-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathJVM.agda
203 lines (140 loc) · 6.02 KB
/
JVM.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
-- Programming Language Technology DAT151/DIT231
-- 2017-12-12 Agda
-- From Dependent Types to Verified Compilation
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
-- Example of a data type.
data List (A : Set) : Set where
[] : List A
_∷_ : (x : A) (xs : List A) → List A
-- Natural numbers in unary notation.
data Nat : Set where
zero : Nat
suc : (n : Nat) → Nat
{-# BUILTIN NATURAL Nat #-}
-- NATURAL gives us decimal notation for Nat.
five = suc 4
infixl 10 _+_
infixr 6 _∷_ _++_
-- Addition.
_+_ : (n m : Nat) → Nat
zero + m = m
suc n + m = suc (n + m)
plus-0 : ∀(n : Nat) → n + 0 ≡ n
plus-0 zero = {!!}
plus-0 (suc n) = {!!}
-- Bounded numbers: Fin n = { m | n < m }.
data Fin : Nat → Set where
zero : {n : Nat} → Fin (suc n)
suc : {n : Nat} (i : Fin n) → Fin (suc n)
-- Example with hidden arguments.
three : Fin 5
three = suc {4} (suc {3} (suc {2} (zero {1})))
-- Vectors (length-indexed lists).
-- Vec : Set → Nat → Set
data Vec (A : Set) : Nat → Set where
[] : Vec A zero
_∷_ : {n : Nat} (x : A) (xs : Vec A n) → Vec A (suc n)
-- Reading an element of a vector.
lookup : ∀{n A} (i : Fin n) (xs : Vec A n) → A
lookup zero (x ∷ xs) = x
lookup (suc i) (x ∷ xs) = lookup i xs
-- Changing and element of a vector.
update : ∀{n A} (i : Fin n) (x : A) (xs : Vec A n) → Vec A n
update zero x (_ ∷ xs) = x ∷ xs
update (suc i) x (y ∷ xs) = y ∷ update i x xs
-- A partial formalization of JVM instructions and execution.
StackSize = Nat -- Current stack size
StoreSize = Nat -- Local variable store limit
Addr = Fin -- Local variable address
Word = Nat -- Word (should be 32bit signed int, but we use Nat here)
-- JVM instructions.
--
-- n = number of local variables
-- m = stack size before instruction
-- m' = stack size after instruction
data Ins (n : StoreSize) : (m m' : StackSize) → Set where
load : ∀{m} (a : Addr n) → Ins n m (1 + m) -- Load variable onto stack.
store : ∀{m} (a : Addr n) → Ins n (1 + m) m -- Store top stack element into variable.
add : ∀{m} → Ins n (2 + m) (1 + m) -- Add top stack elements.
ldc : ∀{m} (w : Word) → Ins n m (1 + m) -- Load constant onto stack.
pop : ∀{m} (w : Word) → Ins n (1 + m) m -- Remove top stack element.
-- JVM machine state (simplified).
record State (n : StoreSize) (m : StackSize) : Set where
constructor state
field
V : Vec Word n
S : Vec Word m
open State
-- Pushing a word onto the stack.
push : ∀{n m} → Word → State n m → State n (suc m)
push w (state V S) = state V (w ∷ S)
-- Executing a JVM instruction.
step : ∀{n m m'} (i : Ins n m m') (s : State n m) → State n m'
step (load a) (state V S) = state V (lookup a V ∷ S)
step (store a) (state V (w ∷ S)) = state (update a w V) S
step add (state V (w ∷ v ∷ S)) = state V (v + w ∷ S)
step (ldc w) (state V S) = state V (w ∷ S)
step (pop w) (state V (_ ∷ S)) = state V S
-- Instruction lists.
-- Note that for instruction cons, the index "l" has to match.
data Inss (n : StoreSize) (m : StackSize) : (m' : StackSize) → Set where
[] : Inss n m m
_∷_ : ∀{l k} (i : Ins n m l) (is : Inss n l k) → Inss n m k
-- Concatenating instruction lists.
_++_ : ∀{n m m' m''} → Inss n m m' → Inss n m' m'' → Inss n m m''
[] ++ is' = is'
(i ∷ is) ++ is' = i ∷ (is ++ is')
-- Lemma: Appending and empty list.
++-[] : ∀{n m m'} (i : Inss n m m') → i ++ [] ≡ i
++-[] = {!!}
-- Lemma: Concatenation is associative.
++-assoc : ∀{n m m' m'' m'''} (is : Inss n m m') (is' : Inss n m' m'') (is'' : Inss n m'' m''')
→ (is ++ is') ++ is'' ≡ is ++ (is' ++ is'')
++-assoc = {!!}
-- Executing a series of JVM instructions.
steps : ∀{n m m'} (is : Inss n m m') (s : State n m) → State n m'
steps [] s = s
steps (i ∷ is) s = steps is (step i s)
-- Executing a concatenation.
steps-++ : ∀{n m m' m''} (is : Inss n m m') (is' : Inss n m' m'') (s : State n m) →
steps (is ++ is') s ≡ steps is' (steps is s)
steps-++ [] is' s = refl
steps-++ (i ∷ is) is' s = steps-++ is is' (step i s)
-- Expressions (Hutton's Razor only).
data Exp : Set where
num : (w : Word) → Exp
plus : (e e' : Exp) → Exp
-- Interpretation of expressions.
eval : Exp → Word
eval (num w) = w
eval (plus e e') = eval e + eval e'
-- Compilation of expressions.
compile : ∀{n m} (e : Exp) → Inss n m (suc m)
compile (num w) = ldc w ∷ []
compile (plus e e') = compile e ++ compile e' ++ add ∷ []
-- Compiler correctness.
-- Lemma.
-- Running the instructions for an expression e leaves the value of e on top of the stack,
-- for a continuation to run from here.
sound' : ∀{n m m'} (e : Exp) (s : State n m) (is : Inss n (suc m) m') →
steps (compile e ++ is) s ≡ steps is (push (eval e) s)
-- Case: number literals.
sound' (num w) s is = steps-++ (ldc w ∷ []) is s
-- Case: addition expression.
sound' (plus e e') s is = begin
steps ((compile e ++ compile e' ++ add ∷ []) ++ is) s ≡⟨ {!!} ⟩
steps (compile e ++ compile e' ++ (add ∷ []) ++ is) s ≡⟨ sound' e s (compile e' ++ (add ∷ []) ++ is) ⟩
steps (compile e' ++ (add ∷ []) ++ is) (push (eval e) s) ≡⟨ sound' e' (push (eval e) s) ((add ∷ []) ++ is) ⟩
steps ((add ∷ []) ++ is) (push (eval e') (push (eval e) s)) ≡⟨ steps-++ (add ∷ []) is (push (eval e') (push (eval e) s)) ⟩
steps is (push (eval e + eval e') s)
∎
-- Theorem.
-- Running the instructions for an expression e leaves the value of e on top of the stack.
sound : ∀{n m} (e : Exp) (s : State n m) → steps (compile e) s ≡ push (eval e) s
sound {n} e s = begin
steps (compile e) s ≡⟨ cong (λ z → steps z s) (sym (++-[] (compile e))) ⟩
steps (compile e ++ []) s ≡⟨ sound' e s [] ⟩
steps [] (push (eval e) s) ≡⟨⟩
push (eval e) s
∎