forked from MorvanZhou/NLP-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisual.py
300 lines (261 loc) · 11.6 KB
/
visual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import matplotlib.pyplot as plt
import numpy as np
import pickle
from matplotlib.pyplot import cm
import os
import utils
def show_tfidf(tfidf, vocab, filename):
# [n_doc, n_vocab]
plt.imshow(tfidf, cmap="YlGn", vmin=tfidf.min(), vmax=tfidf.max())
plt.xticks(np.arange(tfidf.shape[1]), vocab, fontsize=6, rotation=90)
plt.yticks(np.arange(tfidf.shape[0]), np.arange(1, tfidf.shape[0]+1), fontsize=6)
plt.tight_layout()
# creating the output folder
output_folder = './visual/results/'
os.makedirs(output_folder, exist_ok=True)
plt.savefig(os.path.join(output_folder, '%s.png') % filename, format="png", dpi=500)
plt.show()
def show_w2v_word_embedding(model, data: utils.Dataset, path):
word_emb = model.embeddings.get_weights()[0]
for i in range(data.num_word):
c = "blue"
try:
int(data.i2v[i])
except ValueError:
c = "red"
plt.text(word_emb[i, 0], word_emb[i, 1], s=data.i2v[i], color=c, weight="bold")
plt.xlim(word_emb[:, 0].min() - .5, word_emb[:, 0].max() + .5)
plt.ylim(word_emb[:, 1].min() - .5, word_emb[:, 1].max() + .5)
plt.xticks(())
plt.yticks(())
plt.xlabel("embedding dim1")
plt.ylabel("embedding dim2")
plt.savefig(path, dpi=300, format="png")
plt.show()
def seq2seq_attention():
with open("./visual/tmp/attention_align.pkl", "rb") as f:
data = pickle.load(f)
i2v, x, y, align = data["i2v"], data["x"], data["y"], data["align"]
plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
for i in range(6):
plt.subplot(2, 3, i + 1)
x_vocab = [i2v[j] for j in np.ravel(x[i])]
y_vocab = [i2v[j] for j in y[i, 1:]]
plt.imshow(align[i], cmap="YlGn", vmin=0., vmax=1.)
plt.yticks([j for j in range(len(y_vocab))], y_vocab)
plt.xticks([j for j in range(len(x_vocab))], x_vocab)
if i == 0 or i == 3:
plt.ylabel("Output")
if i >= 3:
plt.xlabel("Input")
plt.tight_layout()
plt.savefig("./visual/results/seq2seq_attention.png", format="png", dpi=200)
plt.show()
def all_mask_kinds():
seqs = ["I love you", "My name is M", "This is a very long seq", "Short one"]
vocabs = set((" ".join(seqs)).split(" "))
i2v = {i: v for i, v in enumerate(vocabs, start=1)}
i2v["<PAD>"] = 0 # add 0 idx for <PAD>
v2i = {v: i for i, v in i2v.items()}
id_seqs = [[v2i[v] for v in seq.split(" ")] for seq in seqs]
padded_id_seqs = np.array([l + [0] * (6 - len(l)) for l in id_seqs])
# padding mask
pmask = np.where(padded_id_seqs == 0, np.ones_like(padded_id_seqs), np.zeros_like(padded_id_seqs)) # 0 idx is padding
pmask = np.repeat(pmask[:, None, :], pmask.shape[-1], axis=1) # [n, step, step]
plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
for i in range(1, 5):
plt.subplot(2, 2, i)
plt.imshow(pmask[i-1], vmax=1, vmin=0, cmap="YlGn")
plt.xticks(range(6), seqs[i - 1].split(" "), rotation=45)
plt.yticks(range(6), seqs[i - 1].split(" "),)
plt.grid(which="minor", c="w", lw=0.5, linestyle="-")
plt.tight_layout()
plt.savefig("./visual/results/transformer_pad_mask.png", dpi=200)
plt.show()
# look ahead mask
max_len = pmask.shape[-1]
omask = ~np.triu(np.ones((max_len, max_len), dtype=np.bool), 1)
omask = np.tile(np.expand_dims(omask, axis=0), [np.shape(seqs)[0], 1, 1]) # [n, step, step]
omask = np.where(omask, pmask, 1)
plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
for i in range(1, 5):
plt.subplot(2, 2, i)
plt.imshow(omask[i - 1], vmax=1, vmin=0, cmap="YlGn")
plt.xticks(range(6), seqs[i - 1].split(" "), rotation=45)
plt.yticks(range(6), seqs[i - 1].split(" "), )
plt.grid(which="minor", c="w", lw=0.5, linestyle="-")
plt.tight_layout()
plt.savefig("./visual/results/transformer_look_ahead_mask.png", dpi=200)
plt.show()
def position_embedding():
max_len = 500
model_dim = 512
pos = np.arange(max_len)[:, None]
pe = pos / np.power(10000, 2. * np.arange(model_dim)[None, :] / model_dim) # [max_len, model_dim]
pe[:, 0::2] = np.sin(pe[:, 0::2])
pe[:, 1::2] = np.cos(pe[:, 1::2])
plt.imshow(pe, vmax=1, vmin=-1, cmap="rainbow")
plt.ylabel("word position")
plt.xlabel("embedding dim")
plt.savefig("./visual/results/transformer_position_embedding.png", dpi=200)
plt.show()
def transformer_attention_matrix(case=0):
with open("./visual/tmp/transformer_attention_matrix.pkl", "rb") as f:
data = pickle.load(f)
src = data["src"][case]
tgt = data["tgt"][case]
attentions = data["attentions"]
encoder_atten = attentions["encoder"]
decoder_tgt_atten = attentions["decoder"]["mh1"]
decoder_src_atten = attentions["decoder"]["mh2"]
plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
plt.figure(0, (7, 7))
plt.suptitle("Encoder self-attention")
for i in range(3):
for j in range(4):
plt.subplot(3, 4, i * 4 + j + 1)
plt.imshow(encoder_atten[i][case, j][:len(src), :len(src)], vmax=1, vmin=0, cmap="rainbow")
plt.xticks(range(len(src)), src)
plt.yticks(range(len(src)), src)
if j == 0:
plt.ylabel("layer %i" % (i+1))
if i == 2:
plt.xlabel("head %i" % (j+1))
plt.tight_layout()
plt.subplots_adjust(top=0.9)
plt.savefig("./visual/results/transformer%d_encoder_self_attention.png" % case, dpi=200)
plt.show()
plt.figure(1, (7, 7))
plt.suptitle("Decoder self-attention")
for i in range(3):
for j in range(4):
plt.subplot(3, 4, i * 4 + j + 1)
plt.imshow(decoder_tgt_atten[i][case, j][:len(tgt), :len(tgt)], vmax=1, vmin=0, cmap="rainbow")
plt.xticks(range(len(tgt)), tgt, rotation=90, fontsize=7)
plt.yticks(range(len(tgt)), tgt, fontsize=7)
if j == 0:
plt.ylabel("layer %i" % (i+1))
if i == 2:
plt.xlabel("head %i" % (j+1))
plt.tight_layout()
plt.subplots_adjust(top=0.9)
plt.savefig("./visual/results/transformer%d_decoder_self_attention.png" % case, dpi=200)
plt.show()
plt.figure(2, (7, 8))
plt.suptitle("Decoder-Encoder attention")
for i in range(3):
for j in range(4):
plt.subplot(3, 4, i*4+j+1)
plt.imshow(decoder_src_atten[i][case, j][:len(tgt), :len(src)], vmax=1, vmin=0, cmap="rainbow")
plt.xticks(range(len(src)), src, fontsize=7)
plt.yticks(range(len(tgt)), tgt, fontsize=7)
if j == 0:
plt.ylabel("layer %i" % (i+1))
if i == 2:
plt.xlabel("head %i" % (j+1))
plt.tight_layout()
plt.subplots_adjust(top=0.9)
plt.savefig("./visual/results/transformer%d_decoder_encoder_attention.png" % case, dpi=200)
plt.show()
def transformer_attention_line(case=0):
with open("./visual/tmp/transformer_attention_matrix.pkl", "rb") as f:
data = pickle.load(f)
src = data["src"][case]
tgt = data["tgt"][case]
attentions = data["attentions"]
decoder_src_atten = attentions["decoder"]["mh2"]
tgt_label = tgt[1:11][::-1]
src_label = ["" for _ in range(2)] + src[::-1]
fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, figsize=(7, 14))
