-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathoptperformance_comparison.py
83 lines (69 loc) · 2.24 KB
/
optperformance_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
Optimization for performance comparison for different densities of two-qubit gates
(random layouts averaged).
"""
import sys
sys.path.insert(0, "../")
import tensorflow as tf
import numpy as np
import cotengra as ctg
import tensorcircuit as tc
K = tc.set_backend("tensorflow")
optr = ctg.ReusableHyperOptimizer(
methods=["greedy"],
parallel=True,
minimize="flops",
max_time=30,
max_repeats=512,
progbar=True,
)
tc.set_contractor("custom", optimizer=optr, preprocessing=True)
eye4 = K.eye(4)
cnot = tc.array_to_tensor(tc.gates._cnot_matrix)
def energy_p(params, p, seed, n, nlayers):
g = tc.templates.graphs.Line1D(n)
c = tc.Circuit(n)
for i in range(n):
c.H(i)
for i in range(nlayers):
for k in range(n):
c.ry(k, theta=params[2 * i, k])
c.rz(k, theta=params[2 * i + 1, k])
c.ry(k, theta=params[2 * i + 2, k])
for k in range(n // 2): # alternating entangler with probability
c.unitary_kraus(
[eye4, cnot],
2 * k + (i % 2),
(2 * k + (i % 2) + 1) % n,
prob=[1 - p, p],
status=seed[i, k],
)
e = tc.templates.measurements.heisenberg_measurements(
c, g, hzz=1, hxx=0, hyy=0, hx=-1, hy=0, hz=0
) # TFIM energy from expectation of circuit c defined on lattice given by g
return e
vagf = K.jit(
K.vectorized_value_and_grad(energy_p, argnums=0, vectorized_argnums=(0, 2)),
static_argnums=(3, 4),
)
energy_list = []
if __name__ == "__main__":
n = 12
nlayers = 12
nsteps = 250
sample = 10
debug = True
for a in np.arange(0.1, 1, 0.1):
energy_sublist = []
params = K.implicit_randn(shape=[sample, 3 * nlayers, n])
seeds = K.implicit_randu(shape=[sample, nlayers, n // 2])
opt = tc.backend.optimizer(tf.keras.optimizers.Adam(2e-3))
for i in range(nsteps):
p = (n * nlayers) ** (a - 1)
p = tc.array_to_tensor(p, dtype="float32")
e, grads = vagf(params, p, seeds, n, nlayers)
params = opt.update(grads, params)
if i % 50 == 0 and debug:
print(a, i, e)
energy_list.append(K.numpy(e))
print(energy_list)