-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmodel_dkt1.py
52 lines (45 loc) · 2.29 KB
/
model_dkt1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
import torch.nn.functional as F
class DKT1(nn.Module):
def __init__(self, num_items, num_skills, hid_size, num_hid_layers, drop_prob,
item_in, skill_in, item_out, skill_out):
"""Deep knowledge tracing (https://papers.nips.cc/paper/5654-deep-knowledge-tracing.pdf).
Arguments:
num_items (int): number of items
num_skills (int): number of skills
hid_size (int): hidden layer dimension
num_hid_layers (int): number of hidden layers
drop_prob (float): dropout probability
item_in (bool): if True, use items as inputs
skill_in (bool): if True, use skills as inputs
item_out (bool): if True, use items as outputs
skill_out (bool): if True, use skills as outputs
"""
super(DKT1, self).__init__()
self.num_items = num_items
self.num_skills = num_skills
self.item_in = item_in
self.skill_in = skill_in
self.item_out = item_out
self.skill_out = skill_out
self.input_size = (2 * num_items + 1) * item_in + (2 * num_skills + 1) * skill_in
self.output_size = num_items * item_out + num_skills * skill_out
self.lstm = nn.LSTM(self.input_size, hid_size, num_hid_layers, batch_first=True)
self.dropout = nn.Dropout(p=drop_prob)
self.out = nn.Linear(hid_size, self.output_size)
def forward(self, item_inputs, skill_inputs, hidden=None):
# Pad inputs with 0, this explains the +1
if (item_inputs is not None) and (skill_inputs is not None):
item_onehots = F.one_hot(item_inputs, 2 * self.num_items + 1).float()
skill_onehots = F.one_hot(skill_inputs, 2 * self.num_skills + 1).float()
input = torch.cat((item_onehots, skill_onehots), -1)
elif (item_inputs is not None):
input = F.one_hot(item_inputs, 2 * self.num_items + 1).float()
elif (skill_inputs is not None):
input = F.one_hot(skill_inputs, 2 * self.num_skills + 1).float()
output, hidden = self.lstm(input, hx=hidden)
return self.out(self.dropout(output)), hidden
def repackage_hidden(self, hidden):
# Return detached hidden for TBPTT
return tuple((v.detach() for v in hidden))