-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathtools.py
executable file
·139 lines (122 loc) · 4.79 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python3
import argparse
import csv
import os
import re
from collections import defaultdict
from os import PathLike
from re import Pattern
from typing import Any
import numpy as np
import tqdm
from tensorboard.backend.event_processing import event_accumulator
def find_all_files(root_dir: str | PathLike[str], pattern: str | Pattern[str]) -> list:
"""Find all files under root_dir according to relative pattern."""
file_list = []
for dirname, _, files in os.walk(root_dir):
for f in files:
absolute_path = os.path.join(dirname, f)
if re.match(pattern, absolute_path):
file_list.append(absolute_path)
return file_list
def group_files(file_list: list[str], pattern: str | Pattern[str]) -> dict[str, list]:
res = defaultdict(list)
for f in file_list:
match = re.search(pattern, f)
key = match.group() if match else ""
res[key].append(f)
return res
def csv2numpy(csv_file: str) -> dict[Any, np.ndarray]:
csv_dict = defaultdict(list)
with open(csv_file) as f:
for row in csv.DictReader(f):
for k, v in row.items():
csv_dict[k].append(eval(v))
return {k: np.array(v) for k, v in csv_dict.items()}
def convert_tfevents_to_csv(
root_dir: str | PathLike[str],
refresh: bool = False,
) -> dict[str, list]:
"""Recursively convert test/reward from all tfevent file under root_dir to csv.
This function assumes that there is at most one tfevents file in each directory
and will add suffix to that directory.
:param bool refresh: re-create csv file under any condition.
"""
tfevent_files = find_all_files(root_dir, re.compile(r"^.*tfevents.*$"))
print(f"Converting {len(tfevent_files)} tfevents files under {root_dir} ...")
result = {}
with tqdm.tqdm(tfevent_files) as t:
for tfevent_file in t:
t.set_postfix(file=tfevent_file)
output_file = os.path.join(os.path.split(tfevent_file)[0], "test_reward.csv")
if os.path.exists(output_file) and not refresh:
with open(output_file) as f:
content = list(csv.reader(f))
if content[0] == ["env_step", "reward", "time"]:
for i in range(1, len(content)):
content[i] = list(map(eval, content[i]))
result[output_file] = content
continue
ea = event_accumulator.EventAccumulator(tfevent_file)
ea.Reload()
initial_time = ea._first_event_timestamp
content = [["env_step", "reward", "time"]]
for test_reward in ea.scalars.Items("test/reward"):
content.append(
[
round(test_reward.step, 4),
round(test_reward.value, 4),
round(test_reward.wall_time - initial_time, 4),
],
)
with open(output_file, "w") as f:
csv.writer(f).writerows(content)
result[output_file] = content
return result
def merge_csv(
csv_files: dict[str, list],
root_dir: str | PathLike[str],
remove_zero: bool = False,
) -> None:
"""Merge result in csv_files into a single csv file."""
assert len(csv_files) > 0
if remove_zero:
for v in csv_files.values():
if v[1][0] == 0:
v.pop(1)
sorted_keys = sorted(csv_files.keys())
sorted_values = [csv_files[k][1:] for k in sorted_keys]
content = [
[
"env_step",
"reward",
"reward:shaded",
*["reward:" + os.path.relpath(f, root_dir) for f in sorted_keys],
],
]
for rows in zip(*sorted_values, strict=True):
array = np.array(rows)
assert len(set(array[:, 0])) == 1, (set(array[:, 0]), array[:, 0])
line = [rows[0][0], round(array[:, 1].mean(), 4), round(array[:, 1].std(), 4)]
line += array[:, 1].tolist()
content.append(line)
output_path = os.path.join(root_dir, f"test_reward_{len(csv_files)}seeds.csv")
print(f"Output merged csv file to {output_path} with {len(content[1:])} lines.")
with open(output_path, "w") as f:
csv.writer(f).writerows(content)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--refresh",
action="store_true",
help="Re-generate all csv files instead of using existing one.",
)
parser.add_argument(
"--remove-zero",
action="store_true",
help="Remove the data point of env_step == 0.",
)
parser.add_argument("--root-dir", type=str)
args = parser.parse_args()
csv_files = convert_tfevents_to_csv(args.root_dir, args.refresh)
merge_csv(csv_files, args.root_dir, args.remove_zero)