-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathnearmiss.R
263 lines (246 loc) · 7.19 KB
/
nearmiss.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#' Remove Points Near Other Classes
#'
#' `step_nearmiss()` creates a *specification* of a recipe step that removes
#' majority class instances by undersampling points in the majority class based
#' on their distance to other points in the same class.
#'
#' @inheritParams recipes::step_center
#' @inheritParams step_downsample
#' @inheritParams step_smote
#' @param ... One or more selector functions to choose which
#' variable is used to sample the data. See [recipes::selections]
#' for more details. The selection should result in _single
#' factor variable_. For the `tidy` method, these are not
#' currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param column A character string of the variable name that will
#' be populated (eventually) by the `...` selectors.
#' @param seed An integer that will be used as the seed when
#' applied.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` which is
#' the variable used to sample.
#'
#' @details
#' This method retains the points from the majority class which have the
#' smallest mean distance to the k nearest points in the minority class.
#'
#' All columns in the data are sampled and returned by [recipes::juice()]
#' and [recipes::bake()].
#'
#' All columns used in this step must be numeric with no missing data.
#'
#' When used in modeling, users should strongly consider using the
#' option `skip = TRUE` so that the extra sampling is _not_
#' conducted outside of the training set.
#'
#' # Tidying
#'
#' When you [`tidy()`][recipes::tidy.recipe()] this step, a tibble is retruned with
#' columns `terms` and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{id}{character, id of this step}
#' }
#'
#' ```{r, echo = FALSE, results="asis"}
#' step <- "step_nearmiss"
#' result <- knitr::knit_child("man/rmd/tunable-args.Rmd")
#' cat(result)
#' ```
#'
#' @template case-weights-not-supported
#'
#' @references Inderjeet Mani and I Zhang. knn approach to unbalanced data
#' distributions: a case study involving information extraction. In Proceedings
#' of workshop on learning from imbalanced datasets, 2003.
#'
#' @seealso [nearmiss()] for direct implementation
#' @family Steps for under-sampling
#'
#' @export
#' @examplesIf rlang::is_installed("modeldata")
#' library(recipes)
#' library(modeldata)
#' data(hpc_data)
#'
#' hpc_data0 <- hpc_data %>%
#' select(-protocol, -day)
#'
#' orig <- count(hpc_data0, class, name = "orig")
#' orig
#'
#' up_rec <- recipe(class ~ ., data = hpc_data0) %>%
#' # Bring the majority levels down to about 1000 each
#' # 1000/259 is approx 3.862
#' step_nearmiss(class, under_ratio = 3.862) %>%
#' prep()
#'
#' training <- up_rec %>%
#' bake(new_data = NULL) %>%
#' count(class, name = "training")
#' training
#'
#' # Since `skip` defaults to TRUE, baking the step has no effect
#' baked <- up_rec %>%
#' bake(new_data = hpc_data0) %>%
#' count(class, name = "baked")
#' baked
#'
#' # Note that if the original data contained more rows than the
#' # target n (= ratio * majority_n), the data are left alone:
#' orig %>%
#' left_join(training, by = "class") %>%
#' left_join(baked, by = "class")
#'
#' library(ggplot2)
#'
#' ggplot(circle_example, aes(x, y, color = class)) +
#' geom_point() +
#' labs(title = "Without NEARMISS") +
#' xlim(c(1, 15)) +
#' ylim(c(1, 15))
#'
#' recipe(class ~ x + y, data = circle_example) %>%
#' step_nearmiss(class) %>%
#' prep() %>%
#' bake(new_data = NULL) %>%
#' ggplot(aes(x, y, color = class)) +
#' geom_point() +
#' labs(title = "With NEARMISS") +
#' xlim(c(1, 15)) +
#' ylim(c(1, 15))
step_nearmiss <-
function(recipe, ..., role = NA, trained = FALSE,
column = NULL, under_ratio = 1, neighbors = 5, skip = TRUE,
seed = sample.int(10^5, 1),
id = rand_id("nearmiss")) {
check_number_whole(seed)
add_step(
recipe,
step_nearmiss_new(
terms = enquos(...),
role = role,
trained = trained,
column = column,
under_ratio = under_ratio,
neighbors = neighbors,
predictors = NULL,
skip = skip,
seed = seed,
id = id
)
)
}
step_nearmiss_new <-
function(terms, role, trained, column, under_ratio, neighbors, predictors,
skip, seed, id) {
step(
subclass = "nearmiss",
terms = terms,
role = role,
trained = trained,
column = column,
under_ratio = under_ratio,
neighbors = neighbors,
predictors = predictors,
skip = skip,
id = id,
seed = seed,
id = id
)
}
#' @export
prep.step_nearmiss <- function(x, training, info = NULL, ...) {
col_name <- recipes_eval_select(x$terms, training, info)
check_number_decimal(x$under_ratio, arg = "under_ratio", min = 0)
check_number_whole(x$neighbors, arg = "neighbors", min = 1)
check_1_selected(col_name)
check_column_factor(training, col_name)
predictors <- setdiff(get_from_info(info, "predictor"), col_name)
check_type(training[, predictors], types = c("double", "integer"))
check_na(select(training, all_of(c(col_name, predictors))))
step_nearmiss_new(
terms = x$terms,
role = x$role,
trained = TRUE,
column = col_name,
under_ratio = x$under_ratio,
neighbors = x$neighbors,
predictors = predictors,
skip = x$skip,
seed = x$seed,
id = x$id
)
}
#' @export
bake.step_nearmiss <- function(object, new_data, ...) {
col_names <- unique(c(object$predictors, object$column))
check_new_data(col_names, object, new_data)
if (length(object$column) == 0L) {
# Empty selection
return(new_data)
}
ignore_vars <- setdiff(names(new_data), col_names)
# nearmiss with seed for reproducibility
with_seed(
seed = object$seed,
code = {
original_levels <- levels(new_data[[object$column]])
new_data <- nearmiss_impl(
df = new_data,
var = object$column,
ignore_vars = ignore_vars,
k = object$neighbors,
under_ratio = object$under_ratio
)
new_data[[object$column]] <- factor(
new_data[[object$column]],
levels = original_levels
)
}
)
new_data
}
#' @export
print.step_nearmiss <-
function(x, width = max(20, options()$width - 26), ...) {
title <- "NEARMISS-1 based on "
print_step(x$column, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname step_nearmiss
#' @usage NULL
#' @export
tidy.step_nearmiss <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = unname(x$column))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = unname(term_names))
}
res$id <- x$id
res
}
#' @export
#' @rdname tunable_themis
tunable.step_nearmiss <- function(x, ...) {
tibble::tibble(
name = c("under_ratio", "neighbors"),
call_info = list(
list(pkg = "dials", fun = "under_ratio"),
list(pkg = "dials", fun = "neighbors", range = c(1, 10))
),
source = "recipe",
component = "step_nearmiss",
component_id = x$id
)
}
#' @rdname required_pkgs.step
#' @export
required_pkgs.step_nearmiss <- function(x, ...) {
c("themis")
}