forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathefficientAD_det.cpp
256 lines (221 loc) · 9.76 KB
/
efficientAD_det.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include <cuda_runtime.h>
#include <chrono>
#include <cmath>
#include <cstdint>
#include <iostream>
#include <opencv2/opencv.hpp>
#include "config.h"
#include "cuda_utils.h"
#include "logging.h"
#include "model.h"
#include "postprocess.h"
#include "utils.h"
using namespace nvinfer1;
static Logger gLogger;
// const static int kOutputSize = kMaxNumOutputBbox * sizeof(Detection) / sizeof(float) + 1;
const static int kInputSize = 3 * 256 * 256;
const static int kOutputSize = 1 * 256 * 256;
bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, float& gd, float& gw,
std::string& img_dir) {
if (argc != 4)
return false;
if (std::string(argv[1]) == "-s") {
wts = std::string(argv[2]);
engine = std::string(argv[3]);
} else if (std::string(argv[1]) == "-d") {
engine = std::string(argv[2]);
img_dir = std::string(argv[3]);
} else {
return false;
}
return true;
}
void prepare_infer_buffers(ICudaEngine* engine, float** gpu_input_buffer, float** gpu_output_buffer,
float** cpu_output_buffer) {
// assert(engine->getNbIOTensors() == 2);
assert(engine->getNbBindings() == 2);
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine->getBindingIndex(kInputTensorName);
const int outputIndex = engine->getBindingIndex(kOutputTensorName);
// nvinfer1::Dims outputDims = engine->getBindingDimensions(outputIndex);
assert(inputIndex == 0);
assert(outputIndex == 1);
// Create GPU in/output buffers on device
CUDA_CHECK(cudaMalloc((void**)gpu_input_buffer, kBatchSize * 3 * kInputH * kInputW * sizeof(float)));
CUDA_CHECK(cudaMalloc((void**)gpu_output_buffer, kBatchSize * 1 * kOutputSize * sizeof(float))); // 3 or 1 ??
// Create CPU output buffers on host
*cpu_output_buffer = new float[kBatchSize * kOutputSize];
}
void preprocessImg(cv::Mat& img, int newh, int neww) {
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
cv::resize(img, img, cv::Size(neww, newh));
img.convertTo(img, CV_32FC3);
// ImageNet normalize
img /= 255.0f;
img -= cv::Scalar(0.485, 0.456, 0.406);
img /= cv::Scalar(0.229, 0.224, 0.225);
}
void infer(IExecutionContext& context, cudaStream_t& stream, std::vector<void*>& gpu_buffers,
std::vector<float>& cpu_input_data, std::vector<float>& cpu_output_data, int batchsize) {
// copy input data from host (CPU) to device (GPU)
CUDA_CHECK(cudaMemcpyAsync(gpu_buffers[0], cpu_input_data.data(), cpu_input_data.size() * sizeof(float),
cudaMemcpyHostToDevice, stream));
// execute inference using context provided by engine
context.enqueue(batchsize, gpu_buffers.data(), stream, nullptr);
// copy output back from device (GPU) to host (CPU)
CUDA_CHECK(cudaMemcpyAsync(cpu_output_data.data(), gpu_buffers[1], batchsize * kOutputSize * sizeof(float),
cudaMemcpyDeviceToHost, stream));
// synchronize the stream to prevent issues (block CUDA and wait for CUDA operations to be completed)
cudaStreamSynchronize(stream);
}
void serialize_engine(unsigned int max_batchsize, float& gd, float& gw, std::string& wts_name,
std::string& engine_name) {
// Create builder
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* config = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine* engine = nullptr;
engine = build_efficientAD_engine(max_batchsize, builder, config, DataType::kFLOAT, gd, gw, wts_name);
assert(engine != nullptr);
// Serialize the engine
IHostMemory* serialized_engine = engine->serialize();
assert(serialized_engine != nullptr);
// Save engine to file
std::ofstream p(engine_name, std::ios::binary);
if (!p) {
std::cerr << "Could not open plan output file" << std::endl;
assert(false);
}
p.write(reinterpret_cast<const char*>(serialized_engine->data()), serialized_engine->size());
// Close everything down
engine->destroy();
config->destroy();
serialized_engine->destroy();
builder->destroy();
}
void deserialize_engine(std::string& engine_name, IRuntime** runtime, ICudaEngine** engine,
IExecutionContext** context) {
std::ifstream file(engine_name, std::ios::binary);
if (!file.good()) {
std::cerr << "read " << engine_name << " error!" << std::endl;
assert(false);
}
size_t size = 0;
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
