-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphow_caltech101.py
executable file
·401 lines (337 loc) · 14 KB
/
phow_caltech101.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#!/usr/bin/env python
"""
Python rewrite of http: //www.vlfeat.org/applications/caltech-101-code.html
"""
from os.path import exists, isdir, basename, join, splitext
from os import makedirs
from glob import glob
from random import sample, seed
from scipy import ones, mod, arange, array, where, ndarray, hstack, linspace, histogram, vstack, amax, amin
from scipy.misc import imread, imresize
from scipy.cluster.vq import vq
import numpy
from vl_phow import vl_phow
from vlfeat import vl_ikmeans
from scipy.io import loadmat, savemat
from sklearn import svm
from sklearn.metrics import confusion_matrix, accuracy_score
import pylab as pl
from datetime import datetime
from sklearn.kernel_approximation import AdditiveChi2Sampler
from cPickle import dump, load
from progressbar import AnimatedMarker, Bar, BouncingBar, Counter, ETA, \
FileTransferSpeed, FormatLabel, Percentage, \
ProgressBar, ReverseBar, RotatingMarker, \
SimpleProgress, Timer, AdaptiveETA, AbsoluteETA, AdaptiveTransferSpeed
from joblib import Parallel, delayed
import multiprocessing
IDENTIFIER = '05.04.13'
SAVETODISC = False
FEATUREMAP = True
OVERWRITE = False # DON'T load mat files genereated with a different seed!!!
SAMPLE_SEED = 42
TINYPROBLEM = False
VERBOSE = True # set to 'SVM' if you want to get the svm output
MULTIPROCESSING = True
class Configuration(object):
def __init__(self, identifier=''):
self.calDir = '101_ObjectCategories'
self.dataDir = 'tempresults' # should be resultDir or so
if not exists(self.dataDir):
makedirs(self.dataDir)
print "folder " + self.dataDir + " created"
self.autoDownloadData = True
self.numTrain = 15
self.numTest = 15
self.imagesperclass = self.numTrain + self.numTest
self.numClasses = 102
self.numWords = 600
self.numSpatialX = [2, 4]
self.numSpatialY = [2, 4]
self.quantizer = 'vq' # kdtree from the .m version not implemented
self.svm = SVMParameters(C=10)
self.phowOpts = PHOWOptions(Verbose=False, Sizes=[4, 6, 8, 10], Step=3)
self.clobber = False
self.tinyProblem = TINYPROBLEM
self.prefix = 'baseline'
self.randSeed = 1
self.verbose = True
self.extensions = [".jpg", ".bmp", ".png", ".pgm", ".tif", ".tiff"]
self.images_for_histogram = 30
self.numbers_of_features_for_histogram = 100000
self.vocabPath = join(self.dataDir, identifier + '-vocab.py.mat')
self.histPath = join(self.dataDir, identifier + '-hists.py.mat')
self.modelPath = join(self.dataDir, self.prefix + identifier + '-model.py.mat')
self.resultPath = join(self.dataDir, self.prefix + identifier + '-result')
if self.tinyProblem:
print "Using 'tiny' protocol with different parameters than the .m code"
self.prefix = 'tiny'
self.numClasses = 5
self.images_for_histogram = 10
self.numbers_of_features_for_histogram = 1000
self.numTrain
self.numSpatialX = 2
self.numWords = 100
self.numTrain = 2
self.numTest = 2
self.phowOpts = PHOWOptions(Verbose=2, Sizes=7, Step=5)
# tests and conversions
self.phowOpts.Sizes = ensure_type_array(self.phowOpts.Sizes)
self.numSpatialX = ensure_type_array(self.numSpatialX)
self.numSpatialY = ensure_type_array(self.numSpatialY)
if (self.numSpatialX != self.numSpatialY).any():
messageformat = [str(self.numSpatialX), str(self.numSpatialY)]
message = "(self.numSpatialX != self.numSpatialY), because {0} != {1}".format(*messageformat)
raise ValueError(message)
def setImagePath(self, imagePath):
self.calDir = imagePath
def setNumTrain(self, numTrain):
self.numTrain = numTrain
self.imagesperclass = self.numTrain + self.numTest
def setNumTest(self, numTest):
self.numTest = numTest
self.imagesperclass = self.numTrain + self.numTest
def setNumClasses(self, numClasses):
self.numClasses = numClasses
def setNumWords(self, numWords):
self.numWords = numWords
def ensure_type_array(data):
if (type(data) is not ndarray):
if (type(data) is list):
data = array(data)
else:
