forked from JinhaoLee/WCA
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
176 lines (150 loc) · 5.83 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import fire
import numpy as np
import torch
import yaml
from helper import (
accuracy,
generate_weights,
load_precomputed_features,
set_seed,
)
from clip import clip
from torchvision.transforms import v2 as T
from torchvision import datasets
from torch.nn import functional as F
from PIL import Image
def main(
dataset_name: str = "imagenet",
num_workers: int = 4,
seed: int = 42,
device: str = "cuda",
):
device = torch.device(device)
print("Device:", device)
print("num_workers:", num_workers)
# load config file
with open(file=f"cfgs/{dataset_name}.yaml") as f:
hparams = yaml.load(f, Loader=yaml.FullLoader)
set_seed(seed)
# load hyperparameters from config file
model_size = hparams["model_size"]
alpha = hparams["alpha"]
n_samples = hparams["n_samples"]
batch_size = hparams["batch_size"]
data_path = hparams["data_path"]
# load model
print(f"Loading {model_size}")
model, processor = clip.load(model_size, device=device)
model.eval()
model.requires_grad_(False)
def random_crop(image: Image.Image, alpha: float = 0.1) -> Image.Image:
"""Randomly crops an image within a size range determined by alpha and the image dimensions.
Args:
image (Image): The input image to crop.
alpha (float): The minimum scale factor for the crop as a proportion of the smallest dimension.
Returns:
PIL Image or Tensor: Cropped image
"""
# Get the width and height of the original image
w, h = image.size
# Determine the size of the crop based on alpha and the smallest dimension
n_px = np.random.uniform(low=alpha, high=0.9) * min(h, w)
# Perform the crop
cropped = T.RandomCrop(int(n_px))(image)
return cropped
def custom_loader(path: str) -> torch.Tensor:
"""Loads an image, applies a processing function, and returns augmented versions.
Args:
path (str): The path to the image file.
n_samples (int): The number of augmented samples to generate.
Returns:
torch.Tensor: A tensor stack of the processed image and its augmented samples.
"""
# Load the image using the default loader
img = datasets.folder.default_loader(path)
# Process the image and generate additional augmented samples
augmented_imgs = [processor(img)]
augmented_imgs.extend(processor(random_crop(img)) for _ in range(n_samples))
# Return a stacked tensor of all processed images
return torch.stack(augmented_imgs)
# pre-compute image features from dataset
(
precomputed_features,
target,
image_features,
) = load_precomputed_features(
model,
dataset_name=dataset_name,
model_size=model_size,
alpha=alpha,
n_samples=n_samples,
batch_size=batch_size,
num_workers=num_workers,
data_path=data_path,
custom_loader=custom_loader,
device=device,
)
max_size = precomputed_features.size(1)
image_features = image_features.to(device)
results = {}
with torch.no_grad():
methods = hparams["methods"]
for method in methods:
method = list(method.values())[0]
method_name = method["name"]
method_enabled = method["enabled"]
text_scale = (
torch.exp(torch.tensor(method["text_scale"])).to(device)
if "text_scale" in method
else None
)
image_scale = (
torch.exp(torch.tensor(method["image_scale"])).to(device)
if "image_scale" in method
else None
)
if method_enabled:
zeroshot_weights = generate_weights(
method_name,
model=model,
dataset_name=dataset_name,
tt_scale=text_scale,
device=device,
)
# set zero-shot weights to the same dtype as image features
zeroshot_weights = zeroshot_weights.to(image_features.dtype)
else:
continue
# Baseline
logits = image_features.squeeze(1) @ zeroshot_weights
baseline_acc = accuracy(
logits, target, image_features.size(0), dataset_name
)
if method_name != "ours":
print(f"{method_name}: {baseline_acc:.2f}\n")
results[method_name] = round(baseline_acc, 2)
if method_name == "ours":
acc_list = []
patch_num = hparams["patch_n"]
print(f"n_run: {hparams['n_run']}")
for i in range(hparams["n_run"]):
random_indices = torch.randint(0, max_size, (patch_num,))
sampled_features = precomputed_features[:, random_indices, :]
patch_embeds = sampled_features[:, :, :-1]
patch_weights = sampled_features[:, :, -1]
del sampled_features
# Weighted average of image embeddings
w_i = (patch_weights * image_scale).softmax(-1).unsqueeze(-1)
patch_embeds = (patch_embeds * w_i).sum(dim=1)
patch_embeds = F.normalize(patch_embeds, dim=-1)
# Ours: [B, D] @ [C, D].T -> (B, C)
logits = patch_embeds @ zeroshot_weights
acc_list.append(
accuracy(logits, target, patch_embeds.size(0), dataset_name)
)
mean = np.mean(acc_list)
std = np.std(acc_list)
print(f"{method_name}: {mean:.2f}+-{std:.2f}")
print(acc_list)
if __name__ == "__main__":
fire.Fire(main)