-
Notifications
You must be signed in to change notification settings - Fork 226
/
Copy pathinfer.py
157 lines (112 loc) · 4.71 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import os
import sys
import numpy as np
import tensorflow as tf
import preprocessing
# Allow import of top level python files
import inspect
currentdir = os.path.dirname(
os.path.abspath(inspect.getfile(inspect.currentframe()))
)
benchmark_base_dir = os.path.dirname(currentdir)
sys.path.insert(0, benchmark_base_dir)
from benchmark_args import BaseCommandLineAPI
from benchmark_runner import BaseBenchmarkRunner
from dataloading import get_dataloader
class CommandLineAPI(BaseCommandLineAPI):
def __init__(self):
super(CommandLineAPI, self).__init__()
self._parser.add_argument(
'--input_size',
type=int,
default=224,
help='Size of input images expected by the '
'model'
)
self._parser.add_argument(
'--num_classes',
type=int,
default=1001,
help='Number of classes used when training '
'the model'
)
self._parser.add_argument(
'--preprocess_method',
type=str,
choices=['vgg', 'inception'],
default='vgg',
help='The image preprocessing method used in dataloading.'
)
def _post_process_args(self, args):
args = super(CommandLineAPI, self)._post_process_args(args)
args.labels_shift = 1 if args.num_classes == 1001 else 0
return args
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #
# %%%%%%%%%%%%%%%%% IMPLEMENT MODEL-SPECIFIC FUNCTIONS HERE %%%%%%%%%%%%%%%%%% #
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #
class BenchmarkRunner(BaseBenchmarkRunner):
def get_dataset_batches(self):
"""Returns a list of batches of input samples.
Each batch should be in the form [x, y], where
x is a numpy array of the input samples for the batch, and
y is a numpy array of the expected model outputs for the batch
Returns:
- dataset: a TF Dataset object
- bypass_data_to_eval: any object type that will be passed unmodified to
`evaluate_result()`. If not necessary: `None`
Note: script arguments can be accessed using `self._args.attr`
"""
dataset = get_dataloader(self._args)
return dataset, None
def preprocess_model_inputs(self, data_batch):
"""This function prepare the `data_batch` generated from the dataset.
Returns:
x: input of the model
y: data to be used for model evaluation
Note: script arguments can be accessed using `self._args.attr`
"""
x, y = data_batch
return x, y
def postprocess_model_outputs(self, predictions, expected):
"""Post process if needed the predictions and expected tensors. At the
minimum, this function transforms all TF Tensors into a numpy arrays.
Most models will not need to modify this function.
Note: script arguments can be accessed using `self._args.attr`
"""
predictions = predictions.numpy()
if len(predictions.shape) != 1:
predictions = tf.math.argmax(predictions, axis=1)
predictions = predictions.numpy().reshape(-1)
predictions - self._args.labels_shift
return predictions - self._args.labels_shift, expected.numpy()
def evaluate_model(self, predictions, expected, bypass_data_to_eval):
"""Evaluate result predictions for entire dataset.
This computes overall accuracy, mAP, etc. Returns the
metric value and a metric_units string naming the metric.
Note: script arguments can be accessed using `self._args.attr`
"""
return (
np.mean(predictions["data"] == expected["data"]) * 100.0,
"Top-1 Accuracy %"
)
if __name__ == '__main__':
cmdline_api = CommandLineAPI()
args = cmdline_api.parse_args()
runner = BenchmarkRunner(args)
runner.execute_benchmark()