-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_gpt.py
866 lines (767 loc) · 41 KB
/
train_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
import copy
import os
import warnings
current_path = os.getcwd()
print("current_path is: ", current_path)
import numpy as np
import torch
from tqdm import tqdm, trange
import time
import sys
import argparse
import json
import logging
import math
import os
from pathlib import Path
import imageio
import datasets
import torch
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import set_seed, ProjectConfiguration
from tqdm.auto import tqdm
from safetensors.torch import load_file
import transformers
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from transformers import (
MODEL_MAPPING,
AutoConfig,
AutoModelForCausalLM,
SchedulerType,
get_scheduler,
)
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from ivideogpt.vq_model import CompressiveVQModel
from ivideogpt.transformer import HeadModelWithAction
from ivideogpt.utils.video_metric import Evaluator, FeatureStats
from ivideogpt.data import *
from peft import LoraConfig, TaskType, get_peft_model
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
# check_min_version("4.39.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
def get_dataloaders(args):
# DataLoaders creation:
if args.strong_aug:
augmentation_args = {
'brightness': [0.6, 1.4],
'contrast': [0.6, 1.4],
'saturation': [0.6, 1.4],
'hue': [-0.5, 0.5],
'random_resized_crop_scale': (0.6, 1.0),
'random_resized_crop_ratio': (0.75, 1.3333),
'no_aug': args.no_aug,
}
else:
augmentation_args = {
'brightness': [0.9, 1.1],
'contrast': [0.9, 1.1],
'saturation': [0.9, 1.1],
'hue': [-0.05, 0.05],
'random_resized_crop_scale': (0.8, 1.0),
'random_resized_crop_ratio': (0.9, 1.1),
'no_aug': args.no_aug,
}
segment_args = {
'random_selection': False,
'random_shuffle': False,
'goal_conditioned': args.goal_conditioned,
'segment_length': args.segment_length,
'context_length': args.context_length,
'stepsize': args.video_stepsize,
'segment_horizon': None,
}
train_dataloader = SimpleRoboticDataLoaderv2(
parent_dir=args.dataset_path,
datasets=DATASET_NAMED_MIXES[args.oxe_data_mixes_type],
batch_size=args.per_device_train_batch_size,
num_workers=args.dataloader_num_workers,
train=True,
maxsize=args.dataset_size,
image_size=args.resolution,
sthsth_root_path=args.sthsth_root_path,
**augmentation_args,
**segment_args,
load_action=args.action_conditioned,
)
if args.use_eval_dataset:
assert len(DATASET_NAMED_MIXES[args.oxe_data_mixes_type]) == 1
eval_dataloader = EvalDataLoader(
dataset_name=DATASET_NAMED_MIXES[args.oxe_data_mixes_type][0][0],
batch_size=args.per_device_eval_batch_size,
num_workers=args.dataloader_num_workers,
image_size=args.resolution,
segment_length=args.segment_length,
load_action=args.action_conditioned,
)
else:
eval_dataloader = SimpleRoboticDataLoaderv2(
parent_dir=args.dataset_path,
datasets=DATASET_NAMED_MIXES[args.oxe_data_mixes_type],
batch_size=args.per_device_eval_batch_size,
num_workers=args.dataloader_num_workers,
train=False,
image_size=args.resolution,
sthsth_root_path=args.sthsth_root_path,
**augmentation_args,
**segment_args,
load_action=args.action_conditioned,
)
return train_dataloader, eval_dataloader
def get_tokenizer(args):
if args.vqgan_type == 'vqgan':
raise NotImplementedError
vq_model = VQModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder=None, revision=None, variant=None, use_safetensor=True
).eval()
vocab_size = vq_model.num_vq_embeddings
elif args.vqgan_type == 'ctx_vqgan':
vq_model = CompressiveVQModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder=None, revision=None, variant=None, use_safetensor=True,
low_cpu_mem_usage=False, device_map=None,
).eval()
if args.context_length != vq_model.context_length:
print(
f"[Warning] pretrained context length of vq_model mismatch, change from {vq_model.context_length} to {args.context_length}")
