-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib_tfsampling.py
343 lines (286 loc) · 12.6 KB
/
lib_tfsampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# Copyright 2020 The Magenta Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines the graph for sampling from Coconet."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
from magenta.models.coconet import lib_graph
from magenta.models.coconet import lib_hparams
import numpy as np
import tensorflow.compat.v1 as tf
FLAGS = tf.app.flags.FLAGS
class CoconetSampleGraph(object):
"""Graph for Gibbs sampling from Coconet."""
def __init__(self, chkpt_path, placeholders=None):
"""Initializes inputs for the Coconet sampling graph.
Does not build or restore the graph. That happens lazily if you call run(),
or explicitly using instantiate_sess_and_restore_checkpoint.
Args:
chkpt_path: Checkpoint directory for loading the model.
Uses the latest checkpoint.
placeholders: Optional placeholders.
"""
self.chkpt_path = chkpt_path
self.hparams = lib_hparams.load_hparams(chkpt_path)
if placeholders is None:
self.placeholders = self.get_placeholders()
else:
self.placeholders = placeholders
self.samples = None
self.sess = None
def get_placeholders(self):
hparams = self.hparams
return dict(
pianorolls=tf.placeholder(
tf.bool,
[None, None, hparams.num_pitches, hparams.num_instruments],
"pianorolls"),
# The default value is only used for checking if completion masker
# should be evoked. It can't be used directly as the batch size
# and length of pianorolls are unknown during static time.
outer_masks=tf.placeholder_with_default(
np.zeros(
(1, 1, hparams.num_pitches, hparams.num_instruments),
dtype=np.float32),
[None, None, hparams.num_pitches, hparams.num_instruments],
"outer_masks"),
sample_steps=tf.placeholder_with_default(0, (), "sample_steps"),
total_gibbs_steps=tf.placeholder_with_default(
0, (), "total_gibbs_steps"),
current_step=tf.placeholder_with_default(0, (), "current_step"),
temperature=tf.placeholder_with_default(0.99, (), "temperature"))
@property
def inputs(self):
return self.placeholders
def make_outer_masks(self, outer_masks, input_pianorolls):
"""Returns outer masks, if all zeros created by completion masking."""
outer_masks = tf.to_float(outer_masks)
# If outer_masks come in as all zeros, it means there's no masking,
# which also means nothing will be generated. In this case, use
# completion mask to make new outer masks.
outer_masks = tf.cond(
tf.reduce_all(tf.equal(outer_masks, 0)),
lambda: make_completion_masks(input_pianorolls),
lambda: outer_masks)
return outer_masks
def build_sample_graph(self, input_pianorolls=None, outer_masks=None,
total_gibbs_steps=None):
"""Builds the tf.while_loop based sampling graph.
Args:
input_pianorolls: Optional input pianorolls override. If None, uses the
pianorolls placeholder.
outer_masks: Optional input outer_masks override. If None, uses the
outer_masks placeholder.
total_gibbs_steps: Optional input total_gibbs_steps override. If None,
uses the total_gibbs_steps placeholder.
Returns:
The output op of the graph.
"""
if input_pianorolls is None:
input_pianorolls = self.inputs["pianorolls"]
if outer_masks is None:
outer_masks = self.inputs["outer_masks"]
tt = tf.shape(input_pianorolls)[1]
sample_steps = tf.to_float(self.inputs["sample_steps"])
if total_gibbs_steps is None:
total_gibbs_steps = self.inputs["total_gibbs_steps"]
temperature = self.inputs["temperature"]
input_pianorolls = tf.to_float(input_pianorolls)
outer_masks = self.make_outer_masks(outer_masks, input_pianorolls)
# Calculate total_gibbs_steps as steps * num_instruments if not given.
total_gibbs_steps = tf.cond(
tf.equal(total_gibbs_steps, 0),
lambda: tf.to_float(tt * self.hparams.num_instruments),
lambda: tf.to_float(total_gibbs_steps))
# sample_steps is set to total_gibbs_steps if not given.
sample_steps = tf.cond(
tf.equal(sample_steps, 0),
lambda: total_gibbs_steps,
lambda: tf.to_float(sample_steps))
def infer_step(pianorolls, step_count):
"""Called by tf.while_loop, takes a Gibbs step."""
