-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
188 lines (148 loc) · 7.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import pandas as pd
import json
from datetime import datetime as dt
from datetime import timedelta
import time
import pytz
import math
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
import alpaca_trade_api as alpaca
from configParams import *
# Files
key = json.loads(open('AUTH/authAlpaca.txt', 'r').read())
api = alpaca.REST(key['APCA-API-KEY-ID'], key['APCA-API-SECRET-KEY'], base_url= key['BASE-URL'], api_version = 'v2')
# Function to fetch data
# Change get_data to fetch data from Alpaca
def get_data(ticker_A, ticker_B, timeframe = timeframe, start_date = int(start_date)):
print('Collecting ticker A')
df_A = api.get_bars(ticker_A, timeframe, (dt.now() - timedelta(days = start_date)).strftime("%Y-%m-%d")).df
df_A.reset_index(inplace = True)
df_A = df_A[['timestamp', 'close']]
df_A.columns = ['Timestamp', "A"]
df_A['Timestamp'] = pd.to_datetime(df_A['Timestamp']).dt.strftime('%Y-%m-%d %H:%M')
print('Collecting ticker B')
df_B = api.get_bars(ticker_B, timeframe, (dt.now() - timedelta(days = start_date)).strftime("%Y-%m-%d")).df
df_B.reset_index(inplace = True)
df_B = df_B[['timestamp', 'close']]
df_B.columns = ['Timestamp', "B"]
df_B['Timestamp'] = pd.to_datetime(df_B['Timestamp']).dt.strftime('%Y-%m-%d %H:%M')
df = pd.merge(df_A, df_B, how = 'inner', on = 'Timestamp')
df['Spread'] = df['A'] - df['B']
return df
def calculate_targetPositionSize(stock_to_buy: str):
# Returns number of stocks to buy and short
cashToUse = float(api.get_account().cash) * per_trade_capital_percent * 0.01
buy_amount = cashToUse
price_ticker = api.get_latest_trade(stock_to_buy).p
targetPositionSize = ((float(buy_amount)) / (price_ticker)) # Calculates required position size
targetPositionSize = math.floor(targetPositionSize)
return targetPositionSize
def open_trades(stock_to_buy, stock_to_short, targetPositionSize):
buy_price = api.get_latest_trade(stock_to_buy).p
sell_price = api.get_latest_trade(stock_to_short).p
# num_stocks = short_amount / stock_price
api.submit_order(stock_to_short, targetPositionSize, 'sell')
mail_content_short = '''TRADE ALERT: SELL Order Placed for {} Stock(s) of {} at ${}'''.format(targetPositionSize, stock_to_short, sell_price)
api.submit_order(str(stock_to_buy), targetPositionSize, "buy") # Market order to open position
mail_content_long = '''TRADE ALERT: BUY Order Placed for {} Stock(s) of {} at ${}'''.format(targetPositionSize, stock_to_buy, buy_price)
print(mail_content_long)
print(mail_content_short)
return mail_content_long, mail_content_short
def mail_alert(mail_content, sleep_time):
# The mail addresses and password
sender_address = 'SENDER_EMAIL'
sender_pass = 'SENDER_EMAIL_PASSWORD'
receiver_address = 'RECEIVER_EMAIL'
# Setup MIME
message = MIMEMultipart()
message['From'] = 'Trading Bot'
message['To'] = receiver_address
message['Subject'] = 'Technical Trading Bot'
# The body and the attachments for the mail
message.attach(MIMEText(mail_content, 'plain'))
# Create SMTP session for sending the mail
session = smtplib.SMTP('smtp.gmail.com', 587) # use gmail with port
session.starttls() # enable security
# login with mail_id and password
session.login(sender_address, sender_pass)
text = message.as_string()
session.sendmail(sender_address, receiver_address, text)
session.quit()
time.sleep(sleep_time)
def check_clock():
if api.get_clock().is_open == False:
return False
wait_time = minutes_from_market_start * 60
market_start_time = dt.now().strftime('%Y-%m-%d') + ' 9:30:00'
current_time = dt.now().astimezone(pytz.timezone('America/New_York')).strftime('%Y-%m-%d %H:%M:%S')
time_since_start = (dt.strptime(current_time,"%Y-%m-%d %H:%M:%S") - dt.strptime(market_start_time,"%Y-%m-%d %H:%M:%S")).seconds
trade_start = time_since_start >= wait_time
if trade_start:
mail_content = 'The Bot started on {} at {}'.format(dt.now().strftime('%Y-%m-%d'), dt.now().strftime('%H:%M:%S'))
print(mail_content)
mail_alert(mail_content, 0)
return True
else:
print("Sleeping for {}".format(wait_time - time_since_start))
time.sleep(wait_time - time_since_start)
return check_clock()
def main():
clock = check_clock()
if not clock:
mail_content = 'The market is closed now. The Bot stopped on {} at {}'.format(dt.now().strftime('%Y-%m-%d'), dt.now().strftime('%H:%M:%S'))
mail_alert(mail_content, 0)
return 0
while True:
try:
if api.get_account().pattern_day_trader == True:
mail_alert('Pattern day trading notification: The Bot stopped on {} at {}'.format(dt.now().strftime('%Y-%m-%d'), dt.now().strftime('%H:%M:%S')), 0)
break
if len(api.list_positions()) == 0:
print('No Open Positions, Checking Criteria')
df = get_data(ticker_A, ticker_B)
mean = df['Spread'].mean()
std = df['Spread'].std()
if df['Spread'].loc[df.shape[0] - 1] < mean - (n_std * std):
print('Spread < (Mean - {} * Std)'.format(n_std))
targetPositionSize = calculate_targetPositionSize(ticker_A)
mail_content_long, mail_content_short = open_trades(ticker_A, ticker_B, targetPositionSize)
# mail_content_short = sell(ticker_B, targetPositionSize)
mail_alert(mail_content_long, 0)
mail_alert(mail_content_short, 20)
elif df['Spread'].loc[df.shape[0] - 1] > mean + (n_std * std):
print('Spread > (Mean - {} * Std)'.format(n_std))
# mail_content_long, targetPositionSize = buy(ticker_B)
targetPositionSize = calculate_targetPositionSize(ticker_B)
# mail_content_short = sell(ticker_A, targetPositionSize)
mail_content_long, mail_content_short = open_trades(ticker_B, ticker_A, targetPositionSize)
mail_alert(mail_content_short, 0)
mail_alert(mail_content_long, 20)
else:
time.sleep(10)
else:
print('Open Positions')
df = get_data(ticker_A, ticker_B)
mean = df['Spread'].mean()
std = df['Spread'].std()
if int(api.get_position(ticker_A).qty) > 0:
if df['Spread'].loc[df.shape[0] - 1] >= mean + (close_at_x_std_dev * std):
print('Spread >= Mean, Closing Positions Now')
api.close_all_positions()
else:
time.sleep(10)
elif int(api.get_position(ticker_A).qty) < 0:
if df['Spread'].loc[df.shape[0] - 1] <= mean + (close_at_x_std_dev * std):
print('Spread <= Mean, Closing Positions Now')
api.close_all_positions()
else:
time.sleep(10)
except Exception as e:
stop_mail = 'The Bot stopped on {} at {}'.format(dt.now().strftime('%Y-%m-%d'), dt.now().strftime('%H:%M:%S'))
mail_alert('EXCEPTION: {}'.format(e), 0)
mail_alert(stop_mail, 0)
print(e)
break
if __name__ == "__main__":
main()