vq_model.set_context_length(args.context_length)
vocab_size = vq_model.num_vq_embeddings + vq_model.num_dyn_embeddings
if args.special_token:
vocab_size += 2
else:
raise NotImplementedError
return vq_model, vocab_size
def generate_multiple_times(
gen_times,
accelerator,
model,
gen_input,
actions,
gen_kwargs,
max_batch_size=None,
verbose=False,
reward_prediction=False,
):
max_batch_size = max_batch_size or gen_input.shape[0]
assert max_batch_size % gen_input.shape[0] == 0
repeat_times = max_batch_size // gen_input.shape[0]
assert gen_times % (max_batch_size // gen_input.shape[0]) == 0
repeat_iters = gen_times // (max_batch_size // gen_input.shape[0])
results = []
rewards = []
for i in trange(repeat_iters, disable=not verbose):
if reward_prediction:
generated_tokens, reward = accelerator.unwrap_model(model).generate(
gen_input.repeat(repeat_times, 1),
**gen_kwargs,
**({'action': actions.repeat(repeat_times, 1, 1)} if actions is not None else {}),
pad_token_id=50256, # this is meaningless but supressing warning
)
results.append(generated_tokens)
rewards.append(reward)
else:
generated_tokens = accelerator.unwrap_model(model).generate(
gen_input.repeat(repeat_times, 1),
**gen_kwargs,
**({'action': actions.repeat(repeat_times, 1, 1)} if actions is not None else {}),
pad_token_id=50256, # this is meaningless but supressing warning
)
results.append(generated_tokens)
if reward_prediction:
return torch.cat(results, dim=0), torch.cat(rewards, dim=0)
results = torch.cat(results, dim=0) # [t*B, ...] where t means number of generation times
return results
def batch_forward(batch_size, input, forward, verbose=False):
return torch.cat([forward(input[i: i + batch_size]) for i in trange(0, input.shape[0], batch_size, disable=not verbose)], dim=0)
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a causal language modeling task")
parser.add_argument("--config_name", type=str, default="configs/llama/config.json",
help="Pretrained config name or path if not the same as model_name")
parser.add_argument('--llama_attn_drop', default=None, type=float)
parser.add_argument("--per_device_train_batch_size", type=int, default=8,
help="Batch size (per device) for the training dataloader.")
parser.add_argument("--per_device_eval_batch_size", type=int, default=None,
help="Batch size (per device) for the evaluation dataloader.")
parser.add_argument("--learning_rate", type=float, default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.")
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=1, help="Total number of training epochs to perform.")
parser.add_argument("--max_train_steps", type=int, default=1000000,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--lr_scheduler_type", type=SchedulerType, default="constant_with_warmup",
help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"])
parser.add_argument("--num_warmup_steps", type=int, default=5000,
help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--output_dir", type=str, default="trm-output", help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--vqgan_type", type=str, default="vqgan",
choices=['vqgan', 'ctx_vqgan'], help="VQGAN model type to use.")
parser.add_argument('--pretrained_model_name_or_path', type=str, required=True)
parser.add_argument('--pretrained_transformer_path', type=str, default=None)
parser.add_argument('--load_internal_llm', default=False, action='store_true')
parser.add_argument("--trust_remote_code", type=bool, default=False,
help=(
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
),
)
parser.add_argument("--checkpointing_steps", type=int, default=5000,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.")
parser.add_argument("--resume_from_checkpoint", type=str, default=None,
help="If the training should continue from a checkpoint folder.")
parser.add_argument("--with_tracking", type=bool, default=True,
help="Whether to enable experiment trackers for logging.")