for i in range(2):
for j in range(2):
ax[i, j].set_yticks(np.arange(len(src_label)))
ax[i, j].set_yticklabels(src_label, fontsize=9) # src
ax[i, j].set_ylim(0, len(src_label)-1)
ax_ = ax[i, j].twinx()
ax_.set_yticks(np.linspace(ax_.get_yticks()[0], ax_.get_yticks()[-1], len(ax[i, j].get_yticks())))
ax_.set_yticklabels(tgt_label, fontsize=9) # tgt
img = decoder_src_atten[-1][case, i + j][:10, :8]
color = cm.rainbow(np.linspace(0, 1, img.shape[0]))
left_top, right_top = img.shape[1], img.shape[0]
for ri, c in zip(range(right_top), color): # tgt
for li in range(left_top): # src
alpha = (img[ri, li] / img[ri].max()) ** 8
ax[i, j].plot([0, 1], [left_top - li + 1, right_top - 1 - ri], alpha=alpha, c=c)
ax[i, j].set_xticks(())
ax[i, j].set_xlabel("head %i" % (j + 1 + i * 2))
ax[i, j].set_xlim(0, 1)
plt.subplots_adjust(top=0.9)
plt.tight_layout()
plt.savefig("./visual/results/transformer%d_encoder_decoder_attention_line.png" % case, dpi=100)
def self_attention_matrix(bert_or_gpt="bert", case=0):
with open("./visual/tmp/"+bert_or_gpt+"_attention_matrix.pkl", "rb") as f:
data = pickle.load(f)
src = data["src"]
attentions = data["attentions"]
encoder_atten = attentions["encoder"]
plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
s_len = 0
for s in src[case]:
if s == "<SEP>":
break
s_len += 1
plt.figure(0, (7, 28))
for j in range(4):
plt.subplot(4, 1, j + 1)
img = encoder_atten[-1][case, j][:s_len-1, :s_len-1]
plt.imshow(img, vmax=img.max(), vmin=0, cmap="rainbow")
plt.xticks(range(s_len-1), src[case][:s_len-1], rotation=90, fontsize=9)
plt.yticks(range(s_len-1), src[case][1:s_len], fontsize=9)
plt.xlabel("head %i" % (j+1))
plt.subplots_adjust(top=0.9)
plt.tight_layout()
plt.savefig("./visual/results/"+bert_or_gpt+"%d_self_attention.png" % case, dpi=500)
# plt.show()
def self_attention_line(bert_or_gpt="bert", case=0):
with open("./visual/tmp/"+bert_or_gpt+"_attention_matrix.pkl", "rb") as f:
data = pickle.load(f)
src = data["src"][case]
attentions = data["attentions"]
encoder_atten = attentions["encoder"]
s_len = 0
print(" ".join(src))
for s in src:
if s == "<SEP>":
break
s_len += 1
y_label = src[:s_len][::-1]
fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, figsize=(7, 14))
for i in range(2):
for j in range(2):
ax[i, j].set_yticks(np.arange(len(y_label)))
ax[i, j].tick_params(labelright=True)
ax[i, j].set_yticklabels(y_label, fontsize=9) # input
img = encoder_atten[-1][case, i+j][:s_len - 1, :s_len - 1]
color = cm.rainbow(np.linspace(0, 1, img.shape[0]))
for row, c in zip(range(img.shape[0]), color):
for col in range(img.shape[1]):
alpha = (img[row, col] / img[row].max()) ** 5
ax[i, j].plot([0, 1], [img.shape[1]-col, img.shape[0]-row-1], alpha=alpha, c=c)
ax[i, j].set_xticks(())
ax[i, j].set_xlabel("head %i" % (j+1+i*2))
ax[i, j].set_xlim(0, 1)
plt.subplots_adjust(top=0.9)
plt.tight_layout()
plt.savefig("./visual/results/"+bert_or_gpt+"%d_self_attention_line.png" % case, dpi=100)
if __name__ == "__main__":
os.makedirs("./visual/results", exist_ok=True)
# all_mask_kinds()
# seq2seq_attention()
# position_embedding()
transformer_attention_matrix(case=0)
transformer_attention_line(case=0)
# model = ["gpt", "bert", "bert_window_mask"][1]
# case = 6
# self_attention_matrix(model, case=case)
# self_attention_line(model, case=case)