-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
116 lines (104 loc) · 4.75 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import json
import numpy as np
class LaserModel(object):
def __init__(self, servos, servoMin, servoMax, servoCenter):
self.servos = servos
self.servoMin = servoMin
self.servoMax = servoMax
self.setXAxis(servoCenter)
self.setYAxis(servoCenter)
self.targetCalibration = None
self.servoCalibration = None
self.transform = None
self.calibrationFile = 'calibration.json'
self._loadCalibration()
self._generateTransform()
def setXAxis(self, value):
self.xAxisValue = self._validateAxis(value)
self.servos.setXAxis(self.xAxisValue)
def getXAxis(self):
return self.xAxisValue
def setYAxis(self, value):
self.yAxisValue = self._validateAxis(value)
self.servos.setYAxis(self.yAxisValue)
def getYAxis(self):
return self.yAxisValue
def setCalibration(self, targetCalibration, servoCalibration):
self.targetCalibration = targetCalibration
self.servoCalibration = servoCalibration
self._generateTransform()
self._saveCalibration()
def getCalibration(self):
return self.targetCalibration, self.servoCalibration
def target(self, x, y):
"""Transform screen coordinate position to servo coordinate position and move servos accordingly."""
if self.transform == None:
raise ValueError('Calibration not set!')
screen = np.array([float(x), float(y), 1.0])
servo = self.transform.dot(screen)
servo = servo/servo[2]
self.setXAxis(round(servo[0]))
self.setYAxis(round(servo[1]))
def _validateAxis(self, value):
"""Validate servo value is within range of allowed values."""
try:
v = int(value)
if v < self.servoMin or v > self.servoMax:
raise ValueError()
return v
except:
raise ValueError('Invalid value! Must be a value between %i and %i.' % (self.servoMin, self.servoMax))
def _loadCalibration(self):
"""Load calibration data from disk."""
try:
with open(self.calibrationFile, 'r') as file:
cal = json.loads(file.read())
self.targetCalibration = cal['targetCalibration']
self.servoCalibration = cal['servoCalibration']
except IOError:
pass
def _saveCalibration(self):
"""Save calibration data to disk."""
with open(self.calibrationFile, 'w') as file:
file.write(json.dumps({'targetCalibration': self.targetCalibration, 'servoCalibration': self.servoCalibration }))
def _generateTransform(self):
"""
Generate the matrix to transform a quadrilaterl in target click coordinates to a quadrilateral in
servo movement coordinates using a perspective transformation.
See http://alumni.media.mit.edu/~cwren/interpolator/ for more details.
"""
if self.targetCalibration == None or self.servoCalibration == None:
return
# Define some variables to make the matrices easier to read
x1 = float(self.targetCalibration[0]['x'])
y1 = float(self.targetCalibration[0]['y'])
x2 = float(self.targetCalibration[1]['x'])
y2 = float(self.targetCalibration[1]['y'])
x3 = float(self.targetCalibration[2]['x'])
y3 = float(self.targetCalibration[2]['y'])
x4 = float(self.targetCalibration[3]['x'])
y4 = float(self.targetCalibration[3]['y'])
X1 = float(self.servoCalibration[0]['x'])
Y1 = float(self.servoCalibration[0]['y'])
X2 = float(self.servoCalibration[1]['x'])
Y2 = float(self.servoCalibration[1]['y'])
X3 = float(self.servoCalibration[2]['x'])
Y3 = float(self.servoCalibration[2]['y'])
X4 = float(self.servoCalibration[3]['x'])
Y4 = float(self.servoCalibration[3]['y'])
# Define matrices
A = np.array([ [x1, y1, 1, 0, 0, 0, -X1*x1, -X1*y1],
[ 0, 0, 0, x1, y1, 1, -Y1*x1, -Y1*y1],
[x2, y2, 1, 0, 0, 0, -X2*x2, -X2*y2],
[ 0, 0, 0, x2, y2, 1, -Y2*x2, -Y2*y2],
[x3, y3, 1, 0, 0, 0, -X3*x3, -X3*y3],
[ 0, 0, 0, x3, y3, 1, -Y3*x3, -Y3*y3],
[x4, y4, 1, 0, 0, 0, -X4*x4, -X4*y4],
[ 0, 0, 0, x4, y4, 1, -Y4*x4, -Y4*y4] ])
B = np.array([X1, Y1, X2, Y2, X3, Y3, X4, Y4])
# Solve for coefficients x in equation Ax = B
x = np.linalg.solve(A, B)
# Set transformation matrix with coefficients
self.transform = np.array([ [x[0], x[1], x[2]],
[x[3], x[4], x[5]],
[x[6], x[7], 1.0] ])