char* serialized_engine = new char[size];
assert(serialized_engine);
file.read(serialized_engine, size);
file.close();
*runtime = createInferRuntime(gLogger);
assert(*runtime);
*engine = (*runtime)->deserializeCudaEngine(serialized_engine, size);
assert(*engine != nullptr);
*context = (*engine)->createExecutionContext();
assert(*context);
delete[] serialized_engine;
}
int main(int argc, char** argv) {
cudaSetDevice(kGpuId);
std::string wts_name = "";
std::string engine_name = "";
float gd = 1.0f, gw = 1.0f;
std::string img_dir;
if (!parse_args(argc, argv, wts_name, engine_name, gd, gw, img_dir)) {
std::cerr << "arguments not right!" << std::endl;
std::cerr << "./efficientad_det -s [.wts] [.engine] // serialize model to plan file" << std::endl;
std::cerr
<< "./efficientad_det -d [.engine] [../../datas/images/...] // deserialize plan file and run inference"
<< std::endl;
return -1;
}
// Create a model using the API directly and serialize it to a file
if (!wts_name.empty()) {
serialize_engine(kBatchSize, gd, gw, wts_name, engine_name);
return 0;
}
// Deserialize the engine from file
IRuntime* runtime = nullptr;
ICudaEngine* engine = nullptr;
IExecutionContext* context = nullptr;
deserialize_engine(engine_name, &runtime, &engine, &context);
// create CUDA stream for simultaneous CUDA operations
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
// prepare cpu and gpu buffers
void *gpu_input_buffer, *gpu_output_buffer;
CUDA_CHECK(cudaMalloc(&gpu_input_buffer, kBatchSize * 3 * kInputH * kInputW * sizeof(float)));
CUDA_CHECK(cudaMalloc(&gpu_output_buffer, kBatchSize * 1 * kOutputSize * sizeof(float))); // 3 or 1 ??
std::vector<void*> gpu_buffers = {gpu_input_buffer, gpu_output_buffer};
std::vector<float> cpu_input_data(kBatchSize * kInputSize, 0);
std::vector<float> cpu_output_data(kBatchSize * kOutputSize, 0);
// read images from directory
std::vector<std::string> file_names;
if (read_files_in_dir(img_dir.c_str(), file_names) < 0) {
std::cerr << "read_files_in_dir failed." << std::endl;
return -1;
}
std::vector<cv::Mat> originImg_batch;
for (size_t i = 0; i < file_names.size(); i += kBatchSize) {
// get a batch of images
std::vector<cv::Mat> img_batch;
std::vector<std::string> img_name_batch;
for (size_t j = i; j < i + kBatchSize && j < file_names.size(); j++) {
cv::Mat img = cv::imread(img_dir + "/" + file_names[j]);
originImg_batch.push_back(img.clone());
preprocessImg(img, kInputW, kInputH);
assert(img.cols * img.rows * 3 == 3 * 256 * 256);
for (int c = 0; c < 3; c++) {
for (int h = 0; h < img.rows; h++) {
for (int w = 0; w < img.cols; w++) {
cpu_input_data[c * img.rows * img.cols + h * img.cols + w] = img.at<cv::Vec3f>(h, w)[c];
}
}
}
img_batch.push_back(img);
img_name_batch.push_back(file_names[j]);
}
// Run inference
auto start = std::chrono::system_clock::now();
// infer(*context, stream, (void**)gpu_buffers, cpu_input_data, cpu_output_buffer, kBatchSize);
infer(*context, stream, gpu_buffers, cpu_input_data, cpu_output_data,
kBatchSize); // change to save into vec `cpu_output_data`
auto end = std::chrono::system_clock::now();
std::cout << "inference time: " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count()
<< "ms" << std::endl;
// postProcess
cv::Mat img_1(256, 256, CV_8UC1);
for (int row = 0; row < 256; row++) {
for (int col = 0; col < 256; col++) {
float value = cpu_output_data[row * 256 + col];
if (value < 0) // clip(0,1)
value = 0;
else if (value > 1)
value = 1;
img_1.at<uchar>(row, col) = static_cast<uchar>(value * 255);
}
}
cv::Mat HeatMap, colorMap;
// genHeatMap(img_batch[0], img_1, HeatMap);
cv::applyColorMap(img_1, colorMap, cv::COLORMAP_JET);
cv::resize(originImg_batch[i], originImg_batch[i], cv::Size(256, 256));
cv::cvtColor(originImg_batch[i], originImg_batch[i], cv::COLOR_RGB2BGR);
cv::addWeighted(originImg_batch[i], 0.5, colorMap, 0.5, 0, HeatMap);
// Save images
for (size_t j = 0; j < img_batch.size(); j++) {
cv::imwrite("_output" + img_name_batch[j], img_1);
cv::imwrite("_heatmap" + img_name_batch[j], HeatMap);
}
}
// Release stream and buffers
cudaStreamDestroy(stream);
CUDA_CHECK(cudaFree(gpu_buffers[0]));
CUDA_CHECK(cudaFree(gpu_buffers[1]));
// Destroy the engine
context->destroy();
engine->destroy();
runtime->destroy();
return 0;
}