-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodels.py
executable file
·207 lines (149 loc) · 5.74 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import tensorflow as tf
import numpy as np
from utils import *
import glow_ops as g
class posterior(tf.keras.Model):
def __init__(self, **kwargs):
super(posterior, self).__init__()
"""Model architecture
posterior :=>
"""
self.in_dim = kwargs.get('input_dim', 192)
self.depth = kwargs.get('depth', 3)
self.mid_units = kwargs.get('mid_units', 128)
self.layer_type = kwargs.get('layer_type', 'additive')
self.revnets = [g.revnet_linear(depth= self.depth,
mid_units=self.mid_units,
layer_type=self.layer_type) for _ in range(6)]
def call(self, x, reverse=False):
ops = [
self.revnets[0],
self.revnets[1],
self.revnets[2],
self.revnets[3],
self.revnets[4],
self.revnets[5]]
# if self.inside:
# ops = [self.dim_change_op] + ops
# else:
# ops = ops + [self.dim_change_op]
if reverse:
ops = ops[::-1]
objective = 0.0
for op in ops:
x, curr_obj = op(x, reverse=reverse)
# print(op.name)
# if tf.reduce_any(tf.math.is_nan(x)):
# print(op.name)
objective += curr_obj
return x, objective
class generator(tf.keras.Model):
def __init__(self, **kwargs):
super(generator, self).__init__()
"""Injective Model architecture
. upsqueeze
--> revnet
|-> inj_rev_step
+ 4x4x12 --> 4x4x12 |-> 4x4x24 . 8x8x6
--> 8x8x6 |-> 8x8x12 |-> 8x8x24 --> 8x8x24
|-> 8x8x48 --> 8x8x48 . 16x16x12 |-> 16x16x24
--> 16x16x24 . 32x32x6 |-> 32x32x12 --> 32x32x12
. 64x64x3
summary for celeba:
6 bijective revnets
6 injective revnet_steps
4 upsqueeze
"""
self.problem = kwargs.get('dataset', 'cifar10')
self.depth = kwargs.get('revnet_depth', 3) # revnet depth
self.activation = kwargs.get('activation', 'linear') # activation ofinvertible 1x1 convolutional layer
self.squeeze = g.upsqueeze(factor=2)
self.revnets = [g.revnet(coupling_type='affine', depth= self.depth , latent_model = False)
for _ in range(4+4)] # Bijective revnets
self.inj_rev_steps = [g.revnet_step(layer_type='injective',
coupling_type='affine' , latent_model = False, activation = self.activation) for _ in range(4+4)]
def call(self, x, reverse=False , training = True):
c = 1 if self.problem == 'mnist' or self.problem == 'chest' else 3
f = 2 if self.problem == 'chest' else 1
if reverse:
x = tf.reshape(x, [-1,4,4,4 *f * f* c])
ops = [
self.squeeze,
self.revnets[0],
self.inj_rev_steps[0],
self.squeeze,
self.revnets[1],
self.inj_rev_steps[1],
self.squeeze,
self.revnets[2],
self.inj_rev_steps[2],
self.revnets[3],
self.inj_rev_steps[3],
]
if self.problem == 'chest':
ops = [self.squeeze] + ops
if self.problem =='celeba' or self.problem =='imagenet' or self.problem =='rheo' or self.problem =='church' or self.problem == 'chest':
ops += [self.inj_rev_steps[4],
self.revnets[4],
self.squeeze,
self.inj_rev_steps[5],
self.revnets[5]
]
if reverse:
ops = ops[::-1]
objective = 0.0
for op in ops:
x, curr_obj = op(x, reverse= reverse , training = training)
objective += curr_obj
if not reverse:
x = tf.reshape(x, (-1, 4*f *4*f *4*c))
return x, objective
class latent_generator(tf.keras.Model):
def __init__(self, **kwargs):
super(latent_generator, self).__init__()
""" Bijective Model architecture
--> revnet
+ 4x4x12 --> 4x4x12 --> 4x4x12 --> 4x4x12 -->
4x4x12 --> 4x4x12 --> 4x4x12 --> 4x4x12 -->
4x4x12 --> 4x4x12 --> 4x4x12 --> 4x4x12 -->
4x4x12 --> 4x4x12 --> 4x4x12 --> 4x4x12 -->
4x4x12
summary for celeba:
8 bijective revnets
"""
self.problem = kwargs.get('dataset', 'cifar10')
self.depth = kwargs.get('revnet_depth', 3)
self.pz = kwargs.get('pz', None)
self.revnets = [g.revnet(coupling_type='affine', depth = self.depth , latent_model = True)
for _ in range(8)]
def call(self, x, reverse=False , training = True):
c = 1 if self.problem == 'mnist' or self.problem == 'chest' else 3
f = 2 if self.problem == 'chest' else 1
x = tf.reshape(x, [-1,4,4,4 *f * f* c])
ops = [
self.revnets[0],
self.revnets[1],
self.revnets[2],
self.revnets[3],
self.revnets[4],
self.revnets[5],
self.revnets[6],
self.revnets[7]
]
if reverse:
ops = ops[::-1]
objective = 0.0
for op in ops:
x, curr_obj = op(x, reverse=reverse , training = training)
objective += curr_obj
x = tf.reshape(x, (-1, 4*f *4*f *4*c))
return x, objective
def log_prob(self, sample):
rev_sample, obj = self(sample, reverse=False)
if self.pz is not None:
p = -tf.reduce_mean(self.pz.prior.log_prob(rev_sample))
else:
print('pz was not passed into the instantiation of the object! ')
raise NotImplementedError
j = -tf.reduce_mean(obj)
return p + j