-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbenchmark_pytorch.py
143 lines (104 loc) · 4.06 KB
/
benchmark_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import time
import math
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.datasets as dset
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from torchvision.models import vgg
import utils
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1, bias=True)
self.conv2 = nn.Conv2d(32, 32, kernel_size=3, padding=1, bias=True)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1, bias=True)
self.conv4 = nn.Conv2d(64, 64, kernel_size=3, padding=1, bias=True)
self.fc1 = nn.Linear(4096, 512)
self.fc2 = nn.Linear(512, 10)
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def forward(self, x):
# First conv block
out = F.relu(self.conv1(x))
out = F.relu(self.conv2(out))
out = F.max_pool2d(out, 2)
# Second conv block
out = F.relu(self.conv3(out))
out = F.relu(self.conv4(out))
out = F.max_pool2d(out, 2)
# Flatten
out = out.view(out.size(0), -1)
# Linear
out = F.relu(self.fc1(out))
out = F.log_softmax(self.fc2(out))
return out
def run_SimpleCNN(batch_size, nb_epoch):
normMean = [0.49139968, 0.48215827, 0.44653124]
normStd = [0.24703233, 0.24348505, 0.26158768]
normTransform = transforms.Normalize(normMean, normStd)
list_transforms = [transforms.ToTensor(), normTransform]
trainTransform = transforms.Compose(list_transforms)
kwargs = {'num_workers': 0, 'pin_memory': True}
dataset = dset.CIFAR10(root='cifar', train=True, download=True, transform=trainTransform)
trainLoader = DataLoader(dataset, batch_size=batch_size, shuffle=True, **kwargs)
net = SimpleCNN()
net = net.cuda()
optimizer = optim.SGD(net.parameters(), lr=1e-1, momentum=0.9, weight_decay=1e-4)
for epoch in range(nb_epoch):
s = time.time()
for batch_idx, (data, target) in enumerate(trainLoader):
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = net(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
print time.time() - s
def run_VGG16(batch_size, n_trials):
# Initialize network
net = vgg.vgg16()
net.cuda()
# Loss and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# Data
n_classes = 1000
labels = np.random.randint(0, 1000, batch_size * n_trials).astype(np.uint8).tolist()
labels = torch.LongTensor(labels)
inputs = torch.randn(batch_size * n_trials, 3, 224, 224)
dataset = torch.utils.data.TensorDataset(inputs, labels)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, pin_memory=True)
t0 = time.time()
n = 0
for i, (X, y) in enumerate(dataloader):
ll = Variable(y.cuda(async=True))
inp = Variable(X.cuda(async=True))
# forward pass
outputs = net(inp)
# compute loss
loss = criterion(outputs, ll)
# zero the parameter gradients
optimizer.zero_grad()
loss.backward()
optimizer.step()
n += 1
t1 = time.time()
# Print summary
utils.print_module("pytorch version: %s" % torch.__version__)
utils.print_result("%7.3f ms." % (1000. * (t1 - t0) / n_trials))