parser.add_argument("--report_to", type=str, default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. '
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument("--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument('--exp_name', default=None, type=str)
parser.add_argument('--lora', default=False, action='store_true')
parser.add_argument('--lora_r', default=8, type=int)
parser.add_argument('--lora_alpha', default=32, type=float)
parser.add_argument('--lora_dropout', default=0.0, type=float)
parser.add_argument('--gradient_checkpointing', default=False, action='store_true')
parser.add_argument("--max_grad_norm", default=None, type=float, help="Max gradient norm.")
parser.add_argument('--reward_prediction', default=False, action='store_true')
parser.add_argument('--start_completed_steps', default=None, type=int)
parser.add_argument('--action_recon', default=None, type=float)
# datasets
parser.add_argument("--segment_length", type=int, default=2,
help="The length of the segmented trajectories to use for the training.")
parser.add_argument("--context_length", type=int, default=1)
parser.add_argument('--video_stepsize', default=1, type=int)
parser.add_argument('--dataset_path', default='/data2/frame_datasets',
type=str, help='Path to the tensorflow datasets')
parser.add_argument('--dataset_size', default=None, type=int)
parser.add_argument('--sthsth_root_path',
default='/data/something-something-v2/20bn-something-something-v2-frames-64', type=str)
parser.add_argument("--resolution", type=int, default=256)
parser.add_argument("--dataloader_num_workers", type=int, default=4,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument('--strong_aug', default=False, action='store_true')
parser.add_argument('--no_aug', default=False, action='store_true')
parser.add_argument('--oxe_data_mixes_type', default='select', type=str)
parser.add_argument("--log_steps", type=int, default=100, help=("Print logs every X steps."))
parser.add_argument("--validation_steps", type=int, default=5000)
parser.add_argument('--skip_first_val', default=False, action='store_true')
parser.add_argument('--latest_checkpoint_only', default=False, action='store_true')
parser.add_argument('--special_token', default=True, action='store_true')
parser.add_argument('--action_conditioned', default=False, action='store_true')
parser.add_argument('--action_dim', default=4, type=int, help='action dimension for the task')
parser.add_argument('--embed_no_wd', default=False, action='store_true')
parser.add_argument('--goal_conditioned', default=False, action='store_true')
# evaluation
parser.add_argument('--max_eval_iters', default=100, type=int)
parser.add_argument('--use_eval_dataset', default=False, action='store_true')
parser.add_argument('--i3d_path', default='pretrained_models/i3d/i3d_torchscript.pt', type=str, help='path to the i3d model')
parser.add_argument('--use_frame_metrics', default=False, action='store_true')
parser.add_argument('--use_fvd', default=False, action='store_true')
parser.add_argument('--eval_generate_times', default=1, type=int, help='for eval, fvd')
parser.add_argument('--max_generate_batchsize', default=None, type=int)
parser.add_argument('--max_decode_batchsize', default=None, type=int)
parser.add_argument('--eval_only', default=False, action='store_true')
parser.add_argument('--log_gif_interval', default=10, type=int)
args = parser.parse_args()
args.model_type = args.config_name.split('/')[1]
if args.model_type not in ['gpt2', 'llama']:
assert False, f"model_type {args.model_type} is not supported."
if args.per_device_eval_batch_size is None:
args.per_device_eval_batch_size = args.per_device_train_batch_size
assert not (args.action_conditioned and not args.special_token), \
"Action conditioned model must have special token enabled."
