-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolver.py
300 lines (225 loc) · 12.4 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import math
import unittest
# Iteration functions
def calculateNextStateEulerCore(y, t, dY_function, h):
k = dY_function(y, t)
result = y[:]
for i in range(len(y)):
result[i] += h * k[i]
return result
def calculateNextStateEuler(positions, velocities, t, accelerationsFunction, delta_t):
tmp = calculateNextStateEulerCore(
positions + velocities, t,
lambda y, t: (y[len(positions):] + accelerationsFunction(y[:len(positions)], y[len(positions):], t)),
delta_t)
return tmp[:len(positions)], tmp[len(positions):]
def calculateNextStateRK4(positions, velocities, t, accelerationsFunction, delta_t):
# See https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
f = lambda y, t: y[len(positions):] + accelerationsFunction(y[:len(positions)], y[len(positions):], t)
y0 = positions + velocities
k1 = f(y0, t)
y1 = y0[:]
for i in range(len(y1)):
y1[i] += 0.5 * delta_t * k1[i]
k2 = f(y1, t + delta_t * 0.5)
y2 = y0[:]
for i in range(len(y1)):
y2[i] += 0.5 * delta_t * k2[i]
k3 = f(y2, t + delta_t * 0.5)
y3 = y0[:]
for i in range(len(y1)):
y3[i] += delta_t * k2[i]
k4 = f(y3, t + delta_t)
yf = y0[:]
for i in range(len(y1)):
yf[i] += delta_t * (k1[i] + 2 * k2[i] + 2 * k3[i] + k4[i]) / 6
return yf[:len(positions)], yf[len(positions):]
# Loop functions
def solveGeneric(initial_positions, initial_velocities, calculate_accelerations_p_v_t, duration, time_step, solver_function, progress_listener_callback_p_v_t):
if len(initial_positions) == 0:
raise Exception("No positions")
if len(initial_positions) != len(initial_velocities):
raise Exception("The size of the positions and velocities vectors don't match (" + len(initial_positions) + " vs " + len(initial_velocities) + ")")
positions = initial_positions[:]
velocities = initial_velocities[:]
time = 0
finished = False
while time < duration:
if progress_listener_callback_p_v_t:
finished = progress_listener_callback_p_v_t(positions, velocities, time)
if finished:
break
positions, velocities = solver_function(positions, velocities, time, calculate_accelerations_p_v_t, time_step)
time = time + time_step
if not finished and progress_listener_callback_p_v_t:
progress_listener_callback_p_v_t(positions, velocities, time)
return positions, velocities, time
def solveRK4(initial_positions, initial_velocities, calculate_accelerations_p_v_t, duration, time_step, progress_listener_callback_p_v_t = None):
return solveGeneric(initial_positions, initial_velocities, calculate_accelerations_p_v_t, duration, time_step, calculateNextStateRK4, progress_listener_callback_p_v_t)
#### Self tests
class TestStringMethods(unittest.TestCase):
def assertEqualsApprox(self, actual, expected, tolerance):
self.assertGreaterEqual(actual, expected - tolerance)
self.assertLessEqual(actual, expected + tolerance)
def test_stationary_object_no_accelerations(self):
# Basic sanity test: a stationary object with acceleration applied remains stationary.
# x(t) = 42,
# v_x(t) = 0.
positions = [42]
velocities = [0]
calculate_accelerations_p_v_t = lambda p, v, t: [0]
positions, velocities, time = solveRK4(positions, velocities, calculate_accelerations_p_v_t, 10, 0.1)
# Ideally this would be exactly 10, but adding 0.1 10 times gives 0.9999999999999999.
# Close enough for practical applications, but bad for precise checks like this.
# It gets better with a smaller time step.
self.assertEqualsApprox(time, 10, 0.1)
self.assertEqual(len(positions), 1)
self.assertEqual(positions[0], 42)
self.assertEqual(len(velocities), 1)
self.assertEqual(velocities[0], 0)
def test_moving_object_no_force(self):