mask_prob = compute_mask_prob_from_yao_schedule(step_count,
total_gibbs_steps)
# 1 indicates mask out, 0 is not mask.
masks = make_bernoulli_masks(tf.shape(pianorolls), mask_prob,
outer_masks)
logits = self.predict(pianorolls, masks)
samples = sample_with_temperature(logits, temperature=temperature)
outputs = pianorolls * (1 - masks) + samples * masks
check_completion_op = tf.assert_equal(
tf.where(tf.equal(tf.reduce_max(masks, axis=2), 1.),
tf.reduce_max(outputs, axis=2),
tf.reduce_max(pianorolls, axis=2)),
1.)
with tf.control_dependencies([check_completion_op]):
outputs = tf.identity(outputs)
step_count += 1
return outputs, step_count
current_step = tf.to_float(self.inputs["current_step"])
# Initializes pianorolls by evaluating the model once to fill in all gaps.
logits = self.predict(tf.to_float(input_pianorolls), outer_masks)
samples = sample_with_temperature(logits, temperature=temperature)
tf.get_variable_scope().reuse_variables()
self.samples, current_step = tf.while_loop(
lambda samples, current_step: current_step < sample_steps,
infer_step, [samples, current_step],
shape_invariants=[
tf.TensorShape([None, None, None, None]),
tf.TensorShape(None),
],
back_prop=False,
parallel_iterations=1,
name="coco_while")
self.samples.set_shape(input_pianorolls.shape)
return self.samples
def predict(self, pianorolls, masks):
"""Evalutes the model once and returns predictions."""
direct_inputs = dict(
pianorolls=pianorolls, masks=masks,
lengths=tf.to_float([tf.shape(pianorolls)[1]]))
model = lib_graph.build_graph(
is_training=False,
hparams=self.hparams,
direct_inputs=direct_inputs,
use_placeholders=False)
self.logits = model.logits
return self.logits
def instantiate_sess_and_restore_checkpoint(self):
"""Instantiates session and restores from self.chkpt_path."""
if self.samples is None:
self.build_sample_graph()
sess = tf.Session()
saver = tf.train.Saver()
chkpt_fpath = tf.train.latest_checkpoint(self.chkpt_path)
tf.logging.info("loading checkpoint %s", chkpt_fpath)
saver.restore(sess, chkpt_fpath)
tf.get_variable_scope().reuse_variables()
self.sess = sess
return self.sess
def run(self,
pianorolls,
masks=None,
sample_steps=0,
current_step=0,
total_gibbs_steps=0,
temperature=0.99,
timeout_ms=0):
"""Given input pianorolls, runs Gibbs sampling to fill in the rest.
When total_gibbs_steps is 0, total_gibbs_steps is set to
time * instruments. If faster sampling is desired on the expanse of sample
quality, total_gibbs_steps can be explicitly set to a lower number,
possibly to the value of sample_steps if do not plan on stopping sample
early to obtain intermediate results.
This function can be used to return intermediate results by setting the
sample_steps to when results should be returned and leaving
total_gibbs_steps to be 0.
To continue sampling from intermediate results, set current_step to the
number of steps taken, and feed in the intermediate pianorolls. Again
leaving total_gibbs_steps as 0.
Builds the graph and restores checkpoint if necessary.
Args:
pianorolls: a 4D numpy array of shape (batch, time, pitch, instrument)
masks: a 4D numpy array of the same shape as pianorolls, with 1s
indicating mask out. If is None, then the masks will be where have 1s
where there are no notes, indicating to the model they should be
filled in.
sample_steps: an integer indicating the number of steps to sample in this
call. If set to 0, then it defaults to total_gibbs_steps.
current_step: an integer indicating how many steps might have already
sampled before.
total_gibbs_steps: an integer indicating the total number of steps that
a complete sampling procedure would take.
temperature: a float indicating the temperature for sampling from softmax.
timeout_ms: Timeout for session.Run. Set to zero for no timeout.