return args
@torch.no_grad
def evaluate(args, accelerator, tokenizer, model, eval_dataloader, evaluator, completed_steps):
model.eval()
losses = []
mse_values, psnr_values, ssim_values, lpips_values, = [], [], [], []
real_feats, gen_feats = FeatureStats(capture_mean_cov=True), FeatureStats(capture_mean_cov=True)
eval_iters = min(len(eval_dataloader), args.max_eval_iters)
bar = tqdm(range(eval_iters), desc="validation", disable=not accelerator.is_local_main_process)
for i, batch in enumerate(eval_dataloader):
if i == args.max_eval_iters:
break
if args.action_conditioned:
pixel_values, actions = batch
actions = actions.to(accelerator.device, non_blocking=True)
pixel_values = pixel_values.to(accelerator.device, non_blocking=True)
else:
pixel_values = batch.to(accelerator.device, non_blocking=True)
batch_size = pixel_values.shape[0]
if args.use_fvd:
detector_kwargs = dict(rescale=True, resize=True, return_features=True)
images = pixel_values.permute(0, 2, 1, 3, 4).contiguous() # [batch_size, c, t, h, w]
if args.max_decode_batchsize is not None and images.shape[0] > args.max_decode_batchsize:
features = batch_forward(
args.max_decode_batchsize,
images * 255.,
lambda x: accelerator.unwrap_model(evaluator).i3d_model(x, **detector_kwargs)
)
else:
features = accelerator.unwrap_model(evaluator).i3d_model(images * 255., **detector_kwargs)
gathered_features = accelerator.gather(features)
if accelerator.is_main_process:
real_feats.append_torch(gathered_features)
tokens, labels = accelerator.unwrap_model(tokenizer).tokenize(pixel_values,
args.context_length,
# special_token=args.special_token
)
model_input = {'input_ids': tokens, 'labels': labels}
if args.action_conditioned:
model_input['action'] = actions
if args.reward_prediction:
if accelerator.num_processes > 1:
outputs, rewards = model.module(**model_input)
else:
outputs, rewards = model(**model_input)
else:
if accelerator.num_processes > 1:
outputs = model.module(**model_input)
else:
outputs = model(**model_input)
loss = outputs.loss
losses.append(accelerator.gather(loss.repeat(batch_size)))
# predict next frames
if (i % args.log_gif_interval == 0 and accelerator.is_main_process) or args.use_frame_metrics or args.use_fvd:
if args.special_token:
gen_input = tokens[:, :args.context_length * (256 + 1)] # TODO: magic number
# gen_input = tokens[:, :2 * (256 + 1)] # TODO: magic number
max_new_tokens = (1 + 16) * (args.segment_length - args.context_length) - 1
else:
gen_input = tokens[:, :args.context_length * 256]
max_new_tokens = 16 * (args.segment_length - args.context_length)
# generated_tokens = accelerator.unwrap_model(model).generate(
# gen_input,
# do_sample=True,
# temperature=1.0,
# top_k=100,
# max_new_tokens=max_new_tokens,
# **({'action': actions} if args.action_conditioned else {})
# )
if args.reward_prediction:
generated_tokens, rewards = generate_multiple_times(
args.eval_generate_times,
accelerator, model, gen_input, actions if args.action_conditioned else None,
gen_kwargs={
'do_sample': True,
'temperature': 1.0,
'top_k': 100,
'max_new_tokens': max_new_tokens,
},
max_batch_size=args.max_generate_batchsize,
verbose=False,
# verbose=True,
reward_prediction=True,
)
else:
generated_tokens = generate_multiple_times(
args.eval_generate_times,
accelerator, model, gen_input, actions if args.action_conditioned else None,
gen_kwargs={
'do_sample': True,
'temperature': 1.0,
'top_k': 100,
'max_new_tokens': max_new_tokens,
},
max_batch_size=args.max_generate_batchsize,
verbose=False,
# verbose=True,
reward_prediction=False,
