-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathsvm_poly.Rd
76 lines (65 loc) · 2.69 KB
/
svm_poly.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/svm_poly.R
\name{svm_poly}
\alias{svm_poly}
\title{Polynomial support vector machines}
\usage{
svm_poly(
mode = "unknown",
engine = "kernlab",
cost = NULL,
degree = NULL,
scale_factor = NULL,
margin = NULL
)
}
\arguments{
\item{mode}{A single character string for the prediction outcome mode.
Possible values for this model are "unknown", "regression", or
"classification".}
\item{engine}{A single character string specifying what computational engine
to use for fitting.}
\item{cost}{A positive number for the cost of predicting a sample within
or on the wrong side of the margin}
\item{degree}{A positive number for polynomial degree.}
\item{scale_factor}{A positive number for the polynomial scaling factor.}
\item{margin}{A positive number for the epsilon in the SVM insensitive
loss function (regression only)}
}
\description{
\code{svm_poly()} defines a support vector machine model. For classification,
the model tries to maximize the width of the margin between classes using a
polynomial class boundary. For regression, the model optimizes a robust loss
function that is only affected by very large model residuals and uses polynomial
functions of the predictors. This function can fit classification and
regression models.
\Sexpr[stage=render,results=rd]{parsnip:::make_engine_list("svm_poly")}
More information on how \pkg{parsnip} is used for modeling is at
\url{https://www.tidymodels.org/}.
}
\details{
This function only defines what \emph{type} of model is being fit. Once an engine
is specified, the \emph{method} to fit the model is also defined. See
\code{\link[=set_engine]{set_engine()}} for more on setting the engine, including how to set engine
arguments.
The model is not trained or fit until the \code{\link[=fit.model_spec]{fit()}} function is used
with the data.
Each of the arguments in this function other than \code{mode} and \code{engine} are
captured as \link[rlang:topic-quosure]{quosures}. To pass values
programmatically, use the \link[rlang:injection-operator]{injection operator} like so:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{value <- 1
svm_poly(argument = !!value)
}\if{html}{\out{</div>}}
}
\examples{
\dontshow{if (!parsnip:::is_cran_check()) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
show_engines("svm_poly")
svm_poly(mode = "classification", degree = 1.2)
\dontshow{\}) # examplesIf}
}
\references{
\url{https://www.tidymodels.org}, \href{https://www.tmwr.org/}{\emph{Tidy Modeling with R}}, \href{https://www.tidymodels.org/find/parsnip/}{searchable table of parsnip models}
}
\seealso{
\Sexpr[stage=render,results=rd]{parsnip:::make_seealso_list("svm_poly")}
}