainer.define_model() +trainer.train_model(model, trainloader) +trainer.save_model(model) # Transform used for preprocessing the image transform = transforms.Compose([ diff --git a/src/main.py b/src/main.py index 243a31e..57e4c72 100644 --- a/src/main.py +++ b/src/main.py @@ -1,48 +1,45 @@ -from PIL import Image -import torch -import torch.nn as nn -import torch.optim as optim -from torchvision import datasets, transforms -from torch.utils.data import DataLoader -import numpy as np +class MNISTTrainer: + def __init__(self): + self.transform = transforms.Compose([ + transforms.ToTensor(), + transforms.Normalize((0.5,), (0.5,)) + ]) + self.optimizer = None + self.criterion = nn.NLLLoss() + self.epochs = 3 -# Step 1: Load MNIST Data and Preprocess -transform = transforms.Compose([ - transforms.ToTensor(), - transforms.Normalize((0.5,), (0.5,)) -]) + def load_data(self): + trainset = datasets.MNIST('.', download=True, train=True, transform=self.transform) + trainloader = DataLoader(trainset, batch_size=64, shuffle=True) + return trainloader -trainset = datasets.MNIST('.', download=True, train=True, transform=transform) -trainloader = DataLoader(trainset, batch_size=64, shuffle=True) + def define_model(self): + class Net(nn.Module): + def __init__(self): + super().__init__() + self.fc1 = nn.Linear(28 * 28, 128) + self.fc2 = nn.Linear(128, 64) + self.fc3 = nn.Linear(64, 10) -# Step 2: Define the PyTorch Model -class Net(nn.Module): - def __init__(self): - super().__init__() - self.fc1 = nn.Linear(28 * 28, 128) - self.fc2 = nn.Linear(128, 64) - self.fc3 = nn.Linear(64, 10) - - def forward(self, x): - x = x.view(-1, 28 * 28) - x = nn.functional.relu(self.fc1(x)) - x = nn.functional.relu(self.fc2(x)) - x = self.fc3(x) - return nn.functional.log_softmax(x, dim=1) + def forward(self, x): + x = x.view(-1, 28 * 28) + x = nn.functional.relu(self.fc1(x)) + x = nn.functional.relu(self.fc2(x)) + x = self.fc3(x) + return nn.functional.log_softmax(x, dim=1) -# Step 3: Train the Model -model = Net() -optimizer = optim.SGD(model.parameters(), lr=0.01) -criterion = nn.NLLLoss() + model = Net() + self.optimizer = optim.SGD(model.parameters(), lr=0.01) + return model -# Training loop -epochs = 3 -for epoch in range(epochs): - for images, labels in trainloader: - optimizer.zero_grad() - output = model(images) - loss = criterion(output, labels) - loss.backward() - optimizer.step() + def train_model(self, model, trainloader): + for epoch in range(self.epochs): + for images, labels in trainloader: + self.optimizer.zero_grad() + output = model(images) + loss = self.criterion(output, labels) + loss.backward() + self.optimizer.step() -torch.save(model.state_dict(), "mnist_model.pth") \ No newline at end of file + def save_model(self, model): + torch.save(model.state_dict(), "mnist_model.pth") \ No newline at end of file