)
if args.max_decode_batchsize is not None and generated_tokens.shape[0] > args.max_decode_batchsize:
recon_output = batch_forward(
args.max_decode_batchsize,
generated_tokens,
lambda x: accelerator.unwrap_model(tokenizer).detokenize(
x, args.context_length,
# special_token=args.special_token
)
)
else:
recon_output = accelerator.unwrap_model(tokenizer).detokenize(
generated_tokens, args.context_length,
# special_token=args.special_token
) # generated_tokens will include gen_input
recon_output = recon_output.clamp(0.0, 1.0)
# save predicted video
if i % args.log_gif_interval == 0 and accelerator.is_main_process:
save_path = os.path.join(args.output_dir, "images", f"val-samples-{completed_steps}")
os.makedirs(save_path, exist_ok=True)
gt_frames = [(pixel_values[0, i].permute(1, 2, 0).detach().cpu().numpy() * 255).astype(np.uint8)
for i in range(pixel_values.shape[1])]
recon_frames = [(recon_output[0, i].permute(1, 2, 0).detach().cpu().numpy() *
255).astype(np.uint8) for i in range(recon_output.shape[1])]
frames = [np.concatenate([gt_frames[i], recon_frames[i], np.abs(gt_frames[i].astype(
float) - recon_frames[i].astype(float)).astype(np.uint8)]) for i in range(len(gt_frames))]
imageio.mimsave(f"{save_path}/val-samples-{completed_steps}-{i}.gif", frames, fps=4, loop=0)
if not args.use_frame_metrics:
assert pixel_values.shape[0] == recon_output.shape[0]
mse_values.append(torch.mean((pixel_values - recon_output) ** 2).repeat(batch_size))
if args.use_fvd:
detector_kwargs = dict(rescale=True, resize=True, return_features=True)
images = recon_output.permute(0, 2, 1, 3, 4).contiguous() # [batch_size, c, t, h, w]
if args.max_decode_batchsize is not None and images.shape[0] > args.max_decode_batchsize:
features = batch_forward(
args.max_decode_batchsize,
images * 255.,
lambda x: accelerator.unwrap_model(evaluator).i3d_model(x, **detector_kwargs)
)
else:
features = accelerator.unwrap_model(evaluator).i3d_model(images * 255., **detector_kwargs)
gathered_features = accelerator.gather(features)
if accelerator.is_main_process:
gen_feats.append_torch(gathered_features)
print("current fvd", accelerator.unwrap_model(evaluator).compute_fvd(real_feats, gen_feats))
if args.use_frame_metrics:
mse_value, psnr_value, ssim_value, lpips_value = evaluator(pixel_values.clamp(
0.0, 1.0), recon_output) # pixel_values can be 1.0000001192092896 numerically
mse_values.append(accelerator.gather(mse_value.repeat(batch_size)))
psnr_values.append(accelerator.gather(psnr_value.repeat(batch_size)))
ssim_values.append(accelerator.gather(ssim_value.repeat(batch_size)))
lpips_values.append(accelerator.gather(lpips_value.repeat(batch_size)))
bar.update(1)
if accelerator.is_main_process:
try:
eval_loss = torch.cat(losses, 0).mean().item()
perplexity = math.exp(eval_loss)
except OverflowError:
perplexity = float("inf")
eval_logs = {
'eval/eval_loss': eval_loss,
'eval/perplexity': perplexity,
'eval/mse': torch.cat(mse_values, 0).mean().item(),
}
if args.use_fvd:
fvd = accelerator.unwrap_model(evaluator).compute_fvd(real_feats, gen_feats)
eval_logs.update({'eval/fvd': fvd})
if args.use_frame_metrics:
eval_logs.update({
'eval/psnr': torch.cat(psnr_values, 0).mean().item(),
'eval/ssim': torch.cat(ssim_values, 0).mean().item(),
'eval/lpips': torch.cat(lpips_values, 0).mean().item(),
})
accelerator.log(eval_logs, step=completed_steps)
model.train()
if accelerator.is_main_process:
return eval_logs
else:
return None
def plot_gif(x, postfix=''):
