-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathdetails_auto_ml_h2o.Rd
103 lines (86 loc) · 3.83 KB
/
details_auto_ml_h2o.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/auto_ml_h2o.R
\name{details_auto_ml_h2o}
\alias{details_auto_ml_h2o}
\title{Automatic machine learning via h2o}
\description{
\link[h2o:h2o.automl]{h2o::h2o.automl} defines an automated model training process and returns a
leaderboard of models with best performances.
}
\details{
For this engine, there are multiple modes: classification and regression
\subsection{Tuning Parameters}{
This model has no tuning parameters.
Engine arguments of interest
\itemize{
\item \code{max_runtime_secs} and \code{max_models}: controls the maximum running time
and number of models to build in the automatic process.
\item \code{exclude_algos} and \code{include_algos}: a character vector indicating the
excluded or included algorithms during model building. To see a full
list of supported models, see the details section in
\code{\link[h2o:h2o.automl]{h2o::h2o.automl()}}.
\item \code{validation}: An integer between 0 and 1 specifying the \emph{proportion}
of training data reserved as validation set. This is used by h2o for
performance assessment and potential early stopping.
}
}
\subsection{Translation from parsnip to the original package (regression)}{
\code{\link[agua:h2o_train]{agua::h2o_train_auto()}} is a wrapper around
\code{\link[h2o:h2o.automl]{h2o::h2o.automl()}}.
\if{html}{\out{<div class="sourceCode r">}}\preformatted{auto_ml() \%>\%
set_engine("h2o") \%>\%
set_mode("regression") \%>\%
translate()
}\if{html}{\out{</div>}}
\if{html}{\out{<div class="sourceCode">}}\preformatted{## Automatic Machine Learning Model Specification (regression)
##
## Computational engine: h2o
##
## Model fit template:
## agua::h2o_train_auto(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
## validation_frame = missing_arg(), verbosity = NULL)
}\if{html}{\out{</div>}}
}
\subsection{Translation from parsnip to the original package (classification)}{
\if{html}{\out{<div class="sourceCode r">}}\preformatted{auto_ml() \%>\%
set_engine("h2o") \%>\%
set_mode("classification") \%>\%
translate()
}\if{html}{\out{</div>}}
\if{html}{\out{<div class="sourceCode">}}\preformatted{## Automatic Machine Learning Model Specification (classification)
##
## Computational engine: h2o
##
## Model fit template:
## agua::h2o_train_auto(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
## validation_frame = missing_arg(), verbosity = NULL)
}\if{html}{\out{</div>}}
}
\subsection{Preprocessing requirements}{
Factor/categorical predictors need to be converted to numeric values
(e.g., dummy or indicator variables) for this engine. When using the
formula method via \code{\link[=fit.model_spec]{fit()}}, parsnip will
convert factor columns to indicators.
}
\subsection{Initializing h2o}{
To use the h2o engine with tidymodels, please run \code{h2o::h2o.init()}
first. By default, This connects R to the local h2o server. This needs
to be done in every new R session. You can also connect to a remote h2o
server with an IP address, for more details see
\code{\link[h2o:h2o.init]{h2o::h2o.init()}}.
You can control the number of threads in the thread pool used by h2o
with the \code{nthreads} argument. By default, it uses all CPUs on the host.
This is different from the usual parallel processing mechanism in
tidymodels for tuning, while tidymodels parallelizes over resamples, h2o
parallelizes over hyperparameter combinations for a given resample.
h2o will automatically shut down the local h2o instance started by R
when R is terminated. To manually stop the h2o server, run
\code{h2o::h2o.shutdown()}.
}
\subsection{Saving fitted model objects}{
Models fitted with this engine may require native serialization methods
to be properly saved and/or passed between R sessions. To learn more
about preparing fitted models for serialization, see the bundle package.
}
}
\keyword{internal}