Skip to content

Latest commit

 

History

History
41 lines (30 loc) · 1.84 KB

gcp.md

File metadata and controls

41 lines (30 loc) · 1.84 KB

Kubernetes Cluster Access

For this, we'll be using a Kubernetes cluster in GKE that we control in cloud shell. We'll provide credentials and a cluster name that you can use.

Log in to Cloud Shell with the provided credentials.

These credentials will conflict with your existing Google credentials, e.g. if you're using Chrome. For this reason, we recommend logging in to cloud shell in an incognito window.

Set the project for the Cloud Shell session to the provided project ID:

gcloud config set project <assigned-project-id>

Now you can access your Cluster:

gcloud container clusters get-credentials <assigned-project-id> --zone <assigned-zone>

Verify you have access via kubectl:

$ kubectl get pods --all-namespaces
NAMESPACE     NAME                                                      READY   STATUS    RESTARTS   AGE
kube-system   kube-dns-6cd7bbdf65-hk7v2                                 4/4     Running   0          56m
kube-system   kube-dns-6cd7bbdf65-vqggd                                 4/4     Running   0          55m
kube-system   kube-dns-autoscaler-bb58c6784-dkfnp                       1/1     Running   0          55m
kube-system   kube-proxy-gke-nist-2020-000-default-pool-1131490b-c2r3   1/1     Running   0          56m
kube-system   kube-proxy-gke-nist-2020-000-default-pool-1131490b-q6l8   1/1     Running   0          56m
kube-system   kube-proxy-gke-nist-2020-000-default-pool-1131490b-xt0z   1/1     Running   0          56m
kube-system   l7-default-backend-fd59995cd-8t5qm                        1/1     Running   0          56m
kube-system   metrics-server-v0.3.1-57c75779f-9xj8r                     2/2     Running   0          55m

Finally, let's clone the training repository:

git clone https://github.com/tetrateio/training.git