# [B, T, C, H, W]
frames = [(x[0, i].permute(1, 2, 0).detach().cpu().numpy() * 255).astype(np.uint8) for i in range(x.shape[1])]
imageio.mimsave(f"tmp{postfix}.gif", frames, fps=4, loop=0)
def start_train():
args = parse_args()
args.output_dir = os.path.join(args.output_dir, time.strftime("%Y-%m-%d-%X", time.localtime()) + (
"" if args.exp_name is None else f"-{args.exp_name}"))
os.makedirs(args.output_dir, exist_ok=True)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
# in the environment
logging_dir = os.path.join(args.output_dir, 'logs')
os.makedirs(logging_dir, exist_ok=True)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed, device_specific=True)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
with open(os.path.join(args.output_dir, "cmd.sh"), "w") as f:
f.write("python " + " ".join(sys.argv))
src_path = os.path.join(args.output_dir, 'src')
os.makedirs(src_path, exist_ok=True)
os.system(f"rsync -rv --exclude-from=.gitignore . {src_path}")
accelerator.wait_for_everyone()
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
train_dataloader, eval_dataloader = get_dataloaders(args)
tokenizer, vocab_size = get_tokenizer(args)
if args.config_name:
config = AutoConfig.from_pretrained(
args.config_name,
trust_remote_code=args.trust_remote_code,
)
if args.model_type == "llama" and args.llama_attn_drop is not None:
config.attention_dropout = args.llama_attn_drop
else:
assert False
config.vocab_size = vocab_size
if args.reward_prediction:
config.output_hidden_states = True
model = AutoModelForCausalLM.from_config(config, trust_remote_code=args.trust_remote_code)
if args.gradient_checkpointing:
model.gradient_checkpointing_enable()
print("gradient checkpointing enabled")
if args.action_conditioned:
# TODO: magic number
perlude_tokens_num = (256 + 1) * args.context_length - 1
tokens_per_dyna = 16
model = HeadModelWithAction(model, action_dim=args.action_dim, prelude_tokens_num=perlude_tokens_num,
tokens_num_per_dyna=tokens_per_dyna, context=args.context_length,
segment_length=args.segment_length, model_type=args.model_type,
reward_prediction=args.reward_prediction, action_recon=args.action_recon)
if args.pretrained_transformer_path is not None:
state_dict = load_file(os.path.join(args.pretrained_transformer_path, 'model.safetensors'))
if args.load_internal_llm:
model.llm.load_state_dict(state_dict, strict=True)
else:
model.load_state_dict(state_dict, strict=True)
logger.info("Finetuning the model from " + args.pretrained_transformer_path)
else:
logger.info("Training new model from scratch")
if args.lora:
peft_config = LoraConfig(task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj",
"up_proj", "down_proj", "embed_tokens", "lm_head"], # ! only for llama
)
if args.action_conditioned:
model.llm = get_peft_model(model.llm, peft_config)
else:
model = get_peft_model(model, peft_config)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
# no_decay = ["bias", "layer_norm.weight"]
no_decay = []
if args.embed_no_wd:
for mn, m in model.named_modules():
for pn, p in m.named_parameters():
if pn.endswith('bias') or \
(pn.endswith('weight') and isinstance(m, torch.nn.Embedding)) or \
(pn.endswith('weight') and isinstance(m, torch.nn.LayerNorm)) or \
(pn.endswith('weight') and isinstance(m, LlamaRMSNorm)):
fpn = '%s.%s' % (mn, pn) if mn else pn
no_decay.append(fpn)
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Scheduler and math around the number of training steps.
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
)
evaluator = Evaluator(args.i3d_path, max_batchsize=args.max_decode_batchsize)
