-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodel.py
51 lines (47 loc) · 2.26 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import torch.nn as nn
from layer import *
class HeteGAT_multi(nn.Module):
def __init__(self, inputs_list, nb_classes, nb_nodes, attn_drop, ffd_drop,
bias_mat_list, hid_units, n_heads, activation=nn.ELU(), residual=False):
super(HeteGAT_multi, self).__init__()
self.inputs_list = inputs_list
self.nb_classes = nb_classes
self.nb_nodes = nb_nodes
self.attn_drop = attn_drop
self.ffd_drop = ffd_drop
self.bias_mat_list = bias_mat_list
self.hid_units = hid_units
self.n_heads = n_heads
self.activation = activation
self.residual =residual
self.mp_att_size = 128
self.layers = self._make_attn_head()
self.simpleAttLayer = SimpleAttLayer(64,self.mp_att_size,time_major=False,return_alphas=True)
self.fc = nn.Linear(64,self.nb_classes)
def _make_attn_head(self):
layers = []
for inputs,biases in zip(self.inputs_list,self.bias_mat_list):
layers.append(Attn_head(in_channel=inputs.shape[1],out_sz=self.hid_units[0],bias_mat=biases,in_drop=self.ffd_drop,coef_drop=self.attn_drop,activation=self.activation,residual=self.residual))
#print("当前有{}个注意力头".format(len(layers)))
return nn.Sequential(*list(m for m in layers))
def forward(self,x):
embed_list = []
for i,(inputs,biases) in enumerate(zip(x,self.bias_mat_list)):
attns = []
jhy_embeds = []
for _ in range(self.n_heads[0]):
attns.append(self.layers[i](inputs))
h_1 = torch.cat(attns,dim=1)
#print("h_1.shape:",h_1.shape)
#print("torch.squeeze(h_1).shape",torch.squeeze(h_1).shape)
#print("torch.squeeze(h_1).reshape(h_1.shap[-1],1,-1.shape)",torch.squeeze(h_1).reshape(h_1.shape[-1],1,-1).shape)
embed_list.append(torch.squeeze(h_1).reshape(h_1.shape[-1],1,-1))
multi_embed = torch.cat(embed_list,dim=1)
#print("multi_embed.shape:",multi_embed.shape)
final_embed,att_val = self.simpleAttLayer(multi_embed)
out = []
for i in range(self.n_heads[-1]):
out.append(self.fc(final_embed))
#print("out[0].shape:",out[0].shape)
return out[0]