data = array([data])
return data
def standarizeImage(im):
im = array(im, 'float32')
if im.shape[0] > 480:
resize_factor = 480.0 / im.shape[0] # don't remove trailing .0 to avoid integer devision
im = imresize(im, resize_factor)
if amax(im) > 1.1:
im = im / 255.0
assert((amax(im) > 0.01) & (amax(im) <= 1))
assert((amin(im) >= 0.00))
return im
def getPhowFeatures(imagedata, phowOpts):
im = standarizeImage(imagedata)
frames, descrs = vl_phow(im,
verbose=phowOpts.Verbose,
sizes=phowOpts.Sizes,
step=phowOpts.Step)
return frames, descrs
def getImageDescriptor(model, im, conf, vocab):
im = standarizeImage(im)
height, width = im.shape[:2]
numWords = vocab.shape[1]
frames, descrs = getPhowFeatures(im, conf.phowOpts)
# quantize appearance
if model.quantizer == 'vq':
binsa, _ = vq(descrs.T, vocab.T)
elif model.quantizer == 'kdtree':
raise ValueError('quantizer kdtree not implemented')
else:
raise ValueError('quantizer {0} not known or understood'.format(model.quantizer))
hist = []
for n_spatial_bins_x, n_spatial_bins_y in zip(model.numSpatialX, model.numSpatialX):
binsx, distsx = vq(frames[0, :], linspace(0, width, n_spatial_bins_x))
binsy, distsy = vq(frames[1, :], linspace(0, height, n_spatial_bins_y))
# binsx and binsy list to what spatial bin each feature point belongs to
if (numpy.any(distsx < 0)) | (numpy.any(distsx > (width/n_spatial_bins_x+0.5))):
print 'something went wrong'
import pdb; pdb.set_trace()
if (numpy.any(distsy < 0)) | (numpy.any(distsy > (height/n_spatial_bins_y+0.5))):
print 'something went wrong'
import pdb; pdb.set_trace()
# combined quantization
number_of_bins = n_spatial_bins_x * n_spatial_bins_y * numWords
temp = arange(number_of_bins)
# update using this: http://stackoverflow.com/questions/15230179/how-to-get-the-linear-index-for-a-numpy-array-sub2ind
temp = temp.reshape([n_spatial_bins_x, n_spatial_bins_y, numWords])
bin_comb = temp[binsx, binsy, binsa]
hist_temp, _ = histogram(bin_comb, bins=range(number_of_bins+1), density=True)
hist.append(hist_temp)
hist = hstack(hist)
hist = array(hist, 'float32') / sum(hist)
return hist
class Model(object):
def __init__(self, classes, conf, vocab=None):
self.classes = classes
self.phowOpts = conf.phowOpts
self.numSpatialX = conf.numSpatialX
self.numSpatialY = conf.numSpatialY
self.quantizer = conf.quantizer
self.vocab = vocab
class SVMParameters(object):
def __init__(self, C):
self.C = C
class PHOWOptions(object):
def __init__(self, Verbose, Sizes, Step):
self.Verbose = Verbose
self.Sizes = Sizes
self.Step = Step
def get_classes(datasetpath, numClasses):
classes_paths = [files
for files in glob(datasetpath + "/*")
if isdir(files)]
classes_paths.sort()
classes = [basename(class_path) for class_path in classes_paths]
if len(classes) == 0:
raise ValueError('no classes found')
if len(classes) < numClasses:
raise ValueError('conf.numClasses is bigger than the number of folders')
classes = classes[:numClasses]
return classes
def get_imgfiles(path, extensions):
all_files = []
all_files.extend([join(path, basename(fname))
for fname in glob(path + "/*")
if splitext(fname)[-1].lower() in extensions])
return all_files
def showconfusionmatrix(cm):
pl.matshow(cm)
pl.title('Confusion matrix')
pl.colorbar()
pl.show()
def get_all_images(classes, conf):
all_images = []
all_images_class_labels = []
for i, imageclass in enumerate(classes):
path = join(conf.calDir, imageclass)
extensions = conf.extensions
imgs = get_imgfiles(path, extensions)
if len(imgs) == 0:
raise ValueError('no images for class ' + str(imageclass))
imgs = sample(imgs, conf.imagesperclass)
all_images = all_images + imgs
class_labels = list(i * ones(conf.imagesperclass))
all_images_class_labels = all_images_class_labels + class_labels
all_images_class_labels = array(all_images_class_labels, 'int')
return all_images, all_images_class_labels
def create_split(all_images, conf):
temp = mod(arange(len(all_images)), conf.imagesperclass) < conf.numTrain
selTrain = where(temp == True)[0]
selTest = where(temp == False)[0]