# An object with no force applied continues to travel with a constant velocity.
# x(t) = 1 * t,
# v_x(t) = 1.
positions = [0]
velocities = [1]
calculate_accelerations_p_v_t = lambda p, v, t: [0]
positions, velocities, time = solveRK4(positions, velocities, calculate_accelerations_p_v_t, 10, 0.001)
self.assertEqualsApprox(time, 10, 0.001)
self.assertEqual(len(positions), 1)
# This is much closer to the expected 50.
self.assertEqualsApprox(positions[0], 10, 0.001)
self.assertEqual(len(velocities), 1)
self.assertEqual(velocities[0], 1)
def test_stationary_object_constant_force(self):
# A stationary object with a constant force applied travels at
# x(t) = 1 * t^2 / 2,
# v_x(t) = 1 * t.
positions = [0]
velocities = [0]
calculate_accelerations_p_v_t = lambda p, v, t: [1]
positions, velocities, time = solveRK4(positions, velocities, calculate_accelerations_p_v_t, 10, 0.001)
self.assertEqualsApprox(time, 10, 0.001)
self.assertEqual(len(positions), 1)
# This is much closer to the expected 50.
# 0.011 out of 50 is 0.022% precision.
self.assertEqualsApprox(positions[0], 50, 0.011)
self.assertEqual(len(velocities), 1)
self.assertEqualsApprox(velocities[0], 10, 0.001)
def test_moving_object_acceleration(self):
# x(t) = 1 * t + 1 * t^2 / 2,
# v_x(t) = 1 + 1 * t.
positions = [0]
velocities = [1]
calculate_accelerations_p_v_t = lambda p, v, t: [1]
positions, velocities, time = solveRK4(positions, velocities, calculate_accelerations_p_v_t, 10, 0.001)
self.assertEqualsApprox(time, 10, 0.001)
self.assertEqual(len(positions), 1)
self.assertEqualsApprox(positions[0], 60, 0.02)
self.assertEqual(len(velocities), 1)
self.assertEqualsApprox(velocities[0], 11, 0.001)
def test_pendulum(self):
# Differential equation: f(x, v, t) = - x.
# The precise solution is:
# x = cos(t),
# v = -sin(t).
init_positions = [1]
init_velocities = [0]
calculate_accelerations_p_v_t = lambda p, v, t: [-p[0]]
# Energy = (x^2 + v^2)/2.
# For the precise solution, the energy of this system remains constant at 0.5.
# Many other solving algorithm either lose or gain energy out of nowhere,
# so it's useful to sanity test what we have here.
energy = lambda p, v: 0.5 * (math.pow(p[0], 2) + math.pow(v[0], 2))
positions, velocities, time = solveRK4(init_positions, init_velocities, calculate_accelerations_p_v_t, 1.5708, 0.001)
self.assertEqualsApprox(positions[0], 0, 0.0003)
self.assertEqualsApprox(velocities[0], -1, 0.00001)
self.assertEqualsApprox(energy(positions, velocities), 0.5, 0.00000001)
positions, velocities, time = solveRK4(init_positions, init_velocities, calculate_accelerations_p_v_t, 3.1416, 0.001)
self.assertEqualsApprox(positions[0], -1, 0.0001)
self.assertEqualsApprox(velocities[0], 0, 0.0005)
self.assertEqualsApprox(energy(positions, velocities), 0.5, 0.00000001)
positions, velocities, time = solveRK4(init_positions, init_velocities, calculate_accelerations_p_v_t, 4.7124, 0.001)
self.assertEqualsApprox(positions[0], 0, 0.0007)
self.assertEqualsApprox(velocities[0], 1, 0.0001)
self.assertEqualsApprox(energy(positions, velocities), 0.5, 0.00000001)
positions, velocities, time = solveRK4(init_positions, init_velocities, calculate_accelerations_p_v_t, 6.2832, 0.001)
self.assertEqualsApprox(positions[0], 1, 0.0001)
self.assertEqualsApprox(velocities[0], 0, 0.0009)
self.assertEqualsApprox(energy(positions, velocities), 0.5, 0.00000001)
# 314.1593 = 50 * (2 * pi). With the 0.001 time step this is 314k iterations, so a good test of longer-term precision.
positions, velocities, time = solveRK4(init_positions, init_velocities, calculate_accelerations_p_v_t, 314.1593, 0.001)
self.assertEqualsApprox(positions[0], 1, 0.0000003)
self.assertEqualsApprox(velocities[0], 0, 0.0008)
self.assertEqualsApprox(energy(positions, velocities), 0.5, 0.00000002)
def test_pendulum_2D(self):
