-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathupsample.R
306 lines (282 loc) · 8.35 KB
/
upsample.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#' Up-Sample a Data Set Based on a Factor Variable
#'
#' `step_upsample()` creates a *specification* of a recipe step that will
#' replicate rows of a data set to make the occurrence of levels in a specific
#' factor level equal.
#'
#' @inheritParams recipes::step_center
#' @param ... One or more selector functions to choose which
#' variable is used to sample the data. See [recipes::selections]
#' for more details. The selection should result in _single
#' factor variable_. For the `tidy` method, these are not
#' currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param column A character string of the variable name that will
#' be populated (eventually) by the `...` selectors.
#' @param over_ratio A numeric value for the ratio of the
#' minority-to-majority frequencies. The default value (1) means
#' that all other levels are sampled up to have the same
#' frequency as the most occurring level. A value of 0.5 would mean
#' that the minority levels will have (at most) (approximately)
#' half as many rows than the majority level.
#' @param ratio Deprecated argument; same as `over_ratio`.
#' @param target An integer that will be used to subsample. This
#' should not be set by the user and will be populated by `prep`.
#' @param seed An integer that will be used as the seed when upsampling.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` which is
#' the variable used to sample.
#' @details
#' Up-sampling is intended to be performed on the _training_ set
#' alone. For this reason, the default is `skip = TRUE`.
#'
#' If there are missing values in the factor variable that is used
#' to define the sampling, missing data are selected at random in
#' the same way that the other factor levels are sampled. Missing
#' values are not used to determine the amount of data in the
#' majority level (see example below).
#'
#' For any data with factor levels occurring with the same
#' frequency as the majority level, all data will be retained.
#'
#' All columns in the data are sampled and returned by [recipes::juice()]
#' and [recipes::bake()].
#'
#' # Tidying
#'
#' When you [`tidy()`][recipes::tidy.recipe()] this step, a tibble is retruned with
#' columns `terms` and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{id}{character, id of this step}
#' }
#'
#' ```{r, echo = FALSE, results="asis"}
#' step <- "step_upsample"
#' result <- knitr::knit_child("man/rmd/tunable-args.Rmd")
#' cat(result)
#' ```
#'
#' @template case-weights-unsupervised
#'
#' @family Steps for over-sampling
#'
#' @export
#' @examplesIf rlang::is_installed("modeldata")
#' library(recipes)
#' library(modeldata)
#' data(hpc_data)
#'
#' hpc_data0 <- hpc_data %>%
#' select(-protocol, -day)
#'
#' orig <- count(hpc_data0, class, name = "orig")
#' orig
#'
#' up_rec <- recipe(class ~ ., data = hpc_data0) %>%
#' # Bring the minority levels up to about 1000 each
#' # 1000/2211 is approx 0.4523
#' step_upsample(class, over_ratio = 0.4523) %>%
#' prep()
#'
#' training <- up_rec %>%
#' bake(new_data = NULL) %>%
#' count(class, name = "training")
#' training
#'
#' # Since `skip` defaults to TRUE, baking the step has no effect
#' baked <- up_rec %>%
#' bake(new_data = hpc_data0) %>%
#' count(class, name = "baked")
#' baked
#'
#' # Note that if the original data contained more rows than the
#' # target n (= ratio * majority_n), the data are left alone:
#' orig %>%
#' left_join(training, by = "class") %>%
#' left_join(baked, by = "class")
#'
#' library(ggplot2)
#'
#' ggplot(circle_example, aes(x, y, color = class)) +
#' geom_point() +
#' labs(title = "Without upsample")
#'
#' recipe(class ~ x + y, data = circle_example) %>%
#' step_upsample(class) %>%
#' prep() %>%
#' bake(new_data = NULL) %>%