# the '[0]' is there, because 'where' returns tuples, don't know why....
# the use of the 'temp' variable is not pythonic, but we need the indices
# not a boolean array. See Matlab code
return selTrain, selTest
def getFeatures(i, all_images, conf):
im = imread(all_images[i])
return getPhowFeatures(im, conf.phowOpts)[1]
def trainVocab(selTrain, all_images, conf):
selTrainFeats = sample(selTrain, conf.images_for_histogram)
descrs = []
if MULTIPROCESSING:
num_cores = multiprocessing.cpu_count()
descrs = Parallel(n_jobs=num_cores, verbose=1)(delayed(getFeatures)(i, all_images, conf) for i in selTrainFeats)
# the '[1]' is there because we only want the descriptors and not the frames
else:
for i in selTrainFeats:
im = imread(all_images[i])
descrs.append(getPhowFeatures(im, conf.phowOpts)[1])
# the '[1]' is there because we only want the descriptors and not the frames
print(str(datetime.now()) + '| Now getting visual words via k-means clustering, goes until convergence')
descrs = hstack(descrs)
n_features = descrs.shape[1]
sample_indices = sample(arange(n_features), conf.numbers_of_features_for_histogram)
descrs = descrs[:, sample_indices]
descrs = array(descrs, 'uint8')
# Quantize the descriptors to get the visual words
vocab, _ = vl_ikmeans(descrs,
K=conf.numWords,
verbose=conf.verbose,
method='elkan')
return vocab
def computeHistograms(all_images, model, conf, vocab):
hists = []
num_cores = multiprocessing.cpu_count()
hists = Parallel(n_jobs=8, verbose=7)(delayed(getImageDescriptor)(model, imread(imagefname), conf, vocab) for ii, imagefname in enumerate(all_images))
hists = vstack(hists)
return hists
###############
# Main Programm
###############
if __name__ == '__main__':
seed(SAMPLE_SEED)
conf = Configuration(IDENTIFIER)
if VERBOSE: print str(datetime.now()) + ' finished conf'
classes = get_classes(conf.calDir, conf.numClasses)
model = Model(classes, conf)
all_images, all_images_class_labels = get_all_images(classes, conf)
selTrain, selTest = create_split(all_images, conf)
if VERBOSE: print str(datetime.now()) + ' found classes and created split '
##################
# Train vocabulary
##################
if VERBOSE: print str(datetime.now()) + ' start training vocab'
if (not exists(conf.vocabPath)) | OVERWRITE:
vocab = trainVocab(selTrain, all_images, conf)
savemat(conf.vocabPath, {'vocab': vocab})
else:
if VERBOSE: print 'using old vocab from ' + conf.vocabPath
vocab = loadmat(conf.vocabPath)['vocab']
model.vocab = vocab
############################
# Compute spatial histograms
############################
if VERBOSE: print str(datetime.now()) + ' start computing hists'
if (not exists(conf.histPath)) | OVERWRITE:
hists = computeHistograms(all_images, model, conf)
savemat(conf.histPath, {'hists': hists})
else:
if VERBOSE: print 'using old hists from ' + conf.histPath
hists = loadmat(conf.histPath)['hists']
#####################
# Compute feature map
#####################
if VERBOSE: print str(datetime.now()) + ' start computing feature map'
transformer = AdditiveChi2Sampler()
histst = transformer.fit_transform(hists)
train_data = histst[selTrain]
test_data = histst[selTest]
###########
# Train SVM
###########
if (not exists(conf.modelPath)) | OVERWRITE:
if VERBOSE: print str(datetime.now()) + ' training liblinear svm'
if VERBOSE == 'SVM':
verbose = True
else:
verbose = False
clf = svm.LinearSVC(C=conf.svm.C)
if VERBOSE: print clf
clf.fit(train_data, all_images_class_labels[selTrain])
with open(conf.modelPath, 'wb') as fp:
dump(clf, fp)
else:
if VERBOSE: print 'loading old SVM model'
with open(conf.modelPath, 'rb') as fp:
clf = load(fp)
##########
# Test SVM
##########
if (not exists(conf.resultPath)) | OVERWRITE:
if VERBOSE: print str(datetime.now()) + ' testing svm'
predicted_classes = clf.predict(test_data)
true_classes = all_images_class_labels[selTest]
accuracy = accuracy_score(true_classes, predicted_classes)
cm = confusion_matrix(predicted_classes, true_classes)
with open(conf.resultPath, 'wb') as fp:
dump(conf, fp)
dump(cm, fp)
dump(predicted_classes, fp)
dump(true_classes, fp)
dump(accuracy, fp)
else:
with open(conf.resultPath, 'rb') as fp:
conf = load(fp)
cm = load(fp)
predicted_classes = load(fp)
true_classes = load(fp)
accuracy = load(fp)
################
# Output Results
################
print "accuracy =" + str(accuracy)
print cm
showconfusionmatrix(cm)