# Prepare everything with our `accelerator`.
# we do not need to prepare train dataloader
model, tokenizer, optimizer, lr_scheduler, evaluator, eval_dataloader = accelerator.prepare(
model, tokenizer, optimizer, lr_scheduler, evaluator, eval_dataloader
)
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
if accelerator.distributed_type == DistributedType.TPU:
model.tie_weights()
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("clm_no_trainer", experiment_config)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
if args.start_completed_steps is not None:
completed_steps = args.start_completed_steps
progress_bar.update(completed_steps)
starting_epoch = 0
end = time.time()
lastest_output_dir, lastest_completed_steps = None, None
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
checkpoint_path = args.resume_from_checkpoint
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
checkpoint_path = path
path = os.path.basename(checkpoint_path)
accelerator.print(f"Resumed from checkpoint: {checkpoint_path}")
accelerator.load_state(checkpoint_path)
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
raise NotImplementedError
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
# need to multiply `gradient_accumulation_steps` to reflect real steps
# resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
resume_step = int(training_difference.replace("checkpoint_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
completed_steps = resume_step // args.gradient_accumulation_steps
resume_step -= starting_epoch * len(train_dataloader)
lastest_output_dir, lastest_completed_steps = args.resume_from_checkpoint, completed_steps
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
avg_loss = None
if args.eval_only:
eval_logs = evaluate(args, accelerator, tokenizer, model, eval_dataloader, evaluator, completed_steps)
if eval_logs is not None:
print(args.pretrained_model_name_or_path)
print(args.pretrained_transformer_path)
print(eval_logs)
return
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We skip the first `n` batches in the dataloader when resuming from a checkpoint
active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
print("skip first batches", resume_step)
else:
active_dataloader = train_dataloader
for step, batch in enumerate(active_dataloader):
if args.action_conditioned:
pixel_values, actions = batch
actions = actions.to(accelerator.device, non_blocking=True)
pixel_values = pixel_values.to(accelerator.device, non_blocking=True)
else:
pixel_values = batch.to(accelerator.device, non_blocking=True)
optimizer.zero_grad()
with torch.no_grad():
tokens, labels = accelerator.unwrap_model(tokenizer).tokenize(pixel_values, args.context_length,
# special_token=args.special_token
)
# recon = accelerator.unwrap_model(tokenizer).detokenize(tokens, args.context_length, special_token=args.special_token) # for debug
model_input = {
'input_ids': tokens,
'labels': labels,
}
if args.action_conditioned:
model_input['action'] = actions
with accelerator.accumulate(model):
if args.reward_prediction:
outputs, rewards = model(**model_input)
else:
outputs = model(**model_input)
loss = outputs.loss
avg_loss = accelerator.gather(loss.repeat(args.per_device_train_batch_size)).float().mean()
if args.action_recon:
avg_action_recon_loss = accelerator.gather(accelerator.unwrap_model(
model).action_recon_loss.repeat(args.per_device_train_batch_size)).float().mean()
accelerator.backward(loss)
if args.max_grad_norm is not None and accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if accelerator.sync_gradients and accelerator.is_main_process:
batch_time = time.time() - end
progress_bar.set_postfix(batch_time=batch_time)
end = time.time()
# Log metrics
if completed_steps % args.log_steps == 0:
logs = {
"batch_time": batch_time,
"lr": lr_scheduler.get_last_lr()[0],
"loss": avg_loss.item(),
}
if args.action_recon:
logs.update({"action_recon_loss": avg_action_recon_loss.item()})
accelerator.log(logs, step=completed_steps)
# Save model checkpoint
if completed_steps % checkpointing_steps == 0 and avg_loss < 4.0:
output_dir = f"checkpoints/checkpoint_{completed_steps}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
lastest_output_dir = output_dir
lastest_completed_steps = completed_steps
if args.latest_checkpoint_only:
latest_checkpoint_path = os.path.join(args.output_dir,
f"checkpoints/checkpoint_{completed_steps - checkpointing_steps}")
if os.path.exists(latest_checkpoint_path):
os.system(f"rm -rf {latest_checkpoint_path}")
if accelerator.sync_gradients:
# Validation
if completed_steps == args.max_train_steps or (completed_steps % args.validation_steps == 1 and (completed_steps > 1 or not args.skip_first_val)):
evaluate(args, accelerator, tokenizer, model, eval_dataloader, evaluator, completed_steps)
# if avg_loss > 4.0:
# accelerator.load_state(lastest_output_dir)
# progress_bar.update(lastest_completed_steps - completed_steps)
# completed_steps = lastest_completed_steps
# print(f"Encounter avg_loss {avg_loss}, load state from", lastest_output_dir)
if completed_steps >= args.max_train_steps:
break
if args.with_tracking:
accelerator.end_training()
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if __name__ == "__main__":
start_train()