-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvect_store.py
32 lines (24 loc) · 948 Bytes
/
vect_store.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import os
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import TextLoader
from langchain.document_loaders import DirectoryLoader
from langchain.embeddings import HuggingFaceInstructEmbeddings
DATA_DIR = "data"
DB_DIR = "db"
os.makedirs(DB_DIR, exist_ok=True)
def create_vect_db(db_name):
documents = DirectoryLoader(
os.path.join(DATA_DIR, db_name),
glob="./*.txt",
loader_cls=TextLoader
).load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
vectordb = Chroma.from_documents(
documents=texts,
embedding=embeddings,
persist_directory=os.path.join(DB_DIR, db_name)
)
vectordb.persist()