-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path05_plot_residuals.py
executable file
·134 lines (98 loc) · 3.17 KB
/
05_plot_residuals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python
"""
# 05_plot_residuals.py
Fits a polynomial and subtracts it, then plots result.
"""
import matplotlib as mpl
import seaborn as sns
import tables as tb
from leda_cal.leda_cal import *
from leda_cal.skymodel import *
from leda_cal.dpflgr import *
sns.set_style('ticks')
sns.set_context("paper",font_scale=1.5)
def fit_poly(x, y, n=5, log=True):
""" Fit a polynomial to x, y data
x (np.array): x-axis of data (e.g. frequency)
y (np.array): y-axis of data (e.g temperature)
n (int): number of terms in polynomial (defaults to 5)
"""
x_g = x
x = np.ma.array(x, mask=y.mask).compressed()
y = y.compressed()
if log:
print "HERE"
yl = np.log10(y)
else:
yl = y
fit = np.polyfit(x, yl, n)
print fit
p = np.poly1d(fit)
if log:
return 10**(p(x_g))
else:
return p(x_g)
def fit_poly_log(x, y, n=5):
""" Fit a polynomial to x, y data
x (np.array): x-axis of data (e.g. frequency)
y (np.array): y-axis of data (e.g temperature)
n (int): number of terms in polynomial (defaults to 5)
"""
x_g = x
x = np.ma.array(x, mask=y.mask).compressed()
y = y.compressed()
yl = np.log10(y)
fit = np.polyfit(x, yl, n)
print fit
p = np.poly1d(fit)
return 10**(p(x_g))
def quicklook(filename):
h5 = tb.open_file(filename)
T_ant = apply_calibration(h5)
f_leda = T_ant['f']
ant_ids = ['252A', '254A', '255A']
pol_id = 'y'
print("Plotting...")
fig, ax = plt.subplots(figsize=(8, 6))
mid = T_ant["252A"].shape[0]/2
sl = 250
d0 = T_ant[ant_ids[0]][mid-sl:mid+sl]
d1 = T_ant[ant_ids[1]][mid-sl:mid+sl]
d2 = T_ant[ant_ids[2]][mid-sl:mid+sl]
d0 = rfi_flag(d0, thr_f=0.15, thr_t=0.15, rho=1.5,
bp_window_f=16, bp_window_t=16,
max_frac_f=0.9, max_frac_t=0.9)
d0 = np.median(d0, axis=0)
d1 = rfi_flag(d1, thr_f=0.15, thr_t=0.15, rho=1.5,
bp_window_f=16, bp_window_t=16,
max_frac_f=0.9, max_frac_t=0.9)
d1 = np.median(d1, axis=0)
d2 = rfi_flag(d2, thr_f=0.15, thr_t=0.15, rho=1.5,
bp_window_f=16, bp_window_t=16,
max_frac_f=0.9, max_frac_t=0.9)
d2 = np.median(d2, axis=0)
#plt.imshow(d0, cmap='viridis', aspect='auto')
#plt.colorbar()
#plt.show()
#exit()
print d0
plt.plot(f_leda, d0 - fit_poly_log(f_leda, d0, 5), label=ant_ids[0])
plt.plot(f_leda, d1 - fit_poly_log(f_leda, d1, 5), label=ant_ids[1])
plt.plot(f_leda, d2 - fit_poly_log(f_leda, d2, 5), label=ant_ids[2])
plt.xlim(40, 85)
plt.minorticks_on()
#plt.ylim(500, 7000)
ax.get_xaxis().set_minor_locator(mpl.ticker.AutoMinorLocator())
ax.get_yaxis().set_minor_locator(mpl.ticker.AutoMinorLocator())
plt.xlabel("Frequency [MHz]")
plt.ylabel("Temperature [K]")
plt.legend(frameon=False)
plt.show()
if __name__ == "__main__":
import sys
try:
filename = sys.argv[1]
except:
print "USAGE: ./quicklook.py filename_of_hdf5_observation"
exit()
quicklook(filename)