Returns:
A dictionary, consisting of "pianorolls" which is a 4D numpy array of
the sampled results and "time_taken" which is the time taken in sampling.
"""
if self.sess is None:
# Build graph and restore checkpoint.
self.instantiate_sess_and_restore_checkpoint()
if masks is None:
masks = np.zeros_like(pianorolls)
start_time = time.time()
run_options = None
if timeout_ms:
run_options = tf.RunOptions(timeout_in_ms=timeout_ms)
new_piece = self.sess.run(
self.samples,
feed_dict={
self.placeholders["pianorolls"]: pianorolls,
self.placeholders["outer_masks"]: masks,
self.placeholders["sample_steps"]: sample_steps,
self.placeholders["total_gibbs_steps"]: total_gibbs_steps,
self.placeholders["current_step"]: current_step,
self.placeholders["temperature"]: temperature
}, options=run_options)
label = "independent blocked gibbs"
time_taken = (time.time() - start_time) / 60.0
tf.logging.info("exit %s (%.3fmin)" % (label, time_taken))
return dict(pianorolls=new_piece, time_taken=time_taken)
def make_completion_masks(pianorolls, outer_masks=1.):
pianorolls = tf.to_float(pianorolls)
masks = tf.reduce_all(tf.equal(pianorolls, 0), axis=2, keep_dims=True)
inner_masks = tf.to_float(masks) + 0 * pianorolls
return inner_masks * outer_masks
def make_bernoulli_masks(shape, pm, outer_masks=1.):
bb = shape[0]
tt = shape[1]
pp = shape[2]
ii = shape[3]
probs = tf.random_uniform([bb, tt, ii])
masks = tf.tile(tf.to_float(tf.less(probs, pm))[:, :, None, :], [1, 1, pp, 1])
return masks * outer_masks
def sample_with_temperature(logits, temperature):
"""Either argmax after softmax or random sample along the pitch axis.
Args:
logits: a Tensor of shape (batch, time, pitch, instrument).
temperature: a float 0.0=argmax 1.0=random
Returns:
a Tensor of the same shape, with one_hots on the pitch dimension.
"""
logits = tf.transpose(logits, [0, 1, 3, 2])
pitch_range = tf.shape(logits)[-1]
def sample_from_logits(logits):
with tf.control_dependencies([tf.assert_greater(temperature, 0.0)]):
logits = tf.identity(logits)
reshaped_logits = (
tf.reshape(logits, [-1, tf.shape(logits)[-1]]) / temperature)
choices = tf.multinomial(reshaped_logits, 1)
choices = tf.reshape(choices,
tf.shape(logits)[:logits.get_shape().ndims - 1])
return choices
choices = tf.cond(tf.equal(temperature, 0.0),
lambda: tf.argmax(tf.nn.softmax(logits), -1),
lambda: sample_from_logits(logits))
samples_onehot = tf.one_hot(choices, pitch_range)
return tf.transpose(samples_onehot, [0, 1, 3, 2])
def compute_mask_prob_from_yao_schedule(i, n, pmin=0.1, pmax=0.9, alpha=0.7):
wat = (pmax - pmin) * i/ n
return tf.maximum(pmin, pmax - wat / alpha)
def main(unused_argv):
checkpoint_path = FLAGS.checkpoint
sampler = CoconetSampleGraph(checkpoint_path)
batch_size = 1
decode_length = 4
target_shape = [batch_size, decode_length, 46, 4]
pianorolls = np.zeros(target_shape, dtype=np.float32)
generated_piece = sampler.run(pianorolls, sample_steps=16, temperature=0.99)
tf.logging.info("num of notes in piece %d", np.sum(generated_piece))
tf.logging.info("Done.")
if __name__ == "__main__":
tf.disable_v2_behavior()
tf.app.run()