-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathanalysis.py
executable file
·99 lines (86 loc) · 3.55 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python3
import argparse
import re
from collections import defaultdict
from os import PathLike
import numpy as np
from tabulate import tabulate
from tools import csv2numpy, find_all_files, group_files
def numerical_analysis(root_dir: str | PathLike, xlim: float, norm: bool = False) -> None:
file_pattern = re.compile(r".*/test_reward_\d+seeds.csv$")
norm_group_pattern = re.compile(r"(/|^)\w+?\-v(\d|$)")
output_group_pattern = re.compile(r".*?(?=(/|^)\w+?\-v\d)")
csv_files = find_all_files(root_dir, file_pattern)
norm_group = group_files(csv_files, norm_group_pattern)
output_group = group_files(csv_files, output_group_pattern)
# calculate numerical outcome for each csv_file (y/std integration max_y, final_y)
results = defaultdict(list)
for f in csv_files:
result = csv2numpy(f)
if norm:
result = np.stack(
[
result["env_step"],
result["reward"] - result["reward"][0],
result["reward:shaded"],
],
)
else:
result = np.stack([result["env_step"], result["reward"], result["reward:shaded"]])
if result[0, -1] < xlim:
continue
final_rew = np.interp(xlim, result[0], result[1])
final_rew_std = np.interp(xlim, result[0], result[2])
result = result[:, result[0] <= xlim]
if len(result) == 0:
continue
if result[0, -1] < xlim:
last_line = np.array([xlim, final_rew, final_rew_std]).reshape(3, 1)
result = np.concatenate([result, last_line], axis=-1)
max_id = np.argmax(result[1])
results["name"].append(f)
results["final_reward"].append(result[1, -1])
results["final_reward_std"].append(result[2, -1])
results["max_reward"].append(result[1, max_id])
results["max_std"].append(result[2, max_id])
results["reward_integration"].append(np.trapz(result[1], x=result[0]))
results["reward_std_integration"].append(np.trapz(result[2], x=result[0]))
results = {k: np.array(v) for k, v in results.items()}
print(tabulate(results, headers="keys"))
if norm:
# calculate normalized numerical outcome for each csv_file group
for _, fs in norm_group.items():
mask = np.isin(results["name"], fs)
for k, v in results.items():
if k == "name":
continue
v[mask] = v[mask] / max(v[mask])
# Add all numerical results for each outcome group
group_results = defaultdict(list)
for g, fs in output_group.items():
group_results["name"].append(g)
mask = np.isin(results["name"], fs)
group_results["num"].append(sum(mask))
for k in results:
if k == "name":
continue
group_results[k + ":norm"].append(results[k][mask].mean())
# print all outputs for each csv_file and each outcome group
print()
print(tabulate(group_results, headers="keys"))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--xlim",
type=int,
default=1000000,
help="x-axis limitation (default: 1000000)",
)
parser.add_argument("--root-dir", type=str)
parser.add_argument(
"--norm",
action="store_true",
help="Normalize all results according to environment.",
)
args = parser.parse_args()
numerical_analysis(args.root_dir, args.xlim, norm=args.norm)