#' ggplot(aes(x, y, color = class)) +
#' geom_jitter(width = 0.1, height = 0.1) +
#' labs(title = "With upsample (with jittering)")
step_upsample <-
function(recipe, ..., over_ratio = 1, ratio = deprecated(), role = NA,
trained = FALSE, column = NULL, target = NA, skip = TRUE,
seed = sample.int(10^5, 1),
id = rand_id("upsample")) {
if (lifecycle::is_present(ratio)) {
lifecycle::deprecate_stop(
"0.2.0",
"step_downsample(ratio = )",
"step_downsample(over_ratio = )"
)
}
check_number_whole(seed)
add_step(
recipe,
step_upsample_new(
terms = enquos(...),
over_ratio = over_ratio,
ratio = NULL,
role = role,
trained = trained,
column = column,
target = target,
skip = skip,
seed = seed,
id = id,
case_weights = NULL
)
)
}
step_upsample_new <-
function(terms, over_ratio, ratio, role, trained, column, target, skip, seed,
id, case_weights) {
step(
subclass = "upsample",
terms = terms,
over_ratio = over_ratio,
ratio = ratio,
role = role,
trained = trained,
column = column,
target = target,
skip = skip,
id = id,
seed = seed,
case_weights = case_weights
)
}
#' @export
prep.step_upsample <- function(x, training, info = NULL, ...) {
col_name <- recipes_eval_select(x$terms, training, info)
check_number_decimal(x$over_ratio, arg = "over_ratio", min = 0)
wts <- recipes::get_case_weights(info, training)
were_weights_used <- recipes::are_weights_used(wts, unsupervised = TRUE)
if (isFALSE(were_weights_used) || is.null(wts)) {
wts <- rep(1, nrow(training))
}
check_1_selected(col_name)
check_column_factor(training, col_name)
if (length(col_name) == 0) {
majority <- 0
} else {
obs_freq <- weighted_table(training[[col_name]], as.integer(wts))
majority <- max(obs_freq)
}
check_na(select(training, all_of(col_name)))
step_upsample_new(
terms = x$terms,
ratio = x$ratio,
over_ratio = x$over_ratio,
role = x$role,
trained = TRUE,
column = col_name,
target = floor(majority * x$over_ratio),
skip = x$skip,
id = x$id,
seed = x$seed,
case_weights = were_weights_used
)
}
supsamp <- function(x, wts, num) {
n <- nrow(x)
if (nrow(x) == num) {
out <- x
} else {
# upsampling is done with replacement
out <- x[sample(seq_len(n), max(num, n), replace = TRUE, prob = wts), ]
}
out
}
#' @export
bake.step_upsample <- function(object, new_data, ...) {
col_names <- names(object$column)
check_new_data(col_names, object, new_data)
if (length(col_names) == 0L) {
# Empty selection
return(new_data)
}
if (isTRUE(object$case_weights)) {
wts_col <- purrr::map_lgl(new_data, hardhat::is_case_weights)
wts <- new_data[[names(which(wts_col))]]
wts <- as.integer(wts)
} else {
wts <- rep(1, nrow(new_data))
}
if (any(is.na(new_data[[col_names]]))) {
missing <- new_data[is.na(new_data[[col_names]]), ]
} else {
missing <- NULL
}
split_data <- split(new_data, new_data[[col_names]])
split_wts <- split(wts, new_data[[col_names]])
# Upsample with seed for reproducibility
with_seed(
seed = object$seed,
code = {
new_data <- purrr::map2_dfr(
split_data,
split_wts,
supsamp,
num = object$target
)
if (!is.null(missing)) {
new_data <- bind_rows(new_data, supsamp(missing, object$target))
}
}
)
new_data
}
#' @export
print.step_upsample <-
function(x, width = max(20, options()$width - 26), ...) {
title <- "Up-sampling based on "
print_step(x$column, x$terms, x$trained, title, width,
case_weights = x$case_weights)
invisible(x)
}
#' @rdname step_upsample
#' @usage NULL
#' @export
tidy.step_upsample <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = unname(x$column))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = unname(term_names))
}
res$id <- x$id
res
}
#' @export
#' @rdname tunable_themis
tunable.step_upsample <- function(x, ...) {
tibble::tibble(
name = c("over_ratio"),
call_info = list(
list(pkg = "dials", fun = "over_ratio")
),
source = "recipe",
component = "step_upsample",
component_id = x$id
)
}
#' @rdname required_pkgs.step
#' @export
required_pkgs.step_upsample <- function(x, ...) {
c("themis")
}