# Differential equation: f([x, y], [vx, vy], t) = [-x, -4*y].
# The precise solution is:
# x = cos(t),
# y = cos(2*t),
# v_x = -sin(t),
# v_y = -2*sin(t).
init_positions = [1, 1]
init_velocities = [0, 0]
calculate_accelerations_p_v_t = lambda p, v, t: [-p[0], -4*p[1]]
# Energy = (x^2 + v_x^2 + 4*y^2 + v_y^2)/2.
# For the precise solution, the energy of this system remains constant at 2.5.
# Many other solving algorithm either lose or gain energy out of nowhere,
# so it's useful to sanity test what we have here.
energy = lambda p, v: 0.5 * (math.pow(p[0], 2) + math.pow(v[0], 2) + 4 * math.pow(p[1], 2) + math.pow(v[1], 2))
positions, velocities, time = solveRK4(init_positions, init_velocities, calculate_accelerations_p_v_t, 0.7854, 0.001)
self.assertEqualsApprox(positions[1], 0, 0.002)
self.assertEqualsApprox(velocities[1], -2, 0.000002)
self.assertEqualsApprox(energy(positions, velocities), 2.5, 0.00000001)
positions, velocities, time = solveRK4(init_positions, init_velocities, calculate_accelerations_p_v_t, 1.5708, 0.001)
self.assertEqualsApprox(positions[0], 0, 0.0003)
self.assertEqualsApprox(velocities[0], -1, 0.00001)
self.assertEqualsApprox(positions[1], -1, 0.0009)
self.assertEqualsApprox(velocities[1], 0, 0.0009)
self.assertEqualsApprox(energy(positions, velocities), 2.5, 0.00000001)
positions, velocities, time = solveRK4(init_positions, init_velocities, calculate_accelerations_p_v_t, 3.1416, 0.001)
self.assertEqualsApprox(positions[0], -1, 0.0001)
self.assertEqualsApprox(velocities[0], 0, 0.0005)
self.assertEqualsApprox(energy(positions, velocities), 2.5, 0.00000001)
positions, velocities, time = solveRK4(init_positions, init_velocities, calculate_accelerations_p_v_t, 4.7124, 0.001)
self.assertEqualsApprox(positions[0], 0, 0.0007)
self.assertEqualsApprox(velocities[0], 1, 0.0001)
self.assertEqualsApprox(energy(positions, velocities), 2.5, 0.00000002)
positions, velocities, time = solveRK4(init_positions, init_velocities, calculate_accelerations_p_v_t, 6.2832, 0.001)
self.assertEqualsApprox(positions[0], 1, 0.0001)
self.assertEqualsApprox(velocities[0], 0, 0.0009)
self.assertEqualsApprox(energy(positions, velocities), 2.5, 0.00000002)
# 314.1593 = 50 * (2 * pi). With the 0.001 time step this is 314k iterations, so a good test of longer-term precision.
positions, velocities, time = solveRK4(init_positions, init_velocities, calculate_accelerations_p_v_t, 314.1593, 0.001)
self.assertEqualsApprox(positions[0], 1, 0.0000003)
self.assertEqualsApprox(velocities[0], 0, 0.0008)
self.assertEqualsApprox(positions[1], 1, 0.000002)
self.assertEqualsApprox(velocities[1], 0, 0.003)
self.assertEqualsApprox(energy(positions, velocities), 2.5, 0.0000009)
def test_finish(self):
# x(t) = 1 * t,
# v_x(t) = 1.
#
# Should reach x >= 10 in 10 seconds.
positions = [0]
velocities = [1]
calculate_accelerations_p_v_t = lambda p, v, t: [0]
progress_listener_callback_p_v_t = lambda p, v, t: p[0] >= 10
positions, velocities, time = solveRK4(positions, velocities, calculate_accelerations_p_v_t, 100, 0.001, progress_listener_callback_p_v_t)
self.assertEqualsApprox(time, 10, 0.001)
self.assertEqualsApprox(positions[0], 10, 0.001)
def test_dnf(self):
# x(t) = 1 * t,
# v_x(t) = 1.
#
# Should reach x >= 10 in 10 seconds.
positions = [0]
velocities = [1]
calculate_accelerations_p_v_t = lambda p, v, t: [0]
progress_listener_callback_p_v_t = lambda p, v, t: p[0] >= 10
positions, velocities, time = solveRK4(positions, velocities, calculate_accelerations_p_v_t, 4.2, 0.001, progress_listener_callback_p_v_t)
self.assertEqualsApprox(time, 4.2, 0.001)
self.assertEqualsApprox(positions[0], 4.2, 0.001)
if __name__ == '__main__':
print("Running solver tests:")
unittest.main()